WorldWideScience

Sample records for implantable nuclear-fueled left

  1. Implantable nuclear-fueled circulatory support system. V. Acute physiologic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, F N; Migliore, J J; Hagen, K G; Daly, B D.T.; Robinson, W J; Ruggles, A E; Norman, J C

    1973-01-01

    Nuclear-Fueled circulatory assist systems have reached the stage of in vivo evaluation. Physiologic studies of the effects of intracorporeal heat and radiation as well as blood pumps indicate that these factors should not preclude clinical application of nuclear artificial hearts. In the circulatory system under consideration, a fraction of the heat from a 50 watt Plutonium-238 fuel capsule is converted into hydraulic power for driving a left ventricular assist pump via a miniature, electronically controlled steam (tidal regenerator) engine. The engine is pressurized (8-140 PSIA) by the displacement of a single drop of water between the condenser (150/sup 0/F) and the boiler (360/sup 0/F). The electrical power for sensing, logic and displacement is provided by a thermoelectric module interposed between the superheater (900/sup 0/F) and boiler. The pusher plate pump also functions as a blood-cooled heat exchanger and sensor for the control logic. The assist pump is connected between the apex of the left ventricle and the descending thoracic aorta. The power source module is suspended in the left retroperitoneal cavity from the psoas tendon. The blood interface of the pump is flocked with polyester fibers. A stable biologic lining develops in the pump using Dextran as the only anticoagulant. The longest in vivo testing period has been 4/sup 1///sub 2/ days. Plasma hemoglobinshave remained below 10 mg/sup 0///sub 0/. Although rectal temperatures have not increased, elevated respiratory rates have been noted. Reduction of left ventricular pressure and dp/dt have been demonstrated with maintenance of arterial pressure.

  2. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  3. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  4. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  5. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  6. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  7. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  8. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  9. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  10. Implantation of a HeartMate II left ventricular assist device via left thoracotomy.

    Science.gov (United States)

    Cho, Yang Hyun; Deo, Salil V; Schirger, John A; Pereira, Naveen L; Stulak, John M; Park, Soon J

    2012-11-01

    Left thoracotomy was used as an approach for the implantation of pulsatile ventricular assist devices. Avoiding the standard approach of median sternotomy is attractive in patients undergoing complicated redo cardiac surgery, especially with prior mediastinal radiation. We report a case of the use of left thoracotomy for the implantation of the HeartMate II axial-flow pump. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  12. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  13. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  14. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  15. Nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    White, D.

    1981-01-01

    A simple friction device for cutting nuclear fuel wrappers comprising a thin metal disc clamped between two large diameter clamping plates. A stream of gas ejected from a nozzle is used as coolant. The device may be maintained remotely. (author)

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  17. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  18. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  19. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  20. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  1. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  2. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  3. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1977-01-01

    This invention relates to a nuclear fuel assembly for a light or heavy water reactor, or for a fast reactor of the kind with a bundle of cladded pins, maintained parallel to each other in a regular network by an assembly of separate supporting grids, fitted with elastic bearing surfaces on these pins [fr

  4. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  5. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  6. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  7. Nuclear fuel pellets

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.

    1981-01-01

    Increased strength and physical durability in green bodies or pellets formed of particulate nuclear fuel oxides is achieved by inclusion of a fugitive binder which is ammonium bicarbonate, bicarbonate carbomate, carbomate, sesquicarbonate or mixtures thereof. Ammonium oxadate may be included as pore former. (author)

  8. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  9. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  10. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  11. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  12. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ito, Arata; Wakamatsu, Mitsuo.

    1976-01-01

    Object: To permit the coolant in an FBR type reactor to enter from the entrance nozzle into a nuclear fuel assembly without causing cavitation. Structure: In a nuclear fuel assembly, which comprises a number of thin fuel pines bundled together at a uniform spacing and enclosed within an outer cylinder, with a handling head connected to an upper portion of the outer cylinder and an entrance nozzle connected to a lower portion of the cylinder, the inner surface of the entrance nozzle is provided with a buffer member and an orifice successively in the direction of flow of the coolant. The coolant entering from a low pressure coolant chamber into the entrance nozzle strikes the buffer member and is attenuated, and thereafter flows through an orifice into the outer cylinder. (Horiuchi, T.)

  13. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  14. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  15. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo.

    1974-01-01

    Object: To improve a circulating flow passage of coolant so as to be able to accurately detect the temperature of coolant, rare gases contained, and the like. Structure: A fuel assembly comprising a flow regulating lattice provided with a plurality of communication holes in an axial direction, said lattice being positioned at the upper end of an outer tube in which nuclear fuel elements are received, and a neutron shielding body having a plurality of spiral coolant flow passages disposed between the lattice and the nuclear fuel elements, whereby a coolant comprised of liquid sodium or the like, which moves up passing through the coolant flow passages and the flow regulating passage, is regulated and passed through a detector mounted at the upper part of the flow regulating lattice to detect coolant temperature, flow rate, and rare gases or the like as the origin of nuclear fission contained in the coolant due to breakage of fuel elements. (Kamimura, M.)

  17. Nuclear fuel strategies

    International Nuclear Information System (INIS)

    Rippon, S.

    1989-01-01

    The paper reports on two international meetings on nuclear fuel strategies, one organised by the World Nuclear Fuel Market in Seville (Spain) October 1988, and the other organised by the American and European nuclear societies in Washington (U.S.A.) November 1988. At the Washington meeting a description was given of the uranium supply and demand market, whereas free trade in uranium was considered in Seville. Considerable concern was expressed at both meetings on the effect on the uranium and enrichment services market of very low prices for spot deals being offered by China and the Soviet Union. Excess enrichment capacity, the procurement policies of the USA and other countries, and fuel cycle strategies, were also discussed. (U.K.)

  18. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  19. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  20. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing. (U.K.)

  1. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  2. Alternative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This diffuse subject involves value judgments that are political as well as technical, and is best understood in that context. The four questions raised here, however, are mostly from the technical viewpoints: (1) what are alternative nuclear fuel cycles; (2) what generalizations are possible about their characteristics; (3) what are the major practical considerations; and (4) what is the present situation and what can be said about the outlook for the future

  3. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  4. Vented nuclear fuel element

    International Nuclear Information System (INIS)

    Oguma, M.; Hirose, Y.

    1976-01-01

    A description is given of a vented nuclear fuel element having a plenum for accumulation of fission product gases and plug means for delaying the release of the fission product gases from the plenum, the plug means comprising a first porous body wettable with a liquid metal and a second porous body non-wettable with the liquid metal, the first porous body being impregnated with the liquid metal and in contact with the liquid metal

  5. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  6. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  7. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  8. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  9. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  10. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  11. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    The nuclear fuel assembly described includes a cluster of fuel elements supported at a distance from each other so that their axes are parallel in order to establish secondary channels between them reserved for the coolant. Several ducts for an auxiliary cooling fluid are arranged in the cluster. The wall of each duct is pierced with coolant ejection holes which are placed circumferentially to a pre-determined pattern established according to the position of the duct in the cluster and by the axial distance of the ejection hole along the duct. This assembly is intended for reactors cooled by light or heavy water [fr

  12. Nuclear fuel supplies

    International Nuclear Information System (INIS)

    1960-01-01

    When the International Atomic Energy Agency was set up nearly three years ago, it was widely believed that it would soon become a world bank or broker for the supply of nuclear fuel. Some observers now seem to feel that this promise has been rather slow to come to fruition. A little closer analysis would, however, show that the promise can be fulfilled only in a certain objective context, and to the extent that this context exists, the development of the Agency's role has been commensurate with the actual needs of the situation

  13. Nuclear fuel brokerage

    International Nuclear Information System (INIS)

    Hoffman, J.; Schreiber, K.

    1985-01-01

    Making available nuclear fuels on the spot market, especially uranium in various compounds and processing stages, has become an important service rendered nuclear power plant operators. A secondary market has grown, both for natural uranium and for separative work, the conditions and transactions of which require a comprehensive overview of what is going on, especially also in connection with possibilities to terminate in a profitable manner existing contracts. This situation has favored the activity of brokers with excellent knowledge of the market, who are able to handle the complicated terms and conditions in an optimum way. (orig.) [de

  14. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  15. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  17. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  18. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1980-01-01

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  19. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  20. Inhaled Milrinone After Left Ventricular Assist Device Implantation.

    Science.gov (United States)

    Haglund, Nicholas A; Burdorf, Adam; Jones, Tara; Shostrom, Valerie; Um, John; Ryan, Timothy; Shillcutt, Sasha; Fischer, Patricia; Cox, Zachary L; Raichlin, Eugenia; Anderson, Daniel R; Lowes, Brian D; Dumitru, Ioana

    2015-10-01

    Proven strategies to reduce right ventricular (RV) dysfunction after continuous-flow left ventricular assist device (CF-LVAD) implantation are lacking. We sought to evaluate the tolerability, feasibility, efficacy, and pharmacokinetics of inhaled milrinone (iMil) delivery after CF-LVAD implantation. We prospectively evaluated fixed-dose nebulized iMil delivered into a ventilator circuit for 24 hours in 10 postoperative CF-LVAD (Heartmate-II) patients. Tolerability (arrhythmias, hypotension, and hypersensitivity reaction), efficacy (hemodynamics), pharmacokinetics (plasma milrinone levels), and cost data were collected.Mean age was 56 ± 9 years, 90% were male, and mean INTERMACS profile was 2.5 ± 0.8. No new atrial arrhythmia events occurred, although 3 (30%) ventricular tachycardia (1 nonsustained, 2 sustained) events occurred. Sustained hypotension, drug hypersensitivity, death, or need for right ventricular assist device were not observed. Invasive mean pulmonary arterial pressure from baseline to during iMil therapy was improved (P = .017). Mean plasma milrinone levels (ng/mL) at baseline, and 1, 4, 8, 12, and 24 hours were 74.2 ± 35.4, 111.3 ± 70.9, 135.9 ± 41.5, 205.0 ± 86.7, 176.8 ± 61.3 187.6 ± 105.5, respectively. Reduced institutional cost was observed when iMil was compared with nitric oxide therapy over 24 hours ($165.29 vs $1,944.00, respectively). iMil delivery after CF-LVAD implantation was well tolerated, feasible, and demonstrated favorable hemodynamic, pharmacokinetic, and cost profiles. iMil therapy warrants further study in larger clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Nuclear fuel powder transfer device

    International Nuclear Information System (INIS)

    Komono, Akira

    1998-01-01

    A pair of parallel rails are laid between a receiving portion to a molding portion of a nuclear fuel powder transfer device. The rails are disposed to the upper portion of a plurality of parallel support columns at the same height. A powder container is disposed while being tilted in the inside of the vessel main body of a transfer device, and rotational shafts equipped with wheels are secured to right and left external walls. A nuclear powder to be mixed, together with additives, is supplied to the powder container of the transfer device. The transfer device engaged with the rails on the receiving side is transferred toward the molding portion. The wheels are rotated along the rails, and the rotational shafts, the vessel main body and the powder container are rotated. The nuclear powder in the tilted powder container disposed is rotated right and left and up and down by the rotation, and the powder is mixed satisfactory when it reaches the molding portion. (I.N.)

  2. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  3. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  4. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  5. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  6. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  7. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  8. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  9. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  10. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  11. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  12. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  13. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  14. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1981-01-01

    A nuclear fuel storage apparatus for use in a water-filled pool is fabricated of a material such as stainless steel in the form of an egg crate structure having vertically extending openings. Fuel may be stored in this basic structure in a checkerboard pattern with high enrichment fuel, or in all openings when the fuel is of low effective enrichment. Inserts of a material such as stainless steel are adapted to fit within these openings so that a water gap and, therefore, a flux trap is formed between adjacent fuel storage locations. These inserts may be added at a later time and fuel of a higher enrichment may be stored in each opening. When it is desired to store fuel of still greater enrichment, poison plates may be added to the water gap formed by the installed insert plates, or substituted for the insert plates. Alternately, or in addition, fuel may be installed in high neutron absorption poison boxes which surround the fuel assembly. The stainless steel inserts and the poison plates are each not required until the capacity of the basic egg crate structure is approached. Purchase of these items can, therefore, be deferred for many years. Should the fuel to be stored be of higher enrichment than initially forecast, the deferred decision on the poison plates makes it possible to obtain increased poison in the plates to satisfy the newly discovered requirement

  15. Thorium in nuclear fuel

    International Nuclear Information System (INIS)

    Stankevicius, Alejandro

    2012-01-01

    We revise the advantages and possible problems on the use of thorium as a nuclear fuel instead of uranium. The following aspects are considered: 1) In the world there are three times more thorium than uranium 2) In spite that thorium in his natural form it is not a fisil, under neutron irradiation, is possible to transform it to uranium 233, a fisil of a high quality. 3) His ceramic oxides properties are superior to uranium or plutonium oxides. 4) During the irradiation the U 233 due to n,2n reaction produce small quantities of U 232 and his decay daughters' bismuth 212 and thallium 208 witch are strong gamma source. In turn thorium 228 and uranium 232 became, in time anti-proliferate due to there radiation intensity. 5) As it is described in here and experiments done in several countries reactors PHWR can be adapted to the use of thorium as a fuel element 6) As a problem we should mentioned that the different steps in the process must be done under strong radiation shielding and using only automatized equipment s (author)

  16. British Nuclear Fuels (Warrington)

    International Nuclear Information System (INIS)

    Hoyle, D.; Cryer, B.; Bellotti, D.

    1992-01-01

    This adjournment debate is about British Nuclear Fuels plc and the 750 redundancies due to take place by the mid-1990s at BNFL, Risley. The debate was instigated by the Member of Parliament for Warrington, the constituency in which BNFL, Risley is situated. Other members pointed out that other industries, such as the textile industry are also suffering job losses due to the recession. However the MP for Warrington argued that the recent restructuring of BNFL restricted the financial flexibility of BNFL so that the benefits of contracts won for THORP at Sellafield could not help BNFL, Risley. The debate became more generally about training, apprentices and employment opportunities. The Parliamentary Under-Secretary of State for Energy explained the position as he saw it and said BNFL may be able to offer more help to its apprentices. Long- term employment prospects at BNFL are dependent on the future of the nuclear industry in general. The debate lasted about half an hour and is reported verbatim. (U.K)

  17. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  18. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  19. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  20. Percutaneous Repair of Postoperative Mitral Regurgitation After Left Ventricular Assist Device Implant.

    Science.gov (United States)

    Cork, David P; Adamson, Robert; Gollapudi, Raghava; Dembitsky, Walter; Jaski, Brian

    2018-02-01

    Mitral regurgitation commonly improves after implantation of a left ventricular assist device without concomitant valvular repair owing to the mechanical unloading of the left ventricle. However, the development (or persistence) of significant mitral regurgitation after implantation of a left ventricular assist device is associated with adverse clinical events. We present a case of a left ventricular assist device patient who successfully underwent a percutaneous MitraClip procedure for repair of persistent late postoperative mitral insufficiency with demonstrable clinical and hemodynamic improvement. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  2. Right ventricular failure after implantation of a continuous-flow left ventricular assist device

    DEFF Research Database (Denmark)

    Cordtz, Johan Joakim; Nilsson, Jens C; Hansen, Peter B

    2014-01-01

    Right ventricular failure (RVF) is a significant complication after implantation of a left ventricular assist device. We aimed to identify haemodynamic changes in the early postoperative phase that predicted subsequent development of RVF in a cohort of HeartMate II (HMII) implanted patients....

  3. New method for cardiac resynchronization therapy: Transapical endocardial lead implantation for left ventricular free wall pacing

    NARCIS (Netherlands)

    I. Kassai (Imre); C. Foldesi (Csaba); A. Szekely (Andrea); T. Szili-Torok (Tamas)

    2008-01-01

    textabstractCoronary sinus lead placement for transvenous left ventricular (LV) pacing in cardiac resynchronization therapy (CRT) has a significant failure rate at implant and a significant dislocation rate during follow-up. For these patients, epicardial pacing lead implantation is the most

  4. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  5. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  6. Modular nuclear fuel assembly rack

    International Nuclear Information System (INIS)

    Davis, C.J.

    1982-01-01

    A modular nuclear fuel assembly rack constructed of an array of identical cells, each cell constructed of a plurality of identical flanged plates. The unique assembly of the plates into a rigid rack provides a cellular compartment for nuclear fuel assemblies and a cavity between the cells for accepting neutron absorbing materials thus allowing a closely spaced array. The modular rack size can be easily adapted to conform with available storage space. U-shaped flanges at the edges of the plates are nested together at the intersection of four cells in the array. A bar is placed at the intersection to lock the cells together

  7. Spent nuclear fuel shipping basket

    International Nuclear Information System (INIS)

    Wells, A.H.

    1990-01-01

    This patent describes a basket for a cask for transporting nuclear fuel elements. It comprises: sleeve members, each of the sleeve members having interior cross-section dimensions for receiving a nuclear fuel assembly such that the assembly is restrained from lateral movement within the sleeve member, apertured disk members, means for axially aligning the apertures in the disk members, and means for maintaining the disk members in fixed spaced relationship to form a disk assembly, comprising an array of disks, the aligned apertures of the disks being adapted to receive the sleeve members and maintain them in fixed spaced relationship

  8. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  9. Fire resistant nuclear fuel cask

    International Nuclear Information System (INIS)

    Heckman, R.C.; Moss, M.

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked

  10. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  11. Nuclear fuel cycle. V. 1

    International Nuclear Information System (INIS)

    1983-01-01

    Nuclear fuel cycle information in the main countries that develop, supply or use nuclear energy is presented. Data about Japan, FRG, United Kingdom, France and Canada are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  12. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  13. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  14. Nuclear Fuel Cycle Introductory Concepts

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  15. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  16. Nuclear fuel cycle. V. 2

    International Nuclear Information System (INIS)

    1984-01-01

    Nuclear fuel cycle information in some countries that develop, supply or use nuclear energy is presented. Data about Argentina, Australia, Belgium, Netherlands, Italy, Denmarmark, Norway, Sweden, Switzerland, Finland, Spain and India are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  17. Storage arrangements for nuclear fuel

    International Nuclear Information System (INIS)

    Ealing, C.J.

    1985-01-01

    A storage arrangement for nuclear fuel has a plurality of storage tubes connected by individual pipes to manifolds which are connected, in turn, to an exhaust system for maintaining the tubes at sub-atmospheric pressure, and means for producing a flow of a cooling fluid, such as air, over the exterior surfaces of the tubes. (author)

  18. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  19. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  20. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  1. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  2. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  3. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  4. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  5. Aircraft transporting container for nuclear fuel

    International Nuclear Information System (INIS)

    Kurakami, Jun-ichi; Kubo, Minoru.

    1991-01-01

    The present invention concerns an air craft transporting container for nuclear fuels. A sealing container that seals a nuclear fuel container and constitutes a sealed boundary for the transporting container is incorporated in an inner container. Shock absorbers are filled for absorbing impact shock energy in the gap between the inner container and the sealing container. The inner container is incorporated with wooden impact shock absorbers being filled so that it is situated in a substantially central portion of an external container. Partitioning cylinders are disposed coaxially in the cylindrical layer filled with wooden impact shock absorbers at an intermediate portion between the outer and the inner containers. Further, a plurality of longitudinally intersecting partitioning disks are disposed each at a predetermined distance in right and left cylindrical wooden impact shock absorbing layers which are in contact with the end face of the inner container. Accordingly, the impact shock energy can be absorbed by the wooden impact shock absorbers efficiently by a plurality of the partitioning disks and the partitioning cylinders. (I.N.)

  6. Left ventricular assist device implantation via left thoracotomy: alternative to repeat sternotomy.

    Science.gov (United States)

    Pierson, Richard N; Howser, Renee; Donaldson, Terri; Merrill, Walter H; Dignan, Rebecca J; Drinkwater, Davis C; Christian, Karla G; Butler, Javed; Chomsky, Don; Wilson, John R; Clark, Rick; Davis, Stacy F

    2002-03-01

    Repeat sternotomy for left ventricular assist device insertion may result in injury to the right heart or patent coronary grafts, complicating intraoperative and postoperative management. In 4 critically ill patients, left thoracotomy was used as an alternative to repeat sternotomy. Anastomosis of the outflow conduit to the descending thoracic aorta provided satisfactory hemodynamic support.

  7. Nuclear fuel pellet transfer escalator

    International Nuclear Information System (INIS)

    Huggins, T.B. Sr.; Roberts, E.; Edmunds, M.O.

    1991-01-01

    This patent describes a nuclear fuel pellet escalator for loading nuclear fuel pellets into a sintering boat. It comprises a generally horizontally-disposed pellet transfer conveyor for moving pellets in single file fashion from a receiving end to a discharge end thereof, the conveyor being mounted about an axis at its receiving end for pivotal movement to generally vertically move its discharge end toward and away from a sintering boat when placed below the discharge end of the conveyor, the conveyor including an elongated arm swingable vertically about the axis and having an elongated channel recessed below an upper side of the arm and extending between the receiving and discharge ends of the conveyor; a pellet dispensing chute mounted to the arm of the conveyor at the discharge end thereof and extending therebelow such that the chute is carried at the discharge end of the conveyor for generally vertical movement therewith toward and away from the sintering boat

  8. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  9. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  10. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  11. Inserts for nuclear fuel elements

    International Nuclear Information System (INIS)

    Cragg, P.J.

    1982-01-01

    An insert for a nuclear fuel pin which comprises a strip. The strip carries notches, which enable a coding arrangement to be carried on the strip. The notches may be of differing sizes and the coding on the strip includes identification and identification checking data. Each notch on the strip may give rise to a signal pulse which is counted by a detector to avoid errors. (author)

  12. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  13. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  14. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Watanabe, Yoshio; Kashiwagi, Eisuke; Sekikawa, Tsutomu.

    1997-01-01

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)

  15. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  16. Successful Implantation of a Left Ventricular Assist Device After Treatment With the Paracor HeartNet.

    Science.gov (United States)

    Schweiger, Martin; Stepanenko, Alexander; Potapov, Evgenji; Drews, Thorsten; Hetzer, Roland; Krabatsch, Thomas

    2010-01-01

    The Paracor HeartNet, a ventricular constraint device for the treatment of heart failure (HF), is implanted through a left lateral thoracotomy. It envelopes the heart like a mesh "bag." This method of application raises the question of whether adhesions with the pericardium allow the safe implantation of a left ventricular assist device (LVAD) if HF worsens. A male patient who had undergone implantation of the Paracor HeartNet 42 months earlier presented with advanced HF for cardiac transplantation. The patient's condition deteriorated, and because no suitable organ for transplantation was available, implantation of an LVAD became necessary. Surgery was performed via a median sternotomy without complications. No severe adhesions were found. This is the first report on "how to do" LVAD implantation after Paracor HeartNet implantation with images and information about cutting the constraint. Because the Paracor HeartNet is "wrapped" around the heart, concerns persist that severe adhesions with the pericardium might occur. In this case, LVAD implantation after therapy with the Paracor HeartNet was without complications, and the expected massive adhesions were absent.

  17. Current Trends in Implantable Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Jens Garbade

    2011-01-01

    Full Text Available The shortage of appropriate donor organs and the expanding pool of patients waiting for heart transplantation have led to growing interest in alternative strategies, particularly in mechanical circulatory support. Improved results and the increased applicability and durability with left ventricular assist devices (LVADs have enhanced this treatment option available for end-stage heart failure patients. Moreover, outcome with newer pumps have evolved to destination therapy for such patients. Currently, results using nonpulsatile continuous flow pumps document the evolution in outcomes following destination therapy achieved subsequent to the landmark Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Trial (REMATCH, as well as the outcome of pulsatile designed second-generation LVADs. This review describes the currently available types of LVADs, their clinical use and outcomes, and focuses on the patient selection process.

  18. Perioperative management of calves undergoing implantation of a left ventricular assist device.

    Science.gov (United States)

    Wilson, D V; Kantrowitz, A; Pacholewicz, J; Salat, O; Paules, B R; Zhou, Y; Dawe, E J

    2000-01-01

    To describe perioperative management of calves that underwent left lateral thoracotomy, aortic cross-clamping, partial left heart bypass and implantation of a left ventricular assist device. A total of 43 healthy castrated male calves, weighing 121 +/- 24 kg. Diazepam (mean +/- SD, 0.26 +/- 0.07 mg/kg), ketamine (5.9 +/- 2.17 mg/kg) and isoflurane were used in the anesthetic management of calves undergoing implantation of a left ventricular assist device in the descending thoracic aorta. Other adjunctive agents administered were fentanyl (11 +/- 5.4 microg/kg), lidocaine (4.9 +/- 3.19 mg/kg), bupivacaine (0.75%) and butorphanol (0.49 +/- 0.13 mg/kg). None of the calves regurgitated at induction or during intubation. A tube was used to drain the rumen and prevent bloat during the procedure. Partial left heart bypass was used to perfuse the caudal half of the body during the period of aortic cross clamp and device implantation. Initial mean systemic blood pressure was 96 +/- 25 mm Hg, and pressures measured in the auricular artery increased during aortic cross-clamping and bypass. Vasoconstrictor therapy was required to treat caudal arterial hypotension during the procedure in 9 calves. Mean systemic arterial pressures returned to baseline values by the end of the anesthetic period. Initial mean pulmonary arterial pressures (PAP) were 22 +/- 3 mm Hg. A significant but transient increase in pulmonary arterial pressure occurred after both heparin and protamine administration. The described anesthetic protocol was effective for thoracotomy and implantation of an intra-aortic left ventricular assist device in normal calves. Partial left ventricular bypass was a useful adjunct during the period of aortic cross clamp. The doses of heparin and protamine administered were effective. Responsibility to monitor oxygenation of the cranial half of the animal continues during the bypass period as hypoxemia due to pulmonary dysfunction will not be detected by the perfusionist.

  19. Left Ventricular Assist Device Implantation with Concomitant Aortic Valve and Ascending Aortic Replacement.

    Science.gov (United States)

    Huenges, Katharina; Panholzer, Bernd; Cremer, Jochen; Haneya, Assad

    2018-01-01

    Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed.

  20. Transcatheter aortic valve implantation: emerging role in poor left ventricular function severe aortic stenosis?

    Directory of Open Access Journals (Sweden)

    K. M. John Chan

    2014-01-01

    Full Text Available Transcatheter aortic valve implantation (TAVI has become an established treatment option for high risk elderly patients with symptomatic severe aortic stenosis. Its role in less high risk patients is being evaluated in clinical trials. Patients with severely impaired left ventricular function may be another group who may benefit from this emerging percutaneous treatment option.

  1. Nuclear fuel pellet production method and nuclear fuel pellet

    International Nuclear Information System (INIS)

    Yuda, Ryoichi; Ito, Ken-ichi; Masuda, Hiroshi.

