WorldWideScience

Sample records for implementing industrial energy

  1. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  2. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  3. Problems in the implementation of energy conservation methods: the industrial view

    Energy Technology Data Exchange (ETDEWEB)

    Broad, C.W.

    1977-10-15

    It is pointed out that New Zealand industry has been identified as putting little effort into energy conservation. An energy conservation campaign in industry to increase efficiency and reduce wastage could have major benefits for New Zealand as a whole. Little progress in implementing energy conservation techniques in industry is apparent at present. Business decisions are in the main motivated by profits. Because of the low place of energy in industry's costs of production, seen as a single factor, it hardly rates greater priority over other established production costs. A need to integrate energy costs and material costs is apparent. The need for education is obvious, now, with cheap and limitless energy no longer existing.

  4. Problems in the implementation of energy conservation methods: the industrial view

    Energy Technology Data Exchange (ETDEWEB)

    Broad, C. W.

    1977-10-15

    It is pointed out that New Zealand industry has been identified as putting little effort into energy conservation. An energy conservation campaign in industry to increase efficiency and reduce wastage could have major benefits for New Zealand as a whole. Little progress in implementing energy conservation techniques in industry is apparent at present. Business decisions are in the main motivated by profits. Because of the low place of energy in industry's costs of production, seen as a single factor, it hardly rates greater priority over other established production costs. A need to integrate energy costs and material costs is apparent. The need for education is obvious, now, with cheap and limitless energy no longer existing.

  5. Implementation of energy-saving policies in China: How local governments assisted industrial enterprises in achieving energy-saving targets

    International Nuclear Information System (INIS)

    Zhao, Xiaofan; Li, Huimin; Wu, Liang; Qi, Ye

    2014-01-01

    Local governments have replaced the national ministries that are in charge of various industries to become the primary implementer of energy-saving policies in China since 2000. This paper employs a case study-based approach to demonstrate the significance of local governments’ policy measures in assisting industrial enterprises with energy-saving activities in China. Based on the longitudinal case of the Jasmine Thermal Electric Power Company, this paper hypothesizes that sub-national governments have played a major role in implementing energy-saving policies in China since the 11th Five-year-plan period. A wide range of provincial and municipal agencies collaborated in implementing five types of policy measures – informational policy, skill building, improved enforcement of central directives, price adjustment, and funding – that reduced barriers to energy saving and motivated active pursuit of energy-saving activities at industrial enterprises. The case study demonstrates how an enterprise and local governments work together to achieve the enterprise's energy-saving target. The authors will investigate the hypothesis of this paper in the context of multiple case studies that they plan to undertake in the future. - Highlights: • We employ a case study-based approach to study policy implementation in China. • Local governments have played a major role in implementing energy-saving policies. • Local public agencies collaborated in implementing five types of policy measures. • Local policy measures reduced barriers to energy saving at industrial enterprises. • Enterprises and local governments work together to achieve energy-saving targets

  6. Energy industry

    Science.gov (United States)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  7. Forest industries energy research

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. C.

    1977-10-15

    Data on energy use in the manufacturing process of the wood products industry in 1974 are tabulated. The forest industries contributed 10% of New Zealand's factory production and consumed 25% of all industrial energy (including that produced from self-generated sources such as waste heat liquors and wood wastes) in that year. An evaluation of the potential for savings in process heat systems in existing production levels is shown to be 3% in the short, medium, and long-term time periods. The industry has a high potential for fuel substitution in all sectors. The payback periods for the implementation of the conservation measures are indicated.

  8. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  9. Energy Industry

    National Research Council Canada - National Science Library

    Butler, James; Bekbenbetov, Marat; Coffman, Katherine; Davies, Kirk; Farrar, Michael R; Fletcher, Scott N; Hall, Robert; Kljajic, Senad; Koprucu, Feza; Leek, Kevin

    2007-01-01

    ... technologies and use of alternative fuels. Specifically, the national energy policy should lead to one air quality standard for automobile emissions, articulate a clear position on reducing greenhouse gas emissions, increase the diversity...

  10. Storage requirement and its impact on the energy industry in implementation of political objectives of energy transition

    International Nuclear Information System (INIS)

    Teufel, Felix Thomas

    2015-01-01

    The increasing integration of renewable energy generating systems pose fundamental challenges for the energy industry. This concerns not only the utility companies but also established simulation models for analyzing the markets. In the present work, a system dynamic bottom-up model is described, which imagines the German electricity market in a 15 minute resolution and a high integration of renewable energies. The above described developments are affecting increasingly the operation mode of storage power plants. A result of model is that the operation of storage power plants is increasingly no longer worthwhile in the near future. After 2020, however, in the daytime prices will be significantly lower than during the night, resulting in new economic application scenarios for storage power plants. Also an outlook is provided on the duration of future storage usage times in the presented model, after which there will be a considerable demand for increasingly shorter cycles under 4 hours and longer cycles with more than 32 hours. [de

  11. System implementation of electromobility, challenges to the energy industry law, current status. Pt. 1; Systemintegration von Elektromobilitaet, Herausforderung an das Energiewirtschaftsrecht, eine Standortbestimmung. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Eric [Verband kommunaler Unternehmen e.V., Berlin (Germany). Sachgebiet Netzzugang, Strom, Entflechtung; Schmelzer, Knut [Jena Univ. - Kompetenzzentrum fuer Technik, Wirtschaft, Recht e.V. (Germany). Inst. fuer Energiewirtschaftsrecht

    2010-11-15

    The authors of the first part of the contribution under consideration report on generic considerations on the implementation of electrical mobility in the valid energy industry law. Moreover, the authors report on the fundamental question whether and to what extent electrical mobility can be understood as an extended task of supply in the sense of the valid energy industry law.

  12. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Kelly Kissock, J.; Eger, Carl

    2008-01-01

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  13. Industry and energy; Industrie et energie

    Energy Technology Data Exchange (ETDEWEB)

    Birules y Bertran, A.M. [Ministere des Sciences et de la Technologie (Spain); Folgado Blanco, J. [Secretariat d' Etat a l' Economie, a l' Energie et aux PME du Royaume d' Espagne (Spain)

    2002-07-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  14. Features of energy efficiency benchmarking implementation as tools of DSTU ISO 50001: 2014 for Ukrainian industrial enterprises

    Directory of Open Access Journals (Sweden)

    Анастасія Юріївна Данілкова

    2015-12-01

    Full Text Available Essence, types and stages of energy efficiency benchmarking in the industrial enterprises are considered. Features, advantages, disadvantages and limitations on the use are defined and underlying problems that could affect the successful conduct of energy efficiency benchmarking to Ukrainian industrial enterprises are specified. Energy efficiency benchmarking as tools to the national standard of DSTU ISO 50001: 2014 is proposed

  15. Industrial energy-flow management

    International Nuclear Information System (INIS)

    Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok

    2007-01-01

    Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems

  16. Energy prospects for industry

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, P P; Roberts, G F.I.; Thomas, V E; Davies, D; Crow, L M

    1983-01-01

    Contents: Electricity today and tomorrow; Gas--supply prospects for the future; Petroleum based energy--the UK perspective; Future markets for coal; Flexibility--the key to Dunlop's energy strategy; Energy conservation in Alcan; Present and future energy patterns in Courtaulds PLC; New energy technology for the quarrying industry.

  17. Analysis of problems in the implementation of management systems of quality in the energy industry, oil and gas

    Energy Technology Data Exchange (ETDEWEB)

    Borhi, Juan Carlos

    2010-09-15

    The aim of this paper is to describe the problem in the development of systems of quality management based on ISO 9001:2008 to implement in energy companies involved in the extraction, distribution and processing of oil and gas.

  18. Energy. Policy and Implementation

    International Nuclear Information System (INIS)

    Stroop, A.

    2006-01-01

    Why does the government have an energy policy? What form does it take? Who is involved in implementing that policy? These and similar questions are answered in the latest Energy Report. The Dutch Ministry of Economic Affairs (EZ) argues that the objectives are feasible as long as the energy policies are matched by suitable implementation measures [nl

  19. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  20. Energy conservation in industry

    International Nuclear Information System (INIS)

    Pembleton, P.

    1992-01-01

    Energy Conservation in Industry is the first number in the Energy and Environmental Series of the Industrial and Technological Information Bank (INTIB). The Series supersedes the INECA Journal and reflects the broader information programme undertaken by INTIB. The present number of the Series contains contributions from three major international databases and five topic-specific sources, including three United Nations Organizations. The present publication consists of a recent technical report on a current topic: reducing energy loss in four industrial sectors and improving energy conservation through waste-heat recovery, followed by two sections containing abstracts of technical materials

  1. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  2. Industry and energy

    International Nuclear Information System (INIS)

    Birules y Bertran, A.M.; Folgado Blanco, J.

    2002-01-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  3. Finnish industry's energy requirement

    International Nuclear Information System (INIS)

    Punnonen, J.

    2000-01-01

    Industry uses around half of the electricity consumed in Finland. In 1999, this amounted to 42.3 TWh and 420 PJ of fuel. Despite the continual improvements that have been made in energy efficiency, energy needs look set to continue growing at nearly 2% a year. Finnish industrial output rose by some 5.5% in 1999. In energy-intensive sectors such as pulp and paper, output rose by 3.4%, in the metal industry by 4%, and in the chemical industry by 3.1%. Growth across Finnish industry is largely focused on the electrical and electronics industries, however, where growth last year was 24.3% The Finnish forest products industry used a total of 26.1 TWh of electricity last year, up 1% on 1998. This small increase was the result of the industry's lower-than-average operating rate in the early part of the year The metal industry used 7.2 TWh of electricity, an increase of 5.8% on 1998. Usage in the chemical industry rose by 2% to 5.2 TWh. Usage by the rest of industry totalled 3.8 TWh, up 2.3% on 1998. All in all, industry's use of electricity rose by 2% in 1999 to 42,3 TWh. Increased demand on industry's main markets in Europe will serve to boost industrial output and export growth this year. This increased demand will be particularly felt in energy-intensive industries in the shape of an increased demand for electricity. Overall, electricity demand is expected to grow by 3% this year, 1% more than industry's longterm projected electricity usage growth figure of 2%. The structure of industry's fuel use in Finland has changed significantly over the last 25 years. Oil, for example, now accounts for only some 10% of fuel use compared to the 40% typical around the time of the first oil crisis. Oil has been replaced by biofuels, peat, and natural gas. The pulp and paper industry is the largest industrial user of renewable energy sources in Finland, and uses wood-related fuels to cover nearly 70% of its fuel needs

  4. 2002 Industry Studies: Energy

    Science.gov (United States)

    2002-01-01

    Information technologies have facilitated the rapid growth of electronic market places across the energy industry for trading energy commodities, such as...and information technology industry has further increased the importance of abundant, low-cost, and reliable electric power. Recently, public...California, the country has recently slowed its efforts to make electricity markets more competitive. Recommendations. Unless some technological “silver bullet

  5. Cogeneration an opportunity for industrial energy saving

    International Nuclear Information System (INIS)

    Pasha, R.A.; Butt, Z.S.

    2011-01-01

    This paper is about the cogeneration from industrial energy savings opportunities perspective. The energy crisis in these days forces industry to find ways to cope with critical situation. There are several energy savings options which if properly planned and implemented would be beneficial both for industry and community. One way of energy saving is Cogeneration i.e. Combined Heat and Power. The paper will review the basic methods, types and then discuss the suitability of these options for specific industry. It has been identified that generally process industry can get benefits of energy savings. (author)

  6. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  7. Energy shocks and detecting influential industries

    International Nuclear Information System (INIS)

    Kang, Dongsuk; Lee, Duk Hee

    2017-01-01

    An industry's relationship of supply and demand with the energy sector can be a critical factor in the stability of its economic performance. Furthermore, the patterns of industry dependence on energy industries can be a major characteristic of entire industrial structure. This research evaluates industries' impact scores for their overall influence on other industries and vulnerability to supply and demand shocks from the energy sector. The study utilizes a sample of Korea's industrial input–output tables from 2010 to 2012. Using a chain of complementary methodologies, this study finds that among four clusters, energy, services, and raw materials are key members that can spread energy shocks to other industries. Therefore, governments need to prepare effective energy efficiency policies for these target industries. - Highlights: • We analyze an industry's impact score of its vulnerability to energy shock and inter-industrial effects. • We utilize the sample of input-output tables in Korea from 2010 to 2012. • We implement simulation, PCA, TOPSIS, cluster analysis about energy shock and industrial trades. • Subsectors of energy, services, raw material are subject to energy shock and influential to others. • These bridge industries can be targets that require policies for effective energy efficiency.

  8. Canada's voluntary industrial energy conservation programme

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Jr., C. A.

    1979-07-01

    The organization of the voluntary industrial energy conservation program is described. There are 15 industrial sectors in the program and the plan implemented by the sectors including individual companies, trade associations, industry task forces, task force coordinating committee, and government is described. Targets for attack are mainly housekeeping projects, energy efficiency in retrofitting, and new processes. Problems are identified. It is concluded that compiled total performance has essentially achieved its target of 12% improved energy efficiency two years ahead of schedule. (MCW)

  9. Energy Management in Industrial Plants

    Directory of Open Access Journals (Sweden)

    Dario Bruneo

    2012-09-01

    Full Text Available The Smart Grid vision imposes a new approach towards energy supply that is more affordable, reliable and sustainable. The core of this new vision is the use of advanced technology to monitor power system dynamics in real time and identify system in stability. In order to implement strategic vision for energy management, it is possible to identify three main areas of investigation such as smart generation, smart grid and smart customer. Focusing on the latter topic, in this paper we present an application specifically designed to monitor an industrial site with particular attention to power consumption. This solution is a real time analysis tool, able to produce useful results to have a strategic approach in the energy market and to provide statistic analysis useful for the future choices of the industrial company. The application is based on a three layers architecture. The technological layer uses a Wireless Sensor Network (WSN to acquire data from the electrical substations. The middleware layer faces the integration problems by processing the raw data. The application layer manages the data acquired from the sensors. This WSN based architecture represents an interesting example of a low cost and non-invasive monitoring application to keep the energy consumption of an industrial site under control. Some of the added value features of the proposed solution are the routing network protocol, selected in order to have an high availability of the WSN, and the use of the WhereX middleware, able to easily implement integration among the different architectural parts.

  10. Process Industry and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    efficiency an integral part of corporate strategy; (b) Wherever possible opt for functional tendering, which should challenge suppliers; and (c) Make sure investment decisions are based on life cycle costing. As for interaction between the process industry and the supply chain: (a) Make sure the supply chain is involved at an early stage in the project development cycle; and (b) Make sure risks are suitably distributed across the chain, including smart financing. As for the supply chain: (a) Provide insight into the pros and cons of an energy-related measure; (c) Map risks and uncertainties; and (c) Sufficiently supervise the right level at market launching. Implementing energy measures in the process industry should increasingly become a coproduction of companies that are actively involved in the value chain. This is the only way to help innovations travel fast towards the market and have breakthroughs in pushing back the energy consumption level in the process industry. The message to the value chain is this: venture coproduction, give creativity a serious chance and push out frontiers. A more sustainable society will be the result; companies that are involved in and around the process industry will be able to improve their competitiveness.

  11. Interim district energy implementation

    Energy Technology Data Exchange (ETDEWEB)

    Fearnley, R.; Susak, W. [City of Vancouver, BC (Canada); Johnstone, I. [BCG Services Inc., Vancouver, BC (Canada)

    2001-07-01

    The concept of district energy was introduced in the City of North Vancouver, a city of 45,000, in 1997. A preliminary study was completed in 1997, followed by a tour of some district energy facilities in Finland in the same year. In 1999 a large district energy study was completed by a consultant. The study indicated the need for an investment of $15 million to implement district heating in the City. Lack of sufficient financial resources and immediately connectable heat load, the project was considered a non-starter. Some of the other factors leading to shelving the project included no current significant pricing advantages over competing energy sources and no current opportunity for cogeneration, given the low price that BC Hydro is willing to pay for independently produced power. The project, although shelved for the moment, has not been discarded. Planning and exploration are continuing, aided by the City's commitment to energy efficiency and conservation, its long term planning horizon and its significant influence over the development of some prime real estate.

  12. Economical and Energy Efficiency of Iron and Steel Industry Reindustrialisation in Russia Based on Implementation of Breakthrough Energy-Saving Technologies

    Science.gov (United States)

    Shevelev, L. N.

    2017-12-01

    Estimates were given of economical and energy efficiency of breakthrough energy-saving technologies, which increase competitive advantages and provide energy efficiency of production while reducing negative impact on the environment through reduction of emissions of harmful substances and greenhouse gases in the atmosphere. Among these technologies, preference is given to the following: pulverized coal fuel, blast-furnace gas recycling, gasification of non-coking coal in bubble-type gas-generators, iron-ore concentrate briquetting with steam coal with further use of ore-coal briquettes in electric furnace steel making. Implementation of these technologies at iron and steel works will significantly reduce the energy intensity of production through reduction of expensive coking coal consumption by means of their substitution by less expensive non-coking (steam) coal, and natural gas substitution by own secondary energy resource, which is the reducing gas. As the result, plants will get an opportunity to become self-sufficient in energy-resources and free themselves entirely from expensive purchased energy resources (natural gas, electric power, and partially coking coals), and cross over to low-carbon development.

  13. Energy's role in industrial competitiveness

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on the role of energy in industrial competitiveness, papers were presented on the energy consumer's perspective on energy issues in the mineral and food industries, global perspectives on the role of energy in industrial competitiveness, a supplier's perspective on energy issues in the oil/gas and electric industries, perspectives on environmental issues including climate change, and international partnerships for industrial competitiveness, notably in the former Soviet Union and eastern Europe. Separate abstracts have been prepared for 15 papers from this conference

  14. Energy conservation status in Taiwanese food industry

    International Nuclear Information System (INIS)

    Ma, Chih-Ming; Chen, Ming-Hue; Hong, Gui-Bing

    2012-01-01

    The food industry in Taiwan is labor intensive, the cost of raw materials is high, and there is much product diversification. Although this industry is primarily small and medium scale, it is a large user of electricity in Taiwan's manufacturing sector. The concentration of greenhouse gases (GHGs) from manufacturing activities and vehicle emissions has increased remarkably. Energy audits are a basic and direct means by which energy efficiency can be improved, energy consumption reduced, and carbon dioxide emissions inhibited. This work summarizes the energy saving potential of 76 firms and the energy savings implemented by 23 firms as determined by energy audit tracking and from the on-line energy declaration system in Taiwan's food industry. The results of this study can serve as a benchmark for developing a quantified list in terms of potential energy savings and opportunities for improving the efficiency of the food industry. - Highlights: ► This work summarizes the energy saving potential and the energy savings implemented in food industry. ► The results of this study can serve as a benchmark for developing a quantified list in terms of potential energy savings. ► The opportunities for improving the efficiency of the food industry can be a reference.

  15. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  16. Promoting Implementation of Safety Culture in Nuclear Application for Industrial Facilities; an Important Role of Nuclear Energy Regulatory Agency in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Setianingsih, Lilis Susanti [KINS-KAIST Master Degree Program, Daejeon (Korea, Republic of)

    2012-03-15

    Implementation of nuclear energy for industrial purposes has reached its highest peak. BAPETEN, as Nuclear Energy Regulatory Agency of Indonesia has published regulations regarding nuclear energy utilization. As high risk associating such utilization requires direct and thoroughly supervision in order to assure its compliance to safety and security aspect, procedures related to operational activities must by fully applied. Radiation Protection Program as one type of procedures that must be available in nuclear energy utilization operation is intended to provide operators specifically technical guidance to avoid undesired negative effects of incidents or accidents. It is the responsibility of managerial level in a company to provide the procedures and to further supervise their application in the field. Radiation workers, those are all employees working in or within radiation area must understand how to execute the procedures properly. The radiation protection program is intended to protect workers, member of community and property as well as the environment from the negative impacts of nuclear utilization operational due to its radiation exposure. Safety culture, a compound of nature derived from behavior of organization and people within the organization to pay a full attention and give main priority in radiation safety matters, is expected to be achieved by implementing the radiation protection program as safety habits at the work place. It requires a management commitment to ensure that all aspect in safety and, whenever necessary, security are accomplished within the radiation protection program in order to build a safety culture in a radiation work place. Government Regulation No. 33 2007 about Safety for Ionizing Radiation and Security for Radioactive Source and Government Regulation No. 29 2008 regarding Licensing for Utilization of Ionizing Radiation and Nuclear Material present regulation and arrangement related to radiation protection program as a basic

  17. Promoting Implementation of Safety Culture in Nuclear Application for Industrial Facilities; an Important Role of Nuclear Energy Regulatory Agency in Indonesia

    International Nuclear Information System (INIS)

    Setianingsih, Lilis Susanti

    2012-01-01

    Implementation of nuclear energy for industrial purposes has reached its highest peak. BAPETEN, as Nuclear Energy Regulatory Agency of Indonesia has published regulations regarding nuclear energy utilization. As high risk associating such utilization requires direct and thoroughly supervision in order to assure its compliance to safety and security aspect, procedures related to operational activities must by fully applied. Radiation Protection Program as one type of procedures that must be available in nuclear energy utilization operation is intended to provide operators specifically technical guidance to avoid undesired negative effects of incidents or accidents. It is the responsibility of managerial level in a company to provide the procedures and to further supervise their application in the field. Radiation workers, those are all employees working in or within radiation area must understand how to execute the procedures properly. The radiation protection program is intended to protect workers, member of community and property as well as the environment from the negative impacts of nuclear utilization operational due to its radiation exposure. Safety culture, a compound of nature derived from behavior of organization and people within the organization to pay a full attention and give main priority in radiation safety matters, is expected to be achieved by implementing the radiation protection program as safety habits at the work place. It requires a management commitment to ensure that all aspect in safety and, whenever necessary, security are accomplished within the radiation protection program in order to build a safety culture in a radiation work place. Government Regulation No. 33 2007 about Safety for Ionizing Radiation and Security for Radioactive Source and Government Regulation No. 29 2008 regarding Licensing for Utilization of Ionizing Radiation and Nuclear Material present regulation and arrangement related to radiation protection program as a basic

  18. Implementation of nuclear energy in Iran

    International Nuclear Information System (INIS)

    Satodehnia, Ahmad

    1977-01-01

    The method adopted by the Atomic Energy Organization of Iran (AEOI) for implementation of the Iranian Nuclear Power Plant Program is outlined in this paper. The problems of manpower availability and industry participation are discussed. It is concluded that the method adopted for the initial phase of implementation is helping AEOI to achieve the objective of its program

  19. Energy End-Use : Industry

    NARCIS (Netherlands)

    Banerjee, R.; Gong, Y; Gielen, D.J.; Januzzi, G.; Marechal, F.; McKane, A.T.; Rosen, M.A.; Es, D. van; Worrell, E.

    2012-01-01

    The industrial sector accounts for about 30% of the global final energy use and accounts for about 115 EJ of final energy use in 2005. 1Cement, iron and steel, chemicals, pulp and paper and aluminum are key energy intensive materials that account for more than half the global industrial use. There

  20. Energy conservation potential in Taiwanese textile industry

    International Nuclear Information System (INIS)

    Hong, Gui-Bing; Su, Te-Li; Lee, Jenq-Daw; Hsu, Tsung-Chi; Chen, Hua-Wei

    2010-01-01

    Since Taiwan lacks sufficient self-produced energy, increasing energy efficiency and energy savings are essential aspects of Taiwan's energy policy. This work summarizes the energy savings implemented by 303 firms in Taiwan's textile industry from the on-line Energy Declaration System in 2008. It was found that the total implemented energy savings amounted to 46,074 ton of oil equivalent (TOE). The energy saving was equivalent to 94,614 MWh of electricity, 23,686 kl of fuel oil and 4887 ton of fuel coal. It represented a potential reduction of 143,669 ton in carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 3848 ha plantation forest. This study summarizes energy-saving measures for energy users and identifies the areas for making energy saving to provide an energy efficiency baseline.

  1. An Assessment of Need for Developing and Implementing Technical and Skilled Worker Training for the Solar Energy Industry. Final Report.

    Science.gov (United States)

    Orsak, Charles G., Jr.; And Others

    The objective of this project was to determine the need for manpower training in solar energy technology and report it on a regional and/or state basis. Three basic questions were to be answered by the project: (1) Based on a survey of solar heating and cooling systems equipment, what types of systems are being manufactured? (2) What is the…

  2. Energy economy in Nordic industry

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, P H; Finnedal, B H

    1980-01-01

    The employment, economic and energetic situation in various industrial branches and their importance for industry as a whole is mapped for Nordic countries. Future Nordic energy projects can base their attempts to decrease energy costs per unit on this report. In food and stimulants industry, chemical, glass and ceramic industry over 90% energy is used for processing while in steel- and metal-industry the processing consumes only about 25%. Rentability of new investments in energy saving should be considered in these branches against investments in automation, new equipment etc. Common Nordic energy-saving projects can provide much better energy economy. For instance 4% of USA energy which had formerly been used in drying processes is drastically decreased and if the USA result can be transferred to Nordic conditions DKr 160 million can be save. Prospective common projects are process-types like drying, spray-drying, heat treatments of mineral proproducts, and evaporation.

  3. Energy management оf industrial enterprise

    Directory of Open Access Journals (Sweden)

    Lyaskovskaya E.A.

    2017-01-01

    Full Text Available In the intensifying condition of economic situation and increasing competitiveness in domestic and foreign markets, the most important way to develop competitive ability of an industrial company is to reduce energy costs in the production process. Insufficient level of the efficiency of energy resources usage affects an industrial company’s performance indicators and its investment attractiveness. A promising way of solving this matter is to develop and implement a strategy of rational energy consumption, which is aimed at the realization of company’s potential to optimize the consumption of electric energy by using internal and external resources in order to minimize energy costs. The strategy of rational energy consumption defines how an industrial company acquires electric energy and uses it to sustain the production. While developing and implementing the strategy, one should use a systemic and complex way and consider the following: peculiarities of electric energy and power as products; the structure of electric energy market and the possibilities of its consumers; peculiarities of price-formation on electric energy market; technical and technological, organizational and administrative, social and economic parameters of a company, characteristic features of its resource potential and production processes; the results of company’s energy efficiency audit and energy problems; company’s reserves that can increase its energy efficiency. An integral strategy of energy consumption includes a strategy for energy preservation and efficiency and a strategy for energy costs management. Both strategies are interrelated and serve for one purpose, which is minimizing the energy costs. This division helps simplify the analysis, search for alternatives and realization of energy management on operative, tactical and strategic levels, considering the regional and industry-specific peculiarities of an industrial company, its financial performance and

  4. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  5. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  6. Implementation of nuclear energy in Iran

    International Nuclear Information System (INIS)

    Sotoodehnia, A.

    1977-01-01

    The method adopted by the Atomic Energy Organization of Iran (AEOL), for implementing of the Iranian Nuclear Power Plant Program is outlined. The problem of manpower availability and industry participation are discussed. It is concluded that the turnkey project method, combined with the participation of national industries, the prior creation of the Atomic Energy Organization of Iran and advanced education and training of professional managerial and technical people, for the initial phase of implementation is helping AEOI to achieve the objective of its program. (author)

  7. Industrial energy conservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.S.; Williams, M.A. (eds.)

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  8. Industrial Energy Conservation Technology

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  9. Fostering renewable energy integration in the industry

    International Nuclear Information System (INIS)

    Galichon, Ines; Dennery, Pierre; Julien, Emmanuel; Wiedmer, Damien; Brochier, Jean Baptiste; Martin, Etienne; Touokong, Benoit; Paunescu, Michael; Philibert, Cedric; ); Gerbaud, Manon; Streiff, Frederic; Petrick, Kristian; Bucquet, Coraline; Jager, David de; )

    2017-03-01

    Renewable energy (RE) integration in the industry is already widespread worldwide. Beyond GHG emissions reduction, it brings direct operational, economical and non-financial benefits to industrial players in a changing energy environment. ENEA Consulting published the results of a study on the integration of RE in the industry conducted in partnership with Kerdos Energy for the International Energy Agency Renewable Energy Technology Deployment (IEA-RETD) who operates under the legal framework of the International Energy Agency. This study aims to provide inspiration and state-of-the-art applications of RE in the industry (identification of more than 200 projects worldwide), present best practices and key developments of such projects for industrial players (21 detailed case studies); and formulate policy recommendations for policy makers and provide lessons learned for industrial actors to make RE integration a widespread practice in the industry globally. Different integration schemes are possible, from simple and investment-light projects to more complex integration projects which can lead to core production processes adaptation. RE integration in industrial assets brings direct benefits to industrial players to better operate their assets, such as energy costs reduction and energy prices hedging, and improved energy supply reliability. Nevertheless, various barriers still hinder full RE development in the industry. However, industrial players and policy makers have a wide array of options to overcome them. Eight issues have been identified that can tilt an industrial actor towards or away from deploying RE production assets in its facilities. Thus, third party energy production schemes represent a significant opportunity for industrial players who lack the equity capital / cash needed to develop RE projects. Similarly, new shorter-term contractual schemes that fit better with industrial players' and third party energy producers' constraints are being developed

  10. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    Science.gov (United States)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  11. Solar energy implementation in Nigeria

    OpenAIRE

    Museckaite, Rasa; Kevelaitis, Karolis; Obialo, Gaisva R.; Raudonis, Vytautas

    2009-01-01

    This research focuses on energy sector in Nigeria, more precisely, the electricity sector. The current situation in the Nigeria is that energy supply is not covering the energy demand. We made a research to investigate if solar energy could be a solution for the present situation in the mentioned country acting as a supportive energy supply. We analyzed both economical and environmental costs/benefits of implementation of solar energy system. We analyzed environmental aspect by comparing sola...

  12. Forest industries energy reserch: summary

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G C

    1976-01-01

    The forest industries, which contribute 10% of New Zealand's factory production and consume 25% of all industrial energy (including self-generated sources such as waste liquors and wood wastes), were closely investigated to determine the extent to which imported energy sources can be substituted by local sources and savings made in the specific energy consumption of the industry's products. Issues considered as fundamental to the study were conservation of the nation's fossil fuels; nuclear power should be considered only after full study of its implications; restraints on the growth of energy demands; a greater emphasis on renewable energy resources; and new energy-intensive industries must account for the environmental and social costs of providing the energy. The study was commenced in February 1975 and involved a series of visits to all the major plants and a few representative smaller plants. Energy balances for all the major plants were prepared and are published in the text of the report. The forest-based industries have developed from a large number of small scattered sawmills, drawing from indigenous resources into a few large industrial units which are capital-intensive and produce a wide variety of products serving the home and export markets. They fall into four categories, roughly as follows: large integrated units; intermediate-size integrated mills; sawmills and chip plants; and manufacturing.

  13. National Emission Standards for Hazardous Air Pollutants (NESHAP) for Major Sources: Industrial, Commercial, and Institutional Boilers - Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures

    Science.gov (United States)

    The purpose of this July 2012 document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule.

  14. Taxation of the energy industries

    International Nuclear Information System (INIS)

    Armstrong, G.

    1995-01-01

    Taxation of the energy industries is an issue of major importance for each energy sector. This has always been the situation for the primary fossil fuel sectors but, with corporatization and privatization, is now also an issue for the electricity supply industry. This article examines the most significant forms of taxation affecting the major industry sectors, namely secondary taxation, corporate taxation and, as a consequence of the corporatization and privatization of the electricity supply industry, surrogate taxation as it affects that industry. While essentially considering secondary taxation, the paper also reviews corporate and surrogate taxes. Tax exemptions for various energy sector activities such as mining operations, exploration and rehabilitation related activities are outlined. It is considered that there is insufficient evidence of the influence of taxation and other factors on electricity pricing. 2 tabs

  15. Save energy - for industry

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The article is an interview with Glenn Bjorklund, Vice President of SCalEd (Southern California Edison). The variations in Californian power demand and public electricity consumption habits are explained, together with types of power source used in electricity production. Questions are posed concerning SCalEd's energy saving strategy. The political implications of electricity charge changes are discussed. The planned energy resources for 1982-1992 are given with nuclear power being the largest contributor. (H.J.P./G.T.H.)

  16. Energy from industrial wastewater

    International Nuclear Information System (INIS)

    Cangas Rodriguez, J.

    2011-01-01

    The reduction of energy consumption and optimization of operating costs are issues of great relevance to many companies. Under certain conditions it is possible to integrate these objectives within a modern and intelligent treatment of effluents. Through the recovery of heat energy of water recycling and the minimization of the cost of waste collection and treatment can optimize operational costs and reduce the overall environmental impact of the plant. (Author)

  17. Canadian wind energy industry directory

    International Nuclear Information System (INIS)

    1996-01-01

    The companies and organizations involved, either directly or indirectly, in the wind energy industry in Canada, are listed in this directory. Some U.S. and international companies which are active or interested in Canadian industry activities are also listed. The first section of the directory is an alphabetical listing which includes corporate descriptions, company logos, addresses, phone and fax numbers, e-mail addresses and contact names. The second section contains 54 categories of products and services associated with the industry

  18. Italian energy conservation laws: Implementation problems

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Italian energy conservation Law No. 9 was designed to reduce Italy's worrisome 82% dependency on foreign energy supplies by encouraging the development and use of renewable energy sources, fuel diversification and auto-production/cogeneration by private industry. Law No. 10 was intended to promote energy conservation initiatives especially with regard to the efficient use of energy for space heating in public buildings. Both of these legal incentives have encountered great difficulties in implementation due to the inability of the Government to provide the necessary timely and sufficient start-up funds, as well as, due to the excessive bureaucratism that was built into the administrative procedures

  19. Modernization of industrial enterprises and innovative implementation

    OpenAIRE

    У.M. Petrovych; V.Z. Borbulevych

    2016-01-01

    The aim of the article. The main objective of the domestic company is the development of new market mechanisms, the implementation of progressive reforms, formation of specialized structures supporting innovation-oriented management. The purpose of this paper is to develop a comprehensive approach to the principles of industrial enterprises modernization. Based on the goal, the main objectives of the study are: to identify the main objectives of modernization of industrial enterprises; to dev...

  20. Energy Industry 2004

    Science.gov (United States)

    2004-01-01

    distribution technologies as well as hydrogen power sources currently more mature than fuel cells. As dual-fuel vehicles become more common, market ...a nation’s ability to wield its economic, diplomatic, informational and military instruments of power. Ensuring the security of America’s energy...caused some instability of the electric market that was highlighted by California’s electricity crisis in 2000- 2001. These realities make policies

  1. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  2. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  3. Industrial view of Hydrogen Energy

    International Nuclear Information System (INIS)

    Francois Jackow

    2006-01-01

    Industrial Gases Companies have been mastering Hydrogen production, distribution, safe handling and applications for several decades for a wide range of gas applications. This unique industrial background positioned these companies to play a key role in the emerging Hydrogen Energy market, which can rely, at early stage of development, on already existing infrastructure, logistics and technical know-how. Nevertheless, it is important to acknowledge that Hydrogen Energy raised specific challenges which are not totally addressed by industrial gas activities. The main difference is obviously in the final customer profile, which differs significantly from the qualified professional our industry is used to serve. A non professional end-user, operating with Hydrogen at home or on board of his family car, has to be served with intrinsically safe and user-friendly solutions that exceed by far the industrial specifications already in place. Another significant challenge is that we will need breakthroughs both in terms of products and infrastructure, with development time frame that may require several decades. The aim of this presentation is to review how a company like Air Liquide, worldwide leader already operating more than 200 large hydrogen production sites, is approaching this new Hydrogen Energy market, all along the complete supply chain from production to end-users. Our contributions to the analysis, understanding and deployment of this new Energy market, will be illustrated by the presentation of Air Liquide internal development's as well as our participation in several national and European projects. (author)

  4. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  5. Energy management in the Canadian airline industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The purpose of this report was to outline the current status of the Canadian airline industry's energy performance and to outline energy management programs undertaken within the industry. The study also provides an aviation energy management information base developed through a comprehensive computer bibliographical review. A survey of the industry was undertaken, the results of which are incorporated in this report. The Canadian airline industry has recognized the importance of energy management and considerable measures have been introduced to become more energy efficient. The largest single contributor to improved productivity is the acquisition of energy efficient aircraft. Larger airlines in particular have implemented a number of conservation techniques to reduce fuel consumption. However, both large and small airlines would further benefit through incorporating techniques and programs described in the annotated bibliography in this study. Rising fuel prices and economic uncertainties will be contributing factors to a smaller average annual growth in fuel consumption during the 1980s. The lower consumption levels will also be a result of continuing energy conservation awareness, new technology improvements, and improvements in air traffic control. 98 refs., 4 figs., 6 tabs.

