WorldWideScience

Sample records for important ecosystems today

  1. Vaccination ecosystem health check: achieving impact today and sustainability for tomorrow.

    Science.gov (United States)

    Saadatian-Elahi, Mitra; Bloom, David; Plotkin, Stanley; Picot, Valentina; Louis, Jacques; Watson, Michael

    2017-01-01

    Vaccination is a complex ecosystem with several components that interact with one another and with the environment. Today's vaccine ecosystem is defined by the pursuit of polio eradication, the drive to get as many of the new vaccines to as many people as possible and the research and development against immunologically challenging diseases. Despite these successes, vaccine ecosystem is facing keys issues with regard to supply/distribution and cost/profitability asymmetry that risk slowing its global growth. The conference "Vaccination ecosystem health check: achieving impact today and sustainability for tomorrow" held in Annecy-France (January 19-21, 2015) took stock of the health of today's vaccination ecosystem and its ability to reliably and sustainably supply high-quality vaccines while investing in tomorrow's needed innovation. Small and decreasing numbers of suppliers/manufacturing facilities; paucity of research-driven companies; regulatory pressures; market uncertainties; political prioritization; anti-vaccine movements/complacency; and technological and programmatic issues were acknowledged as the major challenges that could weaken today's vaccination ecosystem. The expert panel discussed also drivers and barriers to a sustainable vaccination ecosystem; the metrics of a vaccination ecosystem; and what should be added, removed, increased, or reduced to maintain the health of the vaccination ecosystem.

  2. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  3. The importance of ethics in the process of education in today globalised society

    Directory of Open Access Journals (Sweden)

    Josefová Alena

    2016-01-01

    Full Text Available The events of the recent past show fluctuating structure of today world which is characterized on one hand as multicultural cooperation of people from various cultures and ethnic groups, and on the other hand seen with many conflicts and misunderstandings. Therefore ethical behavior becomes more important, which creates our humanity. The paper focuses on the importance of ethics in the process of education in today globalized world with the aim of leading the students to multicultural perception of the society and the world. To understand the world in European and globalized consequences will lead to reduction or eradication of religious intolerance. The paper describes the changes in education system in the Czech Republic in the past years and focuses on the importance of ethics in the process during primary, secondary and university education.

  4. Introduction: The Continued Importance of Smallholders Today

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Vadjunec

    2016-10-01

    Full Text Available Smallholders remain an important part of human-environment research, particularly in cultural and political ecology, peasant and development studies, and increasingly in land system and sustainability science. This introduction to the edited volume explores land use and livelihood issues among smallholders, in several disciplinary and subfield traditions. Specifically, we provide a short history of smallholder livelihood research in the human-environment tradition. We reflect on why, in an age of rapid globalization, smallholder land use and livelihoods still matter, both for land system science and as a reflection of concerns with inequality and poverty. Key themes that emerge from the papers in this volume include the importance of smallholder farming and land-use practices to questions of environmental sustainability, the dynamic reality of smallholder livelihoods, the challenges of vulnerability and adaptation in contemporary human-environment systems, and the structural and relative nature of the term “smallholder.” Overall these contributions show that smallholder studies are more pertinent than ever, especially in the face of global environmental change. Additionally, we argue that questions of smallholder identity, social difference, and teleconnections provide fertile areas of future research. We conclude that we need to re-envision who the smallholder is today and how this translates into modern human-environment smallholder studies.

  5. Know this today's most interesting and important scientific ideas, discoveries, and developments

    CERN Document Server

    2017-01-01

    Today's most visionary thinkers reveal the cutting-edge scientific ideas and breakthroughs you must understand. Scientific developments radically change and enlighten our understanding of the world -- whether it's advances in technology and medical research or the latest revelations of neuroscience, psychology, physics, economics, anthropology, climatology, or genetics. And yet amid the flood of information today, it's often difficult to recognize the truly revolutionary ideas that will have lasting impact. In the spirit of identifying the most significant new theories and discoveries, John Brockman, publisher of Edge.org ("The world's smartest website" -- The Guardian), asked 198 of the finest minds What do you consider the most interesting recent scientific news? What makes it important? Pulitzer Prize-winning author of Guns, Germs, and Steel Jared Diamond on the best way to understand complex problems * author of Seven Brief Lessons on Physics Carlo Rovelli on the mystery of black holes * Harvard psychol...

  6. The importance of bees in natural and agricultural ecosystems

    Science.gov (United States)

    Paul Rhoades

    2013-01-01

    As the world’s most important group of pollinators, bees are a crucial part of agricultural production and natural ecosystem function. Bees and the pollination they provide are relevant to the nursery industry because of their role in the performance of seed increase plots as well as the importance of pollination in supporting persistent plant communities in restored...

  7. Important techniques in today's biomedical science research that ...

    African Journals Online (AJOL)

    The need for best evidence has driven researchers into multidisciplinary, collaborative approaches which have become mainstay in today's biomedical science. The multidisciplinary and collaborative approaches to research in research-intensive academic medical centres in the USA and in other countries of affluence has ...

  8. From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality

    Directory of Open Access Journals (Sweden)

    Jan-Ulrich Kreft

    2017-11-01

    Full Text Available Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression, stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s underlying it for the specific microbial system and question investigated is essential for selecting the

  9. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems

    DEFF Research Database (Denmark)

    Giblin, Anne E.; Tobias, Craig R.; Song, Bongkeun

    2013-01-01

    Until recently, it was believed that biological assimilation and gaseous nitrogen (N) loss through denitrification were the two major fates of nitrate entering or produced within most coastal ecosystems. Denitrification is often viewed as an important ecosystem service that removes reactive N from...... the ecosystem. However, there is a competing nitrate reduction process, dissimilatory nitrate reduction to ammonium (DNRA), that conserves N within the ecosystem. The recent application of nitrogen stable isotopes as tracers has generated growing evidence that DNRA is a major nitrogen pathway that cannot...... of denitrification and DNRA, and how the balance changes with increased nitrogen loading, is of critical importance for predicting eutrophication trajectories. Recent improvements in methods for assessing rates of DNRA have helped refine our understanding of the rates and controls of this process, but accurate...

  10. Privacy driven internet ecosystem

    OpenAIRE

    Trinh, Tuan Anh; Gyarmati, Laszlo

    2012-01-01

    The dominant business model of today's Internet is built upon advertisements; users can access Internet services while the providers show ads to them. Although significant efforts have been made to model and analyze the economic aspects of this ecosystem, the heart of the current status quo, namely privacy, has not received the attention of the research community yet. Accordingly, we propose an economic model of the privacy driven Internet ecosystem where privacy is handled as an asset that c...

  11. The Niger Delta wetlands: Threats to ecosystem services, their importance to dependent communities and possible management measures

    OpenAIRE

    Adekola, O.; Mitchell, G.

    2011-01-01

    The Niger Delta wetlands are changing rapidly, raising concern for the wetlands' health and for communities relying upon its ecosystem services. Knowledge on ecosystem service provision is important for effective ecosystem and livelihoods management, but is currently lacking for the Niger Delta. We synthesised literature and used the ‘Drivers–pressure–state–impact–response’ (DPSIR) framework to structure information on changes in the wetlands' ecosystem services and implications for dependent...

  12. Herbivores Enforce Sharp Boundaries Between Terrestrial and Aquatic Ecosystems

    NARCIS (Netherlands)

    Sarneel, Judith M.; Huig, N.; Veen, G. F.; Rip, W.; Bakker, E. S.

    2014-01-01

    The transitions between ecosystems (ecotones) are often biodiversity hotspots, but we know little about the forces that shape them. Today, often sharp boundaries with low diversity are found between terrestrial and aquatic ecosystems. This has been attributed to environmental factors that hamper

  13. Interactions among ecosystem stressors and their importance in conservation

    Science.gov (United States)

    Darling, Emily S.; Brown, Christopher J.

    2016-01-01

    Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions—notably synergies—a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism's physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world. PMID:26865306

  14. Information services today an introduction

    CERN Document Server

    Hirsh, Sandra

    2015-01-01

    This essential overview of what it means to be a library and information professional today provides a broad overview of the transformation of libraries as information organizations, why these organizations are more important today than ever before, the technological influence on how we provide information resources and services in today's digital and global environment, and the various career opportunities available for information professionals. The book begins with a historical overview of libraries and their transformation as information and technology

  15. Ecosystems Vulnerability Challenge and Prize Competition

    Science.gov (United States)

    Smith, J. H.; Frame, M. T.; Ferriter, O.; Recker, J.

    2014-12-01

    Stimulating innovation and private sector entrepreneurship is an important way to advance the preparedness of communities, businesses and individuals for the impacts of climate change on certain aspects of ecosystems, such as: fire regimes; water availability; carbon sequestration; biodiversity conservation; weather-related hazards, and the spread of invasive species. The creation of tools is critical to help communities and natural resource managers better understand the impacts of climate change on ecosystems and the potential resulting implications for ecosystem services and conservation efforts. The Department of the Interior is leading an interagency effort to develop the Ecosystems Vulnerability theme as part of the President's Climate Action Plan. This effort will provide seamless access to relevant datasets that can help address such issues as: risk of wildfires to local communities and federal lands; water sensitivity to climate change; and understanding the role of ecosystems in a changing climate. This session will provide an overview of the proposed Ecosystem Vulnerability Challenge and Prize Competition, outlining the intended audience, scope, goals, and overall timeline. The session will provide an opportunity for participants to offer new ideas. Through the Challenge, access will be made available to critical datasets for software developers, engineers, scientists, students, and researchers to develop and submit applications addressing critical science issues facing our Nation today. Application submission criteria and guidelines will also be discussed. The Challenge will be open to all sectors and organizations (i.e. federal, non-federal, private sector, non-profits, and universities) within the United States. It is anticipated the Challenge will run from early January 2015 until spring of 2015.

  16. The virtues of variety in regional innovation systems and entrepreneurial ecosystems

    OpenAIRE

    Cooke, Philip

    2016-01-01

    - Today, interesting and important interconnections have been made that promise great leaps forward for innovation systems and entrepreneurial ecosystems - especially operating at the regional or sub-national level of the space economy. Of course, there are politics in such relationships. Most notable are those that are critical of anything that “interferes” with market hegemony (neoliberal bias) which has weakened commitments such as those pioneered in South Korea in the early years of th...

  17. Climate and fishing steer ecosystem regeneration to uncertain economic futures

    Science.gov (United States)

    Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian; Voss, Rudi; Quaas, Martin F.; Casini, Michele; Lindegren, Martin; Folke, Carl; Chr. Stenseth, Nils

    2015-01-01

    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million € per year, which equals half of today's maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change. PMID:25694626

  18. Einstein today

    International Nuclear Information System (INIS)

    Aspect, A.; Grangier, Ph.; Bouchet, F.R.; Brunet, E.; Derrida, B.; Cohen-Tannoudji, C.; Dalibard, J.; Laloe, F.; Damour, Th.; Darrigol, O.; Pocholle, J.P.

    2005-01-01

    The most important contributions of Einstein involve 5 fields of physics : the existence of quanta (light quanta, stimulated radiation emission and Bose-Einstein condensation), relativity, fluctuations (Brownian motion and thermodynamical fluctuations), the basis of quantum physics and cosmology (cosmological constant and the expansion of the universe). Diverse and renowned physicists have appreciated the development of modern physics from Einstein's ideas to the knowledge of today. This book is a collective book that gathers their work under 7 chapters: 1) 1905, a new beginning; 2) from the Einstein, Podolsky and Rosen's article to quantum information (cryptography and quantum computers); 3) the Bose-Einstein condensation in gases; 4) from stimulated emission to the today's lasers; 5) Brownian motion and the fluctuation-dissipation theory; 6) general relativity; and 7) cosmology. (A.C.)

  19. Importance of Forest Ecosystem Services to Secondary School Students: a Case from the North-West Slovenia

    Directory of Open Access Journals (Sweden)

    Gregor Torkar

    2014-06-01

    Full Text Available Background and Purpose: Forest managers are facing challenges in balancing the demands for forest social services raised by the general public and forest productive services. Knowing local people’s attitudes, taking into account their needs and respecting their opinions, introducing social aspects should become a management priority to ensure success of conservational activities and sustainable use of natural resources. This study investigates the attitudes of one category from the general public which is secondary school students related to forest ecosystem services in order to determine and present a useful basis for further research of people’s attitudes towards forests and forest management. Materials and Methods: In 2013 and 2014 410 Slovenian students from secondary schools in the Vipava valley and Goriška area in northwestern Slovenia completed a questionnaire testing for the influence of gender and frequency of forest experiences on attitudes to forest ecosystem services. Students’ attitudes to forest ecosystem services were investigated via 15 statements about provisioning, regulating, cultural and supporting services. The gathered data was analysed by the Statistical Package for the Social Sciences (SPSS, using ANOVA, Tukey post-hoc test, Spearman’s product moment correlation and the nonparametric Mann–Whitney (U test. Results and Conclusions: Students acknowledged the high benefits of ecosystem services provided by forests, though not all forest ecosystem services hold the same importance to secondary school students. Students placed the highest importance on supporting services; especially on the value of forests as habitats for animal and plant species. Also the importance of forests for clean air production was emphasized. Students with more frequent experiences in the forest environment placed more importance on cultural services as well as regulating services, especially for clean water and air production. Gender

  20. Sustainable power and scenic beauty: The Niagara River Water Diversion Treaty and its relevance today

    International Nuclear Information System (INIS)

    Sedoff, Andrei; Schott, Stephan; Karney, Bryan

    2014-01-01

    Niagara Falls and the Niagara River have always attracted great public interest due to their natural beauty, their enormous potential for electricity generation, their recreational value and as an important ecosystem. There have been simultaneous efforts to preserve this unique natural wonder and harness its power through hydroelectric development projects by both the United States and Canada. This paper explores the evolution of these efforts that culminated with the signing of the 1950 Niagara River Water Diversion Treaty that established minimum water flow rates to protect the “scenic beauty” of the falls, allowing the remaining water to be diverted for power production. We examine the rationale that led to specific water flow restrictions and question to what extent they are relevant today, as water intake capacity on the Canadian side has just been extended by around 25%. We find that current restrictions under the Niagara River Water Treaty (that expired in 2000) are not based on sound scientific evidence and estimate the upper limit of potential foregone benefits from clean electricity generation and greenhouse gas reductions. We identify a number of important issues that emerged in the last decades and that would justify an exploration of new treaty rules. - Highlights: • We examine the history of water diversion at Niagara Falls. • We examine the rationale that led to water flow restrictions over Niagara Falls and its relevance today. • We estimate the opportunity cost of foregone energy generation with the new Canadian intake capacity. • Water flow stipulations were not based on the sound scientific or ecosystem analysis. • A renegotiation of the 1950 Niagara River Water Diversion Treaty is overdue

  1. Human transformations of the Wadden Sea ecosystem through time : a synthesis

    NARCIS (Netherlands)

    Lotze, H.K.; Reise, K; Worm, B.; van Beusekom, J.; Busch, M.; Ehlers, A.; Heinrich, D.; Hoffman, R.C.; Holm, P.; Jensen, C.; Knottnerus, O.S.; Langhanki, N.; Prummel, W.; Vollmer, M.; Wolff, W.J.

    Todays Wadden Sea is a heavily human-altered ecosystem. Shaped by natural forces since its origin 7,500 years ago, humans gradually gained dominance in influencing ecosystem structure and functioning. Here, we reconstruct the timeline of human impacts and the history of ecological changes in the

  2. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    Science.gov (United States)

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  3. Impact of perceived importance of ecosystem services and stated financial constraints on willingness to pay for riparian meadow restoration in Flanders (Belgium).

    Science.gov (United States)

    Chen, Wendy Y; Aertsens, Joris; Liekens, Inge; Broekx, Steven; De Nocker, Leo

    2014-08-01

    The strategic importance of ecosystem service valuation as an operational basis for policy decisions on natural restoration has been increasingly recognized in order to align the provision of ecosystem services with the expectation of human society. The contingent valuation method (CVM) is widely used to quantify various ecosystem services. However, two areas of concern arise: (1) whether people value specific functional ecosystem services and overlook some intrinsic aspects of natural restoration, and (2) whether people understand the temporal dimension of ecosystem services and payment schedules given in the contingent scenarios. Using a peri-urban riparian meadow restoration project in Flanders, Belgium as a case, we explored the impacts of residents' perceived importance of various ecosystem services and stated financial constraints on their willingness-to-pay for the proposed restoration project employing the CVM. The results indicated that people tended to value all the benefits of riparian ecosystem restoration concurrently, although they accorded different importances to each individual category of ecosystem services. A longer payment scheme can help the respondents to think more about the flow of ecosystem services into future generations. A weak temporal embedding effect can be detected, which might be attributed to respondents' concern about current financial constraints, rather than financial bindings associated with their income and perceived future financial constraints. This demonstrates the multidimensionality of respondents' financial concerns in CV. This study sheds light on refining future CV studies, especially with regard to public expectation of ecosystem services and the temporal dimension of ecosystem services and payment schedules.

  4. Importance of neutral processes varies in time and space: Evidence from dryland stream ecosystems.

    Directory of Open Access Journals (Sweden)

    Xiaoli Dong

    Full Text Available Many ecosystems experience strong temporal variability in environmental conditions; yet, a clear picture of how niche and neutral processes operate to determine community assembly in temporally variable systems remains elusive. In this study, we constructed neutral metacommunity models to assess the relative importance of neutral processes in a spatially and temporally variable ecosystem. We analyzed macroinvertebrate community data spanning multiple seasons and years from 20 sites in a Sonoran Desert river network in Arizona. The model goodness-of-fit was used to infer the importance of neutral processes. Averaging over eight stream flow conditions across three years, we found that neutral processes were more important in perennial streams than in non-perennial streams (intermittent and ephemeral streams. Averaging across perennial and non-perennial streams, we found that neutral processes were more important during very high flow and in low flow periods; whereas, at very low flows, the relative importance of neutral processes varied greatly. These findings were robust to the choice of model parameter values. Our study suggested that the net effect of disturbance on the relative importance of niche and neutral processes in community assembly varies non-monotonically with the severity of disturbance. In contrast to the prevailing view that disturbance promotes niche processes, we found that neutral processes could become more important when the severity of disturbance is beyond a certain threshold such that all organisms are adversely affected regardless of their biological traits and strategies.

  5. Environmental justice research shows the importance of social feedbacks in ecosystem service trade-offs

    Directory of Open Access Journals (Sweden)

    Neil M. Dawson

    2017-09-01

    Full Text Available In this article, we shine a spotlight on approaches to research ecosystem service trade-offs and critically assess their representation of relevant social dynamics. Although studies linking ecosystem services and human well-being have provided theoretical insights into social and ecological trade-offs, we argue that ecosystem services research has paid insufficient attention to "social feedbacks," people's cognitive and behavioral responses to change. We demonstrate that augmenting ecosystem services research with environmental justice approaches (exploring perceptions of the distribution of costs and benefits, decision making procedures, and recognition of different values and identities can more effectively capture important responses to ecosystem governance. Spatial analysis of land use change, mixed-method assessment of multidimensional well-being, and qualitative environmental justice research were applied in three villages adjacent to Nam Et-Phou Louey National Protected Area in northern Laos. Spatial analysis showed that, from 2006 to 2015, forest clearance for cultivation remained stable within the protected area. Well-being assessment revealed the local population benefited from rapidly increasing incomes, asset ownership, and reduced poverty during that time. In combination, spatial and well-being analyses paint a picture of limited trade-offs, despite growing incentives to exploit protected land and resources through cash crops and high-value forest products. In contrast, results from environmental justice research revealed profound trade-offs between conservation and local practices, and highlight governance deficiencies relating to procedure and recognition. Consequently, formal protected area rules were perceived to be illegitimate by many and actively undermined, for example through negotiated access with alternative authorities. We conclude that although well-being research provides an essential foundation to understand diverse

  6. How important is diversity for capturing environmental-change responses in ecosystem models?

    DEFF Research Database (Denmark)

    Prowe, Friederike; Pahlow, M.; Dutkiewicz, S.

    2014-01-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic plankton diversity. Diversity, however, may affect functions such as primary production and their sensitivity to environmental changes. Here we use a global ocean...... ecosystem model that explicitly resolves phytoplankton diversity by defining subtypes within four phytoplankton functional types (PFTs). We investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical...... in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models....

  7. Biological indication in aquatic ecosystems. Biological indication in limnic and coastal ecosystems - fundamentals, techniques, methodology

    International Nuclear Information System (INIS)

    Gunkel, G.

    1994-01-01

    Biological methods of water quality evaluation today form an integral part of environmental monitoring and permit to continuously monitor the condition of aquatic ecosystems. They indicate both improvements in water quality following redevelopment measures, and the sometimes insidious deterioration of water quality. This book on biological indication in aquatic ecosystems is a compendium of measurement and evaluation techniques for limnic systems by means of biological parameters. At present, however, an intense discussion of biological evaluation techniques is going on, for one thing as a consequence of the German reunification and the need to unify evaluation techniques, and for another because of harmonizations within the European Community. (orig./EF) [de

  8. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Bongers, F.; Martinez-Ramos, M.; Poorter, L.

    2016-01-01

    Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity

  9. Measuring Value in the Commons-Based Ecosystem: Bridging the Gap Between the Commons and the Market

    OpenAIRE

    De Filippi , Primavera; Hassan , Samer

    2014-01-01

    International audience; Commons-based peer-production (CBPP) constitutes today an important driver for innovation and cultural development, both online and offline. This led to the establishment of an alternative, Commons-based ecosystem, based on peer-production and collaboration of peers contributing to a common good. Yet, to the extent that this operates outside of the market economy, we cannot rely on traditional market mechanisms (such as pricing) to estimate the value of CBPP. We presen...

  10. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    Science.gov (United States)

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. © FEMS 2015.

  11. Habitat-mediated variation in the importance of ecosystem engineers for secondary cavity nesters in a nest web.

    Science.gov (United States)

    Robles, Hugo; Martin, Kathy

    2014-01-01

    across habitats into models that assess community dynamics to improve our understanding of the importance of ecosystem engineers in shaping ecological communities.

  12. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model

    Science.gov (United States)

    Dutkiewicz, S.; Hickman, A. E.; Jahn, O.; Gregg, W. W.; Mouw, C. B.; Follows, M. J.

    2015-07-01

    We present a numerical model of the ocean that couples a three-stream radiative transfer component with a marine biogeochemical-ecosystem component in a dynamic three-dimensional physical framework. The radiative transfer component resolves the penetration of spectral irradiance as it is absorbed and scattered within the water column. We explicitly include the effect of several optically important water constituents (different phytoplankton functional types; detrital particles; and coloured dissolved organic matter, CDOM). The model is evaluated against in situ-observed and satellite-derived products. In particular we compare to concurrently measured biogeochemical, ecosystem, and optical data along a meridional transect of the Atlantic Ocean. The simulation captures the patterns and magnitudes of these data, and estimates surface upwelling irradiance analogous to that observed by ocean colour satellite instruments. We find that incorporating the different optically important constituents explicitly and including spectral irradiance was crucial to capture the variability in the depth of the subsurface chlorophyll a (Chl a) maximum. We conduct a series of sensitivity experiments to demonstrate, globally, the relative importance of each of the water constituents, as well as the crucial feedbacks between the light field, the relative fitness of phytoplankton types, and the biogeochemistry of the ocean. CDOM has proportionally more importance at attenuating light at short wavelengths and in more productive waters, phytoplankton absorption is relatively more important at the subsurface Chl a maximum, and water molecules have the greatest contribution when concentrations of other constituents are low, such as in the oligotrophic gyres. Scattering had less effect on attenuation, but since it is important for the amount and type of upwelling irradiance, it is crucial for setting sea surface reflectance. Strikingly, sensitivity experiments in which absorption by any of the

  13. Preface: Ecosystem services, ecosystem health and human communities

    Science.gov (United States)

    Plag, Hans-Peter

    2018-04-01

    This special issue contains a collection of manuscripts that were originally intended to be included in the special issue on "Physics and Economics of Ecosystem Services Flows" (Volume 101, guest editors H. Su, J. Dong and S. Nagarajan) and "Biogeochemical Processes in the Changing Wetland Environment" (Volume 103, guest editors J. Bai, L. Huang and H. Gao). All of them are addressing issues related to ecosystem services in different settings. Ecosystem services are of high value for both the ecosystems and human communities, and understanding the impacts of environmental processes and human activities on ecosystems is of fundamental importance for the preservation of these services.

  14. Women in engineering conference: capitalizing on today`s challenges

    Energy Technology Data Exchange (ETDEWEB)

    Metz, S.S.; Martins, S.M. [eds.

    1996-06-01

    This document contains the conference proceedings of the Women in Engineering Conference: Capitalizing on Today`s Challenges, held June 1-4, 1996 in Denver, Colorado. Topics included engineering and science education, career paths, workplace issues, and affirmative action.

  15. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia.

    Science.gov (United States)

    McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine

    2010-04-27

    The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them follows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use.

  16. Seafloor ecosystem functioning: the importance of organic matter priming

    NARCIS (Netherlands)

    Van Nugteren, P.; Moodley, L.; Brummer, G.J.; Heip, C.H.R.; Herman, P.M.J.; Middelburg, J.J.

    2009-01-01

    Organic matter (OM) remineralization may be considered a key function of the benthic compartment of marine ecosystems and in this study we investigated if the input of labile organic carbon alters mineralization of indigenous sediment OM (OM priming). Using 13C-enriched diatoms as labile tracer

  17. Trust Species and Habitat Branch: using the innovative approaches of today to conserve biodiversity for tomorrow

    Science.gov (United States)

    Stevens, Patricia; Walters, Katie D.

    2015-01-01

    Some of the biggest challenges facing wildlife today are changes to their environment from both natural and anthropogenic causes. Natural resource managers, planners, policy makers, industry and private landowners must make informed decisions and policies regarding management, conservation, and restoration of species, habitats, and ecosystem function in response to these changes. Specific needs include (1) a better understanding of population status and trends; (2) understanding of species’ habitat needs and roles in supporting ecosystem functions; (3) the ability to assess species’ responses to environmental changes and predict future responses; and (4) the development of innovative techniques and tools to better understand, minimize or prevent any unintended consequences of environmental change.

  18. Merging Platform Ecosystems in Technology Acquisitions

    DEFF Research Database (Denmark)

    Dowie, Jamie; Henningsson, Stefan; Kude, Thomas

    2017-01-01

    of the merging companies. Given the increasing importance of platforms and value co-creation with third-party providers for companies making technology acquisitions, we complement existing literature by reframing the analysis of technology acquisitions to include the merger of the broader partner ecosystems....... Specifically, we draw on theories of ecosystem governance to analyze how ecosystem tensions unfolded during the ecosystem merger and how the acquirer governed these tensions in SAP SE’s acquisition of the e-commerce provider Hybris AG. Our findings suggest that the governance of ecosystem tensions...... is an important aspect of managing technology acquisitions. We identify the pre-acquisition relation between the acquired company’s ecosystem partners and the acquirer as an important context factor for explaining how a partner company is exposed to the ecosystem tensions during the merger....

  19. The importance of utility systems in today's biorefineries and a vision for tomorrow.

    Science.gov (United States)

    Eggeman, Tim; Verser, Dan

    2006-01-01

    Heat and power systems commonly found in today's corn processing facilities, sugar mills, and pulp and paper mills will be reviewed. We will also examine concepts for biorefineries of the future. We will show that energy ratio, defined as the ratio of renewable energy produced divided by the fossil energy input, can vary widely from near unity to values greater than 12. Renewable-based utility systems combined with low-fossil input agricultural systems lead to high-energy ratios.

  20. Ecosystem-based management and the wealth of ecosystems

    Science.gov (United States)

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K.; Fenichel, Eli P.

    2017-01-01

    We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio’s performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth. PMID:28588145

  1. Ecosystem-based management and the wealth of ecosystems.

    Science.gov (United States)

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K; Fenichel, Eli P

    2017-06-20

    We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio's performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth.

  2. Preserving and maintaining vital Ecosystem Services: the importance of linking knowledge from Geosciences and social-ecological System analysis

    Science.gov (United States)

    Finger, David; Petursdottir, Thorunn

    2013-04-01

    Human kind has always been curios and motivated to understand and quantify environmental processes in order to predict and anticipate the evolution of vital ecosystem services. Even the very first civilizations used empirical correlations to predict outcomes of rains and subsequent harvest efficiencies. Along with the insights into the functioning of ecosystems, humans also became aware that their anthropogenic activities can have positive and negative impact on ecosystem services. In recent years, geosciences have brought forward new sophisticated observations and modeling tools, with the aim to improve predictions of ecological developments. At the same time, the added value of linking ecological factors to the surrounding social structure has received a growing acceptance among scientists. A social-ecological system approach brings in a holistic understanding of how these systems are inevitably interlinked and how their sustainability can be better maintained. We claim that the biggest challenge for geoscience in the coming decades will be to link these two disciplines in order to establish adequate strategies to preserve natural ecosystems and their services, parallel to their utilization. We will present various case studies from more than a decade of research, ranging from water quality in mountain lakes, climate change impacts on water availability and declining fishing yields in freshwaters and discuss how the studies outcomes could be given added value by interpreting them via social-ecological system analysis. For instance, sophisticated field investigations revealed that deep water mixing in lake Issyk-Kul, Kirgizstan, is intensively distributing pollutants in the entire lake. Although fishery is an important sector in the region, the local awareness of the importance of water quality is low. In Switzerland, strict water protection laws led to ologotrophication of alpine lakes, reducing fishing yields. While local fishermen argued that local fishery is

  3. Educating veterinarians for careers in free-ranging wildlife medicine and ecosystem health

    Science.gov (United States)

    Mazet, J.A.K.; Hamilton, G.E.; Dierauf, L.A.

    2006-01-01

    In the last 10 years, the field of zoological medicine has seen an expansive broadening into the arenas of free-ranging wildlife, conservation medicine, and ecosystem health. During the spring/summer of 2005, we prepared and disseminated a survey designed to identify training and educational needs for individuals entering the wildlife medicine and ecosystem health fields. Our data revealed that few wildlife veterinarians believe that the training they received in veterinary school adequately prepared them to acquire and succeed in their field. Wildlife veterinarians and their employers ranked mentorship with an experienced wildlife veterinarian, training in leadership and communication, courses and externships in wildlife health, and additional formal training beyond the veterinary degree as important in preparation for success. Employers, wildlife veterinarians, and job seekers alike reported that understanding and maintaining ecosystem health is a key component of the wildlife veterinarian's job description, as it is critical to protecting animal health, including human health. Today's wildlife veterinarians are a new type of transdisciplinary professional; they practice medicine in their communities and hold titles in every level of government and academia. It is time that we integrate ecosystem health into our curricula to nurture and enhance an expansive way of looking at veterinary medicine and to ensure that veterinary graduates are prepared to excel in this new and complex world, in which the health of wildlife, domestic animals, and people are interdependent.

  4. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    Science.gov (United States)

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  5. A College's Role in Developing and Supporting an Entrepreneurial Ecosystem

    Science.gov (United States)

    McKeon, Thomas K.

    2013-01-01

    From the earliest oil pioneers to today's business startups, entrepreneurs have paved the road to success for Oklahoma. Small businesses account for more than 80% of the business community in each of the state's two largest cities. Higher education must take a leadership role in developing and sustaining a thriving entrepreneurial ecosystem for…

  6. “Coral Dominance”: A Dangerous Ecosystem Misnomer?

    Directory of Open Access Journals (Sweden)

    Peter S. Vroom

    2011-01-01

    Full Text Available Over 100 years ago, before threats such as global climate change and ocean acidification were issues engrossing marine scientists, numerous tropical reef biologists began expressing concern that too much emphasis was being placed on coral dominance in reef systems. These researchers believed that the scientific community was beginning to lose sight of the overall mix of calcifying organisms necessary for the healthy function of reef ecosystems and demonstrated that some reefs were naturally coral dominated with corals being the main organisms responsible for reef accretion, yet other healthy reef ecosystems were found to rely almost entirely on calcified algae and foraminifera for calcium carbonate accumulation. Despite these historical cautionary messages, many agencies today have inherited a coral-centric approach to reef management, likely to the detriment of reef ecosystems worldwide. For example, recent research has shown that crustose coralline algae, a group of plants essential for building and cementing reef systems, are in greater danger of exhibiting decreased calcification rates and increased solubility than corals in warmer and more acidic ocean environments. A shift from coral-centric views to broader ecosystem views is imperative in order to protect endangered reef systems worldwide.

  7. Ecosystem services in ECOCLIM

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Boegh, Eva; Bendtsen, J

    that actions initiated to reduce anthropogenic GHG emissions are sustainable and not destructive to existing ecosystem services. Therefore it is important to address i.e. land use change in relation to the regulating services of the ecosystems, such as carbon sequestration and climate regulation. At present...... a thorough understanding of the ecosystem processes controlling the uptake or emissions of GHG is fundamental. Here we present ECOCLIM in the context of ecosystem services and the experimental studies within ECOCLIM which will lead to an enhanced understanding of Danish ecosystems....

  8. Hierarchical levels in agro-ecosystems : selective case studies on water and nitrogen

    NARCIS (Netherlands)

    Ridder, de N.

    1997-01-01


    The subject of this thesis

    Today, agronomic research faces the triple challenge to develop knowledge and insight to manage agro-ecosystems which are inherently sustainable, to diminish the undesirable side effects and to meet the increasing demand of food of a still growing world

  9. Introduction: The Continued Importance of Smallholders Today

    OpenAIRE

    Jacqueline M. Vadjunec; Claudia Radel; B. L. Turner II

    2016-01-01

    Smallholders remain an important part of human-environment research, particularly in cultural and political ecology, peasant and development studies, and increasingly in land system and sustainability science. This introduction to the edited volume explores land use and livelihood issues among smallholders, in several disciplinary and subfield traditions. Specifically, we provide a short history of smallholder livelihood research in the human-environment tradition. We reflect on why, in an ag...

  10. Constraining global methane emissions and uptake by ecosystems

    International Nuclear Information System (INIS)

    Spahni, R.; Wania, R.; Neef, L.; Van Weele, M.; Van Velthoven, P.; Pison, I.; Bousquet, P.

    2011-01-01

    Natural methane (CH 4 ) emissions from wet ecosystems are an important part of today's global CH 4 budget. Climate affects the exchange of CH 4 between ecosystems and the atmosphere by influencing CH 4 production, oxidation, and transport in the soil. The net CH 4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH 4 emissions for different ecosystems: northern peat-lands (45 degrees-90 degrees N), naturally inundated wetlands (60 degrees S-45 degrees N), rice agriculture and wet mineral soils. Mineral soils are a potential CH 4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003-2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH 4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a significant reduction in the emissions from northern peat-lands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH 4 over the period 1990-2008. Over the whole period we infer an increase of global ecosystem CH 4 emissions of +1.11 TgCH 4 yr -1 , not considering potential additional changes in wetland extent. The increase in simulated CH 4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long term decline of the atmospheric CH 4 growth rate from 1990

  11. Neutrino physics today, important issues and the future

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2010-10-01

    The status and the most important issues in neutrino physics will be summarized as well as how the current, pressing questions will be addressed by future experiments. Since the discovery of neutrino flavor transitions by the SuperKamiokande experiment in 1998, which demonstrates that neutrinos change and hence their clocks tick, i.e. they are not traveling at the speed of light and hence are not massless, the field of neutrino physics has made remarkable progress in untangling the nature of the neutrino. However, there are still many important questions to answer.

  12. Ecosystem approach in education

    Science.gov (United States)

    Nabiullin, Iskander

    2017-04-01

    Environmental education is a base for sustainable development. Therefore, in our school we pay great attention to environmental education. Environmental education in our school is based on ecosystem approach. What is an ecosystem approach? Ecosystem is a fundamental concept of ecology. Living organisms and their non-living environments interact with each other as a system, and the biosphere planet functions as a global ecosystem. Therefore, it is necessary for children to understand relationships in ecosystems, and we have to develop systems thinking in our students. Ecosystem approach and systems thinking should help us to solve global environmental problems. How do we implement the ecosystem approach? Students must understand that our biosphere functions as a single ecosystem and even small changes can lead to environmental disasters. Even the disappearance of one plant or animal species can lead to irreversible consequences. So in the classroom we learn the importance of each living organism for the nature. We pay special attention to endangered species, which are listed in the Red Data List. Kids are doing projects about these organisms, make videos, print brochures and newspapers. Fieldwork also plays an important role for ecosystem approach. Every summer, we go out for expeditions to study species of plants and animals listed in the Red Data List of Tatarstan. In class, students often write essays on behalf of any endangered species of plants or animals, this also helps them to understand the importance of each living organism in nature. Each spring we organise a festival of environmental projects among students. Groups of 4-5 students work on a solution of environmental problems, such as water, air or soil pollution, waste recycling, the loss of biodiversity, etc. Participants shoot a clip about their project, print brochures. Furthermore, some of the students participate in national and international scientific Olympiads with their projects. In addition to

  13. Future directions of ecosystem science

    Science.gov (United States)

    Baron, Jill S.; Galvin, Kathleen A.

    1990-01-01

    Scientific knowledge about ecosystem structure and function has expanded greatly during the past few decades. Terrestrial and aquatic nutrient cycling, ecosystem energetics, population dynamics, belowground processes, and food webs have been studied at the plot, stand, watershed, and landscape levels at many locations around the globe. Ideas about terrestrial-atmospheric interactions and human interference in these processes have changed dramatically. There is new appreciation of the need to incorporate into ecosystem studies the interactions between human populations and the ecosystem, not only because humans affect ecosystem processes, but because these systems support human populations (Glantz 1988, Holden 1988, Parry et al. 1988, WCED 1987). Recent advances in ecosystem science are due, in part, to technological improvements in computing power, new laboratory and field physical and chemical analytical techniques, and satellite imagery for remote sensing of Earth's structure and dynamics. Modeling and geographic information systems have provided the capability for integrating multiple data sets with process simulations to generate hypotheses about regional ecosystem function. Concurrent with these scientific developments has been a growing concern about the links between the health of the environment and world-wide industrial, land, and resource-management practices. Environmental damage at the local level was widely recognized in the 1960s, prompting the environmental movement of that decade. Regional environmental problems with multiple effects and politically difficult solutions have been perceived more recently; the issue of acidic deposition provides an example of such a second-generation concern (Clark and Holling 1985). Today there is a growing awareness of global-scale environmental degradation brought about by the combined actions of all peoples on Earth (Clark 1989, Woodmansee et al. 1988). The three levels of environmental concern--local, regional

  14. Einstein today; Einstein aujourd'hui

    Energy Technology Data Exchange (ETDEWEB)

    Aspect, A.; Grangier, Ph. [Centre National de la Recherche Scientifique (CNRS), Lab. Charles Fabry de l' Institut d' Optique a Orsay, 91 - Orsay (France); Bouchet, F.R. [Institut d' Astrophysique de Paris, CNRS, 75 - Paris (France); Brunet, E.; Derrida, B. [Universite Pierre et Marie Curie, Ecole Normale Superieure, 75 - Paris (France); Cohen-Tannoudji, C. [Academie des Sciences, 75 - Paris (France); Dalibard, J.; Laloe, F. [Laboratoire Kastler Brossel. UMR 8552 (ENS, UPMC, CNRS), 75 - Paris (France); Damour, Th. [Institut des Hautes Etudes Scientifiques, 91 - Bures sur Yvette (France); Darrigol, O. [Centre National de la Recherche Scientifique (CNRS), Groupe Histoire des Sciences Rehseis, 75 - Paris (France); Pocholle, J.P. [Thales Research et Technology France, 91 - Palaiseau (France)

    2005-07-01

    The most important contributions of Einstein involve 5 fields of physics : the existence of quanta (light quanta, stimulated radiation emission and Bose-Einstein condensation), relativity, fluctuations (Brownian motion and thermodynamical fluctuations), the basis of quantum physics and cosmology (cosmological constant and the expansion of the universe). Diverse and renowned physicists have appreciated the development of modern physics from Einstein's ideas to the knowledge of today. This book is a collective book that gathers their work under 7 chapters: 1) 1905, a new beginning; 2) from the Einstein, Podolsky and Rosen's article to quantum information (cryptography and quantum computers); 3) the Bose-Einstein condensation in gases; 4) from stimulated emission to the today's lasers; 5) Brownian motion and the fluctuation-dissipation theory; 6) general relativity; and 7) cosmology. (A.C.)

  15. Longleaf pine ecosystem restoration: the role of the USDA Forest Service

    Science.gov (United States)

    Charles K. McMahon; D.J. Tomczak; R.M. Jeffers

    1998-01-01

    The greater longleaf pine ecosystem once occupied over 90 million acres from southeastern Virginia, south to central Florida, and west to eastern Texas. Today less than 3 million acres remain, with much of the remaining understory communities in an unhealthy state. A number of public and private conservation organizations are conducting collaborative longleaf pine...

  16. Optimal foraging in marine ecosystem models: selectivity, profitability and switching

    DEFF Research Database (Denmark)

    Visser, Andre W.; Fiksen, Ø.

    2013-01-01

    ecological mechanics and evolutionary logic as a solution to diet selection in ecosystem models. When a predator can consume a range of prey items it has to choose which foraging mode to use, which prey to ignore and which ones to pursue, and animals are known to be particularly skilled in adapting...... to the preference functions commonly used in models today. Indeed, depending on prey class resolution, optimal foraging can yield feeding rates that are considerably different from the ‘switching functions’ often applied in marine ecosystem models. Dietary inclusion is dictated by two optimality choices: 1...... by letting predators maximize energy intake or more properly, some measure of fitness where predation risk and cost are also included. An optimal foraging or fitness maximizing approach will give marine ecosystem models a sound principle to determine trophic interactions...

  17. The Coevolution of Digital Ecosystems

    Science.gov (United States)

    SungYong, Um

    2016-01-01

    Digital ecosystems are one of the most important strategic issues in the current digital economy. Digital ecosystems are dynamic and generative. They evolve as new firms join and as heterogeneous systems are integrated into other systems. These features digital ecosystems determine economic and technological success in the competition among…

  18. Biodiversity and Resilience of Ecosystem Functions.

    Science.gov (United States)

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Damare, V.S.

    This review summarizes increasing evidence for the role of Labyrinthulomycetes in marine ecosystems gathered over the last six decades. It focuses on their diversity, habitats, biomass, productivity and overall role in food webs and remineralization...