    1993-01-01

    In a method of manufacturing nuclear fuel pellets by compression-molding UO 2 powders followed by sintering, a sintering agent having a composition of about 40 to 80 wt% of SiO 2 and the balance of Al 2 O 3 , a sintering agent at a ratio of 10 to 500 ppm based on the total amount of UO 2 and UO 2 powders are mixed, compression molded and then sintered at a sintering temperature of about 1500 of 1800degC. The UO 2 particles have an average grain size of about 20 to 60μm, most of the crystal grain boundary thereof is coated with a glassy or crystalline alumina silicate phase, and the porosity is about 1 to 4 vol%. With such a constitution, the sintering agent forms a single liquid phase eutectic mixture during sintering, to promote a surface reaction between nuclear fuel powders by a liquid phase sintering mechanism, increase their density and promote the crystal growth. Accordingly, it is possible to lower the softening temperature, improve the creep velocity of the pellets and improve the resistance against pellet-clad interaction. (T.M.)

  2. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi; Hirai, Mutsumi; Tanabe, Isami; Yuda, Ryoichi.

    1989-01-01

    In a method of manufacturing nuclear fuel pellets by compression molding an oxide powder of nuclear fuel material followed by sintering, a metal nuclear material is mixed with an oxide powder of the nuclear fuel material. As the metal nuclear fuel material, whisker or wire-like fine wire or granules of metal uranium can be used effectively. As a result, a fuel pellet in which the metal nuclear fuel is disposed in a network-like manner can be obtained. The pellet shows a great effect of preventing thermal stress destruction of pellets upon increase of fuel rod power as compared with conventional pellets. Further, the metal nuclear fuel material acts as an oxygen getter to suppress the increase of O/M ratio of the pellets. Further, it is possible to reduce the swelling of pellet at high burn-up degree. (T.M.)

  3. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  4. Reduced Anxiety and Depression in Patients With Advanced Heart Failure After Left Ventricular Assist Device Implantation.

    Science.gov (United States)

    Yost, Gardner; Bhat, Geetha; Mahoney, Edward; Tatooles, Antone

    Despite the high prevalence of depression and anxiety in patients with advanced heart failure, the effects of left ventricular assist device (LVAD) implantation on these critically important aspects of mental health are not well understood. We sought to assess changes in depression and anxiety following LVAD implantation. The Beck Depression Inventory-II (BDI-II) and Beck Anxiety Inventory (BAI) were administered to 54 patients by a clinical psychologist at a mean of 12 days before LVAD implantation and 251 days after implantation. Patient demographics and clinical data were collected concurrently to psychologic testing. Changes in BDI-II, BAI, and clinical markers of heart failure were assessed using paired t-tests. A p Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  5. Nuclear fuel reprocessing expansion strategies

    International Nuclear Information System (INIS)

    Gallagher, J.M.

    1975-01-01

    A description is given of an effort to apply the techniques of operations research and energy system modeling to the problem of determination of cost-effective strategies for capacity expansion of the domestic nuclear fuel reprocessing industry for the 1975 to 2000 time period. The research also determines cost disadvantages associated with alternative strategies that may be attractive for political, social, or ecological reasons. The sensitivity of results to changes in cost assumptions was investigated at some length. Reactor fuel types covered by the analysis include the Light Water Reactor (LWR), High-Temperature Gas-Cooled Reactor (HTGR), and the Fast Breeder Reactor (FBR)

  6. International nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Witt, P.

    1980-01-01

    In the end of February 1980, the two-years work on the International Nuclear Fuel Cycle Evaluation (INFCE) was finished in Vienna with a plenary meeting. INFCE is likely to have been a unique event in the history of international meetings: It was ni diplomatic negotiation meeting, but a techno-analytical investigation in which the participants tenaciously shuggled for many of the formulations. Starting point had been a meeting initiated by President Carter in Washington in Oct. 1979 after the World Economy Summit Meeting in London. The results of the investigation are presented here in a brief and popular form. (orig./UA) [de

  7. Spent nuclear fuel sampling strategy

    International Nuclear Information System (INIS)

    Bergmann, D.W.

    1995-01-01

    This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation

  8. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1982-01-01

    This study provides information to help assess the environmental impacts and certain potential human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes, which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Results will provide information to determine if waste management procedures on the Hanford site have caused ecological perturbations, and, if so, to determine the source, nature and magnitude of such disturbances

  9. Container for nuclear fuel powders

    International Nuclear Information System (INIS)

    Etheredge, B.F.; Larson, R.I.

    1982-01-01

    A critically safe container is disclosed for the storage and rapid discharge of enriched nuclear fuel material in powder form is disclosed. The container has a hollow, slab-shaped container body that has one critically safe dimension. A powder inlet is provided on one side wall of the body adjacent to a corner thereof and a powder discharge port is provided at another corner of the body approximately diagonal the powder inlet. Gas plenum for moving the powder during discharge are located along the side walls of the container adjacent the discharge port

  10. Quality assurance of nuclear fuel

    International Nuclear Information System (INIS)

    1994-01-01

    The guide presents the quality assurance requirements to be completed with in the procurement, design, manufacture, transport, handling and operation of the nuclear fuel. The guide also applies to the procurement of the control rods and the shield elements to be placed in the reactor. The guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organizations whose activities affect fuel quality, the safety of fuel transport, storage and operation. (2 refs.)

  11. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cadwell, L.L.; Emery, R.M.

    1981-01-01

    This study provides information to help assess the environmental impacts and certain potential human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. This paper focuses on terrestrial and aquatic radioecology of waste management areas and biotic transport parameters

  12. Grids for nuclear fuel elements

    International Nuclear Information System (INIS)

    Nicholson, G.

    1980-01-01

    This invention relates to grids for nuclear fuel assemblies with the object of providing an improved grid, tending to have greater strength and tending to offer better location of the fuel pins. It comprises sets of generally parallel strips arranged to intersect to define a structure of cellular form, at least some of the intersections including a strip which is keyed to another strip at more than one point. One type of strip may be dimpled along its length and another type of strip may have slots for keying with the dimples. (Auth.)

  13. Resource Conservation and Recovery Act (RCRA) Characterization of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Nichols, D.M.

    1998-01-01

    As a result of the end of the Cold War and the Nonproliferation treaty, the United States is left with quantifies of spent nuclear fuel. The final disposition of the spent nuclear fuel is yet to be determined. However, one issue that plagues the holders of this material is 'if this material is no longer required and must be disposed, how will it be classified under current U.S. environmental laws and regulations?' This paper provides one site's position on the characterization of the spent nuclear fuel as a non-hazardous solid waste

  14. Study Of Thorium As A Nuclear Fuel.

    Directory of Open Access Journals (Sweden)

    Prakash Humane

    2017-10-01

    Full Text Available Conventional fuel sources for power generation are to be replacing by nuclear power sources like nuclear fuel Uranium. But Uranium-235 is the only fissile fuel which is in 0.72 found in nature as an isotope of Uranium-238. U-238 is abundant in nature which is not fissile while U-239 by alpha decay naturally converted to Uranium- 235. For accompanying this nuclear fuel there is another nuclear fuel Thorium is present in nature is abundant can be used as nuclear fuel and is as much as safe and portable like U-235.

  15. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  16. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  17. Nuclear fuel element and container

    International Nuclear Information System (INIS)

    Grubb, W.T.; King, L.H.

    1981-01-01

    The invention is based on the discovery that a substantial reduction in metal embrittlement or stress corrosion cracking from fuel pellet-cladding interaction can be achieved by the use of a copper layer or liner in proximity to the nuclear fuel, and an intermediate zirconium oxide barrier layer between the copper layer and the zirconium cladding substrate. The intermediate zirconia layer is a good copper diffusion barrier; also, if the zirconium cladding surface is modified prior to oxidation, copper can be deposited by electroless plating. A nuclear fuel element is described which comprises a central core of fuel material and an elongated container using the system outlined above. The method for making the container is again described. It comprises roughening or etching the surface of the zirconium or zirconium alloy container, oxidizing the resulting container, activating the oxidized surface to allow for the metallic coating of such surfaces by electroless deposition and further coating the activated-oxidized surface of the zirconium or zirconium alloy container with copper, iron or nickel or an alloy thereof. (U.K.)

  18. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  19. Strategies of management of the nuclear fuel

    International Nuclear Information System (INIS)

    Leon, J.R.; Perez, A.; Filella, J.M.

    1996-01-01

    The management of nuclear fuel is depending on several factors: - Regulatory commission. The enterprises owner of the NPPs.The enterprise owner of the energy distribution. These factors are considered for the management of nuclear fuel. The design of fuel elements, the planning of cycles, the design of core reactors and the costs are analyzed. (Author)

  20. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  1. Critical review of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kuster, N.

    1996-01-01

    Transmutation of long-lived radionuclides is considered as an alternative to the in-depth disposal of spent nuclear fuel, in particular, on the final stage of the nuclear fuel cycle. The majority of conclusions is the result of the common work of the Karlsruhe FZK and the Commissariat on nuclear energy of France (CEA)

  2. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  3. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  4. Method of producing nuclear fuels

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Suzuki, Tokuyuki; Oomura, Hiroshi.

    1985-01-01

    Purpose: To fabricate a nuclear fuel assembly with uniform enrichment degree, in the blanket of a hybrid reactor. Constitution: A vessel charged with powderous source materials is conveyed by a conveying gas through a material charge/discharge tube to the inside of the blanket. Then, plasmas are formed in the inner space of the blanket so as to enrich the source materials by the irradiation of neutrons. After the average degree of enrichment reaches a predetermined level, the material vessel is discharged by the conveying gas onto a conveyor. The powder materials are separated from the source-material vessel and then charged into a source-material hopper. The mixed material of a uniform enrichment degree is supplied to a fuel-assembly-fabrication device. FP gases resulted after the enrichment are effectively separated and removed through an FP gas pipe. (Horiuchi, T.)

  5. International Nuclear Fuel Cycle Evaluation

    International Nuclear Information System (INIS)

    Carnesale, A.

    1980-01-01

    As nuclear power expands globally, so too expands the capability for producing nuclear weapons. The International Nuclear Fuel Cycle Evaluation (INFCE) was organized in 1977 for the purpose of exploring two areas: (1) ways in which nuclear energy can be made available to help meet world energy needs, and (2) means by which the attendant risk of weapons proliferation can be held to a minimum. INFCE is designed for technical and analytical study rather than negotiation. Its organizational structure and issues under consideration are discussed. Some even broader issues that emerge from consideration of the relationships between the peaceful and military use of nuclear energy are also discussed. These are different notions of the meaning of nuclear proliferation, nuclear export policy, the need of a nuclear policy to be both a domestic as well as a foreign one, and political-military measures that can help reduce incentives of countries to acquire nuclear weapons of their own

  6. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases. 13 claims, 5 drawing figures

  7. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases

  8. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  9. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  10. Electrochemical reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1980-01-01

    A method is described for the reprocessing of irradiated nuclear fuel which is particularly suitable for use with fuel from fast reactors and has the advantage of being a dry process in which there is no danger of radiation damage to a solvent medium as in a wet process. It comprises the steps of dissolving the fuel in a salt melt under such conditions that uranium and plutonium therein are converted to sulphate form. The plutonium sulphate may then be thermally decomposed to PuO 2 and removed. The salt melt is then subjected to electrolysis conditions to achieve cathodic deposition of UO 2 (and possibly PuO 2 ). The salt melt can then be recycled or conditioned for final disposal. (author)

  11. Storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Machado, O.J.; Moore, J.T.; Cooney, B.F.

    1989-01-01

    This patent describes a rack for storing nuclear fuel assemblies. The rack including a base, an array of side-by-side fuel-storage locations, each location being a hollow body of rectangular transverse cross section formed of metallic sheet means which is readily bent, each body having a volume therein dimensioned to receive a fuel assembly. The bodies being mounted on the base with each body secured to bodies adjacent each body along welded joints, each joint joining directly the respective contiguous corners of each body and of bodies adjacent to each body and being formed by a series of separate welds spaced longitudinally between the tops and bottoms of the secured bodies along each joint. The spacings of the separate welds being such that the response of the rack when it is subjected to the anticipated seismic acceleration of the rack, characteristic of the geographical regions where the rack is installed, is minimized

  12. Storage arrangements for nuclear fuel

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A storage arrangement for spent nuclear fuel either irradiated or pre-irradiated or for vitrified waste after spent fuel reprocessing, comprises a plenum chamber which has a base pierced by a plurality of openings each of which has sealed to it an open topped tube extending downwards and closed at its lower end. The plenum chamber, with the tubes, forms an air-filled enclosure associated with an exhaust system for exhausting air from the system through filters to maintain the interior of the enclosure at sub-atmospheric pressure. The tubes are arranged to accommodate the stored fuel and the arrangement includes a means for producing a flow of cooling air over the exterior of the tubes so that the latter effectively form a plurality of heat exchangers in close proximity to the fuel. The air may be caused to flow over the tube surfaces by a natural thermosyphon process. (author)

  13. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Kee, R.W.; Denero, J.V.

    1975-01-01

    An apparatus for loading nuclear fuel pellets on trays for transfer in a system is described. A conveyor supplies pellets from a source to a loading station. When the pellets reach a predetermined position at the loading station, a manual or automatically operated arm pushes the pellets into slots on a tray and this process is repeated until pellet sensing switches detect that the tray is full. Thereupon, the tray is lowered onto a belt or other type conveyor and transferred to other apparatus in the system, such as a furnace for sintering, and in some cases, reduction of UO 2 . 2 to UO 2 . The pellets are retained on the tray and subsequently loaded directly into fuel rods to be used in the reactor core. (auth)

  14. Nuclear fuel and energy policy

    International Nuclear Information System (INIS)

    Ahmed, S.B.

    1979-01-01

    This book examines the uranium resource situation in relation to the future needs of the nuclear economy. Currently the United States is the world's leading producer and consumer of nuclear fuels. In the future US nuclear choices will be highly interdependent with the rest of the world as other countries begin to develop their own nuclear programs. Therefore the world's uranium resource availability has also been examined in relation to the expected growth in the world nuclear industry. Based on resource evaluation, the study develops an economic framework for analyzing and describing the behavior of the US uranium mining and milling industry. An econometric model designed to reflect the underlying structure of the physical processes of the uranium mining and milling industry has been developed. The purpose of this model is to forecast uranium prices and outputs for the period 1977 to 2000. Because uncertainty has sometimes surrounded the economic future of the uranium markets, the results of the econometric modeling should be interpreted with great care and restrictive assumptions. Another aspect of this study is to provide much needed information on the operations of government-owned enrichment plants and the practices used by the government in the determination of fuel enrichment costs. This study discusses possible future developments in enrichment supply and technologies and their implications for future enrichment costs. A review of the operations involving the uranium concentrate conversion to uranium hexafluoride and fuel fabrication is also provided. An economic analysis of these costs provides a comprehensive view of the front-end costs of the nuclear fuel cycle

  15. Innovative microstructures in nuclear fuels

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Kumar, Arun; Kamath, H.S.

    2009-01-01

    For cleaner and safe nuclear power, new processes are required to design better nuclear fuels and make more efficient reactors to generate nuclear power. Therefore, one must understand how the microstructure changes during reactor operation. Accordingly, the materials scientists and engineers can then design and fabricate fuels with higher reliability and performance. Microstructure and its evolution are big unknowns in nuclear fuel. The basic requirements for the high performance of a fuel are: a) Soft pellets - To reduce Pellet clad mechanical interaction (PCMI) b) Large grain size - To reduce fission gas release (FGR). The strength of the pellet at room temperature is related to grain size by the Hall-Petch relation. Accordingly, the lower grain sized pellets will have high strength. But at high temperature (above equicohesive temperature) the grain boundaries becomes weaker than grain matrix. Since the small grain sized pellets have more grain boundary areas, these pellet become softer than pellet that have large grain sizes. Also as grain size decreases, creep rate of the fuel increases. Therefore, pellets with small grain size have higher creep rate and better plasticity. Therefore, these pellets will be useful to reduce the PCMI. On the other hand, pellet with large grain size is beneficial to reduce the fission gas release. In developing thermal reactor fuels for high burn-up, this factor should be taken into consideration. The question being asked is whether the microstructure can be tailored for irradiation hardening, fracture resistance, fission-gas release. This paper deals with the role played by microstructure for better irradiation performance. (author)

  16. Our experience with implantation of VentrAssist left ventricular assist device

    Directory of Open Access Journals (Sweden)

    Hiriyur Shivalingappa Jayanthkumar

    2013-01-01

    Full Text Available Perioperative anaesthetic management of the VentrAssist TM left ventricular assist device (LVAD is a challenge for anaesthesiologists because patients presenting for this operation have long-standing cardiac failure and often have associated hepatic and renal impairment, which may significantly alter the pharmacokinetics of administered drugs and render the patients coagulopathic. The VentrAssist is implanted by midline sternotomy. A brief period of cardiopulmonary bypass (CPB for apical cannulation of left ventricle is needed. The centrifugal pump, which produces non-pulsatile, continuous flow, is positioned in the left sub-diaphragmatic pocket. This LVAD is preload dependent and afterload sensitive. Transoesophageal echocardiography is an essential tool to rule out contraindications and to ensure proper inflow cannula position, and following the implantation of LVAD, to ensure right ventricular (RV function. The anaesthesiologist should be prepared to manage cardiac decompensation and acute desaturation before initiation of CPB, as well as RV failure and severe coagulopathic bleeding after CPB. Three patients had undergone implantation of VentrAssist in our hospital. This pump provides flow of 5 l/min depending on preload, afterload and pump speed. All the patients were discharged after an average of 30 days. There was no perioperative mortality.

  17. Late deterioration of left ventricular function after right ventricular pacemaker implantation.

    Science.gov (United States)

    Bellmann, Barbara; Muntean, Bogdan G; Lin, Tina; Gemein, Christopher; Schmitz, Kathrin; Schauerte, Patrick

    2016-09-01

    Right ventricular (RV) pacing induces a left bundle branch block pattern on ECG and may promote heart failure. Patients with dual chamber pacemakers (DCPs) who present with progressive reduction in left ventricular ejection fraction (LVEF) secondary to RV pacing are candidates for cardiac resynchronization therapy (CRT). This study analyzes whether upgrading DCP to CRT with the additional implantation of a left ventricular (LV) lead improves LV function in patients with reduced LVEF following DCP implantation. Twenty-two patients (13 males) implanted with DCPs and a high RV pacing percentage (>90%) were evaluated in term of new-onset heart failure symptoms. The patients were enrolled in this retrospective single-center study after obvious causes for a reduced LVEF were excluded with echocardiography and coronary angiography. In all patients, DCPs were then upgraded to biventricular devices. LVEF was analyzed with a two-sided t-test. QRS duration and brain natriuretic peptide (BNP) levels were analyzed with the unpaired t-test. LVEF declined after DCP implantation from 54±10% to 31±7%, and the mean QRS duration was 161±20 ms during RV pacing. NT-pro BNP levels were elevated (3365±11436 pmol/L). After upgrading to a biventricular device, a biventricular pacing percentage of 98.1±2% was achieved. QRS duration decreased to 108±16 ms and 106±20 ms after 1 and 6 months, respectively. There was a significant increase in LVEF to 38±8% and 41±11% and a decrease in NT-pro BNP levels to 3088±2326 pmol/L and 1860±1838 pmol/L at 1 and 6 months, respectively. Upgrading to CRT may be beneficial in patients with DCPs and heart failure induced by a high RV pacing percentage.

  18. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  19. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  20. Method of making nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1977-01-01

    A method of making nuclear fuel bodies is described comprising: providing particulate graphite having a particle size not greater than about 1500 microns; impregnating the graphite with a polymerizable organic resin in liquid form; treating the impregnated particles with a hot aqueous acid solution to pre-cure the impregnated resin and to remove excess resin from the surfaces of said graphite particles; heating the treated particles to polymerize the impregnant; blending the impregnated particles with particulate nuclear fuel; and forming a nuclear fuel body by joining the blend of particles into a cohesive mass using a carbonaceous binder

  1. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  2. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  3. "Pseudo" Faraday cage: a solution for telemetry link interaction between a left ventricular assist device and an implantable cardioverter defibrillator.

    Science.gov (United States)

    Jacob, Sony; Cherian, Prasad K; Ghumman, Waqas S; Das, Mithilesh K

    2010-09-01

    Patients implanted with left ventricular assist devices (LVAD) may have implantable cardioverter defibrillators (ICD) implanted for sudden cardiac death prevention. This opens the possibility of device-device communication interactions and thus interferences. We present a case of such interaction that led to ICD communication failure following the activation of an LVAD. In this paper, we describe a practical solution to circumvent the communication interference and review the communication links of ICDs and possible mechanisms of ICD-LVAD interactions.

  4. Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation.

    Science.gov (United States)

    Stulak, John M; Deo, Salil; Schirger, John; Aaronson, Keith D; Park, Soon J; Joyce, Lyle D; Daly, Richard C; Pagani, Francis D

    2013-12-01

    Because no series has specifically analyzed the impact of preoperative atrial fibrillation (AF) on patients already at higher risk of thromboembolism after implantation of a left ventricular assist device (LVAD), we review our experience with these patients. Between July 2003 and September 2011, 389 patients (308 male) underwent implantation of a continuous flow LVAD at University of Michigan Hospital and Mayo Clinic. Median age at implant was 60 years (range, 18 to 79 years). Preoperative AF was present in 120 patients (31%). Outcomes were analyzed for the association of preoperative AF and postoperative thromboembolic (TE) events defined as stroke, transient ischemic attack, hemolysis, or pump thrombosis. Thromboembolic events occurring within the first 30 days were not counted. One hundred thirty-eight TEs events occurred in 97/389 patients (25%) for an event rate of 0.31 TE events/patient-years of support. Freedom from a TE event in patients with preoperative AF was 62% at 1 year and 46% at 2 years compared with 79% and 72% at 1 and 2 years, respectively, in patients without preoperative AF (p < 0.001). Median survival was 10 months (maximum 7.2 years, total 439 patient-years). Preoperative AF did not decrease late survival at 1 and 2 years after LVAD implant (preop AF: 85% and 70% versus no preop AF: 82% and 70%, respectively; p = 0.55). Patients with preoperative AF have a lower freedom from TE events after LVAD implant. While overall late survival was not significantly reduced in these patients, refinement in anticoagulation strategies after VAD implant may be required. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  6. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  7. Nuclear fuels - swords and ploughshares

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, N.L.

    1986-05-01

    In 1986 the problems associated with the implementation of nuclear power programmes mainly arise from difficulties of social acceptability. The scientific and technological achievements are no longer a source of wonder and are taken for granted by a public which has become accustomed to such achievements in other fields. This lecture recounts the history of the nuclear fuel cycle starting around 1955 but continuing, to look at future prospects. The problems are discussed. The technical improvements that have occurred over the years mean that, currently it is possible for all the problems to be overcome technically. Although there is always room for improvements in endurance, design etc. commercial and safety requirements can be met. In economic terms, the real costs of the fuel cycle have reached a plateau and should decrease as the result of lower cost for enriched uranium, lower reprocessing costs and better fuel management. However, in social and political terms, the position is not so certain because of public concern about reprocessing plants and the disposal of radioactive wastes. (U.K.).

  8. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  9. Means for supporting nuclear fuel

    International Nuclear Information System (INIS)

    Cocker, P.; Price, M.A.

    1975-01-01

    Reference is made to means for supporting nuclear fuel pins in a reactor coolant channel and the problems that arise in this connection. For reasons of nuclear reactivity and neutron economy 'parasitic' material in a reactor core must be kept to a minimum, whilst for heat transfer reasons the use of fuel pins of large cross-sectional areas should be avoided. Fuel pins tend to be long thin objects having a can of minimum thickness and typically a pin may have a length/diameter ratio of about 500/1 and for fast reactor fuel pins, the outside diameter may be about 0.2 inch. The long slender pins must also be spaced very close together. A fast reactor fuel assembly may involve 200 to 300 fuel pins, each a few tenths of an inch in diameter, supported end on to coolant flowing up a channel of about 22 square inches in total area. The pins have a heavy metal oxide filling and require support. Details are given of a suitable method of support. Such support also allows withdrawal of pins from a fuel channel without the risk of breach of the can, after irradiation. (U.K.)

  10. Nuclear fuel shipping inspection device

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Hada, Koji.

    1988-01-01

    Purpose: To provide an nuclear fuel shipping inspection device having a high detection sensitivity and capable of obtaining highly reliable inspection results. Constitution: The present invention concerns a device for distinguishing a fuel assembly having failed fuel rods in LMFBR type reactors. Coolants in a fuel assembly to be inspected are collected by a sampling pipeway and transferred to a filter device. In the filter device, granular radioactive corrosion products (CP) in the coolants are captured, to reduce the background. The coolants, after being passed through the filter device, are transferred to an FP catching device and gamma-rays of iodine and cesium nuclides are measured in FP radiation measuring device. Subsequently, the coolants transferred to a degasing device to separate rare gas FP in the coolants from the liquid phase. In a case if rare gas fission products are detected by the radiation detector, it means that there is a failed fuel rod in the fuel assembly to be inspected. Since the CP and the soluble FP are separated and extracted for the radioactivity measurement, the reliability can be improved. (Kamimura, M.)

  11. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  12. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  13. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  14. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Dazen, J.R.; Denero, J.V.

    1976-01-01

    A nuclear fuel pellet loading machine is described including an inclined rack mounted on a base and having parallel spaced grooves on its upper surface arranged to support fuel rods. A fuel pellet tray is adapted to be placed on a table spaced from the rack, the tray having columns of fuel pellets which are in alignment with the open ends of fuel rods located in the rack grooves. A transition plate is mounted between the fuel rod rack and the fuel pellet tray to receive and guide the pellets into the open ends of the fuel rods. The pellets are pushed into the fuel rods by a number of mechanical fingers mounted on a motor operated block which is moved along the pellet tray length by a drive screw driven by the motor. To facilitate movement of the pellets in the fuel rods the rack is mounted on a number of spaced vibrators which vibrate the fuel rods during fuel pellet insertion. A pellet sensing device movable into an end of each fuel rod indicates to an operator when each rod has been charged with the correct number of pellets

  15. Nuclear Fuels: Present and Future

    Directory of Open Access Journals (Sweden)

    Donald R. Olander

    2009-02-01

    Full Text Available The important new developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of these fuels and the reactors they power are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel-rod designs, the hydride fuel with liquid metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the Very High Temperature Reactor and the Sodium Fast Reactor, and the accompanying reprocessing technologies, aqueous-based UREX and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the material's behavior under irradiation and in the reprocessing schemes are emphasized.

  16. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cadwell, L.L.; Emery, R.M.

    1980-01-01

    Sites where radioactive wastes are found are solid waste burial grounds, soils below liquid stoage areas, surface ditches and ponds, and the terrestrial environment around chemical processing facilities that discharge airborne radioactive debris from stacks. This study provides information to help assess the environmental impacts and certain potentiall human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. Results will provide information to determine if waste management procedures on the Hanford Site have caused ecological perturbations, and if so, to determine the source, nature, and magnitude of such disturbances

  17. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  18. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  19. Intraoperative Transesophageal Echocardiography and Right Ventricular Failure After Left Ventricular Assist Device Implantation.