  6. Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs

    International Nuclear Information System (INIS)

    Thollander, Patrik; Danestig, Maria; Rohdin, Patrik

    2007-01-01

    The most extensive action targeting the adoption of energy efficiency measures in small- and medium-sized manufacturing industries in Sweden over the past 15 years was project Highland. This paper presents an evaluation of the first part of this local industrial energy programme, which shows an adoption rate of more than 40% when both measures that have already been implemented and measures that are planned to be implemented are included. A comparison between this programme and another major ongoing programme for the Swedish energy-intensive industry indicates that the approach used in project Highland aimed at small- and medium-sized industries is an effective way to increase energy efficiency in the Swedish industry. The major barriers to energy efficiency among the firms were related to the low priority of the energy efficiency issue

  7. State of the art and an integrated proposal to assess the energy gap in the implementation of cogeneration in industrial sector

    International Nuclear Information System (INIS)

    Escudero A, Ana C; Botero B, Sergio

    2009-01-01

    This paper shows the state of the art of decision making methodologies and theories that are in the literature and address topics related to the implementation of cogeneration systems. These topics are energy efficiency, new technologies adoption. These are analyzed in how they try to explain a complex phenomenon such as the energy gap (low implementation of technically and economically feasible energy efficiency projects), and classifying them in four methodological approaches. Based on the analysis of these approaches, a conceptual proposal is proposed, setting the decision maker as the central object of study, and the real (not the ideal) decision making process as a mechanism that facilitates the identification and understanding of the phenomenon from the bounded rationality principles.

  8. The impact of energy efficiency interventions on industry – the Industrial Energy Efficiency Project in South Africa

    CSIR Research Space (South Africa)

    Hartzenburg, A

    2015-10-01

    Full Text Available The IEE Project was set up in 2010 to help transform the energy-use patterns of South African industry by means of energy management systems and energy systems optimisation. Through IEE Project implementation, around 100 industry plants have saved 1...

  9. Can industry afford solar energy

    Science.gov (United States)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  10. Implementation of Video Monitoring In Aluminium Industry

    OpenAIRE

    Hedlund, Ann; Andersson, Ing-Marie; Rosén, Gunnar

    2015-01-01

    The aim was to evaluate results and experiences from development of new technology, a training program and implementation of strategies for the use of a video exposure monitoring method, PIMEX. Starting point of this study is an increased incidence of asthma among workers in the aluminium industry. Exposure peaks of fumes are supposed to play an important role. PIMEX makes it possible to link used work practice, use of control technology, and so forth to peaks. Nine companies participated in ...

  11. Renewable energy prospects for implementation

    CERN Document Server

    Jackson, Tim

    1993-01-01

    Renewable Energy: Prospects for Implementation contains papers that were originally commissioned by the journal Energy Policy for a series on renewable energy appearing between January 1991 to September 1992. In view of the fast-changing demands on conventional energy supply to meet environmental imperatives, it seemed timely to reproduce here a selection of those papers with a new introduction and a revised concluding chapter by the Editor of the series, Dr Tim Jackson, a research fellow with the Stockholm Environment Institute. The book is organized into four parts. The papers in Part I

  12. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Daryl [ORNL; Papar, Riyaz [Hudson Technologies; Wright, Dr. Anthony [ALW Consulting

    2013-02-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  13. Integrating energy and environmental management in wood furniture industry.

    Science.gov (United States)

    Gordić, Dušan; Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review.

  14. Integrating Energy and Environmental Management in Wood Furniture Industry

    Science.gov (United States)

    Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review. PMID:24587734

  15. Energy consumption in France's industry. Conjuncture note

    International Nuclear Information System (INIS)

    2015-04-01

    Energy consumption in the industry represents today 1/5 of France's end-use energy consumption. Gas and electricity are the most consumed and represent 2/3 of the overall. The 5 most energy consuming industries are the following: paper and cardboard industry, food industry, rubber, plastic and other non-metallic mineral products industry, metallurgy and chemical industry. The reduction of the industry's energy consumption is explained by the decline of production, but above all by the energy efficiency improvement of the sector. Technological innovations in production means have indeed led to reduce energy consumption

  16. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  17. Sustainable energy policy - implementation needs

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, M. [Global Energy and Environmental Consultants, Felmersham (United Kingdom)

    2000-07-01

    Implementation of sustainable energy must address current needs arising from poverty, inequity, unreliability of supplies, social and economic development requirements, and increasing efficiency as well as widening the fuel mix, accelerating the deployment of appropriate new renewable energy schemes, and giving the necessary consideration to protection of the biosphere and the needs of future generations. To achieve these multiple goals markets need to work better, additional investments need to be mobilised in sustainable energy, technological innovation needs to be encouraged, technological diffusion and capacity building in developing countries needs to be supported, and both sounder domestic policies and greater international co-operation are required. (author)

  18. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  19. Effects of energy policy on industry

    Energy Technology Data Exchange (ETDEWEB)

    Carling, A; Dargay, J; Oettinger, C; Sohlman, A

    1978-06-01

    This report contains results from a number of studies of energy consumption in Swedish manufacturing industries and of the sensitivity of different industrial sectors to energy taxation and other kinds of energy policy measures. These studies have been concentrated to three energy-intensive sectors, namely the pulp and paper industry; mining and metal production (especially iron mines and the steel industry); and the brick, cement, and lime industry.

  20. Opportunity knocks - the sustainable energy industry and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Price, B.; Keegan, P. [International Institute for Energy Conservation, Washington, DC (United States)

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  1. The status of energy conservation in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Su, Te-Li; Chan, David Yih-Liang; Hung, Ching-Yuan; Hong, Gui-Bing

    2013-01-01

    The cement industry represents one of the most energy intensive sectors in Taiwan. Energy audits are the direct tools which are employed to help reduce energy consumption. The objectives of energy audits are to establish energy audit systems, provide on-site energy audit service and reduce production cost. This study summarized the energy savings implemented in Taiwan's cement industry; the data were obtained from the on-line Energy Declaration System in 2010. The total implemented energy savings amounted to 68,512 kilo liter of crude oil equivalent (KLOE). The energy audit group audited seven Taiwanese cement plants in 2011 and revealed an energy saving potential of 2571.6 MWh of electricity and 1002.8 KLOE of thermal energy. The total potential energy saving was 1708.5 KL of crude oil equivalent (KLOE), equivalent to a 4560 t reduction in CO 2 emissions, representing the annual CO 2 absorption capacity of a 122 ha forest plantation. - Highlights: • This study summarizes the energy savings implemented in Taiwan's cement industry from the on-line Energy Declaration System. • The energy audit group audited seven Taiwanese cement plants in 2011 and revealed energy saving potential was 1708.5 KLOE. • This work aims to examine what Taiwan has done and also describes the current status in cement industry. • In addition, some potential energy conservation opportunities or measures are revealed in this paper

  2. Promoting energy conservation in China's metallurgy industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Zhili

    2017-01-01

    China is undergoing rapid industrialization and urbanization, with consequent dramatic increase in energy demand. Given energy scarcity, environmental pollution, energy security and energy cost constraints, energy conservation will be the major strategy in China's transition to a low-carbon economy. Since the metallurgy industry is a main sector of energy consumption, the efficiency of energy conservation in this industry will affect the future prospects of energy savings. This paper analyzes the energy conservation potential of China's metallurgy industry. First, seemingly unrelated regression method is applied to investigate the relationship between energy relative price, R&D input, enterprise ownership structure, enterprise scale and energy intensity of the metallurgy industry. Then, based on the SUR results, we use the scenario analysis method to predict energy consumption and savings potential in the industry in different scenarios. This paper provides references for China's government and metallurgy industry in formulating relevant energy conservation policies. - Highlights: • Seemingly unrelated regression method is applied to analyze the energy intensity of metallurgy industry. • We use the scenario analysis method to predict energy consuming and energy saving of Chinese metallurgy industry. • Provide references for China's government and metallurgy industry in formulating relevant energy conservation policies.

  3. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    Science.gov (United States)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  4. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  5. Fifteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This year's conference, as in the past, allows upper-level energy managers, plant engineers, utility representatives, suppliers, and industrial consultants to present and discuss novel and innovative ideas on how to reduce costs effectively and improve utilization of resources. Papers are presented on topics that include: Win-win strategies for stability and growth and future success, new generation resources and transmission issues, industry and utilities working together, paper industry innovations, improving energy efficiency, industrial customers and electric utilities regulations, industrial electro technologies for energy conservation and environmental improvement, advances in motors and machinery, industrial energy audits, industrial energy auditing, process improvements, case studies of energy losses, and industrial heat pump applications. Individual papers are indexed separately

  6. Energy conservation in mechanical industry; Maitrise de l`energie dans les industries mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The workshop is composed of 12 communications on the theme of energy consumption, conservation and management in industry, and more especially in metal industry: evaluation of the energy savings potential in the French industry; official energy diagnosis procedure in buildings; the French national gas utility policy for energy conservation and economical performance in industry; energy conservation with speed variators for electric motors; energy audits and energy metering for conservation objectives. Examples of energy efficient systems or energy audits in various industrial sectors (compressed air, industrial buildings, heat treatments, curing...) are also presented. The electric power quality EDF`s contract is also discussed

  7. Industrial implementation issues of Total Site Heat Integration

    International Nuclear Information System (INIS)

    Chew, Kew Hong; Klemeš, Jiří Jaromír; Wan Alwi, Sharifah Rafidah; Abdul Manan, Zainuddin

    2013-01-01

    Heat Integration has been a well-established energy conservation strategy in the industry. Total Site Heat Integration (TSHI) has received growing interest since its inception in the 90s. The methodology has been used with certain simplifications to solve TSHI problems. This paper investigates the main issues that can influence the practical implementation of TSHI in the industry. The main aim is to provide an assessment and possible guidance for future development and extension of the TSHI methodology from the industrial perspective. Several key issues have been identified as being of vital importance for the industries: design, operation, reliability/availability/maintenance, regulatory/policy and economics. Design issues to consider include plant layout, pressure drop, etc. For operation, issues such as startup and shutdown need to be considered. Reliability, availability and maintenance (RAM) are important as they directly affect the production. Relevant government policy and incentives are also important when considering the options for TSHI. Finally, a TSHI system needs to be economically viable. This paper highlights the key issues to be considered for a successful implementation of TSHI. The impacts of these issues on TS integration are summarised in a matrix, which forms a basis for an improved and closer-to-real-life implementation of the TSHI methodology. Highlights: ► Current TSHI methodology has been used for solving models with certain simplifications. ► Several issues that can influence practical implementation of TSHI are identified. ► Impacts of these issues on safety, environment and economics are evaluated. ► The findings form a basis for an improved and practical implementation of TSHI

  8. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  9. Supporting industries energy and environmental profile

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  10. Restructuring the energy industry: A financial perspective

    International Nuclear Information System (INIS)

    Abrams, W.A.

    1995-01-01

    This paper present eight tables summarizing financial aspects of energy industry restructuring. Historical, current, and future business characteristics of energy industries are outlined. Projections of industry characteristics are listed for the next five years and for the 21st century. Future independent power procedures related to financial aspects are also outlined. 8 tabs

  11. The Industrial Engineer and Energy and Environment

    Directory of Open Access Journals (Sweden)

    Sirichan Thongprasert

    2009-02-01

    Full Text Available Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  12. The Industrial Engineer and Energy and Environment

    OpenAIRE

    Sirichan Thongprasert

    2009-01-01

    Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  13. The industrial energy consumption in 2003

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The statistics present the industry's energy consumption and composition, and the development from 1973 to 2003. In this period the composition of the energy consumption has changed considerably: a decrease in the consumption of liquid fuels and an increase in the consumption of natural gas and electric power. The energy consumption in the Danish industry decreased with almost 9 % from 2001 to 2003. This relatively large decrease was mainly due to the closing down of a steel factory. In the wood industry the energy consumption decreased with 36 % from 2001 to 2003, while the energy consumption in the electronics industry increased. (ln)

  14. Energy demand analysis in the industrial sector

    International Nuclear Information System (INIS)

    Lapillone, B.

    1991-01-01

    This Chapter of the publication is dealing with Energy Demand Analysis in the Industrial Sector.Different estimates of energy consumption in Industry taking Thailand as an example is given. Major energy consuming industrial sectors in selected Asian countries are given. Suggestion for the analysis of the energy consumption trends in industry, whether at the overall level or at the sub-sector level (e.g. food) using the conventional approach , through energy/output ratio is given. 4 refs, 7 figs, 13 tabs

  15. Modern industrial society and energy

    International Nuclear Information System (INIS)

    Gang, Chang Sun; Kim, Tae Yu; Moon, Sang Heup; Lee, Hwa Yeong; Han, Min Gu; Hyeon, Byeong Gu

    1992-03-01

    This book starts with introduction and covers modern society and energy, economy and energy, energy system(nonrecurring energy-coal, oil, natural gas, atomic energy and renewable energy), and future energy. It explains in detail essence of energy, energy trend of the world and Korea, definition of resources, energy policy, characteristics of coal, combustion of coal, refinement of oil, oil products, development of atomic energy, necessity and problem of atomic energy, solar energy, sunlight generation system, fuel cell system, and fusion reactor development.

  16. Energy and economic growth in industrializing countries

    Energy Technology Data Exchange (ETDEWEB)

    Samouilidis, J E; Mitropoulos, C S

    1984-07-01

    This paper investigates some aspects of the interrelated paths of economic growth and energy demand, in the case of an industrializing economy, through the use of numerous econometric models. Translog functions have helped establish that income and price elasticities of energy, two critical parameters in the energy-economy interaction, exhibit falling trends with time. The value share of the industrial sector is strongly associated with both energy demand and energy intensity. Any increase in the former will lead to amplified increases in the latter, rendering the continuation of past trends in industrial expansion questionable under conditions of high energy costs. Substitution among capital, labor and energy does take place, though to a limited extent, as indicated by the aggregate measure of energy/non-energy substitution elasticity. All findings appear to suggest that energy policymaking, in an industrializing country like Greece, will be of low effectiveness until certain structural changes in the economy are realized.

  17. Industry's energy specialists find strength in numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bell, K W

    1978-09-08

    While national energy conservation measures have lost the urgency they assumed during the oil crisis, they remain just as valid. Energy managers' groups offer industry a way of achieving significant savings, but they do need support from Government, the energy supply industries and other organisations.

  18. Corporate Social Responsibility (CSR) and energy industry

    International Nuclear Information System (INIS)

    Landhaeusser, Werner; Hildebrandt, Alexandra

    2016-01-01

    What means Corporate Social Responsibility (CSR) in the energy industry? A rising energy demand with limited natural resources pose utilities, industry and consumers with new challenges. This book follows an interdisciplinary approach and for the first time brings together debates and findings from industry, science, politics, culture and media. Because the energy transition can only succeed if it is comprehensible for the individual and fragmented perspectives and interests are merged. [de

  19. Energy consumption and CO2 emissions of industrial process technologies. Saving potentials, barriers and instruments

    International Nuclear Information System (INIS)

    Fleiter, Tobias; Schlomann, Barbara; Eichhammer, Wolfgang

    2013-01-01

    Which contribution can the increase of energy efficiency achieve in the industry energy for the energy transition in Germany? To answer this question a model-based analysis of existing energy efficiency potentials of the energy-intensive industries is performed, which account for about 70% of the total energy demand of the industry. Based on this industry for each sector are instruments proposed for the implementation of the calculated potential and to overcome the existing barriers. [de

  20. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  1. Renewable energy technologies and the European industry

    International Nuclear Information System (INIS)

    Whiteley, M.; Bess, M.

    2000-01-01

    The European renewable energy industry has the potential to be a world leader. This has been achieved within the European region for specific technologies, through a set of policy activities at a national and regional level, driven primarily by employment, energy self-sufficiency and industrial competitiveness. Using the experience gained in recent years, European industry has the opportunity to continue to expand its horizons on a worldwide level. Through the use of the SAFIRE rational energy model, an assessment has been made of the future penetration of renewable energy within Europe and the effects on these socio-economic factors. In conjunction with these outputs, assessments of the worldwide markets for wind, photovoltaics, solar thermal plant and biomass have been assessed. A case study of the Danish wind industry is used as a prime example of a success story from which the learning opportunities are replicated to other industries, so that the European renewable energy industry can achieve its potential. (orig.)

  2. Implementation of Statistics in Business and Industry

    OpenAIRE

    BOVAS, ABRAHAM

    2007-01-01

    Statisticians have devised many tools for application and these are available to be utilized for general business improvement and industrial problem solving. However, there is a wide gap between the available tools and what are practiced in business and industrial organizations. Thus it is important for statisticians to direct serious attention to bridging this gap if statistics is to be relevant in business and industry and to the society at large. In this paper we look at some ideas for imp...

  3. The industrial energy consumption in 1999

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Danish industrial energy consumption in 1999 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 1999 based on each group of branches and energy category, the energy consumption in 1997 for each group of branches and the percentage distribution on energy category, and the fuel and energy consumption of motor vehicles in 1999 based on each group of branches. (SM)

  4. Energy and the English Industrial Revolution.

    Science.gov (United States)

    Wrigley, E A

    2013-03-13

    Societies before the Industrial Revolution were dependent on the annual cycle of plant photosynthesis for both heat and mechanical energy. The quantity of energy available each year was therefore limited, and economic growth was necessarily constrained. In the Industrial Revolution, energy usage increased massively and output rose accordingly. The energy source continued to be plant photosynthesis, but accumulated over a geological age in the form of coal. This poses a problem for the future. Fossil fuels are a depleting stock, whereas in pre-industrial time the energy source, though limited, was renewed each year.

  5. Current and future industrial energy service characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  6. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  7. Industry: doing with less energy

    International Nuclear Information System (INIS)

    Wuerzen, D. von

    1981-01-01

    The existing energy sources have one thing in common: They will keep decreasing although the demand for energy is steadily increasing. There are only two ways out of this dilemma: either the energy consumers economize rigorously or a powerful alternative energy is decided upon as soon as possible. All other solutions discussed can delay the time when no more energy is available, but they cannot prevent an energy breakdown. (orig.) [de

  8. Guideline for implementing Co-generation based on biomass waste from Thai industries

    Energy Technology Data Exchange (ETDEWEB)

    Lybaek, R.

    2005-07-01

    Due to the large-scale industrial development in Thailand the consumption of energy - primarily based on fossil fuels - has increased enormously, even though the economic growth has slowed down since the economic crisis in 1997. It is, therefore, important to reduce the environmental impact of this energy consumption, which can be achieved by energy conservation, higher efficiency in the production of energy, or by the use of different kinds of renewable energy. This thesis seeks to develop new strategies for the use of waste heat as a part of the industrial process heat, which can be supplied to industries by a district-heating network. By substituting process heat - produced by electricity or by boilers using fossil fuel in individual industries - with process heat, produced by a co-generation plant - using the industries own biomass waste as fuel - process heat can be supplied to industries participating in a small scale district heating network. Thus, an Industrial Materials Network can be created, which is environmentally as well as economically beneficial for both industry and society. On the basis of a case study of the industrial area, Navanakorn Industrial Promotion Zone in Thailand, such initiatives for efficient materials and energy uses have been conducted and proved successful, and industries - as well as local and national governmental agencies, NGOs and branch organizations etc. - have shown interest in supporting the implementation of such scheme. In this thesis, a Guideline for large-scale implementation of Industrial Materials Network in Thailand was developed. By following a series of actions, the Guideline defines the initiatives that must be taken in order to ensure correct implementation. Chronologically, the emphasis of the Guideline is on pointing to relevant stakeholders who can pursue the implementation, and then appropriate areas and types of industries for Industrial Materials Network implementation. Thereafter, guidance for the

  9. Unfolding Implementation in Industrial Market Segmentation

    DEFF Research Database (Denmark)

    Bøjgaard, John; Ellegaard, Chris

    2011-01-01

    to pave the way towards closing this gap. The extent of implementation coverage is assessed and various notions of implementation are identified. Implementation as the task of converting segmentation plans into action (referred to as execution) is identified as a particularly beneficial focus area...... for marketing management. Three key elements and challenges connected to execution of market segmentation are identified — organization, motivation, and adaptation....

  10. European energy policy and Italian industry

    International Nuclear Information System (INIS)

    Cardinale, A.; Verdelli, A.

    2008-01-01

    The competitiveness of the Italian industry is very sensitive to the rising costs of energy. The European energy policy, if intended as an additional constraint, could deteriorate the situation. It could be, however, a good opportunity for the Italian industry to become more independent from fossil fuels, through an innovatory project at country level [it

  11. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  12. The industrial energy consumption in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The Danish industrial energy consumption in 2001 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 2001 based on each group of branches and energy category, and the emission of CO 2 . (LN)

  13. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  14. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1999-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  15. Energy use in the food manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, A.C.; Earle, M.D.

    1980-01-01

    A survey was conducted to find the level of energy consumption in the food manufacturing industry, which is the food processing industry excluding meat, dairy, and brewing. Data were used from 74 factories. The manufacturing industry was divided into 14 industry groups and the 4 major energy consumers were found to be fruit and vegetable processing, sugar refining, animal feed production, and bread and pastry baking. The present report summarizes results from the survey. It determined the following: the sources of energy used by the insu industry and the annual consumption of each energy form; the consumption of fuel and electricity in the production of the various manufactured food products; the minimum practical energy requirement for processing the various food products; and the potential for conservation and the methods for achieving savings.

  16. Quality Systems Implementation in the Pharmaceutical Industry

    African Journals Online (AJOL)

    Nafiisah

    quality standards imposed on local pharmaceutical manufacturers. Keywords: Quality/ .... GMP is concerned with both production and quality control. It is aimed ... in the European pharmaceutical industry in designing their quality systems:.

  17. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  18. Food industry hungry for energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, D

    1989-04-01

    The United Kingdom food and drink industry is a significant user of energy. Energy use figures are given showing the breakdown in terms of different sectors of the industry and also in terms of the fuel used. Four energy monitoring and target setting demonstration projects are outlined at factories typical of their type in different sectors. The projects have resulted in a much greater awareness by management in the factories involved of energy consumption and waste. Examples are given of improved energy efficiency and consequent energy savings which have resulted from this awareness. (U.K.).

  19. Energy for Japan's new industrial frontier

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, G

    1983-06-01

    Systematic responses by the Japanese government and industry to the successive oil crises of the 1970s are yielding remarkable results; instead of the most vulnerable and technologically-dependent energy system in the world, Japanese industry is emerging as one of the world's most energy-efficient and a major source of the most advanced energy technologies. By the end of the century, if best available prognoses on fusion power technology prove close to accurate, Japan's energy industry will have assumed a technological leadership akin to that of its steel industry today. Significant energy conservation has been achieved by concerted efforts to promote less energy-intensive industries and by advances in technology and equipment for reducing energy consumption in key industries. In 1980, the Japanese government set targets for the development of new energy sources for the coming decade, which, if realized, will contribute substantially to a three-fold increase in non-petroleum energy supply by 1990, and a further doubling of alternative energy supplies by the end of the century. By the year 2000, Japanese reliance on petroleum is expected to decline from 88% in 1977 to 74.9%.

  20. Industrial energy management; Betriebliches Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, D.

    2007-07-01

    Effective and successful energy and facility management uses a holistic view in which the life cycles of plants and buildings are considered, plus efficient controlling and reporting. The challenge is not in short-term cost reduction but in ensuring long-term effects. This requires management strategies which make use of synergy effects by means of interdisciplinary measures. Main topics: management of energy utilization, energy conversion and energy supply. (GL)

  1. Present day problems concerning the energy industry

    International Nuclear Information System (INIS)

    Hecker, G.

    1978-01-01

    Problems of the regional energy supply industry touching directly the energy supply utilities (e.g. territorial reform, power prices) are discussed. In a survey on the overall energy situation in the FRG as seen by energy supply utilities, the following conclusions are drawn: 1) The electricity supply industry is in the favourite position to make the required structural changes by utilizing primary energy for generating electric power. It offers - via electric energy - an effective opportunity for substituting oil. 2) The electricity supply industry alone will be in a position to use nuclear energy during the next few decades. A decision in favour of nuclear energy must not be at disposal to make oneself momentarily politically popular. This indispensable decision results exclusively from our responsibility for the future of our national economy and thus our society. (orig./HP) [de

  2. Application of the geothermal energy in the industrial processes

    International Nuclear Information System (INIS)

    Popovska-Vasilevska, Sanja

    2001-01-01

    In the worldwide practice, the geothermal energy application, as an alternative energy resource, can be of great importance. This is especially case in the countries where exceptional natural geothermal potential exists. Despite using geothermal energy for both greenhouses heating and balneology, the one can be successfully implemented in the heat requiring industrial processes. This kind of use always provides greater annual heat loading factor, since the industrial processes are not seasonal (or not the greater part of them). The quality of the geothermal resources that are available in Europe, dictates the use within the low-temperature range technological processes. However, these processes are significantly engaged in different groups of processing industries. But, beside this fact the industrial application of geothermal energy is at the beginning in the Europe. (Original)

  3. Obstacles to Industrial Implementation of Scanning Systems

    Science.gov (United States)

    Anders Astrom; Olog Broman; John Graffman; Anders Gronlund; Armas Jappinene; Jari Luostarinen; Jan Nystrom; Daniel L. Schmoldt

    1998-01-01

    Initially the group discussed what is meant by scanning systems. An operational definition was adopted to consider scanning system in the current context to be nontraditional scanning. Where, traditional scanning is defined as scanning that has been industrially operational and relatively common for several years-a mature technology. For example,...

  4. Industry-University "Consulternships": An Implementation Guide.

    Science.gov (United States)

    Neumann, Bruce R.; Banghart, Sally

    2001-01-01

    Describes an innovative approach to building and utilizing "consulternships," industry-university partnerships which reflect a blend of professional consulting engagements, student internships, and faculty externships. Describes the need for consulternships, their advantages and disadvantages, and how to establish them. Describes a case study at…

  5. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  6. The organization of the energy industry

    International Nuclear Information System (INIS)

    Pearson, L.F.

    1981-01-01

    The subject is covered in chapters, entitled: introduction; machinery of government; the Department of Energy (history, Ministers and structure, including relevant references to the atomic energy programme); the tools of public expenditure control; unofficial government; the energy industry (covering the work of the UK Atomic Energy Authority and the nuclear industry, the national organizations for coal, gas, oil and electricity, research bodies, interest and cause groups, Europe, political groups, mutual relationships); major policy issues (generally as set out in Green Papers, White Papers, consultative documents and reports of ad hoc committees); policy definition and development; the origins of policy; the future of energy policy. (U.K.)

  7. Industrial energy economy, national and international aspects

    International Nuclear Information System (INIS)

    1993-01-01

    VDI-report 1061 contains the papers given on the Conference of the same name in Essen on the 22 and 23.6.1993. German industry suffers not only from high wage and on-cost but high, energy costs as well. Waste disposal problems and impending taxes on wages are the cause of these difficulties. The EC believes that competition between energy supplies may help to reduce energy costs. This report deals with cost-efficient energy supply for the German industry and books at the background of this scenario. This industry puts forward its wishes and demands to politicians and energy economy. Representatives of energy suppliers discuss energy supplies, demand, availability, safety of supplies, competitiveness, quality and environmental aspects. The influence of energy costs and environmental taxation on the industrial and economic future of Germany and the situation in the Eastern States of Germany are a further subject of discussion. The views of the EC commission, the industry and the energy suppliers on energy transports across the EC are discussed as well. (orig./UA) [de

  8. Energy consumption 2005 with Danish industry

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The energy consumption in the Danish industries decreased with 4% from 2003 to 2005. The consumption of liquid fuels and district heat decreased with 27% and 21%, respectively. The consumption of solid fuels increased with 13%. The aim of the statistics is to elucidate the industry's energy consumption and its composition. The statistics present the development in the industry from 1973 to 2005, in which period the composition of the energy consumption has changed significantly. Especially, consumption of liquid fuels has decreased and consumption of gas and electricity has increased. (ln)

  9. Operational Energy Strategy: Implementation Plan

    Science.gov (United States)

    2012-03-01

    U.S. forces to obtain the energy required to perform their missions. To achieve this goal, the Department will identify and remediate energy-related...construction projects related to hydropower and biogas to build local capacity in Afghanistan. Responsibilities. The Joint Staff and Military

  10. Automated packing systems: review of industrial implementations

    Science.gov (United States)

    Whelan, Paul F.; Batchelor, Bruce G.

    1993-08-01

    A rich theoretical background to the problems that occur in the automation of material handling can be found in operations research, production engineering, systems engineering and automation, more specifically machine vision, literature. This work has contributed towards the design of intelligent handling systems. This paper will review the application of these automated material handling and packing techniques to industrial problems. The discussion will also highlight the systems integration issues involved in these applications. An outline of one such industrial application, the automated placement of shape templates on to leather hides, is also discussed. The purpose of this system is to arrange shape templates on a leather hide in an efficient manner, so as to minimize the leather waste, before they are automatically cut from the hide. These pieces are used in the furniture and car manufacturing industries for the upholstery of high quality leather chairs and car seats. Currently this type of operation is semi-automated. The paper will outline the problems involved in the full automation of such a procedure.

  11. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  12. US Energy Industry Financial Developments

    International Nuclear Information System (INIS)

    1992-09-01

    In the second quarter of 1992, the financial performance of the US petroleum industry continued to deteriorate, as weakening domestic economic growth slowed the demand for refined petroleum products. Net income for 119 petroleum companies--including 19 major oil and gas producers--declined 2 percent between the second quarter of 1991 and the second quarter of 1992, and was down 35 percent for the first 6 months of 1992. Unless otherwise stated, all quarterly comparisons relate to the second quarter of 1992 versus the second quarter of 1991. Weak margins reduce downstream earnings; higher prices increase oil and gas production earnings; industry downsizing improves financial results; oil and gas drilling remains depressed; cool spring helps gas companies but disappoints electric utilities

  13. The emerging global energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, A. [Washington International Energy Group, Washington, DC (United States)

    1997-12-31

    The global focus of the electric power industry was discussed. The shift from small regional monopolies to internationally competitive firms has been the driving force for change in industrial or market structures. The financial forces behind these changes were examined. The changes at the firm level and the implications of these changes for the North American market were explored. Changes in the North American market have influenced and are influenced by changes in international markets. The well established public and private monopolies in North America have been slow to welcome competition. However, with growing pressure from consumers, North America is becoming a major leader of global market trends. The following predictions regarding a deregulated electric power industry can be made with some confidence: (1) prices will fall, (2) customer choice will become a reality, (3) debt ridden public dinosaurs are not likely to survive, and (4) the same big firms in international markets will be the dominant players in the North American market. Canadian companies were warned that unless they can compete on equal terms with their American competitors, they may find themselves at a disadvantage in the new, competitive market.

  14. The emerging global energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, A [Washington International Energy Group, Washington, DC (United States)

    1998-12-31

    The global focus of the electric power industry was discussed. The shift from small regional monopolies to internationally competitive firms has been the driving force for change in industrial or market structures. The financial forces behind these changes were examined. The changes at the firm level and the implications of these changes for the North American market were explored. Changes in the North American market have influenced and are influenced by changes in international markets. The well established public and private monopolies in North America have been slow to welcome competition. However, with growing pressure from consumers, North America is becoming a major leader of global market trends. The following predictions regarding a deregulated electric power industry can be made with some confidence: (1) prices will fall, (2) customer choice will become a reality, (3) debt ridden public dinosaurs are not likely to survive, and (4) the same big firms in international markets will be the dominant players in the North American market. Canadian companies were warned that unless they can compete on equal terms with their American competitors, they may find themselves at a disadvantage in the new, competitive market.

  15. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  16. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  17. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  18. French industry and the energy conservation challenge

    Energy Technology Data Exchange (ETDEWEB)

    Serpette, M.

    1979-07-01

    The general position of France and its energy conservation objectives; the action taken by the government to stimulate this policy; and government cooperation with industrial circles and the action of industry itself are discussed. It is observed that the potential for future energy savings are smaller in France than in other countries because consumptions are already down to minimal levels. Consumption patterns in France are illustrated. (MCW)

  19. Progress with Implementing Energy Efficiency Policies in the G8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the 2008 G8 Summit in Hokkaido, leaders reaffirmed the critical role improved energy efficiency can play in addressing energy security, environmental and economic objectives. They went even farther than in previous Summits and committed to maximising implementation of the 25 IEA energy efficiency recommendations prepared for the G8. The imperative to enhance energy efficiency remains a priority for all countries. To support governments with their implementation of energy efficiency, the IEA recommended the adoption of a broad range of specific energy efficiency policy measures to the G8 Summits in 2006, 2007 and 2008. The consolidated set of recommendations from these Summits covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and power utilities. If governments want to significantly improve energy efficiency, the IEA considers that no single policy implemented in isolation will be effective at achieving this aim. The IEA Secretariat recommends that governments implement a full set of appropriate measures. The IEA estimates that if implemented globally without delay, the proposed actions could save around 8.2 GtCO2/yr by 2030 -- equivalent to twice the EU's yearly emissions. This report evaluates the progress of the G8 countries in implementing energy efficiency policy, including the 25 G8/IEA recommendations. Information in this report is current up to 31 March 2009.

  20. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  1. Energy efficiency programs and policies in the industrial sector in industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  2. Energy Industry Powers CTE Program

    Science.gov (United States)

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  3. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  4. Setting SMART targets for industrial energy use and industrial energy efficiency

    NARCIS (Netherlands)

    Rietbergen, M.G.|info:eu-repo/dai/nl/14111634X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2010-01-01

    Industrial energy policies often require the setting of quantitative targets to reduce energy use and/or greenhouse gas emissions. In this paper a taxonomy has been developed for categorizing SMART industrial energy use or greenhouse gas emission reduction targets. The taxonomy includes volume

  5. Technological trends in energy industry

    International Nuclear Information System (INIS)

    Martin Moyano, R.

    1995-01-01

    According to the usual meaning, technological trends are determined by main companies and leading countries with capacity for the development and marketing of technology. Presently, those trends are addressed to: the development of cleaner and more efficient process for fossil fuels utilization (atmospheric and pressurized fluidized beds, integrated gasification in combined cycle, advanced combined cycles, etc), the development of safer and more economic nuclear reactors; the efficiency increase in both generation and utilisation of energy, including demand side management and distribution automation; and the reduction of cost of renewable energies. Singular points of these trends are: the progress in communication technologies (optical fibre, trucking systems, etc.); the fuel cells; the supercritical boilers; the passive reactors; the nuclear fusion; the superconductivity; etc. Spain belongs to the developed countries but suffer of certain technology shortages that places it in a special situation. (Author)

  6. Evaluation of corporate energy management practices of energy intensive industries in Turkey

    International Nuclear Information System (INIS)

    Ates, Seyithan Ahmet; Durakbasa, Numan M.

    2012-01-01

    Turkey is one of a number of countries who still lack a national management standard for energy. Industrial energy consumption accounts for 42% of Turkey's total energy consumption. With the help of a questionnaire and analytical framework, this paper investigates Industrial Energy Management Practice in Turkey and highlights significant bottlenecks and shortcomings of energy intensive industries in terms of energy management application. The survey was carried out as a multiple case study of the Turkish iron, steel, cement, paper, ceramics and textile industries. Outcomes of the questionnaire are evaluated according to the analytical framework which covers company characteristics, regulations, external relations of the companies and internal organizational conditions. After analyzing these elements on the basis of a minimum requirement list, it was found that only 22% of the surveyed companies actually practice corporate energy management in Turkey. The main barriers to proper energy management implementation were identified as lack of synergy between the stakeholders, the extent and scope of energy manager courses, and inadequate awareness of and lack of financial support for energy management activities. As a guideline to overcome present obstacles, a set of policy options are offered: strengthening and restructuring of legal and institutional frameworks, promotion of energy efficiency, education, training and capacity building and facilitating implementation of the international energy management standard ISO 50001. -- Highlights: ► Developing an analytical scheme to assess degree of Energy Management Application. ► Investigation of Energy Management Practices in Turkish Energy Intensive Industries. ► Analysis of challenges which hinder full implementation of energy management in Turkey. ► Presenting a set of essential policy options thought for all stakeholders.

  7. Lean management implementation in mining industries

    Directory of Open Access Journals (Sweden)

    ALTAIR FLAMARION KLIPPEL

    2008-01-01

    Full Text Available Entre las alternativas para asegurar su supervivencia, una particularmente pertinente para las Organizaciones es la innovación. La innovación tiene varias dimensiones entre que es posible incluir: i materia prima; ii producto; iii proceso; iv mercado; v la manera cómo es realizada la administración. Este artículo tiene el objetivo de mostrar la posibilidad de llevar a cabo una nueva manera de dirección en las industrias de extracción de mineral a través del uso integrado de los conceptos desarrollados en la construcción del Sistema de Producción Toyota (SPT / el Sistema de Producción Lean, y los conceptos y técnicas tradicionales que se originan de la Ingeniería Minera y la Ingeniería Industrial. El artículo muestra esta integración en dos situaciones de la minería (fluorita y amatista. Los resultados indican la reducción del costo de la producción y aumento de la productividad y la mejora de la Calidad de Vida de Trabajadores.