  20. Promoting Transfer of Ecosystems Concepts

    Science.gov (United States)

    Yu, Yawen; Hmelo-Silver, Cindy E.; Jordan, Rebecca; Eberbach, Catherine; Sinha, Suparna

    2016-01-01

    This study examines to what extent students transferred their knowledge from a familiar aquatic ecosystem to an unfamiliar rainforest ecosystem after participating in a technology-rich inquiry curriculum. We coded students' drawings for components of important ecosystems concepts at pre- and posttest. Our analysis examined the extent to which each…

  1. A multi-criteria, ecosystem-service value method used to assess catchment suitability for potential wetland reconstruction in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Turner, Katrine Grace; Bøcher, Peder Klith

    2017-01-01

    Wetlands provide a range of ecosystem services such as drought resistance, flood resistance, nutrient deposition, biodiversity, etc. This study presents a new multi-criteria, ecosystems service value-driven method to drive the optimal placement of restored wetlands in terms of maximizing selected...... for potential wetland reconstruction (i.e. restoration)? Five key ecosystem services indicators produced or affected by wetlands in Denmark were mapped (recreational potential, biodiversity, nitrogen mitigation potential, inverse land rent, and flash-flood risk). These services were compared to current...... ecosystem services which a wetland can provide or affect. We aim to answer two questions: 1) which of the ecosystem services indicators defines the placement of wetlands today? 2) Based on the ecosystem services indicator assessment, what are the recommendations for future selection of catchments...

  2. The Importance of Ecology-Based Nature Education Project in Terms of Nature Integration and Understanding the Human-Ecosystem Relationship

    Science.gov (United States)

    Meydan, Ali

    2011-01-01

    The aim of this project is to define the importance of 12-day ecology-based education training upon integration with nature and understanding the human-ecosystem relationship. In accordance with this purpose, there has been collected some survey data interviewing with the participants of "Lake Beysehir National Park and Ecology-based Nature…

  3. Forest Ecosystem services: Water resources

    Science.gov (United States)

    Thomas P. Holmes; James Vose; Travis Warziniack; Bill Holman

    2017-01-01

    Since the publication of the Millennium Ecosystem Assessment (MEA 2005), awareness has steadily grown regarding the importance of maintaining natural capital. Forest vegetation is a valuable source of natural capital, and the regulation of water quantity and quality is among the most important forest ecosystem services in many regions around the world. Changes in...

  4. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden); ed.

    2008-12-15

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  5. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2008-12-01

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  6. The importance of conserving biodiversity outside of protected areas in mediterranean ecosystems.

    Directory of Open Access Journals (Sweden)

    Robin L Cox

    Full Text Available Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial, impacted (e.g., intensive, cultivated agriculture, or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75% in this category and California-Mexico the least (48%. To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people

  7. Relationships between children and their grandparents and importance of older generations in lives of todays'families

    Directory of Open Access Journals (Sweden)

    Stasova L.

    2014-01-01

    Full Text Available The article deals with the issue of relationships among contemporary generations. It is devoted to the specific communication and relationships development between today's children and their grandparents. What is the role played by grandparents in lives of their grandchildren? Is the generation gap so powerful to destroy the traditionally strong relationships in families? Our text stresses the importance of an intergenerational socializations influence and its positives for individuals and the whole family system. The article is based on the empirical survey among the 202 respondents in the age group 12–17. The data tried to show that there are differences in relationships in families where the generations are living together and the families with separate living of generations. However, this presumption was not confirmed and our data show that there is no difference in frequency and quality of relationships between both groups of families. The important question is, if the face-to-face communication has been replaced by other means of communication, especially through modern media, or not. The data show the intensity and content of intergenerational meeting in family. It brings some view on the attitudes of young Czech people towards their grandparents. The results show the mostly positive intergenerational relationships and the value of older generations for young people. Interesting are expressions of appreciation of grandmothers and grandfathers from their grandchildren. The relationships to grandparents are mostly influenced by the whole family climate and are closely connected with the parental attitudes toward the older generations.

  8. Ethics--How Important Is It in Today's Office?

    Science.gov (United States)

    Holmquist, Donna

    1993-01-01

    Employer seeking to improve ethics in the workplace should develop a limited number of rules; explain why they are important; correct worker behavior privately; use human relations skills; give employees recognition; set an example; offer training; and provide feedback. (SK)

  9. IN TODAY'S INFORMATION AGE ORGANISATIONS EXECUTIVE ASSISTANT PROFESSION

    Directory of Open Access Journals (Sweden)

    Bekir DEĞİRMENCİ

    2015-07-01

    Full Text Available It's as old as human history in the Executive Office and of the concept has caused the unborn. From the industrial revolution, they perform the organizational activities of all employees in the area are the name of the Office. Businesses are not just places that made production. Businesses also allows the production of all kinds of people have seen the need, the important strategic decisions, increase the quali ty of production and employees must work efficiently and effectively - conscious upon arrival places always have been offices. Marketing, management, human resources, accounting, as units have been operating in all offices within the organization. In today' s information age, information offices are produced, distributed to individuals and corporations concerned, but also has been the destruction of redundant information and important information later when needed has been used places. Today's globalization i s rapid change in knowledge and technology organizations in the management of business owners and managers will help many professions on WikiMapia. Office; Administrator, officer, Secretary, will serve the objectives of the business class ser vices help kin d of elements are needed. Businesses in maintaining vital activities, production and service provision of the activities of the Organization in ensuring an effective and efficient manner within the framework of the team spirit in the conduct of managers with the most important requirements for an Assistant Manager's position has been. Most modern - day organizations close to the administrator should be looking to key features of the Administrative Assistant; the Office of the administrator, who knows how t o keep a secret is not a characteristic of people who best represent the Bureau. When a business can stand in straight execution activities Administrative Assistant has important tasks to. Executive Assistants are indispensable ingredients of today's mode rn office.

  10. Academic librarianship today

    CERN Document Server

    2017-01-01

    Intended for use by both librarians and students in LIS programs, Academic Librarianship Today is the most current, comprehensive overview of the field available today. Key features include: Each chapter was commissioned specifically for this new book, and the authors are highly regarded academic librarians or library school faculty— or both Cutting-edge topics such as open access, copyright, digital curation and preservation, emerging technologies, new roles for academic librarians, cooperative collection development and resource sharing, and patron-driven acquisitions are explored in depth Each chapter ends with thought-provoking questions for discussion and carefully constructed assignments that faculty can assign or adapt for their courses The book begins with Gilman’s introduction, an overview that briefly synthesizes the contents of the contributors’ chapters by highlighting major themes. The main part of the book is organized into three parts: The Academic Library Landscape Today, ...

  11. [Urban ecosystem services: A review].

    Science.gov (United States)

    Mao, Qi-zheng; Huang, Gan-lin; Wu, Jian-guo

    2015-04-01

    Maintaining and improving ecosystem services in urban areas and human well-being are essential for sustainable development and therefore constitute an important topic in urban ecology. Here we reviewed studies on ecosystem services in urban areas. Based on the concept and classification of urban ecosystem services, we summarized characteristics of urban ecosystem services, including the human domination, high demand of ecosystem services in urban areas, spatial heterogeneity and temporal dynamics of ecosystem services supply and demand in urban areas, multi-services of urban green infrastructures, the socio-economic dimension of ecosystem services supply and ecosystem disservices in urban areas. Among different urban ecosystem services, the regulating service and cultural service are particularly indispensable to benefit human health. We pointed out that tradeoffs among different types of ecosystem services mostly occur between supportive service and cultural service, as well as regulating service and cultural service. In particular, we emphasized the relationship between landscape design (i.e. green infrastructure) and ecosystem services supply. Finally, we discussed current gaps to link urban ecosystem services studies to landscape design and management and pointed out several directions for future research in urban ecosystem services.

  12. Value of ecosystem hydropower service and its impact on the payment for ecosystem services.

    Science.gov (United States)

    Fu, B; Wang, Y K; Xu, P; Yan, K; Li, M

    2014-02-15

    Hydropower is an important service provided by ecosystems. We surveyed all the hydropower plants in the Zagunao River Basin, Southwest China. Then, we assessed the hydropower service by using the InVEST (The Integrated Value and Tradeoff of Ecosystem Service Tools) model. Finally, we discussed the impact on ecological compensation. The results showed that: 1) hydropower service value of ecosystems in the Zagunao River Basin is 216.29 Euro/hm(2) on the average, of which the high-value area with more than 475.65 Euro/hm(2) is about 750.37 km(2), accounting for 16.12% of the whole watershed, but it provides 53.47% of the whole watershed service value; 2) ecosystem is an ecological reservoir with a great regulation capacity. Dams cannot completely replace the reservoir water conservation function of ecosystems, and has high economic and environmental costs that must be paid as well. Compensation for water conservation services should become an important basis for ecological compensation of hydropower development. 3) In the current PES cases, the standard of compensation is generally low. Cascade development makes the value of upstream ecosystem services become more prominent, reflecting the differential rent value, and the value of ecosystem services should be based on the distribution of differentiated ecological compensation. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction.

    Science.gov (United States)

    Baker, Christopher M; Gordon, Ascelin; Bode, Michael

    2017-04-01

    Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone-predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka-Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem-wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication. © 2016 Society for Conservation Biology.

  14. Functional resilience of microbial ecosystems in soil: How important is a spatial analysis?

    Science.gov (United States)

    König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin

    2015-04-01

    Microbial life in soil is exposed to fluctuating environmental conditions influencing the performance of microbially mediated ecosystem services such as biodegradation of contaminants. However, as this environment is typically very heterogeneous, spatial aspects can be expected to play a major role for the ability to recover from a stress event. To determine key processes for functional resilience, simple scenarios with varying stress intensities were simulated within a microbial simulation model and the biodegradation rate in the recovery phase monitored. Parameters including microbial growth and dispersal rates were varied over a typical range to consider microorganisms with varying properties. Besides an aggregated temporal monitoring, the explicit observation of the spatio-temporal dynamics proved essential to understand the recovery process. For a mechanistic understanding of the model system, scenarios were also simulated with selected processes being switched-off. Results of the mechanistic and the spatial view show that the key factors for functional recovery with respect to biodegradation after a simple stress event depend on the location of the observed habitats. The limiting factors near unstressed areas are spatial processes - the mobility of the bacteria as well as substrate diffusion - the longer the distance to the unstressed region the more important becomes the process growth. Furthermore, recovery depends on the stress intensity - after a low stress event the spatial configuration has no influence on the key factors for functional resilience. To confirm these results, we repeated the stress scenarios but this time including an additional dispersal network representing a fungal network in soil. The system benefits from an increased spatial performance due to the higher mobility of the degrading microorganisms. However, this effect appears only in scenarios where the spatial distribution of the stressed area plays a role. With these simulations we

  15. Ecosystem services from converted land: the importance of tree cover in Amazonian pastures

    Science.gov (United States)

    Barrett, Kirsten; Valentim, Judson; Turner, B. L.

    2013-01-01

    Deforestation is responsible for a substantial fraction of global carbon emissions and changes in surface energy budgets that affect climate. Deforestation losses include wildlife and human habitat, and myriad forest products on which rural and urban societies depend for food, fiber, fuel, fresh water, medicine, and recreation. Ecosystem services gained in the transition from forests to pasture and croplands, however, are often ignored in assessments of the impact of land cover change. The role of converted lands in tropical areas in terms of carbon uptake and storage is largely unknown. Pastures represent the fastest-growing form of converted land use in the tropics, even in some areas of rapid urban expansion. Tree biomass stored in these areas spans a broad range, depending on tree cover. Trees in pasture increase carbon storage, provide shade for cattle, and increase productivity of forage material. As a result, increasing fractional tree cover can provide benefits land managers as well as important ecosystem services such as reducing conversion pressure on forests adjacent to pastures. This study presents an estimation of fractional tree cover in pasture in a dynamic region on the verge of large-scale land use change. An appropriate sampling interval is established for similar studies, one that balances the need for independent samples of sufficient number to characterize a pasture in terms of fractional tree cover. This information represents a useful policy tool for government organizations and NGOs interested in encouraging ecosystem services on converted lands. Using high spatial resolution remotely sensed imagery, fractional tree cover in pasture is quantified for the municipality of Rio Branco, Brazil. A semivariogram and devolving spatial resolution are employed to determine the coarsest sampling interval that may be used, minimizing effects of spatial autocorrelation. The coarsest sampling interval that minimizes spatial dependence was about 22 m. The

  16. House of tomorrow today

    NARCIS (Netherlands)

    Lichtenberg, J.J.N.; Ham, M.; Hensen, J.L.M.

    2011-01-01

    The House of Tomorrow Today is a project focussing on a healthy, energy producing dwelling to be realized with today¿s proven technology. The project aims at an energy plus level based on the principles as formulated in SmartBuilding (Slimbouwen) [1] ActiveHouse [2] and HoTT [3] It can be seen as

  17. Belowground dynamics in mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  18. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.

    Science.gov (United States)

    Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J

    2017-11-01

    The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic

  19. Identifying and Characterizing Important Trembling Aspen Competitors with Juvenile Lodgepole Pine in Three South-Central British Columbia Ecosystems

    Directory of Open Access Journals (Sweden)

    Teresa A. Newsome

    2012-01-01

    Full Text Available Critical height ratios for predicting competition between trembling aspen and lodgepole pine were identified in six juvenile stands in three south-central British Columbia ecosystems. We used a series of regression analyses predicting pine stem diameter from the density of neighbouring aspen in successively shorter relative height classes to identify the aspen-pine height ratio that maximized R2. Critical height ratios varied widely among sites when stands were 8–12 years old but, by age 14–19, had converged at 1.25–1.5. Maximum R2 values at age 14–19 ranged from 13.4% to 69.8%, demonstrating that the importance of aspen competition varied widely across a relatively small geographic range. Logistic regression also indicated that the risk of poor pine vigour in the presence of aspen varied between sites. Generally, the degree of competition, risk to pine vigour, and size of individual aspen contributing to the models declined along a gradient of decreasing ecosystem productivity.

  20. Ecological Values of Mangrove Forest Ecosystem

    OpenAIRE

    Kusmana, Cecep

    1996-01-01

    Research on quantification of ecological values of mangrove forest ecosystem are urgently needed, due to its importance as the basics for utilization and management of resources. From the ecological point of vlew, the main prohlem of mangrove ecosystem is rarity and inconsistency of data and limited accurate methods inquantifying ecological values of that ecosystem. Results show that mangrove has the significant ecological values on coastal ecosystem. However, there must be further research t...

  1. Capability-Driven Design of Business Service Ecosystem to Support Risk Governance in Regulatory Ecosystems

    Directory of Open Access Journals (Sweden)

    Christophe Feltus

    2017-04-01

    Full Text Available Risk-based regulation and risk governance gain momentum in most sectorial ecosystems, should they be the finance, the healthcare or the telecommunications ecosystems. Although there is a profusion of tools to address this issue at the corporate level, worth is to note that no solution fulfils this function at the ecosystem level yet. Therefore, in this article, the Business Service Ecosystem (BSE metamodel is semantically extended, considering the Capability as a Service (CaaS theory, in order to raise the enterprise risk management from the enterprise level up to the ecosystem level. This extension allows defining a concrete ecosystem metamodel which is afterwards mapped with an information system risk management model to support risk governance at the ecosystem level. This mapping is illustrated and validated on the basis of an application case for the Luxembourgish financial sector applied to the most important concepts from the BSE: capability, resource, service and goal.

  2. Organizing a Ground Crew for Today's Helicopter Parents

    Science.gov (United States)

    Coburn, Karen Levin

    2006-01-01

    The relationship between college students and their parents is far closer than it was when most of today's educators were in school. Tapping into the upside and managing the potential drawbacks of highly involved parents is taking on great importance on an increasing number of campuses. Whether people call them "helicopter parents" or…

  3. Energy demand and mix for global welfare and stable ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Kern, C.; Kaiser, P.

    2012-07-01

    Social indicators show that an annual energy consumption of 2 tonnes of oil equivalent per capita (toe pc) should be enough to ensure a sufficient global average level of welfare and happiness. Hence, rich countries with currently up to 8 toe pc should reduce and poor should legitimately increase their energy demand until 2 toe pc are reached. At today's global energy mix with 80% fossil fuels, even this optimistic scenario will inevitably lead to a conflict between welfare and stable ecosystems. The population will be 9 billion by 2050 and the ecological footprint would rise from today 1.5 to 2 planet Earths. The only option to reach the desired footprint of one planet Earth is a complete shift from fossil fuels to renewables. (orig.)

  4. The need to disentangle key concepts from ecosystem-approach jargon.

    Science.gov (United States)

    Waylen, K A; Hastings, E J; Banks, E A; Holstead, K L; Irvine, R J; Blackstock, K L

    2014-10-01

    The ecosystem approach--as endorsed by the Convention on Biological Diversity (CDB) in 2000-is a strategy for holistic, sustainable, and equitable natural resource management, to be implemented via the 12 Malawi Principles. These principles describe the need to manage nature in terms of dynamic ecosystems, while fully engaging with local peoples. It is an ambitious concept. Today, the term is common throughout the research and policy literature on environmental management. However, multiple meanings have been attached to the term, resulting in confusion. We reviewed references to the ecosystem approach from 1957 to 2012 and identified 3 primary uses: as an alternative to ecosystem management or ecosystem-based management; in reference to an integrated and equitable approach to resource management as per the CBD; and as a term signifying a focus on understanding and valuing ecosystem services. Although uses of this term and its variants may overlap in meaning, typically, they do not entirely reflect the ethos of the ecosystem approach as defined by the CBD. For example, there is presently an increasing emphasis on ecosystem services, but focusing on these alone does not promote decentralization of management or use of all forms of knowledge, both of which are integral to the CBD's concept. We highlight that the Malawi Principles are at risk of being forgotten. To better understand these principles, more effort to implement them is required. Such efforts should be evaluated, ideally with comparative approaches, before allowing the CBD's concept of holistic and socially engaged management to be abandoned or superseded. It is possible that attempts to implement all 12 principles together will face many challenges, but they may also offer a unique way to promote holistic and equitable governance of natural resources. Therefore, we believe that the CBD's concept of the ecosystem approach demands more attention. © 2014 Society for Conservation Biology.

  5. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems

    NARCIS (Netherlands)

    Ostman, Orjan; Eklof, Johan; Eriksson, Britas Klemens; Olsson, Jens; Moksnes, Per-Olav; Bergstrom, Ulf

    Seagrass and seaweed habitats constitute hotspots for diversity and ecosystem services in coastal ecosystems. These habitats are subject to anthropogenic pressures, of which eutrophication is one major stressor. Eutrophication favours fast-growing ephemeral algae over perennial macroalgae and

  6. Long-term influence of alternative forest management treatments on total ecosystem and wood product carbon storage

    Science.gov (United States)

    Joshua J. Puhlick; Aaron R. Weiskittel; Ivan J. Fernandez; Shawn Fraver; Laura S. Kenefic; Robert S. Seymour; Randall K. Kolka; Lindsey E. Rustad; John C. Brissette

    2016-01-01

    Developing strategies for reducing atmospheric CO2 is one of the foremost challenges facing natural resource professionals today. The goal of this study was to evaluate total ecosystem and harvested wood product carbon (C) stocks among alternative forest management treatments (selection cutting, shelterwood cutting, commercial clearcutting, and...

  7. [Research progress of ecosystem service flow.

    Science.gov (United States)

    Liu, Hui Min; Fan, Yu Long; Ding, Sheng Yan

    2016-07-01

    With the development of social economy, human disturbance has resulted in a variety of ecosystem service degradation or disappearance. Ecosystem services flow plays an important role in delivery, transformation and maintenance of ecosystem services, and becomes one of the new research directions. In this paper, based on the classification of ecosystem services flow, we analyzed ecosystem service delivery carrier, and investigated the mechanism of ecosystem service flow, including the information, property, scale features, quantification and cartography. Moreover, a tentative analysis on cost-effective of ecosystem services flow (such as transportation costs, conversion costs, usage costs and cost of relativity) was made to analyze the consumption cost in ecosystem services flow process. It aimed to analyze dissipation cost in ecosystem services flow process. To a certain extent, the study of ecosystem service flow solved the problem of "double counting" in ecosystem services valuation, which could make a contribution for the sake of recognizing hot supply and consumption spots of ecosystem services. In addition, it would be conducive to maximizing the ecosystem service benefits in the transmission process and putting forward scientific and reasonable ecological compensation.

  8. Coastal ecosystems, productivity and ecosystem protection: Coastal ecosystem management

    International Nuclear Information System (INIS)

    Ngoile, M.A.K.; Horrill, C.J.

    1993-01-01

    The coastal zone is a complex ecosystem under the influence of physical, chemical and biological processes. Under natural conditions these processes interact and maintain an equilibrium in the coastal ecosystem. Man makes a variety of important uses of coastal resources, ranging from harvesting of living resources, extraction of nonliving resources, and recreation, to the disposal of wastes. Man's extensive use of the oceans introduces factors which bring about an imbalance in the natural processes, and may result in harmful and hazardous effects to life hindering further use. Man's pressure on the resources of the coastal zone is already manifest and will increase manifold. This calls for an immediate solution to the protection and sustainable use of coastal resources. The current sectorized approach to the management of human activities will not solve the problem because the different resources of the coastal zone interact in such a manner that disturbances in one cause imbalance in the others. This is further complicated by the sectorized approach to research and limited communication between policy makers, managers, and scientists. This paper discusses strategies for managing coastal-resources use through an integrated approach. The coastal zone is presented as a unified ecosystem in equilibrium and shows that man's extensive use of the coastal resources destabilizes this equilibrium. Examples from the East Africa Region are presented. 15 refs, 2 figs, 3 tabs

  9. Farmers value on-farm ecosystem services as important, but what are the impediments to participation in PES schemes?

    Science.gov (United States)

    Page, Girija; Bellotti, Bill

    2015-05-15

    Optimal participation in market-based instruments such as PES (payment for ecosystem services) schemes is a necessary precondition for achieving large scale cost-effective conservation goals from agricultural landscapes. However farmers' willingness to participate in voluntary conservation programmes is influenced by psychological, financial and social factors and these need to be assessed on a case-by-case basis. In this research farmers' values towards on-farm ecosystem services, motivations and perceived impediments to participation in conservation programmes are identified in two local land services regions in Australia using surveys. Results indicated that irrespective of demographics such as age, gender, years farmed, area owned and annual gross farm income, farmers valued ecosystem services important for future sustainability. Non-financial motivations had significant associations with farmer's perceptions regarding attitudes and values towards the environment and participation in conservation-related programmes. Farmer factors such as lack of awareness and unavailability of adequate information were correlated with non-participation in conservation-based programmes. In the current political context, government uncertainty regarding schemes especially around carbon sequestration and reduction was the most frequently cited impediment that could deter participation. Future research that explores willingness of farmers towards participation in various types of PES programmes developed around carbon reduction, water quality provision and biodiversity conservation, and, duration of the contract and payment levels that are attractive to the farmers will provide insights for developing farmer-friendly PES schemes in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ecosystems and human well-being: health synthesis : a report of the Millennium Ecosystem Assessment

    National Research Council Canada - National Science Library

    Hales, Simon; Corvalan, Carlos; McMichael, Anthony (Tony) J

    2005-01-01

    ... 36 4 What actions are required to address the health consequences of ecosystem change? 4.1 Reducing vulnerability 4.2 The Millennium Development Goals 38 38 39 5 How can priorities be established for actions to address the health consequences of ecosystem change? 5.1 What considerations are important when setting priorities and what...

  11. Bottomland Hardwood Ecosystem Management Project

    Science.gov (United States)

    John A. Stanturf; Calvin E. Meier

    1994-01-01

    Federal agency approaches to land management are undergoing a shift from parcel-specific concerns toward a more holistic, ecosystem management approach. Southern bottomland hardwood ecosystems provide important environmental services and commodity goods (Wharton et al. 1982), yet much of our knowledge of these systems comes from anecdotal information. The Bottomland...

  12. Grave New World? Workplace Skills for Today's College Graduates

    Science.gov (United States)

    Eisner, Susan

    2010-01-01

    Today's college graduates face an uncertain and demanding job market in which they are likely to encounter evolving skill needs, reduced hiring, and heightened competition from experienced laid off workers and globally available labor. These realities underscore the importance expressed by educators and practitioners of identifying attributes new…

  13. Will ecosystem management supply woodland caribou habitat in northwestern Ontario?

    Directory of Open Access Journals (Sweden)

    David L. Euler

    1998-03-01

    Full Text Available Ecosystem management is emerging as an important concept in managing forests. Although the basic conceptual idea is not new, important defining principles are developing that elucidate some of the specific attributes of ecosystem management. These principles include: the maintenance of all ecosystems in the managed forest, rhe emulation of natural disturbance patterns on rhe landscape and the insurance that structure and function of forested ecosystems are conserved. Forest management has an impact on woodland caribou (Rangifer tarandus caribou, although the presence of wolves (Canis lupus and moose (Alces alces in the same northern ecosystems also affects the caribou-forestry interacrion. Specific management for caribou as a featured species has been proposed, based on managing large landscape blocks. Ecosystem management would also produce habitat in a manner that might accomplish the goal of conserving woodland caribou as well as maintaining other important ecosystem functions.

  14. Land-use planning for nearshore ecosystem services—the Puget Sound Ecosystem Portfolio Model

    Science.gov (United States)

    Byrd, Kristin

    2011-01-01

    The 2,500 miles of shoreline and nearshore areas of Puget Sound, Washington, provide multiple benefits to people—"ecosystem services"—including important fishing, shellfishing, and recreation industries. To help resource managers plan for expected growth in coming decades, the U.S. Geological Survey Western Geographic Science Center has developed the Puget Sound Ecosystem Portfolio Model (PSEPM). Scenarios of urban growth and shoreline modifications serve as model inputs to develop alternative futures of important nearshore features such as water quality and beach habitats. Model results will support regional long-term planning decisions for the Puget Sound region.

  15. Digital asset ecosystems rethinking crowds and cloud

    CERN Document Server

    Blanke, Tobias

    2014-01-01

    Digital asset management is undergoing a fundamental transformation. Near universal availability of high-quality web-based assets makes it important to pay attention to the new world of digital ecosystems and what it means for managing, using and publishing digital assets. The Ecosystem of Digital Assets reflects on these developments and what the emerging 'web of things' could mean for digital assets. The book is structured into three parts, each covering an important aspect of digital assets. Part one introduces the emerging ecosystems of digital assets. Part two examines digital asset manag

  16. Ethnic and locational differences in ecosystem service values

    DEFF Research Database (Denmark)

    Cuni Sanchez, Aida; Pfeifer, Marion; Marchant, Rob

    2016-01-01

    location. Preferred plant species for food, fodder, medicine resources, poles and firewood followed the same pattern. Our results showed that ethnicity and location affect ecosystem services' identification and importance ranking. This should be taken into account by decision-makers, e.g. as restricted......Understanding cultural preferences toward different ecosystem services is of great importance for conservation and development planning. While cultural preferences toward plant species have been long studied in the field of plant utilisation, the effects of ethnicity on ecosystem services...... identification and valuation has received little attention. We assessed the effects of ethnicity toward different ecosystem services at three similar forest islands in northern Kenya inhabited by Samburu and Boran pastoralists. Twelve focus groups were organised in each mountain, to evaluate the ecosystem...

  17. Ecosystem goods and services at the neighborhood scale

    Science.gov (United States)

    Mapping ecosystem functions and articulating the ecosystem goods and services (EGS) they provide to human beneficiaries are important aspects that: link human actions to human costs and benefits from ecosystem, and ultimately provide this information to the general public, public...

  18. Fermilab Today

    Science.gov (United States)

    registration due today Women's Initiative: "Guiltless: Work/Life Balance" - Aug. 13 Nominations for ; -Leah Hesla In Brief Women's Initiative presents 'Guiltless: Work-Life Balance' - Thursday in One West Cowperthwaite-O'Hagan present "Guiltless: Work-Life Balance" on Thursday, Aug. 13, at 3 p.m. in One

  19. Software ecosystems – a systematic literature review

    DEFF Research Database (Denmark)

    Manikas, Konstantinos; Hansen, Klaus Marius

    2013-01-01

    A software ecosystem is the interaction of a set of actors on top of a common technological platform that results in a number of software solutions or services. Arguably, software ecosystems are gaining importance with the advent of, e.g., the Google Android, Apache, and Salesforce.com ecosystems....... However, there exists no systematic overview of the research done on software ecosystems from a software engineering perspective. We performed a systematic literature review of software ecosystem research, analyzing 90 papers on the subject taken from a gross collection of 420. Our main conclusions...... are that while research on software ecosystems is increasing (a) there is little consensus on what constitutes a software ecosystem, (b) few analytical models of software ecosystems exist, and (c) little research is done in the context of real-world ecosystems. This work provides an overview of the field, while...

  20. Long-term ecosystem nitrogen storage and soil nitrogen availability in post-fire lodgepole pine ecosystems

    Science.gov (United States)

    Erica A. H. Smithwick; Daniel M. Kashian; Michael G. Ryan; Monica G.  Turner

    2009-01-01

    Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N...

  1. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  2. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Science.gov (United States)

    Kimberly A. Novick; Darren L. Ficklin; Paul C. Stoy; Christopher A. Williams; Gil Bohrer; Andrew C. Oishi; Shirley A. Papuga; Peter D. Blanken; Asko Noormets; Benjamin N. Sulman; Russell L. Scott; Lixin Wang; Richard P. Phillips

    2016-01-01

    Soil moisture supply and atmospheric demand for water independently limit-and profoundly affect-vegetation productivity and water use during periods of hydrologic stress1-4. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating...

  3. Reconnecting Social and Ecological Resilience in Salmon Ecosystems

    Directory of Open Access Journals (Sweden)

    Daniel L. Bottom

    2009-06-01

    Full Text Available Fishery management programs designed to control Pacific salmon (Oncorhynchus spp. for optimum production have failed to prevent widespread fish population decline and have caused greater uncertainty for salmon, their ecosystems, and the people who depend upon them. In this special feature introduction, we explore several key attributes of ecosystem resilience that have been overlooked by traditional salmon management approaches. The dynamics of salmon ecosystems involve social-ecological interactions across multiple scales that create difficult mismatches with the many jurisdictions that manage fisheries and other natural resources. Of particular importance to ecosystem resilience are large-scale shifts in oceanic and climatic regimes or in global economic conditions that unpredictably alter social and ecological systems. Past management actions that did not account for such changes have undermined salmon population resilience and increased the risk of irreversible regime shifts in salmon ecosystems. Because salmon convey important provisioning, cultural, and supporting services to their local watersheds, widespread population decline has undermined both human well-being and ecosystem resilience. Strengthening resilience will require expanding habitat opportunities for salmon populations to express their maximum life-history variation. Such actions also may benefit the "response diversity" of local communities by expanding the opportunities for people to express diverse social and economic values. Reestablishing social-ecological connections in salmon ecosystems will provide important ecosystem services, including those that depend on clean water, ample stream flows, functional wetlands and floodplains, intact riparian systems, and abundant fish populations.

  4. Assessing Ecosystem Model Performance in Semiarid Systems

    Science.gov (United States)

    Thomas, A.; Dietze, M.; Scott, R. L.; Biederman, J. A.

    2017-12-01

    In ecosystem process modelling, comparing outputs to benchmark datasets observed in the field is an important way to validate models, allowing the modelling community to track model performance over time and compare models at specific sites. Multi-model comparison projects as well as models themselves have largely been focused on temperate forests and similar biomes. Semiarid regions, on the other hand, are underrepresented in land surface and ecosystem modelling efforts, and yet will be disproportionately impacted by disturbances such as climate change due to their sensitivity to changes in the water balance. Benchmarking models at semiarid sites is an important step in assessing and improving models' suitability for predicting the impact of disturbance on semiarid ecosystems. In this study, several ecosystem models were compared at a semiarid grassland in southwestern Arizona using PEcAn, or the Predictive Ecosystem Analyzer, an open-source eco-informatics toolbox ideal for creating the repeatable model workflows necessary for benchmarking. Models included SIPNET, DALEC, JULES, ED2, GDAY, LPJ-GUESS, MAESPA, CLM, CABLE, and FATES. Comparison between model output and benchmarks such as net ecosystem exchange (NEE) tended to produce high root mean square error and low correlation coefficients, reflecting poor simulation of seasonality and the tendency for models to create much higher carbon sources than observed. These results indicate that ecosystem models do not currently adequately represent semiarid ecosystem processes.

  5. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world.

    Science.gov (United States)

    Griffiths, Jennifer R; Kadin, Martina; Nascimento, Francisco J A; Tamelander, Tobias; Törnroos, Anna; Bonaglia, Stefano; Bonsdorff, Erik; Brüchert, Volker; Gårdmark, Anna; Järnström, Marie; Kotta, Jonne; Lindegren, Martin; Nordström, Marie C; Norkko, Alf; Olsson, Jens; Weigel, Benjamin; Žydelis, Ramunas; Blenckner, Thorsten; Niiranen, Susa; Winder, Monika

    2017-06-01

    Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  6. Gilson, Krapiec and Christian Philosophy Today

    Directory of Open Access Journals (Sweden)

    Pawel Tarasiewicz

    2015-12-01

    Full Text Available The author undertakes an attempt to answer the following question: is Christian philosophy possible today? The question seems to be of great importance due to the fact that what Christians who try to do philosophy usually encounter is bitter criticism which comes to them from two sides at once: that of academy and that of the Church. In short, for academy their philosophy is too Christian, and for the Church it is too academic. Being indebted to the insights of Étienne Gilson and Mieczyslaw A. Krapiec (the original Polish spelling: Mieczysław Albert Krąpiec, pronounced: myechisuaf albert krompyetz, the author comes to the conclusion thatChristian philosophy is possible today only if: 1 it isnot identified with the art of persuasion, as its final end lies in gaining understanding rather than being convincing, 2 itis the work of a Christian, and 3 it has thereal world as its object and metaphysics as its method. ForChristian philosophy—which in essence consists indoing philosophy by Christians in order to get morerational understanding of their religious faith—shouldbe identified with theperfection of the intellect achieved by practicingthe classical philosophy of being.

  7. Towards an integration of biodiversity-ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services

    NARCIS (Netherlands)

    Hines, Jes; van der Putten, W.H.; De Deyn, G.B.; Wagg, Cameron; Voigt, Winfried; Mulder, Christian; Weisser, Wolfgang W.; Engel, Jan; Melian, Carlos; Scheu, Stefan; Birkhofer, Klaus; Ebeling, Anne; Scherber, Christoph; Eisenhauer, Nico

    2015-01-01

    Ecosystem responses to changes in species diversity are often studied individually. However, changes in species diversity can simultaneously influence multiple interdependent ecosystem functions. Therefore, an important challenge is to determine when and how changes in species diversity that

  8. Biomass estimation in forest ecosystems - a review | Wakawa ...

    African Journals Online (AJOL)

    Forest ecosystems plays an important role in global warming serving as both sink and source of one of the prominent green house gases, carbon dioxide (CO2). Biomass estimation in forest ecosystems is an important aspect of forest management processes aimed at ensuring sustainability. The choice of appropriate ...

  9. The phenology of gross ecosystem productivity and ecosystem respiration in temperate hardwood and conifer chronosequences

    Science.gov (United States)

    A. Noormets

    2009-01-01

    The relative duration of active and dormant seasons has a strong influence on ecosystem net carbon balance and its carbon uptake potential. While recognized as an important source of temporal and spatial variability, the seasonality of ecosystem carbon balance has not been studied explicitly, and still lacks standard terminology. In the current chapter, we apply a...

  10. Restoring rocky intertidal communities: Lessons from a benthic macroalgal ecosystem engineer

    International Nuclear Information System (INIS)

    Bellgrove, Alecia; McKenzie, Prudence F.; Cameron, Hayley; Pocklington, Jacqueline B.

    2017-01-01

    As coastal population growth increases globally, effective waste management practices are required to protect biodiversity. Water authorities are under increasing pressure to reduce the impact of sewage effluent discharged into the coastal environment and restore disturbed ecosystems. We review the role of benthic macroalgae as ecosystem engineers and focus particularly on the temperate Australasian fucoid Hormosira banksii as a case study for rocky intertidal restoration efforts. Research focussing on the roles of ecosystem engineers is lagging behind restoration research of ecosystem engineers. As such, management decisions are being made without a sound understanding of the ecology of ecosystem engineers. For successful restoration of rocky intertidal shores it is important that we assess the thresholds of engineering traits (discussed herein) and the environmental conditions under which they are important. - Highlights: • Fucoid algae can be important ecosystem engineers in rocky reef ecosystems • Sewage-effluent disposal negatively affects fucoids and associated communities • Restoring fucoid populations can improve biodiversity of degraded systems • Clarifying the roles of fucoids in ecosystem function can improve restoration efforts • Thresholds of engineering traits and associated environmental conditions important

  11. Changes in Ecosystem Services and related Livelihoods in the Mekong Delta: vulnerabilities and adaptation strategies

    Science.gov (United States)

    Sebesvari, Z.; Renaud, F. G.

    2014-12-01

    The Mekong Delta (Vietnam) is highly vulnerable to the many impacts of global environmental change as well as to the accelerating anthropogenic changes in the catchment and in the delta itself. Today the delta is an agricultural landscape controlled by engineering structures such as channels, dykes, embankments, and sluice gates. These structures have been constructed gradually over the last 200 years mainly for irrigation and flood control in the upper part of the delta and to control saline intrusion in the coastal areas. Recent changes in the hydrology mainly driven by upstream hydropower development on the mainstream and the tributaries of the Mekong will likely have far reaching impacts on the delta´s social-ecological systems through changes in e.g. sedimentation processes, nutrient transport as well as the health of aquatic ecosystems. Further threats to the delta include sea level rise and an increase in seasonal rainfall variability leading to an increase in flood variability. These changes affect the lives of millions of low-income inhabitants who depend on the ecosystem services provided by the Mekong for their livelihoods and sustenance. Since the changes in ecosystem service provision are occurring relatively fast while the resource dependency of the delta population is very high, adaptation becomes a challenge. An assessment of livelihood dependencies on ecosystem services requires an understanding of ecosystem services affected by different drivers of change, as well as of the types of livelihoods likely to be jeopardized as a result of these changes. We will present main ecosystem services supporting specific livelihoods, discuss how they are threatened, and analyse the merits of potential solutions. Options based solely on grey infrastructure might be problematic on the long term while an integration of ecosystem based solution such as a (re)adaptation of agricultural production systems to floods in the upper delta might be a more sustainable

  12. Ecosystem services in sustainable groundwater management.

    Science.gov (United States)

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The transition of new technology to solve today`s problems

    Energy Technology Data Exchange (ETDEWEB)

    Kamin, R.A. [Naval Air Warfare Center, Trenton, NJ (United States); Martin, C.J.; Turner, L.M. [Defense Fuel Supply Center, Alexandria, VA (United States)

    1995-05-01

    Extensive research has been conducted in the development of methods to predict the degradation of F-44 in storage. The Low Pressure Reactor (LPR) has greatly enhanced the stability prediction capabilities necessary to make informed decisions concerning aviation fuel in storage. This technique has in the past been primarily used for research purposes. The Naval Air Warfare Center, Aircraft Division, Trenton, NJ, has used this technique successfully to assist the Defense Fuel Supply Center, Cameron Station, Alexandria, VA, in stability assessments of F-44. The High Performance Liquid Chromatography/Electrochemical Detector (HPLC/EC) antioxidant determination technique has also aided in making stability predictions by establishing the amount of inhibitor currently in the product. This paper will address two case studies in which the above new technology was used to insure the rapid detection and diagnosis of today`s field and logistic problems.

  14. Surrounded by Water: Talking to Learn in Today's Classrooms

    Science.gov (United States)

    Ernst-Slavit, Gisela; Wenger, Kerri J.

    2016-01-01

    The authors explore the importance of talk and interaction for learning, particularly in relation to new K-12 standards and the prominent role of academic language in today's educational contexts. The article concludes with a detailed example of a Grade 6 teacher's use of content and language objectives to address the needs and strengths of all…

  15. Approaches to the Study of Pragmatism in Today's China

    Science.gov (United States)

    Chengbing, Wang

    2017-01-01

    To explore the key approaches to pragmatism is not only a logical requirement of the development of pragmatism itself, but also necessary for Chinese pragmatism to progress. There are three major necessary and feasible approaches to the study of pragmatism, which will play a very important role in the development of Pragmatism in today's China:…

  16. Comparing pristine and depleted ecosystems: The Sørfjord, Norway versus the Gulf of St. Lawrence, Canada. Effects of intense fisheries on marine ecosystems

    Science.gov (United States)

    Morissette, Lyne; Pedersen, Torstein; Nilsen, Marianne

    2009-04-01

    The Sørfjord, Norway, and the Gulf of St. Lawrence, Canada, are two sub-arctic ecosystems with similar trophic structure. However, in the Gulf of St. Lawrence, severe exploitation of groundfish stocks has lead to important shifts in the trophic structure. In the Sørfjord, the situation is different: fishing pressure is much lighter. Our hypothesis is that overexploitation leads to changes in the trophic structure and severely alters the resilience of ecosystems. Based on the same modelling approach ( Ecopath with Ecosim) the food web structure was compared, using different ecosystem indicators. Patterns of food web structure and trophodynamics were contrasted. Cod was the keystone species in both ecosystems, and forage fish were also important. Even after similar environmental changes in both ecosystems, and after a reduction of fishing pressure in the Gulf of St. Lawrence, there is no recovery of cod stocks in this ecosystem. In the Sørfjord, after different perturbations (but not from the fishery), the ecosystem seems to return to its equilibrium.

  17. [The practicum in physiology: from Laufberger to today].

    Science.gov (United States)

    Kuthan, V; Sedlácek, J; Trojan, S

    1990-09-21

    An outline of Prof. Laufberger's concept of practical exercises in physiology, proposed just after the Second World War, is given. Especially, his new pedagogical approach is emphasized, here. Further, the development of the organization of practical courses in the Institute of Physiology in Prague is described: e.g. the modernization of the methods used, and of the educational process in early 70 s'. Today, the importance of biocybernetics is growing.

  18. Facing uncertainty in ecosystem services-based resource management.

    Science.gov (United States)

    Grêt-Regamey, Adrienne; Brunner, Sibyl H; Altwegg, Jürg; Bebi, Peter

    2013-09-01

    The concept of ecosystem services is increasingly used as a support for natural resource management decisions. While the science for assessing ecosystem services is improving, appropriate methods to address uncertainties in a quantitative manner are missing. Ignoring parameter uncertainties, modeling uncertainties and uncertainties related to human-environment interactions can modify decisions and lead to overlooking important management possibilities. In this contribution, we present a new approach for mapping the uncertainties in the assessment of multiple ecosystem services. The spatially explicit risk approach links Bayesian networks to a Geographic Information System for forecasting the value of a bundle of ecosystem services and quantifies the uncertainties related to the outcomes in a spatially explicit manner. We demonstrate that mapping uncertainties in ecosystem services assessments provides key information for decision-makers seeking critical areas in the delivery of ecosystem services in a case study in the Swiss Alps. The results suggest that not only the total value of the bundle of ecosystem services is highly dependent on uncertainties, but the spatial pattern of the ecosystem services values changes substantially when considering uncertainties. This is particularly important for the long-term management of mountain forest ecosystems, which have long rotation stands and are highly sensitive to pressing climate and socio-economic changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Delayed responses of an Arctic ecosystem to an extremely dry summer: impacts on net ecosystem exchange and vegetation functioning

    Science.gov (United States)

    Zona, D.; Lipson, D. A.; Richards, J. H.; Phoenix, G. K.; Liljedahl, A. K.; Ueyama, M.; Sturtevant, C. S.; Oechel, W. C.