    Science.gov (United States)

    Silverton, Natalie A; Patel, Ravi; Zimmerman, Josh; Ma, Jianing; Stoddard, Greg; Selzman, Craig; Morrissey, Candice K

    2018-02-15

    To determine whether intraoperative measures of right ventricular (RV) function using transesophageal echocardiography are associated with subsequent RV failure after left ventricular assist device (LVAD) implantation. Retrospective, nonrandomized, observational study. Single tertiary-level, university-affiliated hospital. The study comprised 100 patients with systolic heart failure undergoing elective LVAD implantation. Transesophageal echocardiographic images before and after cardiopulmonary bypass were analyzed to quantify RV function using tricuspid annular plane systolic excursion (TAPSE), tricuspid annular systolic velocity (S'), fractional area change (FAC), RV global longitudinal strain, and RV free wall strain. A chart review was performed to determine which patients subsequently developed RV failure (right ventricular assist device placement or prolonged inotrope requirement ≥14 days). Nineteen patients (19%) subsequently developed RV failure. Postbypass FAC was the only measure of RV function that distinguished between the RV failure and non-RV failure groups (21.2% v 26.5%; p = 0.04). The sensitivity, specificity, and area under the curve of an abnormal RV FAC (failure after LVAD implantation were 84%, 20%, and 0.52, respectively. No other intraoperative measure of RV function was associated with subsequent RV failure. RV failure increased ventilator time, intensive care unit and hospital length of stay, and mortality. Intraoperative measures of RV function such as tricuspid annular plane systolic excursion, tricuspid annular systolic velocity, and RV strain were not associated with RV failure after LVAD implantation. Decreased postbypass FAC was significantly associated with RV failure but showed poor discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  1. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  2. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  3. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  4. FERC perspectives on nuclear fuel accounting issues

    International Nuclear Information System (INIS)

    McDanal, M.W.

    1986-01-01

    The purpose of the presentation is to discuss the treatment of nuclear fuel and problems that have evolved in industry practices in accounting for fuel. For some time, revisions to the Uniform System of Accounts have been considered with regard to the nuclear fuel accounts. A number of controversial issues have been encountered on audits, including treatment of nuclear fuel enrichment charges, costs associated with delays in enrichment services, the treatment and recognition of fuel inventories in excess of current or projected needs, and investments in and advances to mining and milling companies for future deliveries of nuclear fuel materials. In an effort to remedy the problems and to adapt the Federal Energy Regulatory Commission's accounting to more easily provide for or point out classifications for each problem area, staff is reevaluating the need for contemplated amendments to the Uniform System of Accounts

  5. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  6. Globalization of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rougeau, J.P. [Cogema, Corporate Strategy and International Development, Velizy (France)

    1996-07-01

    The article deals with the increased scale and sophistication of the markets in the nuclear fuel cycle, with the increased vulnerability to outside pressures, and with changes in the decision process.

  7. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  8. An introduction to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1986-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work;second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity;and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US. 34 figs., 10 tabs

  9. Modeling the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Dunzik-Gougar, Mary Lou; Juchau, Christopher A.

    2010-01-01

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  10. Recent progress in the development of Terumo implantable left ventricular assist system.

    Science.gov (United States)

    Nojiri, C; Kijima, T; Maekawa, J; Horiuchi, K; Kido, T; Sugiyama, T; Mori, T; Sugiura, N; Asada, T; Shimane, H; Ozaki, T; Suzuki, M; Akamatsu, T; Akutsu, T

    1999-01-01

    The research group of the Terumo Corporation, the NTN Corporation, and Setsunan University (T. Akamatsu) has been developing an implantable left ventricular assist system (ILVAS) featuring a centrifugal blood pump with a magnetically suspended impeller (MSCP). The impeller of the MSCP is suspended by a magnetic bearing, providing contact-free rotation of the impeller inside the pump housing. Thus the MSCP is expected to provide years of long-term durability. Ex vivo chronic sheep experiments using the extracorporeal model (Model I) demonstrated long-term durability, nonthrombogenicity, and a low hemolysis rate (plasma free Hb model (Model II; 196 ml, 400 g) was evaluated ex vivo in 2 sheep and intrathoracically implanted in a small sheep (45 kg). These experiments were terminated at 70, 79, and 17 days, respectively, because of blood leakage through the connector system within the housing of Model II. There was no thrombus formation on the retrieved pump surfaces. A new connector system was introduced to the Model II pump (modified Model II), and the pump was intrathoracically implanted in a sheep. Pump flow rate was maintained at 3-7 L/min at 1700-1800 rpm. The temperature elevation on the surfaces of the motor and the electromagnet inside the pump casing was kept less than 6 degrees C. The temperature of the tissue adjacent to the pump casing became normal 10 days postoperatively. The sheep survived for more than 5 months without any sign of mechanical failure or thromboembolic complication. In vitro real-time endurance tests of motor bearings made of stainless steel and silicone nitride have been conducted for more than 1 year without any sign of bearing wear. The next prototype system (Model III), with an implantable controller and a new MSCP with reduced input power, has been developed with a view toward a totally implantable LVAS.

  11. Superior transseptal approach to mitral valve is associated with a higher need for pacemaker implantation than the left atrial approach

    DEFF Research Database (Denmark)

    Lukac, Peter; Hjortdal, Vibeke E; Pedersen, Anders K

    2006-01-01

    retrospectively evaluated. The surgeons used either the superior transseptal (group A) or left atrial approach (group B). The risk of pacemaker implantation associated with the superior transseptal approach as compared with the left atrial approach was estimated using the multivariate Cox regression analysis...... to adjust for possible confounders. RESULTS: We included 577 patients, 150 in group A and 427 in group B. Forty-four patients had a pacemaker implanted after the surgery; 17 in group A and 27 in group B (p = 0.010). The superior transseptal approach was an independent risk factor of pacemaker implantation...... in multivariate analysis (hazard ratio 2.2 [1.2 to 4.1], p = 0.014). Nineteen patients had a pacemaker implanted because of sinus node dysfunction; 9 in group A and 10 in group B (p = 0.017). Group A was an independent predictor of pacemaker implantation because of sinus node dysfunction in bivariate analyses...

  12. Calculation of the ALMA Risk of Right Ventricular Failure After Left Ventricular Assist Device Implantation.

    Science.gov (United States)

    Loforte, Antonio; Montalto, Andrea; Musumeci, Francesco; Amarelli, Cristiano; Mariani, Carlo; Polizzi, Vincenzo; Lilla Della Monica, Paola; Grigioni, Francesco; Di Bartolomeo, Roberto; Marinelli, Giuseppe

    2018-05-08

    Right ventricular failure after continuous-flow left ventricular assist device (LVAD) implantation is still an unsolved issue and remains a life-threatening event for patients. We undertook this study to determine predictors of the patients who are candidates for isolated LVAD therapy as opposed to biventricular support (BVAD). We reviewed demographic, echocardiographic, hemodynamic, and laboratory variables for 258 patients who underwent both isolated LVAD implantation and unplanned BVAD because of early right ventricular failure after LVAD insertion, between 2006 and 2017 (LVAD = 170 and BVAD = 88). The final study patients were randomly divided into derivation (79.8%, n = 206) and validation (20.1%, n = 52) cohorts. Fifty-seven preoperative risk factors were compared between patients who were successfully managed with an LVAD and those who required a BVAD. Nineteen variables demonstrated statistical significance on univariable analysis. Multivariable logistic regression analysis identified destination therapy (odds ratio [OR] 2.0 [1.7-3.9], p = 0.003), a pulmonary artery pulsatility index right ventricle/left ventricle end-diastolic diameter ratio >0.75 (OR 2.7 [1.5-5.5], p = 0.001), an right ventricle stroke work index 17 (OR 3.5 [1.9-6.9], p the major predictors of the need for BVAD. Using these data, we propose a simple risk calculator to determine the suitability of patients for isolated LVAD support in the era of continuous-flow mechanical circulatory support devices.

  13. A Path Forward to Advanced Nuclear Fuels: Spectroscopic Calorimetry of Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Tobin, J.G.

    2009-01-01

    The goal is to relieve the shortage of thermodynamic and kinetic information concerning the stability of nuclear fuel alloys. Past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. Thermodynamic data is key to predicting the possibilities of effects such as constituent redistribution within the fuel rods and interaction with cladding materials

  14. Nuclear fuel management in JMTR

    International Nuclear Information System (INIS)

    Naka, Michihiro; Miyazawa, Masataka; Sato, Hiroshi; Nakayama, Fusao; Ito, Haruhiko

    1999-01-01

    The Japan Materials Testing Reactor (JMTR) is the largest scale materials (author)ted the fission gas release compared with the steady state opkW/l in Japan. JMTR as a multi-purpose reactor has been contributing to research and development on nuclear field with a wide variety of irradiation for performing engineering tests and safety research on fuel and component for light water reactor as well as fast breeder reactor, high temperature gas-cooled reactor etc., for research and development on blanket material for fusion reactor, for fundamental research, and for radio-isotope (RI) production. The driver nuclear fuel used in JMTR is aluminum based MTR type fuel. According to the Reduced Enrichment for Research and Test Reactors (RERTR) Program, the JMTR fuel elements had been converted from 93% high enriched uranium (HEU) fuel to 45% medium enriched uranium (MEU) fuel in 1986, and then to 20% low enriched uranium (LEU) fuel in 1994. The cumulative operation cycles until March 1999 reached to 127 cycles since the first criticality in 1968. JMTR has used 1,628 HEU, 688 MEU and 308 LEU fuel elements for these operation cycles. After these spent fuel elements were cooled in the JMTR water canal more than one year after discharged from the JMTR core, they had been transported to reprocessing plants in Europe, and then to plants in USA in order to extract the uranium remaining in the spent fuel. The JMTR spent fuel transportation for reprocessing had been continued until the end of 1988. However, USA had ceased spent fuel reprocessing in 1989, while USDOE committed to prepare an environmental review of the impacts of accepting spent fuels from foreign research reactors. After that, USDOE decided to implement a new acceptance policy in 1996, the spent fuel transportation from JMTR to Savannah River Site was commenced in 1997. It was the first transportation not only in Japan but in Asia also. Until resuming the transportation, the spent fuel elements stored in JMTR

  15. Sufficiency of the Nuclear Fuel

    International Nuclear Information System (INIS)

    Pevec, D.; Knapp, V.; Matijevic, M.

    2008-01-01

    Estimation of the nuclear fuel sufficiency is required for rational decision making on long-term energy strategy. In the past an argument often invoked against nuclear energy was that uranium resources are inadequate. At present, when climate change associated with CO 2 emission is a major concern, one novel strong argument for nuclear energy is that it can produce large amounts of energy without the CO 2 emission. Increased interest in nuclear energy is evident, and a new look into uranium resources is relevant. We examined three different scenarios of nuclear capacity growth. The low growth of 0.4 percent per year in nuclear capacity is assumed for the first scenario. The moderate growth of 1.5 percent per year in nuclear capacity preserving the present share in total energy production is assumed for the second scenario. We estimated draining out time periods for conventional resources of uranium using once through fuel cycle for the both scenarios. For the first and the second scenario we obtained the draining out time periods for conventional uranium resources of 154 years and 96 years, respectively. These results are, as expected, in agreement with usual evaluations. However, if nuclear energy is to make a major impact on CO 2 emission it should contribute much more in the total energy production than at present level of 6 percent. We therefore defined the third scenario which would increase nuclear share in the total energy production from 6 percent in year 2020 to 30 percent by year 2060 while the total world energy production would grow by 1.5 percent per year. We also looked into the uranium requirement for this scenario, determining the time window for introduction of uranium or thorium reprocessing and for better use of uranium than what is the case in the once through fuel cycle. The once through cycle would be in this scenario sustainable up to about year 2060 providing most of the expected but undiscovered conventional uranium resources were turned

  16. Spent nuclear fuel storage device and spent nuclear fuel storage method using the device

    International Nuclear Information System (INIS)

    Tani, Yutaro

    1998-01-01

    Storage cells attachably/detachably support nuclear fuel containing vessels while keeping the vertical posture of them. A ventilation pipe which forms air channels for ventilating air to the outer circumference of the nuclear fuel containing vessel is disposed at the outer circumference of the nuclear fuel containing vessel contained in the storage cell. A shielding port for keeping the support openings gas tightly is moved, and a communication port thereof can be aligned with the upper portion of the support opening. The lower end of the transporting and containing vessel is placed on the shielding port, and an opening/closing shutter is opened. The gas tightness is kept by the shielding port, the nuclear fuel containing vessel filled with spent nuclear fuels is inserted to the support opening and supported. Then, the support opening is closed by a sealing lid. (I.N.)

  17. Optimal Timing of Heart Transplant After HeartMate II Left Ventricular Assist Device Implantation.

    Science.gov (United States)

    Steffen, Robert J; Blackstone, Eugene H; Smedira, Nicholas G; Soltesz, Edward G; Hoercher, Katherine J; Thuita, Lucy; Starling, Randall C; Mountis, Maria; Moazami, Nader

    2017-11-01

    Optimal timing of heart transplantation in patients supported with second-generation left ventricular assist devices (LVADs) is unknown. Despite this, patients with LVADs continue to receive priority on the heart transplant waiting list. Our objective was to determine the optimal timing of transplantation for patients bridged with continuous-flow LVADs. A total of 301 HeartMate II LVADs (Thoratec Corp, Pleasanton, CA) were implanted in 285 patients from October 2004 to June 2013, and 86 patients underwent transplantation through the end of follow-up. Optimal transplantation timing was the product of surviving on LVAD support and surviving transplant. Three-year survival after both HeartMate II implantation and heart transplantation was unchanged when transplantation occurred within 9 months of implantation. Survival decreased as the duration of support exceeded this. Preoperative risk factors for death on HeartMate II support were prior valve operation, prior coronary artery bypass grafting, low albumin, low glomerular filtration rate, higher mean arterial pressure, hypertension, and earlier date of implant. Survival for patients without these risk factors was lowest when transplant was performed within 3 months but was relatively constant with increased duration of support. Longer duration of support was associated with poorer survival for patients with many of these risk factors. Device reimplantation, intracranial hemorrhage, and postimplant dialysis during HeartMate II support were associated with decreased survival. Survival of patients supported by the HeartMate II is affected by preoperative comorbidities and postoperative complications. Transplantation before complications is imperative in optimizing survival. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  19. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)

  20. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  1. Nuclear fuel cycle and legal regulations

    International Nuclear Information System (INIS)

    Shimoyama, Shunji; Kaneko, Koji.

    1980-01-01

    Nuclear fuel cycle is regulated as a whole in Japan by the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors (hereafter referred to as ''the law concerning regulation of reactors''), which was published in 1957, and has been amended 13 times. The law seeks to limit the use of atomic energy to peaceful objects, and nuclear fuel materials are controlled centering on the regulation of enterprises which employ nuclear fuel materials, namely regulating each enterprise. While the permission and report of uses are necessary for the employment of nuclear materials under Article 52 and 61 of the law concerning regulation of reactors, the permission provisions are not applied to three kinds of enterprises of refining, processing and reprocessing and the persons who install reactors as the exceptions in Article 52, when nuclear materials are used for the objects of the enterprises themselves. The enterprises of refining, processing and reprocessing and the persons who install reactors are stipulated respectively in the law. Accordingly the nuclear material regulations are applied only to the users of small quantity of such materials, namely universities, research institutes and hospitals. The nuclear fuel materials used in Japan which are imported under international contracts including the nuclear energy agreements between two countries are mostly covered by the security measures of IAEA as internationally controlled substances. (Okada, K.)

  2. On recycling of nuclear fuel in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In Japan, atomic energy has become to accomplish the important role in energy supply. Recently the interest in the protection of global environment heightened, and the anxiety on oil supply has been felt due to the circumstances in Mideast. Therefore, the importance of atomic energy as an energy source for hereafter increased, and the future plan of nuclear fuel recycling in Japan must be promoted on such viewpoint. At present in Japan, the construction of nuclear fuel cycle facilities is in progress in Rokkasho, Aomori Prefecture. The prototype FBR 'Monju' started the general functional test in May, this year. The transport of the plutonium reprocessed in U.K. and France to Japan will be carried out in near future. This report presents the concrete measures of nuclear fuel recycling in Japan from the long term viewpoint up to 2010. The necessity and meaning of nuclear fuel recycling in Japan, the effort related to nuclear nonproliferation, the plan of nuclear fuel recycling for hereafter in Japan, the organization of MOX fuel fabrication in Japan and abroad, the method of utilizing recovered uranium and the reprocessing of spent MOX fuel are described. (K.I.)

  3. OECD - HRP Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  4. International Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  5. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.; Harris, D.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK

  6. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  7. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  8. OECD - HRP Summer School on Nuclear Fuel

    International Nuclear Information System (INIS)

    2000-01-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures

  9. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  10. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  11. Using left-ventricular-only pacing to eliminate T-wave oversensing in a biventricular implantable cardiac defibrillator.

    Science.gov (United States)

    Khoo, Clarence; Bennett, Matthew; Chakrabarti, Santabhanu; LeMaitre, John; Tung, Stanley K K

    2013-02-01

    A man aged 75 years and with nonischemic cardiomyopathy had implantation of a biventricular implantable cardiac defibrillator (ICD). Consistent biventricular pacing was limited by intermittent T-wave oversensing (TWOS). A strategy of left-ventricular-only pacing was used to eliminate TWOS. This strategy obviates the need to reduce ventricular sensitivity and thus may be an effective alternative to biventricular pacing complicated by TWOS. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  12. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  13. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  14. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1983-05-01

    The Canadian Nuclear Fuel Waste Management Program is now well established. This report outlines the generic research and technological development underway in this program to assess the concept of immobilization and subsequent disposal of nuclear fuel waste deep in a stable plutonic rock in the Canadian Shield. The program participants, funding, schedule and associated external review processes are briefly outlined. The major scientific and engineering components of the program, namely, immobilization studies, geoscience research and environmental and safety assessment, are described in more detail

  15. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  16. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  17. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  18. Advanced Nuclear Fuels Corporation: one year later

    International Nuclear Information System (INIS)

    Bjoernard, T.A.; Sofer, G.A.

    1988-01-01

    About one year ago, after 18 years of business as a wholly owned affiliate of Exxon Corporation, Exxon Nuclear Company was acquired by Siemens/KWU and its name was changed to Advanced Nuclear Fuels Corporation (ANF). This profile describes the status of ANF one year later, principally from the European perspective but with some mention of ANF's worldwide operations to provide a balanced picture. After one year of operation as an affiliate of Siemens/KWU, ANF's role remains as an independent international supplier of nuclear fuel and services to utilities in Europe, the USA and the Far East, but with substantially augmented capabilities resulting from the new affiliation

  19. Computational Design of Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-01-01

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  20. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  1. Method of producing granulated ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1976-01-01

    For the production of granulated ceramic nuclear fuels with a grain size spectrum as narrow as possible it is proposed to suspend the nuclear fuel powder in a non-aqueous solvent with small content of hydrogen (e.g. chloridized hydrocarbons) while adding a binding agent and then dry it by means of rays. As binding agent polybutyl methane acrylate in dibutyl phthalate is proposed. The method is described by the example of UO 2 -powder in trichloroethylene. The dry granulated material is produced in one working step. (UWI) [de

  2. Integrated spent nuclear fuel database system

    International Nuclear Information System (INIS)

    Henline, S.P.; Klingler, K.G.; Schierman, B.H.

    1994-01-01

    The Distributed Information Systems software Unit at the Idaho National Engineering Laboratory has designed and developed an Integrated Spent Nuclear Fuel Database System (ISNFDS), which maintains a computerized inventory of all US Department of Energy (DOE) spent nuclear fuel (SNF). Commercial SNF is not included in the ISNFDS unless it is owned or stored by DOE. The ISNFDS is an integrated, single data source containing accurate, traceable, and consistent data and provides extensive data for each fuel, extensive facility data for every facility, and numerous data reports and queries

  3. Globalisation of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.-P.; Durret, L.-F.

    1995-01-01

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK)

  4. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1983 are described in this report

  5. Annotated Bibliography for Drying Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  6. Accidents, troubles and others in nuclear fuel facilities in fiscal year 1988

    International Nuclear Information System (INIS)

    1990-01-01

    The number of the accidents, troubles and others reported on the basis of the 'Law concerning the regulation of nuclear raw material substances, nuclear fuel substances and nuclear reactors' in fiscal year 1988 was one. On February 23, 1989, in the controlled area of the plutonium waste treatment development facilities in Tokai Works. Power Reactor and Nuclear Fuel Development Corp., when one worker entered from a corridor into the material store, he fell down by mistake and broke the left collarbone, which required the hospitalization for about one month. (K.I.)

  7. Ministerial ordinance on the establishment of a reserve fund for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    1984-01-01

    The ministerial ordinance provides for a reserve fund for spent nuclear fuel reprocessing, according to the Electricity Enterprises Act. The Government designates an electricity enterprise that must deposit a reserve fund for spent nuclear fuel reprocessing. The electricity enterprise concerned must deposit a certain sum of money as a reserve fund which is the payment left over from spent fuel reprocessing at the end of a fiscal year minus the same at the end of the preceding year less a certain sum, when the former exceeds the latter. Then, concerning the remainder of the reserve fund in the preceding year, a certain sum must be subtracted from this reserve fund. (Mori, K.)

  8. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  9. Frailty and outcomes after implantation of left ventricular assist device as destination therapy.

    Science.gov (United States)

    Dunlay, Shannon M; Park, Soon J; Joyce, Lyle D; Daly, Richard C; Stulak, John M; McNallan, Sheila M; Roger, Véronique L; Kushwaha, Sudhir S

    2014-04-01

    Frailty is recognized as a major prognostic indicator in heart failure. There has been interest in understanding whether pre-operative frailty is associated with worse outcomes after implantation of a left ventricular assist device (LVAD) as destination therapy. Patients undergoing LVAD implantation as destination therapy at the Mayo Clinic, Rochester, Minnesota, from February 2007 to June 2012, were included in this study. Frailty was assessed using the deficit index (31 impairments, disabilities and comorbidities) and defined as the proportion of deficits present. We divided patients based on tertiles of the deficit index (>0.32 = frail, 0.23 to 0.32 = intermediate frail, <0.23 = not frail). Cox proportional hazard regression models were used to examine the association between frailty and death. Patients were censored at death or last follow-up through October 2013. Among 99 patients (mean age 65 years, 18% female, 55% with ischemic heart failure), the deficit index ranged from 0.10 to 0.65 (mean 0.29). After a mean follow-up of 1.9 ± 1.6 years, 79% of the patients had been rehospitalized (range 0 to 17 hospitalizations, median 1 per person) and 45% had died. Compared with those who were not frail, patients who were intermediate frail (adjusted HR 1.70, 95% CI 0.71 to 4.31) and frail (HR 3.08, 95% CI 1.40 to 7.48) were at increased risk for death (p for trend = 0.004). The mean (SD) number of days alive out of hospital the first year after LVAD was 293 (107) for not frail, 266 (134) for intermediate frail and 250 (132) for frail patients. Frailty before destination LVAD implantation is associated with increased risk of death and may represent a significant patient selection consideration. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  10. Ontario Hydro's plan for used nuclear fuel

    International Nuclear Information System (INIS)

    Stevens-Guille, P.D.; Howes, H.A.; Freire-Canosa, J.

    1992-01-01

    A comprehensive plan for the management of used nuclear fuel has been published by Ontario Hydro. In this paper current practices are discussed and actions leading to disposal in a repository are outlined. Extended storage options are discussed should disposal be delayed

  11. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  12. Regulation on control of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ikeda, Kaname

    1976-01-01

    Some comment is made on the present laws and the future course of consolidating the regulation of nuclear fuel materials. The first part gives the definitions of the nuclear fuel materials in the laws. The second part deals with the classification and regulation in material handling. Refinement undertaking, fabrication undertaking, reprocessing undertaking, the permission of the government to use the materials, the permission of the government to use the materials under international control, the restriction of transfer and receipt, the reporting, and the safeguard measures are commented. The third part deals with the strengthening of regulation. The nuclear fuel safety deliberation special committee will be established at some opportunity of revising the ordinance. The nuclear material safeguard special committee has been established in the Atomic Energy Commission. The last part deals with the future course of legal consolidation. The safety control will be strengthened. The early investigation of waste handling is necessary, because low level solid wastes are accumulating at each establishment. The law for transporting nuclear materials must be consolidated as early as possible to correspond to foreign transportation laws. Physical protection is awaiting the conclusions of the nuclear fuel safeguard special committee. The control and information systems for the safeguard measures must be consolidated in the laws. (Iwakiri, K.)

  13. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  14. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  15. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  16. Plutonium, nuclear fuel; Le plutonium, combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires, Saclay

    1960-07-01

    A review of the physical properties of metallic plutonium, its preparation, and the alloys which it forms with the main nuclear metals. Appreciation of its future as a nuclear fuel. (author) [French] Apercu sur les proprietes physiques du plutonium metallique, sa preparation, ses alliages avec les principaux metaux nucleaires. Consideration sur son avenir en tant que combustible nucleaire. (auteur)

  17. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  18. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  19. The sea transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Miller, M.L.

    1995-01-01

    The paper describes the development of a transport system dedicated to the sea transport of irradiated nuclear fuel. It reviews the background to why shipments were required and the establishment of a specialist shipping company, Pacific Nuclear Transport Limited. A description of the ships, flasks and other equipment utilized is provided, together with details of key procedures implemented to ensure safety and customer satisfaction

  20. British Nuclear Fuels - a dirty business

    International Nuclear Information System (INIS)

    Bunyard, P.

    1983-01-01

    The radioactive discharges from British Nuclear Fuels Sellafield, Cumbria, reprocessing plant to the sea are discussed. Statements that have been made by various individuals and groups about the contamination of the sea, the coast and places inland, and the biological effects of plutonium and americium, are discussed in detail. Particular stress is placed on statements about increased incidence of cancers. (U.K.)

  1. Recent developments in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Wunderer, A.

    1984-01-01

    There is a description of the present situation in each individual area of the nuclear fuel cycle. Further topics are: risk and safety factors and emissions from the fuel cycle, availability and disruptions, waste disposal and the storage of radioactive waste. (UA) [de

  2. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  3. Comparison of spent nuclear fuel management alternatives

    International Nuclear Information System (INIS)

    Beebe, C.L.; Caldwell, M.A.

    1996-01-01

    This paper reports the process an results of a trade study of spent nuclear fuel (SNF)management alternatives. The purpose of the trade study was to provide: (1) a summary of various SNF management alternatives, (2) an objective comparison of the various alternatives to facilitate the decision making process, and (3) documentation of trade study rational and the basis for decisions

  4. Nuclear fuel treatment facility for 'Mutsu'

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Fujimura, Kazuo; Horiguchi, Eiji; Kobayashi, Tetsuji; Tamekiyo, Yoshizou

    1989-01-01

    A new fixed mooring harbor in Sekinehama and surrounding land facilities to accommodate a test voyage for the nuclear-powered ship 'Mutsu' in 1990 were constructed by the Japan Atomic Energy Research Institute. Kobe Steel took part in the construction of the nuclear fuel treatment process in various facilities, beginning in October, 1988. This report describes the outline of the facility. (author)

  5. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  6. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  7. Chemical aspects of nuclear fuel fabrication processes

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, A; Ellis, J F; Watson, R H

    1986-04-01

    Processes used by British Nuclear Fuels plc for the conversion of uranium ore concentrates to uranium metal and uranium hexafluoride, are reviewed. Means of converting the latter compound, after enrichment, to sintered UO/sub 2/ fuel bodies are also described. An overview is given of the associated chemical engineering technology.