  8. Progress Implementing the IEA 25 Energy Efficiency Policy Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Significantly improving energy efficiency remains a priority for all countries. Meetings of G8 leaders and IEA ministers reaffirmed the critical role that improved energy efficiency can play in addressing energy security, environmental and economic challenges. Many IEA publications have also documented the essential role of energy efficiency. For example, the World Energy Outlook and the Energy Technology Perspectives reports identify energy efficiency as the most significant contributor to achieving energy security, economic and environmental goals. Energy efficiency is clearly the “first fuel” in the delivery of energy services in the coming low-carbon energy future. To support governments in their implementation of energy efficiency, the IEA recommended the adoption of specific energy efficiency policy measures to the G8 summits in 2006, 2007 and 2008. The consolidated set of recommendations to these summits is known as the ‘IEA 25 energy efficiency policy recommendations’ because it covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and energy utilities. The IEA estimates that if implemented globally without delay, the proposed actions could save as much as 7.6 giga tonnes (Gt) CO2/year by 2030 – almost 1.5 times the current annual carbon dioxide (CO2) emissions of the United States. The IEA 25 energy efficiency policy recommendations were developed to address policy gaps and priorities. This has two implications. First, the recommendations do not cover the full range of energy efficiency policy activity possible. Rather, they focus on priority energy efficiency policies identified by IEA analysis. Second, while IEA analysis, the energy efficiency professional literature and engagement with experts clearly demonstrate the broad benefits of these IEA priority measures, the recommendations are not weighted to reflect the different energy end-use make up of different

  9. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  10. Energy usage in the rubber industry

    Energy Technology Data Exchange (ETDEWEB)

    Soederstroem, M.

    1980-01-01

    The rubber industry has several energy-intensive steps, such as mastication of natural rubber, mixing and extrusion, and vulcanization. Opportunities for energy savings would be available with a continuous mixing process, heat recovery from cooling waters, and abandonment of thermal conduction in vulcanization. 6 figures. (DCK)

  11. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  12. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  13. Energy-economical optimization of industrial sites

    International Nuclear Information System (INIS)

    Berthold, A.; Saliba, S.; Franke, R.

    2015-01-01

    The holistic optimization of an industrial estate networks all electrical components of a location and combines energy trading, energy management and production processes. This allows to minimize the energy consumption from the supply network and to relieve the power grid and to maximize the profitability of the industrial self-generation. By analyzing the potential is detected and the cost of optimization solution is estimated. The generation-side optimization is supported through demand-side optimization (demand response). Through a real-time optimization the of Use of fuels is managed, controlled and optimized. [de

  14. Storage requirement and its impact on the energy industry in implementation of political objectives of energy transition; Speicherbedarf und dessen Auswirkungen auf die Energiewirtschaft bei Umsetzung der politischen Ziele zur Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Teufel, Felix Thomas

    2015-07-01

    The increasing integration of renewable energy generating systems pose fundamental challenges for the energy industry. This concerns not only the utility companies but also established simulation models for analyzing the markets. In the present work, a system dynamic bottom-up model is described, which imagines the German electricity market in a 15 minute resolution and a high integration of renewable energies. The above described developments are affecting increasingly the operation mode of storage power plants. A result of model is that the operation of storage power plants is increasingly no longer worthwhile in the near future. After 2020, however, in the daytime prices will be significantly lower than during the night, resulting in new economic application scenarios for storage power plants. Also an outlook is provided on the duration of future storage usage times in the presented model, after which there will be a considerable demand for increasingly shorter cycles under 4 hours and longer cycles with more than 32 hours. [German] Die zunehmende Integration regenerativer Energieerzeugungssysteme stellt die Energiewirtschaft vor grundlegende Herausforderungen. Dies betrifft nicht nur die Energieversorgungsunternehmen sondern auch etablierte Simulationsmodelle zur Analyse der Maerkte. In der vorliegenden Arbeit wird ein systemdynamisches bottom-up Modell beschrieben, welches den deutschen Elektrizitaetmarkt in einer 15-minuetigen Aufloesung und einer hohen Integration der erneuerbaren Energien abbildet. Die oben beschriebenen Entwicklungen wirken sich zunehmend auf die Fahrweise von Speicherkraftwerken aus. Ein Resultat des vorgestellten Modells ist, dass sich der Betrieb von Speicherkraftwerken in naher Zukunft zunehmend nicht mehr lohnen wird. Nach 2020 werden jedoch tagsueber die Preise deutlich niedriger sein als die Nachtpreise, wodurch sich neue wirtschaftliche Einsatzszenarien fuer Speicherkraftwerke ergeben. Auch wird im vorgestellten Modell ein Ausblick

  15. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  16. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Tao, Wen-Quan

    2017-01-01

    Highlights: • The classification of the industrial energy efficiency index has been summarized. • The factors of energy efficiency and their implement in industries are discussed. • Four main evaluation methodologies of energy efficiency in industries are concluded. • Utilization of the methodologies in energy efficiency evaluations are illustrated. • Related polices and suggestions based on energy efficiency evaluations are provided. - Abstract: Energy efficiency of high energy-consuming industries plays a significant role in social sustainability, economic performance and environmental protection of any nation. In order to evaluate the energy efficiency and guide the sustainability development, various methodologies have been proposed for energy demand management and to measure the energy efficiency performance accurately in the past decades. A systematical review of these methodologies are conducted in the present paper. First, the classification of the industrial energy efficiency index has been summarized to track the previous application studies. The single measurement indicator and the composite index benchmarking are highly recognized as the modeling tools for power industries and policy-making in worldwide countries. They are the pivotal figures to convey the fundamental information in energy systems for improving the performance in fields such as economy, environment and technology. Second, the six factors that influence the energy efficiency in industry are discussed. Third, four major evaluation methodologies of energy efficiency are explained in detail, including stochastic frontier analysis, data envelopment analysis, exergy analysis and benchmarking comparison. The basic models and the developments of these methodologies are introduced. The recent utilization of these methodologies in the energy efficiency evaluations are illustrated. Some drawbacks of these methodologies are also discussed. Other related methods or influential indicators

  17. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  18. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  19. Continuous Energy Photon Transport Implementation in MCATK

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pritchett-Sheats, Lori A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-31

    The Monte Carlo Application ToolKit (MCATK) code development team has implemented Monte Carlo photon transport into the MCATK software suite. The current particle transport capabilities in MCATK, which process the tracking and collision physics, have been extended to enable tracking of photons using the same continuous energy approximation. We describe the four photoatomic processes implemented, which are coherent scattering, incoherent scattering, pair-production, and photoelectric absorption. The accompanying background, implementation, and verification of these processes will be presented.

  20. Implementation of Renewable Energy Systems in Denmark

    DEFF Research Database (Denmark)

    Meyer, Niels I

    1997-01-01

    Denmark has been one of the first countries in the world to commit itself to a sustainable energy development. This has been substantiated by two official action plans from 1990 and 1996 with emphasis on energy efficiency and supply systems based on renewable energy. In year 2005, renewable energy...... sources are planned to cover 12-14% and in year 2030 about 35% of total Danish energy demand. This paper reviews the experiences with implementation of renewable energy in Denmark with a focus on wind power and biomass....

  1. Energy Savings from Industrial Water Reductions

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  2. Diffusion of energy-efficient technologies in industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.Y.

    1979-01-01

    United States energy policies aim at cutting down dependence on foreign oil in two ways: by energy conservation and by finding new domestic supplies. The study investigates how the first goal can be achieved in the industrial sector (manufacturing) of the economy, which accounts for about 40% (about 7.3 million barrels per day) of the total energy consumption in the US. It is noted that industry is able to conserve as much as 25 to 30% of its energy consumption by adopting simple conservation measures and energy-efficient technologies. These technologies can be implemented without major alterations of the original equipment. The schools of thought on innovative processes are discussed; these will serve as the conceptual and methodological base of the project. (MCW)

  3. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  4. The US textile industry: An energy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  5. Energy indicators; Energiekennzahlen in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Mauch, W. [Technische Univ. Muenchen (Germany); Forschungsstelle fuer Energiewirtschaft (FfE), Muenchen (Germany); Layer, G. [Forschungsstelle fuer Energiewirtschaft (FfE), Muenchen (Germany); Schneider, J. [Ogreb-Institut fuer Kraftwerke, Cottbus (Germany). Abt. Prozessforschung und Energetik; Ministerium fuer Umwelt, Naturschutz, Energie und Reaktorsicherheit, Berlin (Germany); Bundeswirtschaftsministerium, Bonn (Germany). Energieabteilung

    2004-07-01

    Indicators of the energy requirements of industrial plants, production processes and products provide criteria for evaluating resource consumption, emissions and saving potential. Energy indicators are used as base data for energy concepts and holistic energy balances in the framework of the exchange of information on best available techniques. The following contribution describes a methodology for the determination of energy indicators for industrial production plants. On this basis, it then analyses a number of example processes, i.e. manufacture of mineral chips and asphalt, provision of compressed air, and flue gas dedusting. (orig.) [German] Kennzahlen ueber den Energiebedarf von industriellen Anlagen, Herstellungsverfahren und Erzeugnissen liefern Kriterien zur Beurteilung des Ressourcenaufwands, der Emissionen und Einsparpotenziale. Als Basisdaten fuer Energiekonzepte und ganzheitliche Bilanzierungen eingesetzt dienen Energiekennzahlen dem Informationsaustausch ueber die besten verfuegbaren Techniken. Nachfolgend wird die methodische Vorgehensweise zur Ermittlung von Kennzahlen fuer industrielle Produktionsanlagen beschrieben. Auf dieser Basis werden beispielhaft die Mineralsplitter- und Asphaltherstellung sowie die Druckluftbereitstellung und -entstaubung analysiert. (orig.)

  6. Embodied energy use in China's industrial sectors

    International Nuclear Information System (INIS)

    Liu Zhu; Geng Yong; Lindner, Soeren; Zhao Hongyan; Fujita, Tsuyoshi; Guan Dabo

    2012-01-01

    As the world’s top energy consumer, China is facing a great challenge to solve its energy supply issue. In this paper energy use from all industrial sectors in China’s economy of 2007 was explored by conducting an extended environmental input–output analysis. We compare the energy consumption embodied in the final demand for goods and services from 29 sectors with the energy demand required for the actual production process in each sector. Two different viewpoints for sectoral energy use have been presented: energy use is directly allocated to the producer entity, and energy use is reallocated to sector’s supply chain from consumption perspective. Our results show that considerable amount of energy use is embodied in the supply chain, especially for “Construction” and “Other Service Activities” sectors, which is not detected if energy use is allocated on a production basis. When further dividing embodied energy consumption into direct energy consumption and indirect energy consumption, total indirect energy consumption is much higher than that of total direct energy consumption, accounting for 80.6% of total embodied energy consumption in 2007. Our results provide a more holistic picture on sectoral energy consumption and therefore can help decision-makers make more appropriate policies. - Highlights: ► A hybrid IO-LCA model was employed to analyze China’s energy use at sectoral level. ► A case study on China’s sectoral energy consumption is done. ► Construction and service sectors are actually energy intensive from the supply chain perspectives. ► Upstream and downstream ectoral collaboration along the whole supply chain is necessary. ► Energy conservation policies should be based upon a comprehensive analysis on sectoral energy use.

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  8. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  9. Energy conservation: motors in industry; Maitrise de l`energie: les moteurs dans l`industrie

    Energy Technology Data Exchange (ETDEWEB)

    Lavoine, O.; David, A. [Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches

    1996-12-31

    The Electricite de France demand side management policy towards industry is particularly aimed at reducing industry`s power consumption from electric motors through the use of electronic speed variators which may induce mean energy savings of 25 percent. Pumps, fans and compressors, amounting to two-third of the total electric motor energy consumption, are the main application fields for electronic variators. EDF proposes technical and energy diagnosis and audits in industrial plants in order to evaluate the possibility and potential of electronic variator introduction

  10. Department of Energy workshops on industrial energy conservation reporting

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Douglas G.

    1979-01-01

    A voluntary industrial energy-conservation program was initiated and now includes 50 trade organizations representing over 3,000 companies. Their current reporting system is an effort to respond to the Energy Policy and Conservation Act requirements, as now modified by the National Energy Conservation Policy Act. DOE's Office of Industrial Programs held six workshops in various key locations between November 1978 and February 1979 to enable energy managers to develop ideas and make suggestions that would improve the current and future energy-reporting programs. This report is a summary of the wide range of recommendations that the workshop participants offered as a means of meeting the NECPA requirements and the criticism of the current reporting program. It also reflects industry's views on potential approaches to future reporting. (MCW)

  11. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia

    International Nuclear Information System (INIS)

    Enevoldsen, Martin K.; Ryelund, Anders V.; Andersen, Mikael Skou

    2007-01-01

    As methodology the ex-post analysis deserves more attention as a device to calibrate energy sector models. This paper studies the impact of energy prices and taxes on energy efficiency and carbon emissions of ten industrial sectors in the three Scandinavian countries. A database with sector-specific energy prices and taxes has been established, which allows the analysis to take various price reductions and tax exemptions better into account. A translog factor demand system estimation for a cross industry pooled model is explored and fixed effects across industries and time is estimated. The findings here confirm recent analyses which indicate higher long-term elasticities for industries than normally assumed in Scandinavian energy-sector models. With the observations on differences in energy-intensities among sectors and countries the findings allow for some optimism as to the opportunities for further decoupling between trends in gross value added, carbon emissions and energy consumption

  12. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  13. Industry fights energy tax; UK Negotiates agreement

    International Nuclear Information System (INIS)

    Roberts, M.

    1996-01-01

    Europe''s energy-intensive industries have banded together to attack the European Commission''s latest proposal for a carbon-energy tax. Instead of passing a new directive--which the commission has been trying to do for five years--it now wants to expand existing duties on mineral oils to cover coal, natural gas, and electricity. The commission also aims to increase the mineral oil duties. Energy-intensive industries--including producers of chemicals, cars, cement, lime, iron, steel, and other metals--say the plans would destroy their competitiveness. They say they are improving energy efficiency voluntarily and urge the commission to focus on liberalizing Europe''s gas and electricity markets, which would reduce prices

  14. ASEAN Economic Community Implementation and Indonesian Textile Industry Competitiveness

    OpenAIRE

    Susilo, Yuvensius Sri

    2013-01-01

    AbstractThis study aims to analyze the impact of ASEAN Economic Community implementation in 2015 on the competitiveness of Indonesian textile and textile products industry. It uses simulations with the GTAP model to answer the proposed research questions. The GTAP simulation results suggest that Indonesian textile industry would gain the largest trade surplus followed by Thailand and Malaysia. For apparel, Vietnam would benefit the most, followed by Indonesia and Thailand. The ratio of domest...

  15. ASEAN Economic Community Implementation and Indonesian Textile Industry Competitiveness

    OpenAIRE

    Susilo, Yuvensius Sri

    2013-01-01

    This study aims to analyze the impact of ASEAN Economic Community implementation in 2015 on the competitiveness of Indonesian textile and textile products industry. It uses simulations with the GTAP model to answer the proposed research questions. The GTAP simulation results suggest that Indonesian textile industry would gain the largest trade surplus followed by Thailand and Malaysia. For apparel, Vietnam would benefit the most, followed by Indonesia and Thailand. The ratio of domestic to im...

  16. ASEAN ECONOMIC COMMUNITY IMPLEMENTATION AND INDONESIAN TEXTILE INDUSTRY COMPETITIVENESS

    OpenAIRE

    Susilo, Yuvensius Sri

    2013-01-01

    AbstractThis study aims to analyze the impact of ASEAN Economic Community implementation in 2015 on the competitiveness of Indonesian textile and textile products industry. It uses simulations with the GTAP model to answer the proposed research questions. The GTAP simulation results suggest that Indonesian textile industry would gain the largest trade surplus followed by Thailand and Malaysia. For apparel, Vietnam would benefit the most, followed by Indonesia and Thailand. The ratio of domest...

  17. Energy efficiency as an opportunity for the natural gas industry

    International Nuclear Information System (INIS)

    Love, P.

    2003-01-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves

  18. Energy efficiency as an opportunity for the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Love, P. [Canadian Energy Efficiency Alliance (Canada)

    2003-07-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves.

  19. 3.4 Environmental impacts: energy industry

    International Nuclear Information System (INIS)

    2004-01-01

    The subchapter 3.4 'Environmental impact of the energy industry' of the 7th state of the environment report analyzes the current situation in Austria and briefly describes the following aspects: environmental policy targets, uniform taxation of energy, use of renewable energy sources, efficient use of energy, energy input, electricity supply and input, energy input into space heating and air conditioning systems, and renewable energy. In 2002, the input of final energy was risen by about 5 % in comparison to 1998. During this period, the largest increments in final energy inputs were recorded in the mobility sector with + 9.4 %, and in the private households sector with + 8.3 % . The goods production sector showed a slight decrease of about 1.3 % between 1998 and 2002. The 'goods production', 'mobility' and 'private households' sectors combined require about 87 % of the total final energy input. The final energy input for space heating and hot water in 2001 was 5.7 % above the input in 1998. Energy supply from renewable energy sources rose by about 13.8 % in 2002 compared to 1998. Domestic electricity consumption (excluding consumption for pumped-storage systems) in 2002 was about 10.5 % above consumption in 1998. Physical imports and physical exports in 2002 increased about 32 % and 8.6 % correspondingly compared to 1999. (nevyjel)

  20. Renewable energies - Industrials, produce your own electricity

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2016-01-01

    As a public bidding has been launched at the initiative of the French government on self-consumption in industrial and office building sites, this article discusses this issue of self-production and consumption, and its perspectives. Professionals and individuals could be interested in the recent evolutions as it was before more interesting to sell the produced photovoltaic electricity to EDF than to consume it. Some industries (warehouses, supermarkets, oil production, and airport) have already implemented this solution, and its development could boost the use of photovoltaic panels

  1. Global warming and the energy efficiency of Spanish industry

    International Nuclear Information System (INIS)

    Feijoo, Maria L.; Hernandez, Jose M.; Franco, Juan F.

    2002-01-01

    This paper uses a stochastic frontier production function model to analyze the energy efficiency of Spanish industry. We used minimum cost input demand equations as the reference in order to calculate the demand for electricity, gas and other fuels. On this basis, we found that there is no inherent conflict between the objectives of achieving productive efficiency and reducing energy consumption. Indeed, it is possible to reduce the industrial emissions of CO 2 by up to 29.4% by means of a bottom-up energy efficiency policy. However, if the government wants firms to reduce their emissions even further, then it would be necessary to implement some form of energy regulatory policy. In this respect, we estimate the cost of reducing CO 2 emissions by 20%

  2. Graphene for energy solutions and its industrialization

    Science.gov (United States)

    Wei, Di; Kivioja, Jani

    2013-10-01

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new `industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  4. Energy potential in the food industry; Store energipotensialer i naeringsmiddelindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, E; Risberg, T M; Mydske, H J; Helgerud, H E

    2007-07-01

    The food industry is one of the most power consuming industries (excluding the heavy industry) and has large potential for reducing the energy consumption. This report explains the most energy efficient measures and if the injunctions are followed

  5. Energy Technology Initiatives 2013. Implementation through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Ensuring energy security and addressing climate change cost-effectively are key global challenges. Tackling these issues will require efforts from stakeholders worldwide. To find solutions, the public and private sectors must work together, sharing burdens and resources, while at the same time multiplying results and outcomes. Through its broad range of multilateral technology initiatives (Implementing Agreements), the IEA enables member and non-member countries, businesses, industries, international organisations and non-governmental organisations to share research on breakthrough technologies, to fill existing research gaps, to build pilot plants and to carry out deployment or demonstration programmes across the energy sector. This publication highlights the most significant recent achievements of the IEA Implementing Agreements. At the core of the IEA energy technology network, these initiatives are a fundamental building block for facilitating the entry of new and improved energy technologies into the marketplace.

  6. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  7. Energy Technology Initiatives - Implementation Through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    New technologies will be critical in addressing current global energy challenges such as energy security. More must be done, however, to push forward the development and deployment of the technologies we need today and will need in the future. Government leaders have repeatedly underlined the crucial role of industry and businesses in advancing energy technologies and the importance of strong collaboration among all stakeholders to accelerate technology advances. To attain these goals, increased co-operation between industries, businesses and government energy technology research is indispensable. The public and private sectors must work together, share burdens and resources, while at the same time multiplying results and outcomes. The 42 multilateral technology initiatives (Implementing Agreements) supported by the IEA are a flexible and effective framework for IEA member and non-member countries, businesses, industries, international organisations and non-government organisations to research breakthrough technologies, to fill existing research gaps, to build pilot plants, to carry out deployment or demonstration programmes -- in short to encourage technology-related activities that support energy security, economic growth and environmental protection. This publication highlights the significant accomplishments of the IEA Implementing Agreements.

  8. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  9. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  10. Towards Implementation of Green Technology in Sabah Construction Industry

    Science.gov (United States)

    Azland Jainudin, Noor; Jugah, Ivy; Nasrizal Awang Ali, Awang; Tawie, Rudy

    2017-12-01

    The construction industry in Sabah is one of the major roles for development of social, economic infrastructures and buildings in generating wealth to the state besides the tourism sector. The increasing number of construction projects particularly in the rapid developing city of Kota Kinabalu, green technology as a whole is becoming more significant as it helps to develop effective solutions to encounter global environmental issues. The objective of the research is to identify the awareness and implementation of green technology in construction industry in Kota Kinabalu, Sabah. The methodology of the research is through distributing the questionnaire to the contractors, developers, consultants, architects and state government agencies to the area in Kota Kinabalu only. The questionnaires had been analysed to find out the mean value. 100 questionnaires distributed to the respondents but merely 85 questionnaires collected have been analysed. Based on the findings, 83.5% organisations were aware with the concept of green technology in construction project. In terms of the implementation only 64.7% had been implemented in their organizations. More than 50% from the major players such as contractors, consultants, developers, architects and state government agencies were aware based on six green technology concepts in their organizations. As a conclusion, the awareness towards green policy concept in construction industry is very satisfied. Meanwhile, in terms of implementation need to be increased the number of organizations to be involved in green technology in construction industry.

  11. Renewable energy recovery through selected industrial wastes

    Science.gov (United States)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  12. IMPLEMENTATION OF BUSINESS INTELLIGENCE ON BANKING, RETAIL, AND EDUCATIONAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Arta Moro Sundjaja

    2013-10-01

    Full Text Available Information technology is useful to automate business process involving considerable data transaction in the daily basis. Currently, companies have to tackle large data transaction which is difficult to be handled manually. It is very difficult for a person to manually extract useful information from a large data set despite of the fact that the information may be useful in decision-making process. This article studied and explored the implementation of business intelligence in banking, retail, and educational industries. The article begins with the exposition of business intelligence role in the industries; is followed by an illustration of business intelligence in the industries and finalized with the implication of business intelligence implementation.

  13. Rollout Strategy to Implement Interoperable Traceability in the Seafood Industry.

    Science.gov (United States)

    Gooch, Martin; Dent, Benjamin; Sylvia, Gilbert; Cusack, Christopher

    2017-08-01

    Verifying the accuracy and rigor of data exchanged within and between businesses for the purposes of traceability rests on the existence of effective and efficient interoperable information systems that meet users' needs. Interoperability, particularly given the complexities intrinsic to the seafood industry, requires that the systems used by businesses operating along the supply chain share a common technology architecture that is robust, resilient, and evolves as industry needs change. Technology architectures are developed through engaging industry stakeholders in understanding why an architecture is required, the benefits provided to the industry and individual businesses and supply chains, and how the architecture will translate into practical results. This article begins by reiterating the benefits that the global seafood industry can capture by implementing interoperable chain-length traceability and the reason for basing the architecture on a peer-to-peer networked database concept versus more traditional centralized or linear approaches. A summary of capabilities that already exist within the seafood industry that the proposed architecture uses is discussed; and a strategy for implementing the architecture is presented. The 6-step strategy is presented in the form of a critical path. © 2017 Institute of Food Technologists®.

  14. Incentives for solar energy in industry

    Science.gov (United States)

    Bergeron, K. D.

    1981-05-01

    Several issues are analyzed on the effects that government subsidies and other incentives have on the use of solar energy in industry, as well as on other capital-intensive alternative energy supplies. Discounted cash flow analysis is used to compare tax deductions for fuel expenses with tax credits for capital investments for energy. The result is a simple expression for tax equity. The effects that market penetration of solar energy has on conventional energy prices are analyzed with a free market model. It is shown that net costs of a subsidy program to the society can be significantly reduced by price. Several government loan guarantee concepts are evaluated as incentives that may not require direct outlays of government funds; their relative effectiveness in achieving loan leverage through project financing, and their cost and practicality, are discussed.

  15. Energy efficiency in buildings, industry and transportation

    Science.gov (United States)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  16. Implementation of building information modeling in Malaysian construction industry

    Science.gov (United States)

    Memon, Aftab Hameed; Rahman, Ismail Abdul; Harman, Nur Melly Edora

    2014-10-01

    This study has assessed the implementation level of Building Information Modeling (BIM) in the construction industry of Malaysia. It also investigated several computer software packages facilitating BIM and challenges affecting its implementation. Data collection for this study was carried out using questionnaire survey among the construction practitioners. 95 completed forms of questionnaire received against 150 distributed questionnaire sets from consultant, contractor and client organizations were analyzed statistically. Analysis findings indicated that the level of implementation of BIM in the construction industry of Malaysia is very low. Average index method employed to assess the effectiveness of various software packages of BIM highlighted that Bentley construction, AutoCAD and ArchiCAD are three most popular and effective software packages. Major challenges to BIM implementation are it requires enhanced collaboration, add work to a designer, interoperability and needs enhanced collaboration. For improving the level of implementing BIM in Malaysian industry, it is recommended that a flexible training program of BIM for all practitioners must be created.

  17. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  18. Simple implementation of general dark energy models

    International Nuclear Information System (INIS)

    Bloomfield, Jolyon K.; Pearson, Jonathan A.

    2014-01-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data

  19. Community impediments to implementation of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M. D.; Armstrong, J. E.

    1979-11-01

    The complete array of institutional problems expected to energy when solar technology are implemented on a national scale is assembled. The findings of the study are presented in two formats. First, the results are organized by the time frames of delays in solar implementation caused by the inherent difficulties a national energy policy would encounter in changing the way a given institution responds to specific solar technologies. Delay categories of 10 years or more, 6 to 8 years, and 3 to 5 years were selected; all were assigned under the assumption that a strong national policy promoting adoption of solar technologies would be in effect. The second format constitutes a description of the difficulties at the community level, associated with implementing each solar technology. (MHR)

  20. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  1. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  2. Energy change in the industrial society

    International Nuclear Information System (INIS)

    Hebeler, Timo; Hendler, Reinhard; Proelss, Alexander; Reiff, Peter

    2014-01-01

    The present volume contains the speeches and discussion reports of the 29th Trier colloquium on the environmental and techniques law, which was dedicated to the theme ''Energy change in the industrial society''. The goal a the colloquium consisted, to work out central questions of the energy change and also to look beyond the legal field. The documented speeches deal mainly with the promotional system of the renewal-energy law and its need for reform, whereby this topic is discussed from legal, economic, and business perspective. A further main topic form questions of planning. Hereby it deals both with the regulation of the increased use of renewable energies in zoning and land-use planning and with the network expansion including public participation. Object of the discussion are also the providing of the base load by conventional power plants as well as legal questions of the compensation and load balancing in the connection of off-shore facilities.

  3. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  4. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  5. E-commerce and the energy industry

    International Nuclear Information System (INIS)

    Davis, C.; Biedenharn, J.

    2000-01-01

    The impact of e-commerce on the future of the energy industry is examined, and the size and scope of business-to-business e-commerce activities are explored. Identification of e-commerce needs in relation to sales and purchasing requirements, and the selection of the e-commerce course and considerations to be taken into account in introducing e-commerce into a business are discussed

  6. E-commerce and the energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.; Biedenharn, J. [Global Energy Assets, Inc. (United States)

    2000-01-01

    The impact of e-commerce on the future of the energy industry is examined, and the size and scope of business-to-business e-commerce activities are explored. Identification of e-commerce needs in relation to sales and purchasing requirements, and the selection of the e-commerce course and considerations to be taken into account in introducing e-commerce into a business are discussed.

  7. Energy conservation in the EC glass industry

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)

    1994-12-31

    The data presented in this survey are based mainly on a recent study, performed by the Energy Technology Support Unit ETSU. Harwell Laboratory, United Kingdom, in the context of the EC-Thermie programme. Also, use has been made of a paper `Glass Manufacture, energy and CO{sub 2}-emissions`, presented by G.J. Copley of the British Glass Manufacturers Confederation, Sheffield, United Kingdom, presented at the Thermie Seminar in Wiesbaden, 1992. A third source of information has been the data collected by the CPIV, the European Glass Manufacturers Federation on the present and future economic situation of the EC Glass Industry. (orig.)

  8. Energy saving potential in existing industrial compressors

    International Nuclear Information System (INIS)

    Vittorini, Diego; Cipollone, Roberto

    2016-01-01

    The Compressed Air Sector accounts for a mean 10% worldwide electricity consumption, which ensures about its importance, when energy saving and CO_2 emissions reduction are in question. Since the compressors alone account for 15% overall industry electricity consumption, it appears vital to pay attention to machine performances. The paper presents an overview of present compressor technology and focuses on saving directions for screw and sliding vanes machines, according to data provided by the Compressed Air and Gas Institute and PNEUROP. Data were processed to obtain consistency with fixed reference pressures and organized as a function of main operating parameters. Each sub-term, contributing to the overall efficiency (adiabatic, volumetric, mechanical, electric, organic), was considered separately: the analysis showed that the thermodynamic improvement during compression achievable by splitting the compression in two stages, with a lower compression ratio, opens the way to significantly reduce the energy specific consumption. - Highlights: • Compressors technology overview in industrial compressed air systems. • Market compressors efficiency baseline definition. • Energy breakdown and evaluation of main efficiency terms. • Assessment of air cooling-related energy saving potential. • Energy specific consumption reduction through dual stage compression.

  9. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah

    2008-05-01

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  10. Brazil's energy industry in a crisis

    International Nuclear Information System (INIS)

    Sangmeister, H.

    1988-01-01

    In volume 8/1986 of this periodical, Brazil's moving away from the program for the building and expansion of a national nuclear power industry had been reported on back of foreign currencies and urgently necessary saving measures of the public means influence not only the construction of nuclear power plants, they also decay instruments in other areas of energy industry. In the area of electric power, some nationalisations have already taken place and in petroleum supply, the need for imports is increasing again. Furthermore, there is reason to believe that some of the energy-political solutions which Brazil had chosen as answers to the petroleum price shocks of 1973/74 and 1979/80 are likely to lead to some considerable problems in the near future. In the middle of these crises in which Brazil's energy industry has been for some time now, there is nonetheless one spectacular event. Brazil's President, Mr. Jose Sarney, announced the command of the nuclear cycle by means of national technology. (orig.) [de

  11. Guidelines for Implementing Revenue Management in the Restaurant Industry

    OpenAIRE

    Ammunet, Mika

    2016-01-01

    The aim of this thesis is to draw an outline of how to implement revenue management in the restaurant industry. The practice well-known in the hotel and airline industry is proven to be suitable for the food and beverage businesses. First of all, the key strategic levers, price and duration, are presented and defined. Based on the basic principle that the demand for a product varies according to its price, the application of modern pricing and dynamic pricing is introduced in this thesis....

  12. Implementation of high-dose chemical dosimetry for industrial facilities

    International Nuclear Information System (INIS)

    Conceicao, Cirilo Cezar Sant'Anna da

    2006-01-01

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  13. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  14. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  15. The industrial development of atomic energy

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    Countries with large stock of fissile material and producing large quantity of nuclear pure 235 U and 239 Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material ( 235 U or 239 Pu) or concentrated material ( 235 U mixed with small quantities of 238 U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with 238 U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate 238 U or Thorium with the regeneration of fissile material in 239 Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and 238 U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England and Scotland. The third class of reactor using

  16. Implementation of Industrial Emissions Directive in Finland. Impacts assessment; Teollisuuspaeaestoedirektiivin toimeenpanon vaikutukset Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Attila, M.; Groenroos, J.; Jantunen, J.

    2012-08-15

    the IED activities. Monitoring and enforcement programmes of IED industries must be reviewed. The implementation of the IED may create new markets for the Finnish Clean Tech particularly in energy production, pulp and paper sector and metal processing industry. (orig.)

  17. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  18. The petrochemical industry and its energy use. Prospects for the Dutch energy intensive industry

    International Nuclear Information System (INIS)

    Gielen, D.J.; Vos, D.; Van Dril, A.W.N.

    1996-04-01

    The current state and the future of the Dutch petrochemical industry are discussed. First, its current energy use, technology and its markets are analysed. Competitiveness of Dutch and Western European producers compared to foreign producers is shown. Main technological developments and other key issues (e.g. environmental issues) are discussed. Based on this analysis, a future scenario is derived for petrochemical industrial energy use for the period 2000-2015. This case study can be divided into an analysis of the current situation (Chapter 2-6) and alternatives for production and energy consumption of the Dutch petrochemical industry within its Western European context (Chapter 7-11). Chapter 2 analyses the current production structure and the historical developments. Chapter 3 discusses current technologies. Chapter 4 analyses markets for Dutch petrochemical products. Chapter 5 analyses the industry economics in the Netherlands in terms of costs and revenues. Chapter 6 provides information on institutional factors that influence industrial activities. Chapter 7 discusses global competition with special emphasis on competition for the European market. Chapter 8 analyses potential technology shifts. In Chapter 9, data from the preceding chapters on markets, competition, structure and technology are combined to compare competing production options. This is followed by a sensitivity analysis in Chapter 10. Based on a production volume forecast and the development of energy intensity of production, energy consumption of the Dutch petrochemical industry is forecast in Chapter 11. Finally, Chapter 12 provides conclusions and policy recommendations. 24 figs., 48 tabs., 103 refs., 2 appendices

  19. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  20. Energy audit: potential of energy - conservation in Jordanian ceramic industry

    International Nuclear Information System (INIS)

    Adas, H.; Taher, A.

    2005-01-01

    This paper represents the findings of the preliminary energy-audits performed by the Rational Use of Energy Division at the National Energy Research Center (NERC), as well as the findings of a detailed energy-audit carried out in the largest Ceramic plant in Jordan (Jordan Ceramic industries).These studies were preceded by a survey of the ceramic factories in Jordan. The survey was carried out in 1997. The performed preliminary energy-audits showed that an average saving-potential in most of theses plants is about 25 % of the total energy-bills in these plants, which constitutes a considerable portion of the total production-cost. This fact was verified through the detailed energy-audit performed by NERC team for the largest Ceramic Plant in Jordan in June 2003, which showed an energy-saving potential of about 30 %. This saving can be achieved by some no-cost or low-cost measures, in addition to some measures that need reasonable investments with an average pay-back period of about two years. This detailed energy-audit covered electrical systems, refrigeration systems, compressed-air systems, and kilns. The results of the detailed energy-audit can be disseminated to other Ceramic plant, because of the similarity in the production process between these plants and the plant where the detailed energy-audit was carried out. (author)

  1. Possibilities of implementing nonthermal processing methods in the dairy industry

    OpenAIRE

    Irena Jeličić

    2010-01-01

    In the past two decades a lot of research in the field of food science has focused on new, non-thermal processing methods. This article describes the most intensively investigated new processing methodsfor implementation in the dairy industry, like microfiltration, high hydrostatic pressure, ultrasound and pulsed electric fields. For each method an overview is given for the principle of microbial inactivation, the obtained results regarding reduction of microorganisms as well as the positive ...

  2. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  3. The Implementation of Quality Function Deployment (QFD in Tire Industry

    Directory of Open Access Journals (Sweden)

    Hari Abdul Hadi

    2017-12-01

    Full Text Available This research had two main objectives. The first research objective was to make the right design of new product according to customer requirements with the implementation of Quality Function Deployment (QFD in the tire industry. The second research objective was to enhance competitiveness based on the renewal of marketing strategy and consumer needs, non-explosive prohibition, non-slip tires, no bulgy, and competitive prices. The research was carried out by using costumer satisfaction rating by comparing with the competitor companies. Based on calculation using QFD method, it shows that split liner has the highest percentage of technical requirement in tire industry about 30,57%. The second factor is pattern design about 25,98%. Then, the third factor is compound technology about 22,68%. Therefore, the researchers can recommend several strategies for the quality improvement based on customer needs for the tire industry.

  4. Impact of energy on industrial growth

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmel, R

    1981-02-01

    The equation of growth relates the growth of output Q to the growth of the production factors capital K, labor L, and energy flow E. It can be solved in zero order approximation with respect to time, if one assumes that the characteristic properties of the industrial system are not changed by human creativity and that the economy is far from its thermodynamic limits to growth. Then Q must be a unique function of K, L and E. The integral of the equation of growth with the calculated, factor-dependent elasticities of production yields the production function q.e*exp/left brace/a/sub o/(2-(l+e)/k)+a/sub o/c/sub t/(l/e-1)/right brace/, with q, k, l and e being the relative values of Q, K, L, and E; a/sub o/ and c/sub t/ are the two free parameters of the theory. For given factor inputs, the GNP and the output of the industrial sector of West Germany and the output of the sector ''Industries'' of the United States are calculated for the years 1960-78. Deviations of theory from reality are generally less than 5%. The influence of energy prices on factor inputs and growth is discussed.