    2013-12-01

    The importance and mode of action of extreme events on the global carbon budget are inadequately understood. This includes the differential impact of extreme events on various ecosystem components, lag effects, recovery times, and compensatory processes. Summer 2007 in Barrow, Arctic Alaska, experienced unusually high air temperatures (fifth warmest over a 65 yr period) and record low precipitation (lowest over a 65 yr period). These abnormal conditions resulted in strongly reduced net Sphagnum CO2 uptake, but no effect neither on vascular plant development nor on net ecosystem exchange (NEE) from this arctic tundra ecosystem. Gross primary production (GPP) and ecosystem respiration (Reco) were both generally greater during most of this extreme summer. Cumulative ecosystem C uptake in 2007 was similar to the previous summers, showing the capacity of the ecosystem to compensate in its net ecosystem exchange (NEE) despite the impact on other functions and structure such as substantial necrosis of the Sphagnum layer. Surprisingly, the lowest ecosystem C uptake (2005-2009) was observed during the 2008 summer, i.e the year directly following the extremely summer. In 2008, cumulative C uptake was ∼70% lower than prior years. This reduction cannot solely be attributed to mosses, which typically contribute with ∼40% - of the entire ecosystem C uptake. The minimum summer cumulative C uptake in 2008 suggests that the entire ecosystem experienced difficulty readjusting to more typical weather after experiencing exceptionally warm and dry conditions. Importantly, the return to a substantial cumulative C uptake occurred two summers after the extreme event, which suggest a high resilience of this tundra ecosystem. Overall, these results show a highly complex response of the C uptake and its sub-components to atypically dry conditions. The impact of multiple extreme events still awaits further investigation.

  20. Payment for Ecosystem Services | Benjamin | Potchefstroom ...

    African Journals Online (AJOL)

    This address focuses on the legislative design for payment or ecosystem services (PES) since most countries do not have specific legislation that addresses the subject. Brazil is in the process of drafting national legislation on ecosystem services and there are several important issues that can be learnt from this experience.

  1. Reinventing R&D in an open innovation ecosystem.

    Science.gov (United States)

    Traitler, Helmut; Watzke, Heribert J; Saguy, I Sam

    2011-03-01

    Today, the idea that random collisions and interactions offer solutions and business opportunities is no longer acceptable. Instead, partnerships and alignments, both downstream and upstream, are paramount for cross-fertilization and synergy. To survive, and thrive, in today's world of global innovation, alliances based on compatible differences must be sought. Innovation Partnerships and the Sharing-is-Winning model represent a paradigm shift toward accelerating co-development of sustainable innovation, with alignment of the entire value chain with consumer-centric innovations being one of its main pillars. It includes 3 levels of typical joint development: universities, research institutes, and centers; start-ups and individual inventors; a select number of key strategic suppliers. Reinventing R&D in an open innovation ecosystem and increasing success rates in an increasingly competitive marketplace require implementing significant steps--both perceived and tangible. Specific recommendations are provided for 10 major identified topics: leadership, strategy, the consumer, the value chain, internal experts and championship, metrics, IP, culture, academia, and passion. The Sharing-is-Winning model extends the scope of open innovation to sustainable and enhanced processes of co-innovation.

  2. On the road to secure and privacy-preserving IoT ecosystems

    OpenAIRE

    Hernández Serrano, Juan; Muñoz Tapia, José Luis; Bröring, Arne; Esparza Martín, Óscar; Mikkelsen, Lars; Schwarzott, Wolfgang; León Abarca, Olga; Zibuschka, Jan

    2017-01-01

    The Internet of Things (IoT) is on the rise. Today, various IoT platforms are already available, giving access to myriads of things. Initiatives such as BIG IoT are bringing those IoT platforms together in order to form ecosystems. BIG IoT aims to facilitate cross-platform and cross-domain application developments and establish centralized marketplaces to allow resource monetization. This combination of multi-platform applications, heterogeneity of the IoT, as well as enabling marketing and a...

  3. Redefinition and global estimation of basal ecosystem respiration rate

    DEFF Research Database (Denmark)

    Yuan, Wenping; Luo, Yiqi; Li, Xianglan

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models sti...

  4. Ecosystem-based management and the wealth of ecosystems

    OpenAIRE

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K.; Fenichel, Eli P.

    2017-01-01

    Ecosystems store vast quantities of wealth, but difficulties measuring wealth held in ecosystems prevent its inclusion in accounting systems. Ecosystem-based management endeavors to manage ecosystems holistically. However, ecosystem-based management lacks headline indicators to evaluate performance. We unify the inclusive wealth and ecosystem-based management paradigms, allowing apples-to-apples comparisons between the wealth of the ecosystem and other forms of wealth, while providing a headl...

  5. Implications of agricultural transitions and urbanization for ecosystem services.

    Science.gov (United States)

    Cumming, Graeme S; Buerkert, Andreas; Hoffmann, Ellen M; Schlecht, Eva; von Cramon-Taubadel, Stephan; Tscharntke, Teja

    2014-11-06

    Historically, farmers and hunter-gatherers relied directly on ecosystem services, which they both exploited and enjoyed. Urban populations still rely on ecosystems, but prioritize non-ecosystem services (socioeconomic). Population growth and densification increase the scale and change the nature of both ecosystem- and non-ecosystem-service supply and demand, weakening direct feedbacks between ecosystems and societies and potentially pushing social-ecological systems into traps that can lead to collapse. The interacting and mutually reinforcing processes of technological change, population growth and urbanization contribute to over-exploitation of ecosystems through complex feedbacks that have important implications for sustainable resource use.

  6. Towards ecosystem-based management: Identifying operational food-web indicators for marine ecosystems

    DEFF Research Database (Denmark)

    Tam, Jamie C.; Link, Jason S.; Rossberg, Axel G.

    2017-01-01

    ) are an important aspect of all marine ecosystems and biodiversity. Here we describe and discuss a process to evaluate the selection of operational food-web indicators for use in evaluating marine ecosystem status. This process brought together experts in food-web ecology, marine ecology, and resource management......, to identify available indicators that can be used to inform marine management. Standard evaluation criteria (availability and quality of data, conceptual basis, communicability, relevancy to management) were implemented to identify practical food-web indicators ready for operational use and indicators...... that hold promise for future use in policy and management. The major attributes of the final suite of operational food-web indicators were structure and functioning. Indicators that represent resilience of the marine ecosystem were less developed. Over 60 potential food-web indicators were evaluated...

  7. Diversite et importance socio-economique des services ...

    African Journals Online (AJOL)

    Ecosystems and protected areas provide important ecosystem services to local communities. These services are incentives for natural resources conservation. The current project, conducted in Pendjari Biosphere Reserve, northern Benin aimed at assessing ecosystem services and their contribution to local people ...

  8. Distributional (in)congruence of biodiversity-ecosystem functioning

    NARCIS (Netherlands)

    Mulder, C.; Boit, A.; Mori, S.; Vonk, J.A.; Dyer, S.D.; Faggiano, L.; Geisen, S.; González, A.L.; Kaspari, M.; Lavorel, S.; Marquet, P.A.; Rossberg, A.G.; Sterner, R.W.; Voigt, W.; Wall, D.H.

    2012-01-01

    The majority of research on biodiversity-ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors

  9. Neutrinos today

    International Nuclear Information System (INIS)

    Pontecorvo, B.; Bilen'kij, S.

    1987-01-01

    After the famous 1983 discovery of intermediate W, Z 0 bosons it may be stated with certainty that W, Z 0 are entirely responsible for the production of neutrinos and for their interactions. Neutrino physics notions are presented from this point of view in the first four introductory, quite elementary, paragraphs of the paper. The following seven paragraphs are more sophisticated. They are devoted to the neutrino mass and neutrino mixing question, which is the most actual problem in today neutrino physics. Vacuum neutrino oscillations, matter neutrino oscillations and netrinoless double-decay are considered. Solar neutrino physics is discussed in some detail from the point of view of vacuum and matter neutrino oscillations. The role played by neutrinos in the Universe is briefly considered. In the last paragraph there discussed the probable observation by different groups of neutrinos connected with the Supernova 1987 A: the first observation of gravitational star collapse (at least the general rehearsal of such observation) opens up a new era in astronomy of today exerimental physics and astrophysics is presented at the end of the paper in the form of a Table

  10. Packaging Printing Today

    Directory of Open Access Journals (Sweden)

    Stanislav Bolanča

    2015-12-01

    Full Text Available Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. The possibilities of particular printing techniques for optimal production of the determined packaging were studied in the paper. The problem was viewed from the technological and economical aspect. The possible printing quality and the time necessary for the printing realization were taken as key parameters. An important segment of the production and the way of life is alocation value and it had also found its place in this paper. The events in the field of packaging printing in the whole world were analyzed. The trends of technique developments and the printing technology for packaging printing in near future were also discussed.

  11. Forest restoration, biodiversity and ecosystem functioning

    Science.gov (United States)

    2011-01-01

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  12. Review on the Progress of Marine Ecosystem Management

    Institute of Scientific and Technical Information of China (English)

    Yao Xuefen; Zhang Luoping

    2007-01-01

    Along with the industrial development, adverse impacts on the natural environment become more serious, and ecosystem health and ecological security have also been deteriorated.The traditional environment management focused on the shortterm and economic benefits. Such managing pattern is not accommodating to the new situation of increasingly global environment problems and large scale marine environment problems.This paper introduces the advance and definition of a new managing pattern-ecosystem management. Meanwhile, the connotation of ecosystem management was summarized as seven points: Sustainability; Human is an important aspect of ecosystem management; Cooperation is the foundation of ecosystem management; Maintain health and security of ecosystem; Ecological diversity protection characters ecosystem management; Maintain the integrity of ecosystem; Ecosystem management must be founded on scientific theories and precise information. Somebody said Ecosystem Management is "a new label of old ideas". However, there is an essential difference between ecosystem management and traditional environmental management. In the last part of this paper, the differences of the approaches between ecosystem management and traditional environmental management are compared.

  13. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  14. Socio-cultural valuation of ecosystem services in a transhumance social-ecological network

    DEFF Research Database (Denmark)

    Oteros-Rozas, E.; Martín-López, B.; González, J.A.

    2014-01-01

    the importance of 34 ecosystem services (10 provisioning, 12 regulating, and 12 cultural) for both social and personal well-being. Overall, the ecosystem services considered to be the most important for social well-being were fire prevention, air purification and livestock. Most of the ecosystem services...

  15. Chapter Four : Towards an Integration of Biodiversity–Ecosystem Functioning and Food Web Theory to Evaluate Relationships between Multiple Ecosystem Services

    NARCIS (Netherlands)

    Hines, J.; Putten, van der W.H.; Deyn, de G.B.; Wagg, C.; Voigt, W.; Mulder, C.; Weisser, W.W.; Engel, J.; Melian, C.; Scheu, S.; Birkhofer, K.; Ebeling, A.; Scherber, C.; Eisenhauer, N.

    2015-01-01

    Ecosystem responses to changes in species diversity are often studied individually. However, changes in species diversity can simultaneously influence multiple interdependent ecosystem functions. Therefore, an important challenge is to determine when and how changes in species diversity that

  16. Assessing, mapping and quantifying cultural ecosystem services at community level

    NARCIS (Netherlands)

    Plieninger, T.; Dijks, S.; Oteros Rozas, E.; Bieling, C.

    2013-01-01

    Numerous studies underline the importance of immaterial benefits provided by ecosystems and especially by cultural landscapes, which are shaped by intimate human–nature interactions. However, due to methodological challenges, cultural ecosystem services are rarely fully considered in ecosystem

  17. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world

    DEFF Research Database (Denmark)

    Griffiths, Jennifer R.; Kadin, Martina; Nascimento, Francisco J. A.

    2017-01-01

    and function is strongly affected by anthropogenic pressures, however there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling...... processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study, and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic......Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure...

  18. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    Science.gov (United States)

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  19. Connected minds technology and today's learners

    CERN Document Server

    Pedrò, Francesc

    2012-01-01

    In all OECD countries, digital media and connectedness are integral to the lives of todays learners. It is often claimed that these learners are ""new millennium learners"", or ""digital natives"", who have different expectations about education. This book contributes to the debate about the effects of technology attachment and connectedness on todays learners, and their expectations about teaching. The book sets out to answer the following questions: Can the claim that todays students are ""new millenium learners"" or ""digital natives be sustained empirically? Is there consistent research evidence demonstrating the effects of technology on cognitive development, social values, and learning expectations? What are the implications for educational policy and practice?

  20. Accounting for ecosystem services and biodiversity in Limburg province, the Netherlands

    NARCIS (Netherlands)

    Remme, R.P.

    2016-01-01

    Ecosystem services and biodiversity are important for human well-being. Ecosystem services are the contributions of ecosystems to benefits used in economic and other human activity. This thesis aims to empirically assess how spatial models for ecosystem service flows and biodiversity can be

  1. Reframing landscape fragmentation's effects on ecosystem services.

    Science.gov (United States)

    Mitchell, Matthew G E; Suarez-Castro, Andrés F; Martinez-Harms, Maria; Maron, Martine; McAlpine, Clive; Gaston, Kevin J; Johansen, Kasper; Rhodes, Jonathan R

    2015-04-01

    Landscape structure and fragmentation have important effects on ecosystem services, with a common assumption being that fragmentation reduces service provision. This is based on fragmentation's expected effects on ecosystem service supply, but ignores how fragmentation influences the flow of services to people. Here we develop a new conceptual framework that explicitly considers the links between landscape fragmentation, the supply of services, and the flow of services to people. We argue that fragmentation's effects on ecosystem service flow can be positive or negative, and use our framework to construct testable hypotheses about the effects of fragmentation on final ecosystem service provision. Empirical efforts to apply and test this framework are critical to improving landscape management for multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Career development tips for today's nursing academic: bibliometrics, altmetrics and social media.

    Science.gov (United States)

    Smith, Derek R; Watson, Roger

    2016-11-01

    A discussion of bibliometrics, altmetrics and social media for the contemporary nursing scholar and academic researcher. Today's nursing academic faces myriad challenges in balancing their daily life and, in recent years, academic survival has been increasingly challenged by the various research assessment exercises that evaluate the performance of knowledge institutions. As such, it is essential that today's nursing academic keep up to date with the core competencies needed for survival in a modern research career, particularly the intersecting triad of bibliometrics, altmetrics and social media. Discussion paper. Published literature and relevant websites. The rise of social media and altmetrics has important implications for contemporary nursing scholars who publish their research. Some fundamental questions when choosing a journal might be 'does it have a Twitter and/or Facebook site, or a blog (or all three)'; and 'does it have any other presence on social media, such as LinkedIn, Wikipedia, YouTube, ResearchGate and so on?' Another consequence of embracing social media is that individual academics should also develop their own strategies for promoting and disseminating their work as widely as possible. The rising importance of social media and altmetrics can no longer be ignored, and today's nursing academic now has another facet to consider in their scholarly activities. Despite the changing nature of research dissemination, however, it is still important to recognize the undoubted value of established knowledge dissemination routes (that being the peer-reviewed publication). © 2016 John Wiley & Sons Ltd.

  3. Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems

    NARCIS (Netherlands)

    Hölker, Franz; Vanni, Michael J.; Kuiper, Jan J.; Meile, Christof; Grossart, Hans-Peter; Stief, Peter; Adrian, Rita; Lorke, Andreas; Dellwig, Olaf; Brand, Andreas; Hupfer, Michael; Mooij, Wolf M.; Nützmann, Gunnar; Lewandowski, Jörg

    2015-01-01

    There is ample evidence that tube-dwelling invertebrates such as chironomids significantly alter multiple important ecosystem functions, particularly in shallow lakes. Chironomids pump large water volumes, and associated suspended and dissolved substances, through the sediment and thereby compete

  4. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Science.gov (United States)

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  5. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    Science.gov (United States)

    Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett

    2015-01-01

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115

  6. Effects of declining oak vitality on ecosystem functions: Lessons from a Spanish oak woodland

    Science.gov (United States)

    López-Sánchez, Aida; Bareth, Georg; Bolten, Andreas; Linstädter, Anja

    2017-04-01

    Mediterranean oak woodlands have a great ecological and socio-economic importance. Today, these fragile ecosystems are facing unprecedented degradation threats from Novel Oak Diseases (NODs). Among NOD drivers, maladapted land management practices and climate change are most important. Although it is generally believed that NOD-related declines in tree vitality will have detrimental effects on ecosystem functions, little is known on the magnitude of change, and whether different functions are affected in a similar way. Here we analyzed effects of tree vitality on various ecosystem functions, comparing subcanopy and intercanopy habitats across two oak species (Quercus ilex and Q. suber) in a Spanish oak woodland. We asked how functions - including aboveground net primary productivity (ANPP), taxonomic diversity, and litter decomposition rates - were affected by oak trees' size and vitality. We also combined measurements in the ecosystem function habitat index (MEFHI), a proxy of ecosystem multifunctionality. Field research was carried out in 2016 on a dehesa in southern Spain. We used a stratified random sampling to contrast trees of different species affiliation, size and vitality. Tree vitality was estimated as crown density (assessed via hemispherical photography), and as tree vigor, which combines the grade of canopy defoliation with proxies for tree size (dbh, height, crown height and crown radius). For each tree (n = 34), two plots (50 x 50 cm) were located; one in the subcanopy habitat, and the other in the intercanopy area beyond the tree crown's influence. On all 68 plots, moveable cages were placed during the main growth period (March to May) to estimate ANPP under grazed conditions. Litter decomposition rates were assessed via the tea bag index. ANPP and the biomass of grasses, forbs and legumes were recorded via destructive sampling. To take plots' highly variable environmental conditions into account, we recorded a suite of abiotic and biotic

  7. Mathematics Teaching Today

    Science.gov (United States)

    Martin, Tami S.; Speer, William R.

    2009-01-01

    This article describes features, consistent messages, and new components of "Mathematics Teaching Today: Improving Practice, Improving Student Learning" (NCTM 2007), an updated edition of "Professional Standards for Teaching Mathematics" (NCTM 1991). The new book describes aspects of high-quality mathematics teaching; offers a model for observing,…

  8. Adventures in holistic ecosystem modelling: the cumberland basin ecosystem model

    Science.gov (United States)

    Gordon, D. C.; Keizer, P. D.; Daborn, G. R.; Schwinghamer, P.; Silvert, W. L.

    A holistic ecosystem model has been developed for the Cumberland Basin, a turbid macrotidal estuary at the head of Canada's Bay of Fundy. The model was constructed as a group exercise involving several dozen scientists. Philosophy of approach and methods were patterned after the BOEDE Ems-Dollard modelling project. The model is one-dimensional, has 3 compartments and 3 boundaries, and is composed of 3 separate submodels (physical, pelagic and benthic). The 28 biological state variables cover the complete estuarine ecosystem and represent broad functional groups of organisms based on trophic relationships. Although still under development and not yet validated, the model has been verified and has reached the stage where most state variables provide reasonable output. The modelling process has stimulated interdisciplinary discussion, identified important data gaps and produced a quantitative tool which can be used to examine ecological hypotheses and determine critical environmental processes. As a result, Canadian scientists have a much better understanding of the Cumberland Basin ecosystem and are better able to provide competent advice on environmental management.

  9. Attempts for an integrative (ecological) assessment of groundwater ecosystems status

    Science.gov (United States)

    Griebler, Christian; Kellermann, Claudia; Jürgen Hahn, Hans; Stein, Heide; Brielmann, Heike; Berkhoff, Sven; Fuchs, Andreas

    2014-05-01

    Today the assessment of the ecological status of surface waters is routine and made its way into national and international (e.g. European Water Framework Directive) regulations. For groundwater and aquifers a comparable approach, considering ecological aspects, is still missing. In contrast, groundwater monitoring and management schemes follow exclusively physical-chemical and quantitative criteria. However, groundwater systems are, although persistently neglected, ecosystems harboring diverse communities of microorganisms and invertebrates. Directly linked to the biological components, groundwater systems provide various ecosystem services of societal relevance (natural production of clean drinking water). In the recent past, we developed a first concept of an ecologically sound assessment scheme for groundwater systems. Work included (1) the selection of appropriate biological/ecological criteria, (2) set-up of a groundwater ecosystem typology, (3) deduction of natural biological groundwater background values and definition of reference conditions for selected sites, and (4) a first evaluation model. Groundwater has been analyzed repeatedly of more than 100 wells distributed over five investigation areas spread all over Germany. The investigated sites could be assigned to different natural regions, geological regions, hydrogeological units, and aquifer types. The mismatch of groundwater faunal communities with the established classification schemes led to the proposal of 'stygoregions' for Germany. The presentation introduces a number of microbial and faunistic assessment criteria, which have been tested and natural background values which have been deduced. Finally, a tiered framework for assessing groundwater ecosystem status which allows an easy and fast evaluation is introduced.

  10. Preface: Catalysis Today

    DEFF Research Database (Denmark)

    Li, Yongdan

    2016-01-01

    This special issue of Catalysis Today with the theme “Sustain-able Energy” results from a great success of the session “Catalytic Technologies Accelerating the Establishment of Sustainable and Clean Energy”, one of the two sessions of the 1st International Symposium on Catalytic Science and Techn...

  11. The role of recurrent disturbances for ecosystem multifunctionality.

    Science.gov (United States)

    Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf

    2013-10-01

    Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.

  12. Modelling natural disturbances in forest ecosystems: a review

    NARCIS (Netherlands)

    Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jöhnsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; González-Olabarria, J.R.; Lasch, P.; Meredieu, C.; Moreira, F.; Schelhaas, M.; Mohren, G.M.J.

    2011-01-01

    Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling

  13. How models can support ecosystem-based management of coral reefs

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Janssen, A.B.G.; Kuiper, J.J.; Leemans, R.; Leemput, van de I.A.; Mooij, W.M.

    2015-01-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic

  14. Modelling natural disturbances in forest ecosystems: a review

    OpenAIRE

    Seidl, Rupert; Fernandes, Paulo M.; Fonseca, Teresa F.; Gillet, François; Jönsson, Anna Maria; Merganičová, Katarína; Netherer, Sigrid; Arpaci, Alexander; Bontemps, Jean-Daniel; Bugmann, Harald

    2011-01-01

    Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling natural disturbances in forest ecosystems, addressing the full spectrum of disturbance modelling from single events to integrated disturbance regimes. We applied a general, process-based framework f...

  15. The rise of novelty in ecosystems.

    Science.gov (United States)

    Radeloff, Volker C; Williams, John W; Bateman, Brooke L; Burke, Kevin D; Carter, Sarah K; Childress, Evan S; Cromwell, Kara J; Gratton, Claudio; Hasley, Andrew O; Kraemer, Benjamin M; Latzka, Alexander W; Marin-Spiotta, Erika; Meine, Curt D; Munoz, Samuel E; Neeson, Thomas M; Pidgeon, Anna M; Rissman, Adena R; Rivera, Ricardo J; Szymanski, Laura M; Usinowicz, Jacob

    2015-12-01

    Rapid and ongoing change creates novelty in ecosystems everywhere, both when comparing contemporary systems to their historical baselines, and predicted future systems to the present. However, the level of novelty varies greatly among places. Here we propose a formal and quantifiable definition of abiotic and biotic novelty in ecosystems, map abiotic novelty globally, and discuss the implications of novelty for the science of ecology and for biodiversity conservation. We define novelty as the degree of dissimilarity of a system, measured in one or more dimensions relative to a reference baseline, usually defined as either the present or a time window in the past. In this conceptualization, novelty varies in degree, it is multidimensional, can be measured, and requires a temporal and spatial reference. This definition moves beyond prior categorical definitions of novel ecosystems, and does not include human agency, self-perpetuation, or irreversibility as criteria. Our global assessment of novelty was based on abiotic factors (temperature, precipitation, and nitrogen deposition) plus human population, and shows that there are already large areas with high novelty today relative to the early 20th century, and that there will even be more such areas by 2050. Interestingly, the places that are most novel are often not the places where absolute changes are largest; highlighting that novelty is inherently different from change. For the ecological sciences, highly novel ecosystems present new opportunities to test ecological theories, but also challenge the predictive ability of ecological models and their validation. For biodiversity conservation, increasing novelty presents some opportunities, but largely challenges. Conservation action is necessary along the entire continuum of novelty, by redoubling efforts to protect areas where novelty is low, identifying conservation opportunities where novelty is high, developing flexible yet strong regulations and policies, and

  16. Educational Entrepreneurship Today

    Science.gov (United States)

    Hess, Frederick M., Ed.; McShane, Michael Q., Ed.

    2016-01-01

    In "Educational Entrepreneurship Today", Frederick M. Hess and Michael Q. McShane assemble a diverse lineup of high-profile contributors to examine the contexts in which new initiatives in education are taking shape. They inquire into the impact of entrepreneurship on the larger field--including the development and deployment of new…

  17. Knee arthrography today

    International Nuclear Information System (INIS)

    Otto, H.; Kallenberger, R.

    1987-01-01

    The role of knee arthrography today is demonstrated and technical problems are discussed. Among a lot of variants the position of the patient and the choice of contrast media play a great part concerning the result of the examination. Mild complications occur in 0.25% of the examinations, severe and live threatening complications are extremely rare. Diagnosis of meniscal lesions is most important for knee arthrography; arthroscopy and arthrography are complementary examinations and not mutually exclusive, they achieve combined an accuracy of 97-98%. In the same way arthrography is able to evaluate the condropathy of the femoro-tibial joint, whereas accuracy of arthroscopy in the diagnosis of patellar chondropathy is much higher. There is a great reliability of arthrography regarding the evaluation of lesions of the capsule, but accuracy in lesions of the cruciate ligaments is low. Arthrography is very suitable for evaluation of Baker-cysts, since indications for almost occuring internal derangement of the knee are even available. Knee arthrography is a complex and safe procedure with very less discomfort for the patient; it has a central position in the evaluation of lesions of the knee. (orig.) [de

  18. Identifying pelagic ecosystem indicators for management

    DEFF Research Database (Denmark)

    Trenkel, Verena; Hintzen, Niels; Rindorf, Anna

    2013-01-01

    When exploiting fish populations under the ecosystem approach, aiming for MSY is not necessarily sufficient to ensure wider ecosystem sustainability. All of the large stocks of pelagic fish are managed through harvest control rules based on an MSY approach. Ensuring good environmental status...... will probably require further constraints to be imposed by management. Most of the current paradigm with regards to GES for fisheries has been based on demersal fish. Pelagic fisheries and fish are operationally and biologically respectively different. We use the example of applying the ecosystem approach...... between objectives and indicators were explored for a range of examples highlighting the importance of the biology and the interaction between the pelagic ecosystem and humans. Considering MSY targets alone will not fulfil GES objectives with regards to e.g. genetic, phenotypic, and behavioural dimensions...

  19. Nutrient controls on biocomplexity of mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.

  20. National Ecosystem Assessments in Europe: A Review

    Science.gov (United States)

    Schröter, Matthias; Albert, Christian; Marques, Alexandra; Tobon, Wolke; Lavorel, Sandra; Maes, Joachim; Brown, Claire; Klotz, Stefan; Bonn, Aletta

    2016-01-01

    Abstract National ecosystem assessments form an essential knowledge base for safeguarding biodiversity and ecosystem services. We analyze eight European (sub-)national ecosystem assessments (Portugal, United Kingdom, Spain, Norway, Flanders, Netherlands, Finland, and Germany) and compare their objectives, political context, methods, and operationalization. We observed remarkable differences in breadth of the assessment, methods employed, variety of services considered, policy mandates, and funding mechanisms. Biodiversity and ecosystem services are mainly assessed independently, with biodiversity conceptualized as underpinning services, as a source of conflict with services, or as a service in itself. Recommendations derived from our analysis for future ecosystem assessments include the needs to improve the common evidence base, to advance the mapping of services, to consider international flows of services, and to connect more strongly to policy questions. Although the context specificity of national ecosystem assessments is acknowledged as important, a greater harmonization across assessments could help to better inform common European policies and future pan-regional assessments. PMID:28533561

  1. Uncovering ecosystem service bundles through social preferences.

    Directory of Open Access Journals (Sweden)

    Berta Martín-López

    Full Text Available Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis. We found a clear trade-off among provisioning services (and recreational hunting versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.

  2. The importance and conservation of ectomycorrizal fungal diversity in forest ecosystems: lessons from Europe and the Pacific Northwest.

    Science.gov (United States)

    Michael P. Amaranthus

    1998-01-01

    Ectomycorrhizal fungi (EMF) consist of about 5,000 species and profoundly affect forest ecosystems by mediating nutrient and water uptake, protecting roots from pathogens and environmental extremes, and maintaining soil structure and forest food webs. Diversity of EMF likely aids forest ecosystem resilience in the face of changing environmental factors such as...

  3. Ecosystem services provided by bats.

    Science.gov (United States)

    Kunz, Thomas H; Braun de Torrez, Elizabeth; Bauer, Dana; Lobova, Tatyana; Fleming, Theodore H

    2011-03-01

    Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. Unfortunately, few studies estimating the economic value of ecosystem services provided by bats have been conducted to date; however, we outline a framework that could be used in future studies to more fully address this question. Consumptive goods provided by bats, such as food and guano, are often exchanged in markets where the market price indicates an economic value. Nonmarket valuation methods can be used to estimate the economic value of nonconsumptive services, including inputs to agricultural production and recreational activities. Information on the ecological and economic value of ecosystem services provided by bats can be used to inform decisions regarding where and when to protect or restore bat populations and associated habitats, as well as to improve public perception of bats. © 2011 New York Academy of Sciences.

  4. Ecosystem services provided by waterbirds.

    Science.gov (United States)

    Green, Andy J; Elmberg, Johan

    2014-02-01

    Ecosystem services are ecosystem processes that directly or indirectly benefit human well-being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  5. Assimilation of satellite color observations in a coupled ocean GCM-ecosystem model

    Science.gov (United States)

    Sarmiento, Jorge L.

    1992-01-01

    Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.

  6. How lichens impact on terrestrial community and ecosystem properties.

    Science.gov (United States)

    Asplund, Johan; Wardle, David A

    2017-08-01

    Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in some forests, drylands and tundras they can make up most of the ground layer biomass. As such, lichens dominate approximately 8% of the Earth's land surface. Despite their potential importance in driving ecosystem biogeochemistry, the influence of lichens on community processes and ecosystem functioning have attracted relatively little attention. Here, we review the role of lichens in terrestrial ecosystems and draw attention to the important, but often overlooked role of lichens as determinants of ecological processes. We start by assessing characteristics that vary among lichens and that may be important in determining their ecological role; these include their growth form, the types of photobionts that they contain, their key functional traits, their water-holding capacity, their colour, and the levels of secondary compounds in their thalli. We then assess how these differences among lichens influence their impacts on ecosystem and community processes. As such, we consider the consequences of these differences for determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates in moderating decomposition. We then consider how differences among lichens impact on their interactions with consumer organisms that utilize lichen thalli, and that range in size from microfauna (for which the primary role of lichens is habitat provision) to large mammals (for which lichens are primarily a food source). We then address how differences among lichens impact on plants, through for example increasing nutrient inputs and availability during primary succession, and serving as a filter for plant seedling establishment. Finally we identify areas in need of further work for better understanding the role of lichens in terrestrial ecosystems. These include

  7. Economic valuation of aquatic ecosystem services in developing countries

    DEFF Research Database (Denmark)

    Korsgaard, Louise; Schou, Jesper S.

    2010-01-01

    -the silent water user. A promising way of placing aquatic ecosystems on the water agenda is by economic valuation of services sustained by ecosystems. In developing countries, the livelihoods of rural people often depend directly on the provision of aquatic ecosystem services. In such situations, economic......An important challenge of integrated water resources management (IWRM) is to balance water allocation between different users. While economically and/or politically powerful users have well developed methods for quantifying and justifying their water needs, this is not the case for ecosystems...... valuation of ecosystem services becomes particularly challenging. This paper reviews recent literature on economic valuation of aquatic ecosystem services in developing countries. "Market price" is the most widespread method used for valuating marketed ecosystem services in developing countries. "Cost based...

  8. The Multifaceted Aspects of Ecosystem Integrity

    Directory of Open Access Journals (Sweden)

    Giulio A. De Leo

    1997-06-01

    Full Text Available The need to reduce human impacts on ecosystems creates pressure for adequate response, but the rush to solutions fosters the oversimplification of such notions as sustainable development and ecosystem health. Hence, it favors the tendency to ignore the complexity of natural systems. In this paper, after a brief analysis of the use and abuse of the notion of ecosystem health, we address the problem of a sound definition of ecosystem integrity, critically review the different methodological and conceptual approaches to the management of natural resources, and sketch the practical implications stemming from their implementation. We show thatthere are merits and limitations in different definitions of ecosystem integrity, for each acknowledges different aspects of ecosystem structure and functioning and reflects the subjective perspectives of humans on the value, importance, and role of biological diversity. This evaluation is based on a brief sketch of the links among biodiversity, ecosystem functioning and resilience, and a description of the problems that arise in distinguishing between natural and anthropogenic disturbance. We also emphasize the difficulty of assessing the economic value of species and habitats and the need to use adaptive management policies to deal with uncertainty and ecosystem complexity. In conclusion, while acknowledging that environmental legislation requires objective statements on ecosystem status and trends, we stress that the notion of ecological integrity is so complex that its measure cannot be expressed through a single indicator, but rather requires a set of indicators at different spatial, temporal, and hierarchical levels of ecosystem organization. Ecosystem integrity is not an absolute, monolithic concept. The existence of different sets of values regarding biological diversity and environmental risks must be explicitly accounted for and incorporated in the decision process, rather than ignored or averaged out.

  9. Optimal advanced credit releases in ecosystem service markets.

    Science.gov (United States)

    BenDor, Todd K; Guo, Tianshu; Yates, Andrew J

    2014-03-01

    Ecosystem service markets are popular policy tools for ecosystem protection. Advanced credit releases are an important factor affecting the supply side of ecosystem markets. Under an advanced credit release policy, regulators give ecosystem suppliers a fraction of the total ecosystem credits generated by a restoration project before it is verified that the project actually achieves the required ecological thresholds. In spite of their prominent role in ecosystem markets, there is virtually no regulatory or research literature on the proper design of advanced credit release policies. Using U.S. aquatic ecosystem markets as an example, we develop a principal-agent model of the behavior of regulators and wetland/stream mitigation bankers to determine and explore the optimal degree of advance credit release. The model highlights the tension between regulators' desire to induce market participation, while at the same time ensuring that bankers successfully complete ecological restoration. Our findings suggest several simple guidelines for strengthening advanced credit release policy.

  10. Functional traits in agriculture: agrobiodiversity and ecosystem services.

    Science.gov (United States)

    Wood, Stephen A; Karp, Daniel S; DeClerck, Fabrice; Kremen, Claire; Naeem, Shahid; Palm, Cheryl A

    2015-09-01

    Functional trait research has led to greater understanding of the impacts of biodiversity in ecosystems. Yet, functional trait approaches have not been widely applied to agroecosystems and understanding of the importance of agrobiodiversity remains limited to a few ecosystem processes and services. To improve this understanding, we argue here for a functional trait approach to agroecology that adopts recent advances in trait research for multitrophic and spatially heterogeneous ecosystems. We suggest that trait values should be measured across environmental conditions and agricultural management regimes to predict how ecosystem services vary with farm practices and environment. This knowledge should be used to develop management strategies that can be easily implemented by farmers to manage agriculture to provide multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  12. Global mapping of ecosystem services and conservation priorities

    Science.gov (United States)

    Naidoo, R.; Balmford, A.; Costanza, R.; Fisher, B.; Green, R. E.; Lehner, B.; Malcolm, T. R.; Ricketts, T. H.

    2008-01-01

    Global efforts to conserve biodiversity have the potential to deliver economic benefits to people (i.e., “ecosystem services”). However, regions for which conservation benefits both biodiversity and ecosystem services cannot be identified unless ecosystem services can be quantified and valued and their areas of production mapped. Here we review the theory, data, and analyses needed to produce such maps and find that data availability allows us to quantify imperfect global proxies for only four ecosystem services. Using this incomplete set as an illustration, we compare ecosystem service maps with the global distributions of conventional targets for biodiversity conservation. Our preliminary results show that regions selected to maximize biodiversity provide no more ecosystem services than regions chosen randomly. Furthermore, spatial concordance among different services, and between ecosystem services and established conservation priorities, varies widely. Despite this lack of general concordance, “win–win” areas—regions important for both ecosystem services and biodiversity—can be usefully identified, both among ecoregions and at finer scales within them. An ambitious interdisciplinary research effort is needed to move beyond these preliminary and illustrative analyses to fully assess synergies and trade-offs in conserving biodiversity and ecosystem services. PMID:18621701

  13. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  14. Analysis of Reptile Biodiversity and Ecosystem Services within ...

    Science.gov (United States)

    A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to

  15. Impact of Non-Native Birds on Native Ecosystems: A Global Analysis.

    Science.gov (United States)

    Martin-Albarracin, Valeria L; Amico, Guillermo C; Simberloff, Daniel; Nuñez, Martin A

    2015-01-01

    Introduction and naturalization of non-native species is one of the most important threats to global biodiversity. Birds have been widely introduced worldwide, but their impacts on populations, communities, and ecosystems have not received as much attention as those of other groups. This work is a global synthesis of the impact of nonnative birds on native ecosystems to determine (1) what groups, impacts, and locations have been best studied; (2) which taxonomic groups and which impacts have greatest effects on ecosystems, (3) how important are bird impacts at the community and ecosystem levels, and (4) what are the known benefits of nonnative birds to natural ecosystems. We conducted an extensive literature search that yielded 148 articles covering 39 species belonging to 18 families -18% of all known naturalized species. Studies were classified according to where they were conducted: Africa, Asia, Australasia, Europe, North America, South America, Islands of the Indian, of the Pacific, and of the Atlantic Ocean. Seven types of impact on native ecosystems were evaluated: competition, disease transmission, chemical, physical, or structural impact on ecosystem, grazing/ herbivory/ browsing, hybridization, predation, and interaction with other non-native species. Hybridization and disease transmission were the most important impacts, affecting the population and community levels. Ecosystem-level impacts, such as structural and chemical impacts were detected. Seven species were found to have positive impacts aside from negative ones. We provide suggestions for future studies focused on mechanisms of impact, regions, and understudied taxonomic groups.

  16. Uncovering Ecosystem Service Bundles through Social Preferences

    Science.gov (United States)

    Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A.; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos

    2012-01-01

    Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem’s capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem’s capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs. PMID:22720006

  17. Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf.

    Science.gov (United States)

    Tomašových, Adam; Kidwell, Susan M

    2017-06-14

    The soft-sediment seafloor of the open continental shelf is among the least-known biomes on Earth, despite its high diversity and importance to fisheries and biogeochemical cycling. Abundant dead shells of epifaunal suspension-feeding terebratulid brachiopods ( Laqueus ) and scallops on the now-muddy mainland continental shelf of southern California reveal the recent, previously unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evidently driven by anthropogenic siltation. Living populations of attached epifauna, which formerly existed in a middle- and outer-shelf mosaic with patches of trophically diverse muds, are restricted today to rocky seafloor along the shelf edge and to the sandier shelves of offshore islands. Geological age-dating of 190 dead brachiopod shells shows that (i) no shells have been produced on the mainland shelf within the last 100 years, (ii) their shell production declined steeply during the nineteenth century, and (iii) they had formerly been present continuously for at least 4 kyr. This loss, sufficiently rapid (less than or equal to 100 years) and thorough to represent an ecosystem collapse, coincides with intensification of alluvial-plain land use in the nineteenth century, particularly livestock grazing. Extirpation was complete by the start of twentieth-century urbanization, warming, bottom fishing and scientific surveys. The loss of this filter-feeding fauna and the new spatial homogeneity and dominance of deposit- and detritus-feeders would have altered ecosystem functioning by reducing habitat heterogeneity and seawater filtering. This discovery, attesting to the power of this geological approach to recent ecological transitions, also strongly increases the spatial scope attributable to the negative effects of siltation, and suggests that it has been under-recognized on continental shelves elsewhere as a legacy of coastal land use. © 2017 The Author(s).

  18. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines

    Science.gov (United States)

    Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.

    2011-05-01

    Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.

  19. Asynchrony among local communities stabilises ecosystem function of metacommunities

    DEFF Research Database (Denmark)

    Wilcox, Kevin R.; Tredennick, Andrew T.; Koerner, Sally E.

    2017-01-01

    Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities...

  20. Comparison of a Mass Balance and an Ecosystem Model Approach when Evaluating the Carbon Cycling in a Lake Ecosystem

    International Nuclear Information System (INIS)

    Andersson, Eva; Sobek, Sebastian

    2006-01-01

    Carbon budgets are frequently used in order to understand the pathways of organic matter in ecosystems, and they also have an important function in the risk assessment of harmful substances. We compared two approaches, mass balance calculations and an ecosystem budget, to describe carbon processing in a shallow, oligotrophic hardwater lake. Both approaches come to the same main conclusion, namely that the lake is a net auto trophic ecosystem, in spite of its high dissolved organic carbon and low total phosphorus concentrations. However, there were several differences between the carbon budgets, e.g. in the rate of sedimentation and the air-water flux of CO 2 . The largest uncertainty in the mass balance is the contribution of emergent macrophytes to the carbon cycling of the lake, while the ecosystem budget is very sensitive towards the choice of conversion factors and literature values. While the mass balance calculations produced more robust results, the ecosystem budget gave valuable insights into the pathways of organic matter transfer in the ecosystem. We recommend that when using an ecosystem budget for the risk assessment of harmful substances, mass balance calculations should be performed in parallel in order to increase the robustness of the conclusions

  1. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  2. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through...... a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we...... aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv...