  8. Nuclear fuel cycle and no proliferation

    International Nuclear Information System (INIS)

    Villagra Delgado, Pedro

    2005-01-01

    The worry produced by the possibility of new countries acquiring nuclear weapons through the forbidden use of sensitive installations for the production of fissionable materials, had arisen proposals intended to restrict activities related to the full nuclear fuel cycle, even when these activities are allowed in the frame of rules in force for the peaceful uses of nuclear energy. (author) [es

  9. Transport insurance of unirradiated nuclear fuels

    International Nuclear Information System (INIS)

    Matto, H.

    1985-01-01

    Special conditions must be taken into account in transport insurance for nuclear materials even if the nuclear risk involved is negligible, as in shipments of unirradiated nuclear fuels. The shipwreck of the 'Mont Louis' has raised a number of open points which must be solved pragmatically within the framework of transport insurance. Some proposals are outlined in the article. (orig.) [de

  10. Method of dismantling nuclear fuel elements

    International Nuclear Information System (INIS)

    Adams, G.J.

    1983-01-01

    Nuclear fuel assemblies of the kind comprising fuel pins in dimpled cellular grids are freed from the grids to aid dismantling of the assemblies by causing a rotary sleeve to pass concentrically over the pins to remove the dimples in the grids and thereby increase the freedom of the pins in the cells of the grids. (author)

  11. Crushing method for nuclear fuel powder

    International Nuclear Information System (INIS)

    Hasegawa, Shin-ichi; Tsuchiya, Haruo.

    1997-01-01

    A crushing medium is contained in mill pots disposed at the circumferential periphery of a main axis. The diameter of each mill pot is determined such that powdery nuclear fuels containing aggregated powders and ground and mixed powders do not reach criticality. A plurality of mill pots are revolved in the direction of the main axis while each pots rotating on its axis. Powdery nuclear fuels containing aggregated powders are conveyed to a supply portion of the moll pot, and an inert gas is supplied to the supply portion. The powdery nuclear fuels are supplied from the supply portion to the inside of the mill pots, and the powdery nuclear fuels containing aggregated powders are crushed by centrifugal force caused by the rotation and the revolving of the mill pots by means of the crushing medium. UO 2 powder in uranium oxide fuels can be crushed continuously. PuO 2 powder and UO 2 powder in MOX fuels can be crushed and mixed continuously. (I.N.)

  12. Spent nuclear fuel project product specification

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    1999-01-01

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project

  13. Potential information requirements for spent nuclear fuel

    International Nuclear Information System (INIS)

    Disbrow, J.A.

    1991-01-01

    This paper reports that the Energy Information Administration (EIA) has performed analyses of the requirements for data and information for the management of commercial spent nuclear fuel (SNF) designated for disposal under the Nuclear Waste Policy Act (NWPA). Subsequently, the EIA collected data on the amounts and characteristics of SNF stored at commercial nuclear facilities. Most recently, the EIA performed an analysis of the international and domestic laws and regulations which have been established to ensure the safeguarding, accountability, and safe management of special nuclear materials (SNM). The SNM of interest are those designated for permanent disposal by the NWPA. This analysis was performed to determine what data and information may be needed to fulfill the specific accountability responsibilities of the Department of Energy (DOE) related to SNF handling, transportation, storage and disposal; to work toward achieving a consistency between nuclear fuel assembly identifiers and material weights as reported by the various responsible parties; and to assist in the revision of the Nuclear Fuel Data Form RW-859 used to obtain spent nuclear fuel characteristics data from the nuclear utilities

  14. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  15. Summary of nuclear fuel reprocessing activities around the world

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  16. Nuclear fuel waste policy in Canada

    International Nuclear Information System (INIS)

    Brown, P.A.; Letourneau, C.

    1999-01-01

    The 1996 Policy Framework for Radioactive Waste established the approach in Canada for dealing with all radioactive waste, and defined the respective roles of Government and waste producers and owners. The Policy Framework sets the stage for the development of institutional and financial arrangements to implement long-term waste management solutions in a safe, environmentally sound, comprehensive, cost-effective and integrated manner. For nuclear fuel waste, a 10-year environmental review of the concept to bury nuclear fuel waste bundles at a depth of 500 m to 1000 m in stable rock of the Canadian Shield was completed in March 1998. The Review Panel found that while the concept was technically safe, it did not have the required level of public acceptability to be adopted at this time as Canada's approach for managing its nuclear fuel waste. The Panel recommended that a Waste Management Organization be established at arm's length from the nuclear industry, entirely funded by the waste producers and owners, and that it be subject to oversight by the Government. In its December 1998 Response to the Review Panel, the Government of Canada provided policy direction for the next steps towards developing Canada's approach for the long-term management of nuclear fuel waste. The Government chose to maintain the responsibility for long-term management of nuclear fuel waste close with the producers and owners of the waste. This is consistent with its 1996 Policy Framework for Radioactive Waste. This approach is also consistent with experience in many countries. In addition, the federal government identified the need for credible federal oversight. Cabinet directed the Minister of NRCan to consult with stakeholders, including the public, and return to ministers within 12 months with recommendations on means to implement federal oversight. (author)

  17. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  18. Successful Implantation of a Left Ventricular Assist Device in a Patient with Heparin-Induced Thrombocytopenia and Thrombosis

    Science.gov (United States)

    Garland, Cassandra; Somogyi, David

    2014-01-01

    Abstract: We report the case of a 27-year-old woman with signs of heparin-induced thrombocytopenia and thrombosis (HITT) and left heart failure presenting for urgent implantation of a left ventricular assist device (LVAD). HITT can occur in 4.2–6.1% of patients with LVADs. If the patient remains hemodynamically stable, implantation can be delayed for several months until the heparin/PF-4 antibodies decline allowing the use of heparin on cardiopulmonary bypass, However, in most cases related to cardiogenic shock, surgery cannot be delayed. We present the case of a patient who underwent implantation of a HeartMate II LVAD and discuss management strategy using bivalirudin during cardiopulmonary bypass. PMID:25208434

  19. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  20. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  1. A Respiratory Marker Derived From Left Vagus Nerve Signals Recorded With Implantable Cuff Electrodes.

    Science.gov (United States)

    Sevcencu, Cristian; Nielsen, Thomas N; Kjaergaard, Benedict; Struijk, Johannes J

    2018-04-01

    Left vagus nerve (LVN) stimulation (LVNS) has been tested for lowering the blood pressure (BP) in patients with resistant hypertension (RH). Whereas, closed-loop LVNS (CL-LVNS) driven by a BP marker may be superior to open-loop LVNS, there are situations (e.g., exercising) when hypertension is normal. Therefore, an ideal anti-RH CL-LVNS system requires a variable to avoid stimulation in such conditions, for example, a respiratory marker ideally extracted from the LVN. As the LVN conducts respiratory signals, this study aimed to investigate if such signals can be recorded using implantable means and if a marker to monitor respiration could be derived from such recordings. The experiments were performed in 14 anesthetized pigs. Five pigs were subjected to changes of the respiratory frequency and nine to changes of the respiratory volume. The LVN electroneurogram (VENG) was recorded using two cuff electrodes and the respiratory cycles (RC) using a pressure transducer. To separate the afferent and efferent VENGs, vagotomy was performed between the cuffs in the first group of pigs. The VENG was squared to derive respiration-related neural profiles (RnPs) and their correlation with the RCs was investigated in regard to timing and magnitude parameters derived from the two waveforms. The RnPs were morphologically similar with the RCs and the average RnPs represented accurate copies of the average RCs. Consequently, the lung inflation/deflation RC and RnP components had the same duration, the respiratory frequency changes affected in the same way both waveforms and the RnP amplitude increased linearly with the lung inflation in all tested pigs (R 2 values between 0.85 and 0.99). The RnPs comprise information regarding the timing and magnitude of the respiratory parameters. As those LVN profiles were derived using implantable means, this study indicates that the RnPs could serve as respiratory markers in implantable systems. © 2017 International Neuromodulation Society.

  2. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  3. Utilities' nuclear fuel economic evaluation methods

    International Nuclear Information System (INIS)

    Sonz, L.A.

    1987-01-01

    This paper presents the typical perceptions, methods, considerations, and procedures used by an operating electric utility in the economic evaluation of nuclear fuel preparation and utilization scenarios. The means given are probably not an exclusive review of those available, but are the author's recollection of systems employed to select and recommend preferable courses of action. Economic evaluation of proposed nuclear fuel scenarios is an important, but not exclusive, means of deciding on corporate action. If the economic evaluation is performed and coordinated with the other corporate considerations, such as technical and operational ability, electrical system operations management, tax effects, capital management, rates impact, etc., then the resultant recommendation may be employed to the benefit of the customers and, consequently, to the corporation

  4. Nuclear fuel particle and method of production

    International Nuclear Information System (INIS)

    Wagner-Loffler, M.

    1975-01-01

    The core consisting of fuel oxide (UO 2 or Th or Pu oxide) of a fuel particle coated with carbon-contained material is enriched with a small addition (max 6 wt.%) of a Ba or Sr compound (atomic ratio for nuclear fuel oxide Ba being 5 - 10 : 1) which is to prevent fission products breaking the protective carbon and/or silicon carbide coating; the Ba or Sr molybdate generated is to reduce the pressure of the carbon dioxide produced. Methods to manufacture such nuclear fuel particles are proposed where 1) an agglomerisation and shaping of the spheres in a fast cycling bowle and 2) a formation of drops from a colloidal solution which are made to congeal in a liquid paraffin column, take place followed by the pyrolytic coating of the particles. (UWI/LH) [de

  5. International nuclear fuel cycle fact book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  6. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information

  7. The economy of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, W [Alpha Chemie und Metallurgie G.m.b.H. (ALKEM), Hanau (Germany, F.R.)

    1989-07-01

    Heat extracted from nuclear fuel costs by a factor of 3 to 7 less than heat from conventional fossile fuel. So, nuclear fuel per se has an economical advantage, decreased however partly by higher nuclear plant investment costs. The standard LWR design does not allow all the fission energy stored in the fuel during on cycle to be used. It is therefore the most natural approach to separate fissionable species from fission products and consume them by fissioning. Whether this is economically justified as opposed by storing them indefinitely with spent fuel has widely been debated. The paper outlines the different approaches taken by nuclear communities worldwide and their perceived or proven rational arguments. It will balance economic and other factors for the near and distant future including advanced reactor concepts. The specific solution within the German nuclear programme will be explained, including foreseeable future trends. (orig.).

  8. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users

  9. Nuclear fuel: the thinking man's alternative

    International Nuclear Information System (INIS)

    Chamberlain, N.

    1989-01-01

    'Nuclear Fuel ' The Thinking Man's Alternative' is the title of the 55th Melchett Lecture given by Neville Chamberlain, Chief Executive of British Nuclear Fuels plc. This article is based on the address, the essence of which is that the case for nuclear power should be based upon an appreciation of the totality and sophistication of man's handling of his energy needs - not on a glib catch-phase or on a simple political dogma or on an economic argument. Arguments in favour of nuclear power were discussed. The conclusion was that nuclear energy is the thinking man's alternative because only thinking man could have and can develop it; secondly, only thinking men should be authorized to exploit and control it; thirdly, a thinking person will appreciate that, properly thought out and controlled, it must be the most important source of future energy for the benefit of mankind. (author)

  10. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  11. Challenge to establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Nakajima, Ichiro

    2000-01-01

    Japan Nuclear Cycle Development Inst. (JNC) has promoted some efforts on introduction of business management cycle system integrated on safety security and business management, planning a safety conservation system with effectiveness concept on risk, and their practice steadily and faithfully. Here were described on some characteristic items on effort of safety promotion since establishment of JNC. And, here were also introduced on outlines of some research actions, at a center of research and development on a high breeding reactor and its relating cycle technology carried out at present by JNC under aiming at establishment of the nuclear fuel recycling, that is to say the nuclear fuel cycle, in Japan to upgrade the nuclear security more and more. (G.K.)

  12. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  13. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users

  14. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Mitchell, S.J.

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information

  15. Kraftwerk Union (KWU) nuclear fuel service

    International Nuclear Information System (INIS)

    Knaab, H.; Knecht, K.; Garzarolli, F.

    1977-01-01

    Activities started with the commissioning of the first German nuclear power stations have led to the present form of the nuclear fuel customer service. In the meantime, based on these tasks numerous test and working methods were developed and applied which are now available to operators of nuclear power station. The paper describes the most important methods and instruments and surveys the nuclear fuel service tasks carriedout to date. Past experience has shown that detailed knowledge of design, fabrication as well as the possibility to compose observations with investigations of engineering and hot cell laboratories are prerequisites for successful service performance. The expected trend towards increasing frequency of service activities in the next few years must be taken into account by a continuous expansion in the number of the qualified personnel. It will become necessary for the coordination of the work at an increasing number of reactor plants to conclude long-term service agreements with the customer. (orig.) [de

  16. Radiation protection at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Endo, K.; Momose, T.; Furuta, S.

    2011-01-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation. (authors)

  17. ATALANTE, innovation for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    At Marcoule (France) CEA has been operating a facility called ATALANTE since the beginning of the eighties and dedicated to research on the nuclear fuel cycle. 4 lines of research are pursued: a technical support for nuclear industry, advanced nuclear fuel cycles, the recycling of minor actinides, and the vitrification of high level radioactive wastes. ATALANTE facility consists of 17 laboratories working on 250 glove boxes and 11 shielded hot cells. The latter allow the handling of highly gamma emitting materials through 59 workstations equipped with remote manipulatory arms, while the former allow the handling of contaminating (but low irradiating) materials like most actinides. In 2013 ATALANTE was rewarded the 'Nuclear historic landmark' by the American Nuclear Society that awards facilities that have led to major advances in scientific knowledge

  18. Assessment and balancing of nuclear fuels

    International Nuclear Information System (INIS)

    Reinhard, H.

    1982-01-01

    In 1981 nuclear energy had a share of ca. 17% in the electric power supply of the F.R. of Germany. The amount of nuclear fuels required is equal to ca. 15 million tce. In public technical discussions the economic importance which must be assigned to nuclear energy, e.g. with regard to curbing the energy price development or relieving our balance of payments, is discussed in detail. On the other hand, a number of industrial aspects of nuclear energy utilization - problems of commercial or fiscal law - have been little considered in the technical literature. The following contribution is to present the principles of commercial and fiscal law which have taken shape in connection with the assessment and balancing of the single stages of the nuclear fuel cycle. (orig./UA) [de

  19. Intelligent Automated Nuclear Fuel Pellet Inspection System

    International Nuclear Information System (INIS)

    Keyvan, S.

    1999-01-01

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques

  20. Transport device for nuclear fuel powder

    International Nuclear Information System (INIS)

    Adelmann, M.

    1987-01-01

    The transport device for nuclear fuel powder, which does not disintegrate during transport, has a transport pipe which starts with its entry end from the floor or a closed container and opens with its outlet end at the top into a closed separation container connect via a powder filter to a suction pump. By alternate regular opening and closing of a first control valve for transport gas fitted to a transport pipe to a supply duct and a second control valve for transport gas fitted to the container to an additional supply duct, alternating plugs of nuclear fuel powder and transport gas cushions are formed and are transported to the outlet end of the transport pipe. (orig./HP) [de

  1. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  2. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  3. Study of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Pavelescu, M.; Borza, M.

    1975-01-01

    The authors approach theoretical treatment of isotopic composition changement for nuclear fuel in nuclear reactors. They show the difficulty of exhaustive treatment of burn-up problems and introduce the principal simplifying principles. Due to these principles they write and solve analytically the evolution equations of the concentration for the principal nuclides both in the case of fast and thermal reactors. Finally, they expose and comment the results obtained in the case of a power fast reactor. (author)

  4. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  5. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  6. Management and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1987-05-01

    The programme consists of the long-term and short-term programme, the continued bedrock investigations, the underground research laboratory, the decision-making procedure in the site selection process and information questions during the site selection process. The National Board for Spent Nuclear Fuel hereby subunits both the SKB's R and D Programme 86 and the Board's statement concerning the programme. Decisions in the matter have been made by the Board's executive committee. (DG)

  7. Financial aspects of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    A nuclear power plant has a forward supply of several years as a consequence of the long processing time of the uranium from mining to delivery of fabricated fuel elements and of the long insertion time in the reactor. This leads to a considerable capital requirement although the specific fuel costs for nuclear fuel are considerably lower then for a conventional power plant and present only 15% of the total generating costs. (orig./RW) [de

  8. Cathodic protection of a nuclear fuel facility

    International Nuclear Information System (INIS)

    Corbett, R.A.

    1989-01-01

    This article discusses corrosion on buried process piping and tanks at a nuclear fuel facility and the steps taken to design a system to control underground corrosion. Collected data have indicated that cathodic protection is needed to supplement the regular use of high-integrity, corrosion-resistant coatings; wrapping systems; special backfills; and insulation material. The technical approach discussed in this article is generally applicable to other types of power and/or industrial plants with extensive networks of underground steel piping

  9. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.; Rosinger, E.L.J.

    1984-04-01

    This report, the fifth of a series of annual reports, reviews the progress that has been made in the research and development program for the safe management and disposal of Canada's nuclear fuel waste. The report summarizes activities over the past year in the following areas: public interaction; used fuel storage and transportation; immobilization of used fuel and fuel recycle waste; geoscience research related to deep underground disposal; environmental research; and environmental and safety assessment

  10. World nuclear fuel market. Eighteenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The papers presented at the eighteenth World Nuclear Fuels Market meeting are cataloged separately. This volume includes information on the following areas of interest: world uranium enrichment capacity and enriched uranium inventories; the impact of new enrichment technologies; predictions of future market trends; non-proliferation aspects of nuclear trade; and a debate as to whether uranium can be successfully traded on a commodities exchange

  11. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  12. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  13. International trade in nuclear fuel cycle services

    International Nuclear Information System (INIS)

    May, D.

    1989-01-01

    This paper analyses and discusses general trends in international trade in nuclear fuel cycle services with particular emphasis on the development of trading patterns between Europe, North America and the Far East. The paper also examines the role of collaborative ventures in the development of the nuclear industry. Barriers to international trade, the effect of government regulations and restrictions and the impact of non-proliferation issues are discussed. (author)

  14. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  15. Effective economics of nuclear fuel power complex

    International Nuclear Information System (INIS)

    Shevelev, Ya.V.; Klimenko, A.V.

    1996-01-01

    Problems of the economic theory and practice of functioning the nuclear fuel power complex (NFPC) are considered. Using the principle of market equilibrium for optimization of the NFPC hierarchical system is analyzed. The main attention is paid to determining the prices of production and consumption of the NFPC enterprises. Economic approaches on the optimal calculations are described. The ecological safety of NPP and NFPC enterprises is analyzed. A conception of the market socialism is presented

  16. Outcomes of patients with right ventricular failure on milrinone after left ventricular assist device implantation.

    Science.gov (United States)

    Tsiouris, Athanasios; Paone, Gaetano; Brewer, Robert J; Nemeh, Hassan W; Borgi, Jamil; Morgan, Jeffrey A

    2015-01-01

    Previous studies have grouped together both patients requiring right ventricular assist devices (RVADs) with patients requiring prolonged milrinone therapy after left ventricular assist device (LVAD) implantation. We retrospectively identified 149 patients receiving LVADs and 18 (12.1%) of which developed right ventricular (RV) failure. We then separated these patients into those requiring RVADs versus prolonged milrinone therapy. This included 10 patients who were treated with prolonged milrinone and eight patients who underwent RVAD placement. Overall, the RV failure group had worse survival compared with the non-RV failure cohort (p = 0.038). However, this was only for the subgroup of patients who required RVADs, who had a 1, 6, 12, and 24 month survival of 62.5%, 37.5%, 37.5%, and 37.5%, respectively, versus 96.8%, 92.1%, 86.7%, and 84.4% for patients without RV failure (p milrinone therapy for RV failure had similar survivals compared with patients without RV failure. In the RV failure group, age, preoperative renal failure, and previous cardiac surgery were predictors of the need for prolonged postoperative milrinone. As LVADs become a more widely used therapy for patients with refractory, end-stage heart failure, it will be important to reduce the incidence of RV failure, as it yields significant morbidity and increases cost.

  17. Implant Strategy-Specific Changes in Symptoms in Response to Left Ventricular Assist Devices.

    Science.gov (United States)

    Lee, Christopher S; Gelow, Jill M; Chien, Christopher V; Hiatt, Shirin O; Bidwell, Julie T; Denfeld, Quin E; Grady, Kathleen L; Mudd, James O

    Although we know that the quality of life generally improves after left ventricular assist device (LVAD) implantation, we know little about how symptoms change in response to LVAD. The purpose of this study was to compare the changes in symptoms between bridge and destination therapy patients as part of a prospective cohort study. Physical (dyspnea and wake disturbances) and affective symptoms (depression and anxiety) were measured before LVAD and at 1, 3, and 6 months after LVAD. Multiphase growth modeling was used to capture the 2 major phases of change: initial improvements between preimplant and 1 month after LVAD and subsequent improvements between 1 and 6 months after LVAD. The sample included 64 bridge and 22 destination therapy patients as the preimplant strategy. Destination patients had worse preimplant dyspnea and wake disturbances, and they experienced greater initial improvements in these symptoms compared with bridge patients (all P .05). Destination patients had worse preimplant depression (P = .042) but experienced similar initial and subsequent improvements in depression in response to LVAD compared with bridge patients (both P > .05). Destination patients had similar preimplant anxiety (P = .279) but experienced less initial and greater subsequent improvements in anxiety after LVAD compared with bridge patients (both P < .05). There are many differences in the magnitude and timing of change in symptom responses to LVAD between bridge and destination therapy patients. Detailed information on changes in specific symptoms may better inform shared decision-making regarding LVAD.

  18. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  19. World nuclear fuel cycle requirements, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the (WOCA) World Outside Centrally Planned Economic Areas projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix E includes aggregated domestic spent fuel projections through the year 2020 for the Lower and Upper References cases and through 2037, the last year in which spent fuel is discharged, for the No New Orders case. Annual projections of spent fuel discharges through the year 2037 for individual US reactors in the No New Orders cases are included for the first time in Appendix H. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  20. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  1. Management and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1987-05-01

    The National Board for Spent Nuclear Fuel, in submitting its statement of comment to the Government on the Swedish Nuclear Fuel and Waste Management Company's (Svensk Kaernbraenslehantering AB, SKB) research programme, R and D Programme 86, has also put forward recommendations on the decision-making procedure and on the question of public information during the site selection process. In summary the Board proposes: * that the Government instruct the National Board for Spent Nuclear Fuel to issue certain directives concerning additions to and changes in R and D Programme 86, * that the Board's views on the decision-making procedure in the site selection process be taken into account in the Government's review of the so-called municipal veto in accordance with Chapter 4, Section 3 of the Act (1987:12) on the conservation of natural resources etc., NRL, * that the Board's views on the decision-making procedure and information questions during the site selection process serve as a basis for the continued work. Three appendices are added to the report: 1. Swedish review statements (SV), 2. International Reviews, 3. Report from the site selection group (SV)

  2. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  3. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  4. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1977-01-01

    A process for fabricating a body of a nuclear fuel material has the steps of admixing the nuclear fuel material in powder form wih a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions, forming the resulting mixture into a green body such as by die pressing, heating the green body to decompose substantially all of the binder into gases, further heating the body to produce a sintered body, and cooling the sintered body in a controlled atmosphere. Preferred binders used in the practice of this invention include ammonium bicarbonate, ammonium carbonate, ammonium bicarbonate carbamate, ammonium sesquicarbonate, ammonium carbamate and mixtures thereof. This invention includes a composition of matter in the form of a compacted structure suitable for sintering comprising a mixture of a nuclear fuel material and a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions. 9 claims, 4 figures

  5. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  6. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Harris, D.W.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK. (author)

  7. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  8. Hematite nuclear fuel cycle facility decommissioning

    International Nuclear Information System (INIS)

    Hayes, K.

    2004-01-01

    Westinghouse Electric Company LLC ('Westinghouse') acquired a nuclear fuel processing plant at Hematite, Missouri ('Hematite', the 'Facility', or the 'Plant') in April 2000. The plant has subsequently been closed, and its operations have been relocated to a newer, larger facility. Westinghouse has announced plans to complete its clean-up, decommissioning, and license retirement in a safe, socially responsible, and environmentally sound manner as required by internal policies, as well as those of its parent company, British Nuclear Fuels plc. ('BNFL'). Preliminary investigations have revealed the presence of environmental contamination in various areas of the facility and grounds, including both radioactive contamination and various other substances related to the nuclear fuel processing operations. The disparity in regulatory requirements for radiological and nonradiological contaminants, the variety of historic and recent operations, and the number of previous owners working under various contractual arrangements for both governmental and private concerns has resulted in a complex project. This paper discusses Westinghouse's efforts to develop and implement a comprehensive decontamination and decommissioning (D and D) strategy for the facility and grounds. (author)

  9. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  10. Environmental management in Framatome nuclear fuel

    International Nuclear Information System (INIS)

    Thiebaut, B.; Ferre, A.

    1999-01-01

    Environmental preservation is both a national regulatory requirement and a condition for economic and social development. The various industrial sites belonging to the Framatome Nuclear Fuel Organisation, whose activities range from the processing and transformation of Zirconium alloy products to the fabrication of fuel assemblies, have always demonstrated that protection of the environment was their prime concern by implementing low pollution level processes and reducing and/or recycling industrial waste and effluents. As early as January 1996, a directive issued by the Framatome Group defined its environmental policy and responsibilities in the matter. Within the Framatome Nuclear Fuel Organization, this directive has been applied by implementation of: low level pollution processes; better performance of recycling of effluents, by-products and waste; environmental information policy. In all its plants, the Framatome Nuclear Fuel Organization has decided to pursue and to step up its environmental protection policy by: officializing its action through compliance with ISO standard 14001 and certification of all its industrial sites by 2001 at the latest; launching new actions and extra investment programs. In this context, FBFC has applied for a modification of the decrees concerning the dumping of liquid and gas effluents at the Romans factory. (authors)

  11. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  12. Report of Nuclear Fuel Cycle Subcommittee

    International Nuclear Information System (INIS)

    1982-01-01

    In order to secure stable energy supply over a long period of time, the development and utilization of atomic energy have been actively promoted as the substitute energy for petroleum. Accordingly, the establishment of nuclear fuel cycle is indispensable to support this policy, and efforts have been exerted to promote the technical development and to put it in practical use. The Tokai reprocessing plant has been in operation since the beginning of 1981, and the pilot plant for uranium enrichment is about to start the full scale operation. Considering the progress in the refining and conversion techniques, plutonium fuel fabrication and son on, the prospect to technically establish the nuclear fuel cycle in Japan has been bright. The important problem for the future is to put these techniques in practical use economically. The main point of technical development hereafter is the enlargement and rationalization of the techniques, and the cooperation of the government and the people, and the smooth transfer of the technical development results in public corporations to private organization are necessary. The important problems for establishing the nuclear fuel cycle, the securing of enriched uranium, the reprocessing of spent fuel, unused resources, and the problems related to industrialization, location and fuel storing are reported. (Kako, I.)