  5. Application of energy conservation technologies in Indian industries

    International Nuclear Information System (INIS)

    Zubair, K.M.

    1992-01-01

    The quadrupling of oil prices in 1973 signaled the beginning of a crises period for the oil importing countries. It hampered the economic growth of developed and developing countries alike. The pace of industrialization slowed down, recession set in and the oil importing developing nations found their balance of payment situation steadily going worse. The second increase of oil prices in 1979 further compounded the problems. It did seem that the problem of economic growth and increasing debt burden was intractable as far as developing nations were concerned. Behind this turmoil were the faint stirrings of alternative actions that sought to wean the world from its oil and fossil fuel dominated economies. These alternatives ranged from harnessing renewable energy sources, such as solar, wind and biomass to implementing end-use energy efficiency strategies. A major lesson of the oil crunch era was that energy efficiency is tangible resource by itself that competes economically with contemporary energy supply options. In addition to this, four major national priorities, viz, economic competitiveness, utilization of scare capital for development, environmental quality and energy security through oil dependence provided an urgent rationale for saving energy. While conservation consciousness has already taken roots in Pakistan industry, it needs to be nurtured and gains need to be consolidated. The need of the hour is to take stock of the situation elsewhere, particularly in similar geographical and socio-economic situations, and plan for an energy efficient tomorrow. This article attempts to delineate the notable developments that have taken place in the application of energy conservation technologies in the Indian industries. These efforts have had a salutary effect on the Indian value added sector which was saddled with old plant and machinery designed in the era of cheap energy. (author)

  6. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  7. Energy study of railroad freight transportation. Volume 2. Industry description

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    The United States railroad industry plays a key role in transporting materials to support our industrial economy. One of the oldest industries in the US, the railroads have developed over 150 years into their present physical and operational configuration. Energy conservation proposals to change industry facilities, equipment, or operating practices must be evaluated in terms of their cost impact. A current, comprehensive and accurate data baseline of railroad economic activity and energy consumption is presented. Descriptions of the history of railroad construction in the US and current equipment, facilities, and operation practices follow. Economic models that relate cost and energy of railroad service to the volume of railroad output and to physical and operational parameters are provided. The analyses and descriptions should provide not only an analytical baseline for evaluating the impact of proposed conservation measures, but they should also provide a measure of understanding of the system and its operations to analysts and policy makers who are involved in proposing, analyzing, and implementing such changes.

  8. Institutional framework changes in Brazil's energy industries

    International Nuclear Information System (INIS)

    De Almeida, E.; Queiroz Pinto JR, H.

    2009-01-01

    The liberalization of the Brazilian energy sector in the 1990's was meant to drastically reduce the role of the State in the sector. This reform has not had the desired results. Private investment could not guarantee the expansion of the Brazilian energy sector at the necessary speed. The first half of this decade has been marked by problems of electricity supply and a rather timid role of private investment in boosting energy supply. During the second half of the decade, liberal reform of the energy sector in Brazil has gone through major adjustments, marked by the search for a new compromise between the role of the State and the private sector. This paper highlights the institutional evolution of Brazil's energy or industries and tries to show how risk for public and private investment has been reduced by the adoption of new institutional and economic mechanisms of coordination. In the current institutional framework, the State plays an important role in coordinating the investment process for the expansion of supply. The pace of investment in Brazil in the energy sector has accelerated significantly after the adoption of the new coordination mechanisms. (authors)

  9. Status and Analysis on Effects of Energy Efficiency Standards for Industrial Boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Liu, Meng; Ding, Qing; Zhao, Yuejin

    2017-11-01

    Energy conservation and environmental protection is the basic policy of China, and is an important part of ecological civilization construction. The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers.

  10. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Science.gov (United States)

    2013-02-21

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... CONTACT: Mr. Charles Llenza, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy...

  11. Competitive assessment of the US: Renewable energy equipment industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    This report is a competitive assessment of the U.S. renewable energy equipment industry. The contents include: Definition of technologies; Industry characteristics; Historical perspectives; Industry performance; Trends and projections; The world marketplace; and Issues and options.

  12. The German energy transition. Design, implementeation, cost and lessons

    Energy Technology Data Exchange (ETDEWEB)

    Unnerstall, Thomas

    2017-07-01

    The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO{sub 2} emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.

  13. The German energy transition. Design, implementeation, cost and lessons

    International Nuclear Information System (INIS)

    Unnerstall, Thomas

    2017-01-01

    The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO 2 emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.

  14. Analysis on Potential of Electric Energy Market based on Large Industrial Consumer

    Science.gov (United States)

    Lin, Jingyi; Zhu, Xinzhi; Yang, Shuo; Xia, Huaijian; Yang, Di; Li, Hao; Lin, Haiying

    2018-01-01

    The implementation of electric energy substitution by enterprises plays an important role in promoting the development of energy conservation and emission reduction in china. In order to explore alternative energy potential of industrial enterprises, to simulate and analyze the process of industrial enterprises, identify high energy consumption process and equipment, give priority to alternative energy technologies, and determine the enterprise electric energy substitution potential predictive value, this paper constructs the evaluation model of the influence factors of the electric energy substitution potential of industrial enterprises, and uses the combined weight method to determine the weight value of the evaluation factors to calculate the target value of the electric energy substitution potential. Taking the iron and steel industry as an example, this method is used to excavate the potential. The results show that the method can effectively tap the potential of the electric power industry

  15. ASEAN ECONOMIC COMMUNITY IMPLEMENTATION AND INDONESIAN TEXTILE INDUSTRY COMPETITIVENESS

    Directory of Open Access Journals (Sweden)

    Yuvensius Sri Susilo

    2013-10-01

    Full Text Available AbstractThis study aims to analyze the impact of ASEAN Economic Community implementation in 2015 on the competitiveness of Indonesian textile and textile products industry. It uses simulations with the GTAP model to answer the proposed research questions. The GTAP simulation results suggest that Indonesian textile industry would gain the largest trade surplus followed by Thailand and Malaysia. For apparel, Vietnam would benefit the most, followed by Indonesia and Thailand. The ratio of domestic to import prices analysis suggests that Indonesian textile products have higher competitiveness than the other ASEAN’s. For the apparel products, Indonesia is as competitive as both Malaysia and the Philippines.Keywords: AEC 2015, Competitiveness, Textile dan Textile Products Industry, IndonesiaJEL Classification: C68, F15AbstrakPenelitian ini bertujuan untuk menganalisis dampak penerapan Masyarakat Ekonomi ASEAN pada 2015 pada daya saing industri tekstil dan produk tekstil Indonesia. Alat analisis yang digunakan deskriptif dan simulasi dengan model GTAP. Hasil simulasi GTAP menyarankan bahwa industri tekstil Indonesia akan memperoleh surplus perdagangan terbesar, diikuti oleh Thailand dan Malaysia. Untuk produk pakaian, Vietnam memperoleh manfaat terbesar diikuti Indonesia dan Thailand. Berdasarkan rasio harga domestik terhadap harga impor, daya saing produk tekstil Indonesia relatif lebih tinggi dibandingkan negara-negara ASEAN lainnya. Untuk produk pakaian, Indonesia kompetitif, sejajar dengan Malaysia dan Filipina.Kata kunci: AEC 2015, Daya Saing, Tekstil dan Produk Tekstil JEL Classification: C68, F15

  16. Critical challenges in ERP implementation: A qualitative case study in the Canadian oil and gas industry

    Science.gov (United States)

    Menon, Sreekumar A.

    This exploratory qualitative single-case study examines critical challenges encountered during ERP implementation based on individual perspectives in four project roles: senior leaders, project managers, project team members, and business users, all specifically in Canadian oil and gas industry. Data was collected by interviewing participants belonging to these categories, and by analyzing project documentation about ERP implementation. The organization for the case study was a leading multinational oil and gas company having a substantial presence in the energy sector in Canada. The study results were aligned with the six management questions regarding critical challenges in ERP: (a) circumstances to implement ERP, (b) benefits and process improvements achieved, (c) best practices implemented, (d) critical challenges encountered, (e) strategies and mitigating actions used, and (f) recommendations to improve future ERP implementations. The study results highlight six key findings. First, the study provided valid circumstances for implementing ERP systems. Second, the study underscored the importance of benefits and process improvements in ERP implementation. Third, the study highlighted that adoption of best practices is crucial for ERP Implementation. Fourth, the study found that critical challenges are encountered in ERP Implementation and are significant during ERP implementation. Fifth, the study found that strategies and mitigating actions can overcome challenges in ERP implementation. Finally, the study provided ten major recommendations on how to improve future ERP implementations.

  17. Implementing energy transition - A legal deciphering

    International Nuclear Information System (INIS)

    Bain-Thouverez, Justine; Romi, Raphael; Chautard, Thomas

    2016-07-01

    As the French law on energy transition reconfigures many parameters of implementation of public action, the authors propose a cross-referenced reading of this law, of the law for new organisation of territories (NOTRe) in its environmental dimension, and of the regulation which results from these legal standards, in order to have a better view on public action in terms of abilities, and of action and financial levers. In a first part, the author discuss the relationships of energy transition with State, regions, districts, EPCI (communal collaboration public body), communes, and public bodies. In the second part, they address the new levers for action, and finally address the financing of energy transition (financing funds, third-party financing companies)

  18. Energy's role in industrial competitiveness: An overview

    International Nuclear Information System (INIS)

    Bruneau, A.A.

    1993-01-01

    Canadian exports are fundamentally dominated by raw materials, and the manufacturers and producers of these materials are inherently large consumers of energy. The access to reliable indigenous energy reserves at relatively low costs has played a significant role in Canada's competitiveness. Nevertheless, this competitiveness exists in a commercial environment in which practices are undergoing profound changes, attributable to the low relative value of raw materials on world markets where there are many competitors. In addition, recycling is increasingly influencing the demand and the price of products. Trade in manufactured goods has increased over the past few years, which has an effect on energy demand and on requirements related to the quality of supply. It is increasingly evident that the value of information products will increase more rapidly than the value of products made from materials, and that those information products will be the principal foundation of future wealth. At the same time, energy and fuel sectors are subject to profound change following environmental restrictions, questions regarding sustainable development, technological advances, modification of institutions, and political changes. An examination of the principal sectors of the Canadian energy system shows different degrees of development in each and different capabilities for making positive contributions to the competitiveness of the industries they serve. The protective monopoly supply of power is seen as one factor inhibiting competitiveness

  19. Possibilities of implementing nonthermal processing methods in the dairy industry

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2010-06-01

    Full Text Available In the past two decades a lot of research in the field of food science has focused on new, non-thermal processing methods. This article describes the most intensively investigated new processing methodsfor implementation in the dairy industry, like microfiltration, high hydrostatic pressure, ultrasound and pulsed electric fields. For each method an overview is given for the principle of microbial inactivation, the obtained results regarding reduction of microorganisms as well as the positive and undesirable effects on milk composition and characteristics. Most promising methods for further implementation in the dairy industry appeared to be combination of moderate temperatures with high hydrostatic pressure, respectively, pulsed electric fields and microfiltration, since those treatments did not result in any undesirable changes in sensory properties of milk. Additionally, milk treatment with these methodsresulted in a better milk fat homogenization, faster rennet coagulation, shorter duration of milk fermentations, etc. Very good results regarding microbial inactivation were obtained by treating milkwith combination of moderate temperatures and high intensity ultrasound which is also called a process of thermosonification. However, thermosonification treatments often result in undesirablechanges in milk sensory properties, which is most probably due to ultrasonic induced milk fat oxidation. This article also shortly describes the use of natural compounds with antimicrobial effects such as bacteriocins, lactoperoxidase system and lysozime. However their implementation is limited for reasons like high costs, interaction with other food ingredients, poor solubility, narrow activity spectrum, spontaneous loss of bacteriocinogenicity, etc. In addition, principles of antimicrobial effect of microwaves and ultraviolet irradiation are described. However their implementation in the dairy industry failed mostly due to technical and commercial reasons.

  20. Implementing an Industrial Approach into Physics Graduate Education

    Science.gov (United States)

    Vickers, Ken

    2006-04-01

    Physics graduate education has attracted a student population with a both high independence and interest in individual professional work. These personality tendencies have been validated in the students' eyes by both the observed professional behaviors of the majority of their faculty, and by the public acceptance of the persona of ``eccentric but brilliant'' physics students. This has resulted in a self-perpetuating cycle of professionals entering the academic workplace whose interest in whole-organization optimization, as well as the skills needed to optimize organizations, are low to non-existent. But at the same time the needs of the country's technical work force, as defined by national gatherings of prominent leaders from academic, industrial, and governmental communities, continue to list human interaction ``soft skills'' as one of the most important professional traits needed by professionals in their careers. This gap between the physics graduate education and requirements needed by next generation physicists provided an opportunity for experimental approaches to graduate physics education. The University of Arkansas' Physics Department lead the formation of a new experimental approach to interdisciplinary education in the broad field of microelectronics and photonics (microEP) in 1998, resulting in the formation of a stand-alone MS/PhD microEP program. This program implemented an industrial work group approach to graduate education, and won several educational grants including a NSF IGERT and a Department of Education FIPSE. The FIPSE grant in 2001 supported the modification of the industrial work group approach for implementation by the UA physics graduate program to address the gap between national need and current education. This talk will address the key goals of this implementation, the tactics that were put in place to address the goals, and the results of this educational approach since its implementation with the Fall 2001 entering class.

  1. Analysis on effects of energy efficiency regulations & standards for industrial boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Zhao, Yuejin; Liu, Meng

    2017-11-01

    The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers. Support by Project 2015424050 of Special Fund for quality control Research in the Public Interest

  2. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  3. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  4. Examples of industrial achievements. [Energy economies

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Several examples are presented of industrial units concerned by energy economies. The problem, the solution, the energy savings and the financial balance are given for each following case: recuperation of smoke from two glass furnaces with continuous heat and power production; a new type of heating furnace for non-ferrous ingots; heating furnace with smoke recuperation; high-power boiler for very wet barks; smokes to supply heat to buildings and for a dryer; heat pump drying of plaster squares; air-conditioning of a workshop by recuperation on a furnace; dehydration of fodder and beetroot pulp with a straw generator; microprocessor-controlled hot water recuperation in cheese-making; electronic speed regulation for electronic motors.

  5. Pollution and energy management in tanning industry

    International Nuclear Information System (INIS)

    Zaman, N.U.

    2005-01-01

    Tanning industry uses a number of chemicals such as Common Salt, Lime (Calcium Hydroxide), Sodium Sulfide and Basic Chromium Sulfate etc. During process, only a part of the chemical is consumed and the rest ends up in the effluent as pollutant. This paper deals with the techniques, locally developed or published in literature to recycle these chemicals and also discusses some energy saving techniques which can be used in tanning industry. Basic Chromium Sulfate (BCS) is one of the expensive chemicals used in 'Chrome Tanning'. By precipitating d filtering basic chromium sulfate, the recovery is nearly complete and the effluent obtained contains less than 1ppm Chromium. Dried raw hides contain up to 15% sodium chloride (w/w) and this can be removed in solid form by using mechanical brushes and can be re-used. The recovered salt contains foreign matter as impurities. After dissolution in water, the salt solution is filtered through cartridge filters and can be used in pickle bath. Liming slurry containing sodium sulfide is wasted as it contains fleshing and hair etc. A self cleaning 'J' type screen has no moving parts and removes fleshing and hair from the lime suspension. 'Counter Current Washing Technique,' reduces the wash water quantity by a factor of five to six. Air born pollution generated during buffing and dyeing can be captured by properly designed air filters. The solvents released in atmosphere during dyeing and finishing can be recovered by absorption. Fat, gelatin and protein can be recovered from waste fleshing. In tanning industry, drying of hides is the major consumer of thermal energy. Hot air can be produced by steam, hot water or solar energy. Advantages and disadvantages of these options are discussed. Wastage of thermal energy in dryers can be reduced by improving the existing designs. Hot water for tanning purposes can be generated by recovering waste heat present in the boiler flue gases. Boiler efficiency can also be improved by cycling heat

  6. Nuclear energy and the steel industry

    International Nuclear Information System (INIS)

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  7. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Science.gov (United States)

    2012-09-05

    ...--Accelerating Investment in Industrial Energy Efficiency Executive Order 13625--Improving Access to Mental... Accelerating Investment in Industrial Energy Efficiency By the authority vested in me as President by the... helping to facilitate investments in energy efficiency at industrial facilities, it is hereby ordered as...

  8. Hydrogen implementing agreement. SA industry and R&D perspectives

    CSIR Research Space (South Africa)

    Van Vuuren, D

    2007-02-01

    Full Text Available do little to promote the use of hydrogen in vehicles • Sasol had some of its clean fuels tested by Intelligent Energy for use in onboard reformers to generate hydrogen for use in fuel cells. • Best strategy is probably to monitor developments....csir.co.za Fuel Cell Industry • Two companies are already marketing fuel cells locally, I.e. Intelligent Energy and IST (PlugPower) • Developments are done overseas and products are tested in South Africa for conditions in South Africa • Is marketing to niche...

  9. Barriers of lean construction implementation in the Moroccan construction industry

    Science.gov (United States)

    Bajjou, Mohamed Saad; Chafi, Anas

    2018-04-01

    Improving the production system performance has become a fundamental pillar that must be taken into consideration in the construction industry. Recent developments in the construction sector have led to renewed interest in new techniques of management. Lean Construction is a very effective approach that has gained a high popularity by its ability to eliminate waste and maximize the value for the customer. Although both developed and developing countries have gained large benefits by implementing Lean Construction approach, several experiences showed many barriers that are hindering its implementation especially in developing countries. This paper aims to assess the critical barriers to the successful implementation in the Moroccan construction industry. Based on a literature review, followed by an analysis of data collected from a questionnaire survey which targeted 330 practitioners in the Moroccan construction field, several barriers were identified as key barriers. The findings of this investigation revealed that there are significant barriers such as Lack of knowledge about Lean Construction concepts, Unskilled Human Resources, and insufficient financial resources.

  10. Industrial aspects of nuclear energy: French experience

    International Nuclear Information System (INIS)

    Lebreton, G.

    1986-11-01

    France decides to develop nuclear energy on a wide scale about 12 years ago. To cope with this ambitious program, the roles have been distributed within a very cohesive organization, as follows: EDF, the french national electricity utility is owner, prime contractor, and plant operator. The Atomic Energy Commission, CEA performs part of the research and development work, and supplies the necessary technical support to the safety authorities. A few leading industrial firms design and build the major parts of the nuclear power plants. Among them is Framatome, which is responsible for the design, manufacture, erection, and startup of nuclear steam supply systems (the NSSSs), and related auxiliaries. Alsthom is responsible for the supply of the turbine and its auxiliaries. It would not be proper to describe the French nuclear industry without focussing our attention on the care given to transfer of technology. Technology transfer agreements can take several forms, but local factors have to be taken into account. These forms are discussed in this paper. A typical and highly significant example (KNU 9-10 project) is given

  11. Comparative risk assessment in the energy industry

    International Nuclear Information System (INIS)

    Hamilton, L.D.

    1981-01-01

    This paper covers four approaches to risk assessment in the energy industry. The first is a comparison of the primary fuel cycles - coal and nuclear - standardized to 1 GW(e) power-plant year; this gives the societal risk of the production of a standardized amount of electricity. An example from underground coal mining is given to show how these estimates for the fuel cycles were made. The second approach is a comparison of the societal and individual occupational risks for different energy cycles per GWy(e). The third approach is a comparison of the societal and individual occupational risks of four different types of photovoltaic cell manufacture; this is an example of an intratechnology comparison. The fourth approach is a risk accounting method of analysis which estimates occupational health impacts for fabrication, construction, operation, and maintenance of energy technologies, and which, through an input-output model of the national economy, includes system-wide impacts as well as direct impacts of building and operating energy facilities

  12. Tailoring cross-sectional energy-efficiency measures to target groups in industry

    NARCIS (Netherlands)

    Wohlfarth, Katharina; Eichhammer, Wolfgang; Schlomann, Barbara; Worrell, Ernst

    2018-01-01

    The improvement of energy efficiency in industrial companies plays a crucial role for the energy transition. Although significant economic potentials have been identified, the concerned actors are still struggling to realize them fully. To support the implementation of energy efficiency measures by

  13. Opportunities in Canada's growing wind energy industry

    International Nuclear Information System (INIS)

    Lovshin Moss, S.; Bailey, M.

    2006-01-01

    Investment in Canada's wind sector is projected to reach $8 billion by 2012, and growth of the sector is expected to create over 16,000 jobs. Canada's wind energy capacity grew by 54 per cent in 2005 alone, aided in part by supportive national policies and programs such as the Wind Power Production Incentive (WPPI); the Canadian Renewable Conservation Expense (CRCE) and Class 43.1 Capital Cost Allowance; and support for research and development. Major long-term commitments for clean power purchases, standard offer contracts and renewable portfolio standards in several provinces are encouraging further development of the wind energy sector. This paper argued that the development of a robust Canadian wind turbine manufacturing industry will enhance economic development, create opportunities for export; and mitigate the effects of international wind turbine supply shortages. However, it is not known whether Canadian wind turbine firms are positioned to capitalize on the sector's recent growth. While Canada imports nearly all its large wind turbine generators and components, the country has technology and manufacturing strengths in advanced power electronics and small wind systems, as well as in wind resource mapping. Wind-diesel and wind-hydrogen systems are being developed in Canada, and many of the hybrid systems will offer significant opportunities for remote communities and off-grid applications. Company partnerships for technology transfer, licensing and joint ventures will accelerate Canada's progress. A recent survey conducted by Industry Canada and the Canadian Wind Energy Association (CanWEA) indicated that the total impact of wind energy related expenditures on economic output is nearly $1.38 billion for the entire sector. Annual payroll for jobs in Canada was estimated at $50 million, and substantial employment growth in the next 5 years is expected. Canada offers a strong industrial supply base capable of manufacturing wind turbine generators and

  14. Implementation of Industrial Narrow Band Communication System into SDR Concept

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2008-12-01

    Full Text Available The rapid expansion of the digital signal processing has penetrated recently into a sphere of high performance industrial narrow band communication systems which had been for long years dominated by the traditional analog circuit design. Although it brings new potential to even increase the efficiency of the radio channel usage it also forces new challenges and compromises radio designers have to face. In this article we describe the design of the IF sampling industrial narrowband radio receiver, optimize a digital receiver structure implemented in a single FPGA circuit and study the performance of such radio receiver architecture. As an evaluation criterion the communication efficiency in form of maximum usable receiver sensitivity, co-channel rejection, adjacent channel selectivity and radio blocking measurement have been selected.

  15. SSCL magnet systems quality program implementation for laboratory and industry

    International Nuclear Information System (INIS)

    Warner, D.G.; Bever, D.L.

    1992-01-01

    The development and delivery of reliable and producible magnets for the Superconducting Super Collider Laboratory (SSCL) require the teamwork of a large and diverse workforce composed of personnel with backgrounds in laboratory research, defense, and energy. The SSCL Magnet Quality Program is being implemented with focus on three definitive objectives: (1) communication of requirements, (2) teamwork, and (3) verification. Examination of the SSCL Magnet Systems Division's (MSD) current and planned approach to implementation of the SSCL Magnet Quality Program utilizing these objectives is discussed

  16. Implementation of Haccp in the Mexican Poultry Processing Industry

    Science.gov (United States)

    Maldonado-Siman, Ema; Martínez-Hernández, Pedro Arturo; Ruíz-Flores, Agustín; García-Muñiz, José G.; Cadena-Meneses, José A.

    Hazard Analysis and Critical Control Point (HACCP) is a safety and quality management tool used as major issue in international and domestic trade in food industry. However, detailed information on costs and benefits of HACCP implementation is needed to provide appropriate advice to food processing plants. This paper reports on the perceptions of costs and benefits by the Mexican poultry processing plants and sale destinations. The results suggest that the major costs of implementing and operating HACCP within poultry processing plants are record keeping and external technical advice. The main benefit indicated by the majority of processing plants is a reduction in microbial counts. Over 39% of poultry production is sent to nation-wide chains of supermarkets, and less than 13% is sent to international markets. It was concluded that the adoption of HACCP by the Mexican poultry processing sector is based on the concern to increase and keep the domestic market, rather than to compete in the international market.

  17. Policy modeling for industrial energy use

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the

  18. Energy conservation in industry; Energibesparelser i erhvervslivet

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, M. (Dansk Energi Analyse A/S (Denmark)); Maagoee Petersen, P. (Viegand and Maagoee ApS (Denmark))

    2010-02-15

    The report describes the completed survey and the methodology used for the analysis of energy saving opportunities and potentials for processing technologies and equipment in the industry. The report also includes a total of fourteen technology descriptions, of which eleven relate to end use of energy, while the three descriptions are for cross-technologies. The technology descriptions analyse any significant savings opportunities in the processing technologies concerned and work out the potentials of 'here and now' cost savings, with 2, 4 and 10-year payback time, respectively. The survey makes it possible to prioritize the instruments with the shortest payback times. The total savings potential for the eleven end-use technologies is estimated to be 10% at 2 years of payback time, 15% at four year payback time, and 32% at the 10 year payback time. The percentage potential is somewhat greater for the end-use technologies using electricity than the end-use which mainly uses fuel. That the potential is less for fuel-based end-use technologies may be explained by the fact that they are key processes that are regularly upgraded to increase product quality, to reduce production time and waste, etc. Such improvements also help to save energy and means that further improvements are relatively expensive. (ln)

  19. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  20. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  1. Control systems in the intersection of energy and ICT industries

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, K.; Kaessi, T.; Mustonen, T.; Paetaeri, S.; Soininen, L.

    2008-07-01

    The main objective of this research report is to shed light on business possibilities that are related to monitoring and control systems in the intersection of energy and ICT industries. The study uses both primary and secondary data sources that include a qualitative Delphi study, themed interviews, idea generation session, quantitative data regarding the alliances between the energy and ICT sectors as well as relevant literature. The environmental issues, the availability of energy, the opening energy markets, modern distributed generation and the saturation of existing transmission and distribution grids have raised a need to develop new energy solutions and business activities based on them. At the same time, the fast development in ICT technologies and automation has offered better possibilities for their implementation. Thus, the external factors and demands posed e.g. by political and social quarters as well as the internal needs of the energy companies make the cooperation in the intersection necessary and elaborate. The report reveals two major areas for the development of the cooperation between the energy and ICT sectors: households' energy utilization and distributed energy generation. In the former theme, e.g. the follow-up and guidance of energy consumption as well as new ways of electricity purchasing came up as issues for further examination. As regards to the second theme, the distributed energy solutions are seen to increase unavoidably and forcefully in the future. The emergence of distributed generation poses many new challenges for the whole energy system but also a vast amount of opportunities for the two sectors' co-operative activities, as the interfaces between the small local units and networks and the centralized system need to be controlled effectively and legitimately. (orig.)

  2. Implementation of the 96/29/EURATOM industry

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2005-01-01

    The European directive 96/29/EURATOM [The Council of the European Union, Council Directive of 13 May 1996 Laying down Basic Safety Standards for the Protection of the Health of Workers and the General Public against the Danger Arising from Ionising Radiation, Council Directive 96/29/EURATOM, Official Journal European Communities L 349, 21-25 (1996). ] set up in 1996 a series of specific requirements related to a safe use of radiation sources and also to the exposure of a member of public and workers. The implementation of these requirements based on the ICRP 60 is reflected in the comprehensive radiation protection measures at the user site. In addition, the requirements are reflected in a practice of a regulatory authority. The implementation of the 96/29/EURATOM in the last years in Slovenia will be discussed based on the inspection practice including inspections of industry radiography, industrial gauges and practice with smoke detectors. The problems related to the safe use of sources with recommended working life given by a producer will be discussed.(author)

  3. New horizons for Korean energy industry--shifting paradigms and challenges ahead

    International Nuclear Information System (INIS)

    Chang, H.-J.Hyun-Joon.

    2003-01-01

    Korean energy industry is experiencing a radical paradigm shift. Vertically integrated monopoly is being dismantled while state-owned energy companies are privatized. The industry is in transition from extensive government control to more flexible and market-oriented operation. Along with the task of successfully implementing these structural changes, Korea is now faced with challenges of addressing energy security with the decentralized supply system. This paper discusses ongoing efforts to transform electric power and natural gas industries in Korea, and then explores possible schemes for regional energy cooperation that will enhance efficiency and supply security

  4. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  5. Role of behavioural factors in green supply chain management implementation in Indian mining industries

    DEFF Research Database (Denmark)

    Muduli, K.; Govindan, Kannan; Barve, A.

    2013-01-01

    Green supply chain management (GSCM) integrates ecological concepts with those of supply chain management in order to minimize energy and material usage and to reduce adverse impacts of supply chain activities on the environment. GSCM implementation in mining industries depends largely upon certain...... be taken as a reference by the decision makers while deciding the hierarchy of action necessary for effective implementation of green practices in mining supply chains. The present research attempts to explore various behavioural factors affecting GCSM practices and their interactions which help to attain...... green-enabled needs. Interpretive structural modelling (ISM) is employed in this research to extract the interrelationships among the identified behavioural factors....

  6. Analysis of Energy Industry Upgrading in Northeast China

    Science.gov (United States)

    Liu, Xiao-jing; Ji, Yu-liang; Guan, Bai-feng; Jing, Xin

    2018-02-01

    Promoting regional economic growth and realizing the transformation of the mode of economic growth are in industrial upgrading essence The product is a carrier that represents a series of links of production, management and marketing behind the enterprise, and is a comprehensive reflection of the knowledge and ability of a country or region. Based on the industrial spatial structure, this paper visualizes the industrial space in Northeast China from 2005 to 2015, analyzes the comparative advantages of the energy industry in Northeast China, and examines the status quo of the upgrade of the energy industry according to the industrial upgrading status. Based on the industrial spatial structure, Industry intensity in the industrial space, put forward the future direction of the energy industry upgrade and upgrade path.

  7. 40 CFR 35.928-3 - Implementation of the industrial cost recovery system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Implementation of the industrial cost...-Clean Water Act § 35.928-3 Implementation of the industrial cost recovery system. (a) When a grantee's industrial cost recovery system is approved, implementation of the approved system shall become a condition...

  8. Industrial energy thrift scheme. Report No. 16. Energy use in the knitting industry

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The knitting industry includes organizations concerned with hosiery, other weft knitted goods and warp-knitting and in some cases also with subsequent dyeing and finishing of knitted goods. In 1976, the industry had 116,000 employees located at approximately 600 sites, mostly in the East Midlands. The total energy consumption of the industry in 1976 was estimated to be 12,180 TJ. Sites with dyeing and finishing interests could save 15% of their energy. The major sources of savings (6%) are by recovering process heat which is currently wasted and from better process control. Other significant savings (5%) are possible from better control, maintenance and insulation of boilers and pipes. Attention to better housekeeping, to controlling draughts and to space heating generally could account for a further 3.5% saving in energy. Sites without dyeing and finishing interests could save 13% of the total energy used by this group. The most important opportunities are better control of space heating (5.5%) and better control and insulation of boilers, pipes and services (5%). These sites have fewer opportunities to recover heat from processes (2%) than where dyeing and finishing takes place but opportunities do exist.

  9. Ministry of Industry and Energy - Decree Law No. 122/93 of 16 April

    International Nuclear Information System (INIS)

    1993-01-01

    The Directorate for Geology and Mines was restructured into a public boy by this Decree-Law and named the Geological and Mining Institute. The Institute is placed under the authority of the Ministry of Industry and Energy and is generally responsible for the management of mineral resources, for establishing and implementing the national policy regarding extractive industries and for proposing and implementing the related regulations. (NEA)

  10. COMPETITIVE ADVANTAGES THROUGH THE IMPLEMENTATION OF INTERNATIONAL ENERGY MANAGEMENT STANDARDS

    Directory of Open Access Journals (Sweden)

    PALIEKHOVA L. L.

    2016-03-01

    Full Text Available Purpose. The purpose of the presented research is to explore the potential of international energy management standards to increase competitiveness of industrial enterprises under conditions of Ukrainian transitional economy. The study had the following objectives: to trace the evolution of fundamental energy efficiency standards; to discuss experience in their use in various countries; to identify factors that are key to achieving competitive advantage under the implementation ISO 50001. Methodology. This article presents a historical overview of the standardisation of principles and approaches for the purpose of the energy-efficient management. The research was carried out by studying the international documents, voluntary standards and national practices in the field of energy efficiency. Conclusions. The study examines the experiences of different countries in the field of energy management systems. The authors conducted a comparative analysis of the ISO 50001 with the other basic standards for the organisation of management. The system approach enables to identify the main factors and their impact on capacity to achieve competitive advantages, which are possible to obtain after certification to ISO 50001. Originality. The study reviewed and analysed the energy management penetration within its dynamics at time and country level. After analysing the statistical data and the results of the interviews, the authors identified 20 key factors affecting the competitiveness of enterprises that are certified to ISO 50001. All of these factors were divided into four groups, two groups represent external environment – opportunities and threats, and two groups – internal capacity – strengths and weaknesses of enterprises. Practical value. The proposed system of factors may be useful for the planning of actions towards strengthening the capacity of energy management systems in the context of the formation competitive advantages on the industrial

  11. Nuclear energy for technology and industry

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1987-01-01

    It is a sad commentary on the complete lack of informed realism of the Government and people of Australia that, after thirty years of vacillation and political chicanery, nuclear technology, one of this nation's potential ''sunrise industries'' is in its death throes. Whilst our third world neighbours, in particular Indonesia, Malaysia, the Philippines, the People's Republic of China and even impoverished Bangladesh are making giant strides to develop an autonomous expertise Australia's potential has been dissipated and its opportunities for leadership and technology transfer lost. By chance this paper was written some weeks before the nuclear accident at Chernobyl (U.S.S.R.) and many years after accidents at the Three Mile Island nuclear power plant (U.S.A.) and the plutonium production reactor at Windscale (U.K.). None of these incidents alter the basic arguments or conclusions contained in this manuscript. (See Appendix). The year 1986 might represent the final opportunity for concerned professionals to seek to improve the quality of public education and information to end ''the war against the atom''. It will be necessary to re-motivate the public and private sector of a demoralised technology and to launch it on a road of responsible and successful expansion unshackled by beaurocratic interference. It is the purpose of this paper to examine why the first three decades of nuclear technology in Australia have been so singularly unsuccessful and to discuss a coherent and rational implementation of plans and policies for the future. (author)

  12. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  13. Implementation of robots in the nuclear industry, luxury or necessity?

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2004-01-01

    The safety is primordial factor in the development of nuclear tasks, the risks of exhibition to radioactive doses is imminent, in occasions to such a grade that procedures and techniques seem insufficient to control this exhibition. The present article shows to the nuclear industry as an area of suitable opportunity for the implementation of advanced technology, taking like base that the inter relation direct between human personnel and radioactive material it is of high risk for the health and in occasions mortal, due to this situation, the robotic systems like solution alternative arise to diverse problems related with this environment: management of radioactive materials, inspection and monitoring, decontamination; in each one of which it is looked for the speed and practicability in the processes and mainly the security of the personnel. (Author)

  14. Autonomous Industrial Mobile Manipulation (AIMM) - Maturation, Exploitation and Implementation

    DEFF Research Database (Denmark)

    Bøgh, Simon

    ) "Little Helper" is introduced, a manufacturing assistant inspired by the Walt Disney character. The main rationale of the AIMM concept is a compromise between traditional automation (efficiency) and manual labor (flexibility), which contributes to realizing transformable manufacturing systems. From...... a state-of-the-art review, it is observed that implementations of mobile manipulators in industry have been limited although the needs for flexible automation are present. The second topic is “Identifying skills for AIMM robots” and is dedicated to defining a unifying terminology for task......-level programming by means of skills with focus on the identification of skills for AIMM robots. The terminology is built as a hierarchy similar to that of human action modeling (e.g. actions and activities) or human language (e.g. words and sentences). Two approaches are applied for identifying relevant skills...

  15. Subsea industry implements NORSOK: Happy marriages reduce costs

    International Nuclear Information System (INIS)

    Heggelund, N.