  3. Film Presentation: Projekt Zukunft/Tomorrow Today

    CERN Multimedia

    Carolyn Lee

    2010-01-01

    Projekt Zukunft/Tomorrow Today, by Deutsche Welle (2009)   Deutsche Welle TV’s weekly science journal explores the LHC at CERN with host Ingolf Baur. Please note that we will show both the German and English versions of this broadcast. Each episode is about 27 minutes long. Projekt Zukunft/Tomorrow Today will be presented on Friday, 29 October from 13:00 to 14:00 in the Main Auditorium Language: German version followed by the English version      

  4. Women in Energy: Rinku Gupta - Argonne Today

    Science.gov (United States)

    -performance clusters and supercomputers. What is the best part of your job? The best part is working with Argonne Today Argonne Today Mission People Work/Life Connections Focal Point Women in Energy: Rinku Gupta Home People Women in Energy: Rinku Gupta Women in Energy: Rinku Gupta Apr 1, 2016 | Posted by Argonne

  5. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  6. Plants in aquatic ecosystems: current trends and future directions

    NARCIS (Netherlands)

    O’Hare, Matthew T.; Aguiar, Francisca C.; Asaeda, Takashi; Bakker, Elisabeth S.; Chambers, Patricia A.; Clayton, John S.; Elger, Arnaud; Ferreira, Teresa M.; Gross, Elisabeth M.; Gunn, Iain D.M.; Gurnell, Angela M.; Hellsten, Seppo; Hofstra, Deborah E.; Li, Wei; Mohr, Silvia; Puijalon, Sara; Szoszkiewicz, Krzysztof; Willby, Nigel J.; Wood, Kevin A.

    2018-01-01

    Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International

  7. No Need for Black Chambers: Testing TLS in the E-mail Ecosystem at Large

    OpenAIRE

    Mayer, Wilfried; Zauner, Aaron; Schmiedecker, Martin; Huber, Markus

    2015-01-01

    TLS is the most widely used cryptographic protocol on the Internet. While many recent studies focused on its use in HTTPS, none so far analyzed TLS usage in e-mail related protocols, which often carry highly sensitive information. Since end-to-end encryption mechanisms like PGP are seldomly used, today confidentiality in the e-mail ecosystem is mainly based on the encryption of the transport layer. A well-positioned attacker may be able to intercept plaintext passively and at global scale. In...

  8. Open IoT Ecosystem for Enhanced Interoperability in Smart Cities-Example of Métropole De Lyon.

    Science.gov (United States)

    Robert, Jérémy; Kubler, Sylvain; Kolbe, Niklas; Cerioni, Alessandro; Gastaud, Emmanuel; Främling, Kary

    2017-12-08

    The Internet of Things (IoT) has promised a future where everything gets connected. Unfortunately, building a single global ecosystem of Things that communicate with each other seamlessly is virtually impossible today. The reason is that the IoT is essentially a collection of isolated "Intranets of Things", also referred to as "vertical silos", which cannot easily and efficiently interact with each other. Smart cities are perhaps the most striking examples of this problem since they comprise a wide range of stakeholders and service providers who must work together, including urban planners, financial organisations, public and private service providers, telecommunication providers, industries, citizens, and so forth. Within this context, the contribution of this paper is threefold: (i) discuss business and technological implications as well as challenges of creating successful open innovation ecosystems, (ii) present the technological building blocks underlying an IoT ecosystem developed in the framework of the EU Horizon 2020 programme, (iii) present a smart city pilot (Heat Wave Mitigation in Métropole de Lyon ) for which the proposed ecosystem significantly contributes to improving interoperability between a number of system components, and reducing regulatory barriers for joint service co-creation practices.

  9. Open IoT Ecosystem for Enhanced Interoperability in Smart Cities—Example of Métropole De Lyon

    Science.gov (United States)

    Robert, Jérémy; Kolbe, Niklas; Cerioni, Alessandro; Gastaud, Emmanuel

    2017-01-01

    The Internet of Things (IoT) has promised a future where everything gets connected. Unfortunately, building a single global ecosystem of Things that communicate with each other seamlessly is virtually impossible today. The reason is that the IoT is essentially a collection of isolated “Intranets of Things”, also referred to as “vertical silos”, which cannot easily and efficiently interact with each other. Smart cities are perhaps the most striking examples of this problem since they comprise a wide range of stakeholders and service providers who must work together, including urban planners, financial organisations, public and private service providers, telecommunication providers, industries, citizens, and so forth. Within this context, the contribution of this paper is threefold: (i) discuss business and technological implications as well as challenges of creating successful open innovation ecosystems, (ii) present the technological building blocks underlying an IoT ecosystem developed in the framework of the EU Horizon 2020 programme, (iii) present a smart city pilot (Heat Wave Mitigation in Métropole de Lyon) for which the proposed ecosystem significantly contributes to improving interoperability between a number of system components, and reducing regulatory barriers for joint service co-creation practices. PMID:29292719

  10. Open IoT Ecosystem for Enhanced Interoperability in Smart Cities—Example of Métropole De Lyon

    Directory of Open Access Journals (Sweden)

    Jérémy Robert

    2017-12-01

    Full Text Available The Internet of Things (IoT has promised a future where everything gets connected. Unfortunately, building a single global ecosystem of Things that communicate with each other seamlessly is virtually impossible today. The reason is that the IoT is essentially a collection of isolated “Intranets of Things”, also referred to as “vertical silos”, which cannot easily and efficiently interact with each other. Smart cities are perhaps the most striking examples of this problem since they comprise a wide range of stakeholders and service providers who must work together, including urban planners, financial organisations, public and private service providers, telecommunication providers, industries, citizens, and so forth. Within this context, the contribution of this paper is threefold: (i discuss business and technological implications as well as challenges of creating successful open innovation ecosystems, (ii present the technological building blocks underlying an IoT ecosystem developed in the framework of the EU Horizon 2020 programme, (iii present a smart city pilot (Heat Wave Mitigation in Métropole de Lyon for which the proposed ecosystem significantly contributes to improving interoperability between a number of system components, and reducing regulatory barriers for joint service co-creation practices.

  11. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach

    Science.gov (United States)

    Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert

    2018-06-01

    To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.

  12. BUSINESS TRANSFER ECOSYSTEM IN CROATIA - MISSING COMPONENTS AND INTERACTIONS

    Directory of Open Access Journals (Sweden)

    Alpeza Mirela

    2016-10-01

    Full Text Available Business transfer is an important issue that the European Commission has been actualising since the early 1990s, when the first recommendations for the improvement of national business transfer ecosystems of the EU countries were created. Neglecting business transfer as a critical phase in the development of a company can have significant negative implications for companies, their owners and wide network of stakeholders. Business transfer is a particularly important topic for the Croatian economy where more than 5,300 businesses with around 57,000 employees represent a risk group whose owners underestimate the complexity and longevity of the business transfer process. The aim of this paper is to analyse the structure and quality of the business transfer ecosystem in Croatia. For this purpose, secondary research and a qualitative study in the form of interviews with representatives of key stakeholders were conducted. The Croatian business transfer ecosystem is benchmarked to the national business transfer ecosystems of Spain, Finland, Sweden and France, based on the data collected through the EU project BTAR. The research results indicate low level of development, interconnection and complementarity of individual components of the business transfer ecosystem in Croatia. Policy recommendations for improving the quality of the business transfer ecosystem in Croatia were identified.

  13. Restoring rocky intertidal communities: Lessons from a benthic macroalgal ecosystem engineer.

    Science.gov (United States)

    Bellgrove, Alecia; McKenzie, Prudence F; Cameron, Hayley; Pocklington, Jacqueline B

    2017-04-15

    As coastal population growth increases globally, effective waste management practices are required to protect biodiversity. Water authorities are under increasing pressure to reduce the impact of sewage effluent discharged into the coastal environment and restore disturbed ecosystems. We review the role of benthic macroalgae as ecosystem engineers and focus particularly on the temperate Australasian fucoid Hormosira banksii as a case study for rocky intertidal restoration efforts. Research focussing on the roles of ecosystem engineers is lagging behind restoration research of ecosystem engineers. As such, management decisions are being made without a sound understanding of the ecology of ecosystem engineers. For successful restoration of rocky intertidal shores it is important that we assess the thresholds of engineering traits (discussed herein) and the environmental conditions under which they are important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Plant functional traits predict green roof ecosystem services.

    Science.gov (United States)

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  15. Spatial quantification and valuation of cultural ecosystem services in an agricultural landscape

    NARCIS (Netherlands)

    van Berkel, D.B.; Verburg, P.H.

    2014-01-01

    While the spatial and economic quantification and valuation of ecosystem services is becoming increasingly recognised as a way to communicate the importance of ecosystem conservation, little attention has been given to cultural services of the landscape. Cultural services form an important part of

  16. Contrasting ecosystem-effects of morphologically similar copepods.

    Directory of Open Access Journals (Sweden)

    Blake Matthews

    Full Text Available Organisms alter the biotic and abiotic conditions of ecosystems. They can modulate the availability of resources to other species (ecosystem engineering and shape selection pressures on other organisms (niche construction. Very little is known about how the engineering effects of organisms vary among and within species, and, as a result, the ecosystem consequences of species diversification and phenotypic evolution are poorly understood. Here, using a common gardening experiment, we test whether morphologically similar species and populations of Diaptomidae copepods (Leptodiaptomus ashlandi, Hesperodiaptomus franciscanus, Skistodiaptomus oregonensis have similar or different effects on the structure and function of freshwater ecosystems. We found that copepod species had contrasting effects on algal biomass, ammonium concentrations, and sedimentation rates, and that copepod populations had contrasting effects on prokaryote abundance, sedimentation rates, and gross primary productivity. The average size of ecosystem-effect contrasts between species was similar to those between populations, and was comparable to those between fish species and populations measured in previous common gardening experiments. Our results suggest that subtle morphological variation among and within species can cause multifarious and divergent ecosystem-effects. We conclude that using morphological trait variation to assess the functional similarity of organisms may underestimate the importance of species and population diversity for ecosystem functioning.

  17. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Science.gov (United States)

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  18. Shifting spatial priorities for ecosystem services in Europe following land use change

    NARCIS (Netherlands)

    Verhagen, Willem; van Teeffelen, Astrid J.A.; Verburg, Peter H.

    2018-01-01

    Policy objectives to maintain ecosystem services are increasingly set. Methods to identify priority areas for ecosystem services can assist in the implementation of such policy objectives. While land use change is an important driver of changes in ecosystem services over time, most prioritization

  19. Mitigation of greenhouse gases emissions impact and their influence on terrestrial ecosystem.

    Science.gov (United States)

    Wójcik Oliveira, K.; Niedbała, G.

    2018-05-01

    Nowadays, one of the most important challenges faced by the humanity in the current century is the increasing temperature on Earth, caused by a growing emission of greenhouse gases into the atmosphere. Terrestrial ecosystems, as an important component of the carbon cycle, play an important role in the sequestration of carbon, which is a chance to improve the balance of greenhouse gases. Increasing CO2 absorption by terrestrial ecosystems is one way to reduce the atmospheric CO2 emissions. Sequestration of CO2 by terrestrial ecosystems is not yet fully utilized method of mitigating CO2 emission to the atmosphere. Terrestrial ecosystems, especially forests, are essential for the regulation of CO2 content in the atmosphere and more attention should be paid to seeking the natural processes of CO2 sequestration.

  20. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  1. Visual business ecosystem intelligence: lessons from the field.

    Science.gov (United States)

    Basole, Rahul C

    2014-01-01

    Macroscopic insight into business ecosystems is becoming increasingly important. With the emergence of new digital business data, opportunities exist to develop rich, interactive visual-analytics tools. Georgia Institute of Technology researchers have been developing and implementing visual business ecosystem intelligence tools in corporate settings. This article discusses the challenges they faced, the lessons learned, and opportunities for future research.

  2. Assessing and managing freshwater ecosystems vulnerable to global change

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  3. Symposium overview: incorporating ecosystem objectives within fisheries management

    DEFF Research Database (Denmark)

    Gislason, Henrik; Sinclair, M.; Sainsbury, K.

    2000-01-01

    into account ecosystem considerations. There was not, however, a consensus on what additional restrictions are required, or on what features of ecosystems need to be protected. A way forward is to add ecosystem objectives to the conservation component of fisheries management plans, as well as to the management...... and a greater workload added to the process of provision of scientific advice through peer review. Of equal importance would be the challenges of establishing a governance framework to address multiple uses of marine resources. The spirit of the Symposium was that these coupled scientific and governance...

  4. The radioecological significance of semi-natural ecosystems

    International Nuclear Information System (INIS)

    Howard, B.J.; Howard, D.C.

    1997-01-01

    The transfer of radiocaesium to many food products either produced in or harvested from semi-natural ecosystems is high compared with intensive agricultural areas. Radiocaesium contamination levels in semi-natural foods are highly variable and difficult to predict. Spatial analysis may help to explain some of the variability and give improved estimates of the total output of radiocaesium in food products produced or harvested from semi-natural ecosystems. Consumption of foodstuffs from semi-natural ecosystems can contribute significantly to radiocaesium ingestion by humans. The long effective half-lives that occur for some semi-natural products lead to an increase with time in their importance compared with agricultural products. In determining the importance of semi-natural food products, the diet needs to be considered for both the average population and for special groups who utilize these environments to a greater extent than normal. Effective countermeasures have been developed to reduce radiocaesium levels in some semi-natural products. (author)

  5. Integrating Expert Knowledge into Mapping Ecosystem Services Trade-offs for Sustainable Forest Management

    Directory of Open Access Journals (Sweden)

    Adrienne Grêt-Regamey

    2013-09-01

    Full Text Available Mountain ecosystems are highly sensitive to global change. In fact, the continued capacity of mountain regions to provide goods and services to society is threatened by the impact of environmental changes on ecosystems. Although mapping ecosystem services values is known to support sustainable resource management, the integration of spatially explicit local expert knowledge on ecosystem dynamics and social responses to global changes has not yet been integrated in the modeling process. This contribution demonstrates the importance of integrating local knowledge into the spatially explicit valuation of ecosystem services. Knowledge acquired by expert surveys flows into a GIS-based Bayesian Network for valuing forest ecosystem services under a land-use and a climate change scenario in a case study in the Swiss Alps. Results show that including expert knowledge in ecosystem services mapping not only reduces uncertainties considerably, but also has an important effect on the ecosystem services values. Particularly the iterative process between integrating expert knowledge into the modeling process and mapping ecosystem services guarantees a continuous improvement of ecosystem services values maps while opening a new way for mutual learning between scientists and stakeholders which might support adaptive resource management.

  6. Ecosystem services as a common language for coastal ecosystem-based management.

    Science.gov (United States)

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  7. Biogeochemistry of radionuclides in ecosystems (historical aspect)

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    1991-01-01

    The paper presents the most important results of the study on the radionuclides' behaviour in natural and model biogeocenoses(ecosystems) obtained by N.W.Timofeev-Ressovskij and co-workers during the period 1947-1968. As early as at that period, radionuclides were classified according to the types of distribution, accumulation and migration within the surface and freshwater ecosystems, and the methods of biological purification of radioactive sewage were proposed

  8. Building Tomorrow's Business Today

    Science.gov (United States)

    Ryan, Jim

    2010-01-01

    Modern automobile maintenance, like most skilled-trades jobs, is more than simple nuts and bolts. Today, skilled-trades jobs might mean hydraulics, computerized monitoring equipment, electronic blueprints, even lasers. As chief executive officer of Grainger, a business-to-business maintenance, repair, and operating supplies company that…

  9. A framework for analysing service ecosystems capabilities to innovate

    OpenAIRE

    Riedl, Christoph; Böhmann, Tilo; Leimeister, Jan Marco; Krcmar, Helmut

    2009-01-01

    Electronic services delivered over the Internet are gaining importance in the business world. This area has seen an increase in scientific interest over the past years under the labels “Internet of Services” and Web-service ecosystems. The paper develops a conceptual framework of actors and their roles in an open innovation system for a networked ecosystem of Web-services. The framework illustrates how open innovation can be implemented in a Web-service ecosystem to increase innovation perfor...

  10. A Framework for Analysing Service Ecosystem Capabilities to Innovate

    OpenAIRE

    Riedl, Christoph;Böhmann, Tilo;Leimeister, Jan Marco;Krcmar, Helmut

    2014-01-01

    Electronic services delivered over the Internet are gaining importance in the business world. This area has seen an increase in scientific interest over the past years under the labels ?Internet of Services? and Web-service ecosystems. The paper develops a conceptual framework of actors and their roles in an open innovation system for a networked ecosystem of Web-services. The framework illustrates how open innovation can be implemented in a Web-service ecosystem to increase innovation perfor...

  11. Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian; Jansson, P.E.; van der Linden, Leon

    2013-01-01

    Temperate forests are globally important carbon sinks and stocks. Trends in net ecosystem exchange have been observed in a Danish beech forest and this trend cannot be entirely attributed to changing climatic drivers. This study sought to clarify the mechanisms responsible for the observed trend...... for nitrogen demand during mast years is supported by the inter-annual variability in the estimated parameters. The inter-annual variability of photosynthesis parameters was fundamental to the simulation of the trend in carbon fluxes in the investigated beech forest and this demonstrates the importance......, the latent and sensible heat fluxes and the CO2 fluxes decreased the parameter uncertainty considerably compared to using CO2 fluxes as validation data alone. The fitted model was able to simulate the observed carbon fluxes well (R2=0.8, mean error=0.1gCm−2d−1) but did not reproduce the decadal (1997...

  12. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  13. Anthropogenic Drivers of Ecosystem Change: an Overview

    Directory of Open Access Journals (Sweden)

    Gerald C. Nelson

    2006-12-01

    Full Text Available This paper provides an overview of what the Millennium Ecosystem Assessment (MA calls "indirect and direct drivers" of change in ecosystem services at a global level. The MA definition of a driver is any natural or human-induced factor that directly or indirectly causes a change in an ecosystem. A direct driver unequivocally influences ecosystem processes. An indirect driver operates more diffusely by altering one or more direct drivers. Global driving forces are categorized as demographic, economic, sociopolitical, cultural and religious, scientific and technological, and physical and biological. Drivers in all categories other than physical and biological are considered indirect. Important direct drivers include changes in climate, plant nutrient use, land conversion, and diseases and invasive species. This paper does not discuss natural drivers such as climate variability, extreme weather events, or volcanic eruptions.

  14. Stability measures in arid ecosystems

    Science.gov (United States)

    Nosshi, M. I.; Brunsell, N. A.; Koerner, S.

    2015-12-01

    Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.

  15. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Directory of Open Access Journals (Sweden)

    Niels Jobstvogt

    Full Text Available Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  16. Packaging Printing Today

    OpenAIRE

    Stanislav Bolanča; Igor Majnarić; Kristijan Golubović

    2015-01-01

    Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. T...

  17. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems

    Directory of Open Access Journals (Sweden)

    Jeda Palmer

    2017-05-01

    Full Text Available Soil organic carbon (SOC is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity. Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were

  18. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems.

    Science.gov (United States)

    Palmer, Jeda; Thorburn, Peter J; Biggs, Jody S; Dominati, Estelle J; Probert, Merv E; Meier, Elizabeth A; Huth, Neil I; Dodd, Mike; Snow, Val; Larsen, Joshua R; Parton, William J

    2017-01-01

    Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally

  19. "UK today" Tallinnas / Tuuli Oder

    Index Scriptorium Estoniae

    Oder, Tuuli, 1958-

    2001-01-01

    Vabariikliku inglise keele olümpiaadi raames toimus Tallinnas viktoriini "UK today" lõppvoor. Osalesid 22 kooli kaheliikmelised võistkonnad. Viktoriini tulemused koolide lõikes ja küsimused õigete vastustega

  20. Open innovation in SMEs: Exploring inter-organizational relationships in an ecosystem

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Bogers, Marcel

    2018-01-01

    Small- and medium-sized enterprises (SMEs) face the inherent tension of depending on external partners to complement their internal innovation activities while having limited resources to manage such open innovation processes. Given the importance of collaborative efforts between multiple stakeho...... attention points for managing and developing open innovation in a regional business ecosystem, and they contribute both to the business-ecosystem literature as well as open innovation literature....... stakeholders, we address the open innovation challenges from the SME perspective at the business-ecosystem level. We present an inductive case study of a particular regional ecosystem and focus on the inter-organizational collaboration between SMEs and other stakeholders in the ecosystem. With this focus, we......Small- and medium-sized enterprises (SMEs) face the inherent tension of depending on external partners to complement their internal innovation activities while having limited resources to manage such open innovation processes. Given the importance of collaborative efforts between multiple...

  1. The Prospects of Radical Change Today

    Directory of Open Access Journals (Sweden)

    Slavoj Žižek

    2018-05-01

    Full Text Available In this contribution, Slavoj Žižek takes the occasion of Marx’s bicentenary for reflecting on the prospects of radical change today. First, it is shown that under Stalinism, Lenin’s works were quoted out of context in an arbitrary way in order to legitimise arbitrary political measures. Marxism thereby became an ideology that justified brutal subjective interventions. Second, this contribution poses the question of the revolutionary subject and democracy today. It stresses the role of both contingency and strategy in revolutions. In political assemblages taking place on public squares, the inert mass of ordinary people is transubstantiated into a politically engaged united force. The basic political problem today is how to best reconfigure democracy. Third, this contribution analyses the “interesting times” we live in. These are times that feature multiple crises, right-wing populism à la Donald Trump and Marine Le Pen, the lower classes’ opposition to immigration, and the refugee crisis. Questions about human rights and their violation and about radical change need to be asked in this context.

  2. Radiochemistry - today

    International Nuclear Information System (INIS)

    Drawe, H.

    1980-01-01

    After a longer starting period many radiation techniques have prevailed practically. Today radiation processes are usual components of chemistry, biology, medicine, and technologies in the most common sense. This paper deals with the latest state of radiation chemistry, whereas the possible practical applications are in the foreground of discussion as to reach mainly practicians in laboratory and industry. But also physicians, pharmacists and chemical engineers should be informed about the possibilities of application of high energyy radiation. Because radiation chemistry has also enriched works of related subjects, for example physical, organic and inorganic chemistry, this paper will also be of interest for experts of these disciplines. (orig.) [de

  3. Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems

    Science.gov (United States)

    Reisner, Michael D.; Grace, James B.; Pyke, David A.; Doescher, Paul S.

    2013-01-01

    1. Ecosystem invasibility is determined by combinations of environmental variables, invader attributes, disturbance regimes, competitive abilities of resident species and evolutionary history between residents and disturbance regimes. Understanding the relative importance of each factor is critical to limiting future invasions and restoring ecosystems.

  4. Thomas L Petty's lessons for the respiratory care clinician of today.

    Science.gov (United States)

    Pierson, David J

    2014-08-01

    Because of the importance of his original contributions and their practical relevance today, Thomas L Petty (1932-2009) was arguably the most important physician in the history of respiratory care. As much as any single individual, he was responsible for the concept of intensive and multidisciplinary respiratory care. In the 1960s and 1970s, he made key observations and introduced pioneering therapies in the ICU and in the home. He was the first to describe and name ARDS and to show how to use PEEP to treat life-threatening hypoxemia. He was one of the first anywhere to organize a pulmonary rehabilitation program and to show the beneficial effects of long-term oxygen therapy in COPD. Dr Petty emphasized the importance of practical, hands-on respiratory care education for both physicians and non-physicians using a collaborative team approach. He targeted educational activities and practical resources specifically to patients, and he showed how researchers and clinicians could interact responsibly with innovators in industry to the benefit of both. His life and career provide 6 important lessons for respiratory clinicians today and in the future: (1) whatever their roles, RTs and other clinicians in this field need to be experts in its core areas, such as mechanical ventilation, ARDS, and COPD; (2) respiratory care is a team activity: every member is important, and all the members need to communicate well and work together; (3) education needs to be targeted to those in the best position to benefit the patient, including primary care providers and family members; (4) everyone in the field needs to understand the important role of the respiratory care industry and to deal with it responsibly; (5) it must never be forgotten that it is all about the patient; and (6) respiratory care should be exciting and fun. Copyright © 2014 by Daedalus Enterprises.

  5. What determines the importance of a species for ecosystem processes? Insights from tropical ant assemblages

    Czech Academy of Sciences Publication Activity Database

    Houadria, Mickal; Menzel, F.

    2017-01-01

    Roč. 184, č. 4 (2017), s. 885-899 ISSN 0029-8549 Institutional support: RVO:60077344 Keywords : ecosystem processes * functional performance * functional redundancy Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.130, year: 2016 https://link.springer.com/article/10.1007%2Fs00442-017-3900-x

  6. Technology transfer for ecosystem management

    Science.gov (United States)

    Tim O' Keefe

    1995-01-01

    In many parts of our country today, forest health and sustainability are important management questions. Some individuals and groups have observed that during the past century the emphasis in American forest management on commodity production has, in many cases, contributed to a unhealthy forest landscape. For example, the forestland in eastern Oregon has considerably...

  7. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    Science.gov (United States)

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  8. Marine biodiversity–ecosystem functions under uncertain environmental futures

    Science.gov (United States)

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  9. Importance of Triticosecale Wittmack ex A.Camus varieties in the formation of species diversity of agro-ecosystems

    Directory of Open Access Journals (Sweden)

    В. В. Москалець

    2015-12-01

    Full Text Available Purpose. To find out the ecological importance of winter triticale varieties in the formation of species diversity of agro-ecosystems. Methods. Field, laboratoryones and mathematical and statistical analysis. Results. The authors studied ecological importance of winter triticale varieties of forest-steppe and Polissia ecotopes as determinants of agrobiocenosis in the structural and functional organization of species diversity. It was found that less favourable ecological niche for pests-phytophags is such winter triticale varieties and lines as ‘Slavetne’, ‘AD 256’, ‘Chaian’, ‘DAU 5’, for epiphytoparasites – ‘Vivate Nosivske’, ‘Pshenychne’, ‘Slavetne polipshene’, ‘Slavetne’, ‘Yaguar’, respectively. It is determined that varieties and lines of winter triticale such as ‘AD 256’, ‘Vivate Nosivske’, ‘Pshenychne’, ‘Slavetne polipshene’, ‘Slavetne’ show high biological ability to compete with synanthropic vegetation and form distinct associations of segetal plants. Conclusions. It was found that agrophytocenoses of the studied varieties of winter triticale under the conditions of forest-steppe, Polissia-forest-steppe and Polissia ecotops determined in movements structural and functional organization of species diversity of agroecosystems.

  10. Teaching Young Adult Literature Today: Insights, Considerations, and Perspectives for the Classroom Teacher

    Science.gov (United States)

    Hayn, Judith A., Ed.; Kaplan, Jeffrey S., Ed.

    2012-01-01

    "Teaching Young Adult Literature Today" introduces the reader to what is current and relevant in the plethora of good books available for adolescents. More importantly, literary experts illustrate how teachers everywhere can help their students become lifelong readers by simply introducing them to great reads--smart, insightful, and engaging books…

  11. Accounting for ecosystem services as a way to understand the requirements for sustainable development.

    Science.gov (United States)

    Mäler, Karl-Göran; Aniyar, Sara; Jansson, Asa

    2008-07-15

    Millennium Ecosystem Assessment documented the importance of ecosystem services. It is therefore important that these services are included in our economic accounts (Standard National Accounts), as long as we believe that these accounts should tell us something about our wellbeing. This requires measures of the ecosystem assets and their accounting prices. This article discusses how the concept of inclusive wealth can be exploited for creating such accounts.

  12. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  13. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties

    Science.gov (United States)

    Knoke, Thomas; Paul, Carola; Hildebrandt, Patrick; Calvas, Baltazar; Castro, Luz Maria; Härtl, Fabian; Döllerer, Martin; Hamer, Ute; Windhorst, David; Wiersma, Yolanda F.; Curatola Fernández, Giulia F.; Obermeier, Wolfgang A.; Adams, Julia; Breuer, Lutz; Mosandl, Reinhard; Beck, Erwin; Weber, Michael; Stimm, Bernd; Haber, Wolfgang; Fürst, Christine; Bendix, Jörg

    2016-01-01

    High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services. PMID:27292766

  14. Ecosystem service trade-offs across global contexts and scales

    Directory of Open Access Journals (Sweden)

    Jeannine Cavender-Bares

    2015-03-01

    Full Text Available Meeting human needs while sustaining the planet's life support systems is the fundamental challenge of our time. What role sustenance of biodiversity and contrasting ecosystem services should play in achieving a sustainable future varies along philosophical, cultural, institutional, societal, and governmental divisions. Contrasting biophysical constraints and perspectives on human well-being arise both within and across countries that span the tropics and temperate zone. Direct sustenance of livelihoods from ecosystem services in East Africa contrasts with the complex and diverse relationships with the land in Mexico and the highly monetary-based economy of the United States. Lack of understanding of the contrasting contexts in which decision-making about trade-offs occurs creates impediments to collective global efforts to sustain the Earth's life support systems. While theoretical notions of the goals of sustainability science seek a unified path forward, realities on the ground present challenges. This Special Feature seeks to provide both an analytical framework and a series of case studies to illuminate impediments posed to sustainability by contrasting biophysical constraints and human perspectives on what should be sustained. The contributors aim to clarify the trade-offs posed to human welfare in sustaining biodiversity and ecosystem services and the challenges in managing for a sustainable future in which human well-being is not compromised as compared to today. Our goal is to provide novel insights on how sustainability can be achieved internationally through exploration of constraints, trade-offs, and human values examined at multiple scales, and across geographic regions from a range of cultural perspectives.

  15. Facilitation by ecosystem engineers enhances nutrient effects in an intertidal system

    NARCIS (Netherlands)

    Eriksson, B.K.; Westra, J.; van Gerwen, I.; Weerman, E.; van der Heide, T.; van der Zee, E.; van de Koppel, J.; Olff, H.; Piersma, T.; Donadi, S.

    2017-01-01

    Ecosystem engineering research has recently demonstrated the fundamental importance ofnon-trophic interactions for food-web structure. Particularly, by creating benign conditions in stressfulenvironments, ecosystem engineers create hot beds of elevated levels of recruitment, growth, and survivalof

  16. Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems

    Directory of Open Access Journals (Sweden)

    Junjiong Shao

    2016-08-01

    Full Text Available Climatic variables not only directly affect the interannual variability (IAV in net ecosystem exchange of CO2 (NEE but also indirectly drive it by changing the physiological parameters. Identifying these direct and indirect paths can reveal the underlying mechanisms of carbon (C dynamics. In this study, we applied a path analysis using flux data from 65 sites to quantify the direct and indirect climatic effects on IAV in NEE and to evaluate the potential relationships among the climatic variables and physiological parameters that represent physiology and phenology of ecosystems. We found that the maximum photosynthetic rate was the most important factor for the IAV in gross primary productivity (GPP, which was mainly induced by the variation in vapour pressure deficit. For ecosystem respiration (RE, the most important drivers were GPP and the reference respiratory rate. The biome type regulated the direct and indirect paths, with distinctive differences between forests and non-forests, evergreen needleleaf forests and deciduous broadleaf forests, and between grasslands and croplands. Different paths were also found among wet, moist and dry ecosystems. However, the climatic variables can only partly explain the IAV in physiological parameters, suggesting that the latter may also result from other biotic and disturbance factors. In addition, the climatic variables related to NEE were not necessarily the same as those related to GPP and RE, indicating the emerging difficulty encountered when studying the IAV in NEE. Overall, our results highlight the contribution of certain physiological parameters to the IAV in C fluxes and the importance of biome type and multi-year water conditions, which should receive more attention in future experimental and modelling research.

  17. Measuring Entrepreneurial Ecosystems

    OpenAIRE

    Stam, F.C.

    2017-01-01

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial ecosystem elements and use these to compose an entrepreneurial ecosystem index. Next, we measure the output of entrepreneurial ecosystems with different indicators of high-growth firms. We use the 12 provi...

  18. Assessing Ecosystem Services and Multifunctionality for Vineyard Systems

    Directory of Open Access Journals (Sweden)

    Klara J. Winkler

    2017-04-01

    Full Text Available Vineyards shape important economic, cultural, and ecological systems in many temperate biomes. Like other agricultural systems, they can be multifunctional landscapes that not only produce grapes, but also for example serve as wildlife habitat, sequester carbon, and are places of rich traditions. However, research and management practices often focus mostly on individual, specific ecosystem services, without considering multifunctionality. Therefore, we set out to meet four research objectives: (1 evaluate how frequently the ecosystem services approach has been applied in vineyard systems; (2 identify which individual ecosystem services have been most frequently studied in vineyard systems, (3 summarize knowledge on the key ecosystem services identified in (2, and (4 illustrate approaches to multifunctionality in vineyards to inform more holistic land management. For research objective (1, we identified 45 publications that used the term “ecosystem services” in relation to vineyards, but found that only seven fully apply the ecosystem service concept to their research. For research objective (2, we operationalized the Common International Classification of Ecosystem Services (CICES for 27 ecosystem services in vineyards, in order to consider provisioning, regulating, and cultural services through an analysis of more than 4,000 scientific papers that mentioned individual services. We found the six most frequently studied ecosystem services included (1 cultivated crops, (2 filtration, sequestration, storage and accumulation by the vineyards, (3 pest control and (4 disease control, (5 heritage, cultural and (6 scientific services. For research objective (3, we found that research on these six single ecosystem services is highly developed, but relationships between single ecosystem services are less studied. Therefore, we suggest that greater adoption of the ecosystem services approach could help scientists and practitioners to acknowledge the

  19. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  20. Ecosystem services and economic theory: integration for policy-relevant research.

    Science.gov (United States)

    Fisher, Brendan; Turner, Kerry; Zylstra, Matthew; Brouwer, Roy; de Groot, Rudolf; Farber, Stephen; Ferraro, Paul; Green, Rhys; Hadley, David; Harlow, Julian; Jefferiss, Paul; Kirkby, Chris; Morling, Paul; Mowatt, Shaun; Naidoo, Robin; Paavola, Jouni; Strassburg, Bernardo; Yu, Doug; Balmford, Andrew

    2008-12-01

    It has become essential in policy and decision-making circles to think about the economic benefits (in addition to moral and scientific motivations) humans derive from well-functioning ecosystems. The concept of ecosystem services has been developed to address this link between ecosystems and human welfare. Since policy decisions are often evaluated through cost-benefit assessments, an economic analysis can help make ecosystem service research operational. In this paper we provide some simple economic analyses to discuss key concepts involved in formalizing ecosystem service research. These include the distinction between services and benefits, understanding the importance of marginal ecosystem changes, formalizing the idea of a safe minimum standard for ecosystem service provision, and discussing how to capture the public benefits of ecosystem services. We discuss how the integration of economic concepts and ecosystem services can provide policy and decision makers with a fuller spectrum of information for making conservation-conversion trade-offs. We include the results from a survey of the literature and a questionnaire of researchers regarding how ecosystem service research can be integrated into the policy process. We feel this discussion of economic concepts will be a practical aid for ecosystem service research to become more immediately policy relevant.

  1. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan.

    Science.gov (United States)

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-06-09

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  2. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Hwey-Lian Hsieh

    2015-06-01

    Full Text Available The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  3. Construction Management Meets Today's Realities.

    Science.gov (United States)

    Day, C. William

    1979-01-01

    Construction management--the control of cost and time from concept through construction--grew out of a need to meet the realities of today's economy. A checklist of services a construction manager provides is presented. (Author/MLF)

  4. Mapping Ecosystem Services

    OpenAIRE

    Georgiev,Teodor; Burkhard,Benjamin; Maes,Joachim

    2017-01-01

    Ecosystem services are the contributions of ecosystem structure and function (in combination with other inputs) to human well-being. That means, humankind is strongly dependent on well-functioning ecosystems and natural capital that are the base for a constant flow of ecosystem services from nature to society. Therefore ecosystem services have the potential to become a major tool for policy and decision making on global, national, regional and local scales. Possible applications are manifold:...

  5. Riparian ecosystems and buffers - multiscale structure, function, and management: introduction

    Science.gov (United States)

    Kathleen A. Dwire; Richard R. Lowrance

    2006-01-01

    Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...

  6. The Alchemist of Today

    Science.gov (United States)

    Serret, Natasha

    2010-01-01

    Traditionally, alchemy has involved the power of transmuting base metals such as lead into gold or producing the "elixir of life" for those wealthy people who wanted to live forever. But what of today's developments? One hundred years ago, even breaking the four-minute mile would have been deemed "magic," which is what the alchemists of the past…

  7. [Ecosystem services supply and consumption and their relationships with human well-being].

    Science.gov (United States)

    Wang, Da-Shang; Zheng, Hua; Ouyang, Zhi-Yun

    2013-06-01

    Sustainable ecosystem services supply is the basis of regional sustainable development, and human beings can satisfy and improve their well-being through ecosystem services consumption. To understand the relationships between ecosystem services supply and consumption and human well-being is of vital importance for coordinating the relationships between the conservation of ecosystem services and the improvement of human well-being. This paper summarized the diversity, complexity, and regionality of ecosystem services supply, the diversity and indispensability of ecosystem services consumption, and the multi-dimension, regionality, and various evaluation indices of human well-being, analyzed the uncertainty and multi-scale correlations between ecosystem services supply and consumption, and elaborated the feedback and asynchronous relationships between ecosystem services and human well-being. Some further research directions for the relationships between ecosystem services supply and consumption and human well-being were recommended.

  8. Extrapolating ecological risks of ionizing radiation from individuals to populations to ecosystems

    International Nuclear Information System (INIS)

    Barnthouse, L.W.

    1997-01-01

    Approaches for protecting ecosystems from ionizing radiation are quite different from those used for protecting ecosystems from adverse effects of toxic chemicals. The methods used for chemicals are conceptually similar to those used to assess risks of chemicals to human health in that they focus on the protection of the most sensitive or most highly exposed individuals. The assumption is that if sensitive or maximally exposed species and life stages are protected, then ecosystems will be protected. Radiological protection standards, on the other hand, are explicitly premised on the assumption that organisms, populations and ecosystems all possess compensatory capabilities to allow them to survive in the face of unpredictable natural variation in their environments. These capabilities are assumed to persist in the face of at least some exposure to ionizing radiation. The prevailing approach to radiological protection was developed more than 30 years ago, at a time when the terms risk assessment and risk management were rarely used. The expert review approach used to derive radiological protection standards is widely perceived to be inconsistent with the open, participatory approach that prevails today for the regulation of toxic chemicals. The available data for environmental radionuclides vastly exceeds that available for any chemical. Therefore, given an understanding of dose-response relationships for radiation effects and exposures for individual organisms, it should be possible to develop methods for quantifying effects of radiation on populations. A tiered assessment scheme as well as available population models that could be used for the ecological risk assessment of radionuclides is presented. (author)

  9. Estimating the effective nitrogen import: An example for the North Sea-Baltic Sea boundary

    Science.gov (United States)

    Radtke, H.; Maar, M.

    2016-10-01

    Semienclosed water bodies such as the Baltic Sea are prone to eutrophication problems. If local nutrient abatement measures are taken to tackle these problems, their success may be limited if a strong nutrient exchange with the adjacent waters exists. The quantification of this exchange is therefore essential to estimate its impact on the ecosystem status. At the example of the Baltic Sea and the North Sea, we illustrate that neither gross transports nor net transports of nutrients have a strong informative value in this context. Instead, we define an "effective import" as the import of nutrients which have not been inside the Baltic Sea before and estimate it in an ecological model with a nutrient-tagging technique. This effective import of bioreactive nitrogen from the Skagerrak to the Kattegat amounts to 103 kt/yr; from Kattegat to Belt Sea it is 54 kt/yr. The nitrogen exchange is therefore 30% stronger than other estimates, e.g., based on import in the deep water, suggest. An isolated view on the Baltic Sea and the North Sea in terms of eutrophication, as it is practiced in management today, is therefore questionable. Nitrogen imported from the North Sea typically spreads eastward up to the Bornholm Basin but can be transported into the deep waters of the Gotland Basin during Major Baltic Inflows in a significant amount.

  10. Facilitation by ecosystem engineers enhances nutrient effects in an intertidal system

    NARCIS (Netherlands)

    Eriksson, Britas Klemens; Westra, Jocelle; van Gerwen, Imke; Weerman, Ellen; van der Zee, Els; van der Heide, Tjisse; van de Koppel, Johan; Olff, Han; Piersma, Theunis; Donadi, Serena

    2017-01-01

    Ecosystem engineering research has recently demonstrated the fundamental importance of non-trophic interactions for food-web structure. Particularly, by creating benign conditions in stressful environments, ecosystem engineers create hot beds of elevated levels of recruitment, growth, and survival

  11. Fire management in some California ecosystems: a cautionary note

    Science.gov (United States)

    Hartmut S. Walter; Teresa Brennan; Christian Albrecht

    2005-01-01

    Fire has been recognized as a natural and important physical factor in many ecoregions of North America. We wish to point out that our understanding of the biocomplexity of our natural ecosystems is far from complete; in particular, the role of fire in vegetation succession and ecosystem health deserves more scrutiny where biodiversity conservation is a primary or...

  12. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory

    Directory of Open Access Journals (Sweden)

    Nina Welti

    2017-07-01

    Full Text Available Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates. ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1 changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2 changing trophic dynamics influences the transformation and

  13. Ecosystem Jenga!

    Science.gov (United States)

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  14. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  15. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    Science.gov (United States)

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  16. Interaction between household and field characteristics in generation of ecosystem services from coffee agro-ecosystem of Llano Bonito, Costa Rica

    OpenAIRE

    Allinne, Clementine; Avelino, Jacques; Gary, Christian; Rossing, Walter; Tittonell, Pablo; Rapidel, Bruno

    2014-01-01

    Agro-ecosystems are major sources of ecosystem services (ESs). Coffee, originally a shade crop, is an important export cash crop for Costa Rica and other Latin America countries. Coffee grown under shades of diverse natural shade tree species ("rustic" systems) has potential to provide numerous ESs. However, coffee systems in Costa Rica have gone through transformation that involved sparse or absence of shade and intensive production systems with higher external input, favouring short term fi...

  17. From Fayol's Mechanistic to Today's Organic Functions of Management

    Science.gov (United States)

    McNamara, Daniel E.

    2009-01-01

    This paper reviews Fayol's original five managerial functions, demonstrates that they are still being taught in today's management courses, and offers a new set of organic management functions more applicable to today's turbulent business environment.

  18. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems

    DEFF Research Database (Denmark)

    Wohlfahrt, Georg; Anderson-Dunn, Margaret; Bahn, Michael

    2008-01-01

    The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002-2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE....... Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general...... pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem...

  19. Invasive aquarium fish transform ecosystem nutrient dynamics

    Science.gov (United States)

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642

  20. Is a healthy ecosystem one that is rich in parasites?

    Science.gov (United States)

    Hudson, Peter J.; Dobson, Andrew P.; Lafferty, Kevin D.

    2006-01-01

    Historically, the role of parasites in ecosystem functioning has been considered trivial because a cursory examination reveals that their relative biomass is low compared with that of other trophic groups. However there is increasing evidence that parasite-mediated effects could be significant: they shape host population dynamics, alter interspecific competition, influence energy flow and appear to be important drivers of biodiversity. Indeed they influence a range of ecosystem functions and have a major effect on the structure of some food webs. Here, we consider the bottom-up and top-down processes of how parasitism influences ecosystem functioning and show that there is evidence that parasites are important for biodiversity and production; thus, we consider a healthy system to be one that is rich in parasite species.