  13. Combined percutaneous balloon mitral valvuloplasty and left atrial appendage occlusion device implantation for rheumatic mitral stenosis and atrial fibrillation

    International Nuclear Information System (INIS)

    Murdoch, Dale; McAulay, Laura; Walters, Darren L.

    2014-01-01

    Rheumatic heart disease is a common cause of cardiovascular morbidity and mortality worldwide, mostly in developing countries. Mitral stenosis and atrial fibrillation often coexist, related to both structural and inflammatory changes of the mitral valve and left atrium. Both predispose to left atrial thrombus formation, commonly involving the left atrial appendage. Thromboembolism can occur, with devastating consequences. We report the case of a 62 year old woman with rheumatic heart disease resulting in mitral stenosis and atrial fibrillation. Previous treatment with warfarin resulted in life-threatening gastrointestinal bleeding and she refused further anticoagulant therapy. A combined procedure was performed, including percutaneous balloon mitral valvuloplasty and left atrial appendage occlusion device implantation with the Atritech® Watchman® device. No thromboembolic or bleeding complications were encountered at one year follow-up. Long-term follow-up in a cohort of patients will be required to evaluate the safety and efficacy of this strategy

  14. Combined percutaneous balloon mitral valvuloplasty and left atrial appendage occlusion device implantation for rheumatic mitral stenosis and atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, Dale, E-mail: dale_murdoch@health.qld.gov.au [The Prince Charles Hospital, Brisbane (Australia); The University of Queensland, Brisbane (Australia); McAulay, Laura [The Prince Charles Hospital, Brisbane (Australia); Walters, Darren L. [The Prince Charles Hospital, Brisbane (Australia); The University of Queensland, Brisbane (Australia)

    2014-11-15

    Rheumatic heart disease is a common cause of cardiovascular morbidity and mortality worldwide, mostly in developing countries. Mitral stenosis and atrial fibrillation often coexist, related to both structural and inflammatory changes of the mitral valve and left atrium. Both predispose to left atrial thrombus formation, commonly involving the left atrial appendage. Thromboembolism can occur, with devastating consequences. We report the case of a 62 year old woman with rheumatic heart disease resulting in mitral stenosis and atrial fibrillation. Previous treatment with warfarin resulted in life-threatening gastrointestinal bleeding and she refused further anticoagulant therapy. A combined procedure was performed, including percutaneous balloon mitral valvuloplasty and left atrial appendage occlusion device implantation with the Atritech® Watchman® device. No thromboembolic or bleeding complications were encountered at one year follow-up. Long-term follow-up in a cohort of patients will be required to evaluate the safety and efficacy of this strategy.

  15. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R B; Barnard, J W; Bird, G A [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  16. The successful implantation of continuous-flow left ventricular assist device as a destination therapy in Korea: echocardiographic assessment.

    Science.gov (United States)

    Lee, Ga Yeon; Park, Sung-Ji; Kim, Sujin; Choi, Namgyung; Jeong, Dong Seop; Jeon, Eun-Seok; Lee, Young Tak

    2014-01-01

    Left ventricular assist device (LVAD) is a good treatment option for the patients ineligible for cardiac transplantation. Several studies have demonstrated that a ventricular assist device improves the quality of life and prognosis of the patients with end-stage heart failure. A 75-yr-old man debilitated with New York Heart Association (NYHA) functional class III-IV due to severe left ventricular systolic dysfunction received LVAD implantation as a destination therapy. The patient was discharged with improved functional status (NYHA functional class II) after appropriate cardiac rehabilitation and education about how to manage the device and potential emergency situations. This is the first case of successful continuous-flow LVAD implantation as a destination therapy in Korea.

  17. Implantation of a cardiac resynchronization therapy-defibrillator device in a patient with persistent left superior vena cava.

    Science.gov (United States)

    Atar, İlyas; Karaçağlar, Emir; Özçalık, Emre; Özin, Bülent; Müderrisoğlu, Haldun

    2015-06-01

    Presence of a persistent left superior vena cava (PLSVC) is generally clinically asymptomatic and discovered incidentally during central venous catheterization. However, PLSVC may cause technical difficulties during cardiac device implantation. An 82-year-old man with heart failure symptoms and an ejection fraction (EF) of 20% was scheduled for resynchronization therapy-defibrillator device (CRT-D) implantation. A PLSVC draining via a dilated coronary sinus into an enlarged right atrium was diagnosed. First, an active-fixation right ventricular lead was inserted into the right atrium through the PLSVC. The stylet was preshaped to facilitate its passage to the right ventricular apex. An atrial lead was positioned on the right atrium free wall, and an over-the-wire coronary sinus lead deployed to a stable position. CRT-D implantation procedure was successfully completed.

  18. Sex and intimacy among patients with implantable left-ventricular assist devices.

    Science.gov (United States)

    Marcuccilli, Linda; Casida, Jesus Jessie; Peters, Rosalind M; Wright, Susan

    2011-01-01

    Left-ventricular assist devices (LVADs) sustain and improve the quality of life of people living with an advanced stage of heart failure. Past research focused on the development and advancement of LVAD technology, complications, and survival rates. Limited research addressed the psychosocial aspects of living with an LVAD, yet research related to sexual functioning and intimacy is lacking. The purpose of this study was to explore and describe sex and intimacy among adults living with an LVAD. We used an interpretive phenomenological study to explore the experiences of adults living with a long-term implantable LVAD, including the effect of the LVAD on their intimate and sexual functioning. Semistructured interviews were conducted with 7 men and 2 women, 31 to 70 years of age, who had lived with the LVAD at home for at least 3 months. Interviews were audiorecorded and transcribed. The wholistic and selective approach by van Manen (Researching Lived Experience: Human Science for an Action Sensitive Pedagogy. Albany, NY: SUNY Press; 1990) guided the analysis and interpretation of the transcribed interviews. Data were organized and coded into words and phrases using qualitative software. Three themes emerged from the data: (a) improved sexual relations with LVAD, (b) sexual adjustment, and (c) nonsexual intimacy. The themes identified were consistent with the concept of normalcy from the theory of self-care. Participants reported that as the LVAD improved their overall health, their sexual functioning also improved. Participants also reported an increased sense of connectedness and intimacy with their partners even in the absence of sexual intercourse. Participants discussed ways in which they continued to develop intimate relationships even in the presence of limitations in structural and functional integrity. The knowledge derived from this study can be used as a guide for healthcare providers in counseling LVAD recipients on psychosocial and sexual health essential

  19. The Monorail Technique to Overcome Difficult Anatomical Course During Implantation of Central Venous Port via the Left Internal Jugular Vein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eu Hyun, E-mail: doorihyun6@gmail.com; Oh, Jung Suk; Chun, Ho Jong; Lee, Hae Giu; Choi, Byung Gil, E-mail: cbg@catholic.ac.kr [The Catholic University of Korea, Department of Radiology, Seoul St. Mary’s Hospital (Korea, Republic of)

    2017-03-15

    PurposeThe study aimed to introduce a monorail technique to overcome difficult anatomical course via left internal jugular vein in implantable port insertion.MethodsFrom 2007 to 2016, a total of 9346 patients were referred for implantable port insertion in our interventional unit, among which 79 cases were requested to insert on the left side. Our monorail technique was applied only when the technical challenge of the catheter tip entering the azygos vein instead of the superior vena cava occurred (n = 7). The technique consists of puncturing at the distal tip of the port catheter with a 21-gauge micropuncture needle and advancing a 0.018-in. hair-wire to guide and provide support for pre-assembled port.ResultsThe monorail technique was performed in seven patients and all but one case were technically successful, showing a technical success rate of 85.7%. There were no immediate or delayed complications.ConclusionsThe monorail technique is helpful to overcome the difficult anatomical course via left internal jugular vein in implantable port insertion.

  20. The Monorail Technique to Overcome Difficult Anatomical Course During Implantation of Central Venous Port via the Left Internal Jugular Vein

    International Nuclear Information System (INIS)

    Kim, Eu Hyun; Oh, Jung Suk; Chun, Ho Jong; Lee, Hae Giu; Choi, Byung Gil

    2017-01-01

    PurposeThe study aimed to introduce a monorail technique to overcome difficult anatomical course via left internal jugular vein in implantable port insertion.MethodsFrom 2007 to 2016, a total of 9346 patients were referred for implantable port insertion in our interventional unit, among which 79 cases were requested to insert on the left side. Our monorail technique was applied only when the technical challenge of the catheter tip entering the azygos vein instead of the superior vena cava occurred (n = 7). The technique consists of puncturing at the distal tip of the port catheter with a 21-gauge micropuncture needle and advancing a 0.018-in. hair-wire to guide and provide support for pre-assembled port.ResultsThe monorail technique was performed in seven patients and all but one case were technically successful, showing a technical success rate of 85.7%. There were no immediate or delayed complications.ConclusionsThe monorail technique is helpful to overcome the difficult anatomical course via left internal jugular vein in implantable port insertion.

  1. The Monorail Technique to Overcome Difficult Anatomical Course During Implantation of Central Venous Port via the Left Internal Jugular Vein.

    Science.gov (United States)

    Kim, Eu Hyun; Oh, Jung Suk; Chun, Ho Jong; Lee, Hae Giu; Choi, Byung Gil

    2017-03-01

    The study aimed to introduce a monorail technique to overcome difficult anatomical course via left internal jugular vein in implantable port insertion. From 2007 to 2016, a total of 9346 patients were referred for implantable port insertion in our interventional unit, among which 79 cases were requested to insert on the left side. Our monorail technique was applied only when the technical challenge of the catheter tip entering the azygos vein instead of the superior vena cava occurred (n = 7). The technique consists of puncturing at the distal tip of the port catheter with a 21-gauge micropuncture needle and advancing a 0.018-in. hair-wire to guide and provide support for pre-assembled port. The monorail technique was performed in seven patients and all but one case were technically successful, showing a technical success rate of 85.7%. There were no immediate or delayed complications. The monorail technique is helpful to overcome the difficult anatomical course via left internal jugular vein in implantable port insertion.

  2. Chemical characterization of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2011-01-01

    India is fabricating nuclear fuels for various types of reactors, for example, (U-Pu) MOX fuel of varying Pu content for boiling water reactors (BWRs), pressurized heavy water reactors (PHWRs), prototype fast breeder reactors (PFBRs), (U-Pu) carbide fuel fast breeder test reactor (FBTR), and U-based fuels for research reactors. Nuclear fuel being the heart of the reactor, its chemical and physical characterisation is an important component of this design. Both the fuel materials and finished fuel products are to be characterised for this purpose. Quality control (both chemical and physical) provides a means to ensure that the quality of the fabricated fuel conforms to the specifications for the fuel laid down by the fuel designer. Chemical specifications are worked out for the major and minor constituents which affect the fuel properties and hence its performance under conditions prevailing in an operating reactor. Each fuel batch has to be subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. A number of advanced process and quality control steps are required to ensure the quality of the fuels. Further more, in the case of Pu-based fuels, it is necessary to extract maximum quality data by employing different evaluation techniques which would result in minimum scrap/waste generation of valuable plutonium. The task of quality control during fabrication of nuclear fuels of various types is both challenging and difficult. The underlying philosophy is total quality control of the fuel by proper mix of process and quality control steps at various stages of fuel manufacture starting from the feed materials. It is also desirable to adapt more than one analytical technique to increase the confidence and reliability of the quality data generated. This is all the most required when certified reference materials are not available. In addition, the adaptation of non-destructive techniques in the chemical quality

  3. Prospects for Australian involvement in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chandra, S.; Hallenstein, C.

    1988-05-01

    A review of recent overseas developments in the nuclear industry by The Northern Territory Department of Mines and Energy suggests that there are market prospects in all stages of the fuel cycle. Australia could secure those markets through aggressive marketing and competitive prices. This report gives a profile of the nuclear fuel cycle and nuclear fuel cycle technologies, and describes the prospects of Australian involvement in the nuclear fuel cycle. It concludes that the nuclear fuel cycle industry has the potential to earn around $10 billion per year in export income. It recommend that the Federal Government: (1) re-examines its position on the Slayter recommendation (1984) that Australia should develop new uranium mines and further stages of the nuclear fuel cycle, and (2) gives it's in-principle agreement to the Northern Territory to seek expressions of interest from the nuclear industry for the establishment of an integrated nuclear fuel cycle industry in the Northern Territory

  4. Romania, producer and consumer of nuclear fuel

    International Nuclear Information System (INIS)

    Iuhas, Tiberius

    1998-01-01

    A historical sketch of the activity of Romanian Rare Metals Enterprises is presented stressing the valorization of rare metals like: - radioactive metals, uranium and thorium; - dispersed rare metals, molybdenum, monazite; - heavy and refractory metals, titanium and zirconium; rare earths, lanthanides and yttrics. The beginning and developing of research in the nuclear field is in closed relation to the existence on the domestic territory of important uranium ores the mining of which begun early in 1954. The exploitation of Baita-Bihor orebody was followed by that at Ciudanovita, Natra and Dobrei ores in Caras-Severin county. Concomitantly with the ore mining, geological research was developed covering vast areas of country's surface and using advanced investigation tools suitable for increasing depths. The next step in the nuclear fuel program was made by building a uranium concentrate (as ammonium or sodium diuranate) plant. Two purification units for processing the uranium concentrate to sintered uranium dioxide powder were completed and commissioned at Feldioara in 1986. The quality of the uranium dioxide product meets the quality standards requirements for CANDU type nuclear fuel as certified in 1994. Currently, part of the fuel load of Cernavoda reactor is fuel element clusters produced by Nuclear Fuel Plant at Pitesti of sintered powder processed at Feldioara. A list of strategic objectives of the Uranium National Company is presented among which: - maintaining the uranium mining and milling activities in close relation with the fuel requirements of Cernavoda NPP; continuing geological research in promising zones, to find new uranium orebodies, easy to mill cost effectively; decreasing the environmental impact in the geological research areas, in mining and transport affected areas and in the processing plants. The fuel demand of current operation of Cernavoda NPP Unit 1 as well as of future Unit 2 after commissioning are and will be satisfied by the

  5. Financing Strategies for Nuclear Fuel Cycle Facility

    International Nuclear Information System (INIS)

    David Shropshire; Sharon Chandler

    2005-01-01

    To help meet our nation's energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy

  6. Individual nuclear fuel rod weighing system

    International Nuclear Information System (INIS)

    Fogg, J. L.; Howell, C. A.; Smith, J. H.; Vining, G. E.

    1985-01-01

    An individual nuclear fuel rod weighing system for rods carried on a tray which moves along a materials handling conveyor. At a first tray position on the conveyor, a lifting device raises the rods off the tray and places them on an overhead ramp. A loading mechanism conveys the rods singly from the overhead ramp onto an overhead scale for individual weighing. When the tray is at a second position on the conveyor, a transfer apparatus transports each weighed rod from the scale back onto the tray

  7. Individual nuclear fuel rod weighing system

    International Nuclear Information System (INIS)

    Fogg, J.L.; Smith, J.H.; Vining, G.E.; Howell, C.A.

    1985-01-01

    An individual nuclear fuel rod weighing system for rods carried on a tray which moves along a materials handling conveyor is discussed. At a first tray position on the conveyor, a lifting device raises the rods off the tray and places them on an overhead ramp. A loading mechanism conveys the rods singly from the overhead ramp onto an overhead scale for individual weighing. When the tray is at a second position on the conveyor, a transfer apparatus transports each weighed rod from the scale back onto the tray

  8. Nuclear fuel cycle requirements in WOCA

    International Nuclear Information System (INIS)

    Klumpp, P.

    1982-02-01

    OECD/NEA will publsih an updated version of its study 'Nuclear Fuel Cycle Requirements and Supply Considerations, Through the Long-Term.' The Nuclear Research Centre Karlsruhe (KfK) was involved in the work necessary to provide this book. Although KfK had only responsiblility for part of the required computations it performed all the calculations for its own documentation interests. This documentation was felt to be a helpful background material for the reader of the second 'Yellow Book'. In this sense the original strategy computer outprints are published now without any discussion of assumptions and results. (orig.) [de

  9. Expandable device for a nuclear fuel rod

    International Nuclear Information System (INIS)

    Gesinski, L.T.

    1978-01-01

    A nuclear fuel rod and a device for use within the rod cladding to maintain the axial position of the fuel pellets stacked one atop another within the cladding are described. The device is initially of a smaller external cross-section than the fuel rod cladding internal cross-section so as to accommodate loading into the rod at preselected locations. During power operation the device responds to a rise in temperature, so as to permanently maintain its position and restrain any axial motion of the fuel pellets

  10. Remote maintenance in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Herndon, J.N.

    1985-01-01

    Remote maintenance techniques applied in large-scale nuclear fuel reprocessing plants are reviewed with particular attention to the three major maintenance philosophy groupings: contact, remote crane canyon, and remote/contact. Examples are given, and the relative success of each type is discussed. Probable future directions for large-scale reprocessing plant maintenance are described along with advanced manipulation systems for application in the plants. The remote maintenance development program within the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is also described. 19 refs., 19 figs

  11. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  12. The actual state of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sawai, Masako

    2014-01-01

    The describing author's claims are as follows: a new mythology, semi made-in Japan energy, which 'the energy fundamental plan' creates; what is a nuclear fuel cycle?; operation processes in a reprocessing plant; the existing state against a recycle in dream; does a recycle reduce waste masses?; discharged liquid and gaseous radioactive wastes; an evaluation of exposure 'the value 22 μSv is irresponsible'; the putting off of waste problem in reprocessing; a guide in reprocessing; should a reprocessing be a duty of electric power companies? (M.H.)

  13. Current Comparison of Advanced Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-01-01

    This paper compares potential nuclear fuel cycle strategies--once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectrum nuclear reactors achieves several recycling objectives; fast nuclear reactors achieve all of them

  14. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  15. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  16. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  17. Determination of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Kristak, J.; Vobecky, M.

    1973-01-01

    Samples containing a known content of 235 U were irradiated with several different neutron doses and activities were determined of radionuclides including 125 Sb, 144 Ce, 134 Cs, 154 Eu, 103 Ru, 95 Zr. The values thus obtained were divided by the 137 Cs activity value. The resulting neutron dose-dependent value is plotted into a calibration graph. The degree of nuclear fuel burn-up is obtained from the graph using an experimentally determined ratio of the activities of the above radionuclides. (B.S.)

  18. Resources of nuclear fuels and materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, K [Tokyo Inst. of Tech. (Japan); Kamiyama, Teiji; Hayashi, S; Hida, Noboru; Okano, T

    1974-11-01

    In this explanatory article, data on the world resources of nuclear fuels and materials, their production, and the present state of utilization are presented by specialists in varied fields. Main materials taken up are uranium, thorium, beryllium, zirconium, niobium, rare earth elements, graphite, and materials for nuclear fusion (heavy hydrogen and tritium). World reserves and annual production of these materials listed in a number of tables are cited from statistics of the period 1970-1973 or given by estimation. These data may be used as valuable numerical data for various projects and problems of atomic power industries.

  19. Transporting spent nuclear fuel: an overview

    International Nuclear Information System (INIS)

    1986-03-01

    Although high-level radioactive waste from both commercial and defense activities will be shipped to the repository, this booklet focuses on various aspects of transporting commercial spent fuel, which accounts for the majority of the material to be shipped. The booklet is intended to give the reader a basic understanding of the following: the reasons for transportation of spent nuclear fuel, the methods by which it is shipped, the safety and security precautions taken for its transportation, emergency response procedures in the event of an accident, and the DOE program to develop a system uniquely appropriate to NWPA transportation requirements

  20. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program is in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are described. Program funding, scheduling and associated external review processes are briefly outlined

  1. Nuclear fuel cycle: reprocessing. A bibliography

    International Nuclear Information System (INIS)

    Smith, L.B.

    1982-12-01

    This bibliography contains information on the reprocessing portion of the nuclear fuel cycle included in the Department of Energy's Energy Data Base from January 1981 through November 1982. The abstracts are grouped by subject category. Entries in the subject index also facilitate access by subject. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  2. World nuclear fuel market. Seventeenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The papers presented at the seventeenth World Nuclear Fuels Market meeting are cataloged individually. This volume includes information on the following areas of interest: historical and current aspects of the uranium and plutonium market with respect to supply and demand, pricing, spot market purchasing, and other market phenomena; impact of reprocessing and recycling uranium, plutonium, and mixed oxide fuels; role of individual countries in the market: Hungary, Germany, the Soviet Union, Czechoslovakia, France, and the US; the impact of public opinion and radioactive waste management on the nuclear industry, and a debate regarding long term versus short term contracting by electric utilities for uranium and enrichment services

  3. Legal aspects of nuclear fuel supply

    International Nuclear Information System (INIS)

    Sartorelli, C.

    1981-10-01

    This paper discusses the problems of nuclear fuel supply in the context of the types of purchase of uranium, the different technical operations involved (enrichment, reprocessing) and finally, the control exercised over such materials in the framework of IAEA Safeguards and the ''London Club'' agreement between the supplying countries. A description follows of the functions of the Euratom Supply Agency in application of the Euratom's Treaty's provisions on the principle of equal access to ores, source and special fissile materials for Community countries. (NEA) [fr

  4. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  5. Solvent extraction in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eccles, H.; Naylor, A.

    1987-01-01

    Solvent extraction techniques have been used in the uranium nuclear fuel cycle in three main areas; concentration of uranium from ore leach liquor, purification of ore concentrates and fuel reprocessing. Solvent extraction has been extended to the removal of transuranic elements from active waste liquor, the recovery of uranium from natural sources and the recovery of noble metals from active waste liquor. Schemes are presented for solvent extraction of uranium using the Amex or Dapex process; spent fuel reprocessing and the Purex process. Recent and future developments of the techniques are outlined. (UK)

  6. Dry storage of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Tolmie, R.D.

    1983-01-01

    In transferring radioactive material between the preparation and clean chambers of a dry storage complex, irradiated nuclear fuel is posted from the preparation chamber to a sealable canister supported in a closable bucket in the clean chamber, or a contaminated sealed canister is posted from a closed bucket in the clean chamber into the preparation chamber by using a facility comprising two coaxial tubes constituting a closable orifice between the two chambers, the tubes providing sealing means for the bucket, and masking means for the bucket and canister closures together with means for withdrawing the closures into the preparation chamber. (author)

  7. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1980-01-01

    A compound consisting of ammonium cations and carbonate, bicarbonate, or carbamate anions, or a mixture of such compounds, is useful as a binder for uranium dioxide fuel pellets for which it is desired to maintain a certain degree of porosity, uniformity of pore size, a lack of interconnections between the pores, and the shape or configuration of the base material particles in the final article after sintering. Upon heating, these binders decompose into gases and leave substantially no impurities. A process for sintering green nuclear fuel pellets using these binders is provided. (LL)

  8. Long island to Limerick, nuclear fuel transfer

    International Nuclear Information System (INIS)

    Jones, Bill

    1999-01-01

    The issue described is: how to move 33 shipments of radioactive nuclear fuel - 200 tons of enriched uranium pellets - on rail cars through the heart of Philadelphia, without upsetting politicians, the media and anti-nuclear activists, after a similar plan to move the fuel through New York City had been rejected in a political disaster. The answer to this is: Strategic Communications Planning. At PECO Energy's department of Corporate and Public Affairs, the research is quite clear that in risk management situations like this, the side that gets out front with the most credible information inevitably wins. That is exactly what was set out to do

  9. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  10. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  11. Structure for nuclear fuel storage pools

    International Nuclear Information System (INIS)

    Ebata, Sakae; Nichiei, Shinji.

    1979-01-01

    Purpose: To enable leak detection in nuclear fuel storage pools, as well as prevent external leakages while keeping the strength of the constructional structures. Constitution: Protection plates are provided around pool linear plates and a leak reception is provided to the bottom. Leakages are detected by leak detecting pipeways and the external leakages are prevented by collecting them in a detection area provided in the intermediate layer. Since ferro-reinforcements at the bottom wall of the pool are disconnected by the protection plate making it impossible to form the constructional body, body hunches are provided to the bottom wall of the pool for processing the ferro-reinforcements. (Yoshino, Y.)

  12. Monitoring arrangement for vented nuclear fuel elements

    International Nuclear Information System (INIS)

    Campana, R.J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180 0 rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements

  13. Fluidization calculation on nuclear fuel kernel coating

    International Nuclear Information System (INIS)

    Sukarsono; Wardaya; Indra-Suryawan

    1996-01-01

    The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program

  14. Microstructure characterization of ceramic nuclear fuel

    International Nuclear Information System (INIS)

    Boehmert, J.; Gaessner, W.

    1984-08-01

    A system of characterizing methods is described based on quantitative ceramographic methods. This system is applicable in quality assurance of UO 2 nuclear fuel in small-scale production and for determining microstructural parameters in scientific investigations. The system is based essentially on the measuring of microstructural parameters by the methods of linear analysis by the VEB Carl Zeiss Jena EPIQUANT mechanical optical microstructural analyzer. It is completed by measuring the pore size using automatic the television analyzer QTM. Before the quantitative microstructural characterization, in each case the morphology of the structure is estimated qualitatively. (author)

  15. Production of pellets for nuclear fuel elements

    International Nuclear Information System (INIS)

    Butler, G.G.

    1982-01-01

    A method for producing nuclear fuel pellets each made up of a central portion and an outer annular portion surrounding the central portion, the two portions differing in composition. Such pellets are termed annular-layered pellets. The method comprises the steps of pressing powdered refractory material which has been granulated to form separately a central portion and an outer annular portion, assembling the portions together, compacting the assembly and sintering the compact. The portions are bonded together during sintering. The difference in composition may include a difference in density or isotopic enrichment as well as a chemical difference. (author)

  16. Implantable cardioverter-defibrillators improve survival after coronary artery bypass grafting in patients with severely impaired left ventricular function

    Directory of Open Access Journals (Sweden)

    Pasque Michael K

    2007-01-01

    Full Text Available Abstract Objective Patients with severe left ventricular (LV dysfunction have a poor long term survival despite complete surgical revascularization. Recent data suggests that the use of Implantable Cardioverter-Defibrillator (ICD improves survival in patients with severe LV dysfunction. We compared the survival impact of ICD implantation in patients with severe LV dysfunction who underwent CABG. Methods Between January 1996 and August 2004, 305 patients with LV ejection fraction (EF ≤25% had CABG surgery at our institution. Demographics of patients who had received an ICD (ICD+ in the post -operative period was compared to those without ICD (ICD-. Survival was evaluated by the Kaplan-Meier method. Results Of the entire group, 35 (11.5% patients received an ICD with a median of 2 (+/-2 years after CABG. Indication for ICD implantation was clinical evidence of non sustained ventricular tachycardia (NSVT. There were no differences between the 2 groups with respect to age, gender, NYHA classification, number of bypasses, or other co-morbidities. Survival at 1, 3 and 5 years was 88%, 79%, and 67% for the ICD- group compared to 94%, 89% and 83% for the ICD+ group, respectively (figure, p Conclusion Implantation of ICD after CABG confers improved short and long term survival benefit to patients with severe LV dysfunction. Prophylactic ICD implantation in the setting of severe LV dysfunction and CABG surgery should be considered.