    1995-01-01

    Cost reduction by implementing NORSOK standards and cooperation between subsea suppliers to the Norwegian continental shelf, are discussed in this article. The aim of NORSOK, which is based on US standards, is to achieve standardization of technical requirements for drilling and production facilities, to identify and develop common requirements for equipment and installations, based on functional specifications, interfaces and limited variety for equipment and design, and to take into consideration existing industry standards and use these where possible. The offspring of cooperation is notable cost reductions. Subsea costs at Saga's Vigdis field have been reduced by 50% in two years. More subsea projects could come up soon. Norsk Hydro has short-listed a semi PDQ (Processing, Drilling and living Quarters), a ship or Gullfaks tie-in as runner-up concepts for the Viksund project. 1 fig

  16. ITER implementation and fusion energy research in China

    International Nuclear Information System (INIS)

    Zhao, Jing; Feng, Zhaoliang; Yang, Changchun

    2015-01-01

    ITER Project is jointly implemented by China, EU, India, Japan, Korea, Russian Federation and USA, under the coordination of Center Team of ITER International Fusion Energy Organization (IO-CT). Chinese fusion research related institutes and industrial enterprises are fully involved in the implementation of China contribution to the project under the leadership of ITER China Domestic Agency (CN-DA), together with IO-CT. The progresses of Procurement Packages (PA) allocated to China and the technical issues, especially on key technology development and schedule, QA/QC issues, are highlighted in this report. The specific enterprises carrying out different PAs are identified in order to make the increasing international manufactures and producers to ITER PAs know each other well for the successful implementation of ITER project. The participation of China to the management of IO-CT is also included, mainly from the governmental aspect and staff recruited from China. On the other hand, the domestic fusion researches, including upgrade of EAST, HL-2A Tokamaks in China, TBM program, the next step design activities for fusion energy power plant, namely, CFETR and training in this area, are also introduced for global cooperation for international fusion community. (author)

  17. Implementing Cleaner Production as an Environmental Management Efforts in Small Industries of Cassava Chips

    Directory of Open Access Journals (Sweden)

    Rahmadyanti Erina

    2016-01-01

    Full Text Available Small and Medium Enterprises (SMEs is one of the major driving factors for Indonesian economy, especially in food processing industries. The cassava-based industry is one type of food and beverage industry with chips as its major product. The limitations of knowledge caused their activities to only aim at pursuing economic benefits and ignoring the environmental balance. The most appropriate preventive method used, according to the characteristics of SMEs in Indonesia, is Cleaner Production. This study aims to reduce the risk of environmental pollution caused by the waste production of small chips industries by implementing cleaner production. The method used in this study is quick scanning by analyzing mass balance, energy, and utilities that aim to find an inefficient process to minimize losses. Implementation of cleaner production may include good housekeeping, reducing, and reusing. Based on the assessment of alternative eligibility criteria, the equipment modifications are the main factor in implementing cleaner production that drives the profits by providing efficiency of cutting as much as 80 percent and optimizes the profits into 57.62 kg in a month or 691.44 kg in a year. If the price of cassava chips is IDR 40,000 in a kg, then it would save IDR 27,657,600 in a year.

  18. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  19. Operational energy management in the industrial production. Brief study; Betriebliches Energiemanagement in der industriellen Produktion. Kurzstudie

    Energy Technology Data Exchange (ETDEWEB)

    Hirzel, Simon; Sontag, Benjamin; Rohde, Clemens

    2011-09-15

    Increasing energy prices and raw material prices, an increased public interest in energy issues and new customer requirements result in a responsible utilization of energy as a resource. The energy management provides the opportunity to evaluate and assess energy flows. Measures for a better utilization of resources can be derived and implemented by means of an energy management system. Under this aspect, the authors of the contribution under consideration report on current issues and developments in the field of corporate energy management in industry as well as the future developments of energy management.

  20. Implementing the Payment Card Industry (PCI Data Security Standard (DSS

    Directory of Open Access Journals (Sweden)

    John O' Raw

    2011-08-01

    Full Text Available Underpinned by the rise in online criminality, the payment card industry (PCI data security standards (DSS were introduced which outlines a subset of the core principals and requirements that must be followed, including precautions relating to the software that processes credit card data. The necessity to implement these requirements in existing software applications can present software owners and developers with a range of issues. We present here a generic solution to the sensitive issue of PCI compliance where aspect orientated programming (AOP can be applied to meet the requirement of masking the primary account number (PAN. Our architecture allows a definite amount of code to be added which intercepts all the methods specified in the aspect, regardless of future additions to the system thus reducing the amount of work required to the maintain aspect. We believe that the concepts here will provide an insight into how to approach the PCI requirements to undertake the task. The software artefact should also serve as a guide to developers attempting to implement new applications, where security and design are fundamental elements that should be considered through each phase of the software development lifecycle and not as an afterthought.

  1. IT Security Management Implementation Model in Iranian Bank Industry

    Directory of Open Access Journals (Sweden)

    Mona Vanaki

    2017-06-01

    Full Text Available According to the complexity and differences between Iranian banks and other developed countries the appropriate actions to implement effective security management of information technology have not been taken. The aim of this study was to create a powerful model by selecting the appropriate security controls to protect information assets in the bank. In this model, at first the principle set fort in ISO standard 27001, was extracted and then by further studies derived from best practices carried out in the world on the related subject from 2008 to 2016 using a qualitative descriptive method, points comply with information security management in the banking industry were added to it. With the study of Iranian banks in dealing with IT security management system and with help of action research tools, provisions which prevent the actual implementation of this standard was removed and finally a conceptual model with operating instructions and considering all the principles of information security management standard, as well as banking institutions focusing on the characteristics of Iran was proposed.

  2. Sustainable development of new energy vehicle industry in China

    Science.gov (United States)

    Li, Mingyang; Li, Lingzhi

    2018-03-01

    The new energy vehicle industry in China has developed rapidly in recent years, but there is still a gap in core technology. Some problems are brought the adverse effect on it, such as imperfect infrastructures, imperfect systems in market access and regulatory, single channels for marketing and low acceptance among consumer. Based on the development of new energy vehicle industry home and abroad, this paper puts forward some problems of new energy vehicles industry in China, then offers some feasible suggestions.

  3. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  4. Energy-efficient architecture of industrial facilities associated with the desalination of sea water

    Directory of Open Access Journals (Sweden)

    Gazizov Timur

    2016-01-01

    Full Text Available The article offers an actual solution of a problem of drinking water shortage in the territory of the Crimean coast, in the city of Sudak, Autonomous Republic of Crimea, Russia. The project includes a development of energy-efficient architecture, its implementation in industrial facilities, such as stations for seawater desalination and an active use of alternative energy sources.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  6. Assessment of the industrial energy-conservation program. Final report of the Committee on Assessment of the Industrial Energy Conservation Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Industrial operations in the United States account for some 37% of the nation's consumptions of energy. It has been estimated that this figure will increase to 50% by 1990 unless appropriate industrial energy conservation measures are adopted. However, such measures are difficult to implement in spite of the potential of various existing, emerging, and advanced technologies that can be applied to the problem. Specifically, the application of many industrial energy conservation measures entails high economic, technological, and institutional risks and uncertainties that constrain industries from adopting such measures. Accordingly, in 1975 the federal government started a program designed to mitigate these risks and uncertainties via government-industry partnership arrangements in the interests of national energy conservation. An important element of this program is the Industrial Energy Conservation Program in the Federal Department of Energy (DOE). In June 1980, DOE asked the National Materials Advisory Board, a unit of the National Academy of Sciences-National Research Council, to form a study committee to assess the effectiveness of the Industrial Energy Conservation Program. The committee concluded that federal support embodied in the DOE program, present and planned, is important to conserving additional industrial energy. However, the committee also concluded that the program needs various improvements in project selection and management and in transfer of results to industry. The committee's findings and recommendations and the results of the deliberation of the committee's three panels, a special report on heat and power, and a report on the visit by four members of the committee to Japan are presented.

  7. Energy and Exergy Analyses of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    A detailed analysis of the Danish industry is presented in this paper using the energy and exergy methods. For the 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industrial sector, detailed end-use models were created and analysed...... of using electricity and district heat in the industry is shown. The exergy efficiencies for each process industry were found to be in the range of 12% to 56% in 2012. However variations in the efficiencies within the sectors for individual process industries occur, underlining the need for detailed......, by determining the sectors losses and exergy destruction. In addition the importance of applying a system analysis is shown, which corrects the site efficiencies for electricity and district heating use. The use of 22 industries,further highlights differences amongst industries belonging to the same sector....

  8. Major energy users and reforms of the German energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffenberger, W

    1994-06-01

    There is a historic tradition of industrial autoproduction of electricity in Germany. Major energy users in the past used to be and today often still are autoproducers of electric power. The public utility sector, according to present legal standards, operates in a framework that protects local and regional monopolies. The large consumers and autoproducers are an important countervailing power in the whole system of the electricity supply industry. Electric utilities (EU) in Germany are semi-public or private enterprises of a wide variety of size. The large producer utilities operate the high voltage grid on the basis of private contracts. Regional distribution companies mostly without a considerable share in production often in cooperation with local distributors deliver electricity (el) in the non-urban areas whereas mostly city owned EU supply the large cities often on the basis of considerable parts of autoproduction and often also with a considerable share of el produced in cogeneration plants. The equilibrium between the parts of this system in the past was ensured by a legal framework protecting local monopolies as well as long term contracts between producers and distributors. Deregulation trends inherent in European legislation on competition have threatened this stability. In the first phase resistance against a more competitive order seemed unanimous. In the meantime however the different actors had time to rethink their position: The European Council has now proposed a more moderate regulation. The German Government has made a proposal for some important changes in the Energy Law and connected passages in the Competition Law, which would introduce some more competitive elements into the system without anticipating the results of a competitive process.

  9. Energy and Exergy Analysis of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2015-01-01

    % to 56% in 2012. Industries with high-temperature processes, such as the cement and metal production sectors, present the highest exergy efficiencies but the lowest energy ones. The opposite conclusion is drawn for the food, paper and chemical industries. The exergy losses, which indicate the potential......A detailed analysis of the Danish industry is presented in this paper using the energy, exergy and embodied exergy methods. The 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industry, were modelled and analysed in details for the years...... is not seen with the embodied exergy efficiency, which remains at around 29% for the Danish industry. This analysis shows that there are still large potentials to recover waste heat in most Danish industrial sectors and thus to increase their efficiencies....

  10. Financing of energy-efficient productive industrial projects. Situation and first ideas for the future. Synthesis

    International Nuclear Information System (INIS)

    Billard, Yannael; Julien, Emmanuel; Blaisonneau, Laurent; Streiff, Frederic; Padilla, Sylvie; Benazzi, Eric; Domergue, Bruno; Fraysse, Sebastien; Gaussens, Jean-Pierre; Packeu, Paris; Bodino, Didier; Randimbivololona, Prisca; Verbbrughe, Gregory; Bissonnier, Alain; Dantec, Caroline

    2016-11-01

    Based on in-depth interviews with decision makers and experts belonging to energy consuming industrial groups, or involved in technological offer or in financing, this study addressed the issue of energy efficiency in the industrial sector, and of its financing. Interviewed persons represented 11 large companies, 5 medium-sized companies, and 14 industrial sectors, and 3 main professional profiles (from technical to financial). The authors thus explored current financing models implemented to finance energy efficiency, by analysing existing decision-making processes, brakes on energy efficiency in industry, levers favourable to energy efficiency in industry, operational and functional organisations addressing issues related to energy efficiency, the risk management policy implemented for the assessment and follow-up of investments in energy efficiency, and existing and envisaged financial packages to make these investments possible. As far as financing is concerned, the authors analyse present practices, difficulties faced, good and repeatable practices, and discuss some lines of thought to mobilise actors in order to structure and promote energy efficiency in industrial projects, to reduce the risk for an easier financing of such projects, to structure financing tools, to promote incentive taxes and aids

  11. Review of policies and measures for energy efficiency in industry sector

    International Nuclear Information System (INIS)

    Tanaka, Kanako

    2011-01-01

    Energy efficiency in industry plays key roles in improving energy security, environmental sustainability and economic performance. It is particularly important in strategies to mitigate climate change. The evidence of great potential for cost-effective efficiency-derived reductions in industrial energy use and greenhouse gas (GHG) emissions have prompted governments to implement numerous policies and measures aimed at improving their manufacturing industries' energy efficiency. What can be learned from these many and varied initiatives? This paper provides foundation for policy analysis for enhancing energy efficiency and conservation in industry, by surveying more than 300 policies, encompassing about 570 measures, implemented by governments in IEA countries, Brazil, China, India, Mexico, Russia and South Africa. It outlines the measures' main features, their incidence of use, and their connections with specific technical actions and key stakeholders (i.e., how and where measures affect the energy efficiency of industry). It also examines the key features underlying the measures' success: (1) potential to reduce energy use and CO 2 emissions cost-efficiently; (2) ease of policy development, execution and assessment and (3) ancillary societal effects. - Highlights: → Provides foundation for policy analysis for energy efficiency in industry. → Surveys more than 300 policies and their trends, of mainly IEA countries. → Outlines measures' features, incidence of use, technical actions and stakeholders. → Examines the key features underlying the measures' success.

  12. Energy conservation in pulp and paper industry: some thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Sadawarte, N. S.; Prasad, A. K.; Khanolkar, V. D.; Shenoy, S. C.

    1980-03-15

    The pulp and paper industry is highly energy intensive. In view of the spiralling fuel prices and rising power costs, there is an urgent need to conserve energy through better management of various operations in the industry, from the optimal utilization of the forest residues to the shipment of the final product. The total energy concept, e.g., energy generation, distribution and utilization in Indian paper industry is discussed. The need for an energy audit is emphasized and the formats of energy reporting forms are included. Short and long term measures to be enforced to achieve energy savings in the pulp and paper mills are outlined. Some important energy conservation approaches are also discussed. Factors affecting energy efficiency in a pulp and paper mill are reviewed. Some areas where sustained R and D efforts should be focused to make the paper industry nearly self-sufficient in energy generation and utilization are also given. It is essential to have a National Energy Policy clearly defining achievable targets of energy conservation for industry. The Indian paper industry could advantageously form its own committee to review the operation of the various mills in the country and come out with concrete solutions for higher energy efficiency and more effective conservation of energy.

  13. Feasibility of industrial wind energy schemes - final report

    Energy Technology Data Exchange (ETDEWEB)

    Gow, G.

    1998-04-01

    This document is the final report of an investigation into the feasibility of using wind turbines as on-site generation (i.e. on the customer's side of the meter) to meet a proportion of the electricity demand on industrial sites in the UK. It was thought that this could become a promising market for wind energy outside support mechanisms such as the Non Fossil Fuel Obligation and equivalents, for the following principal reasons: electricity which displaces purchases from a Public Electricity Supplier (PES) or Second Tier Support (STS) has a higher value than electricity sold direct to a PES or STS; there could be seasonal and diurnal correlation between the output of wind turbines and electricity prices; and due to existing infrastructure, realisation of such projects could be simpler and cheaper than for new wind farms. Six industrial sites participated in the project, covering a wide range of industries, locations, and wind regimes. For each site, a year of concurrent wind data and demand data was produced. Practical aspects of the implementation of such schemes, and the results of the time step analyses, were discussed with the participating sites and the host PESs for each site. (author)

  14. Feasibility of industrial wind energy schemes - final report

    International Nuclear Information System (INIS)

    Gow, G.

    1998-01-01

    This document is the final report of an investigation into the feasibility of using wind turbines as on-site generation (i.e. on the customer''s side of the meter) to meet a proportion of the electricity demand on industrial sites in the UK. It was thought that this could become a promising market for wind energy outside support mechanisms such as the Non Fossil Fuel Obligation and equivalents, for the following principal reasons: electricity which displaces purchases from a Public Electricity Supplier (PES) or Second Tier Support (STS) has a higher value than electricity sold direct to a PES or STS; there could be seasonal and diurnal correlation between the output of wind turbines and electricity prices; and due to existing infrastructure, realisation of such projects could be simpler and cheaper than for new wind farms. Six industrial sites participated in the project, covering a wide range of industries, locations, and wind regimes. For each site, a year of concurrent wind data and demand data was produced. Practical aspects of the implementation of such schemes, and the results of the time step analyses, were discussed with the participating sites and the host PESs for each site. (author)

  15. Energy conservation and technological change as factors in climate change - a pulp and paper industry example

    Energy Technology Data Exchange (ETDEWEB)

    Koleff, A.M. [Stone Container Corp., Tucker, GA (United States)

    1997-12-31

    The Pulp and Paper Industry in the United States is one of this country`s most energy intensive industries with energy generally being the second or third largest direct operating expense in mill budgets. As such, the industry has long had an effective energy conservation program and has recorded impressive reductions in energy use. It is also one of the two most capital intensive industries in the United States and has a long capital investment cycle, which can be estimated by various techniques at between 20 and 30 years. This paper discusses the estimated impact of the industry`s energy conservation achievements on long term emission reductions of greenhouse gases and will show how technological changes within the industry have impacted past emission reductions and the prospects for continued progress through emerging technologies. The importance to the global competitiveness of the industry of implementing technological change designed to reduce the emission of greenhouse gases within the industry`s normal investment cycle will also be reviewed.

  16. Gap analysis of industrial energy management systems in Slovenia

    International Nuclear Information System (INIS)

    Pusnik, Matevz; Al-Mansour, Fouad; Sucic, Boris; Gubina, A.F.

    2016-01-01

    Industrial energy management systems, which comprise software solutions, upfront services, and ongoing monitoring and management, enable industrial companies to actively manage their energy consumption and energy procurement activities. Energy management systems are usually tailored to the specific industrial needs but may offer limited functionalities, mostly as a result of different identified gaps (process simplifications, improper measurement points, a lack of motivation, etc.). A survey was conducted in order to analyse the gaps and use of energy management systems in Slovenian industry. The results of the survey presented in this paper demonstrate that the use of energy management systems in industry is recognised as a potential competitive advantage by most of the addressed companies. Furthermore, motivation was highlighted as an important prerequisite for process and structural improvements and reported to be thus far insufficiently addressed. Furthermore, the importance of strong cooperation with actors at different levels of industry, namely the executive and shop floor levels, is addressed. In the conclusion, possibilities for new opportunities in the exploitation of energy efficiency through the use of industrial energy management systems are discussed. - Highlights: • Investigating gaps and evaluation of EMS use in Slovenian industry. • Analysis based on the developed self-assessment tool 3EMT. • Existing EMS do not include all the requirements for the industrial operations. • Constructive cooperation between all stakeholders is of crucial importance.

  17. Pulp and Paper Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-08-01

    The study provides energy estimates for the following four cases: current average mill energy consumption, state-of-the-art art mill energy consumption, mill energy consumption if advanced technologies requiring further R&D were employed, and theoretical minimum mill energy consumption.

  18. Efficient Implementation Algorithms for Homogenized Energy Models

    National Research Council Canada - National Science Library

    Braun, Thomas R; Smith, Ralph C

    2005-01-01

    ... for real-time control implementation. In this paper, we develop algorithms employing lookup tables which permit the high speed implementation of formulations which incorporate relaxation mechanisms and electromechanical coupling...

  19. ENERGY MANAGEMENT INNOVATION IN THE US SKI INDUSTRY

    Science.gov (United States)

    Ski areas represent a unique opportunity to develop innovative energy management practices in an industrial setting. Through a unique synergy of onsite generation, preferably by renewable sources and innovative technologies, and the energy storage potential of exis...

  20. Wind energy development as a part of Poland's industrial development

    DEFF Research Database (Denmark)

    Stoerring, Dagmara; Hvelplund, Frede Kloster

    2003-01-01

    The paper concludes with recommendations on how to make wind energy development a part of the industrial development in Poland by introducing renewable energy support mechanisms to improve the conditions for companies to develop wind technology in Poland....

  1. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  2. Energy efficiency opportunities within the powder coating industry

    Energy Technology Data Exchange (ETDEWEB)

    Osbeck, Sofie; Bergek, Charlotte; Klaessbo, Anders (Swerea IVF AB, Moelndal (Sweden)), e-mail: anders.klassbo@swerea.se; Thollander, Patrik; Rohdin, Patrik (Dept. of Management and Engineering, Linkoeping Univeristy, Linkoeping (Sweden)); Harvey, Simon (Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2011-06-15

    A new challenge to reduce energy usage has emerged in Swedish industry because of increasing energy costs. Energy usage in the Swedish powder coating industry is about 525 GWh annually. This industry has a long and successful record of working towards reduced environmental impact. However, they have not given priority to energy saving investments. Electricity and LPG, for which end-user prices are predicted to increase by as much as 50 - 60% by 2020, are the main energy carriers used in the plants. This paper presents the results of two detailed industrial energy audits conducted with the aim of quantifying the energy efficiency potential for the Swedish powder coating industry. Energy auditing and pinch analysis methods were used to identify possible energy housekeeping measures and heat exchanging opportunities. The biggest users of energy within the plants are the cure oven, drying oven and pre-treatment units. The energy use reduction by the housekeeping measures is 8 - 19% and by thermal heat recovery an additional 8 - 13%. These measures result in an average energy cost saving of 25% and reduction of carbon dioxide emissions of 30%. The results indicate that the powder coating industry has a total energy efficiency potential of at least 20%

  3. Identifying blocks to boost industrial development indispensable to energy transition

    International Nuclear Information System (INIS)

    2012-11-01

    For different sectors (biomass energy, fossil and geothermal energies, nuclear energies, solar energy, marine, hydraulic and wind energies, energies in transports, construction, industries and agriculture, prospective and education, grids and storage), this report gives a brief overview of the present status and problematic, and briefly presents the main issues to be solved to develop these sectors within the perspective of energy transition and sustainable development

  4. Measuring improvement in energy efficiency of the US cement industry with the ENERGY STAR Energy Performance Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.; Zhang, G. [Department of Economics, Duke University, Box 90097, Durham, NC 27708 (United States)

    2013-02-15

    The lack of a system for benchmarking industrial plant energy efficiency represents a major obstacle to improving efficiency. While estimates are sometimes available for specific technologies, the efficiency of one plant versus another could only be captured by benchmarking the energy efficiency of the whole plant and not by looking at its components. This paper presents an approach used by ENERGY STAR to implement manufacturing plant energy benchmarking for the cement industry. Using plant-level data and statistical analysis, we control for factors that influence energy use that are not efficiency, per se. What remains is an estimate of the distribution of energy use that is not accounted for by these factors, i.e., intra-plant energy efficiency. By comparing two separate analyses conducted at different points in time, we can see how this distribution has changed. While aggregate data can be used to estimate an average rate of improvement in terms of total industry energy use and production, such an estimate would be misleading as it may give the impression that all plants have made the same improvements. The picture that emerges from our plant-level statistical analysis is more subtle; the most energy-intensive plants have closed or been completely replaced and poor performing plants have made efficiency gains, reducing the gap between themselves and the top performers, whom have changed only slightly. Our estimate is a 13 % change in total source energy, equivalent to an annual reduction of 5.4 billion/kg of energy-related carbon dioxide emissions.

  5. Fuel Cells in the Coal Energy Industry

    Directory of Open Access Journals (Sweden)

    Kolat Peter

    1998-09-01

    Full Text Available In march 1998 at the conference „Coal Utilization & Fuel Systems“ in Clearwater, USA representatives of U.S. Department of Energy presented the vision 21 focused on the electricity generation from coal for 21st century. The goal is a powerplant with the ability to produce the electricity from coal with the efficiency approaching 60% (higher heating value and emission levels of one-tenth of today´s technologies, The CO2 capture and permanent sequestration at the cost of $15/ton of CO2, and a cost of electricity of 3 cents per kilowatt-hour. The goal is believed to be achievable by the first quarter of the next century. The vision 21 is presented with several possible concepts. One of them is based on coal gasification with following hydrogen separation. The obtained hydrogen is used as a fuel for the cogeneration unit with fuel cells. The remaining gas can be liquefied and utilised as a fuel in the automotive industry or further chemically processed. The concept has several important features. Firstly, a very clean low cost electricity production. Secondly, it is comprised of fuel processing section and power processing section. The two sections need not to be co-located. In the world of the deregulated electricity generation this offers a major advantage. The technologies of fuel processing section – coal gasification and hydrogen separation have been successfully developed in the last two decades. A specificity of the fuel processing section of this concept is to obtain hydrogen rich gas with very low concentrations of substances, as CO, which cause a poisoning of electrodes of fuel cells leading to the decreasing fuel cells efficiency. Fuel cells, specially highly efficient coal-gas SOFC and MCFC, are expected to be commercially available by 2020. The natural-gas MCFC and SOFC plants should enter the commercial marketplace by the year 2002.

  6. Energy and Production Planning for Process Industry Supply Chains

    OpenAIRE

    Waldemarsson, Martin

    2012-01-01

    This thesis addresses industrial energy issues from a production economic perspective. During the past decade, the energy issue has become more important, partly due to rising energy prices in general, but also from a political pressure on environmental awareness concerning the problems with climate change. As a large user of energy the industry sector is most likely responsible for a lot of these problems. Things need to change and are most likely to do so considering current and assumed fut...

  7. Transition of Russian energy industry to a market economy

    International Nuclear Information System (INIS)

    Makarov, A.

    1992-01-01

    The Russian energy industry by totality of politic, social and economic circumstances has entered into the sharpest crisis. Development of energy industry has practically ceased, it has appeared a decline in electricity , oil and coal production. However it has been accumulated a vast intact potential for energy conservation and the change of energy consuming equipment in USSR by the best models of the world could reduce the present annual consumption by about 500 millions.tonnes of coal equivalent

  8. EU energy policies achievement by industries in decentralized areas

    Science.gov (United States)

    Destro, Nicola; Stoppato, Anna; Benato, Alberto; Schiro, Fabio

    2017-11-01

    Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees) for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  9. EU energy policies achievement by industries in decentralized areas

    Directory of Open Access Journals (Sweden)

    Destro Nicola

    2017-01-01

    Full Text Available Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  10. Study on Laws, Regulations and Standards on Energy Efficiency, Energy Conserving and Emission Reduction of Industrial Boilers in EU

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Chen, Haihong; Liang, Xiuying; Yang, Ming

    2017-12-01

    Industrial boilers are widely applied in such fields as factory power, building heating, and people’s lives; China is the world’s largest producer and user of industrial boilers, with very high annual energy consumption; clear requirements have been put forward by China on the energy efficiency since the “11th Five-year Plan” with the hope to save energy and reduce emission by means of energy efficiency standards and regulations on the supervision and control of various special equipment. So far, the energy efficiency of industrial boilers in China has been improved significantly but there is still a gap with the EU states. This paper analyzes the policies of energy efficiency, implementation models and methods of supervision and implementation at the EU level from laws, regulations, directives as well as standards; the paper also puts forward suggestions of energy conserving and emission reduction on the improvement of energy conserving capacity of industrial boilers in China through studying the legislations and measures of the developed countries in energy conserving of boilers.

  11. Energy intensive industry for Alaska. Volume I: Alaskan cost factors; market factors; survey of energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Swift, W.H.; Clement, M.; Baker, E.G.; Elliot, D.C.; Jacobsen, J.J.; Powers, T.B.; Rohrmann, C.A.; Schiefelbein, G.L.

    1978-09-01

    The Alaskan and product market factors influencing industry locations in the state are discussed and a survey of the most energy intensive industries was made. Factors external to Alaska that would influence development and the cost of energy and labor in Alaska are analyzed. Industries that are likely to be drawn to Alaska because of its energy resources are analyzed in terms of: the cost of using Alaska energy resources in Alaska as opposed to the Lower 48; skill-adjusted wage and salary differentials between relevant Alaskan areas and the Lower 48; and basic plant and equipment and other operating cost differentials between relevant Alaskan areas and the Lower 48. Screening and evaluation of the aluminum metal industry, cement industry, chlor-alkali industry, lime industry, production of methanol from coal, petroleum refining, and production of petrochemicals and agrichemicals from North Slope natural gas for development are made.

  12. Implementation of Industry Experience at Nuclear Power Plant Krsko

    International Nuclear Information System (INIS)

    Heruc, Z.; Kavsek, D.

    2002-01-01

    Being a standalone comparatively small unit NPP Krsko has adopted a business philosophy to incorporate industry experience into its daily operations. The continuos and safe operation of the unit is supported through feedback from other utilities (lessons learned) and equipment vendors and manufacturers. A permanent proactive approach in monitoring the international nuclear technology practices, standards changes and improvements, and upon feasibility review, introducing them into processes and equipment upgrades, is applied. As a member of the most important international integrations, NPP Krsko has benefited from the opportunity of sharing its experience with others (World Association of Nuclear Operators -WANO, Institute of Nuclear Power Operations - INPO, International Atomic Energy Agency - IAEA, Nuclear Operations Maintenance Information Service - NOMIS, Nuclear Maintenance Experience Exchange - NUMEX, Electric Power Research Institute - EPRI, Westinghouse Owners Group - WOG, etc.). Voluntary activities and good practices related to safety are achieved by international missions (IAEA Assessment of Safety Significant Events Team - ASSET, IAEA Operational Safety Review Team - OSART, WANO Peer Review, International Commission for Independent Safety Analysis - ICISA) and operating experience exchange programs through international organizations. These missions are promoting the highest levels of excellence in nuclear power plant operation, maintenance and support. With time, the practices described in this paper presented themselves as most contributing to safe and reliable operation of our power plant and at the same time supporting cost optimization making it a viable and reliable source of electrical energy in the more and more deregulated market. (author)

  13. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  14. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Institute for Industrial Productivity (United States); Taylor, Robert P. [Institute for Industrial Productivity (United States); Hedman, Bruce [Institute for Industrial Productivity (United States)

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  15. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  16. Implementation of total productive maintenance (TPM to increase overall equipment efficiency of an hotel industry

    Directory of Open Access Journals (Sweden)

    Manjunatha B.

    2018-01-01

    Full Text Available Hotel industries are one of the fastest growing areas in India, which is attracting more number of jobs & tourists. This also results in direct impact on Indian economy. All Hotels comprises a higher element of total working cost and they are a good source of income. Hospitality is one of the most important components of hotel industry. To give a good hospitality in hotels to customers, we need to use different machines in different departments. For example if we take section of housekeeping it consists of different sub departments like Rooms & corridors, Toilets, Linen, Furniture and furnishings, Gardens, Public areas etc. In this connection a small implementation of TPM tool called focused improvement & planned maintenance, implemented in alternative usage of electrical systems (energy conservation. Result showed a very significant improvement in energy saving. By adopting Small changes show a significant improvement in the overall system. It also indicates the dire need of proper industrial tools in hotels. Total Productive Maintenance (TPM is one of the pioneering approaches which can be achieved in above said things [1][2].

  17. Plants as a raw material for industry and energy; Pflanzen fuer Industrie und Energie

    Energy Technology Data Exchange (ETDEWEB)

    Pude, Ralf [Bonn Univ. (Germany); Werner, Antje; Vollrath, Birgit [Bayerische Landesanstalt fuer Weinbau und Gartenbau (LWG), Veitshoechheim (Germany); Goedeke, Katja [Thueringer Landesanstalt fuer Landwirtschaft, Jena (Germany)

    2012-06-21

    Dwindling fossil resources, perceptible climatic change as well as an increased environmental awareness allow a reflection to energy crops and industrial crops. In order to explain the renewable resources by means of examples and illustrations, and in order to maintain an overview on the variety of renewable resources, the Agency for Renewable Ressources (Guelzow, Federal Republic of Germany) has published this brochure. The range and variety of use capacities of renewable resources are discussed. Cultural technical applications on cultivation and harvesting of crops round off the issue.

  18. Model Effectiviteit Instrumenten-Energiebesparing Industrie (MEI-Energie)

    NARCIS (Netherlands)

    Wijk JJ van; Engelen RFJM; Ros JPM; LAE

    2001-01-01

    Within the context of the Kyoto Protocol insight into industrial energy savings and the influence of policy instruments is desirable, both for the past and the future. By virtue of its legal central policy analysis function, the RIVM is currently developing an energy-saving model for industrial

  19. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  20. Sustained Energy Savings Achieved through Successful Industrial Customer Interaction with Ratepayer Programs: Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hedman, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Taylor, Robert P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Russell, Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Many states have implemented ratepayer-funded programs to acquire energy efficiency as a predictable and reliable resource for meeting existing and future energy demand. These programs have become a fixture in many U.S. electricity and natural gas markets as they help postpone or eliminate the need for expensive generation and transmission investments. Industrial energy efficiency (IEE) is an energy efficiency resource that is not only a low cost option for many of these efficiency programs, but offers productivity and competitive benefits to manufacturers as it reduces their energy costs. However, some industrial customers are less enthusiastic about participating in these programs. IEE ratepayer programs suffer low participation by industries across many states today despite a continual increase in energy efficiency program spending across all types of customers, and significant energy efficiency funds can often go unused for industrial customers. This paper provides four detailed case studies of companies that benefited from participation in their utility’s energy efficiency program offerings and highlights the business value brought to them by participation in these programs. The paper is designed both for rate-payer efficiency program administrators interested in improving the attractiveness and effectiveness of industrial efficiency programs for their industrial customers and for industrial customers interested in maximizing the value of participating in efficiency programs.

  1. Implementation of the Environmental Management Concept in the Hospitality Industry

    Directory of Open Access Journals (Sweden)

    Manuela Dora Orboi

    2015-10-01

    Full Text Available Globally, the concern for the environment is continually growing, among travel and tourism industry operators. Each unit hotel has its identity, its characteristics, and therefore, it is necessary to use and apply specific information about the environment, so as to create their own proactive environment protection policies. It must be performed an overview of environmental issues affecting the company and the performance that it has. Each unit hotel policy must be based on actual consumer demand for tourist services - as an active and conscious part - along with unit staff. Environmental action planning of a hotel unit has to go through several stages. The preparation of environmental actions of a hotel unit, involves biological control, which should help in making decisions on the most important measures that would benefit. Implementing the concept of environmental management in the hospitality unit requires including and taking the following steps: motivation, actions planning, analyze their performance and progress. They form an annual cycle of environmental management, which will go each year, to identify both the difficulties that have arisen and achievements and recommendations for the future.

  2. Implementation of aggregation in the North American power industry

    International Nuclear Information System (INIS)

    Feldman, R.; Williams, G.

    1998-01-01

    One key to the impact of deregulation being transmitted to residential customers is the successful formation of aggregation groups and their expansion to include different classes of customers with convergent usage interests. This activity currently is being sponsored not only by for-profit brokerage entities, but also by associations of not-for-profit corporations such as hospitals and universities and by countries. The issues presented fall into several categories. (1) Technical rate taking--feasibility of making appropriate arrangements for alternative supply to consumers on a basis which appropriately reflects customer characteristics and also confers benefit on them all; (2) Legal--Compatibility of proposed arrangements with FERC wholesale regulation under Order No. 888 and emerging state regulation under the different restructuring regimes which their state utility commissions are implementing; (3) Marketing/Sociopolitical--Utilization of modern marketing techniques to effect the political consensus which is a precursor of alternative aggregation arrangements; (4) Financing--identification of capital costs; techniques for financing such costs, including monetization of the savings to be realized. The presentation will extrapolate the potential future significance of aggregation as a force in both restructuring and the development of merchant power projects. It will also assess the extent to which institutional, legal, technical or financial factors may modify the ultimate significance of aggression in the North American Power Industry

  3. Implementation Learning and Forgetting Curve to Scheduling in Garment Industry

    Science.gov (United States)

    Muhamad Badri, Huda; Deros, Baba Md; Syahri, M.; Saleh, Chairul; Fitria, Aninda

    2016-02-01

    The learning curve shows the relationship between time and the cumulative number of units produced which using the mathematical description on the performance of workers in performing repetitive works. The problems of this study is level differences in the labors performance before and after the break which affects the company's production scheduling. The study was conducted in the garment industry, which the aims is to predict the company production scheduling using the learning curve and forgetting curve. By implementing the learning curve and forgetting curve, this paper contributes in improving the labors performance that is in line with the increase in maximum output 3 hours productive before the break are 15 unit product with learning curve percentage in the company is 93.24%. Meanwhile, the forgetting curve improving maximum output 3 hours productive after the break are 11 unit product with the percentage of forgetting curve in the company is 92.96%. Then, the obtained 26 units product on the productive hours one working day is used as the basic for production scheduling.

  4. Impacts of FDI Renewable Energy Technology Spillover on China’s Energy Industry Performance

    Directory of Open Access Journals (Sweden)

    Weiwei Liu

    2016-08-01

    Full Text Available Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.

  5. Analisis Permintaan Energi Listrik Pada Industri Mebel Di Kota Pekanbaru

    OpenAIRE

    ', Permansyah; Chalid, Nursiah; ', Taryono

    2015-01-01

    This study aims to determine the effect of the furniture industry costumers and the value of production of the electric energy demand in the furniture industry in Pekanbaru and to determine the most dominant variable affecting the demand for electrical energy on the furniture industry in the City of Pekanbaru, Riau. The analysis of the data used in this research is quantitative deskriptive model of multiple linear regression model. Result of this study were obtained from questioner (primary) ...

  6. Developing finance to meet energy industry challenge

    International Nuclear Information System (INIS)

    Morphett, C.