  1. Strategic ecosystems of Colombia

    International Nuclear Information System (INIS)

    Marquez Calle German

    2002-01-01

    The author relates the ecosystems in Colombia, he makes a relationship between ecosystems and population, utility of the ecosystems, transformation of the ecosystems and poverty and he shows a methodology of identification of strategic ecosystems

  2. Off-stage ecosystem service burdens: A blind spot for global sustainability

    Science.gov (United States)

    Pascual, Unai; Palomo, Ignacio; Adams, William M.; Chan, Kai M. A.; Daw, Tim M.; Garmendia, Eneko; Gómez-Baggethun, Erik; de Groot, Rudolf S.; Mace, Georgina M.; Martín-López, Berta; Phelps, Jacob

    2017-07-01

    The connected nature of social-ecological systems has never been more apparent than in today’s globalized world. The ecosystem service framework and associated ecosystem assessments aim to better inform the science-policy response to sustainability challenges. Such assessments, however, often overlook distant, diffuse and delayed impacts that are critical for global sustainability. Ecosystem-services science must better recognise the off-stage impacts on biodiversity and ecosystem services of place-based ecosystem management, which we term ‘ecosystem service burdens’. These are particularly important since they are often negative, and have a potentially significant effect on ecosystem management decisions. Ecosystem-services research can better recognise these off-stage burdens through integration with other analytical approaches, such as life cycle analysis and risk-based approaches that better account for the uncertainties involved. We argue that off-stage ecosystem service burdens should be incorporated in ecosystem assessments such as those led by the Intergovernmental Platform on Biodiversity and Ecosystem Services and the Intergovernmental Panel on Climate Change. Taking better account of these off-stage burdens is essential to achieve a more comprehensive understanding of cross-scale interactions, a pre-requisite for any sustainability transition.

  3. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  4. Governing Forest Ecosystem Services for Sustainable Environmental Governance: A Review

    Directory of Open Access Journals (Sweden)

    Shankar Adhikari

    2018-05-01

    Full Text Available Governing forest ecosystem services as a forest socio-ecological system is an evolving concept in the face of different environmental and social challenges. Therefore, different modes of ecosystem governance such as hierarchical, scientific–technical, and adaptive–collaborative governance have been developed. Although each form of governance offers important features, no one form on its own is sufficient to attain sustainable environmental governance (SEG. Thus, the blending of important features of each mode of governance could contribute to SEG, through a combination of both hierarchical and collaborative governance systems supported by scientifically and technically aided knowledge. This should be further reinforced by the broad engagement of stakeholders to ensure the improved well-being of both ecosystems and humans. Some form of governance and forest management measures, including sustainable forest management, forest certification, and payment for ecosystem services mechanisms, are also contributing to that end. While issues around commodification and putting a price on nature are still contested due to the complex relationship between different services, if these limitations are taken into account, the governance of forest ecosystem services will serve as a means of effective environmental governance and the sustainable management of forest resources. Therefore, forest ecosystem services governance has a promising future for SEG, provided limitations are tackled with due care in future governance endeavors.

  5. Incentive mechanisms for ecosystem protection on private lands

    International Nuclear Information System (INIS)

    Cooper, J.; Perali, F.; Veronesi, M.

    2008-01-01

    This study has the objective to bring to the fore the importance of appropriate incentive schemes for the protection of biodiversity and ecosystems on private lands. The analysis describes the effectiveness of the regulations implemented in advanced countries. In particular, first the study presents some examples and discusses the implications of the actual legislation in developed countries for the protection of biodiversity and ecosystem services. Then, the study analyses the legal doctrine regarding compensation, and the available economic instruments for ecosystem services protection. Finally, the study presents the best economic tools capable to align private behavior with the social goals of protecting the services offered by the ecosystems and favoring the participation of private owners to projects for sustainable production and conservation. Special attention is paid to the institution of Community Foundations using as models those implemented in the United States. [it

  6. Study on the techniques of valuation of ecosystem services based on remote sensing in Anxin County

    Science.gov (United States)

    Wang, Hongyan; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Wu, Junjun; Sun, Bin; Wang, Zhibo

    2014-05-01

    The farmland ecosystem is an important component of terrestrial ecosystems and has a fundamental role in the human life. The wetland is an unique and versatile ecological system. It is important for rational development and sustainable utilization of farmland and wetland resources to study on the measurement of valuation of farmland and wetland ecosystem services. It also has important significance for improving productivity. With the rapid development of remote sensing technology, it has become a powerful tool for evaluation of the value of ecosystem services. The land cover types in Anxin County mainly was farmland and wetland, the indicator system for ecosystem services valuation was brought up based on the remote sensing data of high spatial resolution ratio(Landsat-5 TM data and SPOT-5 data), the technology system for measurement of ecosystem services value was established. The study results show that the total ecosystem services value in 2009 in Anxin was 4.216 billion yuan, and the unit area value was between 8489 yuan/hm2 and 329535 yuan/hm2. The value of natural resources, water conservation value in farmland ecosystem and eco-tourism value in wetland ecosystem were higher than the other, total of the three values reached 2.858 billion yuan, and the percentage of the total ecosystem services values in Anxin was 67.79%. Through the statistics in the nine towns and three villages of Anxin County, the juantou town has the highest services value, reached 0.736 billion yuan. Scientific and comprehensive evaluation of the ecosystem services can conducive to promoting the understanding of the importance of the ecosystem. The research results had significance to ensure the sustainable use of wetland resources and the guidance of ecological construction in Anxin County.

  7. Parasite infection alters nitrogen cycling at the ecosystem scale.

    Science.gov (United States)

    Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R

    2016-05-01

    Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that

  8. TERRECO: A Flux-Based Approach to Understanding Landscape Change, Potentials of Resilience and Sustainability in Ecosystem Services

    Science.gov (United States)

    Tenhunen, J. D.; Kang, S.

    2011-12-01

    The Millenium Assessment has provided a broad perspective on the ways and degree to which global change has stressed ecosystems and their potential to deliver goods and services to mankind. Management of natural resources at regional scale requires a clear understanding of the ways that ongoing human activities modify or create new system stressors, leading to net gains or losses in ecosystem services. Ever since information from the International Biological Program (IBP) was summarized in the 1960s, we know that ecosystem stress response, recovery and resilience are related to changes in ecosystem turnover of materials, nutrient retention or loss, resource use efficiencies, and additional ecosystem properties that determine fluxes of carbon, water and nutrients. At landscape or regional scale, changes in system drivers influence land-surface to atmosphere gas exchange (water, carbon and trace gas emissions), the seasonal course of soil resource stores, hydrology, and transport of nutrients and carbon into and through river systems. In today's terminology, shifts in these fluxes indicate a modification of potential ecosystem services provided to us by the landscape or region of interest, and upon which we depend. Ongoing modeling efforts of the TERRECO project carried out in S. Korea focus on describing landscape and regional level flow networks for carbon, water, and nutrients, but in addition monetary flows associated with gains and losses in ecosystem services (cf. Fig. 1). The description is embedded within a framework which examines the trade-offs between agricultural intensification versus yield of high quality water to reservoirs for drinking water supply. The models also quantify hypothetical changes in flow networks that would occur in the context of climate, land use and social change scenarios.

  9. DOC removal paradigms in highly humic aquatic ecosystems.

    Science.gov (United States)

    Farjalla, Vinicius F; Amado, André M; Suhett, Albert L; Meirelles-Pereira, Frederico

    2009-07-01

    . The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.

  10. Transformation of Digital Ecosystems

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Hedman, Jonas

    2014-01-01

    the Digital Ecosystem Technology Transformation (DETT) framework for explaining technology-based transformation of digital ecosystems by integrating theories of business and technology ecosystems. The framework depicts ecosystem transformation as distributed and emergent from micro-, meso-, and macro- level......In digital ecosystems, the fusion relation between business and technology means that the decision of technical compatibility of the offering is also the decision of how to position the firm relative to the coopetive relations that characterize business ecosystems. In this article we develop...... coopetition. The DETT framework consists an alternative to the existing explanations of digital ecosystem transformation as the rational management of one central actor balancing ecosystem tensions. We illustrate the use of the framework by a case study of transformation in the digital payment ecosystem...

  11. Effects of red-backed salamanders on ecosystem functions.

    Directory of Open Access Journals (Sweden)

    Daniel J Hocking

    Full Text Available Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp. likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2 plots and small-scale enclosures (2 m(2 where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2. In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders. Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  12. Effects of red-backed salamanders on ecosystem functions.

    Science.gov (United States)

    Hocking, Daniel J; Babbitt, Kimberly J

    2014-01-01

    Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp.) likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus) on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2) plots) and small-scale enclosures (2 m(2)) where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2)). In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders). Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  13. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach.

    Science.gov (United States)

    Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R

    2018-02-01

    The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  14. Semantic eScience for Ecosystem Understanding and Monitoring: The Jefferson Project Case Study

    Science.gov (United States)

    McGuinness, D. L.; Pinheiro da Silva, P.; Patton, E. W.; Chastain, K.

    2014-12-01

    Monitoring and understanding ecosystems such as lakes and their watersheds is becoming increasingly important. Accelerated eutrophication threatens our drinking water sources. Many believe that the use of nutrients (e.g., road salts, fertilizers, etc.) near these sources may have negative impacts on animal and plant populations and water quality although it is unclear how to best balance broad community needs. The Jefferson Project is a joint effort between RPI, IBM and the Fund for Lake George aimed at creating an instrumented water ecosystem along with an appropriate cyberinfrastructure that can serve as a global model for ecosystem monitoring, exploration, understanding, and prediction. One goal is to help communities understand the potential impacts of actions such as road salting strategies so that they can make appropriate informed recommendations that serve broad community needs. Our semantic eScience team is creating a semantic infrastructure to support data integration and analysis to help trained scientists as well as the general public to better understand the lake today, and explore potential future scenarios. We are leveraging our RPI Tetherless World Semantic Web methodology that provides an agile process for describing use cases, identification of appropriate background ontologies and technologies, implementation, and evaluation. IBM is providing a state-of-the-art sensor network infrastructure along with a collection of tools to share, maintain, analyze and visualize the network data. In the context of this sensor infrastructure, we will discuss our semantic approach's contributions in three knowledge representation and reasoning areas: (a) human interventions on the deployment and maintenance of local sensor networks including the scientific knowledge to decide how and where sensors are deployed; (b) integration, interpretation and management of data coming from external sources used to complement the project's models; and (c) knowledge about

  15. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    Science.gov (United States)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  16. Developing micro-level urban ecosystem indicators for sustainability assessment

    International Nuclear Information System (INIS)

    Dizdaroglu, Didem

    2015-01-01

    Sustainability assessment is increasingly being viewed as an important tool to aid in the shift towards sustainable urban ecosystems. An urban ecosystem is a dynamic system and requires regular monitoring and assessment through a set of relevant indicators. An indicator is a parameter which provides information about the state of the environment by producing a quantitative value. Indicator-based sustainability assessment needs to be considered on all spatial scales to provide efficient information of urban ecosystem sustainability. The detailed data is necessary to assess environmental change in urban ecosystems at local scale and easily transfer this information to the national and global scales. This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. The proposed indicator framework measures the sustainability performance of urban ecosystem in 3 main categories including: natural environment, built environment, and socio-economic environment which are made up of 9 sub-categories, consisting of 23 indicators. This paper also describes theoretical foundations for the selection of each indicator with reference to the literature [tr

  17. Spatial interactions among ecosystem services in an urbanizing agricultural watershed.

    Science.gov (United States)

    Qiu, Jiangxiao; Turner, Monica G

    2013-07-16

    Understanding spatial distributions, synergies, and tradeoffs of multiple ecosystem services (benefits people derive from ecosystems) remains challenging. We analyzed the supply of 10 ecosystem services for 2006 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) Where are areas of high and low supply of individual ecosystem services, and are these areas spatially concordant across services? (ii) Where on the landscape are the strongest tradeoffs and synergies among ecosystem services located? (iii) For ecosystem service pairs that experience tradeoffs, what distinguishes locations that are "win-win" exceptions from other locations? Spatial patterns of high supply for multiple ecosystem services often were not coincident; locations where six or more services were produced at high levels (upper 20th percentile) occupied only 3.3% of the landscape. Most relationships among ecosystem services were synergies, but tradeoffs occurred between crop production and water quality. Ecosystem services related to water quality and quantity separated into three different groups, indicating that management to sustain freshwater services along with other ecosystem services will not be simple. Despite overall tradeoffs between crop production and water quality, some locations were positive for both, suggesting that tradeoffs are not inevitable everywhere and might be ameliorated in some locations. Overall, we found that different areas of the landscape supplied different suites of ecosystem services, and their lack of spatial concordance suggests the importance of managing over large areas to sustain multiple ecosystem services.

  18. Ecosystem-atmosphere interactions in the Arctic

    DEFF Research Database (Denmark)

    López-Blanco, Efrén

    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its...... of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim...... of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response...

  19. 75 FR 28848 - Culturally Significant Objects Imported for Exhibition Determinations: “The Original Copy...

    Science.gov (United States)

    2010-05-24

    ... DEPARTMENT OF STATE [Public Notice 7027] Culturally Significant Objects Imported for Exhibition Determinations: ``The Original Copy: Photography of Sculpture, 1839 to Today'' SUMMARY: Notice is hereby given of... included in the exhibition ``The Original Copy: Photography of Sculpture, 1839 to Today,'' imported from...

  20. Participatory management in today's health care setting

    International Nuclear Information System (INIS)

    Burnham, B.A.

    1987-01-01

    As the health care revolution progresses, so must the management styles of today's leaders. The authors must ask ourselves if we are managing tomorrow's work force or the work force of the past. Participatory management may better meet the needs of today's work force. This paper identifies the reasons participatory management is a more effective management style, the methods used to implement a participatory management program, its benefits (such as higher productivity and more efficient, effective implementation and acceptance of change), and the difficulties experienced

  1. [Ecosystem services valuation of Qinghai Lake].

    Science.gov (United States)

    Jiang, Bo; Zhang, Lu; Ouyang, Zhi-yun

    2015-10-01

    Qinghai Lake is the largest inland and salt water lake in China, and provides important ecosystem services to beneficiaries. Economic valuation of wetland ecosystem services from Qinghai Lake can reveal the direct contribution of lake ecosystems to beneficiaries using economic data, which can advance the incorporation of wetland protection of Qinghai Lake into economic tradeoffs and decision analyses. In this paper, we established a final ecosystem services valuation system based on the underlying ecological mechanisms and regional socio-economic conditions. We then evaluated the eco-economic value provided by the wetlands at Qinghai Lake to beneficiaries in 2012 using the market value method, replacement cost method, zonal travel cost method, and contingent valuation method. According to the valuation result, the total economic values of the final ecosystem services provided by the wetlands at Qinghai Lake were estimated to be 6749.08 x 10(8) yuan RMB in 2012, among which the value of water storage service and climate regulation service were 4797.57 x 10(8) and 1929.34 x 10(8) yuan RMB, accounting for 71.1% and 28.6% of the total value, respectively. The economic value of the 8 final ecosystem services was ranked from greatest to lowest as: water storage service > climate regulation service > recreation and tourism service > non-use value > oxygen release service > raw material production service > carbon sequestration service > food production service. The evaluation result of this paper reflects the substantial value that the wetlands of Qinghai Lake provide to beneficiaries using monetary values, which has the potential to help increase wetland protection awareness among the public and decision-makers, and inform managers about ways to create ecological compensation incentives. The final ecosystem service evaluation system presented in this paper will offer guidance on separating intermediate services and final services, and establishing monitoring programs for

  2. Technology Transfer Offices: Addressing Imperfections in Entrepreneurial Ecosystems: The Norwegian Context

    OpenAIRE

    Balasingham, Janagan; Olsen, Andreas Hajanirina Fiderana

    2014-01-01

    This research focuses on the creation and nurturing of University spin-offs and how the entrepreneurial ecosystem affects TTO s value creation process. We have conducted unstructured literature reviews on both TTOs and entrepreneurial ecosystems, ultimately resulting in a critique on Roberts and Malone s (1996) support-selectivity typology, where we argue that entrepreneurial ecosystems are complex and unique phenomenons, and that the handling of these important external factors cannot be eas...

  3. Fishing for ecosystem services.

    Science.gov (United States)

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.

  4. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    Science.gov (United States)

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  5. Social Values for Ecosystem Services (SolVES): using GIS to include social values information in ecosystem services assessments

    Science.gov (United States)

    Sherrouse, B.C.; Semmens, D.J.

    2010-01-01

    Ecosystem services can be defined in various ways; simply put, they are the benefits provided by nature, which contribute to human well-being. These benefits can range from tangible products such as food and fresh water to cultural services such as recreation and esthetics. As the use of these benefits continues to increase, additional pressures are placed on the natural ecosystems providing them. This makes it all the more important when assessing possible tradeoffs among ecosystem services to consider the human attitudes and preferences that express underlying social values associated with their benefits. While some of these values can be accounted for through economic markets, other values can be more difficult to quantify, and attaching dollar amounts to them may not be very useful in all cases. Regardless of the processes or units used for quantifying such values, the ability to map them across the landscape and relate them to the ecosystem services to which they are attributed is necessary for effective assessments. To address some of the needs associated with quantifying and mapping social values for inclusion in ecosystem services assessments, scientists at the Rocky Mountain Geographic Science Center (RMGSC), in collaboration with Colorado State University, have developed a public domain tool, Social Values for Ecosystem Services (SolVES). SolVES is a geographic information system (GIS) application designed to use data from public attitude and preference surveys to assess, map, and quantify social values for ecosystem services. SolVES calculates and maps a 10-point Value Index representing the relative perceived social values of ecosystem services such as recreation and biodiversity for various groups of ecosystem stakeholders. SolVES output can also be used to identify and model relationships between social values and physical characteristics of the underlying landscape. These relationships can then be used to generate predicted Value Index maps for areas

  6. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  7. Nuclear technology today and tomorrow

    International Nuclear Information System (INIS)

    Lombardi, C.

    2007-01-01

    Nuclear power has returned today to contain the energy problem. It is useful to make a summary of its characteristics and its evolution over the past 50 years and its prospects. The Italy can rely on their way by revitalizing its potential not fully disappeared [it

  8. Study on the ecosystem construction of using ecopath model in inland waterway

    Science.gov (United States)

    Zhao, Junjie; Bai, Jing; Zhang, Lu; Wang, Ning; Shou, Youping

    2018-04-01

    In this paper, Ecopath with Ecosim 5.1 software is used to simulate the constructed water ecosystem of inland waterway. According to the characteristics of feeding relationship, the ecopath model of water ecosystem is divided into seven functional groups: phytoplankton, hydrophyte, zooplankton, herbivorous, omnivorous, polychaetes and detritus. By analyzing the important ecological parameters of the ecosystem, such as biomass, biomass / biomass, consumption / biomass, trophic level and ecological nutrient conversion efficiency, the software integrates the energy flow process of the ecosystem, the ratio of the total net primary production and the sum of all respiratory flows is 1.314, it’s indicating that the ecosystem is equilibrium. The research method of this paper can be widely used to evaluate the stability of the ecosystem of the domestic river.

  9. Integrating ecosystem-service tradeoffs into land-use decisions

    OpenAIRE

    Goldstein, Joshua H.; Caldarone, Giorgio; Duarte, Thomas Kaeo; Ennaanay, Driss; Hannahs, Neil; Mendoza, Guillermo; Polasky, Stephen; Wolny, Stacie; Daily, Gretchen C.

    2012-01-01

    Recent high-profile efforts have called for integrating ecosystem-service values into important societal decisions, but there are few demonstrations of this approach in practice. We quantified ecosystem-service values to help the largest private landowner in Hawaii, Kamehameha Schools, design a land-use development plan that balances multiple private and public values on its North Shore land holdings (Island of O’ahu) of ∼10,600 ha. We used the InVEST software tool to evaluate the environment...

  10. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    Science.gov (United States)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  11. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    Science.gov (United States)

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as

  12. Linking ecosystem characteristics to final ecosystem services for public policy

    Science.gov (United States)

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. PMID:25394857

  13. Assessing climate-sensitive ecosystems in the southeastern United States

    Science.gov (United States)

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime

    2016-08-11

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing

  14. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    Science.gov (United States)

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  15. Ecosystem Model Skill Assessment. Yes We Can!

    Science.gov (United States)

    Olsen, Erik; Fay, Gavin; Gaichas, Sarah; Gamble, Robert; Lucey, Sean; Link, Jason S

    2016-01-01

    Accelerated changes to global ecosystems call for holistic and integrated analyses of past, present and future states under various pressures to adequately understand current and projected future system states. Ecosystem models can inform management of human activities in a complex and changing environment, but are these models reliable? Ensuring that models are reliable for addressing management questions requires evaluating their skill in representing real-world processes and dynamics. Skill has been evaluated for just a limited set of some biophysical models. A range of skill assessment methods have been reviewed but skill assessment of full marine ecosystem models has not yet been attempted. We assessed the skill of the Northeast U.S. (NEUS) Atlantis marine ecosystem model by comparing 10-year model forecasts with observed data. Model forecast performance was compared to that obtained from a 40-year hindcast. Multiple metrics (average absolute error, root mean squared error, modeling efficiency, and Spearman rank correlation), and a suite of time-series (species biomass, fisheries landings, and ecosystem indicators) were used to adequately measure model skill. Overall, the NEUS model performed above average and thus better than expected for the key species that had been the focus of the model tuning. Model forecast skill was comparable to the hindcast skill, showing that model performance does not degenerate in a 10-year forecast mode, an important characteristic for an end-to-end ecosystem model to be useful for strategic management purposes. We identify best-practice approaches for end-to-end ecosystem model skill assessment that would improve both operational use of other ecosystem models and future model development. We show that it is possible to not only assess the skill of a complicated marine ecosystem model, but that it is necessary do so to instill confidence in model results and encourage their use for strategic management. Our methods are applicable

  16. Carbon storage in mangrove and peatland ecosystems: A preliminary account from plots in Indonesia

    Science.gov (United States)

    Daniel Murdiyarso; Daniel Donato; J. Boone Kauffman; Sofyan Kurnianto; Melanie Stidham; Markku. Kanninen

    2009-01-01

    Tropical mangroves and peat swamp forests provide numerous ecosystem services, including nutrient cycling, sediment trapping, protection from cyclones and tsunamis, habitat for numerous organisms (many economically important) and wood for lumber and fuel (Ellison 2008). Among the most important of these functions--but poorly quantified--is ecosystem carbon (C) storage...

  17. Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China

    Directory of Open Access Journals (Sweden)

    Nian-Zhi Jiao

    2015-06-01

    Full Text Available The ecosystems of China seas and coasts are undergoing rapid changes under the strong influences of both global climate change and anthropogenic activities. To understand the scope of these changes and the mechanisms behind them is of paramount importance for the sustainable development of China, and for the establishment of national policies on environment protection and climate change mitigation. Here we provide a brief review of the impacts of global climate change and human activities on the oceans in general, and on the ecosystems of China seas and coasts in particular. More importantly, we discuss the challenges we are facing and propose several research foci for China seas/coasts ecosystem studies, including long-term time series observations on multiple scales, facilities for simulation study, blue carbon, coastal ecological security, prediction of ecosystem evolution and ecosystem-based management. We also establish a link to the Future Earth program from the perspectives of two newly formed national alliances, the China Future Ocean Alliance and the Pan-China Ocean Carbon Alliance.

  18. Towards ecosystem accounting

    NARCIS (Netherlands)

    Duku, C.; Rathjens, H.; Zwart, S.J.; Hein, L.

    2015-01-01

    Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. One of the specific features of ecosystem accounting is the distinction between the capacity and the flow of ecosystem services. Ecohydrological modelling to support

  19. The Ecosystem of Startups as a Component of the Innovation Ecosystem

    Directory of Open Access Journals (Sweden)

    Sytnik Natalia I.

    2017-08-01

    Full Text Available The article analyzes the current theoretical perceptions of the ecosystem of startups and presents the author’s own vision of this entity. It has been proposed to consider the ecosystem of startups as a subsystem of the innovation ecosystem, which aims at creating innovative products and services by startup companies. The ecosystem of startups is an open dynamic system in which the backbone subject is a startup company at various stages of the life cycle. The sustenance subjects in an ecosystem are the organizations, associations and individuals that cause impacts, to varying degrees, on the establishing or development of startups. The activities of the subjects are carried out in the following directions: public regulation, financing, training, information, and infrastructure support for startups. The ecosystem consists of a number of economic, material-and-technical, market, and socio-cultural factors that directly or indirectly influence the actions of the subjects. The vital activity of the ecosystem of startups is maintained by the active interaction of the subjects, connected by a network of internal links with the environment and between themselves.

  20. Climate Regulation Services of Natural and Managed Ecosystems of the Americas

    Science.gov (United States)

    Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.; Costa, M. H.; Cuadra, S.; DeLucia, E. H.

    2011-12-01

    Terrestrial ecosystems regulate climate through both biogeochemical mechanisms (greenhouse gas regulation) and biophysical mechanisms (regulation of water and energy). Land management therefore provides some of the most effective strategies for climate change mitigation. However, most policies aimed at climate protection through land management, including UNFCCC mechanisms and bioenergy sustainability standards, account only for biogeochemical climate services. By ignoring biophysical climate regulation services that in some cases offset the biogeochemical regulation services, these policies run the risk of failing to advance the best climate solutions. Quantifying the combined value of biogeochemical and biophysical climate regulation services remains an important challenge. Here, we use a combination of data synthesis and modeling to quantify how biogeochemical and biophysical effects combine to shape the climate regulation value (CRV) of 18 natural and managed ecosystem types across the Western Hemisphere. Natural ecosystems generally had higher CRVs than agroecosystems, largely driven by differences in biogeochemical services. Biophysical contributions ranged from minimal to dominant. They were highly variable in space and across ecosystem types, and their relative importance varied strongly with the spatio-temporal scale of analysis. Our findings pertain to current efforts to protect climate through land management. Specifically, they reinforce the importance of protecting tropical forests and recent findings that the climatic effects of bioenergy production may be somewhat more positive than previously estimated. Given that biophysical effects in some cases dominate, ensuring effective climate protection through land management requires consideration of combined biogeochemical and biophysical climate regulation services. While quantification of ecosystem climate services is necessarily complex, our CRV index serves as one potential approach to measure the

  1. Reconnecting cities to the biosphere: stewardship of green infrastructure and urban ecosystem services.

    Science.gov (United States)

    Andersson, Erik; Barthel, Stephan; Borgström, Sara; Colding, Johan; Elmqvist, Thomas; Folke, Carl; Gren, Åsa

    2014-05-01

    Within-city green infrastructure can offer opportunities and new contexts for people to become stewards of ecosystem services. We analyze cities as social-ecological systems, synthesize the literature, and provide examples from more than 15 years of research in the Stockholm urban region, Sweden. The social-ecological approach spans from investigating ecosystem properties to the social frameworks and personal values that drive and shape human interactions with nature. Key findings demonstrate that urban ecosystem services are generated by social-ecological systems and that local stewards are critically important. However, land-use planning and management seldom account for their role in the generation of urban ecosystem services. While the small scale patchwork of land uses in cities stimulates intense interactions across borders much focus is still on individual patches. The results highlight the importance and complexity of stewardship of urban biodiversity and ecosystem services and of the planning and governance of urban green infrastructure.

  2. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    Science.gov (United States)

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  3. Applying an ecosystem service approach to unravel links between ecosystems and society in the coast of central Chile.

    Science.gov (United States)

    de Juan, Silvia; Gelcich, Stefan; Ospina-Alvarez, Andres; Perez-Matus, Alejandro; Fernandez, Miriam

    2015-11-15

    Ecosystem-based management implies understanding feedbacks between ecosystems and society. Such understanding can be approached with the Drivers-Pressures-State change-Impacts-Response framework (DPSIR), incorporating stakeholders' preferences for ecosystem services to assess impacts on society. This framework was adapted to six locations in the central coast of Chile, where artisanal fisheries coexist with an increasing influx of tourists, and a set of fisheries management areas alternate with open access areas and a no-take Marine Protected Area (MPA). The ecosystem services in the study area were quantified using biomass and species richness in intertidal and subtidal areas as biological indicators. The demand for ecosystem services was elicited by interviews to the principal groups of users. Our results evidenced decreasing landings and a negative perception of fishermen on temporal trends of catches. The occurrence of recreational fishing was negligible, although the consumption of seafood by tourists was relatively high. Nevertheless, the consumption of organisms associated to the study system was low, which could be linked, amongst other factors, to decreasing catches. The comparison of biological indicators between management regimens provided variable results, but a positive effect of management areas and the MPA on some of the metrics was observed. The prioritising of ecosystem attributes by tourists was highly homogenous across the six locations, with "scenic beauty" consistently selected as the preferred attribute, followed by "diversity". The DPSIR framework illustrated the complex interactions existing in these locations, with weak linkages between society's priorities, existing management objectives and the state of biological communities. Overall, this work improved our knowledge on relations between components of coastal areas in central Chile, of paramount importance to advance towards an ecosystem-based management in the area. Copyright © 2015

  4. School Counseling in China Today

    Science.gov (United States)

    Thomason, Timothy C.; Qiong, Xiao

    2008-01-01

    This article provides a brief overview of the development of psychological thinking in China and social influences on the practice of school counseling today. Common problems of students are described, including anxiety due to pressure to perform well on exams, loneliness and social discomfort, and video game addiction. Counseling approaches used…

  5. Religious Renaissance in China Today

    Directory of Open Access Journals (Sweden)

    Richard Madsen

    2011-01-01

    Full Text Available Since the beginning of the Reform Era in 1979, there has been a rapid growth and development of religious belief and practice in China. A substantial new scholarly literature has been generated in the attempt to document and understand this. This essay identifies the most important contributions to that literature and discusses areas of agreement and controversy across the literature. Along with new data, new paradigms have developed to frame research on Chinese religions. The paradigm derived from C. K. Yang’s classic work in the 1960s came from structural functionalism, which served to unite research in the humanities and social sciences. However, structural functionalism has been abandoned by the new generation of scholars. In the humanities, the most popular paradigm derives from Michel Foucault, but there are also scholars who use neo-Durkheimian and neo-Weberian paradigms. In the social sciences, the dominant paradigms tend to focus on state-society relations. None of these paradigms fully captures the complexity of the transformations happening in China. We recommend greater dialogue between the humanities and social sciences in search of more adequate theoretical frameworks for understanding Chinese religions today.

  6. Improving ecosystem service frameworks to address wicked problems

    Directory of Open Access Journals (Sweden)

    Kathryn K. Davies

    2015-06-01

    Full Text Available Complex problems often result from the multiple interactions between human activities and ecosystems. The interconnected nature of ecological and social systems should be considered if these "wicked problems" are to be addressed. Ecosystem service approaches provide an opportunity to link ecosystem function with social values, but in practice the essential role that social dynamics play in the delivery of outcomes remains largely unexplored. Social factors such as management regimes, power relationships, skills, and values, can dramatically affect the definition and delivery of ecosystem services. Input from a diverse group of stakeholders improves the capacity of ecosystem service approaches to address wicked problems by acknowledging diverse sets of values and accounting for conflicting world views. Participatory modeling can incorporate both social and ecological dynamics into decision making that involves stakeholders, but is itself a complex social undertaking that may not yield precise or predictable outcomes. We explore the efficacy of different types of participatory modeling in relation to the integration of social values into ecosystem services frameworks and the generation of four important elements of social capital needed to address wicked problems: enhancing social learning and capacity building; increasing transparency; mediating power; and building trust. Our findings indicate that mediated modeling, group mapping, and mental/conceptual modeling are likely to generate elements of social capital that can improve ecosystem service frameworks. Participatory simulation, system dynamic modeling, and Bayesian belief networks, if utilized in isolation, were found to have a low likelihood of generating the social capital needed to improve ecosystem services frameworks. Scenario planning, companion modeling, group model building, and participatory mapping all generate a moderate to high level of social capital elements that improve the

  7. Spatial Analysis of Conservation Priorities Based on Ecosystem Services in the Atlantic Forest Region of Misiones, Argentina

    Directory of Open Access Journals (Sweden)

    Matthew L. Clark

    2012-08-01

    Full Text Available Understanding the spatial pattern of ecosystem services is important for effective environmental policy and decision-making. In this study, we use a geospatial decision-support tool (Marxan to identify conservation priorities for habitat and a suite of ecosystem services (storage carbon, soil retention and water yield in the Upper Paraná Atlantic Forest from Misiones, Argentina—an area of global conservation priority. Using these results, we then evaluate the efficiency of existing protected areas in conserving both habitat and ecosystem services. Selected areas for conserving habitat had an overlap of carbon and soil ecosystem services. Yet, selected areas for water yield did not have this overlap. Furthermore, selected areas with relatively high overlap of ecosystem services tended to be inside protected areas; however, other important areas for ecosystem services (i.e., central highlands do not have legal protection, revealing the importance of enforcing existing environmental regulations in these areas.

  8. Complex effects of ecosystem engineer loss on benthic ecosystem response to detrital macroalgae

    NARCIS (Netherlands)

    Rossi, F.; Gribsholt, B.; Gazeau, F.; Di Santo, V.; Middelburg, J.J.

    2013-01-01

    Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies

  9. Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae

    NARCIS (Netherlands)

    Rossi, F.; Gribsholt, B.; Gazeau, F.; Di Santo, V.; Middelburg, J.J.

    2013-01-01

    Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies

  10. Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    NARCIS (Netherlands)

    Janssen, A.B.G.; Gerla, D.J.

    2015-01-01

    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality

  11. The Cottonwood Lake study area, a long-term wetland ecosystem monitoring site

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.

    2012-01-01

    The Cottonwood Lake study area is one of only three long-term wetland ecosystem monitoring sites in the prairie pothole region of North America; the other two are Orchid Meadows in South Dakota and St. Denis in Saskatchewan. Of the three, Cottonwood Lake has, by far, the longest continuous data-collection record. Research was initiated at the study area in 1966, and intensive investigations of the hydrology, chemistry, and biology of prairie pothole wetlands continue at the site today. This fact sheet describes the study area, provides an overview of wetland ecology research that has been conducted at the site in the past, and provides an introduction to current work being conducted at the study area by USGS scientists.

  12. Exploring, exploiting and evolving diversity of aquatic ecosystem models

    DEFF Research Database (Denmark)

    Janssen, Annette B G; Arhonditsis, George B.; Beusen, Arthur

    2015-01-01

    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality...... management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity...... available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5–10 years...

  13. Linking ecosystem characteristics to final ecosystem services for public policy.

    Science.gov (United States)

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  14. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Directory of Open Access Journals (Sweden)

    T. Wang

    2011-07-01

    Full Text Available Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (Reco of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from ~35° N to ~70° N. Deciduous forests were characterized by the highest winter Reco rates (0.90 ± 0.39 g C m−2 d−1, when winter is defined as the period during which daily air temperature remains below 0 °C. By contrast, arctic wetlands had the lowest winter Reco rates (0.02 ± 0.02 g C m−2 d−1. Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter Reco rates (g C m−2 d−1 of 0.70(±0.33, 0.60(±0.38, 0.62(±0.43, 0.49(±0.22 and 0.27(±0.08, respectively. Our cross site analysis showed that winter air (Tair and soil (Tsoil temperature played a dominating role in determining the spatial patterns of winter Reco in both forest and managed ecosystems (grasslands and croplands. Besides temperature, the seasonal amplitude of the leaf area index (LAI, inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for Reco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter Reco sensitivity to temperature variation across space (

  15. Eddy covarianace measurements in a hyper-arid and hyper-saline mangroves ecosystem

    Science.gov (United States)

    Perri, S.; Marpu, P.; Molini, A.; Armstrong, P.

    2017-12-01

    The natural environment of mangroves provides a number of ecosystem services for improving water quality, supporting healthy fisheries, and protecting the coasts. Also, their carbon storage is larger than any other forest type. Several authors have recognized the importance of mangroves in global carbon cycles. However, energy, water and carbon exchanges between ecosystem and atmosphere are still not completely understood. Eddy covariance measurements are extremely valuable to understand the role of the unique stressors of costal ecosystems in gas exchange. In particular, periodic flooding and elevated soil pore water salinity influence land-atmosphere interactions. Despites the importance of flux measurements in mangroves forests, such in-situ observations are extremely rare. Our research team set up an eddy covariance tower in the Mangrove National Park of Abu Dhabi, UAE. The study site (24.4509° N, 54.4288° E) is located in a dwarf Avicennia marina ecosystem experiencing extremely high temperatures and salinity. CO2 and H2O exchanges are estimated and related to water level and salinity measurements. This unique dataset will shed some light on the net ecosystem exchange (NEE) of carbon dioxide, on energy fluxes and on evapotranspiration rates for a halophyte ecosystem under severe salt-stress and high temperature.

  16. Youth of Today and the Democracy of Tomorrow. Polish Students' Attitudes toward Democracy

    Science.gov (United States)

    Marzecki, Radoslaw; Stach, Lukasz

    2016-01-01

    From the perspective of over 20 years into the transformation process in post-communist countries, it seems important to be able to pose questions about the future of democracy, and, in particular, its social foundations. These questions become all the more significant, when we come to realize that it is the attitudes of 'the young of today' that…

  17. Forest habitat conservation in Africa using commercially important insects.

    Science.gov (United States)

    Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie

    2011-01-01

    African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.

  18. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  19. Open innovation in SMEs: Exploring inter-organizational relationships in an ecosystem

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Bogers, Marcel

    2018-01-01

    Small- and medium-sized enterprises (SMEs) face the inherent tension of depending on external partners to complement their internal innovation activities while having limited resources to manage such open innovation processes. Given the importance of collaborative efforts between multiple...... stakeholders, we address the open innovation challenges from the SME perspective at the business-ecosystem level. We present an inductive case study of a particular regional ecosystem and focus on the inter-organizational collaboration between SMEs and other stakeholders in the ecosystem. With this focus, we...... explore how SMEs perceive, organize, and manage open innovation through strong collaborative ties with other ecosystem members. We identify a particular set of challenges for the SMEs due to the misalignment between their business model and that of their ecosystem. Specific findings include the link...

  20. Biomimetic Urban Design: Ecosystem Service Provision of Water and Energy

    Directory of Open Access Journals (Sweden)

    Maibritt Pedersen Zari

    2017-03-01

    Full Text Available This paper presents an ecosystem biomimicry methodology for urban design called ecosystem service analysis. Ecosystem services analysis can provide quantifiable goals for urban ecological regeneration that are determined by site specific ecology and climate of an urban area. This is important given the large negative environmental impact that most cities currently have on ecosystems. If cities can provide some of their own ecosystem services, pressure may be decreased on the surrounding ecosystems. This is crucial because healthier ecosystems enable humans to better adapt to the impacts that climate change is currently having on urban built environments and will continue to have in the future. A case study analyzing two ecosystem services (provision of energy and provision of water for an existing urban environment (Wellington, New Zealand is presented to demonstrate how the ecosystem services analysis concept can be applied to an existing urban context. The provision of energy in Wellington was found to be an example of an ecosystem service where humans could surpass the performance of pre-development ecosystem conditions. When analyzing the provision of water it was found that although total rainfall in the urban area is almost 200% higher than the water used in the city, if rainwater harvested from existing rooftops were to meet just the demands of domestic users, water use would need to be reduced by 20%. The paper concludes that although achieving ecological performance goals derived from ecosystem services analysis in urban areas is likely to be difficult, determining site and climate specific goals enable urban design professionals to know what a specific city should be aiming for if it is to move towards better sustainability outcomes.

  1. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises.

    Directory of Open Access Journals (Sweden)

    Nibedita Mukherjee

    Full Text Available The valuation of ecosystem services is a complex process as it includes several dimensions (ecological, socio-cultural and economic and not all of these can be quantified in monetary units. The aim of this paper is to conduct an ecosystem services valuation study for mangroves ecosystems, the results of which can be used to inform governance and management of mangroves. We used an expert-based participatory approach (the Delphi technique to identify, categorize and rank the various ecosystem services provided by mangrove ecosystems at a global scale. Subsequently we looked for evidence in the existing ecosystem services literature for monetary valuations of these ecosystem service categories throughout the biogeographic distribution of mangroves. We then compared the relative ranking of ecosystem service categories between the monetary valuations and the expert based analysis. The experts identified 16 ecosystem service categories, six of which are not adequately represented in the literature. There was no significant correlation between the expert based valuation (the Delphi technique and the economic valuation, indicating that the scope of valuation of ecosystem services needs to be broadened. Acknowledging this diversity in different valuation approaches, and developing methodological frameworks that foster the pluralism of values in ecosystem services research, are crucial for maintaining the credibility of ecosystem services valuation. To conclude, we use the findings of our dual approach to valuation to make recommendations on how to assess and manage the ecosystem services provided by mangrove ecosystems.

  2. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises.

    Science.gov (United States)

    Mukherjee, Nibedita; Sutherland, William J; Dicks, Lynn; Hugé, Jean; Koedam, Nico; Dahdouh-Guebas, Farid

    2014-01-01

    The valuation of ecosystem services is a complex process as it includes several dimensions (ecological, socio-cultural and economic) and not all of these can be quantified in monetary units. The aim of this paper is to conduct an ecosystem services valuation study for mangroves ecosystems, the results of which can be used to inform governance and management of mangroves. We used an expert-based participatory approach (the Delphi technique) to identify, categorize and rank the various ecosystem services provided by mangrove ecosystems at a global scale. Subsequently we looked for evidence in the existing ecosystem services literature for monetary valuations of these ecosystem service categories throughout the biogeographic distribution of mangroves. We then compared the relative ranking of ecosystem service categories between the monetary valuations and the expert based analysis. The experts identified 16 ecosystem service categories, six of which are not adequately represented in the literature. There was no significant correlation between the expert based valuation (the Delphi technique) and the economic valuation, indicating that the scope of valuation of ecosystem services needs to be broadened. Acknowledging this diversity in different valuation approaches, and developing methodological frameworks that foster the pluralism of values in ecosystem services research, are crucial for maintaining the credibility of ecosystem services valuation. To conclude, we use the findings of our dual approach to valuation to make recommendations on how to assess and manage the ecosystem services provided by mangrove ecosystems.

  3. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales

    Science.gov (United States)

    Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew

    2015-09-01

    Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human

  4. Review of Huebert’s Libertarianism Today

    OpenAIRE

    Walter E. Block

    2010-01-01

    Libertarianism Today, by Jacob Huebert (Santa Barbara, CA: Praeger, 2010), is an excellent introduction to libertarianism. In contrast to many other recent books about libertarianism, a consistent non-compromising libertarianism is defended throughout this book.