  17. - LAA Occluder View for post-implantation Evaluation (LOVE) - standardized imaging proposal evaluating implanted left atrial appendage occlusion devices by cardiac computed tomography

    International Nuclear Information System (INIS)

    Behnes, Michael; Akin, Ibrahim; Sartorius, Benjamin; Fastner, Christian; El-Battrawy, Ibrahim; Borggrefe, Martin; Haubenreisser, Holger; Meyer, Mathias; Schoenberg, Stefan O.; Henzler, Thomas

    2016-01-01

    A standardized imaging proposal evaluating implanted left atrial appendage (LAA) occlusion devices by cardiac computed tomography angiography (cCTA) has never been investigated. cCTA datasets were acquired on a 3 rd generation dual-source CT system and reconstructed with a slice thickness of 0.5 mm. An interdisciplinary evaluation was performed by two interventional cardiologists and one radiologist on a 3D multi-planar workstation. A standardized multi-planar reconstruction algorithm was developed in order to assess relevant clinical aspects of implanted LAA occlusion devices being outlined within a pictorial essay. The following clinical aspects of implanted LAA occlusion devices were evaluated within the most appropriate cCTA multi-planar reconstruction: (1) topography to neighboring structures, (2) peri-device leaks, (3) coverage of LAA lobes, (4) indirect signs of neo-endothelialization. These are illustrated within concise CT imaging examples emphasizing the potential value of the proposed cCTA imaging algorithm: Starting from anatomical cCTA planes and stepwise angulation planes perpendicular to the base of the LAA devices generates an optimal LAA Occluder View for post-implantation Evaluation (LOVE). Aligned true axial, sagittal and coronal LOVE planes offer a standardized and detailed evaluation of LAA occlusion devices after percutaneous implantation. This pictorial essay presents a standardized imaging proposal by cCTA using multi-planar reconstructions that enables systematical follow-up and comparison of patients after LAA occlusion device implantation. The online version of this article (doi:10.1186/s12880-016-0127-y) contains supplementary material, which is available to authorized users

  18. Proceedings of the Third Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    1998-02-01

    The proceeding contains papers presented in the Third Scientific Presentation on nuclear Fuel Element Cycle held on 4-5 Nov 1997 in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and nuclear fuel cycle. There are 38 papers indexed individually. (ID)

  19. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  20. Method for the chemical reprocessing of irradiated nuclear fuels, in particular nuclear fuels containing uranium

    International Nuclear Information System (INIS)

    Koch, G.

    1976-01-01

    In the chemical processing of irradiated uranium-containing nuclear fuels which are hydrolyzed with aqueous nitric acid, a suggestion is made to use as quaternary ammonium nitrate trialkyl-methyl ammonium nitrates as extracting agent, in which the sum of C atoms is greater than 16. In the illustrated examples, tricaprylmethylammonium nitrate, trilaurylmethylammonium nitrate and tridecylmethylammonium nitrate are named. (HPH/LH) [de

  1. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  2. Environmental management at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Choudhary, S.; Kalidas, R.

    2005-01-01

    Nuclear Fuel Complex (NFC) a unit of Department of Atomic Energy (DAE) is manufacturing and supplying fuel assemblies and structurals for Atomic Power Reactors, Seamless Stainless Steel/ Special Alloy Tubes and high purity/special materials for various industries including Atomic Energy, Space and Electronics. NFC is spread over about 200 acres area. It consists of various chemical, metallurgical, fabrication and assembly plants engaged in processing uranium from concentrate to final fuel assembly, processing zirconium from ore to metallic products and processing various special high purity materials from ore or intermediate level to the final product. The plants were commissioned in the early seventies and capacities of these plants have been periodically enhanced to cater to the growing demands of the Indian Nuclear Industry. In the two streams of plants processing Uranium and zirconium, various types and categories including low level radioactive wastes are generated. These require proper handling and disposal. The overall management of radioactive and other waste aims at minimizing the generation and release to the environment. In this presentation, the environment management methodologies as practiced in Nuclear Fuel Complex are discussed. (author)

  3. Innovative nuclear fuels: results and strategy

    International Nuclear Information System (INIS)

    Stan, Marius

    2009-01-01

    To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on the thermal conductivity, oxygen diffusivity, and thermal expansion of oxide fuels. The multi-scale approach is illustrated using results on ceramic fuels with a focus on predictions of point defect concentrations, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, gas bubble formation and temperature evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the talk is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiative are proposed to accelerate the discovery and design of new materials: (a) Develop an international pool of experts, (b) Create Institutes for Materials Discovery and Design, (c) Create an International Knowledge base for experimental data, models (mathematical expressions), and simulations (codes) and (d) Organize international workshops and conference sessions. The paper ends with a discussion of existing and emerging international collaborations.

  4. Nuclear fuel pellet collating system and method

    International Nuclear Information System (INIS)

    Rieben, S.L.; Kugler, R.W.; Scherpenberg, J.J.; Wiersema, D.T.

    1990-01-01

    This patent describes a method of collating nuclear fuel pellets. It comprises: supporting a plurality of pellet supply trays and a plurality of pellet storage trays at a tray positioning station. Each of the supply trays containing in at least one row thereon a plurality of nuclear fuel pellets of an enrichment different from the enrichment pellets on at least some other of the supply trays; transferring one pellet supply tray from the tray positioning station and disposing the same at an input station of a pellet collating line; transferring one pellet storage tray from the tray positioning station and disposing the same at an output station of the pellet collating line; sweeping pellets in the at least one row thereof from the one pellet supply tray onto a work station of the pellet collating line located between the input and output stations thereof; measuring a desired length of pellets in the at least one row on the work station and separating the measured desired length of pellets from the remaining pellets, if any, in the row thereof; sweeping the remaining pellets, if any, in the row from the work station back onto the one pellet supply tray; transferring the one pellet supply tray and remaining pellets, if any, back to the tray positioning station; sweeping the measured desired length of pellets from the work station onto the one pellet storage tray; and transferring the one pellet storage tray and measured desired length of pellets back to the tray positioning station

  5. Fuel containing vessel for transporting nuclear fuel

    International Nuclear Information System (INIS)

    Yoshizawa, Hiroyasu; Shimizu, Fukuzo; Tanaka, Nobuyuki.

    1996-01-01

    A shock absorbing mechanism is disposed on an inner bottom of a vessel main body. The shock absorbing mechanism comprises a shock absorbing member disposed on the upper surface of a bottom wall, an annular metal plate disposed on the upper surface of the shock absorbing member and an annular spacer disposed on the upper surface of the metal plate. The shock absorbing member is made of a material such as of wood, lead, metal honeycomb or a metal mesh, which plastically deforms when applied with load higher than a predetermined level, and is formed in a square block-like form covering the upper surface of the bottom wall. The spacer is made of a thin soft material such as tetrafluoroethylene, and is formed in such a shape as capable of preventing direct contact of the lower end of the cylindrical member in a lower tie plate of nuclear fuels with the metal portion. This can ensure integrity of nuclear fuels even when they fall from a high place upon an assumed dropping accident. (I.N.)

  6. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  7. Nuclear fuel - is it the unknown thing

    International Nuclear Information System (INIS)

    Feldmann, U.

    1986-01-01

    Attempts to define the term ''nuclear fuel'' will meet with manifold difficulties in practice, due to the existence of many related terms in national law, and of identically worded, but not necessarily synonymous, terms in international or supranational law. In the provisions concerning the third party liability of owners of nuclear installations, the national law of the FRG uses the term as defined by the Paris Convention. In the context of financial security for nuclear installations, the term is used within the meaning of section 2, sub-sec.(1), no. 1 of the Atomic Energy Act. A comparison of the national German law and the provisions of the Paris Convention concerning the characterization of uranium as a nuclear fuel shows that the differences in definition between PC and Atomic Energy Act are not as significant as they seem to be when reading the different texts of the provision. So it is not absolutely necessary to adopt the special definition for enriched uranium given by the Steering Committee of ENEA in order to reach agreement on the interpretation of the term. (orig.) [de

  8. Problems of the Spent Nuclear Fuel Storage

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    Approximately 99% of the radioactivity in waste, produced in the process of operating a nuclear power plant, is contained in spent nuclear fuel. Safe handling and storage of the spent nuclear fuel is an important factor of a nuclear plant safety. Today at Ignalina NPP the spent fuel is stored in special water pools, located in the same buildings as the reactors. The volume of the pools is limited, for unit one the pool will be fully loaded in 1998, for unit 2 - in 2000. The further operation of the plant will only be possible if new storage is constructed. In 1994 contract with German company GNB was signed for the supply of 20 containers of the CASTOR type. Containers were delivered in accordance with agreed schedule. In the end of 1995 a new tender for new storage options was announced in order to minimize the storage costs. A proposal from Canadian company AECL now is being considered as one of the most suitable and negotiations to sign the contract started. (author)

  9. The nuclear fuel cycle light and shadow

    International Nuclear Information System (INIS)

    Giraud, A.

    1977-01-01

    The nuclear fuel cycle industry has a far reaching effect on future world energy developments. The growth in turnover of this industry follows a known patterm; by 1985 this turnover will have reached a figure of 2 billion dollars. Furthermore, the fuel cycle plays a determining role in ensuring the physical continuity of energy supplies for countries already engaged in the nuclear domain. Finally, the development of this industry is subject to economic and political constraints which imply the availability of raw materials, technological know-how, and production facilities. Various factors which could have an adverse influence on the cycle: technical, economic, or financial difficulties, environmental impact, nuclear safety, theft or diversion of nuclear materials, nuclear weapon, proliferation risks, are described, and the interaction between the development of the cycle, energy independance, and the fulfillment of nuclear energy programs is emphasized. It is concluded that the nuclear fuel cycle industry is confronted with difficulties due to its extremely rapid growth rate (doubling every 5 years); it is a long time since such a growth rate has been experienced by any heavy industry. The task which lays before us is difficult, but the fruit is worth the toil, as it is the fuel cycle which will govern the growth of the nuclear industry [fr

  10. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  11. Spent nuclear fuel assembly storage vessel

    International Nuclear Information System (INIS)

    Yagishita, Takuya

    1998-01-01

    The vessel of the present invention promotes an effect of removing after heat of spent nuclear fuel assemblies so as not to give force to the storage vessel caused by expansion of heat removing partitioning plates. Namely, the vessel of the present invention comprises a cylinder body having closed upper and lower portions and a plurality of heat removing partitioning cylinders disposed each at a predetermined interval in the circumferential direction of the above-mentioned cylinder body. The heat removing partitioning cylinders comprises (1) first heat removing partitioning plates extended in the radial direction of the cylinder body and opposed at a predetermined gap in the circumferential direction of the cylinder body, and having the base ends on the side of the inner wall of the cylinder body being secured to the inner wall of the cylinder body and (2) a second heat removing plate for connecting the top ends of both opposed heat removing partitioning plates on the central side of the cylinder body with each other. Spent nuclear fuel assemblies are contained in a plurality of closed spaces surrounded by the first heat removing partitioning plates and the second heat removing partitioning plate. With such constitution, since after heat is partially transferred from the heat removing partitioning plates to the cylindrical body directly by heat conduction, the heat removing effect can be promoted compared with the prior art. (I.S.)

  12. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  13. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  14. Classical molecular dynamics simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Devanathan, R.; Krack, M.; Bertolus, M.

    2015-01-01

    Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)

  15. Safeguarding and Protecting the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Bjornard, Trond; Garcia, Humberto; Desmond, William; Demuth, Scott

    2010-01-01

    International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

  16. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  17. Disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  18. Strategies for a competitive nuclear fuel

    International Nuclear Information System (INIS)

    Alvarez, J. M.; Rebollo, L.

    2001-01-01

    In the new framework of electricity generation, Nuclear Power Plants are operated by the electric utilities based on the competition required by an increasingly deregulated and liberalized market so that there is frequently a competition between the strategies of innovation and standardisation. On one had, innovation promotes the use of new technologies, products and/or processes locking for a reduction of costs based on the increase of the operating margins, while, on the other hand, standardisation promotes the use of well known and consolidated technologies, products and/or processes looking for getting the maximum benefit from the accumulated previous operating experience. In order to evaluate the standardisation versus the innovation an analysis of risks and opportunities of each of these strategies applied to the industry of the nuclear fuel has been suggested. As a results of it, a combined strategy innovation + standardisation based on the integration of both basic strategies in a complementary mode, has been suggested, the disadvantages of each of these strategies being compensated with the advantages of the other one. in this way, the total risk is minimized, the global opportunities are maximized and the main overall objective of getting the maximum benefit of the combination of both strategies looking for a competitive nuclear fuel is guaranteed. (Author)

  19. Approaches for Securing the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Jae San; Kim, Min Su; Jo, Seong Youn

    2007-01-01

    The greatest challenge to international nuclear nonproliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (sensitive nuclear technologies) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials. Therefore, since 1970s the world community started to develop further measures to curb the spread of sensitive nuclear technologies. The establishment of a Nuclear Suppliers Group (NSG) in 1975 was one such measure. The NSG united countries which voluntarily agreed to coordinate their legislation regarding export of nuclear materials, equipment and technologies to countries not possessing nuclear weapons. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. It's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services

  20. Thermochemistry of nuclear fuels in advanced reactors

    International Nuclear Information System (INIS)

    Agarwal, Renu

    2015-01-01

    The presence of a large number of elements, accompanied with steep temperature gradient results in dynamic chemistry during nuclear fuel burn-up. Understanding this chemistry is very important for efficient and safe usage of nuclear fuels. The radioactive nature of these fuels puts lot of constraint on regulatory bodies to ensure their accident free operation in the reactors. One of the common aims of advanced fuels is to achieve high burn-up. As burn-up of the fuel increases, chemistry of fission-products becomes increasingly more important. To understand different phenomenon taking place in-pile, many out of-pile experiments are carried out. Extensive studies of thermodynamic properties, phase analysis, thermophysical property evaluation, fuel-fission product clad compatibility are carried out with relevant compounds and simulated fuels (SIMFUEL). All these data are compiled and jointly evaluated using different computational methods to predict fuel behaviour during burn-up. Only when this combined experimental and theoretical information confirms safe operation of the pin, a test pin is prepared and burnt in a test reactor. Every fuel has a different chemistry and different constraints associated with it. In this talk, various thermo-chemical aspects of some of the advanced fuels, mixed carbide, mixed nitride, 'Pu' rich MOX, 'Th' based AHWR fuels and metallic fuels will be discussed. (author)

  1. Legal problems of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1987-01-01

    The contributions in this book are intended to exemplify the legal situation in connection with the reprocessing of spent nuclear fuel from the point of view of constitutional law, administrative law, and international law. Outline solutions are presented with regard to ensuring health, personal freedom, democratic rights and other rights, and are discussed. The author Rossnagel investigates whether the principle of essential matter can guarantee a parliamentary prerogative concerning this field of large-scale technology. The author Schmidt shows that there is no legal obligation of commitment to a reprocessing technology that would exclude research for or application of a less hazardous technology. The contribution by Baumann explains the problems presented by a technology not yet developed to maturity with regard to the outline approval of the technological concept, which is a prerequisite of any partial licence to be issued. The final contribution by Guendling investigates the duties under international law, as for instance transfrontier information, consultation, and legal protection, and how these duties can be better put into practice in order to comply the seriousness of the hazards involved in nuclear fuel reprocessing. (orig./HP) [de

  2. Future contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    In a modern futures market, standardized contracts for future delivery of a commodity are traded through an exchange that establishes contract terms and the rules of trading. The futures contract itself is simply an agreement between a buyer and a seller in which the seller is obligated to deliver and the buyer is obligated to accept a predetermined quantity of a specified commodity at a given location on a certain date in the future for a set price. Organized futures markets aid in price discovery; provide a risk management tool for those with commercial interests in a commodity; create speculative opportunities; and contribute to competitiveness, efficiency, and fairness in trading. There are, at present, no standardized futures contracts in the nuclear fuel industry, although the concept has been discovered for years. The idea has been raised again recently in relation to the disposition of Russian uranium. Some adaptation of traditional futures contracts, traded on an exchange composed of nuclear fuel industry participants, could provide many of the benefits found in other commodity futures markets

  3. Spectroscopic methods for characterization of nuclear fuels

    International Nuclear Information System (INIS)

    Sastry, M.D.

    1999-01-01

    Spectroscopic techniques have contributed immensely in the characterisation and speciation of materials relevant to a variety of applications. These techniques have time tested credentials and continue to expand into newer areas. In the field of nuclear fuel fabrication, atomic spectroscopic methods are used for monitoring the trace metallic constituents in the starting materials and end product, and for monitoring process pick up. The current status of atomic spectroscopic methods for the determination of trace metallic constituents in nuclear fuel materials will be briefly reviewed and new approaches will be described with a special emphasis on inductively coupled plasma techniques and ETV-ICP-AES hyphenated techniques. Special emphasis will also be given in highlighting the importance of chemical separation procedures for the optimum utilization of potential of ICP. The presentation will also include newer techniques like Photo Acoustic Spectroscopy, and Electron Paramagnetic Resonance (EPR) Imaging. PAS results on uranium and plutonium oxides will be described with a reference to the determination of U 4+ /U 6+ concentration in U 3 O 8 . EPR imaging techniques for speciation and their spatial distribution in solids will be described and its potential use for Gd 3+ containing UO 2 pellets (used for flux flattening) will be highlighted. (author)

  4. Method of manufacturing nuclear fuel elements

    International Nuclear Information System (INIS)

    Ishida, Masao; Oguma, Masaomi.

    1980-01-01

    Purpose: To effectively prevent the bending of nuclear fuel elements in the reactor by grinding the end faces of pellets due to their mutual sliding. Method: In the manufacturing process of nuclear fuel elements, a plurality of pellets whose sides have been polished are fed one by one by way of a feeding mechanism through the central aperture in an electric motor into movable arms and retained horizontally with the central axis by being held on the side. Then, the pellet held by one of the arms is urged to another pellet held by the other of the arms by way of a pressing mechanism and the mating end faces of both of the pellets are polished by mutual sliding. Thereafter, the grinding dusts resulted are eliminated by drawing pressurized air and then the pellets are enforced into a cladding tube. Thus, the pellets are charged into the cladding tube with both polished end faces being contacted to each other, whereby the axial force is uniformly transmitted within the end faces to prevent the bending of the cladding tube. (Kawakami, Y.)

  5. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  6. Patient-prosthesis mismatch and left ventricular remodelling after implantation of Shelhigh SuperStentless aortic valve prostheses.

    Science.gov (United States)

    Germing, A; Lindstaedt, M; Holt, S; Reber, D; Mügge, A; Laczkovics, A; Fritz, M

    2008-08-01

    Aortic valve replacement is a standard procedure for the treatment of severe aortic valve stenosis. Due to lower flow velocities stentless valves are associated with a more effective regression of left ventricular hypertrophy in comparison to stented valves. However, mismatch between body surface area and valve size supports unfavourable hemodynamic results. The aim of the study was to analyze hemodynamic parameters by echocardiography after implantation of the Shelhigh SuperStentless bioprosthesis and to analyze the occurrence of patient-prosthesis mismatch and left ventricular remodelling in this specific valve type. A total of 20 patients with severe aortic stenosis underwent implantation of a Shelhigh Super Stentless prosthesis. Clinical and echocardiographic assessment was done prior to, immediate after and six months after surgery. All surgical procedures were successful, no surgery-related complication was documented perioperatively. One patient died after development of multiorgan failure. Echocardiography during the first eight days after surgery showed mean gradients of 16 mmHg, mean valve orifice areas of 1.8 cm(2) and indexed effective orifice areas at 0.95 cm(2)/m(2). Six-months follow-up data were obtained in 19/20 patients. There were no relevant changes in echocardiographic hemodynamic findings at the time of follow-up measurements. Significant regression of left ventricular hypertrophy was shown (P=0.0088). A patient-prosthesis mismatch occurred in one patient (0.54 cm(2)/m(2)). No recurrent symptoms were documented. Patient-prosthesis mismatch after implantation of SuperStentless Shelhigh prosthesis is rare. A significant regression of left ventricular hypertrophy could be shown after six months. Hemodynamic valve function assessed by echocardiography may be predicted early after surgery.

  7. Exfoliation of GaAs caused by MeV 1H and 4He ion implantation at left angle 100 right angle , left angle 110 right angle axial and random orientations

    International Nuclear Information System (INIS)

    Rauhala, E.; Raeisaenen, J.

    1994-01-01

    The exfoliation procedure of the ion range determination of gaseous implants in single crystal GaAs is investigated. The correlation of the observed crater depth with the ion range is studied for random, left angle 100 right angle and left angle 110 right angle axial orientation high dose implantations of 1.5-2.5 MeV 1 H and 4 He ions. Depending on the experimental conditions, the crater depths corresponded to range values between the modal range and the range maximum. The observed crater depths could be related to the actual He concentration depth distributions by determining the profiles of the 4 He implants by 2.7 MeV proton backscattering. The implantation parameters affecting the exfoliation process, and especially the increase rate of the sample temperature, are investigated. The range distribution parameters for the 1.5 MeV 4 He implants are presented. ((orig.))

  8. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  9. Over view of nuclear fuel cycle examination facility at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Key-Soon; Kim, Eun-Ga; Joe, Kih-Soo; Kim, Kil-Jeong; Kim, Ki-Hong; Min, Duk-Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-09-01

    Nuclear fuel cycle examination facilities at the Korea Atomic Energy Research Institute (KAERI) consist of two post-irradiation examination facilities (IMEF and PIEF), one chemistry research facility (CRF), one radiowaste treatment facility (RWTF) and one radioactive waste form examination facility (RWEF). This paper presents the outline of the nuclear fuel cycle examination facilities in KAERI. (author)

  10. Proceeding of the Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Suripto, A.; Yuwono, I.; Nasution, H.; Hersubeno, B.J.; Amini, S.; Sigit; Cahyono, A.

    1996-11-01

    The proceeding contains papers presented on Scientific Presentation on Nuclear Fuel Cycle held in Jakarta, 18-19 March 1996. These are 46 papers resulted from scientific works on various disciplines which have supported to nuclear fuel cycle activities both in and outside National Atomic Energy Agency of Indonesia.(ID)

  11. Proceedings of the second Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Suripto, A.; Yuwono, I.; Badruzzaman, M; Nasution, H.; Kusnowo, A; Sigit; Amini, S.

    1998-01-01

    The proceeding contains papers presented on Scientific Presentation on Nuclear Fuel Cycle held in Jakarta, 19-20 November 1996. These papers form a scientific works on various disciplines which have supported to nuclear fuel cycle activities both in and outside National Atomic Energy Agency of Indonesia. There are 48 papers indexed individually. (ID)

  12. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  13. Spent nuclear fuel project quality assurance program plan

    International Nuclear Information System (INIS)

    Lacey, R.E.

    1997-01-01

    This main body of this document describes how the requirements of 10 CFR 830.120 are met by the Spent Nuclear Fuel Project through implementation of WHC-SP-1131. Appendix A describes how the requirements of DOE/RW-0333P are met by the Spent Nuclear Fuel Project through implementation of specific policies, manuals, and procedures

  14. Post operation: The changing characteristics of nuclear fuel cycle costs

    International Nuclear Information System (INIS)

    Frank, F.J.

    1986-01-01

    Fundamental changes have occurred in the nuclear fuel cycle. These changes forged by market forces, legislative action, and regulatory climate appear to be a long term characteristic of the nuclear fuel cycle. The nature of these changes and the resulting emerging importance of post-operation and its impact on fuel cycle costs are examined

  15. The nuclear fuels tax is in conformity with constitutional law

    International Nuclear Information System (INIS)

    Faehrmann, Ingo; Ringwald, Roman

    2012-01-01

    There are rulings by three courts of finance concerning the conformity of the nuclear fuels tax with German constitutional law. While the FG Hamburg and FG Munich were in some doubt, the FG Baden-Wuerttemberg was of the opinion that the nuclear fuels tax act is compatible with German constitutional law.

  16. Method for the fabrication of nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1976-01-01

    According to the method, graphite particles are treated with a liquid impregnating agent containing heat-hardenable resin components; the resulting particles are mixed with nuclear fuel particles, and a nuclear fuel body is formed by binding the mixture of particles into a cohesive mass by means of a carbon-contained binder. The claim concerns the details of the process. (UA) [de

  17. Nuclear fuel for light water reactors. Part 2 and conclusion

    International Nuclear Information System (INIS)

    1983-01-01

    The article gives brief descriptions of a new cycle for nuclear fuel in the core and, in particular, fuel replacement, stock pool management for irradiated fuel elements, transport containers for irradiated nuclear fuels, treatment of low activity waste, the Climax system for long-term stocking of irradiated fuel, and transport of irradiated fuel over the Nevada Test Site. (A.E.W.)

  18. Nuclear fuel for VVER reactors. Actual state and trends

    International Nuclear Information System (INIS)

    Molchanov, V.

    2011-01-01

    The main tasks concerning development of FA design, development and modernization of structural materials, improvement of technology of structural materials manufacturing and FA fabrication and development of methods and codes are discussed in this paper. The main features and expected benefit of implementation of second generation and third generation fuel assembly for VVER-440 Nuclear Fuel are given. A brief review of VVER-440 and VVER-1000 Nuclear Fuel development before 1997 since 2010 is shown. A summary of VVER-440 and VVER-1000 Nuclear Fuel Today, including details about TVSA-PLUS, TVSA-ALFA, TVSA-12 and NPP-2006 Phase 2 tasks (2010-2012) is presented. In conclusion, as a result of large scope of R and D performed by leading enterprises of nuclear industry modern nuclear fuel for VVER reactors is developed, implemented and successfully operated. Fuel performance (burnup, lifetime, fuel cycles, operating reliability, etc.) meets the level of world's producers of nuclear fuel for commercial reactors

  19. Nevada commercial spent nuclear fuel transportation experience

    International Nuclear Information System (INIS)

    1991-09-01

    The purpose of this report is to present an historic overview of commercial reactor spent nuclear fuel (SNF) shipments that have occurred in the state of Nevada, and to review the accident and incident experience for this type of shipments. Results show that between 1964 and 1990, 309 truck shipments covering approximately 40,000 miles moved through Nevada; this level of activity places Nevada tenth among the states in the number of truck shipments of SNF. For the same period, 15 rail shipments moving through the State covered approximately 6,500 miles, making Nevada 20th among the states in terms of number of rail shipments. None of these shipments had an accident or an incident associated with them. Because the data for Nevada are so limited, national data on SNF transportation and the safety of truck and rail transportation in general were also assessed

  20. Characterization plan for Hanford spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF

  1. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  2. Improvements in nuclear fuel assembly sleeves

    International Nuclear Information System (INIS)

    Eaton, C.W.; Seeley, T.A.; Ince, G.; Speakman, W.T.