    1994-01-01

    The role of commercial financial institutions in the development of the world's oil and gas industry are charted in this article. Banks and other institutions have been lending money to the oil industry since the late 1920s. In the early days loans were short-term, but as the oil and gas industries have developed, using deeper wells and more complex technology, financial needs too have expanded. Better forecasting of future recovery levels, and a better understanding of reservoir characteristics has meant that lending institutions have advanced funds against projected oil revenues, with repayments due only as oil production comes on-line. (UK)

  7. The implementation of a multi-annual agreement for energy efficiency in The Netherlands

    International Nuclear Information System (INIS)

    Dinica, Valentina; Bressers, Hans Th. A.; Bruijn, Theo de

    2007-01-01

    The paper analyses the implementation of the second multi-annual agreement for energy efficiency concluded in the Netherlands with industrial sectors for the period 2002-2010. It aims to investigate whether the multi-annual agreement MJA2, as a voluntary instrument, is sufficiently stimulating behavioral change at the target group level, and sustained transformation of production and management patterns towards significant gains in energy efficiency. The analysis uses a Structure-Conduct-Performance analytical framework for implementation processes in order to: (a) analyze the setting of implementation, actor roles, attitudes and interactions; (b) discuss emerging obstacles and positive experiences with the implementation of the three core policy instruments envisaged: energy management system, process efficiency measures, and 'expansion themes' measures. Based on this policy recommendations are formulated regarding voluntary agreements in general, using the Structure-Conduct-Performance framework of implementation analysis, and regarding how the implementation process of MJA2 in particular could be improved

  8. Implementation of a sustainable energy plantation system

    International Nuclear Information System (INIS)

    El Bassam, N.; Bacher, W.

    2000-01-01

    Renewable energy sources should be developed to form the foundation of the global energy structure in the future. This is related to the shortage of fossil energy resources, the greenhouse effects, the increasing number of world's population and the increasing demand for energy and food. Fuels derived from energy crops are not only potentially renewable, but are also sufficiently similar in origin to the fossil fuels to provide direct substitution. They can be converted into a wide variety of energy carriers. Together with solar- and wind technique, adequate energy supply can be to meet the demand of people in rural regions. The concept of Integrated Energy Farms (IEF) has been developed and described in this contribution which includes a decentralised living area from which the daily necessities (food and energy) can be produced directly on-site for approximately 700 people. The area needed to produce biofuels will not exceed 10 % of the whole farm area. (Author)

  9. RENEWABLE ENERGY BETWEEN AGRICULTURE AND INDUSTRY

    Directory of Open Access Journals (Sweden)

    Diana GROSU

    2013-01-01

    Full Text Available The paper aims to present the evolution of renewable energy in the entire world, including Moldova and Romania as states that tend to reach their micro- and macro-economic objectives. One of the most important goal remains thedevelopment of renewable energy from agricultural waste and so the energy coming from natural sources such assolar, wind or water without air pollution. As a conclusion, the solution to obtain this renewable energy is to attractfinancial resources from EU or USA investors.

  10. The competitive environment of the North American energy marketing industry

    International Nuclear Information System (INIS)

    Tonkin, S.L.

    1999-01-01

    Various issues regarding U.S. wholesale energy marketing were discussed with particular emphasis on how energy marketing is changing industries in North America. In 1998, the energy industry reported a growth in revenue of 26 per cent despite declining natural gas prices. It was emphasized that several major competitive issues need to be addressed by industry competitors in order to operate in this unpredictable market. These issues include profitability, market volatility and mergers and acquisitions. This paper presented a list of the top 10 North American Energy marketers in 1998. Although the number of marketers in the energy sector continues to grow, it is expected that the numbers will decline significantly within three years. This will be due mostly to the continuation of major mergers and acquisitions. It was concluded that in general, energy marketing may become an even more attractive industry because of increasing operating margins. 5 tabs., 2 figs

  11. Measuring industrial energy efficiency: Physical volume versus economic value

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  12. Using the Financial Instruments for Electric Energy Industry Modernization: the Experience of European Countries

    Directory of Open Access Journals (Sweden)

    Hnedina Kateryna V.

    2018-03-01

    Full Text Available A review of the financial instruments used in the European countries to modernize the electric energy industry has been undertaken. A review of the European practices indicates that financial support for the electric energy industry modernization projects is financed by such instruments, mechanisms and incentives as «green» tariff, «green» certificates and «quota obligations», «green» bonds, auctions, concessional lending, grants, investment subsidies. Venture capital investment is a common form of financing for electric energy industry modernization in the European countries. It has been determined that «green» bonds are an effective instrument that allows to accumulate significant amounts of funds and direct them to the renewable energy industry. Nowadays a significant number of renewable energy industry projects in the EU countries have already been implemented at the expense of the funds obtained from the «green» bonds issue. «Green» bonds are a pivotal promising financial instrument for the modernization of electric energy industry in the European countries. Formation of the mechanism for their issue in Ukraine, taking account of the foreign practice of creating a market of «green bonds», will allow to accumulate the financial resources that are necessary for development of the renewable energy industry.

  13. Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kaliyan, Mathiyazhagan; Kannan, Devika

    2014-01-01

    to the implementation of a green supply chain management (Green SCM) based on procurement effectiveness. A total of 47 barriers were identified, both through detailed literature and discussion with industrial experts and through a questionnaire-based survey from various industrial sectors. Essential barriers......Manufacturing industries started adopting the green concept in their supply chain management recently to focus on environmental issues. But, industries still struggle to identify barriers hindering green supply chain management implementation. This work focuses on identifying barriers...

  14. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    Price, L.K.; McKane, A.T.; Ploutakhina, M.; Monga, P.; Gielen, D.; Bazilian, M.; Nussbaumer, P.; Howells, M.; Rogner, H.-H.

    2009-01-01

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO 2 ) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  15. Solar energy and the aeronautics industry. Thesis

    Science.gov (United States)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  16. Wind energy in industrial areas. Results of an attitude survey

    International Nuclear Information System (INIS)

    Schoolderman, J.A.; Huiberts, R.G.J.

    2000-06-01

    The feasibility of installing wind turbines in industrial parks in the Netherlands has been investigated. An overview is given of possibilities and constraints to fit in wind turbines in industrial areas, based on the results of a literature study, a market consultation of sectoral organizations, representatives of local industrial circles and industrial experts in the field of renewable energy. Also a telephone survey was carried out among 130 entrepreneurs in the Netherlands to determine their attitudes towards the use of sustainable energy and wind energy in industrial parks. The results of the attitude study are published in this report. The main report is a separate report for which a separate abstract has been prepared. The intermediate results were discussed at a meeting (23 February 2000), in which representatives from the industry, provinces, municipalities and the government participated

  17. The perspectives of cogeneration as a mechanism to implement the rational and efficient use of energy in the industrial, residential and commercial sectors for the next decade; As perspectivas da cogeracao como mecanismo de implementacao do uso racional e eficiente de energia, nos setores industrial, residencial e comercial para a proxima decada

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Liodoro de; Santos, Adilson Francisco dos; Domingos, Sergio Ricardo; Haddad, Jamil [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Grupo de Estudos Energeticos], e-mail: mellostopa@pop.com.br

    2004-07-01

    The present work analyzes the advantages of the use of the cogeneration combined 'production of electricity and useful heat', and 'his/her correlation with the rational and efficient use of energy in Brazil in the systems: industrial, residential and commercial.' In the measure of adoptions of new energy politics the proposed system presents comparative advantages in relation to other renewable sources or not of energy. Lens to improve the factor capacity and to minimize the wastes, specifically in the final uses. The crisis of provisioning that devastated the country in 2001 serves as alert for all of the agents of the electric section. The society forced to adopt use procedures and to reuse of the consumed energy, under penalty of sanctions, from the application of fines, until the interruption of the supply she enters in a new phase, for yours, time the theme rational and efficient use of energy assumes extremely important and decisive paper of the politics of administration of the scarce energy inputs. With base in these data the cogeneration appears, as real and viable alternative, that it gets to conjugate the efficient use of the energy with advantages environmental, technological and, above all, economical contributing with the energy planning. (author)

  18. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  19. Energy Reporting Practices among Top Energy Intensive Industries in Malaysia

    Science.gov (United States)

    Tasrip, N. E.; Mat Husin, N.; Alrazi, B.

    2016-03-01

    This study content analyses the energy content in the corporate report of top 30 Malaysian energy-intensive companies. Motivated by the gap among prior corporate social responsibility and environmental reporting studies in respect of energy, this study provides evidence of Malaysian companies’ initiative to reduce energy consumption. While the evidence suggests that not all 30 companies have reported energy-related information, the findings provide an overview on the response of energy intensive companies in relation to Malaysian government initiatives on energy.

  20. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  1. New industrial park energy supply (NIPES) conceptual design: executive summary

    International Nuclear Information System (INIS)

    1984-01-01

    The NIPES concept was originally envisioned as an energy supply source for new industrial plants in new industrial parks. However, the concept is readily adaptable to a combination of new and existing industrial plants. The concept is intended to minimize the problems associated with the use of coal in industrial applications as well as to improve the efficiency of energy utilization. Information is presented concerning a description of the NIPES concept; application of NIPES concept to Lake Charles, Louisiana; coal-fired plant design; nuclear plant design; thermal transmission system design; financial analysis; capital cost estimates; and results of financial analysis

  2. Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Hochman, Gal; Fedets, Iryna

    2016-01-01

    Improvement of energy efficiency is an important element of energy policy for a sustainable supply of energy in Ukraine. However, the country is facing several challenges to the large-scale deployment of energy efficient technologies. We conducted a two-stage quota sample survey of 509 commercial and industrial firms of all regions of Ukraine to understand the barriers to energy efficiency improvements. Our study finds that more than two-thirds of the commercial and industrial firms in the country view improvement of energy efficiency very important to their business. However, due to several barriers they are unable to realize the improvements of energy efficiency. Among the 19 potential barriers investigated in the study, the survey results show that high upfront investment requirement, lack of government policies to support energy efficiency improvements, higher cost of capital, and lack of information and awareness are the most critical barriers to the improvement of energy efficiency in the industrial and commercial sectors in Ukraine. - Highlights: • Despite attractiveness, large scale deployment of energy efficiency is lacking. • Several barriers are responsible for slow implementation of energy efficiency. • Understanding the barriers from the field is crucial to design effective policies. • A survey of commercial and industrial firms reveals the key barriers. • Financial barriers are the main hurdles to adopt energy efficient technologies.

  3. Guidelines for biomass energy policy implementation in Rwanda

    International Nuclear Information System (INIS)

    Hategeka, A.; Karenzi, P.C.

    1997-01-01

    This chapter reports on the energy scene in Rwanda, and discusses the evolution of the energy development concept in the framework of national development policy, biomass and other energy sources, biomass supply and demand, and commercialised wood and biomass consumption. Prospects to stabilise the biomass cycle are examined, and the implementation of biomass energy policy in Rwanda is considered. (UK)

  4. Fenestration system energy performance research, implementation, and international harmonization

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Raymond F [National Fenestration Rating Council, Greenbelt, MD (United States)

    2014-12-23

    The research conducted by the NFRC and its contractors adds significantly to the understanding of several areas of investigation. NFRC enables manufacturers to rate fenestration energy performance to comply with building energy codes, participate in ENERGY STAR, and compete fairly. NFRC continuously seeks to improve its ratings and also seeks to simplify the rating process. Several research projects investigated rating improvement potential such as • Complex Product VT Rating Research • Window 6 and Therm 6 Validation Research Project • Complex Product VT Rating Research Conclusions from these research projects led to important changes and increased confidence in the existing NFRC rating process. Conclusions from the Window 6/Therm 6 project will enable window manufacturers to rate an expanded array of products and improve existing ratings. Some research lead to an improved new rating method called the Component Modeling Approach. A primary goal of the CMA was a simplification of the commercial energy rating process to increase participation and make the commercial industry more competitive and code compliant. The project below contributed towards CMA development: • Component Modeling Approach Condensation Resistance Research NFRC continues to implement the Component Modeling Approach program. The program includes the CMA software tool, CMAST, and several procedural documents to govern the certification process. This significant accomplishment was a response the commercial fenestration industry’s need for a simplification of the present NFRC energy rating method (named site built). To date, most commercial fenestration is self-rated by a variety of techniques. The CMA enables commercial fenestration manufacturers to rate according to the NFRC 100/200 as most commercial energy codes require. International Harmonization NFRC achieved significant international harmonization success by continuing its licensing agreements with the Australian Fenestration

  5. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  6. Energy transition: which opportunities for the French industry?

    International Nuclear Information System (INIS)

    Bousson, Guillaume; Pouzeratte, Francois; Pierret, Christian; Bensasson, Bruno; Bouttes, Jean-Paul; Bouygues, Olivier; Durdilly, Robert; Geoffron, Patrice; Ladoucette, Philippe de; Lepercq, Thierry; Maillard, Dominique; Rosier, Philippe; Sauquet, Philippe

    2014-05-01

    Regulatory requirements introduced by the new policy of energy transition will force the French industry to look for alternatives to oil and coal. Within this context, this publication contains contributions proposed by industrial and academic experts which aim at discussing how the French industry can seize the opportunity of energy transition to strengthen itself. The authors discuss the issue of competitiveness, the role of de-carbonated electricity, the context of energy transition in France, the evolutions and transformations of the energy market. They also outline the lack of an energy vision in France, the role of the electricity grid as a vector of energy transition, and the fact that the debate on energy transition did not result in concrete solutions

  7. Industrial energy efficiency: Achieving success in a difficult environment

    Energy Technology Data Exchange (ETDEWEB)

    Castellow, Carl

    2010-09-15

    Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

  8. Energy Efficiency/Renewable Energy Programs in State Implementation Plans - Guidance Documents

    Science.gov (United States)

    final document that provides guidance to States and local areas on quantifying and including emission reductions from energy efficiency and renewable energy measures in State Implementation Plans (SIPS).

  9. Internationalization as a strategy to overcome industry barriers-An assessment of the marine energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Lovdal, Nicolai, E-mail: nicolai.lovdal@iot.ntnu.n [Industrial Economics and Technology Management, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Neumann, Frank, E-mail: frank@wave-energy-centre.or [Wave Energy Centre, Av. Manuel Maia, 36, r/c Dto., 1000-201 Lisboa (Portugal)

    2011-03-15

    Research on conditions to develop new innovations within emerging renewable energy industries is often done with a national focus. However, recent research on international entrepreneurship has revealed that firms operate on international levels very early in their life time. Thus, based on former research on international entrepreneurship and case examples, we build the propositions that firms in the marine energy industry use internationalization as a strategy to overcome industry barriers. Our primary source of data is a unique dataset from a global survey of all the companies in the marine energy industry who are aiming to commercialize a wave or tidal energy device. This paper is organized in two steps: first we identified the most challenging industry barriers perceived by companies. Second we use these to form propositions which we assess through empirical data. The two most challenging barriers perceived by the companies are need for capital and need for supportive political schemes. Our findings reveal that internationalization certainly is a common strategy to access capital and attractive support schemes in foreign countries. The early internationalization has implications for researchers, managers and policy makers. - Research highlights: {yields} Industry barriers identified as access to capital and supportive political schemes. {yields} International entrepreneurship is used to overcome industry barriers. {yields} Start-ups in emerging energy industries 'shop' national support schemes. {yields} Future research to provide policy advice should adapt to the international reality. {yields} Research based on a worldwide survey of wave and tidal energy device developers.

  10. Internationalization as a strategy to overcome industry barriers-An assessment of the marine energy industry

    International Nuclear Information System (INIS)

    Lovdal, Nicolai; Neumann, Frank

    2011-01-01

    Research on conditions to develop new innovations within emerging renewable energy industries is often done with a national focus. However, recent research on international entrepreneurship has revealed that firms operate on international levels very early in their life time. Thus, based on former research on international entrepreneurship and case examples, we build the propositions that firms in the marine energy industry use internationalization as a strategy to overcome industry barriers. Our primary source of data is a unique dataset from a global survey of all the companies in the marine energy industry who are aiming to commercialize a wave or tidal energy device. This paper is organized in two steps: first we identified the most challenging industry barriers perceived by companies. Second we use these to form propositions which we assess through empirical data. The two most challenging barriers perceived by the companies are need for capital and need for supportive political schemes. Our findings reveal that internationalization certainly is a common strategy to access capital and attractive support schemes in foreign countries. The early internationalization has implications for researchers, managers and policy makers. - Research highlights: → Industry barriers identified as access to capital and supportive political schemes. → International entrepreneurship is used to overcome industry barriers. → Start-ups in emerging energy industries 'shop' national support schemes. → Future research to provide policy advice should adapt to the international reality. → Research based on a worldwide survey of wave and tidal energy device developers.

  11. Environmental management in the Australian minerals and energy industries: principles and practices

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, D.R. [ed.] [University of Queensland, St. Lucia, Qld. (Australia). Centre for Mined Land Rehabilitation, Dept. of Agriculture

    1996-12-31

    This is a comprehensive reference text on the principles and practices of environmental management being developed and implemented in Australia`s mining and energy industries. It also present a set of case histories focused on individual minerals (coal, sand, aluminium, iron ore, base metals, uranium, mineral sands, construction materials and petroleum). The 5 of the 20 chapters of particular relevance to the coal industry have been abstracted separately for the IEA Coal Research CD-ROM. 800 refs.

  12. Barriers to the adoption of energy-conserving technologies in the textile industry

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.R.; Zussman, S.K.

    1979-09-01

    An overview of the textile industry and a discussion of energy-conserving technologies currently available at the pilot-demonstration stage are presented. Existing and potential barriers to the adoption of these technologies in the textile industry identified are: economic; technical acceptance; conflict between commitments of capital for compliance with environmental and health regulations and for investment in energy conservation measures; and a lack of information and technical expertise. Possible measures to eliminate barriers to the implementation of energy-conserving technologies are discussed. (MCW)

  13. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  14. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  15. Pennsylvania's Energy Curriculum for the Secondary Grades: Industrial Arts.

    Science.gov (United States)

    Wighaman, Paul F.; Zimmerman, Earl R.

    Compiled in this guide are 23 previously published documents for use by secondary school industrial arts teachers who want to incorporate energy studies into their curricula. Over half of the entries describe energy-related projects such as fireplaces, solar water heaters, and solar ovens. Other materials presented address the place of energy in…

  16. The Next Frontier to Realize Industrial Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2011-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  17. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  18. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  19. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  20. Waste energy boosts tomato industry at distillery

    Energy Technology Data Exchange (ETDEWEB)

    McColl, J

    1989-04-01

    A trial project aimed at using waste hot water from the cooling process at a Scottish whisky distillery to heat a glasshouse for tomato production is described. Later developments have involved the installation of a waste heat boiler to make use of the heat from the still burner flue gases. Steam from the boiler is used within the distillery and to supplement the glasshouse system. The payback within the distillery industry has been excellent, but tomato production, though continuing, was adversely affected by severe cutbacks in distillery production in the early eighties. Recently further significant savings have been made in the distillery industry by the installation of a regenerative burner in one of the stills and thermo-compressors in the cooling tower condensers to produce low pressure steam which can be fed back into the system. (U.K.).

  1. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  2. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  3. Cleanroom energy benchmarking in high-tech and biotech industries

    International Nuclear Information System (INIS)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-01-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems

  4. Energy use of the land and water based industries; Uppdrag energikartlaeggning av de areella naeringarna

    Energy Technology Data Exchange (ETDEWEB)

    Stengaard, Linn; Persson, Tobias; Hoegberg, Martina; Einarson, Elin; Gustafsson, Christel; Karlsson, Stefan; Bengtsberg, Rickard; Rehnfeldt, Laila

    2010-02-15

    The report presents a review of energy use within the land- and water-based industries. A number of proposals are reported on technical measures for energy efficiency and measures for reduced emissions of greenhouse gases that can be implemented in each sector. Instruments which may act to promote the implementation of measures is also reported. As the work with examining the energy use progressed, it became clear that the existing statistics and knowledge base was insufficient to produce a satisfactory quantitative analysis of the socio-economic and financial consequences of the measures proposed. These deficiencies are identified in the report

  5. Waste utilization in electric energy industry

    International Nuclear Information System (INIS)

    Parate, N.S.; Harris, E.

    1991-01-01

    This paper reports that electric energy is an integral element of today's economy and the standard quality of life. The availability of energy at an affordable cost has always been of basic concern because of the intimate relationship of energy to our societal development and progress. Coal and Uranium are the primary alternative energy sources for large electric power plants. Coal remains the dominant fuel for electric generation. The pressurized fluidized bed combustion technology has the potential of utilizing all types of coal, including coal with high ash, high sulphur, and high moisture content. Fluidized bed combustion is a firing technique which fulfills today's pollution control requirements without downstream flue gas cleaning plants like scrubbers, baghouses, and precipitators

  6. Energy and water for tomorrow's industrial society

    International Nuclear Information System (INIS)

    Koschnick, H.

    1975-01-01

    The president of the association of communual undertakings gives reasons for the necessity of the development of an own concept in energy policy and energy economical questions, outlines the most important aspects resulting from his outlook and designs a concept for the integrated energy supply of cities and populated areas by means of an interconnected system. The decisive problem is the realization of the just participators in such an interconnecting system under fair and non-discriminating conditions. The possible power concentration of energy centres (nuclear parks) is indicated. Finally, recommendations as to the solving of financing problems in building power plants are given and the present private income trends are critically examined. (GG/LH) [de

  7. End-use energy analysis in the Malaysian industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahim, N.A.; Mekhilef, S.; Ping, H.W. [Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jamaluddin, M.F. [Tenaga Nasional Berhad (TNB), Head Office, Bangsar, Kuala Lumpur (Malaysia)

    2009-02-15

    The industrial sector is the second largest consumer of energy in Malaysia. In this energy audit, the most important parameters that have been collected are as follows: power rating and operation time of energy-consuming equipments/machineries; fossil fuel and other sources of energy use; production figure; peak and off-peak tariff usage behavior and power factor. These data were then analyzed to investigate the breakdown of end-use equipments/machineries energy use, the peak and off-peak usage behavior, power factor trend and specific energy use. The results of the energy audit showed that the highest electrical energy-using equipment was an electric motor followed by pumps and air compressors. The specific energy use has been estimated and compared with four Indonesian industries and it was found that three Malaysian industries were more efficient than the Indonesian counterpart. The study also found that about 64% electrical energy was used in peak hours by the industries and the average power factor ranged from 0.88 to 0.92. The study also estimated energy and bill savings using highly efficient electrical motors along with the payback period. (author)

  8. Integration and communication as central issues in Dutch negotiated agreements on industrial energy efficiency

    NARCIS (Netherlands)

    Bressers, Johannes T.A.; de Bruijn, Theo; Dinica, V.

    2007-01-01

    This paper analyses specific aspects of the implementation of the second multi-annual agreement for energy efficiency concluded in the Netherlands with various industrial sectors for the period 2002-2010. The agreement is a follow-up on a previous negotiated agreement that was generally seen as

  9. The electricity industry and 'Energy 2000'

    International Nuclear Information System (INIS)

    Niederberger, A.

    1991-01-01

    The action programme 'Energy 2000', presented by Federal Councillor Ogi as a result of the agreements of last September, aims, on the one hand, for a stabilization of power consumption until the turn of the century, and, on the other hand, for an extension of domestic production, to which a contribution should also be made by renewable energy sources, particularly photovoltaic power. The Swiss electricity producers are prepared to make their contribution to the realization of these ambitious objectives. (orig.) [de

  10. Energy saving in industrial varnishing techniques

    International Nuclear Information System (INIS)

    Kirst, W.

    1978-01-01

    The search for more effective varnishing techniques and better varnish surfaces and the increasing consideration of environmental protection, energy and raw materials conservation have helped to promote electron beam hardening. Also the development of high-solid varnishes have brought about the following improvements: Better quality of the varnish surface, possible saving of one layer in multilayer coatings, reduced emission in the waste air of the spray booth, conservation of valuable raw materials and energy. (orig.) [de

  11. Energy Efficiency in the Mediterranean Building Industry

    International Nuclear Information System (INIS)

    Thibault, H.L.; El Habib, El Andaloussi

    2011-01-01

    Despite the alerts that have been sounded since 1992, as international conferences aimed at curbing global warming have come and gone, and despite the plans for reducing the use of fossil fuel resources that call for the moderation of energy consumption, few actions or incentive measures (and even fewer directives) have actually been developed to act on the demand for energy. Yet, as Henri-Luc Thibault and El Habib El Andaloussi show here, some very concrete measures can have major effects in this area. This is the case with everything relating to the improvement of energy efficiency in building, where housing conditions, the housing stock and related energy consumption (heating, air-conditioning etc.) are concerned. Thibault and El Andaloussi show the potential impact of such measures in the Mediterranean region. Basing themselves on the work of the 'Plan Bleu' organization, which has worked out a revolutionary scenario for the energy field in the countries of the southern and eastern Mediterranean (to 2030), they begin by recalling the importance of buildings in regional energy consumption and the various levers that might be used to reduce that consumption (regulation, materials, efficiency of machinery etc.). In such a scenario, the potential for energy savings in this sector would seem considerable. Moreover, this would enable a substantial decrease in greenhouse gas emissions to be achieved, and would also have very positive effects in terms of job creation. In conclusion, the authors point out the need for investment over 20 years, depending on the particular country concerned, to put in place the five flagship measures of energy saving, which would be genuine investments for the future.. (authors)

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  13. Identify: Improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  14. Identify: Improving industrial energy efficiency and mitigating global climate change

    International Nuclear Information System (INIS)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  15. Industrial relocation and energy consumption: Evidence from China

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Yin Haitao

    2011-01-01

    With economic development and the change of industrial structure, industrial relocation is an inevitable trend. In the process of industrial relocation, environmental externality and social cost could occur due to market failure and government failure. Little attention has been paid to this issue. In this paper, we address it with a theoretical analysis and an empirical investigation on the relationship between China's industrial relocation in the early 1990s and energy consumption which is the primary source of CO 2 emission, an environmental externality that causes increasing concerns. The macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). Using fixed-effect regression model and simulation method, we provide an empirical support to this argument. In order to further reduce environmental externalities and social cost in the process of industrial relocation, we provide policy suggestions as follows: First, strengthen the evaluation of environmental benefits/costs; Second, pay more attention to the coordinated social-economic development; Third, avoid long-lived investment in high-carbon infrastructure in areas with industries moved in; Fourth, address employment issue in the areas with industries moved out. - Research highlights: → Little attention has been paid to the linkage between industrial relocation and environmental externality. → Our macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). → Using fixed-effect regression model and simulation method, we find a positive link between China's industrial relocation in the early 1990s and energy saving. → Policy suggestions to further reduce environmental externalities and social cost in the process of industrial relocation are discussed.

  16. Eurelectric annual conference (electric power industry union) on the energy liberalization

    International Nuclear Information System (INIS)

    2004-06-01

    This document is a reprint of the talk given by P. Devedjian, French minister of industry, at the Eurelectric 2004 conference. After a brief recall of the energy situation of the European Union, P. Devedjian treats of the following points: the evolution of electricity prices, the increase of CO 2 emissions despite a courageous environmental policy, the three main goals of the energy policy: European economic competitiveness, European solidarity, fight against greenhouse effect, implementation of a common energy policy based on 4 guidelines: common rules, better convergence of energy policies, reinforcement of research, definition of a common energy diplomacy. (J.S.)

  17. The Energy Industry Law - legislative deficits or appropriate legal instrument

    International Nuclear Information System (INIS)

    Boerner, B.

    1986-01-01

    Conclusion: The job of the Energy Industry Law is to secure for the government the necessary influence without endangering the private enterprise structure of the power supply industry. The Energy Industry Law has achieved satisfactory results. For it is in no way obvious that a different system would have achieved lower prices or a level of capacity more exactly tuned to sales. The powers of objection and prohibition contained in Sect. 4 of the Energy Industry Law are limited to (all) circumstances which influence the reliability and cheapness of supply. These powers should not be used to promote a nuclear power phaseout, introduce renewable energy sources, promote the protection of the environment, to counter the demand for cheapness of supply, to enforce power-heat cogeneration and to enforce decentralisation. (orig./HSCH) [de

  18. Disaggregate energy consumption and industrial production in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, UNISA 0003 (South Africa)

    2009-06-15

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment. (author)

  19. Disaggregate energy consumption and industrial production in South Africa

    International Nuclear Information System (INIS)

    Ziramba, Emmanuel

    2009-01-01

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment.

  20. Waste Material Management: Energy and materials for industry

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  1. Production optimisation in the petrochemical industry by hierarchical multivariate modelling. Phase 2: On-line implementation

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Aasa; Persson, Fredrik; Andersson, Magnus

    2009-07-15

    IVL, together with Emerson Process Management, has developed a decision support system (DSS) based on multivariate statistical process models. The system was implemented at Nynas AB's refinery in order to provide real-time TBP curves and to enable the operator to optimise the process with regards to product quality and energy consumption. The project resulted in the following proven benefits at the industrial reference site, Nynas Refinery in Gothenburg: - Increased yield with up to 14 % (relative terms) for the most valuable product - Decreased energy consumption of 8 %. Validation of model predictions compared to the laboratory analysis showed that the prediction error lay within 1 deg C throughout the whole test period

  2. Renewable and recovery energies for each industry sector

    International Nuclear Information System (INIS)

    Petitot, Pauline

    2018-01-01

    The French agency of environment and energy management (Ademe) has made available to the industrialists, a study about the proper choice of renewable and recovery energies capable to meet the energy and heat needs of their facilities. This article summarises in a table, sector by sector and for each renewable and recovery energy source, the capability of this energy source to supply part or the overall energy needs of some elementary industrial processes. Indication is given about the capability of an energy source to produce electricity as well

  3. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  4. Availability and conversion to energy potentials of wood-based industry residues in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Siyam Siew, S.

    2000-01-01

    The importance of biomass as the most accessible primary energy source in Cameroon is presented. The valorization of wood wastes and residues is seen as a way of implementing the sustainable use of biomass resources. A recent survey of wood-based industries in Cameroon reveals that large volumes of industrial wood residues are generated in the rain forest areas and are inefficiently used. Important quantities are lost in the form of burning in the four main forestry provinces, while other parts of the country suffer from fuelwood shortage. With the exception of the plywood factories, the wood industry is essentially dependent on commercial energy. An analysis made to show the economic and environmental benefits of converting wood residues to energy for industrial and domestic use is presented. (author)

  5. Energy and emission analysis for industrial motors in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Rahim, N.A.; Ping, H.W.; Jahirul, M.I.; Mekhilef, S.; Masjuki, H.H.

    2009-01-01

    The industrial sector is the largest user of energy in Malaysia. Industrial motors account for a major segment of total industrial energy use. Since motors are the principle energy users, different energy savings strategies have been applied to reduce their energy consumption and associated emissions released into the atmosphere. These strategies include using highly efficient motors, variable speed drive (VSD), and capacitor banks to improve the power factor. It has been estimated that there can be a total energy savings of 1765, 2703 and 3605 MWh by utilizing energy-efficient motors for 50%, 75% and 100% loads, respectively. It was also found that for different motor loads, an estimated US$115,936 US$173,019 and US$230,693 can be saved in anticipated energy costs. Similarly, it is hypothesized that a significant amount of energy can be saved using VSD and capacitor banks to reduce speed and improve the power factor, thus cutting energy costs. Moreover, a substantial reduction in the amount of emissions can be effected together with the associated energy savings for different energy savings strategies. In addition, the payback period for different energy savings strategies has been found to be reasonable in some cases.

  6. Implementation of NFC technology for industrial applications: case flexible production

    Science.gov (United States)

    Sallinen, Mikko; Strömmer, Esko; Ylisaukko-oja, Arto

    2007-09-01

    Near Field communication (NFC) technology enables a flexible short range communication. It has large amount of envisaged applications in consumer, welfare and industrial sector. Compared with other short range communication technologies such as Bluetooth or Wibree it provides advantages that we will introduce in this paper. In this paper, we present an example of applying NFC technology to industrial application where simple tasks can be automatized and industrial assembly process can be improved radically by replacing manual paperwork and increasing trace of the products during the production.

  7. Industrial Energy Mapping: THERMCYC WP6

    DEFF Research Database (Denmark)

    Huang, Baijia; Bühler, Fabian; Holm, Fridolin Müller

    these natural resources. Solar can supply heat at temperatures up to 100°C, geothermal energy can supply heat at temperatures up to 90 °C and air/water average around 2°C during colder seasons and 17 °C in warmer seasons. When looking across all the sectors there are two major energy sources. One of them origi......, the accessible heat from three natural energy sources is also included in the evaluation. The quantification of the potential waste heat is based on a number of approaches such as, professional experience within Viegand Maagøe, input from project partners, theoretical calculations, case studies, input from...... suppliers, input from end-users etc. It must be emphasized that the total energy consumption used in this study covers all end-users and utility companies and therefore the total energy consumption can be higher than what can be found in other statistic. By including both utility companies and end...

  8. International cooperation for rational use of energy in industry

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Papers discussed the experiences of OLADE, IEA and EEC member countries in the field of rational use of energy in a number of industrial sectors, such as textiles; generation, transmission and distribution of electricity; iron and steel; non-ferrous metals; cement; and sugar. Instruments and technologies for rational use of energy in industry were also discussed as well as possibilities for international cooperation in this field.

  9. Energy and Environmental Challenges for the Japanese Automotive Industry

    OpenAIRE

    Sperling, Daniel

    2000-01-01

    The turn of the century is proving to be a period of turmoil and uncertainty for the automotive industry. The industry confronts growing worldwide demands for greater environmental quality, but now benefits from an emerging technological revolution that provides them with the tools to respond effectively to those demands. Rapid innovation is occurring in lightweight materials, various ICE powertrain enhancements made possible by computer controls, energy conversion processes, energy storage, ...

  10. Restructuring the industry sector - the impact on energy demand

    International Nuclear Information System (INIS)

    Constantinescu, M.

    1994-01-01

    The structure of the industrial sector is a factor of major importance in analyzing the evolution of energy intensity or in setting-up realistic development scenarios. A positive influence on the energy intensity value is expected for Romania from the process of restructuring the industry sector towards low energy consumption products. In order to reach this target though, suitable end comprehensive strategies have to become operational without delay, promoting energy efficiency and modern technologies at a nation-wide scale. The benefits of such strategies extend from improvement of the security of supply through environmental protection and reduction of unemployment. (Author)

  11. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  12. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  13. Clean energy industries and rare earth materials: Economic and financial issues

    International Nuclear Information System (INIS)

    Baldi, Lucia; Peri, Massimo; Vandone, Daniela

    2014-01-01

    In the last few years, rare earth materials (REM) prices have experienced a strong increase due to geopolitical and sustainability issues. Financial markets could already have factored in concerns about shortages of REM supplies into clean energy companies’ valuations. We use a multifactor market model for the period January 2006 to September 2012 to analyze the impact of REM price trends – specifically dysprosium and neodymium – on six clean energy indices (NYSE–BNEF) tracking the world's most important companies in the clean energy sector. The results show that during period of price increase, there is a negative relationships between REM price changes and the stock market performance of some clean energy indices. The European clean energy index is also negatively affected, and this effect could be relevant to policy makers, considering that Europe is implementing some relevant policy actions to support the development of the clean energy industry. - Highlights: • Clean energy is an industry with a double-digit growth market rate in the last years. • Rare earth materials are a key component in the development process of this industry. • Recently REMs’ prices have skyrocketed and the clean energy industry is in turmoil. • We analyze the effect of REMs price on the stock market performances of clean industry. • We find negative relation between REMs price increase and stock market performances

  14. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  15. Potential for energy-conserving capital equipment in UK industries

    Energy Technology Data Exchange (ETDEWEB)

    Fawkes, S D

    1986-01-01

    A summary is given of recent research into the potential for energy-conserving capital equipment in UK industries. The research had significant findings regarding the feasibility of achieving low-energy scenarios. It also stressed the importance of site specific factors in inhibiting incremental technical change such as that common in energy-conservation investments, developed a soft systems model of energy-management activities and investigated current progress and management styles in the brewing, malting, distilling and dairy sectors.

  16. Energy and Process Assessment Protocol for Industrial Buildings

    Science.gov (United States)

    2007-05-01

    condenser surfaces of fouling 6.31 Raise evaporator or lower condenser water temperature 6.2 Optimize chiller sequencing 6.33 Use two-speed or...F increase in CHW supply setpoint the chiller compression motor load will DECREASE 1.5 percent. This is a zero cost ECO. 3.5 Decrease Conden. CTW...energy assessments, universities conducting energy assessment, and Energy Service Performance Contractors) perform Industrial and Energy Optimization

  17. The energy industries reorganization in the economic globalization

    International Nuclear Information System (INIS)

    Amouroux, J.M.

    2003-01-01

    The author wonders on the energy supply evolution since thirty years and more specially the fossil fuels industries reconstruction. The energy panorama has been completely modified by a serial of processes which stopped the nuclear energy expansion and replaced the fossil fuels in the front of the energy scene. The processes are examined to evaluate the consequences of theses transformations on the model of economic development developed by the capitalism. (A.L.B)

  18. 78 FR 73589 - Energy Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric...

    Science.gov (United States)

    2013-12-06

    ... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors; Proposed... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors AGENCY... proposes energy conservation standards for a number of different groups of electric motors that DOE has not...