  5. Analysis and design of software ecosystem architectures – Towards the 4S telemedicine ecosystem

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Kyng, Morten

    2014-01-01

    performed a descriptive, revelatory case study of the Danish telemedicine ecosystem and for ii), we experimentally designed, implemented, and evaluated the architecture of 4S. Results We contribute in three areas. First, we define the software ecosystem architecture concept that captures organization......, and application stove-pipes that inhibit the adoption of telemedical solutions. To which extent can a software ecosystem approach to telemedicine alleviate this? Objective In this article, we define the concept of software ecosystem architecture as the structure(s) of a software ecosystem comprising elements...... experience in creating and evolving the 4S telemedicine ecosystem. Conclusion The concept of software ecosystem architecture can be used analytically and constructively in respectively the analysis and design of software ecosystems....

  6. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  7. High Biodiversity of Green Infrastructure Does Not Contribute to Recreational Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Daria Sikorska

    2017-02-01

    Full Text Available Urban lakes, especially those of natural origin, provide ecosystem services, recreation being one of the most important and highly valued by city dwellers. Fulfilling the needs of city residents to relax and have contact with nature has become a priority in urbanized areas and has been proven to positively affect people’s health and well-being. The recreational potential of water bodies was identified to be the most important aspect of ecosystem services to the residents of the neighboring areas. An assessment of recreational ecosystem services (RES provisioning to society based on the real time spent by the citizens and housing values in the urban–rural gradient revealed that the economic benefits of lakes differ in urbanized, suburban and rural landscapes. The growth of cities has led to an increased population density in the surroundings of ecologically valuable areas, resulting in higher pressure from visitors seeking recreational areas. Along with urbanization, the impoverishment of ecosystem functions takes place, limiting their capability to provide ecosystem services. In this work, the provisioning of recreational ecosystem services of 28 floodplain lakes located along the urban–rural gradient of the Warsaw agglomeration was assessed. The relationship between the ecological value of the water bodies, measured using naturalness indices, and the recreational ecosystem services they can provide was assessed. The results showed that the floodplain lakes located along the urban–rural gradient are of great importance to the citizens due to their recreational potential. The provisioning of recreational ecosystem services is poorly connected with the ecological characteristics of the floodplain lakes. Only hemeroby was significantly correlated with provisioning, and there was no relationship with factors such as naturalness of vegetation or water quality, demonstrating that public preference was not generally influenced by high

  8. Temporal scales, ecosystem dynamics, stakeholders and the valuation of ecosystems services

    NARCIS (Netherlands)

    Hein, Lars; Koppen, van C.S.A.K.; Ierland, van Ekko C.; Leidekker, Jakob

    2016-01-01

    Temporal dimensions are highly relevant to the analysis of ecosystem services and their economic value. In this paper, we provide a framework that can be used for analyzing temporal dimensions of ecosystem services, we present a case study including an analysis of the supply of three ecosystem

  9. Climate change, cranes, and temperate floodplain ecosystems

    Science.gov (United States)

    King, Sammy L.

    2010-01-01

    Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.

  10. Challenging today's nuclear industry to be competitive in a changing tomorrow

    International Nuclear Information System (INIS)

    Plug, B.

    1996-01-01

    As the millennium approaches, the future of the nuclear power generation appears desolate. Today's nuclear executives are facing challenges resulting from worldwide change and have forced utilities to reevaluate their corporation's future directions. The nuclear industry must be competitive more than ever to address today's rapid changing marketplace and pressures exerted from: regulatory reformation; increased competition; changes in technology; customer evolution; and globalization. These factors have compelled nuclear executives to address questions such as: What impact will these changes have on today's marketplace, and on my corporation? What will characterize tomorrow's successful nuclear facility? How can today's nuclear corporation compete in tomorrow's marketplace? Will my corporation survive? (author)

  11. An ecosystem carbon database for Canadian forests

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, C.H.; Bhatti, J.S.; Sabourin, K.J.

    2005-07-01

    The forest ecosystem carbon database (FECD) is a compilation of data from more than 700 plots from different forest ecosystems in Canada. It includes more than 60 variables for site, stand and soil characteristics. It is intended for large-scale modelers and analysts working with the carbon budget and dynamics of forest ecosystems, particularly those interested in the response of forest carbon stocks and fluxes to changes in climate and site characteristics. The database includes totals for organic and mineral soil horizons for each plot along with total soil carbon content, tree biomass carbon content by component and total ecosystem carbon content. It is complete for site description information, soil chemistry, stand-level estimates of live tree biomass and carbon components and their totals. Soil carbon content by horizon was also included. The compilation targeted data collected at single points in space, where above ground and below ground carbon levels were measured simultaneously. It was noted that one of the important information gaps lies in the fact that no data was available for the natural disturbance or management histories of the stands where the plots were located. Estimates did not include detrital carbon or root biomass, which can influence the estimates for total ecosystem carbon in some forest types. The preliminary analysis reveals that ecozones can be grouped according to low and high average total biomass carbon content. The groups correlate to ecozones with low and high average total ecosystem carbon. Mineral soil carbon within each group contributes the highest proportion of carbon to the average total ecosystem carbon. It is correlated with a gradient in ecozone climate from cold and dry to warm and wet. 42 refs., 13 tabs., 16 figs.

  12. Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops

    International Nuclear Information System (INIS)

    Weih, Martin; Hoeber, Stefanie; Beyer, Friderike; Fransson, Petra

    2014-01-01

    Today, we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g., nitrogen, N), the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat) and perennial (Salix) energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties, and nutrient regimes in the energy yield per plant-internal N (megajoule per gram per year), which would result in different N resource depletion per unit energy produced.

  13. Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Weih, Martin, E-mail: martin.weih@slu.se; Hoeber, Stefanie; Beyer, Friderike [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala (Sweden); Fransson, Petra [Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala (Sweden)

    2014-05-22

    Today, we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g., nitrogen, N), the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat) and perennial (Salix) energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties, and nutrient regimes in the energy yield per plant-internal N (megajoule per gram per year), which would result in different N resource depletion per unit energy produced.

  14. Quantifying changes in multiple ecosystem services during 1992-2012 in the Sanjiang Plain of China.

    Science.gov (United States)

    Wang, Zongming; Mao, Dehua; Li, Lin; Jia, Mingming; Dong, Zhangyu; Miao, Zhenghong; Ren, Chunying; Song, Changchun

    2015-05-01

    Rapid and periodic assessment of the impact of land cover changes on ecosystem services at regional levels is essential to understanding services and sustainability of ecosystems. This study focused on quantifying and assessing changes of multiple ecosystem services in the Sanjiang Plain of China as a result of land cover changes over the period of 1992-2012. This region is important for its large area of natural wetlands and intensive agriculture. The ecosystem services that were assessed for this region included its regulating services (water yield and ecosystem carbon stocks), supporting services (suitable waterbird habitats), and provisioning services (food production), and the approach to the assessment was composed of the surface energy balance algorithms for land (SEBAL), soil survey re-sampling method and an empirical waterbird habitat suitability model. This large scale and integrated investigation represents the first systematic evaluation on the status of ecosystem carbon stocks in the Sanjiang Plain in addition to the development of an effective model for analysis of waterbird habitat suitability with the use of both remote sensing and geographic information systems (GIS). More importantly, the result from this study has confirmed trade-offs between ecosystem services and negative consequences to environment in this region. The trade-offs were typically manifested by increased water yield and significantly grown food production, which is in contrast with significant losses in ecosystem carbon stocks (-14%) and suitable waterbird habitats (-23%) mainly due to the conversion of land cover from wetland to farmland. This finding implies that land use planning and policy making for this economically important region should take ecosystem service losses into account in order to preserve its natural ecosystems in the best interest of society. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Assessing climate change effects on mountain ecosystems using integrated models: A case study

    Science.gov (United States)

    Fagre, Daniel B.; Running, Steven W.; Keane, Robert E.; Peterson, David L.

    2005-01-01

    Mountain systems are characterized by strong environmental gradients, rugged topography and extreme spatial heterogeneity in ecosystem structure and composition. Consequently, most mountainous areas have relatively high rates of endemism and biodiversity, and function as species refugia in many areas of the world. Mountains have long been recognized as critical entities in regional climatic and hydrological dynamics but their importance as terrestrial carbon stores has only been recently underscored (Schimel et al. 2002; this volume). Mountain ecosystems, therefore, are globally important as well as unusually complex. These ecosystems challenge our ability to understand their dynamics and predict their response to climatic variability and global-scale environmental change.

  16. Typology and indicators of ecosystem services for marine spatial planning and management.

    Science.gov (United States)

    Böhnke-Henrichs, Anne; Baulcomb, Corinne; Koss, Rebecca; Hussain, S Salman; de Groot, Rudolf S

    2013-11-30

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a form of management intervention that has become increasingly popular and important globally. The ecosystem service concept is rarely applied in marine planning and management to date which we argue is due to the lack of a well-structured, systematic classification and assessment of marine ecosystem services. In this paper we not only develop such a typology but also provide guidance to select appropriate indicators for all relevant ecosystem services. We apply this marine-specific ecosystem service typology to MSP and EBM. We thus provide not only a novel theoretical construct but also show how the ecosystem services concept can be used in marine planning and management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Indicators on the status and trends of ecosystems in the Dutch Caribbean

    NARCIS (Netherlands)

    Verweij, P.J.F.M.; Meesters, H.W.G.; Debrot, A.O.

    2015-01-01

    The Caribbean islands of Bonaire, Saba, St.Eustatius, Aruba, Curacao and St. Maarten are part of the Kingdom of the Netherlands. The islands have a rich biological diversity and a variety of globally threatened ecosystems. These ecosystems are important for their services such as the production of

  18. Stoichiometric determination of nitrate fate in agricultural ecosystems during rainfall events.

    Science.gov (United States)

    Xu, Zuxin; Wang, Yiyao; Li, Huaizheng

    2015-01-01

    Ecologists have found a close relationship between the concentrations of nitrate (NO3-) and dissolved organic carbon (DOC) in ecosystems. However, it is difficult to determine the NO3- fate exactly because of the low coefficient in the constructed relationship. In the present paper, a negative power-function equation (r(2) = 0.87) was developed by using 411 NO3- data points and DOC:NO3- ratios from several agricultural ecosystems during different rainfall events. Our analysis of the stoichiometric method reveals several observations. First, the NO3- concentration demonstrated the largest changes when the DOC:NO3- ratio increased from 1 to 10. Second, the biodegradability of DOC was an important factor in controlling the NO3- concentration of agricultural ecosystems. Third, sediment was important not only as a denitrification site, but also as a major source of DOC for the overlying water. Fourth, a high DOC concentration was able to maintain a low NO3- concentration in the groundwater. In conclusion, this new stoichiometric method can be used for the accurate estimation and analysis of NO3- concentrations in ecosystems.

  19. Analysis of Spatiotemporal Dynamic and Bifurcation in a Wetland Ecosystem

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-01-01

    Full Text Available A wetland ecosystem is studied theoretically and numerically to reveal the rules of dynamics which can be quite accurate to better describe the observed spatial regularity of tussock vegetation. Mathematical theoretical works mainly investigate the stability of constant steady states, the existence of nonconstant steady states, and bifurcation, which can deduce a standard parameter control relation and in return can provide a theoretical basis for the numerical simulation. Numerical analysis indicates that the theoretical works are correct and the wetland ecosystem can show rich dynamical behaviors not only regular spatial patterns. Our results further deepen and expand the study of dynamics in the wetland ecosystem. In addition, it is successful to display tussock formation in the wetland ecosystem may have important consequences for aquatic community structure, especially for species interactions and biodiversity. All these results are expected to be useful in the study of the dynamic complexity of wetland ecosystems.

  20. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery

    Science.gov (United States)

    Malone, Sparkle; Tulbure, Mirela; Pérez-Luque, Antonio J.; Assal, Timothy J.; Bremer, Leah; Drucker, Debora; Hillis, Vicken; Varela, Sara; Goulden, Michael

    2016-01-01

    Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and function. We quantified ecosystem resistance to drought by comparing changes in satellite-derived estimates of water-use efficiency (WUE = net primary productivity [NPP]/evapotranspiration [ET]) under normal (i.e., baseline) and drought conditions (ΔWUE = WUE2014 − baseline WUE). With this method, areas with increasing WUE under drought conditions are considered more resilient than systems with declining WUE. Baseline WUE varied across California (0.08 to 3.85 g C/mm H2O) and WUE generally increased under severe drought conditions in 2014. Strong correlations between ΔWUE, precipitation, and leaf area index (LAI) indicate that ecosystems with a lower average LAI (i.e., grasslands) also had greater C-uptake rates when water was limiting and higher rates of carbon-uptake efficiency (CUE = NPP/LAI) under drought conditions. We also found that systems with a baseline WUE ≤ 0.4 exhibited a decline in WUE under drought conditions, suggesting that a baseline WUE ≤ 0.4 might be indicative of low drought resistance. Drought severity, precipitation, and WUE were identified as important drivers of shifts in ecosystem classes over the study period. These findings have important implications for understanding climate change effects on primary productivity and C sequestration across ecosystems and how this may influence ecosystem resistance in the future.

  1. Major ecosystems in China: dynamics and challenges for sustainable management.

    Science.gov (United States)

    Lü, Yihe; Fu, Bojie; Wei, Wei; Yu, Xiubo; Sun, Ranhao

    2011-07-01

    Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China's ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded.

  2. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  3. Effects of a large scale nitrogen and phosphorous fertilization on the ecosystem functioning of a Mediterranean tree-grass ecosystem

    Science.gov (United States)

    Migliavacca, Mirco; El Madany, Tarek; Perez-Priego, Oscar; Carrara, Arnaud; Hammer, Tiana; Henkel, Kathin; Kolle, Olaf; Luo, Yunpeng; Moreno, Gerardo; Morris, Kendalynn; Nair, Richard; Schrumpf, Marion; Wutzler, Thomas; Reichstein, Markus

    2017-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. In this contribution we will present results from an ecosystem scale nutrient manipulation experiment on a Mediterranean tree-grass ecosystem (Majadas del Tietar, Spain). Specifically, we will show how ecosystem functioning (e.g. light use efficiency, water use efficiency - WUE, albedo) changes as consequence of N and NP fertilization. A cluster of eddy covariance (EC) flux towers has been set up beside a long-term EC site (Control site) to measured high temporal resolution C and water fluxes between the ecosystem and the atmosphere. The sites were selected in a way to have similar pre-treatment conditions. Two out of three EC footprint areas (18 Ha) were fertilized with N and NP at the beginning of 2015 and 2016. To interpret the variations in C and water fluxes measured with the EC systems we monitored spatial and temporal variations in phenology, plant traits, species richness, and tree transpiration by using sap-flow meters, digital repeat photography, as well as soil sampling. The results show a consistent increase ( 15% compared to the Control site) in net ecosystem production (NEP) observed both in the N and the NP treatments. An increase of evapotranspiration (ET) of about 15% and 10% is observed in the N and NP site, respectively, indicating an increase of WUE in the NP treatment. The partitioning of the NEP into its gross components, the gross primary production (GPP) and the total ecosystem respiration (TER), show that the fertilization stimulated more GPP rather than TER, increasing therefore the capability of the ecosystem to act as carbon sink. The effects of fertilization are pronounced in spring and autumn and negligible in summer. This indicates that grass reacted much more than trees to N and NP addition. An increase of greenness and also an earlier green-up of grass in the N and NP sites

  4. [Ecological regulation services of Hainan Island ecosystem and their valuation].

    Science.gov (United States)

    Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke

    2004-08-01

    Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.

  5. Entrepreneurial Ecosystems

    NARCIS (Netherlands)

    Stam, F.C.; Spigel, Ben

    2016-01-01

    This paper reviews and discusses the emergent entrepreneurial ecosystem approach. Entrepreneurial ecosystems are defined as a set of interdependent actors and factors coordinated in such a way that they enable productive entrepreneurship within a particular territory. The purpose of this paper is to

  6. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  7. Psychoanalysis today

    Science.gov (United States)

    FONAGY, PETER

    2003-01-01

    The paper discusses the precarious position of psychoanalysis, a therapeutic approach which historically has defined itself by freedom from constraint and counted treatment length not in terms of number of sessions but in terms of years, in today's era of empirically validated treatments and brief structured interventions. The evidence that exists for the effectiveness of psychoanalysis as a treatment for psychological disorder is reviewed. The evidence base is significant and growing, but less than might meet criteria for an empirically based therapy. The author goes on to argue that the absence of evidence may be symptomatic of the epistemic difficulties that psychoanalysis faces in the context of 21st century psychiatry, and examines some of the philosophical problems faced by psychoanalysis as a model of the mind. Finally some changes necessary in order to ensure a future for psychoanalysis and psychoanalytic therapies within psychiatry are suggested. PMID:16946899

  8. An assessment of long term ecosystem research activities across European socio-ecological gradients

    NARCIS (Netherlands)

    Metzger, M.J.; Bunce, R.G.H.; Eupen, van M.; Mirtl, M.

    2010-01-01

    Integration of European long term ecosystem research (LTER) would provide important support for the management of the pan-European environment and ecosystems, as well as international policy commitments. This does require appropriate coverage of Europe and standardised frameworks and research

  9. Biofilm as a bioindicator of Cr VI pollution in the Lotic Ecosystems

    Science.gov (United States)

    Kurniawan, A.; Sukandar; Satriya, C.; Guntur

    2018-04-01

    Biofilm is ubiquitous in aquatic ecosystems such as river. Biofilm have been reported to have high sorption capacities that promote the accumulation of nutrient ions inside biofilm matrix. The ion that can be accumulated inside the biofilm is not only nutrient ions but also other ions such as heavy metal ions. The pollution of heavy metal ions emerge as one of the biggest aquatic ecosystem problems. Thus, the effort to monitor the heavy metal pollution in the aquatic ecosystem in the aquatic ecosystems is needed. The difficulty to monitor the water pollution particularly in the lotic ecosystems is mainly related to the water flow. Therefore, the utilization of indicator of pollution in such ecosystem is fundamentally important. The present study investigated the accumulation of Cr VI inside biofilm matrices in the river ecosystems in order to develop biofilm as a bioindicator for pollution in the lotic ecosystems. The result indicates that biofilm can accumulate Cr VI from the surrounding water and reserve the ion. According to the result of this study, biofilm is a promising bioindicator to monitor the Cr VI pollution in the lotic ecosystems.

  10. Secondary School Students' Environmental Concerns and Attitudes toward Forest Ecosystem Services: Implications for Biodiversity Education

    Science.gov (United States)

    Torkar, Gregor

    2016-01-01

    Alarming declines in biodiversity have encouraged scientists to begin promoting the idea of the services ecosystems offer to humans in order to gain support for conservation. The concept of ecosystem services is designed to communicate societal dependence on various natural ecosystems. Schools play an important role in educating students to be…

  11. Mapping monetary values of ecosystem services in support of developing ecosystem accounts

    NARCIS (Netherlands)

    Sumarga, Elham; Hein, Lars; Edens, Bram; Suwarno, Aritta

    2015-01-01

    Ecosystem accounting has been proposed as a comprehensive, innovative approach to natural capital accounting, and basically involves the biophysical and monetary analysis of ecosystem services in a national accounting framework. Characteristic for ecosystem accounting is the spatial approach

  12. Maximum entropy models of ecosystem functioning

    International Nuclear Information System (INIS)

    Bertram, Jason

    2014-01-01

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example

  13. Maximum entropy models of ecosystem functioning

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Jason, E-mail: jason.bertram@anu.edu.au [Research School of Biology, The Australian National University, Canberra ACT 0200 (Australia)

    2014-12-05

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.

  14. The Importance of Uncertainty and Sensitivity Analysis in Process-based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems — Selected Papers from a Workshop Organized by the International Society for Ecological Modelling (ISEM) at the Third Biennal Meeting of the International Environmental Modelling and Software Society (IEMSS) in Burlington, Vermont, USA, August 9-13, 2006

    Science.gov (United States)

    Larocque, Guy R.; Bhatti, Jagtar S.; Liu, Jinxun; Ascough, James C.; Gordon, Andrew M.

    2008-01-01

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. They address many basic issues of ecosystems structure and functioning, such as the role of internal feedback in ecosystem dynamics. The critical factor in these phenomena is scale, as these processes operate at scales from the minute (e.g. particulate pollution impacts on trees and other organisms) to the global (e.g. climate change). Research efforts remain important to improve the capability of such models to better represent the dynamics of terrestrial ecosystems, including the C, nutrient, (e.g. N) and water cycles. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they make realistic predictions when used appropriately. However, decision makers must be aware of their limitations by having the opportunity to evaluate the uncertainty associated with process-based models (Smith and Heath, 2001 and Allen et al., 2004). The variation in scale of issues currently being addressed by modelling efforts makes the evaluation of uncertainty a daunting task.

  15. Mapping Cumulative Impacts of Human Activities on Marine Ecosystems

    OpenAIRE

    , Seaplan

    2018-01-01

    Given the diversity of human uses and natural resources that converge in coastal waters, the potential independent and cumulative impacts of those uses on marine ecosystems are important to consider during ocean planning. This study was designed to support the development and implementation of the 2009 Massachusetts Ocean Management Plan. Its goal was to estimate and visualize the cumulative impacts of human activities on coastal and marine ecosystems in the state and federal waters off of Ma...

  16. Understanding the individual to implement the ecosystem approach to fisheries management.

    Science.gov (United States)

    Ward, Taylor D; Algera, Dirk A; Gallagher, Austin J; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S; McKenzie, David J; Metcalfe, Julian D; Peck, Myron A; Vu, Maria; Cooke, Steven J

    2016-01-01

    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.

  17. Savanna ecosystem project - progress report 1974/75

    CSIR Research Space (South Africa)

    Hirst, SM

    1975-12-01

    Full Text Available The period under review was devoted essentially to a pilot study of the Burked ecosystem, which aimed at an initial, albeit crude, quantitative appraisal of the total system to define the overall structure and the most important energy and material...

  18. After the Resistance: The Alamo Today

    Centers for Disease Control (CDC) Podcasts

    2014-09-23

    Byron Breedlove reads his essay After the Resistance: The Alamo Today about the Alamo and emerging disease resistance.  Created: 9/23/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/20/2014.

  19. Developing micro-level urban ecosystem indicators for sustainability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Dizdaroglu, Didem, E-mail: dizdaroglu@bilkent.edu.tr

    2015-09-15

    Sustainability assessment is increasingly being viewed as an important tool to aid in the shift towards sustainable urban ecosystems. An urban ecosystem is a dynamic system and requires regular monitoring and assessment through a set of relevant indicators. An indicator is a parameter which provides information about the state of the environment by producing a quantitative value. Indicator-based sustainability assessment needs to be considered on all spatial scales to provide efficient information of urban ecosystem sustainability. The detailed data is necessary to assess environmental change in urban ecosystems at local scale and easily transfer this information to the national and global scales. This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. The proposed indicator framework measures the sustainability performance of urban ecosystem in 3 main categories including: natural environment, built environment, and socio-economic environment which are made up of 9 sub-categories, consisting of 23 indicators. This paper also describes theoretical foundations for the selection of each indicator with reference to the literature [Turkish] Highlights: • As the impacts of environmental problems have multi-scale characteristics, sustainability assessment needs to be considered on all scales. • The detailed data is necessary to assess local environmental change in urban ecosystems to provide insights into the national and global scales. • This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. • This paper also describes theoretical foundations for the selection of each indicator with reference to the literature.

  20. The limnic ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM-Site

    International Nuclear Information System (INIS)

    Norden, Sara; Soederbaeck, Bjoern; Andersson, Eva

    2008-11-01

    The overall objective of this report is to provide a thorough description of the limnic ecosystems at both Forsmark and Laxemar-Simpevarp. This information may be used in the Safety Assessment and as a basis for the Environmental Impact Assessment. Three aims were set up for the report: 1) to characterize and describe the limnic ecosystems today and in the past in the Forsmark and Laxemar-Simpevarp areas and compare these ecosystems with limnic ecosystems in other areas; 2) to evaluate and visualize major pools, fluxes and sinks of elements within the limnic ecosystems; and finally 3) to describe human impact on the limnic ecosystems. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar-Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components, water chemistry, comparisons with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. The Forsmark regional model area contains more than 20 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in

  1. Novel urban ecosystems, biodiversity, and conservation

    International Nuclear Information System (INIS)

    Kowarik, Ingo

    2011-01-01

    With increasing urbanization the importance of cities for biodiversity conservation grows. This paper reviews the ways in which biodiversity is affected by urbanization and discusses the consequences of different conservation approaches. Cities can be richer in plant species, including in native species, than rural areas. Alien species can lead to both homogenization and differentiation among urban regions. Urban habitats can harbor self-sustaining populations of rare and endangered native species, but cannot replace the complete functionality of (semi-)natural remnants. While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a paradigm shift towards considering the whole range of urban ecosystems. Although conservation attitudes may be challenged by the novelty of some urban ecosystems, which are often linked to high numbers of nonnative species, it is promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation. - Highlights: → This paper reviews biotic responses to urbanization and urban conservation approaches. → Cities may be rich in both native and nonnative species. → Urban habitats cannot replace the functionality of natural remnants. → However, even novel urban habitats may harbour rare and endangered species. → Conservation approaches should consider the perspective of novel urban ecosystems. - This paper reviews the ways in which biodiversity is affected by urbanization and argues for expanding urban conservation approaches.

  2. Novel urban ecosystems, biodiversity, and conservation

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, Ingo, E-mail: kowarik@tu-berlin.de [Department of Ecology, Technische Universitaet Berlin, Rothenburgstr. 12, D 12165 Berlin (Germany)

    2011-08-15

    With increasing urbanization the importance of cities for biodiversity conservation grows. This paper reviews the ways in which biodiversity is affected by urbanization and discusses the consequences of different conservation approaches. Cities can be richer in plant species, including in native species, than rural areas. Alien species can lead to both homogenization and differentiation among urban regions. Urban habitats can harbor self-sustaining populations of rare and endangered native species, but cannot replace the complete functionality of (semi-)natural remnants. While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a paradigm shift towards considering the whole range of urban ecosystems. Although conservation attitudes may be challenged by the novelty of some urban ecosystems, which are often linked to high numbers of nonnative species, it is promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation. - Highlights: > This paper reviews biotic responses to urbanization and urban conservation approaches. > Cities may be rich in both native and nonnative species. > Urban habitats cannot replace the functionality of natural remnants. > However, even novel urban habitats may harbour rare and endangered species. > Conservation approaches should consider the perspective of novel urban ecosystems. - This paper reviews the ways in which biodiversity is affected by urbanization and argues for expanding urban conservation approaches.

  3. Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

    Science.gov (United States)

    Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.

    2012-01-01

    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440

  4. Making eco logic and models work : An integrative approach to lake ecosystem modelling

    NARCIS (Netherlands)

    Kuiper, Jan Jurjen

    2016-01-01

    Dynamical ecosystem models are important tools that can help ecologists understand complex systems, and turn understanding into predictions of how these systems respond to external changes. This thesis revolves around PCLake, an integrated ecosystem model of shallow lakes that is used by both

  5. E-learning. Today and tomorrow

    International Nuclear Information System (INIS)

    Gelbke, Silvana

    2010-01-01

    Today, new technologies revolutionize the way of handling information, exchanging knowledge and learning. The definition of the term ''e-learning'' mostly comprehends teaching and learning using a range of electronic media (Internet, CD-ROMs). However, further differentiation is necessary to describe the entire spectrum of methods included in this term. These different approaches are reflected in their implementation by the companies presented. (orig.)

  6. Planktonic algae and cyanoprokaryotes as indicators of ecosystem ...

    African Journals Online (AJOL)

    Planktonic algae and cyanoprokaryotes as indicators of ecosystem quality in the Mooi River system in the North-West Province, South Africa. ... is important for maintaining the quality of potable water of Potchefstroom and surrounding areas.

  7. Ecosystem Under Construction: An Action Research Study on Entrepreneurship in a Business Ecosystem

    Directory of Open Access Journals (Sweden)

    Leni Kuivaniemi

    2012-06-01

    Full Text Available In recent years, we have seen increasing interest in new service concepts that take advantage of the capabilities of business ecosystems instead of single companies. In this article, we describe how a business ecosystem begins to develop around a service business idea proposed by an entrepreneur. We aim to recognize the different domains of players that are or should be involved in the ecosystem while it is under construction. The article concludes with an ecosystem model consisting of six sub-ecosystems having different change drivers and clockspeeds.

  8. Review: Mangrove ecosystem in Java: 2. Restoration

    Directory of Open Access Journals (Sweden)

    PURIN CANDRA PURNAMA

    2004-07-01

    Full Text Available R E V I E W:Ekosistem Mangrove di Jawa: 2. RestorasiThe restoration of mangroves has received a lot of attentions world wide for several reasons. Mangrove ecosystem is very important in term of socio-economic and ecology functions. Because of its functions, wide range of people paid attention whenever mangrove restoration taken place. Mangrove restoration potentially increases mangrove resource value, protect the coastal area from destruction, conserve biodiversity, fish production and both of directly and indirectly support the life of surrounding people. This paper outlines the activities of mangrove restoration on Java island. The extensive research has been carried out on the ecology, structure and functioning of the mangrove ecosystem. However, the findings have not been interpreted in a management framework, thus mangrove forests around the world continue to be over-exploited, converted to aquaculture ponds, and polluted. We strongly argue that links between research and sustainable management of mangrove ecosystem should be established.

  9. AN ECOSYSTEM PERSPECTIVE ON ASSET MANAGEMENT INFORMATION

    Directory of Open Access Journals (Sweden)

    Lasse METSO

    2017-07-01

    Full Text Available Big Data and Internet of Things will increase the amount of data on asset management exceedingly. Data sharing with an increased number of partners in the area of asset management is important when developing business opportunities and new ecosystems. An asset management ecosystem is a complex set of relationships between parties taking part in asset management actions. In this paper, the current barriers and benefits of data sharing are identified based on the results of an interview study. The main benefits are transparency, access to data and reuse of data. New services can be created by taking advantage of data sharing. The main barriers to sharing data are an unclear view of the data sharing process and difficulties to recognize the benefits of data sharing. For overcoming the barriers in data sharing, this paper applies the ecosystem perspective on asset management information. The approach is explained by using the Swedish railway industry as an example.

  10. An Ecosystem Perspective On Asset Management Information

    Science.gov (United States)

    Metso, Lasse; Kans, Mirka

    2017-09-01

    Big Data and Internet of Things will increase the amount of data on asset management exceedingly. Data sharing with an increased number of partners in the area of asset management is important when developing business opportunities and new ecosystems. An asset management ecosystem is a complex set of relationships between parties taking part in asset management actions. In this paper, the current barriers and benefits of data sharing are identified based on the results of an interview study. The main benefits are transparency, access to data and reuse of data. New services can be created by taking advantage of data sharing. The main barriers to sharing data are an unclear view of the data sharing process and difficulties to recognize the benefits of data sharing. For overcoming the barriers in data sharing, this paper applies the ecosystem perspective on asset management information. The approach is explained by using the Swedish railway industry as an example.

  11. Redefinition and global estimation of basal ecosystem respiration rate

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenping [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Luo, Yiqi [Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA; Li, Xianglan [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Liu, Shuguang; Yu, Guirui [Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Zhou, Tao [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Bahn, Michael [Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Black, Andy [Faculty of Land and Food Systems, University of British Columbia, Vancouver, B. C., Canada; Desai, Ankur R. [Atmospheric and Oceanic Sciences Department, Center for Climatic Research, Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cescatti, Alessandro [Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy; Marcolla, Barbara [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Jacobs, Cor [Alterra, Earth System Science-Climate Change, Wageningen University, Wageningen, Netherlands; Chen, Jiquan [Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, Ohio, USA; Aurela, Mika [Climate and Global Change Research, Finnish Meteorological Institute, Helsinki, Finland; Bernhofer, Christian [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Gielen, Bert [Department of Biology, University of Antwerp, Wilrijk, Belgium; Bohrer, Gil [Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA; Cook, David R. [Climate Research Section, Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA; Dragoni, Danilo [Department of Geography, Indiana University, Bloomington, Indiana, USA; Dunn, Allison L. [Department of Physical and Earth Sciences, Worcester State College, Worcester, Massachusetts, USA; Gianelle, Damiano [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Grünwald, Thomas [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Ibrom, Andreas [Risø DTU National Laboratory for Sustainable Energy, Biosystems Division, Technical University of Denmark, Roskilde, Denmark; Leclerc, Monique Y. [Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA; Lindroth, Anders [Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, Sweden; Liu, Heping [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA; Marchesini, Luca Belelli [Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy; Montagnani, Leonardo; Pita, Gabriel [Department of Mechanical Engineering, Instituto Superior Técnico, Lisbon, Portugal; Rodeghiero, Mirco [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Rodrigues, Abel [Unidade de Silvicultura e Produtos Florestais, Instituto Nacional dos Recursos Biológicos, Oeiras, Portugal; Starr, Gregory [Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA; Stoy, Paul C. [Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA

    2011-10-13

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ~3°S to ~70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual

  12. The value of producing food, energy, and ecosystem services within an agro-ecosystem

    DEFF Research Database (Denmark)

    Porter, John Roy; Constanza, Robert; Sandhu, Harpinder

    2009-01-01

    Ecosystem Services within an Agro- Ecosystem Agricultural ecosystems produce food, fiber, and nonmarketed ecosystem services (ES). Agriculture also typically involves high negative external costs associated with, for example, fossil fuel use. We estimated, via fieldscale ecological monitoring...... and economic value-transfer methods, the market and nonmarket ES value of a combined food and energy (CFE) agro-ecosystem that simultaneously produces food, fodder, and bioenergy. Such novel CFE agro-ecosystems can provide a significantly increased net crop, energy, and nonmarketed ES compared...... with conventional agriculture, and require markedly less fossil-based inputs. Extrapolated to the European scale, the value of nonmarket ES from the CFE system exceeds current European farm subsidy payments. Such integrated food and bioenergy systems can thus provide environmental value for money for European Union...

  13. Logging cuts the functional importance of invertebrates in tropical rainforest.

    Science.gov (United States)

    Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C

    2015-04-13

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.

  14. Logging cuts the functional importance of invertebrates in tropical rainforest

    Science.gov (United States)

    Ewers, Robert M.; Boyle, Michael J. W.; Gleave, Rosalind A.; Plowman, Nichola S.; Benedick, Suzan; Bernard, Henry; Bishop, Tom R.; Bakhtiar, Effendi Y.; Chey, Vun Khen; Chung, Arthur Y. C.; Davies, Richard G.; Edwards, David P.; Eggleton, Paul; Fayle, Tom M.; Hardwick, Stephen R.; Homathevi, Rahman; Kitching, Roger L.; Khoo, Min Sheng; Luke, Sarah H.; March, Joshua J.; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V.; Sharp, Adam C.; Snaddon, Jake L.; Stork, Nigel E.; Struebig, Matthew J.; Wearn, Oliver R.; Yusah, Kalsum M.; Turner, Edgar C.

    2015-01-01

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801

  15. Response diversity determines the resilience of ecosystems to environmental change.

    Science.gov (United States)

    Mori, Akira S; Furukawa, Takuya; Sasaki, Takehiro

    2013-05-01

    A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. 'species richness') may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include 'response diversity', describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio-temporal complementarity among species, leading to long-term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from

  16. Ecosystem Health Assessment of Mining Cities Based on Landscape Pattern

    Science.gov (United States)

    Yu, W.; Liu, Y.; Lin, M.; Fang, F.; Xiao, R.

    2017-09-01

    Ecosystem health assessment (EHA) is one of the most important aspects in ecosystem management. Nowadays, ecological environment of mining cities is facing various problems. In this study, through ecosystem health theory and remote sensing images in 2005, 2009 and 2013, landscape pattern analysis and Vigor-Organization-Resilience (VOR) model were applied to set up an evaluation index system of ecosystem health of mining city to assess the healthy level of ecosystem in Panji District Huainan city. Results showed a temporal stable but high spatial heterogeneity landscape pattern during 2005-2013. According to the regional ecosystem health index, it experienced a rapid decline after a slight increase, and finally it maintained at an ordinary level. Among these areas, a significant distinction was presented in different towns. It indicates that the ecosystem health of Tianjijiedao town, the regional administrative centre, descended rapidly during the study period, and turned into the worst level in the study area. While the Hetuan Town, located in the northwestern suburb area of Panji District, stayed on a relatively better level than other towns. The impacts of coal mining collapse area, land reclamation on the landscape pattern and ecosystem health status of mining cities were also discussed. As a result of underground coal mining, land subsidence has become an inevitable problem in the study area. In addition, the coal mining subsidence area has brought about the destruction of the farmland, construction land and water bodies, which causing the change of the regional landscape pattern and making the evaluation of ecosystem health in mining area more difficult. Therefore, this study provided an ecosystem health approach for relevant departments to make scientific decisions.

  17. Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation

    Science.gov (United States)

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Bremigan, Mary T.; Wagner, Tyler; Stow, Craig A.

    2010-01-01

    Governmental entities are responsible for managing and conserving large numbers of lake, river, and wetland ecosystems that can be addressed only rarely on a case-by-case basis. We present a system for predictive classification modeling, grounded in the theoretical foundation of landscape limnology, that creates a tractable number of ecosystem classes to which management actions may be tailored. We demonstrate our system by applying two types of predictive classification modeling approaches to develop nutrient criteria for eutrophication management in 1998 north temperate lakes. Our predictive classification system promotes the effective management of multiple ecosystems across broad geographic scales by explicitly connecting management and conservation goals to the classification modeling approach, considering multiple spatial scales as drivers of ecosystem dynamics, and acknowledging the hierarchical structure of freshwater ecosystems. Such a system is critical for adaptive management of complex mosaics of freshwater ecosystems and for balancing competing needs for ecosystem services in a changing world.

  18. The continental shelf benthic ecosystem: Current status, agents for change and future prospects

    OpenAIRE

    Hall, S.J.

    2002-01-01

    Metadata only record Continental shelf benthic ecosystems play an important role in the economy of many coastal states through the provision of food, non-living resources and through control of climate. Changes in the status of these ecosystems, through either natural or human-induced environmental drivers can be expected to have important economic and social consequences. Agents that could induce change include climate and oceanography, hydrology (river discharge), land-use and waste disp...

  19. Different cesium-137 transfers to forest and stream ecosystems

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N.; Iwamoto, Aimu; Okada, Kengo

    2016-01-01

    Understanding the mechanisms of "1"3"7Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of "1"3"7Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of "1"3"7Cs in stream litter was significantly lower than in forest litter, the result of "1"3"7Cs leaching from litter in stream water. The difference in "1"3"7Cs concentrations between the two types of litter was reflected in the "1"3"7Cs concentrations in the animal community. While the importance of "1"3"7Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of "1"3"7Cs through terrestrial and aquatic ecosystems, and that "1"3"7Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem. - Highlights: • Detrital-based food web structure was observed in both forest and stream ecosystems. • The "1"3"7Cs concentration in litter was 4 times lower in stream than in forest. • The difference of "1"3"7Cs concentration in litter reflected in animal contamination. • "1"3"7Cs leaching from litter decreases contamination level of stream food web. - Leaching from litter in stream decreases "1"3"7Cs concentration in litter, and the contamination level of food web in stream ecosystem is lower than that in adjacent forest ecosystem.

  20. Unleashing the IT Potential in the Complex Digital Business Ecosystem of International Trade

    DEFF Research Database (Denmark)

    Jensen, Thomas; Tan, Yao-Hua; Bjørn-Andersen, Niels

    2014-01-01

    The digital ecosystem for import of goods in international trade is analyzed, in-efficiencies are identified and their possible causes are revealed. The business ecosystem is rather complex and interlocked with many actors and various rules and regulations. It is supported by a digital business...

  1. Church and art: from the second Vatican Council to today

    Directory of Open Access Journals (Sweden)

    Mauro Mantovani

    2014-12-01

    Full Text Available This text deals with the relationship between the Catholic Church and art from the Second Vatican Council to today. For this reason it considers some of the most important interventions about art by recent popes (Montini - Paul VI; Wojtyła - John Paul II; Ratzinger - Benedict XVI, Bergoglio - Francis also mentioning some activities that the Holy See is currently promoting. These pages are intended to offer a contribution, mainly theoretical, for those who are working in the field of the planning and promotion of artistic and cultural events, especially if these events are related to religious heritage.

  2. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales

    Science.gov (United States)

    Feld, C.K.; Da Silva, P.M.; Sousa, J.P.; De Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; Partel, M.; Rombke, J.; Sandin, Leonard; Jones, K. Bruce; Harrison, P.

    2009-01-01

    According to the Millennium Ecosystem Assessment, common indicators are needed to monitor the loss of biodiversity and the implications for the sustainable provision of ecosystem services. However, a variety of indicators are already being used resulting in many, mostly incompatible, monitoring systems. In order to synthesise the different indicator approaches and to detect gaps in the development of common indicator systems, we examined 531 indicators that have been reported in 617 peer-reviewed journal articles between 1997 and 2007. Special emphasis was placed on comparing indicators of biodiversity and ecosystem services across ecosystems (forests, grass- and shrublands, wetlands, rivers, lakes, soils and agro-ecosystems) and spatial scales (from patch to global scale). The application of biological indicators was found most often focused on regional and finer spatial scales with few indicators applied across ecosystem types. Abiotic indicators, such as physico-chemical parameters and measures of area and fragmentation, are most frequently used at broader (regional to continental) scales. Despite its multiple dimensions, biodiversity is usually equated with species richness only. The functional, structural and genetic components of biodiversity are poorly addressed despite their potential value across habitats and scales. Ecosystem service indicators are mostly used to estimate regulating and supporting services but generally differ between ecosystem types as they reflect ecosystem-specific services. Despite great effort to develop indicator systems over the past decade, there is still a considerable gap in the widespread use of indicators for many of the multiple components of biodiversity and ecosystem services, and a need to develop common monitoring schemes within and across habitats. Filling these gaps is a prerequisite for linking biodiversity dynamics with ecosystem service delivery and to achieving the goals of global and sub-global initiatives to halt

  3. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  4. Biophysical and sociocultural factors underlying spatial trade-offs of ecosystem services in semiarid watersheds

    Directory of Open Access Journals (Sweden)

    Marina García-Llorente

    2015-09-01

    Full Text Available Biophysical and social systems are linked to form social-ecological systems whose sustainability depends on their capacity to absorb uncertainty and cope with disturbances. In this study, we explored the key biophysical and socio-cultural factors underlying ecosystem service supply in two semiarid watersheds of southern Spain. These included variables associated with the role that freshwater flows and biodiversity play in securing the system's capacity to sustain essential ecosystem services and their relationship with social demand for services, local water governance, and land-use intensification. Our results reveal the importance of considering the invisible dimensions of water and biodiversity, i.e. green freshwater flows and trait-based indicators, because of their relevance to the supply of ecosystem services. Furthermore, they uncover the importance of traditional irrigation canals, a local water governance system, in maintaining the ecosystems' capacity to supply services. The study also highlights the complex trade-offs that occur because of the spatial mismatch between ecosystem service supply (upstream and ecosystem service demand (downstream in watersheds. Finally, we found that land-use intensification generally resulted in losses of the biophysical factors that underpin the supply of some ecosystem services, increases in social demand for less diversified services, and the abandonment of local governance practices. Attempts to manage social-ecological systems toward sustainability at the local scale should identify the key biophysical and socio-cultural factors that are essential for maintaining ecosystem services and should recognize existing interrelationships between them. Land-use management should also take into account ecosystem service trade-offs and the consequences resulting from land-use intensification.