    1986-01-01

    The graphite sleeve of a nuclear fuel assembly or reflector element for a stringer mounts a number of grids via mounting assemblies installed in grooves formed in the interior wall surface of the sleeve. The bore of the sleeve is of reduced cross-section between two successive grooves such that the internal diameter of the sleeve is substantially the same as the inner diameter of the radially innermost extremity of the mounting assemblies whereby the coolant pressure loss at each transition between the reduced diameter bore section and the mounting assemblies is reduced. Each mounting assembly may be of radially contractable split ring construction to permit its placement in the groove and may carry burnable poison material. (author)

  3. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  4. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  5. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    1992-09-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronyms of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States

  6. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  7. Supply Security in Future Nuclear Fuel Markets

    Energy Technology Data Exchange (ETDEWEB)

    Seward, Amy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Thomas W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gitau, Ernest T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ford, Benjamin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-18

    Previous PNNL work has shown the existing nuclear fuel markets to provide a high degree of supply security, including the ability to respond to supply disruptions that occur for technical and non-technical reasons. It is in the context of new reactor designs – that is, reactors likely to be licensed and market ready over the next several decades – that fuel supply security is most relevant. Whereas the fuel design and fabrication technology for existing reactors are well known, the construction of a new set of reactors could stress the ability of the existing market to provide adequate supply redundancy. This study shows this is unlikely to occur for at least thirty years, as most reactors likely to be built in the next three decades will be evolutions of current designs, with similar fuel designs to existing reactors.

  8. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  9. Planning developments in British Nuclear Fuels Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Roper, D A [British Nuclear Fuels Ltd., Risley

    1978-10-01

    The state of the corporate planning art in British Nuclear Fuels Ltd. was described by N.R.Geary (Long Range Planning, September (1973)) just 2 years after Company formation. This article discusses more recent planning developments over the period to date during which the Company adopted a Divisionalized structure (from October 1974) and has been required to submit an annual Company plan to the Department of Energy (from November 1975). Background information on the origin and nature of the BNFL and its business, and the particular features of the Company which reflect into the nature and method of its planning were given in the 1973 article and only a brief introductory updating of the Company position is included here. Subsequently the features and problems of BNFL's operating and development planning system are described. Finally, messages arising from BNFL's planning experience to date which may be of general application and therefore of value to other practitioners of planning are listed.

  10. Nuclear fuel supply: challenges and opportunities

    International Nuclear Information System (INIS)

    Lowen, S.

    2006-01-01

    Prices of uranium, conversion services and enrichment services have all significantly increased in the last few years. These price increases have generally been driven by a tightening in the supply of these products and services, mostly due to long lead times required to bring these products and services to the market. This paper will describe the various steps in the nuclear fuel cycle for natural and enriched uranium fuel, will discuss the development of the front-end fuel cycle for low void reactivity fuel, and will address the challenges faced in the long-term supply of each component, particularly in the light of potential demand increases as a result of a nuclear renaissance. The opportunities for new capacity and uranium production will be outlined and the process required to achieve sufficient new supply will be discussed. (author)

  11. Magnetic signature surveillance of nuclear fuel

    International Nuclear Information System (INIS)

    Bernatowicz, H.; Schoenig, F.C.

    1981-01-01

    Typical nuclear fuel material contains tramp ferromagnetic particles of random size and distribution. Also, selected amounts of paramagnetic or ferromagnetic material can be added at random or at known positions in the fuel material. The fuel material in its non-magnetic container is scanned along its length by magnetic susceptibility detecting apparatus whereby susceptibility changes along its length are obtained and provide a unique signal waveform of the container of fuel material as a signature thereof. The output signature is stored. At subsequent times in its life the container is again scanned and respective signatures obtained which are compared with the initially obtained signature, any differences indicating alteration or tampering with the fuel material. If the fuel material includes a paramagnetic additive by taking two measurements along the container the effects thereof can be cancelled out. (author)

  12. Nuclear fuel waste disposal. Canada's consultative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hillier, J A.R.; Dixon, R S [AECL (Canada)

    1993-07-01

    Over the past two decades, society has increasingly demanded more public participation and public input into decision-making by governments. Development of the Canadian concept for deep geological disposal of used nuclear fuel has proceeded in a manner that has taken account of the requirements for social acceptability as well as technical excellence. As the agency responsible for development of the disposal concept, Atomic Energy of Canada Limited (AECL) has devoted considerable effort to consultation with the various publics that have an interest in the concept. This evolutionary interactive and consultative process, which has been underway for some 14 years, has attempted to keep the public informed of the technical development of the concept and to invite feedback. This paper describes the major elements of this evolutionary process, which will continue throughout the concept assessment and review process currently in progress. (author)

  13. Supply Security in Future Nuclear Fuel Markets

    International Nuclear Information System (INIS)

    Seward, Amy M.; Wood, Thomas W.; Gitau, Ernest T.; Ford, Benjamin E.

    2013-01-01

    Previous PNNL work has shown the existing nuclear fuel markets to provide a high degree of supply security, including the ability to respond to supply disruptions that occur for technical and non-technical reasons. It is in the context of new reactor designs - that is, reactors likely to be licensed and market ready over the next several decades - that fuel supply security is most relevant. Whereas the fuel design and fabrication technology for existing reactors are well known, the construction of a new set of reactors could stress the ability of the existing market to provide adequate supply redundancy. This study shows this is unlikely to occur for at least thirty years, as most reactors likely to be built in the next three decades will be evolutions of current designs, with similar fuel designs to existing reactors.

  14. Nuclear fuel waste disposal. Canada's consultative approach

    International Nuclear Information System (INIS)

    Hillier, J.A.R.; Dixon, R.S.

    1993-01-01

    Over the past two decades, society has increasingly demanded more public participation and public input into decision-making by governments. Development of the Canadian concept for deep geological disposal of used nuclear fuel has proceeded in a manner that has taken account of the requirements for social acceptability as well as technical excellence. As the agency responsible for development of the disposal concept, Atomic Energy of Canada Limited (AECL) has devoted considerable effort to consultation with the various publics that have an interest in the concept. This evolutionary interactive and consultative process, which has been underway for some 14 years, has attempted to keep the public informed of the technical development of the concept and to invite feedback. This paper describes the major elements of this evolutionary process, which will continue throughout the concept assessment and review process currently in progress. (author)

  15. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  16. Nuclear fuel supply view in Argentina

    International Nuclear Information System (INIS)

    Cirimello, R.O.

    1997-01-01

    The Argentine Atomic Energy Commission promoted and participated in a unique achievement in the R and D system in Argentina: the integration of science technology and production based on a central core of knowledge for the control and management of the nuclear fuel cycle technology. CONUAR SA, as a fuel manufacturer, FAE SA, the manufacturer of Zircaloy tubes, CNEA and now DIOXITEC SA producer of Uranium Dioxide, have been supply, in the last ten years, the amount of products required for about 1300 Tn of equivalent U content in fuels. The most promising changes for the fuel cycle economy is the Slight Enriched Uranium project which begun in Atucha I reactor. In 1997 seventy five fuel assemblies, equivalent to 900 Candu fuel bundles, will complete its irradiation. (author)

  17. Spent nuclear fuel project technical databook

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1998-01-01

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values

  18. Method for handling nuclear fuel casks

    International Nuclear Information System (INIS)

    Weems, S.J.

    1976-01-01

    A heavy shielded nuclear fuel cask is lowered into and removed from a water filled spent fuel pool by providing a vertical guide tube in the pool, affixing to the bottom of the cask a base plate that approximates the transverse dimension of the guide tube, and lowering and elevating the cask and base plate assembly into and out of the pool by causing it to traverse within the guide tube. The guide tube and base plate coact to function as a dashpot, thereby cushioning and controlling the fall of the cask in the pool should it break loose while being lowered into or raised out of the pool. a specified approach path to the guide tube insures that the cask assembly will not fall into the pool, should it break loose on its approach to the guide tube

  19. Survey of nuclear fuel-cycle codes

    International Nuclear Information System (INIS)

    Thomas, C.R.; de Saussure, G.; Marable, J.H.

    1981-04-01

    A two-month survey of nuclear fuel-cycle models was undertaken. This report presents the information forthcoming from the survey. Of the nearly thirty codes reviewed in the survey, fifteen of these codes have been identified as potentially useful in fulfilling the tasks of the Nuclear Energy Analysis Division (NEAD) as defined in their FY 1981-1982 Program Plan. Six of the fifteen codes are given individual reviews. The individual reviews address such items as the funding agency, the author and organization, the date of completion of the code, adequacy of documentation, computer requirements, history of use, variables that are input and forecast, type of reactors considered, part of fuel cycle modeled and scope of the code (international or domestic, long-term or short-term, regional or national). The report recommends that the Model Evaluation Team perform an evaluation of the EUREKA uranium mining and milling code

  20. International nuclear fuel cycle evaluation (INFCE)

    International Nuclear Information System (INIS)

    Schlupp, C.

    1986-07-01

    The study describes and analyzes the structures, the procedures and decision making processes of the International Nuclear Fuel Cycle Evaluation (INFCE). INFCE was agreed by the Organizing Conference to be a technical and analytical study and not a negotiation. The results were to be transmitted to governments for their consideration in developing their nuclear energy policies and in international discussions concerning nuclear energy cooperation and related controls and safeguards. Thus INFCE provided a unique example for decision making by consensus in the nuclear world. It was carried through under mutual respect for each country's choices and decisions, without jeopardizing their respective fuel cycle policies or international co-operation agreements and contracts for the peaceful use of nuclear energy, provided that agreed safeguards are applied. (orig.)

  1. Spent nuclear fuel project technical databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  2. Storage rack for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    A storage rack for nuclear fuel assemblies is described comprising storage tubes, each having a polygon cross-section. The tubes being nested with cell walls of one tube aligned with and confronting cell walls of other tubes. Each cell wall having an array of embossed buttons so arranged that buttons of one cell wall engage buttons of a confronting cell wall, and the engage buttons are welded together to secure the tubes. At least one layer of neutron-poison material comprises a flexible, resilient pad interprosed between the aligned cell walls; whereby a major portion of the total outer surface area of each confronting cell wall is engaged with the layer of neutron-poison material

  3. Improvements in nuclear fuel assembly sleeves

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, C.W.; Seeley, T.A.; Ince, G.; Speakman, W.T.

    1986-02-26

    The graphite sleeve of a nuclear fuel assembly or reflector element for a stringer mounts a number of grids via mounting assemblies installed in grooves formed in the interior wall surface of the sleeve. The bore of the sleeve is of reduced cross-section between two successive grooves such that the internal diameter of the sleeve is substantially the same as the inner diameter of the radially innermost extremity of the mounting assemblies whereby the coolant pressure loss at each transition between the reduced diameter bore section and the mounting assemblies is reduced. Each mounting assembly may be of radially contractable split ring construction to permit its placement in the groove and may carry burnable poison material.

  4. Spent Nuclear Fuel (SNF) Removal Campaign Plan

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The overall operation of the Spent Nuclear Fuel Project will include fuel removal, sludge removal, debris removal, and deactivation transition activities. Figure 1-1 provides an overview of the current baseline operating schedule for project sub-systems, indicating that a majority of fuel removal activities are performed over an approximately three-and-one-half year time period. The purpose of this document is to describe the strategy for operating the fuel removal process systems. The campaign plan scope includes: (1) identifying a fuel selection sequence during fuel removal activities, (2) identifying MCOs that are subjected to extra testing (process validation) and monitoring, and (3) discussion of initial MCO loading and monitoring in the Canister Storage Building (CSB). The campaign plan is intended to integrate fuel selection requirements for handling special groups of fuel within the basin (e.g., single pass reactor fuel), process validation activities identified for process systems, and monitoring activities during storage

  5. German nuclear fuel exports and imports 1991

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The statistics compiled by the German Federal Office for Trade and Industry (Bundesamt fuer Wirtschaft) for the Federal Ministry for the Environment, Conservation of Nature, and Reactor Safety of imports and exports of nuclear fuels and source materials in 1991 show a major drop by 33.8% in imports and a pronounced rise by 191.5% in exports, compared to the levels in the previous year. Source material for the purposes of these statistics refers only to uranium concentrate. Quantitatively, the biggest import items are source materials, depleted uranium, and uranium enriched up to 3%. Exports of unirradiated material quantitatively comprise mainly depleted uranium, source material, and uranium enriched up to 10%. (orig.) [de

  6. Modeling closed nuclear fuel cycles processes

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, O.V. [A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials, Rogova, 5a street, Moscow, 123098 (Russian Federation); Makeeva, I.R. [Zababakhin All-Russian Scientific Research Institute of Technical Physics, Vasiliev street 13, Snezhinsk, Chelyabinsk region, 456770 (Russian Federation); Liventsov, S.N. [Tomsk Polytechnic University, Tomsk, Lenin Avenue, 30, 634050 (Russian Federation)

    2016-07-01

    Computer models of processes are necessary for determination of optimal operating conditions for closed nuclear fuel cycle (NFC) processes. Computer models can be quickly changed in accordance with new and fresh data from experimental research. 3 kinds of process simulation are necessary. First, the VIZART software package is a balance model development used for calculating the material flow in technological processes. VIZART involves taking into account of equipment capacity, transport lines and storage volumes. Secondly, it is necessary to simulate the physico-chemical processes that are involved in the closure of NFC. The third kind of simulation is the development of software that allows the optimization, diagnostics and control of the processes which implies real-time simulation of product flows on the whole plant or on separate lines of the plant. (A.C.)

  7. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1987-01-01

    Canada has established an extensive research program to develop and demonstrate the technology for safely disposing of nuclear fuel waste from Canadian nuclear electric generating stations. The program focuses on the concept of disposal deep in plutonic rock, which is abundant in the province of Ontario, Canada's major producer of nuclear electricity. Research is carried out at field research areas in the Canadian Precambrian Shield, and in government and university laboratories. The schedule calls for a document assessing the disposal concept to be submitted to regulatory and environmental agencies in late 1988. This document will form the basis for a review of the concept by these agencies and by the public. No site selection will be carried out before this review is completed. 10 refs.; 2 figs

  8. Establishment of China Nuclear Fuel Assembly Database

    International Nuclear Information System (INIS)

    Chen Peng; Jin Yongli; Zhang Yingchao; Lu Huaquan; Chen Jianxin

    2009-01-01

    China Nuclear Fuel Assembly Database (CNFAD) is developed based on Oracle system. It contains the information of fuel assemblies in the stages of its design, fabrication and post irradiation (PIE). The structure of Browser Sever is adopted in the development of the software, which supports the HTTP protocol. It uses Java interface to transfer the codes from server to clients and make the sources of server and clients be utilized reasonably and sufficiently, so it can perform complicated tasks. Data in various stages of the fuel assemblies in Pressure Water Reactor (PWR), such as the design,fabrication, operation, and post irradiation examination, can be stored in this database. Data can be shared by multi users and communicated within long distances. By using CNFAD, the problem of decentralization of fuel data in China nuclear power plants will be solved. (authors)

  9. Consolidation equipment for irradiated nuclear fuel channels

    International Nuclear Information System (INIS)

    Taguchi, M.; Komatsu, Y.; Ose, T.

    1989-01-01

    The authors have developed and put into use a new type of mechanical consolidation equipment for irradiated nuclear fuel channels. This includes round-slice cutting of the top 100mm of the fuel channel with a guillotine cutter, and press cutting of the two corners of the remaining length of the fuel channel. Four guillotine blades work in combination with receiving blades arranged inside the fuel channel to cut the top 100mm, including the clips and spacers, of the fuel channel into a round slice. A press assembled in the consolidation equipment then presses the slice to achieve volume reduction. The press cutting operation uses two press cutting blades arranged inside the fuel channel and the receiving blades outside the fuel channel. The remaining length of fuel channel is cut off into L-shaped pieces by press cutting. This consolidation equipment is highly efficient because the round-slice cutting, pressing, and press cutting are all achieved by one unit

  10. Inventory estimation for nuclear fuel reprocessing systems

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.

    1987-01-01

    The accuracy of nuclear material accounting methods for nuclear fuel reprocessing facilities is limited by nuclear material inventory variations in the solvent extraction contactors, which affect the separation and purification of uranium and plutonium. Since in-line methods for measuring contactor inventory are not available, simple inventory estimation models are being developed for mixer-settler contactors operating at steady state with a view toward improving the accuracy of nuclear material accounting methods for reprocessing facilities. The authors investigated the following items: (1) improvements in the utility of the inventory estimation models, (2) extension of improvements to inventory estimation for transient nonsteady-state conditions during, for example, process upset or throughput variations, and (3) development of simple inventory estimation models for reprocessing systems using pulsed columns

  11. Nuclear Fuel Supply Arrangements through the IAEA

    International Nuclear Information System (INIS)

    Phuong, Ha-Vinh

    1981-10-01

    By virtue of its statutory functions, the International Atomic Energy Agency may be the depositary and also the supplier of nuclear materials made available to it by Member States, and these may then be stored in facilities it has acquired or which it has established under its control. However, this possibility did not materialize, mainly because the supplying states -few in number- do not want an international organization to become directly involved in bilateral transactions in that field. This paper analyses in particular the provisions of supply agreements concluded with the United Kingdom, the USA and the USSR. The Annex contains a Table of Agreements on supply of nuclear fuel and equipment concluded between supplying and consumer states through the IAEA. (NEA) [fr

  12. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  13. Nuclear fuel licensing procedures in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Komitet za Mirno Izpolzuvane na Atomnata Energiya, Sofia (Bulgaria). Komysia za Biologichni i Selskostopanski Nauki

    1994-12-31

    A brief description of the structure and role of the Committee on the Use of Atomic Energy for Peaceful Purposes (BG) as a main governmental institution responsible for safety atomic energy management is presented. The main documentation and licensing procedures adopted for import, export, operation, storage and transportation of nuclear material including nuclear fuel for NPP are outlined. The corresponding institutions are facing now the urgent need for changing some regulations to meet the requirements of the international treaties and conventions recently signed by Bulgarian authorities. A new version of Atomic Law disposed at the Parliament for adoption is essential for updating the management of NPP in Bulgaria where four WWER-440 and two WWER-1000 are under operation.

  14. Spent nuclear fuel project product specification

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1998-01-01

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification

  15. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy working group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of the policy paper presented is to recommend the actions deemed necessary to assure that future US and other non-Communist countries' nuclear fuels supply will be adequate to meet future energy demand. Taken together, the recommended decisions and actions form a nuclear fuels supply policy for the United States Government and for the private sector, and new areas of responsibility for the appropriate international organizations in which the US participates. The principal conclusions and recommendations are that the US and the other industrialized non-Communist countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends upon the security of supply of energy resources and the ability to substitute one form of fuel for another. The substitutability and efficient use of energy resources are enhanced by accelerating the supply and use of electricity

  16. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  17. Some aspects of nuclear fuel economics

    International Nuclear Information System (INIS)

    Timm, M.

    1975-01-01

    The paper reviews the economic aspects of nuclear fuel based on the year 1975. The focus of attention is on the well-established light-water reactors, which for the time being, and also for the foreseeable future, account for the bulk of the world's nuclear power capacity. The author describes the principal economic aspects of the light-water fuel cycle components and discusses their future development to the extent that this can be foreseen. Various approaches to the formulation of the contract for the supply of light-water fuel are discussed on the basis of the established procedure. After some introductory comments on methods of calculating specific fuel costs, the author describes the main results of fuel cycle calculations. The economic aspects of nuclear fuel for other types of reactors are discussed in the sequence in which it is planned to introduce such reactors commercially. The economic data available apply to reactors ranging from the heavy-water-moderated type, through helium-cooled high-temperature reactors, to the fast breeders, and are based more and more on results of feasibility studies and less on practical operational experience. For this reason the author discusses only the basic data of importance, as viewed from the present-day stand-point, and mentions the emerging trends. It should be pointed out, however, that a comprehensive description of this kind can only show the situation at a given moment. Numerous political, economic and technological influences are in a state of permanent flux, hence economic data and developments may easily change within a short time. (author)

  18. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  19. Securing the nuclear fuel cycle: What next?

    International Nuclear Information System (INIS)

    Ruchkin, S.V.; Loginov, V.Y.

    2006-01-01

    The greatest challenge to the international nuclear non-proliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (here after called s ensitive nuclear technologies ) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials: highly enriched uranium and separated plutonium. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. Spiralling prices for hydrocarbons and prospects of their imminent extinction are encouraging more and more countries to look at nuclear energy as an alternative means to ensure their sustainable development. To this end, it's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by, in particular, preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services. With this in mind, at the IAEA General Conference in 2003, IAEA Director General Mohamed ElBaradei called for establishing an international experts group on multilateral nuclear approaches. The proposal was supported, and in February 2005 the international experts, headed by Bruno Pellaud, issued a report (published by the IAEA as INFCIRC-640; see www.iaea.org) with recommendations on different multilateral approaches. The recommendations can be generalized as follows: reinforcement of existing market mechanisms; involvement of governments and the IAEA in the assurance of supply, including the establishment of low-enriched uranium (LEU) stocks as reserves; conversion of existing national uranium enrichment and SNF reprocessing enterprises into multilateral ones under international management and control, and setting up new multilateral enterprises on regional and

  20. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy Working Group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Policy Paper recommends the actions deemed necessary to assure that future U.S. and non-Communist countries' nuclear fuels supply will be adequate, considering the following: estimates of modest growth in overall energy demand, electrical energy demand, and nuclear electrical energy demand in the U.S. and abroad, predicated upon the continuing trends involving conservation of energy, increased use of electricity, and moderate economic growth (Chap. I); possibilities for the development and use of all domestic resources providing energy alternatives to imported oil and gas, consonant with current environmental, health, and safety concerns (Chap. II); assessment of the traditional energy sources which provide current alternatives to nuclear energy (Chap. II); evaluation of realistic expectations for additional future energy supplies from prospective technologies: enhanced recovery from traditional sources and development and use of oil shales and synthetic fuels from coal, fusion and solar energy (Chap. II); an accounting of established nuclear technology in use today, in particular the light water reactor, used for generating electricity (Chap. III); an estimate of future nuclear technology, in particular the prospective fast breeder (Chap. IV); current and projected nuclear fuel demand and supply in the U.S. and abroad (Chaps. V and VI); the constraints encountered today in meeting nuclear fuels demand (Chap. VII); and the major unresolved issues and options in nuclear fuels supply and use (Chap. VIII). The principal conclusions and recommendations (Chap. IX) are that the U.S. and other industrialized countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends on the secure supply of energy resources and the ability to substitute one form of fuel for another

  1. Long-term prognostic value of risk scores after drug-eluting stent implantation for unprotected left main coronary artery: A pooled analysis of the ISAR-LEFT-MAIN and ISAR-LEFT-MAIN 2 randomized clinical trials.

    Science.gov (United States)

    Xhepa, Erion; Tada, Tomohisa; Kufner, Sebastian; Ndrepepa, Gjin; Byrne, Robert A; Kreutzer, Johanna; Ibrahim, Tareq; Tiroch, Klaus; Valgimigli, Marco; Tölg, Ralf; Cassese, Salvatore; Fusaro, Massimiliano; Schunkert, Heribert; Laugwitz, Karl L; Mehilli, Julinda; Kastrati, Adnan

    2017-01-01

    To evaluate the long-term prognostic value of risk scores in the setting of drug-eluting stent (DES) implantation for uLMCA. Data on the prognostic value of novel risk scores developed to select the most appropriate revascularization strategy in patients undergoing DES implantation for uLMCA disease are relatively limited. The study represents a patient-level pooled analysis of the ISAR-LEFT-MAIN (607 patients randomized to paclitaxel-eluting or sirolimus-eluting stents) and the ISAR-LEFT-MAIN-2 (650 patients randomized to everolimus-eluting or zotarolimus-eluting stents) randomized trials. The Syntax Score (SxScore) as well the Syntax Score II (SS-II), the EuroSCORE and the Global Risk Classification (GRC) were calculated. The primary outcome was all-cause mortality. At a mean follow-up of 3 years there were 160 deaths (12.7%). The death-incidence was significantly higher in the upper tertiles than in the intermediate or lower ones for all risk scores (log-rank test P risk scores were able to stratify the mortality risk at long-term follow-up. EuroSCORE was the only risk score that significantly improved the discriminatory power of a multivariable model to predict long-term mortality. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Angioplastia del seno coronario en el implante de electrodo del ventrículo izquierdo Angioplasty of coronary sinus in left ventricle electrode implant

    Directory of Open Access Journals (Sweden)

    Alejandro Orjuela

    2011-07-01

    Full Text Available Con el incremento de implantes de dispositivos de estimulación cardíaca en pacientes con miocardiopatía dilatada, el diseno día a día más sofisticado de los mismos para satisfacer los requerimientos de los pacientes con cambios anatómicos que surgen como consecuencia de la misma dilatación cardíaca, tales como modificaciones en el calibre, curso, longitud y número de venas coronarias, cada vez se encuentran mayores dificultades para lograr los objetivos anatómicos, en particular el sitio ideal de posicionamiento del electrodo de estimulación ventricular izquierda en el seno coronario. Esta situación limita, en algunos casos, el beneficio terapéutico de esta técnica, viéndose, en ocasiones, en la necesidad de someter al paciente a toracotomía para posicionar el electrodo en el epicardio posterolateral del ventrículo izquierdo. Es así como, con el objetivo de abreviar los tiempos y la morbimortalidad e incrementar el éxito del implante, se disenó una estrategia basada en la técnica de hemodinámica para vencer las obstrucciones de las arterias coronarias y lograr, mediante angioplastia de las estrecheces del seno coronario, un abordaje más preciso a un determinado vaso epicárdico preseleccionado. Se describe la técnica usada en la angioplastia del seno coronario para este propósito.The design of devices of cardiac stimulation in patients with dilated cardiomyopathy has become more sophisticated due to the increment of its implantation, devices that must satisfy the requirements for patients with anatomical changes that appear as a consequence of the cardiac dilation such as caliber modifications, course, length and number of coronary veins. Every time is more difficult to achieve the anatomical objectives, particularly the ideal place for the left ventricular stimulation electrode position in the coronary sinus. This situation limits in some cases the therapeutical benefit of this technique, occasionally facing to the

  3. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  4. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  5. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  6. Automated ultrasonic scanning of flat plate nuclear fuel

    International Nuclear Information System (INIS)

    Barna, B.A.

    1979-01-01

    One of the most challenging problems in Non-Destructive Testing lies in making the inspection as rapid, precise, cost effective and operator independent as possible. Only by optimizing these four factors can a technology take full advantage of the quality control possible with NDT. This paper describes a highly complex application of high frequency ultrasonics to image extremely small and difficult to detect flaws in a production line environment. The objects of interest are flat plate nuclear fuel used in the Advanced Test Reactor at the Idaho National Engineering Laboratory. The plates are fabricated by hot rolling a sandwich of alloyed uranium fuel and aluminum cladding. After rolling, the block is flattened to a long thin plate approximately 1.27 m (55 inches) long, 102 mm (4 inches) wide and 1.25 mm (0.050 inches) thick. The core, or fuel area is nominally 0.75 mm (0.030 inches) thick with 0.25 mm (0.010 inches) of aluminum bonded to both sides. As might be expected the fabrication is a sensitive process which can introduce several flaws detrimental to the reactor operation if they are undetected. Two of the characteristics that must be examined are the cladding thickness of the aluminum left over the fuel and the quality of bond between the cladding and the fuel. If either the cladding is too thin or the bonding inadequate thermal and/or corrosive activity can crack the protective cladding

  7. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ilas, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is

  8. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  9. Nuclear fuel assurance: origins, trends, and policy issues

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1979-02-01

    The economic, technical and political issues which bear on the security of nuclear fuel supply internationally are addressed. The structure of international markets for nuclear fuel is delineated; this includes an analysis of the political constraints on fuel availability, especially the connection to supplier nonproliferation policies. The historical development of nuclear fuel assurance problems is explored and an assessment is made of future trends in supply and demand and in the political context in which fuel trade will take place in the future. Finally, key events and policies which will affect future assurance are identified

  10. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  11. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  12. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  13. Future spent nuclear fuel and radioactive waste infrastructure in Norway

    International Nuclear Information System (INIS)

    Soerlie, A.A.