  19. Design and implementation of an industrial vector-controlled ...

    Indian Academy of Sciences (India)

    Jose Titus

    1 Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai ... Vector-controlled induction motor drives are quite popular in the industry in applications that ... monitored machine parameters and fault information.

  20. Competitive Intelligence in Malaysia Pharmaceutical Industry : Effectiveness of Implementation

    OpenAIRE

    Ooi, Hooi Min

    2004-01-01

    Competitive Intelligence is increasingly being considered an important, if not mandatory, piece of every business’ overall strategy and functioning, including tactical and strategic planning. The level of Competitive Intelligence activities differ by industries, and at different stage of product life cycle. It is closely linked to Knowledge Management – another major field on the way company handling information. Competitive Intelligence has often been related to industrial espionage where so...

  1. Effective energy management system using ISO 9000/14000 concept industries

    International Nuclear Information System (INIS)

    Asfaazam Kasbani; Kamaruzzaman Sopian

    2006-01-01

    Energy management is a system of managing energy utilization wisely and it includes issues such as energy efficiency (conservation), use of renewable energy, use of technology and development of energy policy. Its benefits has been well known for cost reduction and increase competitiveness and also other indirect impact such as preserving the natural resources and reduction of green-house gases. Although various strategies have been formulated by the government for the industries to adopt energy management, the result seems to be minimal and stagnant in some ways due to the various barriers which exists. Industries on the other hand, have successfully welcomed two famous management system namely the Environmental Management System ISO 14000 and the Quality Management System ISO 9000 to be implemented at their premises. This paper shows how energy management system can be effectively implemented by comparing similar generic management elements of energy management to ISO 9000/14000 standards. The seven (7) elements of energy management system discussed are top management commitment, policy establishment, energy management team, energy audit, energy efficiency projects, monitoring and training

  2. Water, job creation, industrial development and the implementation of sustainable development goals in Africa

    CSIR Research Space (South Africa)

    Simalabwi, Alex

    2017-01-01

    Full Text Available , 2017 Pretoria, South Africa Water, Jobs, Industrial development and implementation of SDGs in Africa www.gwp.org October 2017 2/19 Outline 1. Introduction: industry and its linkages with resources, other devts., society) 2. Some initiatives.....GWP Africa and AU collaboration Water, Jobs, Industrial development and implementation of SDGs in Africa www.gwp.org October 2017 8/19 Water SDG Investment and Financing Water, Climate and Development Integrated Urban Water Management...

  3. Waste energy recovery in the industry in the ECE region

    International Nuclear Information System (INIS)

    1985-01-01

    In the ECE region industry accounts for about 44 per cent of total final energy consumption, 50-55 per cent of which is ''lost''. Since the early 1970s the efficiency of energy use has improved by 5 or 6 percentage points. The potential for further cost-effective savings is estimated at 10 to 20 percentage points, depending on the type of industrial activity, kind of waste energy, availability of outlets, investment strategies, awareness of the significantly improved technical possibilities and degree of co-operation between energy specialists and production engineers, equipment manufacturers, and industrial sectors at the national and international levels. The present publication argues the case for secondary energy recovery (SER) by end-users and international co-operation in technical, economic, environmental and methodological fields. It is based on data compiled by the secretariat of the Economic Commission for Europe on 1 June 1984 and given general distribution. Refs, figs and tabs

  4. Survey on alternative energy for industrial processes in Indonesia

    International Nuclear Information System (INIS)

    Masduki, B.; Sukarsono, R.; Wardaya; Suryawan, I.

    1997-01-01

    In consequence of the national industrial development, it is necessary to supply a lot of energy. This paper presented a discussion about the option of supplying nuclear processed heat as alternative energy sources for industry especially in Java island. The electrical energy requirement can be estimated rising. The stock and the requirement of energy in Indonesia is unbalance. If the oil production rate is constant, such as that of today, it can be estimated that the oil stock would be over in 20 years. The country is trying to difertify its source of energy and reduce its dependence on oil. High Temperature Reactor (HTR) produces electric and also heat at various temperature in the form of steam and gas. Heat processes from a high temperature reactor, could be used in industry for supplying heat for coal hidroforming, gasification of coal, metal annealing, petrochemical hydrogenation, distillation, purification of petrochemicals, evaporation, water heat, etc. (author). 8 refs, 1 fig., 5 tabs

  5. Energy and materials flows in the iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  6. New Industrial Park Energy Supply (NIPES): a method of efficiently supplying energy to a community of industrial users

    International Nuclear Information System (INIS)

    1984-08-01

    The New Industrial Park Energy Supply (NIPES) concept allows the use of coal by small as well as large industrial users. The NIPES concept consists of a system of Energy Supply Stations groups of cogeneration plants) and steam transmission lines that supplies process heat and electricity to multiple existing and/or new users in an industrial park(s) setting. The Energy Supply Stations grow along with the industrial park(s) as new industries are attracted by a reliable reasonably priced energy source. The growth of the Energy Supply Stations over a period of years allows the introduction of new energy sources and technologies as they become established. This report describes the generic NIPES concept and the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. A ten-year process steam load growth scenario is developed including both new and existing industrial users. During the initial years of the growth scenario, process steam is supplied to the industrial users by several coal-fired plants. Later, as the process steam load develops, a two-unit nuclear plant is integrated into the specific NIPES system. An evaluation is also performed for a NIPES system consisting of all coal-fired plants. The specific NIPES system is compared to: (1) individual user owned oil-fired facilities for existing industrial users; and (2) individual user owned coal-fired facilities for new industrial plants. A financial analysis is performed to determine the total economic advantages associated with the NIPES system: savings in a steam costs for industrial users, potential return on investment for investors

  7. New Industrial Park Energy Supply (NIPES): a method of efficiently supplying energy to a community of industrial users

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    The New Industrial Park Energy Supply (NIPES) concept allows the use of coal by small as well as large industrial users. The NIPES concept consists of a system of Energy Supply Stations groups of cogeneration plants) and steam transmission lines that supplies process heat and electricity to multiple existing and/or new users in an industrial park(s) setting. The Energy Supply Stations grow along with the industrial park(s) as new industries are attracted by a reliable reasonably priced energy source. The growth of the Energy Supply Stations over a period of years allows the introduction of new energy sources and technologies as they become established. This report describes the generic NIPES concept and the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. A ten-year process steam load growth scenario is developed including both new and existing industrial users. During the initial years of the growth scenario, process steam is supplied to the industrial users by several coal-fired plants. Later, as the process steam load develops, a two-unit nuclear plant is integrated into the specific NIPES system. An evaluation is also performed for a NIPES system consisting of all coal-fired plants. The specific NIPES system is compared to: (1) individual user owned oil-fired facilities for existing industrial users; and (2) individual user owned coal-fired facilities for new industrial plants. A financial analysis is performed to determine the total economic advantages associated with the NIPES system: savings in a steam costs for industrial users, potential return on investment for investors.

  8. Survey of employment in the UK wind energy industry

    International Nuclear Information System (INIS)

    Jenkins, G.

    1997-01-01

    A survey of employment in the UK wind energy industry has been carried out. It related to the financial years 1993-4 and 1994-5. A questionnaire was sent to all organisations working in wind energy in the UK. Some 249 replies were received. The paper reports on the findings regarding overall employment in the industry, employment in the major sectors of the industry, jobs by type of organisation, the major employers, the location of jobs, and the overall impact on employment in the UK economy. (Author)

  9. French energy policy and gas industry

    International Nuclear Information System (INIS)

    Mandil, C.

    1994-01-01

    The 111th annual conference of the French gas association was held in Paris from the 20 to 23 September 1994. This year's conference was very well attended, beating even the record attendance levels of 1993, both at the technical sessions and the accompanying international exhibition. As tradition dictates, this November issue of Gaz d'Aujourd'hui is entirely given over to a comprehensive report on the conference. The speeches made by top gas industry executives have been fully transcribed along with the discussions which took place following these speeches. This issue also includes a report on the workshop and marketing sessions at the conference while a list of the winners of the Innovation competition, which takes place every two years when the exhibition is in Paris, provides a rundown of the competing products. (author)

  10. Do urbanization and industrialization affect energy intensity in developing countries?

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2013-01-01

    Against a backdrop of concerns about climate change, peak oil, and energy security issues, reducing energy intensity is often advocated as a way to at least partially mitigate these impacts. This study uses recently developed heterogeneous panel regression techniques like mean group estimators and common correlated effects estimators to model the impact that income, urbanization and industrialization has on energy intensity for a panel of 76 developing countries. In the long-run, a 1% increase in income reduces energy intensity by − 0.45% to − 0.35%. Long-run industrialization elasticities are in the range 0.07 to 0.12. The impact of urbanization on energy intensity is mixed. In specifications where the estimated coefficient on urbanization is statistically significant, it is slightly larger than unity. The implications of these results for energy policy are discussed. - Highlights: ► The impact of urbanization and industrialization on energy intensity is modeled. ► Use recently developed heterogeneous panel regression techniques ► The model is tested on a panel of developing countries. ► Income has a negative impact on energy intensity. ► Industrialization has a positive impact on energy intensity

  11. The energy consumption in the ceramic tile industry in Brazil

    International Nuclear Information System (INIS)

    Ciacco, Eduardo F.S.; Rocha, Jose R.; Coutinho, Aparecido R.

    2017-01-01

    The ceramic industry occupies a prominent place in the Brazilian industrial context, representing about 1.0% in the GDP composition. On the other hand, it represent about 1.9% of all energy consumed in the country, and 5.8% of the energy consumed in the Brazilian industrial sector in 2014. Regarding the power consumption by the ceramic industry, most is derived from renewable sources (firewood), followed by use of fossil fuels, mainly natural gas (NG). This study was conducted to quantify the energy consumption in the production of ceramic tiles (CT), by means of experimental data obtained directly in the industry and at every step of the manufacturing process. The step of firing and sintering has the highest energy consumption, with approximately 56% of the total energy consumed. In sequence, have the atomization steps with 30% and the drying with 14%, of total energy consumption in the production of ceramic tiles, arising from the use of NG. In addition, it showed that the production of ceramic tiles by wet process has energy consumption four times the dry production process, due to the atomization step.

  12. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  13. Ways of conserving fuel-energy resources in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Voloshchenko, N.I.; Nabokov, E.P.

    1981-01-01

    A discussion is made of the work undertaken by enterprises and organizations of the coal industry to conserve fuel-energy resources in the tenth Five-Year Plan. An examination is made of the basic organizational-technical measures that have been implemented in this sector for conserving thermal and electrical energy. A presentation is made of the results obtained from the introduction of advanced technological processes and equipment aimed at increasing productivity and reducing operational losses of coal.

  14. Subjects of the energy industry under yen appreciation; Endakaka ni okeru energy sangyo no kadai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This paper studied effects of yen appreciation on the Japanese economy and changes in energy demand when assuming the medium-term yen appreciation trend, and subjects in the energy industry. The paper also refers to the trend of the Asian material industry largely influencing the energy supply/demand, the risk hedge problem of the exchange, and international cooperation and business development of the energy industry. The energy industry is extremely high in public interest and is rice of the industry. Therefore, the development of the business has focused on the domestic market. However, such a recognition is forced to be changed by waves of the worldwide deregulation. Discussions on foreign/domestic price differences caused by high yen and a series of deregulation policy in the energy industry affected thereby may be concrete signs. The subject in the energy industry under the yen appreciation is that the energy industry will be close to common sense in general industrial circles and change to an industry which is strong and internationally competitive enough to brave the exchange variation. 101 refs., 104 figs., 31 tabs.

  15. IDENTIFY: opportunities for improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cornland, Deborah Wilson; Lazarus, Michael; Heaps, Charles; Hippel, David von; Hill, David [Stockholm Environment Inst., Stockholm (Sweden); Williams, Robert [United Nations Industrial Development Organization (UNIDO), Vienna (Austria)

    1998-09-01

    In response to a formal request by the Group of 77 and China, the United Nations Industrial Development Organization (UNIDO) initiated a study to identify opportunities to reduce the emissions of greenhouse gases from energy-intensive industries in developing countries. The study resulted in the development of the IDENTIFY software tool which can be useful for evaluating projects under consideration for investment through Activities Implemented Jointly (AIJ). IDENTIFY consists of an Analysis tool which enables the user to evaluate and compare the costs, energy requirements, and greenhouse-gas emissions associated with scenarios of specific technology, and process options and a Technology Inventory which provides information describing energy-efficient, best-available technologies and processes that can be used to abate greenhouse-gas emissions in the most energy-intensive industrial sub-sectors as well as cross-cutting measures applicable in a range of sub-sectors. (author)

  16. The forest products industry at an energy/climate crossroads

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  17. The modern trends in energy and nuclear industry of Kazakhstan

    International Nuclear Information System (INIS)

    Kenzhemurat, D.; Sergey, K.; Timur, A.

    2000-01-01

    Kazakhstan has in perspective the potential to be self-sufficient in energy resources and also to export such resources to other countries. This article describes the energy sector of Kazakhstan, the perspectives of the development the energy and nuclear industry and shows the problems and methods of its solutions. The energy sector of Kazakhstan has diversified sources of energy resources. The open market of electricity will generate the investments and direct them to the development for more efficiency use of these resources. Rehabilitation of old power stations and their modernisation will allow to cover the future needs of Kazakhstan. The nuclear industry of Kazakhstan has the infrastructure, high-qualified staff, enterprises, reactors and investments for the development. The energy policy of the Republic of Kazakhstan is directed to find the balance between different sources of energy to decrease the emissions of greenhouse gas. (author)

  18. Marine energies. Industries are hunting costs

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2015-01-01

    While a map locates various offshore hydro-kinetic energy projects at the vicinity of Scottish and French coasts, offshore wind farms (North Sea and Mediterranean sea) and also temperature differential marine plant in Martinique, this article discusses the technical and therefore economic challenges faced by the development of marine energies. They are related to the marine environment (wind, swell, currents). These strength requirements concern hydro-kinetic machines as well as floating wind turbines which must be balanced to resist to wind and swell (the Nenuphar project is evoked). Issues of performance and efficiency are present in the Nemo project in Martinique which exploits a rather small temperature differential. Other technological challenges concern the transport of this offshore production of electricity to the ground while reducing losses. For all these aspects, the article mentions the main French actors, notably DCNS, Alstom, and the start-up MPrime Innovation

  19. Solutions for energy recovery of animal waste from leather industry

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe; Pană, Constantin; Mihaescu, Lucian; Cernat, Alexandru; Negurescu, Niculae; Mocanu, Raluca; Negreanu, Gabriel

    2017-01-01

    Highlights: • Animal fats in blend with diesel fuel for energy valorification through combustion. • Animal waste from tanneries as fuel and for biogas production. • Experimental tests using animal fats as fuel for diesel engines. • Experimental tests modifying the characteristic parameters. - Abstract: Secondary products from food and leather industries are regarded as animal wastes. Conversion of these animal wastes into fuels represents an energy recovery solution not only because of their good combustion properties, but also from the viewpoint of supply stability. A tannery factory usually processes 60–70 t/month of crude leathers, resulting in 12–15 t/month of waste. Fats, which can be used as the input fuel for diesel engines (in crude state or as biodiesel), represent 10% of this animal waste, while the rest are proteins that can be used to generate biogas through anaerobic digestion. Herein, we analyse two approaches to the use of animal waste from tanneries: as fuel for diesel engines and for biogas generation for heat production. Diesel fuelling and fuelling by animal wastes are compared in terms of the engine performance and pollutant emissions. The effects of animal waste usage on the pollutant emissions level, exhaust gas temperature, indicated mean effective pressure, maximum pressure, and engine efficiency are analysed. The energy recovery technologies for animal waste, which are analysed in this work, can be easily implemented and can simultaneously solve the problem posed by animal wastes by using them as an alternative to fossil fuels. Animal fats can be considered an excellent alternative fuel for diesel engines without major constructive modifications.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  1. Potential environmental effects of energy conservation measures in northwest industries

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  2. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Science.gov (United States)

    2013-09-03

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency and..., Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence...

  3. Efficient use of energy: investment practice in industry; Effiziente Energienutzung: Investitionspraxis in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, J. [BHP - Brugger, Hanser und Partner AG, Zuerich (Switzerland); Zweiacker, J.-F. [Rapp AG Ingenieure und Planer, Biel (Switzerland); Rosch, M. [Consulting Verfahrenstechnik, Allschwil (Switzerland)

    2000-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on drying processes used in industry and possible ways of promoting investment in measures to increase the efficient use of energy. The energy consumption of dehydration and drying processes used in industry is examined and the savings potential for these processes estimated. Examples of the processes investigated are given and figures for the energy consumption for dehydration and drying processes in several different industrial sectors are quoted. The report then examines, on the one hand, the factors that hem innovations in this area and, on the other, those that promote them. Further, the report looks into which reasons are responsible for the realisation or non-realisation of technically and economically viable solutions for improving the energy-efficiency of the dehydration and drying processes.

  4. PROBLEMS OF IMPLEMENTATION 5S PRACTICES IN AN INDUSTRIAL COMPANY

    Directory of Open Access Journals (Sweden)

    Beata GALA

    2013-10-01

    Full Text Available 5S is a one of the tools of Lean Management enabling to organize workplace in an effective way. It could be implemented in all the spheres of the company. The article provides the theoretic description of Lean Management and 5S and also shows a case study based on gained experience. The author also describe the problems occured during the implementation of the 5S.

  5. Actual energy implementations and basic investigations

    International Nuclear Information System (INIS)

    Nockemann, C.; Wuestenberg, H.

    1995-01-01

    The actual implementations in guaranteeing the reliability of NDE systems applied in service inspections in nuclear power plants will be presented. The difference between the American PDI (Performance Demonstration Initiative) which is based on blind trials and the European ENIQ (European Network for Inspection Qualification) approach which is based on a mixed procedure of physical modeling, experience data and test experiments will be discussed. The ROC (Receiver Operating Characteristic) has been adapted from the signal detection theory to NDE problems at BAM to be used for basic investigations and for the validation of new exceptional NDE systems where modeling and reference to standards is not yet possible. Examples of application will be shown and critical discussed especially concerning the influence of the grading unit raster

  6. Energy analysis of 108 industrial processes. Phase 1, industrial applications study

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, B. B.; Brown, H. L.

    1979-06-01

    Extensive data are compiled for energy balances in 108 industrial processes. Specific information on unit operation, material, temperature, unrecoverable losses, along with the process flow diagram is given for each of the industries. The following industries are included: meak packing; milk; canned fruits and vegetables; baked goods; sugar refining; soybean; textiles; wood products; building materials; alkalies and chlorine; inorganic gases; pigments, chemicals; plastic materials and resins; synthetic rubbers; organic fibers; pharmaceutical preparations; organic chemicals; petroleum products; fertilizers; rubber products; glass; blast furnaces and steel mills; metals; farm machinery; motor vehicles; and photographic materials. The SIC's for each industry are identified.

  7. Nuclear dual-purpose plants for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1976-01-01

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as ten miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations

  8. Software systems for energy control in the English industry

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    Monitoring and targeting software systems have proved to be valuable tools for energy control, permitting to save five to ten percent of energy. The article reviews the systems that are presently available in England and illustrates how these systems are successfully used in practice in small (British Telecom) and middle large (Charles Wells Brewery) industrial applications. (A.S.)

  9. Facts about industrial energy conservation in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, William A.

    1979-07-01

    The story of energy conservation in the US with particular emphasis on industry is presented. Then, the energy conservation program in General Motors including organization, plant guidelines, communication and motivation techniques, successful case histories, and some concepts for future savings is described in detail. (MCW)

  10. Response by the energy industry to the Kyoto agreement

    International Nuclear Information System (INIS)

    Lynch, M.C.

    2000-01-01

    The Kyoto agreement has called for an appropriate response by the energy industry to the perceived problem of global warming. However, while governments are justify in researching low-probability energy technologies to solve uncertain problems, the private sector has non such luxury. The experience of oil crises in the '70s should be a good lesson [it

  11. Energy Supply System for Industrial Poultry Houses

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-04-01

    Full Text Available The gas engine driven carbon dioxide heat pump designed for providing the heat, cold and electricity for industrial poultry house is proposed. The scheme differs from the known by using recuperative heat exchanger installed between the exhaust air duct of poultry house and heat pump evaporator and the heat curtain installed on the air duct after the evaporator. The air coming into the poultry house after the regenerative heat exchanger is supplied to the heat pump gas cooler. The heat pump produces heat of the required parameters of the input air and water for watering of poultry, space heating, etc. Heat pump compressor is driven by gas engine (GPA, by natural gas or biogas. The part of the gas-piston engine heat is used for adjusting the optimal heat pump mode and for regeneration of the absorbent in an evaporative cooler. The proposed technical solution of the above scheme provides a higher COP of the heat pump. Installing of heat curtain does not require the use of non-freezing solution to prevent icing of the air outlet of heat pump evaporator. The latter allows producing, besides electric power and heat, still cold (with the use off the adsorption-refrigerating machine and provide drying air inlet evaporative cooler (if necessary.

  12. Strategic aspects of exploiting geothermal energy for industrial purposes

    International Nuclear Information System (INIS)

    Ludviksson, V.

    1992-01-01

    Geothermal energy is widely used in Iceland for space heating swimming pools and snow melting systems as well as for greenhouses and soil heating and aquaculture. Its contribution to the standard of living in Iceland is very substantial. The industrial applications are, however, fewer today than anticipated twenty years ago. This paper considers some of the socio-economic reasons for that. Although geothermal energy is generally a cost competitive source of energy, it is site limited and does not by itself provide sufficient economic incentive to attract manufacturing or process industries. This generally requires another, locally available production factor offering further competitive advantage to justify greenfield investments. World economic slow-downs, and structural problems in many process industries after the energy crisis of the seventies have reduced interest for investments in energy intensify industries world wide. While public sector initiative motivated by technological possibilities was instrumental for developing geothermal resources in the past, time has now come for private sector initiative, led by market interest, to identify and exploit opportunities for using geothermal energy for industrial purposes. National and local governments must, however, provide the appropriate incentives to stimulate such developments

  13. Present status and perspective of Japanese atomic energy industry

    International Nuclear Information System (INIS)

    Miura, Kenzo

    1990-01-01

    Already 35 years are going to elapse since atomic energy industry was founded in Japan, and the positive development has been carried out in the nuclear power generation mainly with light water reactors as the base energy, as the result, now both the result of electric power generation and the technology have reached the highest level in the world. These are due to the accumulation of efforts, the preponderant assignment of able men and the positive investment for the research and development of the atomic energy industry. However, since 1985, the slowdown of power reactor development, the practical use of new type power reactors such as fast breeder reactors and the establishment of nuclear fuel cycle such as uranium enrichment and fuel reprocessing have been the new situation to be dealt with. In order to properly and flexibly cope with such change of situation, the healthy development of the atomic energy industry so as to secure the market on a certain scale and develop the business with responsibility is indispensable. The outlay of electric power industry related to atomic energy, the development of atomic energy market and the sales of mining and manufacturing industries, the trend of research and development and personnel, and the perspective and subjects of hereafter are reported. (K.I.)

  14. The Role of Energy Reservoirs in Distributed Computing: Manufacturing, Implementing, and Optimizing Energy Storage in Energy-Autonomous Sensor Nodes

    Science.gov (United States)

    Cowell, Martin Andrew

    The world already hosts more internet connected devices than people, and that ratio is only increasing. These devices seamlessly integrate with peoples lives to collect rich data and give immediate feedback about complex systems from business, health care, transportation, and security. As every aspect of global economies integrate distributed computing into their industrial systems and these systems benefit from rich datasets. Managing the power demands of these distributed computers will be paramount to ensure the continued operation of these networks, and is elegantly addressed by including local energy harvesting and storage on a per-node basis. By replacing non-rechargeable batteries with energy harvesting, wireless sensor nodes will increase their lifetimes by an order of magnitude. This work investigates the coupling of high power energy storage with energy harvesting technologies to power wireless sensor nodes; with sections covering device manufacturing, system integration, and mathematical modeling. First we consider the energy storage mechanism of supercapacitors and batteries, and identify favorable characteristics in both reservoir types. We then discuss experimental methods used to manufacture high power supercapacitors in our labs. We go on to detail the integration of our fabricated devices with collaborating labs to create functional sensor node demonstrations. With the practical knowledge gained through in-lab manufacturing and system integration, we build mathematical models to aid in device and system design. First, we model the mechanism of energy storage in porous graphene supercapacitors to aid in component architecture optimization. We then model the operation of entire sensor nodes for the purpose of optimally sizing the energy harvesting and energy reservoir components. In consideration of deploying these sensor nodes in real-world environments, we model the operation of our energy harvesting and power management systems subject to

  15. THE COSTS OF THE ELECTRICAL ENERGY IN THE ALUMINIUM INDUSTRY

    Directory of Open Access Journals (Sweden)

    Cilianu Marian

    2012-07-01

    Full Text Available The economic crisis has given the opportunity to reconsider the use of resources, so the subject of competitive advantage has become actual. In the aluminium industry the cost of electrical energy is critical not only for competitive reasons but for the mere existence and performance of numerous production facilities . Several ways of resisting the pressure of high energy costs have been experimented the most promising being those based on different forms of public-private partnership/co-operation. In many countries the big industrial producers benefit from a special treatment concerning the energy acquisition and are supported by the government in order to remain competitive.

  16. Energy efficiency analysis and implementation of AES on an FPGA

    Science.gov (United States)

    Kenney, David

    The Advanced Encryption Standard (AES) was developed by Joan Daemen and Vincent Rjimen and endorsed by the National Institute of Standards and Technology in 2001. It was designed to replace the aging Data Encryption Standard (DES) and be useful for a wide range of applications with varying throughput, area, power dissipation and energy consumption requirements. Field Programmable Gate Arrays (FPGAs) are flexible and reconfigurable integrated circuits that are useful for many different applications including the implementation of AES. Though they are highly flexible, FPGAs are often less efficient than Application Specific Integrated Circuits (ASICs); they tend to operate slower, take up more space and dissipate more power. There have been many FPGA AES implementations that focus on obtaining high throughput or low area usage, but very little research done in the area of low power or energy efficient FPGA based AES; in fact, it is rare for estimates on power dissipation to be made at all. This thesis presents a methodology to evaluate the energy efficiency of FPGA based AES designs and proposes a novel FPGA AES implementation which is highly flexible and energy efficient. The proposed methodology is implemented as part of a novel scripting tool, the AES Energy Analyzer, which is able to fully characterize the power dissipation and energy efficiency of FPGA based AES designs. Additionally, this thesis introduces a new FPGA power reduction technique called Opportunistic Combinational Operand Gating (OCOG) which is used in the proposed energy efficient implementation. The AES Energy Analyzer was able to estimate the power dissipation and energy efficiency of the proposed AES design during its most commonly performed operations. It was found that the proposed implementation consumes less energy per operation than any previous FPGA based AES implementations that included power estimations. Finally, the use of Opportunistic Combinational Operand Gating on an AES cipher

  17. Sustainable Energy Landscape: Implementing Energy Transition in the Physical Realm

    NARCIS (Netherlands)

    Stremke, S.

    2015-01-01

    Since the beginning of the new millennium, the concept of “energy landscape” is being discussed by academia from the environmental design domain while more and more practitioners have been contributing to sustainable energy transition. Yet, there remains some ambiguity as to what exactly is meant

  18. A new modular procedure for industrial plant simulations and its reliable implementation

    International Nuclear Information System (INIS)

    Carcasci, C.; Marini, L.; Morini, B.; Porcelli, M.

    2016-01-01

    Modeling of industrial plants, and especially energy systems, has become increasingly important in industrial engineering and the need for accurate information on their behavior has grown along with the complexity of the industrial processes. Consequently, accurate and flexible simulation tools became essential yielding the development of modular codes. The aim of this work is to propose a new modular mathematical modeling for industrial plant simulation and its reliable numerical implementation. Regardless of their layout, a large class of plant's configurations is modeled by a library of elementary parts; then the physical properties, compositions of the working fluid, and plant's performance are estimated. Each plant component is represented by equations modeling fundamental mechanical and thermodynamic laws and giving rise to a system of algebraic nonlinear equations; remarkably, suitable restrictions on the variables of such nonlinear equations are imposed to guarantee solutions of physical meaning. The proposed numerical procedure combines an outer iterative process which refines plants characteristic parameters and an inner one which solves the arising nonlinear systems and consists of a trust-region solver for bound-constrained nonlinear equalities. The new procedure has been validated performing simulations against an existing modular tool on two compression train arrangements with both series and parallel-mounted compressors. - Highlights: • A numerical modular tool for industrial plants simulation is presented. • Mathematical modeling is thoroughly described. • Solution of the nonlinear system is performed by a trust-region Gauss–Newton solver. • A detailed explanation of the optimization solver named TRESNEI is provided. • Code flexibility and robustness are investigated through numerical simulations.

  19. Nuclear industry and production of energy: arguments for a discussion

    International Nuclear Information System (INIS)

    Sorin, F.

    2004-01-01

    This article reviews the advantages of nuclear energy (nuclear energy increases the energy autonomy of France, provides cheap energy, does not generate greenhouse effect gases and concerns an exporting high-tech industry that generates qualified jobs and added-value to French industry) and highlights its ability to fill the gap before renewable energies are efficient and reliable to produce large amounts of electric power and to face the present and future challenges like the progressive running dry of fossil energy sources or the compliance with the Kyoto agreement. The 2 controversial issues: the consequences of a terrorist attack on a nuclear facility and what to do with radioactive wastes are for the first one exaggerated in public opinion (some figures and facts concerning the resistance of the concrete containment that encloses a PWR type reactor are given in this article) and for the second the disposal in deep underground storage sites appears to be a solution. (A.C.)

  20. Economic analysis of waste-to-energy industry in China.

    Science.gov (United States)

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Energy conservation and cost benefits in the dairy processing industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  2. Research on energy efficiency evaluation based on indicators for industry sectors in China

    International Nuclear Information System (INIS)

    Song, Chenxi; Li, Mingjia; Wen, Zhexi; He, Ya-Ling; Tao, Wen-Quan; Li, Yangzhe; Wei, Xiangyang; Yin, Xiaolan; Huang, Xing

    2014-01-01

    Highlights: • We try to evaluate energy efficiency of industry at the plant-level. • The Hierarchical–Indicator Comparison (HIC) method is proposed. • The HIC method can be implemented based on indicators at multi-levels. • The purified terephthalic acid (PTA) industry is used to illustrate the HIC method. • The construction procedure of indicators and the way to use them are presented. - Abstract: The so-called Hierarchical–Indicator Comparison (HIC) method is introduced in this paper. It mainly serves for industrial energy conservation programs in China. A chemical industry named purified terephthalic acid (PTA) is used to outline this method. Two key points of the HIC method are the construction of energy efficiency indicators (EEI) system and the way to utilize indicators appropriately. After a brief review of EE evaluation methods in literature, the construction procedure of energy efficiency indicators (EEI) system for PTA industry is presented firstly. How to correct reference values for indicators according to non-comparable factors is discussed. Then, how to implement the HIC method based on EEI system is presented. Every indicator has its own advantages and disadvantages. Disadvantages of an indicator can be conquered by other indicators. With multiple indicators used together, more objective EE evaluation result can be obtained. Finally, some proposals for further work of this method are also presented

  3. ENVIRONMENTAL PROTECTION SUSTAINABILITY STRATEGIC FACTOR IN THE ENERGY INDUSTRY

    Directory of Open Access Journals (Sweden)

    CÎRNU Doru

    2015-06-01

    Full Text Available We propose to conceive an environmental strategy intended to integrate harmoniously Gorj energy industry with principles of sustainable development. The sustainable development complies trinomial: ecological-economic-social. In our view, sustainable development, requires clean water and unpolluted air, land consolidated rejuvenated forests, biodiversity and protected nature reserves, churches and monasteries secular admired by visitors, welcoming places entered in the natural and cultural harmony. It is also necessary to reduce the pressure generated by socio-economic factors on the environment and the principles of sustainable development. The quality of life in urban and rural areas show extreme differences compared to European standards. For efficiency, we addressed the modeling method by designing a model valid for all thermoelectric power plants based on fossil fuels, allowing simultaneously, so adding value and environmental protection. The general objective that we propose for the environment, natural resources and patrimony, is related to the prevention of climate change by limiting the emission of toxic gases and their adverse effects on the environment The achievement of strategic objectives and implementation of proposals submitted, we consider that would have a double impact, on the one side, to protect the environment and the quality of life and, on the other side a positive influence on economic and social level.

  4. Energy Conservation Projects to Benefit the Railroad Industry

    Energy Technology Data Exchange (ETDEWEB)

    Clifford Mirman; Promod Vohra

    2009-12-31

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction

  5. Energy Efficiency Practices: Assessment of Ohrid Hotel Industry

    OpenAIRE

    Petrevska, Biljana; Cingoski, Vlatko

    2016-01-01

    This paper provides information on the extent how the hotel industry in Ohrid meets the energy efficiency practices in terms of the current level of involvement. By undertaking an online survey in three, four and five-star hotels, the study assesses the attitudes and willingness of hotel managers concerning applying energy efficiency and environmental protection concepts and practices. Moreover, it investigates various determinants of energy consumption, like: solid waste management, resource...

  6. Ingerop - Energy activities and industry - General brochure 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Ingerop is a leading player in France and a major player internationally in engineering and consulting in sustainable mobility, energy transition and living environment and in major issues of today and tomorrow. The industrial engineering provided by Ingerop in France and for export, provides a response to customer expectations, integrating more and more the theme of sustainable development. Faced with a growing demand for electricity both in the world and in Europe Ingerop made the energy sector its priority development. The controlled use of energy (energy efficiency, renewable energy) is an ongoing challenge for Ingerop. The group continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad until the decommissioning phases in France and abroad. Ingerop continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad to decommissioning in France and abroad. Ingerop strengthens its expertise in new energy with new projects in biomass boilers and heat networks. The group has profound geothermal skills in heating networks or fatal energy recovery, permitting them to intervene with local authorities such as farmers, from feasibility studies to commissioning and assisting project management with technical studies. The expertise acquired by the group Ingerop in the 1990's, through the construction of fifty data centers on behalf of SFR, enables a significant experience going back twenty years. Furthermore, development continued on the design of more energy-efficient projects and ensuring increasingly high reliability. This brochure presents Ingerop's skills and main references in its four domains of intervention: energy industry (operation in nuclear environment, conventional power plants, new energy technologies, data centers), other industries, infrastructures, and building industry

  7. The patterns of energy use in the chemical industry

    International Nuclear Information System (INIS)

    Steinmeyer, D.

    1997-01-01

    This paper was sculpted from a report commissioned by the Department of Energy to assess the impact of proposed energy taxes on energy use by the US chemical industry. The discussion of energy taxes is eliminated here, however the broader discussion of the impact of energy prices on energy use is retained. The US chemical industry is currently the world leader by many important measures, such as technology contributions and employment. This leadership traces to a slate of advantages: science base, low cost energy, large market and economic/political stability. The focus of this paper is on the patterns of energy use: (1) There is an optimum economic trade of capital against energy. Industry optimizes this trade to lower its costs. For the large volume chemicals which dominate energy use, this tradable capital cost exceeds energy cost by a factor of 1.5. (2) The capital/energy trade follows clearly defined rules. The basic rules are rooted in thermodynamics. (3) An increase in energy prices would result in a drop in process energy use: a doubling of process energy prices would cut process energy use by approximately 1/3 but the capital cost would be in excess of $100 billion if driven into a short time span, such as 5 years. This is because of the long useful lifetime of capital facilities. (4) Process energy is about half the total energy use, with feedstock being the balance. Feedstock use is much less sensitive to price. Restated, the doubling of energy price will result in roughly a 1/6 reduction in total energy use. (5) Technology progress will also reduce energy use. This reduction is distinct from the impact of energy price. Technological progress will be at least as important in reducing energy use as will energy pricing, for the foreseeable future. (6) Technology progress can be sorted into two themes: (a) Learning curve improvements, which are almost inherent in the production process and the nature of competition; and (b) Breakthroughs that happen in a

  8. Implementing Workload Postponing In Cloudsim to Maximize Renewable Energy Utilization

    OpenAIRE

    Enida Sheme; Neki Frashëri

    2016-01-01

    Green datacenters has become a major research area among researchers in academy and industry. One of the recent approaches getting higher attention is supplying datacenters with renewable sources of energy, leading to cleaner and more sustainable datacenters. However, this path poses new challenges. The main problem with existing renewable energy technologies is high variability, which means high fluctuation of available energy during different time periods on a day, month or year...