  5. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    Science.gov (United States)

    Yam, Rita S. W.; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-01-01

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%), but wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands. PMID:25860870

  6. Importance of including cultural practices in ecological restoration.

    Science.gov (United States)

    Wehi, Priscilla M; Lord, Janice M

    2017-10-01

    Ecosystems worldwide have a long history of use and management by indigenous cultures. However, environmental degradation can reduce the availability of culturally important resources. Ecological restoration aims to repair damage to ecosystems caused by human activity, but it is unclear how often restoration projects incorporate the return of harvesting or traditional life patterns for indigenous communities. We examined the incorporation of cultural use of natural resources into ecological restoration in the context of a culturally important but protected New Zealand bird; among award-winning restoration projects in Australasia and worldwide; and in the peer-reviewed restoration ecology literature. Among New Zealand's culturally important bird species, differences in threat status and availability for hunting were large. These differences indicate the values of a colonizing culture can inhibit harvesting by indigenous people. In Australasia among award-winning ecological restoration projects, restored areas beyond aesthetic or recreational use, despite many projects encouraging community participation. Globally, restoration goals differed among regions. For example, in North America, projects were primarily conservation oriented, whereas in Asia and Africa projects frequently focused on restoring cultural harvesting. From 1995 to 2014, the restoration ecology literature contained few references to cultural values or use. We argue that restoration practitioners are missing a vital component for reassembling functional ecosystems. Inclusion of sustainably harvestable areas within restored landscapes may allow for the continuation of traditional practices that shaped ecosystems for millennia, and also aid project success by ensuring community support. © 2017 Society for Conservation Biology.

  7. Forest Ecosystem Services and Eco-Compensation Mechanisms in China

    Science.gov (United States)

    Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin

    2011-12-01

    Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.

  8. Forest ecosystem services and eco-compensation mechanisms in China.

    Science.gov (United States)

    Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin

    2011-12-01

    Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.

  9. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO2 concentrations experiments imitating global change effects are therefore an important tool. This work....... Fluxes of CO2 from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO2 gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  10. Ecosystem services science, practice, and policy: Perspectives from ACES, A Community on Ecosystem Services

    Science.gov (United States)

    Shapiro, Carl D.; Arthaud, Greg; Casey, Frank; Hogan, Dianna M.

    2015-01-01

    Ecosystem services are at a crossroad. The natural capital needed to produce them is diminishing (Millennium Ecosystem Assessment, 2005). At the same time, the science relating to their identification, production, and valuation is advancing. Examples of ecosystem services applications are abundant in the literature. In addition, the concept of ecosystem services and its applications are attracting attention and are becoming more visible. The concept of ecosystem services, however, is still not routinely applied to many natural resource management decisions.

  11. Climate Change Vulnerability of Agro-Ecosystems: Does socio-economic factors matters?

    Science.gov (United States)

    Surendran Nair, S.; Preston, B. L.; King, A. W.; Mei, R.; Post, W. M.

    2013-12-01

    Climate variability and change has direct impacts on agriculture. Despite continual adaptation to climate as well as gains in technology innovation and adoption, agriculture is still vulnerable to changes in temperature and precipitation expected in coming decades. Generally, researchers use two major methodologies to understand the vulnerability of agro-ecosystems to climate change: process-based crop models and empirical models. However, these models are not yet designed to capture the influence of socioeconomic systems on agro-ecosystem processes and outcomes.. However, socioeconomic processes are an important factor driving agro-ecological responses to biophysical processes (climate, topography and soil), because of the role of human agency in mediating the response of agro-ecosystems to climate. We have developed a framework that integrates socioeconomic and biophysical characteristics of agro-ecosystems using cluster analysis and GIS tools. This framework has been applied to the U.S. Southeast to define unique socio-ecological domains for agriculture. The results demonstrate that socioeconomic characteristics are an important factor influencing agriculture production. These results suggest that the lack of attention to socioeconomic conditions and human agency in agro-ecological modeling creates a potential bias with respect to the representation of climate change impacts.

  12. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Directory of Open Access Journals (Sweden)

    Charlotte L. R. Payne

    2017-02-01

    Full Text Available Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  13. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Science.gov (United States)

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems. PMID:28218635

  14. Ecosystem Services from Edible Insects in Agricultural Systems: A Review.

    Science.gov (United States)

    Payne, Charlotte L R; Van Itterbeeck, Joost

    2017-02-17

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  15. BUSINESS ECOSYSTEMS VS BUSINESS DIGITAL ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Marinela Lazarica

    2006-05-01

    Full Text Available E-business is often described as the small organisations’ gateway to global business and markets. The adoption of Internet-based technologies for e-business is a continuous process, with sequential steps of evolution. The latter step in the adoption of Internet-based technologies for business, where the business services and the software components are supported by a pervasive software environment, which shows an evolutionary and self-organising behaviour are named digital business ecosystems. The digital business ecosystems are characterized by intelligent software components and services, knowledge transfer, interactive training frameworks and integration of business processes and e-government models.

  16. [Evaluation of ecosystem service and emergy of Wanshan Waters in Zhuhai, Guangdong Province, China].

    Science.gov (United States)

    Qin, Chuan-xin; Chen, Pi-mao; Zhang, An-kai; Yuan, Hua; Li, Guo-ying; Shu, Li-ming; Zhou, Yan-bo; Li, Xiao-guo

    2015-06-01

    The method for monetary value and emergy value analysis of ecosystem service was used in this paper to analyze the change in value of marine ecosystem service of Wanshan District, Zhuhai from 2007 to 2012. The result showed that the monetary value and emergy value of marine ecosystem service of Wanshan District, Zhuhai rose to 11512840000 yuan and 1.97 x 10(22) sej from 7721630000 yuan and 1.04 x 10(22) sej, respectively. Both monetary value and emergy value could forecast the change in the value of marine ecosystem service, but they reflected different value structures and ecological energy, which could be used to more objectively evaluate the ecosystem service. Ecological civilization development, as an inherent driving force to impel the development of marine ecosystem service structure, was important for rational exploitation of marine resources and optimization of marine ecosystem service.

  17. Green Infrastructure to Improve Ecosystem Services in the Landscape Urban Regeneration

    Science.gov (United States)

    Semeraro, Teodoro; Aretano, Roberta; Pomes, Alessandro

    2017-10-01

    The concept of Green Infrastructure (GI) emphasises the quality as well as quantity of urban, peri-urban greens spaces and natural areas, their multifunctional role, and the importance of interconnections between habitats. If a Green Infrastructure is proactively planned, developed, and maintained it has the potential to guide urban development by providing a framework for economic growth and nature conservation. GI includes parks and reserves, sporting fields, riparian areas like stream and river banks, greenways and trails, community gardens, street trees, and nature conservation areas, as well as less conventional spaces such as green walls, green alleyways, and cemeteries. Today we have to face new challenges about increasing energy use, decreasing water resources, limited spaces and ecological preservation. This problem must be solved in a sustainable way using innovative GI that combine technology with landscape design by enhancing ecosystem services provision. The aim of this research is to evaluate and develop multifunctional role of GI in terms of biodiversity and ecosystem services’ enhancement by taking into account two case study in southern Italy: Constructed Treatment and photovoltaic energy plants. An effective way of tackling water resource problem is to use Constructed Treatment Wetlands (CTW) as low-cost alternative to conventional secondary or tertiary wastewater treatment. For this purpose, an annual monitoring of fauna and vegetation was carried out in order to identify species of national and international interest strongly related to the new habitats availability. Results have shown the ability of CTW in providing ancillary benefits, well beyond the primary aim of water purification, such as sustaining wildlife habitats and biodiversity at local and global scales, as well as its potential role in terms of recreational and educational opportunities. In the second case, we developed a GI project idea that proposes to evolve the photovoltaic

  18. Public preferences for ecosystem services on exurban landscapes: A case study from the Mid-Atlantic, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Duke

    2016-07-01

    Full Text Available This paper reports data from a residential landscape preference study conducted in Delaware, USA. The researchers constructed an ecologically designed exurban residential landscape, which delivered 20 new environmental and human-related impacts, including 7 that delivered ecosystem services. Ecosystem services included impacts such as improved flood control and enhanced plant diversity. Using pictures before and after the intervention, an intercept survey of 105 non-neighboring residents estimated whether the 20 impacts positively, negatively, or did not affect the respondents’ household wellbeing. The public found that most landscape-intervention impacts had a positive effect on their quality of life, especially those impacts involving ecosystem services. All but one ecosystem service were found to be strong amenities and the other (moving indoor activities outside was an amenity. However, the landscape intervention delivered one clear disamenity: increased undesirable wildlife. Respondents also identified what impacts were the most important in affecting their welfare: undesirable wildlife (negative; flood control (positive; and water quality (positive. Ecosystem services accounted for 41.6% of the public’s importance rating, while undesirable wildlife was 12.9%. A planning process seeking more ecosystem services from residential landscapes should focus on all the most important drivers of preference, if it is to be accepted by residents.

  19. Progress and challenges in the development of ecosystem accounting as a tool to analyse ecosystem capital

    NARCIS (Netherlands)

    Hein, Lars; Obst, Carl; Edens, Bram; Remme, R.P.

    2015-01-01

    Ecosystem accounting has been developed as a systematic approach to incorporate measures of ecosystem services and ecosystem assets into an accounting structure. Ecosystem accounting involves spatially explicit modelling of ecosystem services and assets, in both physical and monetary terms. A

  20. Mapping Cultural Ecosystem Services in Vilnius using Hot-Spot Analysis.

    Science.gov (United States)

    Pereira, Paulo; Depellegrin, Daniel; Egarter-Vigl, Lukas; Oliva, Marc; Misiune, Ieva; Keesstra, Saskia; Estebaranz, Ferran; Cerda, Artemi

    2017-04-01

    Cultural services in urban areas are very important to promote tourism activities and develop the economy. These activities are fundamental for the sustainability of the urban areas since can represent an important monetary source. However, one of the major threats to the sustainability of cultural services is the high amount of visitants that can lead to a degradation of the services provided (Depellegrin et al., 2016). Mapping the potential of cultural ecosystems services is fundamental to assess the capacity that the territory have to provide it. Previous works used land use classification to identify the ecosystem services potential, and revealed to be a good methodology to attribute to each type of land use a specific capacity (Burkhard et al., 2008). The objective of this work is to map the cultural services in Vilnius area using a hot-spot analysis. Ecosystem services potential was assessed using the matrix developed by Burkhard et al. (2009), which ranks ES capacity from 0= no capacity to 5=very high relevant capacity to a different land use type. The results showed that with the exception of Cultural Heritage ecosystem services that had a random pattern (Z-score=0.62, pTourism (Z-score=4.02, pReligious and Spiritual (Z-score=3.80, pTourism ecosystem services had the maximum spatial correlation at the distance of 5125.12 m, Landscape Aesthetics at 3495.70 m, Knowledge Systems at 5218.66 m, Religious and Spiritual at 3495.70 m, Cultural Heritage at 6746.17 m and Natural Heritage at 6205.82 m. This showed that the cultural services studied have a different spatial correlation. References Burkhard B, Kroll F, Müller F, Windhorst W. 2009. Landscapes' capacities to provide ecosystem services- a concept for land-cover based assessments. Landscape Online. 15, 1-22. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. Mapping Ecosystem Services potential in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455.

  1. How models can support ecosystem-based management of coral reefs

    Science.gov (United States)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they

  2. Rare species support vulnerable functions in high-diversity ecosystems.

    Science.gov (United States)

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  3. Major impacts of climate change on deep-sea benthic ecosystems

    Directory of Open Access Journals (Sweden)

    Andrew K. Sweetman

    2017-02-01

    Full Text Available The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units. O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction to further impact deep-seafloor ecosystems and discuss the possible societal implications.

  4. Global Ecosystem Restoration Index

    DEFF Research Database (Denmark)

    Fernandez, Miguel; Garcia, Monica; Fernandez, Nestor

    2015-01-01

    The Global ecosystem restoration index (GERI) is a composite index that integrates structural and functional aspects of the ecosystem restoration process. These elements are evaluated through a window that looks into a baseline for degraded ecosystems with the objective to assess restoration...

  5. Rights to ecosystem services

    NARCIS (Netherlands)

    Davidson, M.

    2014-01-01

    Ecosystem services are the benefits people obtain from ecosystems. Many of these services are provided outside the borders of the land where they are produced; this article investigates who is entitled to these non-excludable ecosystem services from two libertarian perspectives. Taking a

  6. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors

    International Nuclear Information System (INIS)

    Marek, Michal V.; Janous, Dalibor; Taufarova, Klara; Havrankova, Katerina; Pavelka, Marian; Kaplan, Veroslav; Markova, Irena

    2011-01-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. - Highlights: → Highest carbon sequestration potential in evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). → The final carbon gain of the grassland was negative (massive ecosystem respiration). → Climate is important factor of net primary productivity. → Carbon uptake is strongly affected by the ontogeny and a production strategy of ecosystem. - Identification of the apparent differences in the carbon storage by different ecosystem types.

  7. Fertilizing a Patient Engagement Ecosystem to Innovate Healthcare: Toward the First Italian Consensus Conference on Patient Engagement.

    Science.gov (United States)

    Graffigna, Guendalina; Barello, Serena; Riva, Giuseppe; Savarese, Mariarosaria; Menichetti, Julia; Castelnuovo, Gianluca; Corbo, Massimo; Tzannis, Alessandra; Aglione, Antonio; Bettega, Donato; Bertoni, Anna; Bigi, Sarah; Bruttomesso, Daniela; Carzaniga, Claudia; Del Campo, Laura; Donato, Silvia; Gilardi, Silvia; Guglielmetti, Chiara; Gulizia, Michele; Lastretti, Mara; Mastrilli, Valeria; Mazzone, Antonino; Muttillo, Giovanni; Ostuzzi, Silvia; Perseghin, Gianluca; Piana, Natalia; Pitacco, Giuliana; Polvani, Gianluca; Pozzi, Massimo; Provenzi, Livio; Quaglini, Giulia; Rossi, Mariagrazia; Varese, Paola; Visalli, Natalia; Vegni, Elena; Ricciardi, Walter; Bosio, A Claudio

    2017-01-01

    Currently we observe a gap between theory and practices of patient engagement. If both scholars and health practitioners do agree on the urgency to realize patient engagement, no shared guidelines exist so far to orient clinical practice. Despite a supportive policy context, progress to achieve greater patient engagement is patchy and slow and often concentrated at the level of policy regulation without dialoguing with practitioners from the clinical field as well as patients and families. Though individual clinicians, care teams and health organizations may be interested and deeply committed to engage patients and family members in the medical course, they may lack clarity about how to achieve this goal. This contributes to a wide "system" inertia-really difficult to be overcome-and put at risk any form of innovation in this filed. As a result, patient engagement risk today to be a buzz words, rather than a real guidance for practice. To make the field clearer, we promoted an Italian Consensus Conference on Patient Engagement (ICCPE) in order to set the ground for drafting recommendations for the provision of effective patient engagement interventions. The ICCPE will conclude in June 2017. This document reports on the preliminary phases of this process. In the paper, we advise the importance of "fertilizing a patient engagement ecosystem": an oversimplifying approach to patient engagement promotion appears the result of a common illusion. Patient "disengagement" is a symptom that needs a more holistic and complex approach to solve its underlined causes. Preliminary principles to promote a patient engagement ecosystem are provided in the paper.

  8. Radio-capacity of ecosystems

    International Nuclear Information System (INIS)

    Kultakhmedov, Yu.; Kultakhmedova-Vyshnyakova, V.

    1997-01-01

    This paper consider a universal approach to ecosystems of different types, based on representation of their radio-capacity. The concept of ecosystem includes reproduction of components (bio-productivity) and conditions such as maintaining of environment quality. Radio-capacity in the case of radionuclide pollution appears in accumulation and redistribution of radionuclides in the ecosystem. As a result the radionuclides are redistributed and buried in soil or lake bottom sediments. Estimation models for the radio-capacity of water and terrestrial ecosystems are represented. The calculations of the radio-capacity factor of water ecosystems are performed, and the high radio-capacity of a freshwater reservoir (F=0.6-0.8) and extremely high radio-capacity of a reservoir cascade (F c =0.99) is shown material from the Dnieper's cascade reservoirs. The methods of radio-capacity estimation of agroecosystems, wood and marine ecosystems are developed. (authors)

  9. Modeling for regional ecosystem sustainable development under uncertainty — A case study of Dongying, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K., E-mail: zhangkaibetter@126.com; Li, Y.P., E-mail: yongping.li@iseis.org; Huang, G.H., E-mail: gordon.huang@uregina.ca; You, L., E-mail: youli_ncepu@126.com; Jin, S.W., E-mail: jinshuwei2014@126.com

    2015-11-15

    In this study, a superiority–inferiority two-stage stochastic programming (STSP) method is developed for planning regional ecosystem sustainable development. STSP can tackle uncertainties expressed as fuzzy sets and probability distributions; it can be used to analyze various policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. STSP is applied to a real case of planning regional ecosystem sustainable development in the City of Dongying, where ecosystem services valuation approaches are incorporated within the optimization process. Regional ecosystem can provide direct and indirect services and intangible benefits to local economy. Land trading mechanism is introduced for planning the regional ecosystem's sustainable development, where wetlands are buyers who would protect regional ecosystem components and self-organization and maintain its integrity. Results of regional ecosystem activities, land use patterns, and land trading schemes have been obtained. Results reveal that, although large-scale reclamation projects can bring benefits to the local economy development, they can also bring with negative effects to the coastal ecosystem; among all industry activities oil field is the major contributor with a large number of pollutant discharges into local ecosystem. Results also show that uncertainty has an important role in successfully launching such a land trading program and trading scheme can provide more effective manner to sustain the regional ecosystem. The findings can help decision makers to realize the sustainable development of ecological resources in the process of rapid industrialization, as well as the integration of economic and ecological benefits. - Highlights: • Superiority–inferiority two-stage stochastic programming (STSP) method is developed. • STSP can tackle uncertainties expressed as fuzzy sets and probability distributions. • STSP is applied to planning

  10. Modeling for regional ecosystem sustainable development under uncertainty — A case study of Dongying, China

    International Nuclear Information System (INIS)

    Zhang, K.; Li, Y.P.; Huang, G.H.; You, L.; Jin, S.W.

    2015-01-01

    In this study, a superiority–inferiority two-stage stochastic programming (STSP) method is developed for planning regional ecosystem sustainable development. STSP can tackle uncertainties expressed as fuzzy sets and probability distributions; it can be used to analyze various policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. STSP is applied to a real case of planning regional ecosystem sustainable development in the City of Dongying, where ecosystem services valuation approaches are incorporated within the optimization process. Regional ecosystem can provide direct and indirect services and intangible benefits to local economy. Land trading mechanism is introduced for planning the regional ecosystem's sustainable development, where wetlands are buyers who would protect regional ecosystem components and self-organization and maintain its integrity. Results of regional ecosystem activities, land use patterns, and land trading schemes have been obtained. Results reveal that, although large-scale reclamation projects can bring benefits to the local economy development, they can also bring with negative effects to the coastal ecosystem; among all industry activities oil field is the major contributor with a large number of pollutant discharges into local ecosystem. Results also show that uncertainty has an important role in successfully launching such a land trading program and trading scheme can provide more effective manner to sustain the regional ecosystem. The findings can help decision makers to realize the sustainable development of ecological resources in the process of rapid industrialization, as well as the integration of economic and ecological benefits. - Highlights: • Superiority–inferiority two-stage stochastic programming (STSP) method is developed. • STSP can tackle uncertainties expressed as fuzzy sets and probability distributions. • STSP is applied to planning

  11. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  12. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    Directory of Open Access Journals (Sweden)

    Christopher R Kelble

    Full Text Available There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society

  13. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    Science.gov (United States)

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  14. Monetary accounting of ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Edens, Bram; Schröter, Matthias; Hein, Lars

    2015-01-01

    Ecosystem accounting aims to provide a better understanding of ecosystem contributions to the economy in a spatially explicit way. Ecosystem accounting monitors ecosystem services and measures their monetary value using exchange values consistent with the System of National Accounts (SNA). We

  15. Biodiversity and ecosystem functioning in dynamic landscapes

    Science.gov (United States)

    Brose, Ulrich; Hillebrand, Helmut

    2016-01-01

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships

  16. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research

    Directory of Open Access Journals (Sweden)

    Andra Ioana. Milcu

    2013-09-01

    Full Text Available Cultural ecosystem services constitute a growing field of research that is characterized by an increasing number of publications from various academic disciplines. We conducted a semiquantitative review of publications explicitly dealing with cultural ecosystem services. Our aims were: (1 to provide an overview of the current state of research, (2 to classify the diversity of research approaches by identifying clusters of publications that address cultural ecosystem services in similar ways, and (3 to highlight some important challenges for the future of cultural ecosystem services research. We reviewed 107 publications and extracted 20 attributes describing their type and content, including methods, scales, drivers of change, and trade-offs between services. Using a cluster analysis on a subset of attributes we identified five groups of publications: Group 1, conceptual focus, deals with theoretical issues; Group 2, descriptive reviews, consists mostly of desktop studies; Group 3, localized outcomes, deals with case studies coming from different disciplines; Group 4, social and participatory, deals mainly with assessing preferences and perceptions; and Group 5, economic assessments, provides economic valuations. Emerging themes in cultural ecosystem services research relate to improving methods for cultural ecosystem services valuation, studying cultural ecosystem services in the context of ecosystem service bundles, and more clearly articulating policy implications. Based on our findings, we conclude that: (1 cultural ecosystem services are well placed as a tool to bridge gaps between different academic disciplines and research communities, (2 capitalizing on the societal relevance of cultural ecosystem services could help address real-world problems, and (3 cultural ecosystem services have the potential to foster new conceptual links between alternative logics relating to a variety of social and ecological issues.

  17. Modelling carbon cycle of agro-forest ecosystems in Lombardy (Italy

    Directory of Open Access Journals (Sweden)

    Colombo R

    2009-09-01

    Full Text Available In this paper we present a methodology for the estimation of Gross Primary Production (GPP, Net Primary Production (NPP and Net Ecosystem Production (NEP for the main agricultural and forest ecosystems of the Lombardia Region (Italy. The MOD17 model was parameterized according to the different agro-forestry ecosystems and applied at regional scale by using satellite data with a spatial resolution of 250m. The high spatial resolution along with fine classification agro-forestry ecosystems has allowed to accurately analyze the carbon budget of an extremely fragmented and complex environment such as the Lombardia Region. Modeling results showed the role of the forests in the carbon budget at regional scale and represent important information layer for the spatial analysis and for inferring the inter-annual variability of carbon sequestration due to impacts of extreme events and recent climate change (e.g., drought, heat wave, flooding, fires.

  18. Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions.

    Science.gov (United States)

    Mtwana Nordlund, Lina; Koch, Evamaria W; Barbier, Edward B; Creed, Joel C

    2016-01-01

    Threats to and loss of seagrass ecosystems globally, impact not only natural resources but also the lives of people who directly or indirectly depend on these systems. Seagrass ecosystems play a multi-functional role in human well-being, e.g. food through fisheries, control of erosion and protection against floods. Quantifying these services reveals their contributions to human well-being and helps justify seagrass conservation. There has been no comprehensive assessment as to whether seagrass ecosystem services are perceived to vary over the globe or amongst genera. Our study compiles the most complete list of ecosystem services provided by seagrasses so far, including bioregional- and genus-specific information from expert opinion and published studies. Several seagrass ecosystem services vary considerably in their (known) provision across genera and over the globe. Seagrasses genera are clearly not all equal with regard to the ecosystem services they provide. As seagrass genera are not evenly distributed over all bioregions, the presence of an ecosystem service sometimes depends on the genera present. Larger sized seagrass genera (e.g. Posidonia, Enhalus) are perceived to provide more substantial and a wider variety of ecosystem services than smaller species (e.g. Halophila, Lepilaena). Nevertheless, smaller species provide important services. Our findings point out data gaps, provide new insight for more efficient management and recommend caution in economic valuation of seagrass services worldwide.

  19. Review on Invasive Tree of Heaven (Ailanthus altissima (Mill.) Swingle) Conflicting Values: Assessment of Its Ecosystem Services and Potential Biological Threat.

    Science.gov (United States)

    Sladonja, Barbara; Sušek, Marta; Guillermic, Julia

    2015-10-01

    Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. One of the most widespread invasive alien plant species in Europe and North America, Tree of Heaven (Ailanthus altissima (Mill.) Swingle) was introduced intentionally for use as an ornamental plant in the 18th century. Since then, it has spread and is now frequently found in a number of countries. Today, Tree of Heaven is considered one of the worst invasive plant species in Europe and is also listed as invasive in North America and many other countries. Millennium Ecosystem Assessment is one of many systems trying to list and categorize biological services to humans and to provide a tool for identifying services delivered by natural ecosystems. Invasive species have generally caused degradation of the services, have a major impact on the environment, and are threatening biodiversity and reducing overall species abundance and diversity. On the other hand, some invasive species can provide services useful to human well-being. In the present review A. altissima impacts on ecosystems are identified and positive influences on some ecosystem services are weighed against the negative effects on the environment and human health. The aim of the present review is to resume the general knowledge of A. altissima, group available references on distribution and ecology according to countries, compare ecosystem services provided or enhanced by A. altissima presence and the negative effects it causes, identify gaps in current knowledge, and give recommendations for future lines of research.

  20. Mechanical vapor compression refrigeration for low temperature industrial applications today

    International Nuclear Information System (INIS)

    Ferguson, J.E.

    1987-01-01

    If the super conductor industry settles out at a temperature of -100 0 F or above, mechanical refrigeration will be vying for the cooling business. Today there very definitely is a break point in the application of equipment at approximately -120 0 F or 189 0 K. Other technologies are generally utilized below this level. However, with market potential comes invention and breakthroughs in refrigeration can also occur. Today standard refrigeration systems are cost effective, reliable and produced in the millions for high temperature applications of +10 0 F to +40 0 F evaporator temperature. Lower temperatures require additional hardware, consume additional power and are produced today in limited quantities for special applications

  1. Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L

    2005-06-01

    Measurement of ecosystem health is a very important but often difficult and sometimes fractious topic for applied ecologists. It is important because it can provide information about effects of various external influences like chemical, nuclear, and physical disturbance, and invasive species. Ecosystem health is also a measure of the rate or trajectory of degradation or recovery of systems that are currently suffering impact or those where restoration or remediation have taken place. Further, ecosystem health is the single best indicator of the quality of long term environmental stewardship because it not only provides a baseline condition, but also the means for future comparison and evaluation. Ecosystem health is difficult to measure because there are a nearly infinite number of variables and uncertainty as to which suites of variables are truly indicative of ecosystem condition. It would be impossible and prohibitively expensive to measure all those variables, or even all the ones that were certain to be valid indicators. Measurement of ecosystem health can also be a fractious topic for applied ecologists because there are a myriad of opinions as to which variables are the most important, most easily measured, most robust, and so forth. What is required is an integrative means of evaluating ecosystem health. All ecosystems are dynamic and undergo change either stochastically, intrinsically, or in response to external influences. The basic assumption about change induced by exogenous antropogenic influences is that it is directional and measurable. Historically measurements of surrogate parameters have been used in an attempt to quantify these changes, for example extensive water chemistry data in aquatic systems. This was the case until the 1980's when the Index of Biotic Integrity (IBI) (Karr et al. 1986), was developed. This system collects an array of metrics and fish community data within a stream ecosystem and develops a score or rating for the

  2. The Identification, Types, Taxonomic Orders, Biodiversity and Importance of Aquatic Insects

    OpenAIRE

    J.F.N. Abowei; B.R. Ukoroije

    2012-01-01

    The identification, types, taxonomic orders, biodiversity and importance of aquatic insects was reviewed to facilitate sustainable culture fisheries management and practice. Aquatic insects contribute significantly to fresh water ecosystems, one of many groups of organisms that, together, must be considered in the study of aquatic ecology. As such their study may be a significant part of understanding the ecological state of a given ecosystem and in gauging how that ecosystem will respond to ...

  3. Wood biomass gasification in the world today

    International Nuclear Information System (INIS)

    Nikolikj, Ognjen; Perishikj, Radovan; Mikulikj, Jurica

    1999-01-01

    Today gasification technology of different kinds represents a more and more interesting option of the production of energy forms. The article describes a biomass gasification plant (waste wood) Sydkraft, Vernamo from Sweden. (Author)

  4. Lessons learned for spatial modelling of ecosystem services in support of ecosystem accounting

    NARCIS (Netherlands)

    Schroter, M.; Remme, R.P.; Sumarga, E.; Barton, D.N.; Hein, L.G.

    2015-01-01

    Assessment of ecosystem services through spatial modelling plays a key role in ecosystem accounting. Spatial models for ecosystem services try to capture spatial heterogeneity with high accuracy. This endeavour, however, faces several practical constraints. In this article we analyse the trade-offs

  5. Importance of spatial factors and temporal scales in environmental risk assessment in marine ecosystems

    International Nuclear Information System (INIS)

    Grebenkov, A.; Linkov, I.; Andrizhievski, A.; Lukashevich, A.; Trifonov, A.

    2004-01-01

    Coastal areas adjacent to the Black Sea, particularly in Crimea, have suffered from inappropriate human activities, poorly regulated industry and former naval bases. Industrial and municipal wastewater pollutants draining into the three major European rivers (the Danube, Dniestr, and Dnieper) and dumping in the open sea result in an enormous increase in contamination level of ecosystems of the Black Sea. In spite of this, Crimea and its adjacent waters is still a globally important center of biological diversity, with an enormous and exciting range of habitats within a comparatively small area. The problem now is to evaluate economically feasible remediation and ecologically sustainable cleanup/reuse alternatives for the most contaminated sites of this area. One of the principal methodological components of such evaluation is a risk-based decision protocol that provides support in analysis of ecological value and reuse options for a chosen site. This paper presents the results of development of a spatially explicit risk assessment technique to be implemented as a part of the decision-making process and gives an example of its application to contaminated marine ecosystems. The model is suggested that takes into account several principal assumptions: (i) spatial heterogeneity of contamination of forage is known and mapped within known location of receptor's habitat, and (ii) the receptor movement and timescale are determined by location, volume and attractiveness of local habitat and forage resources. This implies two models: Spatially Explicit Exposure Assessment Model that calculates internal exposure resulting from ingestion of contaminated feeds, and Probabilistic Receptor Migration Model that generates motivation of behaviour of a receptor while feeding. In the first model, time-dependent accumulation of contamination in receptor tissue is defined by the differential balance equation that takes into account forage consumption rate and excretion rate. In the

  6. Measuring and Modeling the U.S. Regulatory Ecosystem

    Science.gov (United States)

    Bommarito, Michael J., II; Katz, Daniel Martin

    2017-09-01

    Over the last 23 years, the U.S. Securities and Exchange Commission has required over 34,000 companies to file over 165,000 annual reports. These reports, the so-called "Form 10-Ks," contain a characterization of a company's financial performance and its risks, including the regulatory environment in which a company operates. In this paper, we analyze over 4.5 million references to U.S. Federal Acts and Agencies contained within these reports to measure the regulatory ecosystem, in which companies are organisms inhabiting a regulatory environment. While individuals across the political, economic, and academic world frequently refer to trends in this regulatory ecosystem, far less attention has been paid to supporting such claims with large-scale, longitudinal data. In this paper, in addition to positing a model of regulatory ecosystems, we document an increase in the regulatory energy per filing, i.e., a warming "temperature." We also find that the diversity of the regulatory ecosystem has been increasing over the past two decades. These findings support the claim that regulatory activity and complexity are increasing, and this framework contributes an important step towards improving academic and policy discussions around legal complexity and regulation.

  7. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    Science.gov (United States)

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  8. Maneuvering in poor visibility : How firms play the ecosystem game when uncertainty is high

    NARCIS (Netherlands)

    Dattée, Brice; Alexy, Oliver; Autio, Erkko

    Innovation ecosystems are increasingly regarded as important vehicles to create and capture value from complex value propositions. While current literature assumes these value propositions can be known ex-ante and an appropriate ecosystem design derived from them, we focus instead on generative

  9. Global change impacts on mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  10. Restoring ecosystem functions and services by overcoming soil threats - The case of Mt. Hekla area in Iceland

    Science.gov (United States)

    Thorsson, Johann; Petursdottir, Thorunn

    2015-04-01

    Soils are one of the main fundamental bodies of terrestrial ecosystems. Soil functions contribute substantially to the ecosystem services humans and all other living beings depend on. Current soil threats are in most cases related to anthropogenic impacts and derived environmental pressures. For instance, overexploitation has in many cases damaged ecosystem resilience, affected current equilibrium and caused severe soil degradation. The resulting dysfunctional ecosystems are incapable of providing necessary ecosystem services. In such cases ecosystem restoration is necessary to restore ecosystem functions and ecological succession. The Mt. Hekla area in Iceland is an example of land suffering from accelerated erosion amplified by anthropogenic impacts. The area is 900 km2 located in South Iceland in the vicinity of the volcano Mt. Hekla. Today over 40% of the area is classified as eroded but historical documents indicate that vast part of the area were fertile and vegetated at the time of settlement, 1100 years ago; hence was able to withstand the geological disturbances occurring prior to the arrival of man as is obvious from the pristine woody patches still remaining. Severe soil degradation followed the large-scale deforestation and overgrazing that took place within the area. The initial land degradation event is considered to have occurred in the 11th century, but has been ongoing since then in several episodes. The Þjórsá glacial river flows through the area and carries enormous amounts of sediments every year. After the deforestation, the ecosystem resilience was damaged and the land left exposed to the elements. Eventually large scale wind erosion started, followed with water erosion and increased impact of freeze-thaw processes. The Soil Conservation Service of Iceland started working in the area in the early 20th century and land reclamation operations have been ongoing until this day. Considerable successes have been made as is manifested in the fact

  11. Incorporating historical ecosystem diversity into conservation planning efforts in grass and shrub ecosystems

    Science.gov (United States)

    Amy C. Ganguli; Johathan B. Haufler; Carolyn A. Mehl; Jimmie D. Chew

    2011-01-01

    Understanding historical ecosystem diversity and wildlife habitat quality can provide a useful reference for managing and restoring rangeland ecosystems. We characterized historical ecosystem diversity using available empirical data, expert opinion, and the spatially explicit vegetation dynamics model SIMPPLLE (SIMulating Vegetative Patterns and Processes at Landscape...

  12. On Man and Ecosystems.

    Science.gov (United States)

    Brookfield, Harold

    1982-01-01

    Distinctions between natural ecosystems and human ecosystems are misleading. Natural and social sciences can be integrated through the concept of a "human-use ecosystem," in which social scientists analyze the community, household, and individual, and natural scientists analyze the land. Includes a case study of St. Kitts. (KC)

  13. Mapping cultural ecosystem services:

    DEFF Research Database (Denmark)

    Paracchini, Maria Luisa; Zulian, Grazia; Kopperoinen, Leena

    2014-01-01

    Research on ecosystem services mapping and valuing has increased significantly in recent years. However, compared to provisioning and regulating services, cultural ecosystem services have not yet been fully integrated into operational frameworks. One reason for this is that transdisciplinarity...... surveys are a main source of information. Among cultural ecosystem services, assessment of outdoor recreation can be based on a large pool of literature developed mostly in social and medical science, and landscape and ecology studies. This paper presents a methodology to include recreation...... in the conceptual framework for EU wide ecosystem assessments (Maes et al., 2013), which couples existing approaches for recreation management at country level with behavioural data derived from surveys, and population distribution data. The proposed framework is based on three components: the ecosystem function...

  14. AGRO-ECOSYSTEMS AND SUSTAINABLE DEVELOPMENT OF WATER RESOURCES IN ARGES RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Tatiana Diaconu

    2010-01-01

    Full Text Available Lotic ecosystems, part of the Natural Capital, is one of the key factors functioning of socio - economic development andtheir support. An important role in their sustainable development, is the retention and recycling of nutrients, especiallyN, P and their compounds. The nutrients in lotic and lentic ecosystems are either due to natural biochemical processesor by human impact of pollution or broadcast process and characterize the ecological status of water bodies and thuscan determine the quality of services provided. A special importance have agro-ecosystems, particularly multifunctionallivestock farms. Pathways by which pollutants (especially nutrients and pesticides, and other pollutants to reach bodiesof water are different (surface drainage, percolation, etc..To ensure sustainable development of water resources is necessary for agricultural development to take place in termsof minimizing waste streams and not affect the production and support of NC.

  15. Impacts of Precipitation Diurnal Timing on Ecosystem Carbon Exchanges in Grasslands: A Synthesis of AmeriFlux Data

    Science.gov (United States)

    Song, X.; Xu, X.; Tweedie, C. E.

    2015-12-01

    Drylands have been found playing an important role regulating the seasonality of global atmospheric carbon dioxide concentrations. Precipitation is a primary control of ecosystem carbon exchanges in drylands where a large proportion of the annual total rainfall arrives through a small number of episodic precipitation events. While a large number of studies use the concept of "precipitation pulses" to explore the effects of short-term precipitation events on dryland ecosystem function, few have specifically evaluated the importance of the diurnal timing of these events. The primary goal of this study was to determine how the diurnal timing of rainfall events impacts land-atmosphere net ecosystem CO2 exchanges (NEE) and ecosystem respiration in drylands. Our research leverages a substantial and existing long-term database (AmeriFlux) that describes NEE, Reco and meteorological conditions at 11 sites situated in different dryland ecosystems in South West America. All sites employ the eddy covariance technique to measure land-atmosphere the CO2 exchange rates between atmosphere and ecosystem. Data collected at these sites range from 4 to 10 years, totaling up to 73 site-years. We found that episodic precipitation events stimulate not only vegetation photosynthesis but also ecosystem respiration. Specifically, the morning precipitation events decrease photosynthesis function at daytime and increase ecosystem respiration at nighttime; the afternoon precipitation events do not stimulate ecosystem photosynthesis at daytime, while stimulate ecosystem respiration; the night precipitations suppress photosynthesis at daytime, and enhance ecosystem respiration at nighttime.

  16. From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments

    Directory of Open Access Journals (Sweden)

    Kenneth J. Bagstad

    2014-06-01

    Full Text Available Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service, sinks (biophysical or anthropogenic features that deplete or alter service flows, users (user locations and level of demand, and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems' capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for

  17. Assessing Dryland Ecosystem Services in Xinjiang, Northwest China

    Science.gov (United States)

    Siew, T. F.; Brauman, K. A.; Zuo, L.; Doll, P. M.

    2014-12-01

    Dryland ecosystems, including grassland, forest, and irrigated cropland, cover about 41% of earth's land area and are inhabited by over two billion people. In drylands, particularly arid and semiarid areas, the production of ecosystem services is primarily constrained by freshwater availability. Often, water allocated to production by one ecosystem or of one ecosystem service negatively impacts other ecosystems or ecosystem services (ESS). The challenge is to determine how much water should be allocated to which ecosystems (natural and manmade) such that multiple ESS are maximized, thus improving overall well-being. This strategic management decision must be supported by knowledge about spatial and temporal availability of water and its relationship to production (location and scale) of ESS that people receive. We assess the spatial and temporal relationships between water availability and ESS production in Xinjiang, Northwest China. We address four questions: (1) What services are produced by which ecosystems with water available? (2) Where are these services produced? (3) Who uses the services produced? (4) How the production of services changes with variability of water available? Using existing global, national, and regional spatial and statistical data, we assess food, fiber, livestock, and wood production as well as unique forest landscapes (as a proxy for aesthetic appreciation and habitats for unique animals and plants) and protection from dust storms. Irrigation is necessary for crop production in Xinjiang. The production of about 4.2 million tons of wheat and 500,000 tons of cotton requires more than 2 km3 of water each year. This is an important source of food and income for local residents, but the diverted water has negative and potentially costly impacts on downstream forests that potentially provide aesthetic services and protection from dust. Our analyses also show that cropland had increased by about 1.6 million ha from 1987 to 2010, while

  18. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.

    Science.gov (United States)

    Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James

    2017-07-19

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  19. Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity

    Science.gov (United States)

    Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188

  20. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness.

    Science.gov (United States)

    Allan, J David; McIntyre, Peter B; Smith, Sigrid D P; Halpern, Benjamin S; Boyer, Gregory L; Buchsbaum, Andy; Burton, G A; Campbell, Linda M; Chadderton, W Lindsay; Ciborowski, Jan J H; Doran, Patrick J; Eder, Tim; Infante, Dana M; Johnson, Lucinda B; Joseph, Christine A; Marino, Adrienne L; Prusevich, Alexander; Read, Jennifer G; Rose, Joan B; Rutherford, Edward S; Sowa, Scott P; Steinman, Alan D

    2013-01-02

    With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments.

  1. Radiocesium in semi-natural ecosystems in Soer-Varanger, North-Norway

    International Nuclear Information System (INIS)

    Eikelmann, I.M.; Floe, L.; Larsen, E.

    1995-01-01

    The content of radionuclides in the semi-natural ecosystem in Soer-Varanger are mainly fallout from nuclear weapon tests in the fifties and sixties at Novija Zemlja. Favourable natural conditions have encouraged use of semi-natural ecosystems for household, and reindeer herding is still economical important in the area. Samples of reindeer meat, lichen, mushrooms and moose were taken from the area of current interest. The mean radiocesium concentration in reindeer meat was 325 Bq/kg. There is seasonal variations in radiocesium concentration in reindeer, with up to five times higher values in winter than summer. The high intake of lichen in winter is obviously the reason for this increase. Lichens have a high ability to absorb radionuclides directly from precipitation. Radiocesium concentration in lichen samples varied between 210 Bq/kg and 570 Bq/kg. It is concluded that radiocesium from bomb fallout is still existing in some foodstuff produced in semi-natural ecosystem i Soer-Varanger. Lichen-reindeer-man is the important foodchain for the radioactivity. 6 refs., 4 figs

  2. Assessing Niger-Delta Wetland Resources: A Case-Study of Mangrove Ecosystem

    Science.gov (United States)

    Anwan, R. H.; Ndimele, P. E.; Whenu, O. O.; Anetekhai, M. A.; Essien-Ibok, M. A.; Erondu, E. S.