  9. Barriers to and drivers for energy efficiency in the Swedish foundry industry

    International Nuclear Information System (INIS)

    Rohdin, Patrik; Thollander, Patrik; Solding, Petter

    2007-01-01

    Despite the need for increased industrial energy efficiency, studies indicate that cost-efficient energy conservation measures are not always implemented, explained by the existence of barriers to energy efficiency. This paper investigates the existence of different barriers to and driving forces for the implementation of energy efficiency measures in the energy intensive Swedish foundry industry. The overall results from a questionnaire show that limited access to capital constitutes by far the largest barrier to energy efficiency according to the respondents. A comparison between group-owned and privately owned foundries shows that, except for limited access to capital, they face different high-ranked barriers. While barriers within group owned companies are more related to organizational problems, barriers within private foundries are more related to information problems. This study also found that energy consultants or other actors working with energy issues in foundries are of major importance in overcoming the largest barriers, as the foundries consider them trustworthy. They may thus help the foundries overcome organizational problems such as lack of sub-metering and lack of budget funds by quantifying potential energy efficiency investments. The two, by far, most important drivers were found to be people with real ambition and long-term energy strategies

  10. Why do manufacturing industries invest in energy R&D?

    OpenAIRE

    Costa, M. Teresa (Maria Teresa), 1951-; Garcia-Quevedo, Jose

    2017-01-01

    Energy R&D can have major social and economic impacts and is a critical factor in addressing the challenges presented by climate change mitigation policies. As well as the energy utilities themselves, firms in other sectors also invest in energy R&D; however, while various studies have examined the determinants of R&D in the former, there are no analyses of energy R&D drivers in other industries. This paper seeks to fill this gap by examining the determinants of investment in energy R&D in no...

  11. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  12. Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models

    NARCIS (Netherlands)

    Edelenbosch, O. Y.|info:eu-repo/dai/nl/412493373; Kermeli, K.|info:eu-repo/dai/nl/411260553; Crijns-Graus, W.|info:eu-repo/dai/nl/308005015; Worrell, E.|info:eu-repo/dai/nl/106856715; Bibas, R.; Fais, B.; Fujimori, S.; Kyle, P.; Sano, F.; van Vuuren, Detlef|info:eu-repo/dai/nl/11522016X

    2017-01-01

    The industry sector is a major energy consumer and GHG emitter. Effective climate change mitigation strategies will require a significant reduction of industrial emissions. To better understand the variations in the projected industrial pathways for both baseline and mitigation scenarios, we compare

  13. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  14. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  15. IMPLEMENTATION OF PROPERTY MANAGEMENT SYSTEM IN HOTEL INDUSTRY

    OpenAIRE

    Krželj-Čolović, Zorica; Cerović, Zdenko

    2013-01-01

    Information and Communication Technologies (ICT) influences the development tourism on globally, and its development has changed the practice of business. Any reference ICT in the hotel industry necessarily begins the concept of Property Management System (PMS). PMS as an essential component for hotel management provides tools as are necessary hotel staff in performing daily operations of the reservation, the accommodation capacities management, accounting, etc. This software supports all bas...

  16. Implementation of Risk Management in Malaysian Construction Industry: Case Studies

    OpenAIRE

    Abdul-Rahman, Hamzah; Wang, Chen; Sheik Mohamad, Farhanim

    2015-01-01

    Construction industries are exposed to wide array of risks, such as financial, design, and contractual ones, which might have a direct impact on their performance toward achieving the desired objectives. Risk Management is a proactive decision-making process used to minimize and manage the risks in the most efficient and appropriate manner. However, most construction firms in Malaysia do not apply formal risk management in their projects. Thus, this study aims to identify the actual process o...

  17. Bottlenecks in Software Defect Prediction Implementation in Industrial Projects

    OpenAIRE

    Hryszko Jarosław; Madeyski Lech

    2015-01-01

    Case studies focused on software defect prediction in real, industrial software development projects are extremely rare. We report on dedicated R&D project established in cooperation between Wroclaw University of Technology and one of the leading automotive software development companies to research possibilities of introduction of software defect prediction using an open source, extensible software measurement and defect prediction framework called DePress (Defect Prediction in Software Syst...

  18. Tobacco industry's ITGA fights FCTC implementation in the Uruguay negotiations.

    Science.gov (United States)

    Assunta, Mary

    2012-11-01

    To illustrate how the tobacco industry' front group, the International Tobacco Growers Association (ITGA), mobilised tobacco farmers to influence the fourth session of the Conference of the Parties (COP4) negotiations and defeat the adoption of Framework Convention on Tobacco Control Articles 9 and 10 Guidelines and Articles 17 and 18 progress report. A review of COP4 documents on Articles 9, 10, 17 and 18 was triangulated with relevant information from tobacco industry reports, websites of British American Tobacco, Philip Morris International and ITGA, presentations by tobacco industry executives and internal industry documents from the Legacy Tobacco Documents Library website. Philip Morris International and British American Tobacco rejected Articles 9 and 10 draft Guidelines claiming that banning ingredients in cigarettes will render burley leaf less commercially viable making tobacco growers in many countries suffer economic consequences. They claimed the terms 'attractiveness' and 'palatability' are not appropriate regulatory standards. The ITGA launched a global campaign to mobilise farmers to reject the draft Guidelines at COP4 in Uruguay. Tobacco producers, Brazil, Philippines, Tanzania, Zambia, Malawi and Zimbabwe, sent large delegations to COP4 and participated actively in the negotiation on the draft Guidelines. Partial Guidelines on Articles 9 and 10 on product regulation and disclosure were adopted. COP4's work on Article 17 provides guidance on viable alternatives, but the ITGA is opposed to this and continues fight crop substitution. Despite ITGA's international campaign to thwart the Guidelines on Articles 9 and 10 and a strong representation from tobacco-growing countries at COP4, the outcome after intense negotiations was the adoption of Partial Guidelines and work on Articles 17 and 18 to proceed.

  19. Identification of Lean Implementation Hurdles in Indian Industries

    OpenAIRE

    Bhim Singh

    2016-01-01

    Due to increased pressure from global competitors, manufacturing organizations are switching over to lean philosophies from traditional mass production. Lean manufacturing is a manufacturing philosophy which focuses on elimination of various types of wastes and creates maximum value for the end customers. Lean thinking aims to produce high quality products and services at the lowest possible cost with maximum customer responsiveness. Indian Industry is facing lot of problems in this transform...

  20. The need for a comprehensive energy management information system for industries

    Directory of Open Access Journals (Sweden)

    Goosen, P

    2016-11-01

    Full Text Available Electricity costs in South Africa are increasing rapidly, and the funding hurdle rates for energy conservation incentives are decreasing. Therefore, with rising international competition and increasing operational costs, marginal industries need to focus on energy management strategies where larger savings can be achieved with lower capital expenditure. This paper sketches the need for a comprehensive energy management information system (EMIS. Common industrial energy management pitfalls are identified and energy conservation incentives are outlined. New focus points that improve client awareness and in turn improve the sustainability of energy management interventions are also highlighted. However, benefitting from energy incentives is becoming more complex. Therefore, many clients do not benefit from these incentives unless specialised Energy Service Companies (ESCos are employed. ESCos, however, require large amounts of data to manage clients’ energy effectively. Herein lies the need for a comprehensive EMIS that aids ESCos and their clients with the energy management process. An EMIS was developed and implemented for several industries in South Africa. Data is automatically collected, processed, analysed, and presented on a daily basis. A case study investigates the exorbitant amounts of data and reports that are managed automatically, which further highlights the need for a comprehensive EMIS.

  1. BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy,Patrick; Zechiel, Susanne

    2005-10-15

    Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool for the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  3. Industrial energy thrift scheme. Energy use in the soap and detergents industry. Report No. 10

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    An examination was made of how energy is used in the manufacture of soap, detergents, and candles and in the processes of fat splitting and distillation. Twenty-four factories were visited and data are compiled on total amount of energy used, possible energy savings, total amounts of energy purchased, estimated potential savings in space heating energy, and energy savings good housekeeping could yield. (MCW)

  4. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  5. Assessment of a small pressurized water reactor for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.; Fuller, L.C.; Myers, M.L.

    1977-01-01

    An evaluation of several recent ERDA/ORNL sponsored studies on the application of a small, 365 MW(t) pressurized water reactor for industrial energy is presented. Preliminary studies have investigated technical and reliability requirements; costs for nuclear and fossil based steam were compared, including consideration of economic inflation and financing methods. For base-load industrial steam production, small reactors appear economically attractive relative to coal fired boilers that use coal priced at $30/ton

  6. Economic and ecological advantages of innovative project implementation at woodworking industry

    Directory of Open Access Journals (Sweden)

    Irina N. Yepifanova

    2015-03-01

    Full Text Available Orientation to innovative development involves the strategic focus onto manufacturing high-tech products in the priority sectors of the economy. Implementation of innovative projects aimed at reducing the energy component in overall costs of enterprise is demanded and necessary. The aim of the research is to prove the economic and ecological benefits of using at domestic wood industry enterprises the wood pellets as an alternative biofuel. The main economic indicators of the project for the pellets production presented indicate the expenses-to-profits ratio; studied is the cost of season heating in Ukraine of 1000 m2 with both traditional and alternative fuels. Noted is that the use of pellets as ecological biofuel is more economical in comparison with electricity and gas. Exposed are the economic benefits of the pellet boiler heating by different fuels.

  7. Energy Transition for Industry: India and the Global Context

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This publication further develops the analysis presented in the India chapter of Energy Technology Perspectives 2010 and provides insights on the implications of achieving deep energy and CO2 emission cuts in the industrial sector both for India and globally. It investigates the least-cost combination of options that can significantly reduce energy and CO2 emissions in India's industrial sector, while enabling the Indian economy to continue to grow and alleviate energy poverty. For India to play its part in helping to realise deep cuts in global CO2 emissions by the middle of the 21st century, it will need to achieve rapid economic development over the next 40 years with only a very small increase in emissions. Currently there is no precedent for such a low-CO2 development path. The challenge for India will be to achieve strong economic growth while improving energy security, but without locking in high emissions.

  8. Disaggregate energy consumption and industrial output in the United States

    International Nuclear Information System (INIS)

    Ewing, Bradley T.; Sari, Ramazan; Soytas, Ugur

    2007-01-01

    This paper investigates the effect of disaggregate energy consumption on industrial output in the United States. Most of the related research utilizes aggregate data which may not indicate the relative strength or explanatory power of various energy inputs on output. We use monthly data and employ the generalized variance decomposition approach to assess the relative impacts of energy and employment on real output. Our results suggest that unexpected shocks to coal, natural gas and fossil fuel energy sources have the highest impacts on the variation of output, while several renewable sources exhibit considerable explanatory power as well. However, none of the energy sources explain more of the forecast error variance of industrial output than employment

  9. Effect of material flows on energy intensity in process industries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-09-15

    Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)

  10. Cyber Attacks: A New Threat to the Energy Industry

    International Nuclear Information System (INIS)

    Desarnaud, Gabrielle

    2016-01-01

    The Network and Information Security (NIS) Directive has been adopted on July 6, 2016 by the European Parliament, three years after the initial proposal by the European Commission. It paves the way for a much needed common cyber security strategy within the EU. This Edito explains the reasons why the energy industry is particularly vulnerable to cyber- attacks, and what tools this new directive brings about to protect European critical infrastructures. In about two decades, the energy industry has been deeply transformed by the digital revolution, which penetrated companies' commercial, administrative and financial branches, but also their industrial systems. From the optimization of electric grids to the precision of oil drilling, information and communication technologies (ICT) are now essential to every stage of energy production, transport and distribution processes. Data mining and analysis are increasingly considered as the energy sector's new 'black gold', and generate new activities just like the platform Predix, designed by General Electric to help energy companies (among others) collect and analyze industrial data. This silent revolution offers countless economic opportunities and paves the way for a better resource distribution and use. But it also puts physical energy infrastructures at risk

  11. Energy management in wooden industry; Gestao energetica em industrias madeireiras

    Energy Technology Data Exchange (ETDEWEB)

    Cagnon, Jose Angelo; Valarelli, Ivaldo de Domenico; Rodrigues, Ricardo Martini [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica], Emails: jacagnon@feb.unesp.br, ivaldo@feb.unesp.br, martini@feb.unesp.br

    2006-07-01

    The objective of this work is the use of a methodology developed for the evaluation of the energy performance in wooden plants, aiming the application of a energy management program, for products and processes improvement, observing a reliable technical and economic implementation. (author)

  12. Industrial energy demand - a micro panel data analysis. Phase 1

    International Nuclear Information System (INIS)

    Bue Bjoerner, T.; Togeby, M.; Christensen, J.

    1998-10-01

    The matching of several existing databases - covering seven different years, two different databases from Statistics Denmark and various information from DEA - has been a challenging task. Despite a relatively automatic procedure the result is promising. More than 2,700 companies can be followed for more than three years and this means that the majority (65-85%) of the energy consumption in Danish industry is included. The number of observations that can be used in the analysis is better than expected. The constructed database has a large number of variables. It includes, e.g. energy consumption of eight major energy sources (and several minor fuels), individual prices for electricity and district heating, information about production value, value added, investments, company size and industrial sector. To this we have added general energy prices for other fuels, information on taxes, subsidies given to individual companies and energy agreements between authorities and individual companies. The combination of micro level, the many variables, the panel structure and the number of observations make the database unique compared to previous data (Danish as well as international) used to analyse industrial energy consumption. The database can be used for a variety of analyses. In the next section we will present simple models that can be used in the analyses of the data. These are single equation models of the energy consumption. In the future more general models can be applied, e.g. with representation of energy, labour and capital. (au)

  13. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  14. Environmental and Energy Aspects of Construction Industry and Green Buildings

    Science.gov (United States)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.

    2017-04-01

    Green building is an important component of sustainable real estate market development, and one of the reasons is that the construction industry consumes a high amount of resources. Energy consumption of construction industry results in greenhouse gas emissions, so green buildings, energy systems, building technologies and other aspects play an important role in sustainable development of real estate market, construction and environmental development. The aim of the research is to analyse environmental aspects of sustainable real estate market development, focusing on importance of green buildings at the industry level and related energy aspects. Literature review, historical, statistical data analysis and logical access methods have been used in the research. The conducted research resulted in high environmental rationale and importance of environment-friendly buildings, and there are many green building benefits during the building life cycle. Future research direction is environmental information process and its models.

  15. A waste to energy plant for an industrial districts

    International Nuclear Information System (INIS)

    Floreani, M.; Meneghetti, A.; Nardin, G.; Rocco, A.

    2001-01-01

    Industrial districts show characteristics that can be exploited by developing plant solutions studied for their special configuration and not simply extended from single unit models. In the paper a waste-to-energy plant for the chair industrial district in Friuli Venezia Giulia (North Eastern Italy) is described. It has been designed directly involving the University of Udine and can be considered an example of how technology innovation can be promoted by universities, especially in the case of small firms which have limited R and D resources. It is shown how industrial refuse becomes a chance of competitive advantage for the whole district due to its energy recovery in a plant unique for the type of waste processed. Input, combustion, energy recovery and cleaning sections are described in details, underlining innovative approaches and solutions [it

  16. Energy from wastes and the private waste contracting industry

    International Nuclear Information System (INIS)

    Burnett, J.S.

    1993-01-01

    The focus of this ongoing work is the utilisation of general non hazardous industrial and commercial waste as an energy or fuel source. Whereas much of the existing experience in energy from waste (EFW) is related to municipal solid wastes (MSW), there is very little direct experience with these other waste streams and the shortage of reliable information in this field is notoriously lacking. It is important to have a good understanding of the private waste contracting industry (pwci) in order to establish the conditions under which energy from waste technologies may play an economically and technically feasible role within that industry's development. The Non Fossil Fuel Obligation (NFFO) has encouraged entrepreneurial interest through premium payments for electricity generated from renewable sources. (author)

  17. Assessing energy business cases implemented in the North Sea Region and strategy recommendations

    International Nuclear Information System (INIS)

    Xu, Bing; Nayak, Amar; Gray, David; Ouenniche, Jamal

    2016-01-01

    Highlights: • Propose an integrated MCDA-based framework to benchmark DSM energy business cases. • Address interests from various stakeholders, different forms of data, both fuzzy and crisp relations. • Contract optimisation and offering reserve capacity strategies works well. • Lack of strong incentives for firms to implement energy solutions on a larger scale. • Need to design attractive incentive programmes to attract more industry engagement. - Abstract: e-harbours is a unique European project that was set out to identify viable energy business cases on the exploitation of energy flexibility, which optimise their operations to match energy demand and supply while taking account of the additional volatility in supply caused by renewable energy sources, improve energy efficiency, and reduce dependence on fossil fuels. In this paper, we propose an integrated multi-criteria decision analysis based framework to assess the relative performance of 21 energy business cases, which implemented different demand-side management strategies. Our proposed methodology has the ability to address complex problems involving multiple conflicting interests from various stakeholders, different forms of data, and different fuzzy and crisp relations. We find that business cases based on contract optimisation and offering reserve capacity were ranked relatively high, while those based on trading on the wholesale market or hybrid approaches fared less well. Despite finding viable pilot business cases, e-harbours found that there was little enthusiasm among industrial partners to scale up the pilots. Consequently, EU governments should consider offering attractive incentive programmes for industry engagement in achieving their objectives in reducing greenhouse gas emissions, improving energy supply security, diversifying energy supplies, and improving Europe’s industrial competitiveness.

  18. Demands for energy policy by industry and the economy

    International Nuclear Information System (INIS)

    Thumann, J.R.

    2007-01-01

    'The Use of Nuclear Power for Peaceful Purposes' is a key topic in energy policy which produces a split of opinions in Germany, and which the policy of the Grand Coalition seeks to bypass. The Federation of German Industries (BDI) wants to achieve a sensible way of handling this source of energy because, after all, we are facing the challenge of having to secure economic development and prosperity and, at the same time, reduce global CO 2 emissions. If this is to be achieved, industry and politics together must build a bridge into a future with less CO 2 . That bridge would be supported on 4 pillars: - a global strategy of CO 2 reduction, - energy efficiency, - a broad energy mix, - energy research and development. In these efforts, industry and the BDI consider nuclear power an indispensable part of a viable climate and energy policy. Next to lignite, nuclear power offers electricity generation at the lowest cost, and promotes climate protection through CO 2 -free generation. As far as energy efficiency and a broad energy mix are concerned, the potentials for technical development play an important role. This is an area in which German industry can develop future markets for itself by being a leader in technology. Energy research should advance the development of existing technologies and open up new options. In this way, energy research contributes to high technologies in Germany. For nuclear power, it must be ensured that German scientists are able to participate in promising developments of new reactors in the same way in which this is the case in the development and construction of ITER, the international fusion reactor, in France. (orig.)

  19. Implementation of Business Intelligence on Banking, Retail, and Educational Industry

    OpenAIRE

    Sundjaja, Arta Moro

    2013-01-01

    Information technology is useful to automate business process involving considerable data transaction in the daily basis. Currently, companies have to tackle large data transaction which is difficult to be handled manually. It is very difficult for a person to manually extract useful information from a large data set despite of the fact that the information may be useful in decision-making process. This article studied and explored the implementation of business intelligence in banking, retai...

  20. REGULATORY FUNDAMENTALS FOR IMPLEMENTATION OF INFORMATION TECHNOLOGY PROJECTS IN INDUSTRY

    Directory of Open Access Journals (Sweden)

    L. V. Gubich

    2016-01-01

    Full Text Available The article provides an overview of the existing regulatory basis for the development of IIST. The features of IT projects management and a brief description of methodological recommendations on implementation of IT projects of the State scientific and technical Program «Electronic enterprise resource planning (CALS-ERP-technology» for 2011–2015 are considered.

  1. FSSC 22000 Packaging Implementation: a Plastics Industry Research

    OpenAIRE

    Cantanhede, Vanessa; Pereira, Karen Signori; Barreto, Daniel Weingart

    2018-01-01

    Abstract This paper presents the outcomes of an exploratory research carried out in companies, which are located in Brazil. They are FSSC-22000-certified food plastic packaging manufacturers. In order to identify the key aspects of the implementation process and certification, a questionnaire was developed and sent to twenty certified organizations. Out of them, eleven of which participating companies responded in a collaborative way. Based on the data obtained, improving competitiveness and...

  2. Implementation of the resource recovery concept in the biotech industry

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Mansouri, Seyed Soheil; S.B.A. Udugama, Isuru

    The concept of circular economy is attracting significant attention in modern biotech industry. Downstream processing plants are usually focused on the removal of impurities instead of their recovery in the form of value-added products for additional revenues. For example, carboxylic acids......, carbohydrates, proteins, lipids, inorganic ions and water itself are amongst various resources that are found in wastewater streams coming from bio-based production processes. Such compounds have a high value at the global market and could potentially be used as raw materials for the manufacturing feed and food...

  3. Implementation of voluntary agreements for energy efficiency in China

    International Nuclear Information System (INIS)

    Hu Yuan

    2007-01-01

    Low-energy efficiency and environmental pollution have long been taken as key problems of Chinese industry, although a number of command-and-control and economic instruments have been adopted in the last few decades. In this paper, policy and legislation development for voluntary agreements were summarized. The voluntary agreements pilot project in two iron and steel companies in Shandong Province as well as other cases were analyzed. In order to identify the existing problems in Chinese cases, comparison was made between China and industrialized countries in the practices of energy efficiency voluntary agreements. Based on the analysis, detained recommendations, including the use of supporting policies for voluntary agreements, were raised. It is expected that voluntary agreements could play a more important role in energy efficiency improvement of Chinese industry

  4. Space industries and energy. Uchu sangyo to energy

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, K [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1991-09-05

    The following items are described with the problem of assuring energy required in space as the main subject: (1) Supplying energy for transportation in the space has no other way but to depent on combustion of propulsion chemicals, for which liquefied hydrogen and liquefied oxygen preserved in the space would be most suitable. Energy required for spatial position adjustment of a flying object itself, life maintenance and substance manufacturing in the space would be supplied from electricity. (2) To summarize, satisfying the energy requirement in the space would require availability of electricity, hydrogen and oxygen. Electricity could be supplied from photovoltaic generation, but meeting an aggregate power requirement at a certain moment will require an auxiliary battery, for which again hydrogen and oxygen fuel cells would be used. A conception is proposed for the hydrogen and oxygen supply base in the space, that a plant will be built to manufacture hydrogen and oxygen from water transported from the earth using the solar heat. 2 figs.

  5. The current state of the California biomass energy industry

    International Nuclear Information System (INIS)

    Morris, G.P.

    1994-01-01

    During the decade of the 1980s the California biomass energy industry grew from a few isolated facilities located mostly at pulp mills into the largest biomass energy industry in the world. Currently, more than fifty biomass powered electricity generating facilities provide the state with some 850 Megawatts (MW) of generating capacity, most of it interconnected to the state's electric utility systems. Each year, more than ten million tons of wood and agricultural wastes in the state are converted into fuel, rather than being disposed of using conventional, environmentally costly methods like open burning and landfill burial. As the 1980s began, the California biomass energy industry was in a nascent state. Optimism was blooming within the wood-products and agricultural sectors of California, who foresaw an opportunity to turn costly wastes into profits. At the same time, the independent energy industry itself was being launched. Interest in biomass energy development was spreading to the engineering and construction industries and the financial community as well. A great variety of firms and individuals were engaged in the development of biomass power plants and biomass fuel sources. The second half of the 1980s saw the fruits of the developmental activity that began in the first half of the decade. Biomass energy facilities were entering construction and coming on-line in increasing numbers, and the demand for biomass fuels was increasing in step. As the decade was coming to an end, biomass fuel supplies were hard put to meet the demand, yet a huge number of new facilities entered operation in 1990. This extreme growth spurt of new generating capacity caused a fuel crisis and a shake-out in the industry just as it was entering full-scale operation. The Crisis of Success had been reached. More recently an equilibrium has been achieved in which fuel prices are at levels that produce adequate supplies, while allowing profitable operations at the power plants

  6. Principles, effects and problems of differential power pricing policy for energy intensive industries in China

    International Nuclear Information System (INIS)

    Lin, Boqiang; Liu, Jianghua

    2011-01-01

    The Chinese government canceled the preferential power pricing policies for energy intensive industries and imposed a reverse differential pricing policy in order to promote energy efficiency and the adjustment and upgrading of the industrial structure. This article analyzes the principles of China's differential power pricing policy, the externalities of energy and the modified Ramsey pricing rule, and also points out the policy implications of China's differential power pricing policy. In our samples, we investigate eight power intensive products in the Henan province with respect to their power consumption per unit (power intensity), electricity cost, total cost, the electricity tariff and profit, in order to test the effects of the differential power pricing policy. The results show that the primary effect of the differential power pricing policy is that enterprises decrease their total costs and improve their productive efficiencies in advance, in anticipating a higher electricity tariff. -- Research highlights: → The article suggests a modified Ramsey pricing model where demand elasticity is replaced by elasticity of energy consumption and polluting elasticity to internalize the negative externality of high energy intensive industry. → The article assesses the effects of differential pricing policy through on-site survey of high energy intensive industries in Henan province and analyzes the reasons behind those effects. → The article presents the lessons and policy implications of implementing differential pricing policy aimed at energy conservation and emission reduction.

  7. Building energy, building leadership : recommendations for the adoption, development, and implementation of a commercial building energy code in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Akerstream, T. [Manitoba Hydro, Winnipeg, MB (Canada); Allard, K. [City of Thompson, Thompson, MB (Canada); Anderson, N.; Beacham, D. [Manitoba Office of the Fire Commissioner, Winnipeg, MB (Canada); Andrich, R. [The Forks North Portage Partnership, MB (Canada); Auger, A. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency; Downs, R.G. [Shindico Realty Inc., Winnipeg, MB (Canada); Eastwood, R. [Number Ten Architectural Group, Winnipeg, MB (Canada); Hewitt, C. [SMS Engineering Ltd., Winnipeg, MB (Canada); Joshi, D. [City of Winnipeg, Winnipeg, MB (Canada); Klassen, K. [Manitoba Dept. of Energy Science and Technology, Winnipeg, MB (Canada); Phillips, B. [Unies Ltd., Winnipeg, MB (Canada); Wiebe, R. [Ben Wiebe Construction Ltd., Winnipeg, MB (Canada); Woelk, D. [Bockstael Construction Ltd., Winnipeg, MB (Canada); Ziemski, S. [CREIT Management LLP, Winnipeg, MB (Canada)

    2006-09-15

    This report presented a strategy and a set of recommendations for the adoption, development and implementation of an energy code for new commercial construction in Manitoba. The report was compiled by an advisory committee comprised of industry representatives and government agency representatives. Recommendations were divided into 4 categories: (1) advisory committee recommendations; (2) code adoption recommendations; (3) code development recommendations; and (4) code implementation recommendations. It was suggested that Manitoba should adopt an amended version of the Model National Energy Code for Buildings (1997) as a regulation under the Buildings and Mobile Homes Act. Participation in a national initiative to update the Model National Energy Code for Buildings was also advised. It was suggested that the energy code should be considered as the first step in a longer-term process towards a sustainable commercial building code. However, the code should be adopted within the context of a complete market transformation approach. Other recommendations included: the establishment of a multi-stakeholder energy code task group; the provision of information and technical resources to help build industry capacity; the establishment of a process for energy code compliance; and an ongoing review of the energy code to assess impacts and progress. Supplemental recommendations for future discussion included the need for integrated design by building design teams in Manitoba; the development of a program to provide technical assistance to building design teams; and collaboration between post-secondary institutions to develop and deliver courses on integrated building design to students and professionals. 17 refs.

  8. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  9. The Implementation of Industrial Cluster Development Program in Padurenan Village, Kudus

    Directory of Open Access Journals (Sweden)

    R. Heffi Achid Muharrom

    2014-12-01

    Full Text Available Small medium enterprise (SME has a significant contribution to the national economic growth, and the Government has been trying to enhance the competitiveness of SME by using industrial cluster approach.This research tries to discuss the implementation of embroidery and apparel industrial cluster development program in Padurenan Village, Kudus Regency, also to analyze supporting and constraining factors that influence the implementation. The descriptive research method with qualitative approach is used in this research.The result shows that many activities conducted through a synergy among stakeholders have been implemented succesfully and proven to provide a positive impact for the developmet of embroidery and apparel SME in Padurenan. Enhancing the commitment and communication among actors involved in the program are needed for further development.Keywords:  Embroidery and apparel industry, industrial cluster, policy implementation

  10. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  11. Personnel decisions: cost benefits and opportunities for the energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Janz, T J

    1982-09-01

    This article reviews current practice in personnel decision making in the energy industry, outlining the conditions under which it developed. Changes in today's environment are noted and the utility equation is introduced as an aid to understanding the dollar impacts of these changes. Recent developments that make it possible to tally up the dollar benefits of alternative recruitment and selection programs are explained. Results of utility analyses for the job of roughneck on an oil rig, clerk-typist and assistant buyer are presented. The discussion points to human resource investments likely to have high net benefits and favorable return on investment for the energy industry.

  12. What prevents organisations from implementing energy saving measures? Case studies of Norwegian public and commercial companies

    Energy Technology Data Exchange (ETDEWEB)

    Saele, Hanne; Naesje, Paal; Hagen, Oeivind [SINTEF Energy Research, Trondheim (Norway); Nordvik, Haavard [E-CO Tech, Oslo (Norway)

    2005-07-01

    The background for this project is analyses conducted in an industrial area with a capacity problem concerning electricity supply. To cope with the problem the network operator, in cooperation with the Norwegian Research Council, executed a project focusing on how to reduce peak loads and energy consumption. Technical and economical analyses of energy efficiency actions were offered to 40 companies and 20 out of these decided to implement the proposed actions. Two years later, 7 out of these 20 companies had not implemented the suggested actions or the starts were delayed. These cases were analysed based on personal interviews. The goal was to study the reasons for not implementing actions or for the delay. Most analyses of this kind analyse successful implementations. Here, however, the research issue is why organizations choose not to implement solutions that make sense, both economically and technically? Results suggest that information overload, bad timing, lack of personal address and formal responsibility for the report hindered companies from using the report as a basis for decision-making. Different aspects of financial management systems, such as rigid routines not allowing means for investments and aversion of less predictable costs, also hindered implementation. Despite these findings several organisations do have interest in energy saving and consumption, personnel that takes responsibility and financial incentives for reducing energy costs. Although the study is based on only a few cases to draw sound conclusions there are indications that, targeting the right organisations, energy efficiency is an interesting alternative to increasing power capacity.

  13. Methodology to produce a water and energy stream map (WESM in the South African manufacturing industry

    Directory of Open Access Journals (Sweden)

    Davies, Edward

    2016-11-01

    Full Text Available The increasing demand for water and energy in South Africa, and the capacity constraints and restrictions of both resources, have led to a rapid increase in their cost. The manufacturing industry remains South Africa’s third-largest consumer of water and second- largest consumer of national energy. The improvement of water and energy efficiency is becoming an increasingly important theme for both organisational success and national economic sustainability. This paper presents the ‘lean based water and energy stream mapping framework’ developed for the manufacturing industry, with the specific objective of decreasing its water and energy intensity. As with the traditional value stream mapping tool, the water and energy stream mapping focuses on eliminating water- and energy-specific wastes within a process. Water and energy waste categories that will be used in conjunction with the framework will also be discussed. The key objective of this paper is to detail the process of creating the water and energy stream mapping, and the statistical forecasting methodology used to develop the baseline water and energy demand data. The outcome of the implementation of the framework is the future state water and energy stream mapping, which is effectively a blueprint for increased water and energy efficiency within a studied process.

  14. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  15. Energy Technology Roadmaps: A Guide to Development and Implementation. 2014 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    New low-carbon technologies show clear potential for transforming the global energy system, but a key challenge remains: what steps do governments and industry need to take to ensure their development and deployment? Roadmapping, used for decades in technology-intensive industries, is a useful tool to help address complicated issues strategically at the national, regional and global levels. To help turn political statements and analytical work into concrete action, the International Energy Agency (IEA) is developing a series of global roadmaps devoted to low-carbon energy technologies. Drawing upon the extensive IEA experience, this guide is aimed at providing countries and companies with the context, information and tools needed to design, manage and implement an effective energy technology roadmap process relevant to their own local circumstances and objectives. This edition of the Energy Technology Roadmaps: a guide to development and implementation includes more detailed guidance on how to identify key stakeholders, develop a technology baseline and development of indicators to help track progress against roadmap milestones. The IEA hopes that this guide and the examples and references it offers, together with the new IEA How2Guides, which provide technology-specific guidance, will help national and local policy makers and industry to develop strategies that accelerate the deployment of low-carbon energy technologies worldwide.

  16. Alberta's labour force and the energy industry : how the Alberta government is collaborating with the energy industry to improve the supply of skilled workers

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S. [Alberta Ministry of Human Resources and Employment, Edmonton, AB (Canada)

    2005-07-01

    This presentation described the potential short- and long-term impacts that a lack of skilled labour may have on the energy industry in Alberta. Currently, one in six Albertans are directly or indirectly employed in the energy industry, which generated 28.1 per cent of the total provincial revenue. A chart of industry employment changes in 2004 was presented along with a description of what the provincial and federal governments are doing to help bring in more skilled workers. The presentation examined the options that are currently available to companies seeking skilled workers in light of an aging population. The challenge of a shortage in skilled labour can be addressed by increasing training opportunities, reviewing hiring standards, changing workplace technology and using migration or immigration. The barriers to labour market adjustment were identified as being a lack of labour market information, the time required for individuals to acquire skills, and financial constraints on employers. Some of the options for companies seeking skilled workers include the Provincial Nominee Program, internal training and apprenticeship. The presentation also described how the Alberta government is collaborating with the energy industry to develop and implement training and apprenticeship programs. tabs., figs.

  17. Lean six sigma implementation in a yarn textile industry

    Directory of Open Access Journals (Sweden)

    Rayra Rodrigues Nogueira

    2017-06-01

    Full Text Available Due to fierce competition from companies in achieving larger market share, there is an increasing interest regarding cost reduction, efficiency in business and processes, increase in quality and continuous improvement. Given these situations, companies are adopting some practices which seek to improve their strategies, increase understanding of the needs of their customers and promote business growth, the Lean Manufacturing and Six Sigma programs were adopted in order to enable businesses to succeed in achieving continuous improvement in their business. This paper presents a case study of a textile yarn industry which, in order to increase the sales of the business and the elimination of waste, used the methodology of Lean Six Sigma Program based on DMAIC method to assist in achieving these goals.

  18. Mass customization and sustainability an assessment framework and industrial implementation

    CERN Document Server

    Boër, Claudio R; Bettoni, Andrea; Sorlini, Marzio

    2013-01-01

    To adapt to global competitive pressures, manufacturers must develop methods and enabling technologies towards a personalized, customer oriented and sustainable manufacturing. Mass Customization and Sustainability defines the two concepts of mass customization and sustainability and introduces a framework to establish a link between the two concepts to answer the questions: Are these two aspects empowering one another? Or are they hindering one another?   These questions investigate mass customization as one of the main driving forces to achieve effective sustainability.  A methodology to assess the contribution of mass customization to sustainability is developed, providing an assessment model composed by a set of indicators covering the three aspects of sustainability: social, economical and environmental. This is supported and further explained using ideas and new concepts compiled from recent European research.   Researchers, scientists, managers and industry professionals alike can follow a set of ...

  19. Implementing CDIO Approach in preparing engineers for Space Industry

    Directory of Open Access Journals (Sweden)

    Daneykin Yury

    2017-01-01

    Full Text Available The necessity to train highly qualified specialists leads to the development of the trajectory that can allow training specialists for the space industry. Several steps have been undertaken to reach this purpose. First, the University founded the Space Instrument Design Center that promotes a wide range of initiatives in the sphere of educating specialists, retraining specialists, carrying out research and collaborating with profiled enterprises. The University introduced Elite Engineering Education system to attract talented specialist and help them to follow individual trajectory to train unique specialist. The paper discusses the targets necessary for achievement to train specialists. Moreover, the paper presents the compliance of the attempts with the CDIO Approach, which is widely used in leading universities to improve engineering programs.

  20. Implementation of 5S in Manufacturing Industry: A Case of Foreign Workers in Melaka

    Directory of Open Access Journals (Sweden)

    Chee Houa San

    2018-01-01

    Full Text Available Lean manufacturing system has been infiltrated in manufacturing sectors across the world. In fact, Lean manufacturing system is a practice which regards the use of the resources, creation of value for the end customers, and as the ways to eliminate the waste. There are several tools that can be used to eliminate the waste within the industry. This research is a study of the implementation of 5S in manufacturing industry. Despite this, the research study focused on manufacturing industry, which has been implemented 5S system in Melaka State. Although there are number of tools and technique available to help in improving the manufacturing process, however, there is only few industries could implement the tools successfully. In this research, foreign workers play a main role in implement the 5S systems as the manufacturing industry in Malaysia adopt large amount of foreign workers to work as employees. Therefore, it is important to ensure the foreign workers truly understand the concept of 5S system and adopt the best ways to implement it in order to have better performance. This research study has been proposed by the research model of the barriers to implementation of 5S in manufacturing industry among foreign workers. A several research method has been adopted to do the research, such as descriptive research design with quantitative methods, survey questionnaire and cross-sectional studies.