    2016-02-01

    The Niger Delta is located in the Atlantic coast of Southern Nigeria and is the world's second largest delta with a coastline of about 450km. The Niger Delta region occupies a surface area of about 112,110km2, representing about 12% of Nigeria's total surface area. The Delta's environment can be broken down into four ecological zones: coastal barrier islands, mangrove swamp forests, freshwater swamps, and lowland rainforests. The mangrove swamps of Niger Delta, which is the largest delta in Africa constitute the dominant wetland ecosystem in the Niger Delta region and covers an area of about 1,900km2. Mangroves constitute important nurseries for fishes, crustaceans, sponges, algae and other invertebrates, and also acts as a sink, retaining pollutants from contaminated tidal water. The Niger Delta mangrove together with the creeks and rivers are a major source of food and livelihood for about 30 million people, which represents more than 17% of Nigeria's population. Other ecosystem services provided by this unique environment are flood control, ground water re-fill, reservoir of biodiversity, fuel wood, cultural values etc. This ecosystem also plays important role in climate change mitigation because of its high blue carbon sequestration potential. This is particularly important because of continuous gas flaring in Niger Delta from petroleum operations, which releases carbon dioxide among other gases into the atmosphere. This wetland is potentially a good site for ecotourism and also qualifies to be a world heritage site and Ramsar site if proper steps are taken. The benefits derivable from this fragile ecosystem are under severe threat by anthropogenic stressors. These include the installation of pipelines and seismic exploration by oil companies, crude oil pollution, deforestation, urbanization etc. This paper discusses the extent of depletion and loss of mangrove ecosystem in the Niger Delta region and the value of its goods and services.

  3. Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces

    Directory of Open Access Journals (Sweden)

    Christie Klimas

    2016-08-01

    Full Text Available This study investigates small-scale variability in ecosystem services and disservices that is important for sustainable planning in urban areas (including suburbs surrounding the urban core. We quantified and valued natural capital (tree and soil carbon stocks ecosystem services (annual tree carbon sequestration and pollutant uptake, and stormwater runoff reduction and disservices (greenhouse gas emissions and soil soluble reactive phosphorus within a 30-hectare heterogeneous green space that included approximately 13% wetland, 13% prairie, 16% forest, and 55% subdivision. We found similar soil organic carbon across green space types, but spatial heterogeneity in other ecosystem services and disservices. The value of forest tree carbon stock was estimated at approximately $10,000 per hectare. Tree carbon sequestration, and pollutant uptake added benefits of $1000+ per hectare per year. Annual per hectare benefits from tree carbon stock and ecosystem services in the subdivision were each 63% of forest values. Total annual greenhouse gas emissions had significant spatial and temporal variation. Soil soluble reactive phosphorus was significantly higher in the wetland than in forest and prairie. Our results have implications for urban planning. Adding or improving ecosystem service provision on small (private or public urban or suburban lots may benefit from careful consideration of small-scale variability.

  4. Today's markets for superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The worldwide market for superconductive products may exceed $1 billion in 1987. These products are expanding the frontiers of science, revolutionizing the art of medical diagnosis, and developing the energy technology of the future. In general, today's customers for superconductive equipment want the highest possible performance, almost regardless of cost. The products operate within a few degrees of absolute zero, and virtually all are fabricated from niobium or niobium alloys-so far the high-temperature superconductors discovered in 1986 and 1987 have had no impact on these markets. The industry shows potential and profound societal impact, even without the new materials

  5. Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods

    NARCIS (Netherlands)

    Scholte, S.S.K.; van Teeffelen, A.J.A.; Verburg, P.H.

    2015-01-01

    Ecosystem service research has long been dominated by a monetary interpretation of value, neglecting other social perspectives on the importance of ecosystems for human well-being. Emphasis has been put on individual utility and rational choice, which does not adequately capture the full spectrum of

  6. Identity and Diversity in Today's World

    Science.gov (United States)

    Gee, James Paul

    2017-01-01

    This paper develops a thesis about identity and diversity. I first look at activity-based identities, identities like being a gardener, birder, citizen scientist or fan-fiction writer. These are freely chosen identities and they are proliferating at a great rate today thanks to participatory culture, the Maker Movement and digital and social…

  7. We, John Dewey's Audience of Today

    Science.gov (United States)

    da Cunha, Marcus Vinicius

    2016-01-01

    This article suggests that John Dewey's "Democracy and Education" does not describe education in an existing society, but it conveys a utopia, in the sense coined by Mannheim: utopian thought aims at instigating actions towards the transformation of reality, intending to attain a better world in the future. Today's readers of Dewey (his…

  8. Primary School Leadership Today and Tomorrow

    Science.gov (United States)

    Southworth, Geoff

    2008-01-01

    The article provides a retrospective and prospective view of primary school leadership. It begins with an analytic description of primary school leadership in the recent past. The second part looks at school leadership today, identifies contemporary issues and examines role continuities and changes. The third part looks at what the future might…

  9. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change

    Science.gov (United States)

    Midgley, Guy F.; Bond, William J.

    2015-09-01

    Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.

  10. Balancing tradeoffs: Reconciling multiple environmental goals when ecosystem services vary regionally

    Science.gov (United States)

    O’Connell, Christine S.; Carlson, Kimberly M.; Cuadra, Santiago; Feeley, Kenneth J.; Gerber, James; West, Paul C.; Polasky, Stephen

    2018-06-01

    As the planet’s dominant land use, agriculture often competes with the preservation of natural systems that provide globally and regionally important ecosystem services. How agriculture impacts ecosystem service delivery varies regionally, among services being considered, and across spatial scales. Here, we assess the tradeoffs between four ecosystem services—agricultural production, carbon storage, biophysical climate regulation, and biodiversity—using as a case study the Amazon, an active frontier of agricultural expansion. We find that the highest values for each of the ecosystem services are concentrated in different regions. Agricultural production potential and carbon storage are highest in the north and west, biodiversity greatest in the west, and climate regulation services most vulnerable to disruption in the south and east. Using a simple optimization model, we find that under scenarios of agricultural expansion that optimize total production across ecosystem services, small increases in priority for one ecosystem service can lead to reductions in other services by as much as 140%. Our results highlight the difficulty of managing landscapes for multiple environmental goals; the approach presented here can be adapted to guide value-laden conservation decisions and identify potential solutions that balance priorities.

  11. The importance of landscape and spatial structure for hymenopteran-based food webs in an agro-ecosystem.

    Science.gov (United States)

    Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Aebi, Alex; Kehrli, Patrik; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

    2013-11-01

    1. Understanding the environmental factors that structure biodiversity and food webs among communities is central to assess and mitigate the impact of landscape changes. 2. Wildflower strips are ecological compensation areas established in farmland to increase pollination services and biological control of crop pests and to conserve insect diversity. They are arranged in networks in order to favour high species richness and abundance of the fauna. 3. We describe results from experimental wildflower strips in a fragmented agricultural landscape, comparing the importance of landscape, of spatial arrangement and of vegetation on the diversity and abundance of trap-nesting bees, wasps and their enemies, and the structure of their food webs. 4. The proportion of forest cover close to the wildflower strips and the landscape heterogeneity stood out as the most influential landscape elements, resulting in a more complex trap-nest community with higher abundance and richness of hosts, and with more links between species in the food webs and a higher diversity of interactions. We disentangled the underlying mechanisms for variation in these quantitative food web metrics. 5. We conclude that in order to increase the diversity and abundance of pollinators and biological control agents and to favour a potentially stable community of cavity-nesting hymenoptera in wildflower strips, more investment is needed in the conservation and establishment of forest habitats within agro-ecosystems, as a reservoir of beneficial insect populations. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  12. The consequences of radioactive contamination of forest ecosystems due to Chernobyl accident

    International Nuclear Information System (INIS)

    Tikhomirov, F.A.; Shcheglova, A.I.

    1997-01-01

    The effect of forests on the radionuclide primary distribution in different components of the contaminated ecosystems is considered by the example of Chernobyl accident. A basic mathematical model is developed describing 137 Cs biogeochemical cycling under conditions of quasi-steady state radionuclide redistribution in the ecosystem. Forest ecosystems are proved to diminish radionuclide migration in the environment, and forest should be regarded as an important sanitary factor. The contribution of contaminated forests and forest products to the total irradiation dose to local population is estimated. Special countermeasures are elaborated in order to diminish unfavorable consequences of forest radioactive contamination. A long-term dynamics of radioactive situation in the forest ecosystems in forecasted and further studies on the subject are drafted

  13. Perception, acquisition and use of ecosystem services: human behavior, and ecosystem management and policy implications

    Science.gov (United States)

    Stanley T. Asah; Anne D. Guerry; Dale J. Blahna; Joshua J. Lawler

    2014-01-01

    Ecosystem services, fundamental to livelihoods and well-being, are reshaping environmental management and policy. However, the behavioral dimensions of ecosystem services and the responses of ordinary people to the management of those services, is less well understood. The ecosystem services framework lends itself to understanding the relationship between ecosystems...

  14. Ecosystem Management. A Management View

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars

    The need for management of the marine ecosystem using a broad perspective has been recommended under a variety of names. This paper uses the term Ecosystem Management, which is seen as a convergence between the ecological idea of an organisational hierarchy and the idea of strategic planning...... with a planning hierarchy---with the ecosystem being the strategic planning level. Management planning requires, in order to establish a quantifiable means and ends chain, that the goals at the ecosystem level can be linked to operational levels; ecosystem properties must therefore be reducible to lower...... organisational levels. Emergence caused by constraints at both the component and system levels gives rise to phenomena that can create links between the ecosystem and operational levels. To create these links, the ecosystem's functional elements must be grouped according to their functionality, ignoring any...

  15. The evolving DOT enterprise : today toward tomorrow.

    Science.gov (United States)

    2013-04-01

    Departments of transportation (DOTs) today are being shaped by a wide range of : factors some of which are directly managed and controlled within the transportation : industry while others are external factors shaping the demand for transportatio...

  16. Terrestrial Ecosystem Responses to Global Change: A Research Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ecosystems Working Group,

    1998-09-23

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere. Models and experiments are equally important for developing process-level understanding into a predictive capability. To support both the development and testing of mechanistic ecosystem models, a two-tiered design of ecosystem experiments should be used. This design should include both (1) large-scale manipulative experiments for comprehensive testing of integrated ecosystem models and (2) multifactor, multilevel experiments for parameterization of process models across the critical range of interacting environmental factors (CO{sub 2}, temperature, water

  17. Going beyond the Millennium Ecosystem Assessment: an index system of human dependence on ecosystem services.

    Science.gov (United States)

    Yang, Wu; Dietz, Thomas; Liu, Wei; Luo, Junyan; Liu, Jianguo

    2013-01-01

    The Millennium Ecosystem Assessment (MA) estimated that two thirds of ecosystem services on the earth have degraded or are in decline due to the unprecedented scale of human activities during recent decades. These changes will have tremendous consequences for human well-being, and offer both risks and opportunities for a wide range of stakeholders. Yet these risks and opportunities have not been well managed due in part to the lack of quantitative understanding of human dependence on ecosystem services. Here, we propose an index of dependence on ecosystem services (IDES) system to quantify human dependence on ecosystem services. We demonstrate the construction of the IDES system using household survey data. We show that the overall index and sub-indices can reflect the general pattern of households' dependences on ecosystem services, and their variations across time, space, and different forms of capital (i.e., natural, human, financial, manufactured, and social capitals). We support the proposition that the poor are more dependent on ecosystem services and further generalize this proposition by arguing that those disadvantaged groups who possess low levels of any form of capital except for natural capital are more dependent on ecosystem services than those with greater control of capital. The higher value of the overall IDES or sub-index represents the higher dependence on the corresponding ecosystem services, and thus the higher vulnerability to the degradation or decline of corresponding ecosystem services. The IDES system improves our understanding of human dependence on ecosystem services. It also provides insights into strategies for alleviating poverty, for targeting priority groups of conservation programs, and for managing risks and opportunities due to changes of ecosystem services at multiple scales.

  18. Ecosystem Services : In Nordic Freshwater Management

    DEFF Research Database (Denmark)

    Magnussen, Kristin; Hasler, Berit; Zandersen, Marianne

    Human wellbeing is dependent upon and benefit from ecosystem services which are delivered by well-functioning ecosystems. Ecosystem services can be mapped and assessed consistently within an ecosystem service framework. This project aims to explore the use and usefulness of the ecosystem service ...

  19. Regional zooplankton dispersal provides spatial insurance for ecosystem function.

    Science.gov (United States)

    Symons, Celia C; Arnott, Shelley E

    2013-05-01

    Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.

  20. Community structure and abundance of benthic infaunal invertebrates in Maine fringing marsh ecosystems

    Science.gov (United States)

    Richard A. MacKenzie; Michele Dionne; Jeremy Miller; Michael Haas; Pamela A. Morgan

    2015-01-01

    Fringing marshes are abundant ecosystems that dominate the New England coastline. Despite their abundance, very little baseline data is available from them and few studies have documented the ecosystems services that they provide. This information is important for conservation efforts as well as for an increased understanding of how fringing marshes function compared...

  1. History And Importance Of Graphic Design

    OpenAIRE

    Lyallya, Kirill

    2016-01-01

    This thesis is about history and importance of graphic design in different periods, from ancient times until today. The features inherent in different countries are considered. The techniques, basic methods for creating projects and computer software that designers have used are mentioned. In order to understand the importance of graphic design in our lives, it is considered from the side of ordinary people, how it manifests itself in daily lives and how it affects business. The thesis provid...

  2. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    Science.gov (United States)

    Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized

  3. Ecosystem services as assessment endpoints for ecological risk assessment.

    Science.gov (United States)

    Munns, Wayne R; Rea, Anne W; Suter, Glenn W; Martin, Lawrence; Blake-Hedges, Lynne; Crk, Tanja; Davis, Christine; Ferreira, Gina; Jordan, Steve; Mahoney, Michele; Barron, Mace G

    2016-07-01

    Ecosystem services are defined as the outputs of ecological processes that contribute to human welfare or have the potential to do so in the future. Those outputs include food and drinking water, clean air and water, and pollinated crops. The need to protect the services provided by natural systems has been recognized previously, but ecosystem services have not been formally incorporated into ecological risk assessment practice in a general way in the United States. Endpoints used conventionally in ecological risk assessment, derived directly from the state of the ecosystem (e.g., biophysical structure and processes), and endpoints based on ecosystem services serve different purposes. Conventional endpoints are ecologically important and susceptible entities and attributes that are protected under US laws and regulations. Ecosystem service endpoints are a conceptual and analytical step beyond conventional endpoints and are intended to complement conventional endpoints by linking and extending endpoints to goods and services with more obvious benefit to humans. Conventional endpoints can be related to ecosystem services even when the latter are not considered explicitly during problem formulation. To advance the use of ecosystem service endpoints in ecological risk assessment, the US Environmental Protection Agency's Risk Assessment Forum has added generic endpoints based on ecosystem services (ES-GEAE) to the original 2003 set of generic ecological assessment endpoints (GEAEs). Like conventional GEAEs, ES-GEAEs are defined by an entity and an attribute. Also like conventional GEAEs, ES-GEAEs are broadly described and will need to be made specific when applied to individual assessments. Adoption of ecosystem services as a type of assessment endpoint is intended to improve the value of risk assessment to environmental decision making, linking ecological risk to human well-being, and providing an improved means of communicating those risks. Integr Environ Assess Manag

  4. Earthquake history of the Republic of Ragusa (today Dubrovnik, Croatia) (Invited)

    Science.gov (United States)

    Albini, P.; Rovida, A.; Locati, M.

    2009-12-01

    Among the towns constellating the Dalmatian coast, Ragusa (today Dubrovnik, Croatia), stands out, both because of its location in the middle of the Eastern Adriatic coast and its long-lasting, independent history of a Modern Age town and its small coastal territory. An important intelligence crossroads, squeezed as it was in between powerful and influential neighbours, such as the Ottoman Empire and the Republic of Venice, in its history (1358-1808) the Republic of Ragusa did experience heavily damaging earthquakes. We narrate the story of these earthquakes, which were recorded in the historical documentation of the Republic (today stored at the State Archives of Dubrovnik - Drzavni arhiv u Dubrovniku) as well as in documents from officers of other Mediterranean countries and letters of individuals. Of special note is the 6 April 1667 earthquake, which inflicted a permanent scar on the Republic. The earthquake's direct effects and their consequences caused a serious financial crisis, so critical that it took over 50 years for Ragusa to recover. This large earthquake is reappraised on the basis of newly investigated sources, and effects of the damage within the city walls are detailed. A seismic history of Ragusa is finally proposed, supported by full-text coeval records.

  5. Corrosion issues in nuclear industry today

    International Nuclear Information System (INIS)

    Cattant, F.; Crusset, D.; Feron, D.

    2008-01-01

    In the context of global warming, nuclear energy is a carbon-free source of power and so is a meaningful option for energy production without CO 2 emissions. Currently, there are more than 440 commercial nuclear reactors, accounting for about 15% of electric power generation in the world, and there has not been a major accident in over 20 years. The world's fleet of nuclear power plants is, on average, more than 20 years old. Even though the design life of a nuclear power plant is typically 30 or 40 years, it is quite feasible that many nuclear power plants will be able to operate for longer than this. The re-emergence of nuclear power today is founded on the present generation of nuclear reactors meeting the demands of extended service life, ensuring the cost competitiveness of nuclear power and matching enhanced safety requirements. Nuclear power plant engineers should be able to demonstrate such integrity and reliability of their system materials and components as to enable nuclear power plants to operate beyond their initial design life. Effective waste management is another challenge for sustainable nuclear energy today; more precisely, a solution is needed for the management of high-level and long-lived intermediate-level radioactive waste over the very long term. Most nuclear countries are currently gathering the data needed to assess the feasibility of a deep geological waste repository, including the prediction of the behaviour of materials over several thousands of years. The extended service life of nuclear power plants and the need for permanent disposal for nuclear waste are today's key issues in the nuclear industry. We focus here on the major role that corrosion plays in these two factors, and on the French approaches to these two issues. (authors)

  6. Using Today's Headlines for Teaching Gerontology

    Science.gov (United States)

    Haber, David

    2008-01-01

    It is a challenge to attract undergraduate students into the gerontology field. Many do not believe the aging field is exciting and at the cutting edge. Students, however, can be convinced of the timeliness, relevance, and excitement of the field by, literally, bringing up today's headlines in class. The author collected over 250 articles during…

  7. The Geriatric Child in Today's Culture.

    Science.gov (United States)

    Lamson, Frank E.

    This paper develops the premise that there is today a new "child" in our culture developed in response to expectations of daily functioning, family relationships, societal status, economic level, medical illness, emotional needs, and financial management. This new "child" is a person who has usually passed the age of 65, and has found that the…

  8. Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services

    Science.gov (United States)

    Bagstad, Kenneth J.; Johnson, Gary W.; Voigt, Brian; Villa, Ferdinando

    2013-01-01

    Recent ecosystem services research has highlighted the importance of spatial connectivity between ecosystems and their beneficiaries. Despite this need, a systematic approach to ecosystem service flow quantification has not yet emerged. In this article, we present such an approach, which we formalize as a class of agent-based models termed “Service Path Attribution Networks” (SPANs). These models, developed as part of the Artificial Intelligence for Ecosystem Services (ARIES) project, expand on ecosystem services classification terminology introduced by other authors. Conceptual elements needed to support flow modeling include a service's rivalness, its flow routing type (e.g., through hydrologic or transportation networks, lines of sight, or other approaches), and whether the benefit is supplied by an ecosystem's provision of a beneficial flow to people or by absorption of a detrimental flow before it reaches them. We describe our implementation of the SPAN framework for five ecosystem services and discuss how to generalize the approach to additional services. SPAN model outputs include maps of ecosystem service provision, use, depletion, and flows under theoretical, possible, actual, inaccessible, and blocked conditions. We highlight how these different ecosystem service flow maps could be used to support various types of decision making for conservation and resource management planning.

  9. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    Science.gov (United States)

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Ecosystem services in European protected areas: Ambiguity in the views of scientists and managers?

    NARCIS (Netherlands)

    Hummel, C.; Provenzale, A.; Van der Meer, J.; Wijnhoven, S.; Nolte, A.; Poursanidis, D.; Janss, G.; Jurek, M.; Andresen, M.; Poulin, B.; Kobler, J.; Beierkuhnlein, C.; Honrado, J.; Razinkovas, A.; Stritih, A.; Bargmann, T.; Ziemba, A.; Bonet-García, F.; Adamescu, M.C.; Janssen, G.; Hummel, H.

    2017-01-01

    Protected Areas are a key component of nature conservation. They can play an important role in counterbalancing the impacts of ecosystem degradation. For an optimal protection of a Protected Area it is essential to account for the variables underlying the major Ecosystem Services an area delivers,

  11. Wild food in Europe: a synthesis of knowledge and data of terrestrial wild food as an ecosystem service

    NARCIS (Netherlands)

    Schulp, C.J.E.; Thuiller, W.; Verburg, P.H.

    2014-01-01

    Wild food is an iconic ecosystem service that receives little attention in quantifying, valuating and mapping studies, due to the perceived low importance or due to lack of data. Here, we synthesize available data on the importance of wild food as ecosystem service, its spatial distribution and

  12. Ecosystem classification, Chapter 2

    Science.gov (United States)

    M.J. Robin-Abbott; L.H. Pardo

    2011-01-01

    The ecosystem classification in this report is based on the ecoregions developed through the Commission for Environmental Cooperation (CEC) for North America (CEC 1997). Only ecosystems that occur in the United States are included. CEC ecoregions are described, with slight modifications, below (CEC 1997) and shown in Figures 2.1 and 2.2. We chose this ecosystem...

  13. Microconchids from microbialite ecosystem immediately after end-Permian mass extinction: ecologic selectivity and implications for microbialite ecosystem structure

    Science.gov (United States)

    Yang, H.; Chen, Z.; Wang, Y. B.; Ou, W.; Liao, W.; Mei, X.

    2013-12-01

    The Permian-Triassic (P-Tr) carbonate successions are often characterized by the presence of microbialite buildups worldwide. The widespread microbialites are believed as indication of microbial proliferation immediately after the P-Tr mass extinction. The death of animals representing the primary consumer trophic structure of marine ecosystem in the P-Tr crisis allows the bloom of microbes as an important primary producer in marine trophic food web structure. Thus, the PTB microbialite builders have been regarded as disaster taxa of the P-Tr ecologic crisis. Microbialite ecosystems were suitable for most organisms to inhabit. However, increasing evidence show that microbialite dwellers are also considerably abundant and diverse, including mainly foraminifers Earlandia sp. and Rectocornuspira sp., lingulid brachiopods, ostrocods, gastropods, and microconchids. In particular, ostracods are extremely abundant in this special ecosystem. Microconchid-like calcareous tubes are also considerably abundant. Here, we have sampled systematically a PTB microbialite deposit from the Dajiang section, southern Guizhou Province, southwest China and have extracted abundant isolated specimens of calcareous worm tubes. Quantitative analysis enables to investigate stratigraphic and facies preferences of microconchids in the PTB microbialites. Our preliminary result indicates that three microconchid species Microconchus sp., Helicoconchus elongates and Microconchus aberrans inhabited in microbialite ecosystem. Most microconchilds occurred in the upper part of the microbialite buildup and the grainstone-packstone microfacies. Very few microconchilds were found in the rocks bearing well-developed microbialite structures. Their stratigraphic and environmental preferences indicate proliferation of those metazoan organisms is coupled with ebb of the microbialite development. They also proliferated in some local niches in which microbial activities were not very active even if those

  14. Microbial ecology and nematode control in natural ecosystems

    NARCIS (Netherlands)

    Costa, S.R.; Van der Putten, W.H.; Kerry, B.R.

    2011-01-01

    Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient

  15. [The importance of the Czech Medical Society yesterday and today].

    Science.gov (United States)

    Fejfar, Z

    1992-10-23

    Fourteen physicians headed by Jan Evangelista Purkynĕ signed the proposed by-laws of the Czech medical society in october 1861. Emperor's approval was received 26th june 1862 and in july Purkynĕ was elected the first president. The same illuminated personalities were the founders of the Casopis lékarů ceských--the Czech medical Journal which has remained the most important Czech periodical until the present time. The aims of the Society were to cultivate medical science and promote Czech language in medicine. Weekly scientific sessions, medical periodical and publication of monographs related to medicine were the means how to achieve the aims. The Czech Medical Society became soon the centre of medical science in Bohemia. Its members were among the foremost fighters for the use of Czech language in Charles university and their relentless effort helped much to the establishment of the Czech Univerzity in 1882 and Czech medical faculty a year later. In subsequent years the Society was also involved in professional problems related to social health insurance, medical fees, ethical problems and other relevant questions such as the establishment of medical chambers. The activity of the Czech medical Society was never interrupted during its 130 years of existence, although there were several difficult periods in its life, mainly during the first and second world war and also in the past 40 years. In spite of the atomization of medicine the Czech medical Society has been continuing its eminent mission to create communication and establish close links between the medical science and practical medicine by systematically bringing new knowledge in medicine and biology to general physicians and by putting together physicians, surgeons and basic scientists. The task for the future is seen in optimal transfer of new knowledge and ideas from scientists to practicians and vice versa; and to take care of the highest possible moral and ethical standard required for humane

  16. From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments

    Science.gov (United States)

    Bagstad, Kenneth J.; Villa, Ferdinando; Batker, David; Harrison-Cox, Jennifer; Voigt, Brian; Johnson, Gary W.

    2014-01-01

    Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems’ capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic

  17. Ecosystem Carbon Stocks of Intertidal Wetlands in Singapore

    Science.gov (United States)

    Phang, V. X. H.; Friess, D.; Chou, L. M.

    2014-12-01

    Mangrove forests and seagrass meadows provide numerous ecosystem services, with huge recent interest in their carbon sequestration and storage value. Mangrove forests and seagrass meadows as well as mudflats and sandbars form a continuum of intertidal wetlands, but studies that consider these spatially-linked habitats as a whole are limited. This paper presents the results of a field-based and remote sensing carbon stock assessment, including the first study of the ecosystem carbon stocks of these adjacent habitats in the tropics. Aboveground, belowground and soil organic carbon pools were quantified at Chek Jawa, an intertidal wetland in Singapore. Total ecosystem carbon stocks averaged 499 Mg C ha-1 in the mangrove forest and 140 Mg C ha-1 in the seagrass meadow. Soil organic carbon dominated the total storage in both habitats. In the adjacent mudflats and sandbars, soil organic carbon averaged 143 and 124 Mg C ha-1 respectively. High amount of carbon stored in soil demonstrate the role of intertidal wetlands in sequestering large amount of carbon in sediments accumulated over millennia. High-resolution remote sensing imagery was used to create spatial models that upscaled field-based carbon measurements to the national scale. Field-based data and spatial modeling of ecosystem carbon stocks to the entire island through remote sensing provides a large-scale and holistic carbon stock value, important for the understanding and management of these threatened intertidal ecosystems.

  18. Measuring Entrepreneurial Ecosystems

    NARCIS (Netherlands)

    Stam, F.C.

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial

  19. The biodiversity-dependent ecosystem service debt.

    Science.gov (United States)

    Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel

    2015-02-01

    Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services. © 2014 John Wiley & Sons Ltd/CNRS.

  20. Toward Integrated Resource Management: Lessons About the EcosystemApproach from the Laurentian Great Lakes

    Science.gov (United States)

    MACKENZIE

    1997-03-01

    / The ecosystem approach is an innovative tool for integratedresource management. Its goal is to restore, enhance, and protect ecosystemintegrity through a holistic and integrated mode of planning. Under thisapproach, the ecosystem itself becomes the unit of analysis and organizingprinciple for environmental management. Utilizing the ecosystem approachchallenges the prevailing structure and function of contemporary resourcemanagement agencies. This paper explores a number of important policy andmanagement issues in the context of a ten-year initiative to remediate theLaurentian Great Lakes using the ecosystem approach. The lessons gleaned fromthe Great Lakes experience are relevant to other areas in North America andabroad where resource management responsibilities are held by multiple andsometimes overlapping jurisdictions.KEY WORDS: Integrated resource management; Ecosystem approach; Watershedmanagement; Great Lakes

  1. The adaptation rate of terrestrial ecosystems as a critical factor in global climate dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fuessler, J S; Gassmann, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A conceptual climate model describing regional two-way atmosphere-vegetation interaction has been extended by a simple qualitative scheme of ecosystem adaptation to drought stress. The results of this explorative study indicate that the role of terrestrial vegetation under different forcing scenarios depends crucially on the rate of the ecosystems adaptation to drought stress. The faster the adaptation of important ecosystems such as forests the better global climate is protected from abrupt climate changes. (author) 1 fig., 3 refs.

  2. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach.

    Science.gov (United States)

    Singh, Gerald G; Sinner, Jim; Ellis, Joanne; Kandlikar, Milind; Halpern, Benjamin S; Satterfield, Terre; Chan, Kai M A

    2017-09-01

    Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits - fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity-addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for approaches

  3. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach

    KAUST Repository

    Singh, Gerald G.

    2017-05-23

    Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits — fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity—addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for

  4. The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence.

    Science.gov (United States)

    Tredennick, Andrew T; Adler, Peter B; Adler, Frederick R

    2017-08-01

    Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability. © 2017 John Wiley & Sons Ltd/CNRS.

  5. The current state of knowledge of ecosystems and ecosystem services in Russia: A status report.

    Science.gov (United States)

    Bukvareva, Elena N; Grunewald, Karsten; Bobylev, Sergey N; Zamolodchikov, Dimitry G; Zimenko, Alexey V; Bastian, Olaf

    2015-10-01

    This paper focusses on a conceptual overview of ways to address a comprehensive analysis of ecosystem services (ES) in a country as large and heterogeneous as Russia. As a first step, a methodology for assessing the services for the federal subjects of Russia was chosen, i.e., its constituent provinces and similar entities, in physical terms. Russia harbors a great diversity of natural conditions and ecosystems which are suppliers of ES, and likewise a variety of the socio-economic conditions that shape the demand for these services and their consumption. The methodological approach described permits several important tasks to be addressed: the evaluation of the degree of satisfaction of people's needs for ES, the identification of ecological donor and acceptor regions, and zoning of the country's territory for ES assessment. The next step is to prepare a prototype of a National Report on ES in Russia, for which we are presenting the planned structure.

  6. Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    DEFF Research Database (Denmark)

    Ivits, Eva; Horion, Stéphanie Marie Anne F; Fensholt, Rasmus

    2014-01-01

    Observing trends in global ecosystem dynamics is an important first step, but attributing these trends to climate variability represents a further step in understanding Earth system changes. In the present study, we classified global Ecosystem Response Types (ERTs) based on common spatio-temporal......Observing trends in global ecosystem dynamics is an important first step, but attributing these trends to climate variability represents a further step in understanding Earth system changes. In the present study, we classified global Ecosystem Response Types (ERTs) based on common spatio...... were observed in Asia and North America. These ERTs complement traditional pixel based methods by enabling the combined assessment of the location, timing, duration, frequency and severity of climatic and vegetation anomalies with the joint assessment of wetting and drying climatic conditions. The ERTs...

  7. THE ECONOMIC APPROACH OF ECOSYSTEM SERVICES PROVIDED BY PROTECTED AREAS

    Directory of Open Access Journals (Sweden)

    Cirnu Maria

    2015-07-01

    Full Text Available As practice shows us, at the present time ecosystem services are recognized by humanity, but unfortunately are undervalued compared to their full potential. Most of planet's ecosystems are degradated by anthropic activity of humankind. It is almost impossible to say that there are no areas affected by human activity, however, the Protected Areas are a good opportunity, so the assessing of ecosystem services in Protected Areas can be a solution to the problem of economic growth. At present, there are few consistent informations on economic value of ecosystem services in Romania, on the basis of which can be adopted some sustainable financing policies of activities in Protected Areas. The premise from which we start is that a proper management of natural capital will allow biodiversity conservation and human well-being if it find appropriate economic instruments. For this reason, studies of economic research on the contribution of those ecosystem services to the communities welfare may constitute credible means for decision-makers, demonstrating the Protected Areas importance. This paper, based on the study of international and national literature, examines the state of knowledge on the economic and environmental valences of ecosystem services. The growing interest of researchers regarding the economic valuation of ecosystem services related to Protected Areas is visible through the many studies carried out at international level. Although national scientific research relating to ecosystem services is at the beginning, concerns researchers economists and ecologists have been directed toward this recess, of ecosystem services. The reason for we should assign an economic value to ecosystem services is to ensure that their value is included actively in decision-making and is not ignored because "is still available". Briefly, the paper start with an overview of the main definition of ecosystem services. From the point of economic value view, the paper

  8. Rare species support vulnerable functions in high-diversity ecosystems.

    Directory of Open Access Journals (Sweden)

    David Mouillot

    Full Text Available Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees, we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by

  9. 56 Hydrological Dynamics and Human Impact on Ecosystems of ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Hydrological Dynamics and Human Impact on Ecosystems of Lake Tana, Northwestern. Ethiopia. 1Amare ... and lake level data were evaluated to identify change in climate and lake level. The annual ... economic importance. The total area of ...

  10. Climate-mediated changes in marine ecosystem regulation during El Niño

    DEFF Research Database (Denmark)

    Lindegren, Martin; Checkley, David M.; Koslow, J. Anthony

    2017-01-01

    concentrations and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases......, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down and physical forcing during changing climate conditions on ecosystem regulation in the Southern California...

  11. Ecosystem Service of Shade Trees on Nutrient Cycling and Productivity of Coffee Agro-ecosystems

    Directory of Open Access Journals (Sweden)

    Rusdi Evizal

    2009-05-01

    Full Text Available Shade trees are significant in certification scheme of sustainable coffee production. They play an importance role on ecosystem functioning. This research is aimed to study ecosystem service of shade trees in some coffee agro-ecosystems particularly on nutrient cycling and land productivity. Four agro-ecosys tems of Robusta coffee (Coffea canephora, namely sun coffee (without shade trees, coffee shaded by Michelia champaca, coffee shaded by Gliricidia sepium, and coffee shaded by Erythrina indica are evaluated during 2007—2008. Smallholder coffee plantation in Sumberjaya Subdistrict, West Lampung, which managed under local standard were employed using Randomized Complete Block Design with 3 replications. The result showed that litter fall dynamic from shade trees and from coffee trees was influenced by rainfall. Shade trees decreased weed biomass while increased litter fall production. In dry season, shade trees decreased litter fall from coffee shaded by M. champaca. G. sepium and E. indica shaded coffee showed higher yield than sun coffee and M. champaca shaded coffee. Except for M. champaca shaded coffee, yield had positive correlation (r = 0.99 with litter fall production and had negative correlation (r = —0.82 with weed biomass production. Biomass production (litter fall + weed of sun coffee and shaded coffee was not significantly different. Litter fall of shade trees had significance on nutrient cycle mainly to balance the lost of nitrogen in coffee bean harvesting.Key Words: Coffea canephora, Michelia champaca, Gliricidia sepium, Erythrina indica, litter production, nutrient cycle, coffee yield.

  12. Southern forests: Yesterday, today, and tomorrow

    Science.gov (United States)

    R. Neil Sampson

    2004-01-01

    In the 20th century, southern forests changed dramatically. Those changes pale, however, when compared to what happened to the people of the region. In addition to growing over fourfold in numbers, the South's population has urbanized, globalized, and intellectualized in 100 years. Rural and isolated in the 19th century, they are today urban and cosmopolitan. One...

  13. Applying Servant Leadership in Today's Schools

    Science.gov (United States)

    Culver, Mary K.

    2009-01-01

    This book illustrates how the ideal of servant leadership can be applied in your school today. With real-life scenarios, discussions, and self assessments, this book gives practical suggestions to help you develop into a caring and effective servant leader. There are 52 scenarios in this book, focusing on situations as varied as: (1) Dealing with…

  14. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    OpenAIRE

    P. Stief

    2013-01-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal–microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal–microbe interactions in the benthos of aquatic ecosystems: (i) e...

  15. Energy supply today and tomorrow, national and global

    International Nuclear Information System (INIS)

    Ott, G.

    2003-01-01

    A status report about 'Energy Supply Today and Tomorrow, National and Global' focuses mainly on global aspects. Today's world energy consumption is dominated by more than 80% of fossil sources of energy followed by so-called non-commercial energies, such as wood and plant and animal wastes, contributing 10%; nuclear power, 7%; and hydroelectric power, 2%. The development of energy consumption until the middle of this century will continue to be driven by the further growth of the world population, and by the need to meet the rising demand for energy in the developing countries. Because of their availability and flexible uses, oil, natural gas, and coal as fossil sources of energy will continue to meet a considerable share of the requirement. The use of nuclear power, a source meeting all criteria, such as safety, waste management, and competitiveness, is both justifiable and desirable. Restrictive decisions about nuclear power taken today must not impair the freedom of choice of future generations. Using renewable energies is just as desirable as increasing energy efficiency; however, the technical and physical potentials available for this purpose should not be overrated. This makes it imperative to protect the supply of energy 'in this difficult interim phase' with all the options available, and to open up prospects for the future, also by conducting the appropriate energy and environmental research. The balance between continuity of supply, environmental compatibility, and competitiveness must be taken into account in this effort. In the second half of the 21 st century, it is possible that energy consumption will stabilize when the world's population ceases to grow. New technologies, some of which may not even be known today or may still be under development, could then pave the way for an energy supply system which, in toto, would be less of a burden on the environment. (orig.)

  16. The Coupling of Ecosystem Productivity and Water Availability in Dryland Regions

    Science.gov (United States)

    Scott, R. L.; Biederman, J. A.; Barron-Gafford, G.

    2014-12-01

    Land cover and climatic change will alter biosphere-atmosphere exchanges of water vapor and carbon dioxide depending, in part, on feedbacks between biotic activity and water availability. Eddy covariance observations allow us to estimate ecosystem-scale productivity and respiration, and these datasets are now becoming sufficiently mature to advance understanding of these ecohydrological interactions. Here we use a network of sites in semiarid western North America representing gradients of water availability and functional plant type. We examine how precipitation (P) controls evapotranspiration (ET), net ecosystem production (NEP), and its component fluxes of ecosystem respiration (Reco) and gross ecosystem production (GEP). Despite the high variability in seasonal and annual precipitation timing and amounts that we expect to influence ecosystem function, we find persistent overall relationships between P or ET and the fluxes of NEP, Reco and GEP across the network, indicating a commonality and resilience in ecosystem soil and plant response to water availability. But we also observe several important site differences such as prior seasonal legacy effects on subsequent fluxes which vary depending on dominant plant functional type. For example, multiyear droughts, episodic cool-season droughts, and hard winter freezes seem to affect the herbaceous species differently than the woody ones. Nevertheless, the overall, strong coupling between hydrologic and ecologic processes at these sites bolsters our ability to predict the response of dryland ecosystems to future precipitation change.

  17. Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems

    Directory of Open Access Journals (Sweden)

    Jonathan Bennie

    2015-03-01

    Full Text Available The rapid growth in electric light usage across the globe has led to increasing presence of artificial light in natural and semi-natural ecosystems at night. This occurs both due to direct illumination and skyglow - scattered light in the atmosphere. There is increasing concern about the effects of artificial light on biological processes, biodiversity and the functioning of ecosystems. We combine intercalibrated Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS images of stable night-time lights for the period 1992 to 2012 with a remotely sensed landcover product (GLC2000 to assess recent changes in exposure to artificial light at night in 43 global ecosystem types. We find that Mediterranean-climate ecosystems have experienced the greatest increases in exposure, followed by temperate ecosystems. Boreal, Arctic and montane systems experienced the lowest increases. In tropical and subtropical regions, the greatest increases are in mangroves and subtropical needleleaf and mixed forests, and in arid regions increases are mainly in forest and agricultural areas. The global ecosystems experiencing the greatest increase in exposure to artificial light are already localized and fragmented, and often of particular conservation importance due to high levels of diversity, endemism and rarity. Night time remote sensing can play a key role in identifying the extent to which natural ecosystems are exposed to light pollution.

  18. Provision of ecosystem services by human-made structures in a highly impacted estuary

    International Nuclear Information System (INIS)

    Layman, Craig A; Jud, Zachary R; Archer, Stephanie K; Riera, David

    2014-01-01

    Water filtration is one of the most important ecosystem services provided by sessile organisms in coastal ecosystems. As a consequence of increased coastal development, human-made shoreline structures (e.g., docks and bulkheads) are now common, providing extensive surface area for colonization by filter feeders. We estimate that in a highly urbanized sub-tropical estuary, water filtration capacity supported by filter feeding assemblages on dock pilings accounts for 11.7 million liters of water h −1 , or ∼30% of the filtration provided by all natural oyster reef throughout the estuary. Assemblage composition, and thus filtration capacity, varied as a function of piling type, suggesting that the choice of building material has critical implications for ecosystem function. A more thorough depiction of the function of coastal ecosystems necessitates quantification of the extensive ecosystem services associated with human-made structures. (paper)

  19. Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China

    OpenAIRE

    Aynur Mamat; Ümüt Halik; Aihemaitijiang Rouzi

    2018-01-01

    Increasing anthropogenic activities have significantly altered ecosystems in arid oasis regions. Estimating the impact on a wide range of ecosystem services is important for decision making and the sustainable development of these regions. This study analyzed time-series Landsat data to determine the influences of oasis land-use changes on the ecosystem services in the Kashgar region in Northwest China. The following results were found. The total value of the ecosystem services in the Kashgar...

  20. Including ecosystem dynamics in risk assessment of radioactive waste in coastal regions

    International Nuclear Information System (INIS)

    Kumblad, L.; Kautsky, U.; Gilek, M.

    2000-01-01

    Radiation protection has mainly focused on assessing and minimising risks of negative effects on human health. Although some efforts have been made to estimate effects on non-human populations, modelling of radiation risks to other components of the ecosystem have often lead to more or less disappointing results. In this paper an ecosystem approach is suggested and exemplified with a preliminary 14 C model of a coastal Baltic ecosystem. Advantages with the proposed ecosystem approach are for example the possibility to detect important but previously neglected pathways to humans since the whole ecosystem is analysed. The results from the model indicate that a rather small share of hypothetical released 14 C would accumulate in biota due to large water exchange in the modelled area. However, modelled future scenarios imply opposite results, i.e. relatively high doses in biota, due to changes of the physical properties in the area that makes a larger accumulation possible. (author)