    2002-01-01

    In Norway a Governmental Committee was appointed in 1991 to make an evaluation of the future steps that need to be taken in Norway to find a final solution for the spent nuclear fuel and for some other radioactive waste for which a disposal option does not exist today. The report from the Committee is now undergoing a formal hearing process. Based on the Committees recommendation and comments during the hearing the responsible Ministry will take a decision on future infrastructure in Norway for the spent nuclear fuel. This will be decisive for the future management of spent nuclear fuel and radioactive waste in Norway. (author)

  14. Nuclear fuel burn-up economy; Ekonomija izgaranja nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1984-07-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  15. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  16. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  17. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  18. The natural history of new-onset heart failure with a severely depressed left ventricular ejection fraction: implications for timing of implantable cardioverter-defibrillator implantation.

    Science.gov (United States)

    Teeter, William A; Thibodeau, Jennifer T; Rao, Krishnasree; Brickner, M Elizabeth; Toto, Kathleen H; Nelson, Lauren L; Mishkin, Joseph D; Ayers, Colby R; Miller, Justin G; Mammen, Pradeep P A; Patel, Parag C; Markham, David W; Drazner, Mark H

    2012-09-01

    Guidelines recommend that patients with new-onset systolic heart failure (HF) receive a trial of medical therapy before an implantable cardiac defibrillator (ICD). This strategy allows for improvement of left ventricular ejection fraction (LVEF), thereby avoiding an ICD, but exposes patients to risk of potentially preventable sudden cardiac death during the trial of medical therapy. We reviewed a consecutive series of patients with HF of <6 months duration with a severely depressed LVEF (<30%) evaluated in a HF clinic (N = 224). The ICD implantation was delayed with plans to reassess LVEF approximately 6 months after optimization of β-blockers. Mortality was ascertained by the National Death Index. Follow-up echocardiograms were performed in 115 of the 224 subjects. Of these, 50 (43%) had mildly depressed or normal LVEF at follow-up ("LVEF recovery") such that an ICD was no longer indicated. In a conservative sensitivity analysis (using the entire study cohort, whether or not a follow-up echocardiogram was obtained, as the denominator), 22% of subjects had LVEF recovery. Mortality at 6, 12, and 18 months in the entire cohort was 2.3%, 4.5%, and 6.8%, respectively. Of 87 patients who tolerated target doses of β-blockers, only 1 (1.1%) died during the first 18 months. Patients with new-onset systolic HF have both a good chance of LVEF recovery and low 6-month mortality. Achievement of target β-blocker dose identifies a very low-risk population. These data support delaying ICD implantation for a trial of medical therapy. Copyright © 2012 Mosby, Inc. All rights reserved.

  19. Development of nuclear fuel for the future -Development of performance improvement of the cladding by ion beam-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Hoh; Jung, Moon Kyoo; Jung, Kee Suk; Kim, Wan; Lee, Jae Hyung; Song, Tae Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Han, Jun Kun [Sung Kyoon Kwan Univ., Seoul (Korea, Republic of); Kwon, Hyuk Sang [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-07-01

    In this research we analyzed the state of art related to the surface treatment method of nuclear fuel cladding for the development of the surface treatment technique of nuclear fuel cladding by ion beam while investigating major causes of the leakage of fuel rods. Ion implantation simulation code called TRIM-95 was used to decide basic parameters of ion beams and setup an appropriate process for ion implantation. Performance of the ion beam extraction was measured after adding the needed vacuum and cooling system to the existing gas and metal ion implanters. Target system for the ion implantation of fuel cladding improved and a plasma accelerator was installed on the target chamber of the metal ion implanter. The plasma accelerator is used to produce low energy, high current ion beams. The mechanical and chemical properties of the implanted Zircaloy-4 such as micro hardness, wear resistance, fretting wear, friction coefficient and corrosion resistance was measured under the room temperature and atmosphere. A micro structure and composition analysis of Zircaloy-4 sample was performed before and after the implantation to study the cause of the improvement in the mechanical and chemical characteristics. 94 figs, 11 tabs, 51 refs. (Author).

  20. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  1. Critical management system for nuclear fuels

    International Nuclear Information System (INIS)

    Tai, Ichiro; Seki, Eiji.

    1981-01-01

    Purpose: To enable to provide display for the scale of accidents and critical state by detecting gamma-rays issued from nuclear fuels by gamma-ray level indicators to obtain outputs in proportion to the input level of the gamma-rays based on the detected pulse signals. Constitution: The gamma-ray level indicators comprises a plastic scintillator that emits light upon input of gamma-rays and a photomultiplier that amplifies weak fluorescence obtained from the scintillator. The photomultiplier is applied with a high voltage from a power source. A pre-amplifier amplifies pulse signals corresponding to individual gamma-rays at a high amplification factor and send them to a pulse counter circuit if the detected signal level from the gamma-ray level indicators is low, or amplifies the pulse detection signals at a low amplification factor and sends them to a voltage pulse averaging circuit if the detection signal level is high. A signal procession circuit selects the output from the pulse counter circuit or the voltage pulse averaging circuit. Thus, the system has a linear characteristic over a wide range equivalent to a wide range of incident gamma-rays. (Horiuchi, T.)

  2. Main attributes influencing spent nuclear fuel management

    International Nuclear Information System (INIS)

    Andreescu, N.; Ohai, D.

    1997-01-01

    All activities regarding nuclear fuel, following its discharge from the NPP, constitute the spent fuel management and are grouped in two possible back end variants, namely reprocessing (including HLW vitrification and geological disposal) and direct disposal of spent fuel. In order to select the appropriate variant it is necessary to analyse the aggregate fulfillment of the imposed requirements, particularly of the derived attributes, defined as distinguishing characteristics of the factors used in the decision making process. The main identified attributes are the following: - environmental impact, - availability of suitable sites, - non-proliferation degree, -strategy of energy, - technological complexity and technical maturity, -possible further technical improvements, - size of nuclear programme, - total costs, - public acceptance, - peculiarity of CANDU fuel. The significance of the attributes in the Romanian case, taking into consideration the present situation, as a low scenario and a high scenario corresponding to an important development of the nuclear power, after the year 2010, is presented. According to their importance the ranking of attributes is proposed . Subsequently, the ranking could be used for adequate weighing of attributes in order to realize a multi-criteria analysis and a relevant comparison of back end variants. (authors)

  3. Ultrasonic decontamination of nuclear fuel. Feasibility study

    International Nuclear Information System (INIS)

    Berg, A.; Libal, A.; Norbaeck, J.; Wegemar, B.

    1995-05-01

    Ultrasonic decontamination of nuclear fuel is an expeditious way to reduce radiation exposures resulting in a minimal volume of waste. The fuel assemblies are set up in the fuel preparation machine one at a time and treated without prior disassemblage. By decontaminating 20% of the BWR fuel assemblies annually, there is a potential to reduce the collective dose by approximately 40-50%. Including also improved reactivity of the fuel, this amounts to an economic benefit of about 4 MSEK per reactor and year. The costs for performing the decontamination can be economically justified if the plants do not plan for short outages each year. The decontamination method could also be used for the purpose of removing tramp Uranium following a fuel failure or minor core accident. An additional benefit is removal of loosely adherent crud. The waste produced will be handled in a closed filtering circuit. The method is suggested to be verified in a test on discharged burnt-up fuel at site. The next step will be to develop the method further in order to be able to remove also tenacious crud. 12 refs, 4 tabs

  4. Pyrochemical processing of DOE spent nuclear fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1995-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  5. Method of manufacturing nuclear fuel rods

    International Nuclear Information System (INIS)

    Sato, Masao; Oyama, Masatoshi; Yamamoto, Takanobu.

    1976-01-01

    Object: To discriminate the properties of light white deposits on a clad tube during the process of manufacturing nuclear fuel rods and then remove this to reproduce a good clad tube, thereby enhancing a yield of the clad tube. Structure: When a light white deposits is found to be appeared on outer or inner surface of coating during the process of appearance inspection, this is then permitted to subject to treatment of hot water immersion and discrimination. Requirements for removal of adhered matter in the process of treatment of hot water immersion are that deioned water of specific resistance 5 x 10 5 ohms or more is used with water temperature maintained at 60 to 100 0 C for immersion treatment for 10 to 30 minutes. In this case, however, if the water temperature is more than 80 0 C, the immersion time can be set less than 10 minutes. With the addition of such process described above, about 2.5% of total receiving number can be reproduced. (Yoshihara, H.)

  6. Hanford spent nuclear fuel project update

    Energy Technology Data Exchange (ETDEWEB)

    Williams, N.H.

    1997-08-19

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building.

  7. Nuclear fuel control in fuel fabrication plants

    International Nuclear Information System (INIS)

    Seki, Yoshitatsu

    1976-01-01

    The basic control problems of measuring uranium and of the environment inside and outside nuclear fuel fabrication plants are reviewed, excluding criticality prevention in case of submergence. The occurrence of loss scraps in fabrication and scrap-recycling, the measuring error, the uranium going cut of the system, the confirmation of the presence of lost uranium and the requirement of the measurement control for safeguard make the measurement control very complicated. The establishment of MBA (material balance area) and ICA (item control area) can make clearer the control of inventories, the control of loss scraps and the control of measuring points. Besides the above basic points, the following points are to be taken into account: 1) the method of confirmation of inventories, 2) the introduction of reliable NDT instruments for the rapid check system for enrichment and amount of uranium, 3) the introduction of real time system, and 4) the clarification of MUF analysis and its application to the reliability check of measurement control system. The environment control includes the controls of the uranium concentration in factory atmosphere, the surface contamination, the space dose rate, the uranium concentration in air and water discharged from factories, and the uranium in liquid wastes. The future problems are the practical restudy of measurement control under NPT, the definite plan of burglary protection and the realization of the disposal of solid wastes. (Iwakiri, K.)

  8. Development of nuclear fuel for integrated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.; Yoon, K. H.; Chun, T. H.; In, W. K.; Oh, D. S.; Kim, D. W.; Woo, Y. M

    1999-04-01

    The spacer grid assembly which provides both lateral and vertical support for the fuel rods and also provides a flow channel between the fuel rods to afford the heat transfer from the fuel pellet into the coolant in a reactor, is one of the major structural components of nuclear fuel for LWR. Therefore, the spacer grid assembly is a highly ranked component when the improvement of hardware is pursued for promoting fuel performance. Main objective of this project is to develop the inherent spacer grid assembly and to research relevant technologies on the spacer grid assembly. And, the UO{sub 2}-based SMART fuel is preliminarily designed for the 330MWt class SMART, which is planned to produce heat as well as electricity. Results from this project are listed as follows. 1. Three kinds of spacer grid candidates have been invented and applied for domestic and US patents. In addition, the demo SG(3x3 array) were fabricated, which the mechanical/structural test was carried out with. 2. The mechanical/structural technologies related to the spacer grid development are studied and relevant test requirements were established. 3. Preliminary design data of the UO{sub 2}-based SMART fuel have been produced. The structural characteristics of several components such as the top/bottom end piece and the holddown spring assembly were analysed by consulting the numerical method.

  9. Development of nuclear fuel for integrated reactor

    International Nuclear Information System (INIS)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.; Yoon, K. H.; Chun, T. H.; In, W. K.; Oh, D. S.; Kim, D. W.; Woo, Y. M.

    1999-04-01

    The spacer grid assembly which provides both lateral and vertical support for the fuel rods and also provides a flow channel between the fuel rods to afford the heat transfer from the fuel pellet into the coolant in a reactor, is one of the major structural components of nuclear fuel for LWR. Therefore, the spacer grid assembly is a highly ranked component when the improvement of hardware is pursued for promoting fuel performance. Main objective of this project is to develop the inherent spacer grid assembly and to research relevant technologies on the spacer grid assembly. And, the UO 2 -based SMART fuel is preliminarily designed for the 330MWt class SMART, which is planned to produce heat as well as electricity. Results from this project are listed as follows. 1. Three kinds of spacer grid candidates have been invented and applied for domestic and US patents. In addition, the demo SG(3x3 array) were fabricated, which the mechanical/structural test was carried out with. 2. The mechanical/structural technologies related to the spacer grid development are studied and relevant test requirements were established. 3. Preliminary design data of the UO 2 -based SMART fuel have been produced. The structural characteristics of several components such as the top/bottom end piece and the holddown spring assembly were analysed by consulting the numerical method

  10. Nondestructive assay methods for irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Hsue, S.T.; Crane, T.W.; Talbert, W.L. Jr.; Lee, J.C.

    1978-01-01

    This report is a review of the status of nondestructive assay (NDA) methods used to determine burnup and fissile content of irradiated nuclear fuels. The gamma-spectroscopy method measures gamma activities of certain fission products that are proportional to the burnup. Problems associated with this method are migration of the fission products and gamma-ray attenuation through the relatively dense fuel material. The attenuation correction is complicated by generally unknown activity distributions within the assemblies. The neutron methods, which usually involve active interrogation and prompt or delayed signal counting, are designed to assay the fissile content of the spent-fuel elements. Systems to assay highly enriched spent-fuel assemblies have been tested extensively. Feasibility studies have been reported of systems to assay light-water reactor spent-fuel assemblies. The slowing-down spectrometer and neutron resonance absorption methods can distinguish between the uranium and plutonium fissile contents, but they are limited to the assay of individual rods. We have summarized the status of NDA techniques for spent-fuel assay and present some subjects in need of further investigation. Accuracy of the burnup calculations for power reactors is also reviewed

  11. The industrial nuclear fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The nuclear power program of Argentina for the period 1976-85 is described, as a basis to indicate fuel requirements and the consequent implementation of a national fuel cycle industry. Fuel cycle activities in Argentina were initiated as soon as 1951-2 in the prospection and mining activities through the country. Following this step, yellow-cake production was initiated in plants of limited capacity. National production of uranium concentrate has met requirements up to the present time, and will continue to do so until the Sierra Pintada Industrial Complex starts operation in 1979. Presently, there is a gap in local production of uranium dioxide and fuel elements for the Atucha power station, which are produced abroad using Argentine uranium concentrate. With its background, the argentine program for the installation of nuclear fuel cycle industries is described, and the techno-economical implications considered. Individual projects are reviewed, as well as the present and planned infrastructure needed to support the industrial effort [es

  12. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  13. Truck accident involving unirradiated nuclear fuel

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1992-07-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 nuclear fuel assemblies in 12 containers on Interstate 1-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the.tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1300 degrees F and 1800 degrees F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk

  14. Transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lung, M.; Lenail, B.

    1987-01-01

    From a safety standpoint, spent fuel is clearly not ideal for permanent disposal and reprocessing is the best method of preparing wastes for long-term storage in a repository. Furthermore, the future may demonstrate that some fission products recovered in reprocessing have economic applications. Many countries have in fact reached the point at which the recycling of plutonium and uranium from spent fuel is economical in LWR's. Even in countries where this is not yet evident, (i.e., the United States), the French example shows that the day will come when spent fuel will be retrieved for reprocessing and recycle. It is highly questionable whether spent fuel will ever be considered and treated as waste in the same sense as fission products and processed as such, i.e., packaged in a waste form for permanent disposal. Even when recycled fuel material can no longer be reused in LWR's because of poor reactivity, it will be usable in FBR's. Based on the considerable experience gained by SGN and Cogema, this paper has provided practical discussion and illustrations of spent fuel transport and storage of a very important step in the nuclear fuel management process. The best of spent fuel storage depends on technical, economic and policy considerations. Each design has a role to play and we hope that the above discussion will help clarify certain issues

  15. Nuclear fuel re-processing plant

    International Nuclear Information System (INIS)

    Sasaki, Yuko; Honda, Takashi; Shoji, Saburo; Kobayashi, Shiro; Furuya, Yasumasa

    1989-01-01

    In a nuclear fuel re-processing plant, high Si series stainless steels not always have sufficient corrosion resistance in a solution containing only nitric acid at medium or high concentration. Further, a method of blowing NOx gases may possibly promote the corrosion of equipment constituent materials remarkably. In view of the above, the corrosion promoting effect of nuclear fission products is suppressed without depositing corrosive metal ions as metals in the nitric acid solution. That is, a reducing atmosphere is formed by generating NOx by electrolytic reduction thereby preventing increase in the surface potential of stainless steels. Further, an anode is disposed in the nitric acid solution containing oxidative metal ions to establish an electrical conduction and separate them by way of partition membranes and a constant potential or constant current is applied while maintaining an ionic state so as not to deposit metals. Thus, equipments of re-processing facility can be protected from corrosion with no particular treatment for wastes as radioactive materials. (K.M.)

  16. Storing the world's spent nuclear fuel

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.; Alonso, M.

    1985-01-01

    Given the world's prodigious future energy requirements and the inevitable depletion of oil and gas, it would be foolhardy consciously to seek limitations on the growth of nuclear power. Indeed, the authors continue to believe that the global nuclear power enterprise, as measured by installed reactor capacity, can become much larger in the future without increasing proliferation risks. To accomplish this objective will require renewed dedication to the non-proliferation regime, and it will require some new initiatives. Foremost among these would be the establishment of a spent fuel take-back service, in which one or a few states would retrieve spent nuclear fuel from nations generating it. The centralized retrieval of spent fuel would remove accessible plutonium from the control of national leaders in non-nuclear-weapons states, thereby eliminating the temptation to use this material for weapons. The Soviets already implement a retrieval policy with the spent fuel generated by East European allies. The authors believe that it is time for the US to reopen the issue of spent-fuel retrieval, and thus to strengthen its non-proliferation policies and the nonproliferation regime in general. 7 references

  17. Compaction of spent nuclear fuel cans

    International Nuclear Information System (INIS)

    Sullivan, H.

    1985-01-01

    Hydraulic press apparatus for compacting waste material eg. spent nuclear fuel cans comprises a fixed frame, a movable cross head, a press crown and three groups of piston/cylinder devices; having their pistons connected to the cross head and their cylinders secured to the press crown. A control means connects the first group of devices to hydraulic fluid in a reservoir which is pressurised initially by gas from gas accumulators to move the cross head and a quill secured thereto towards the frame base to compact the waste at a first high rate under a first high loading. Compaction then proceeds at a lower second rate at a lower second loading as the hydraulic fluid in the reservoir is pressurised by a pump. At two subsequent stages of compaction of the waste at which resistance increases causing a pressure rise in cylinders the control means causes hydraulic fluid to be passed to the second group of devices and thence to the third group of devices, the compaction rate reducing at each stage but the compaction force increasing. (author)

  18. Supply assurance in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1979-01-01

    Nuclear fuel assurance, in the face of world and political uncertainties, is interrelated with nuclear technology development plans and international safeguards considerations. This has led some countries to accelerate their commitments to nuclear commercialization faster than necessary and has made non-proliferation policies harder to enforce. Fuel assurance is described on a national basis in three time scales: short-term, or resilience to supply interruptions; mid-term, or contract conditions in which governments make commitments to purchase or deliver; and long-term, or resource adequacy. A review of former assurance problems and current trends in the enrichment and uranium markets indicates that supplier concentration is no longer the major problem so much as non-proliferation actions. The present state of unstable equilibrium is expected to move in the direction of less fuel-supply assurance for countries having a small market or not subscribing to non-proliferation criteria. The authors, while generally optimistic that the fuel-supply system will function, express concern that policies for fuel stockpiles and the condition of uranium markets need improvement. 21 references

  19. A reference regional nuclear fuel centre

    International Nuclear Information System (INIS)

    1978-01-01

    A nuclear fuel centre groups the facilities for spent fuel reprocessing, plutonium fuel fabrication, waste conditioning, and interim storage on a single site. The technical aspects of safety and protection, and the socio-economic consequences of two types of centre have been studied. The reference centre has an initial reprocessing capacity of 1500 tonnes. This capacity is quadrupled by the construction of two new units in 15 years. The other centre considered is a quarter of this size. A description is given of the processes used, the personal and capital requirements for construction and operation of the plant, the transport of radioactive waste and products, and the quantities involved. The local radiological impact is low and could be further reduced to a level well below that of natural radioactivity. The resulting increase in economic activity, employment, income redistribution and the new infrastructure requirements are estimated for a rural or semi-rural region. Measures to prevent tension are proposed. The impact of the host country's balance of payments, finances, employment situation and technological knowhow is evaluated. The original centre is compared with equivalent facilities scattered geographically

  20. Nuclear fuel management optimization for LWRs

    International Nuclear Information System (INIS)

    Turinsky, Paul J.

    1997-01-01

    LWR in core nuclear fuel management involves the placement of fuel and control materials so that a specified objective is achieved within constraints. Specifically, one is interested in determining the core loading pattern (LP of fuel assemblies and burnable poisons and for BWR, also control rod insertion versus cycle exposure. Possible objectives include minimization of feed enrichment and maximization of cycle energy production, discharge burnup or thermal margin. Constraints imposed relate to physical constraints, e.g. no discrete burnable poisons in control rod locations, and operational and safety constraints, e.g. maximum power peaking limit. The LP optimization problem is a large scale, nonlinear, mixed-integer decision variables problem with active constraints. Even with quarter core symmetry imposed, there are above 10 100 possible LPs. The implication is that deterministic optimization methods are not suitable, so in this work we have pursued using the stochastic Simulated Annealing optimization method. Adaptive penalty functions are used to impose certain constraints, allowing unfeasible regions of the search space to be transverse. Since ten of thousands of LPs must be examined to achieve high computational efficiency, higher-order Generalized Perturbation Theory is utilized to solve the Nodal Expansion Method for of the two-group neutron diffusion. These methods have been incorporated into the FORMOSA series of codes and used to optimize PWR and BWR reload cores. (author). 9 refs., 3 tabs

  1. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi.

    1988-01-01

    Purpose: To prevent pellet destruction due to thermal stresses and reduce the swelling or issue of corrosive gaseous fission products. Method: Raw material powder for nuclear fuel pellets constitute so-called secondary particles in which a plurality of primary particles are coagulated. The degree of coagulation of the secondary particles can be determined as the bulk density of the powder. In view of the above, when pellets are sintered by using a powder mixture comprising a powder having the same constitution and different bulk density from the main raw powder as the sub-raw material powder incorporated to the main raw material powder, the pellet tissue provides such a fine porous structure that fine gaps are present a the periphery of high density secondary particles, since there is a difference in the shrinkage factor (sintering-shrinkage degree) between powders of different secondary particle densities in the course of the sintering. Thus, pellets can be prevented from thermal impact destruction and cause no destructive cracks. (Takahashi, M.)

  2. Perturbation theory in nuclear fuel management optimization

    International Nuclear Information System (INIS)

    Ho, L.W.

    1981-01-01

    Nuclear in-core fuel management involves all the physical aspects which allow optimal operation of the nuclear fuel within the reactor core. In most nuclear power reactors, fuel loading patterns which have a minimum power peak are economically desirable to allow the reactors to operate at the highest power density and to minimize the possibility of fuel failure. In this study, perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations, and hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time. The code also has a burnup capability which can be used to check power peaking throughout the core life

  3. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1996-03-01

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  4. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  5. World nuclear fuel cycle requirements 1985

    International Nuclear Information System (INIS)

    Moden, R.; O'Brien, B.; Sanders, L.; Steinberg, H.

    1985-01-01

    Projections of uranium requirements (both yellowcake and enrichment services) and spent fuel discharges are presented, corresponding to the nuclear power plant capacity projections presented in ''Commercial Nuclear Power 1984: Prospects for the United States and the World'' (DOE/EIA-0438(85)) and the ''Annual Energy Outlook 1984:'' (DOE/EIA-0383(84)). Domestic projections are provided through the year 2020, with foreign projections through 2000. The domestic projections through 1995 are consistent with the integrated energy forecasts in the ''Annual Energy Outlook 1984.'' Projections of capacity beyond 1995 are not part of an integrated energy foreccast; the methodology for their development is explained in ''Commercial Nuclear Power 1984.'' A range of estimates is provided in order to capture the uncertainty inherent in such forward projections. The methodology and assumptions are also stated. A glossary is provided. Two appendixes present additional material. This report is of particular interest to analysts involved in long-term planning for the disposition of radioactive waste generated from the nuclear fuel cycle. 14 figs., 18 tabs

  6. TALSPEAK Chemistry in Advanced Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Nilsson, Mikael; Nash, Kenneth L.

    2008-01-01

    The separation of trivalent transplutonium actinides from fission product lanthanide ions represents a challenging aspect of advanced nuclear fuel partitioning schemes. The challenge of this separation could be amplified in the context of the AFCI-UREX+1a process, as Np and Pu will accompany the minor actinides to this stage of separation. At present, the baseline lanthanide-actinide separation method is the TALSPEAK (Trivalent Actinide - Lanthanide Separation by Phosphorus reagent Extraction from Aqueous complexes) process. TALSPEAK was developed in the late 1960's at Oak Ridge National Laboratory and has been demonstrated at pilot scale. This process relies on the complex interaction between an organic and an aqueous phase both containing complexants for selectively separating the trivalent actinide. The 3 complexing components are: the di(2-ethylhexyl) phosphoric acid (HDEHP), the lactic acid (HL) and the diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA). In this report we discuss observations on kinetic and thermodynamic features described in the prior literature and describe some results of our ongoing research on basic chemical features of this system. The information presented indicates that the lactic acid buffer participates in the net operation of the TALSPEAK process in a manner that is not explained by existing information on the thermodynamic features if the known Eu(III)-lactate species. (authors)

  7. The nuclear fuel cycle is complete

    International Nuclear Information System (INIS)

    Hildenbrand, G.

    1984-01-01

    The nuclear fuel cycle in the Federal Republic of Germany has a firm base. Its entry stages, natural uranium, conversion, enrichment, and fuel fabrication, have not only been put on solid grounds in terms of supplies, but have also attained a high degree of technical maturity and a high quality level. Further efforts are being devoted to cost reductions. Especially higher burnups and the recycling of plutonium in the form of MOX fuel assemblies in light water reactors must be mentioned under this heading. In the field of back end fuel cycle steps, the important sector of interim storage has now found a practical solution, which is also fully sufficient with respect to capacity. The project of a German reprocessing plant has now entered its decisive stage with the filling of the licensing applications and the awarding of the planning contracts. The study on alternative waste management techniques entitled ''Direct Final Storage'' is about to be concluded, and a work on the exploration and development of a repository proceeds on schedule. (orig.) [de

  8. Nuclear fuel fabrication - developing indigenous capability

    International Nuclear Information System (INIS)

    Gupta, U.C.; Jayaraj, R.N.; Meena, R.; Sastry, V.S.; Radhakrishna, C.; Rao, S.M.; Sinha, K.K.

    1997-01-01

    Nuclear Fuel Complex (NFC), established in early 70's for production of fuel for PHWRs and BWRs in India, has made several improvements in different areas of fuel manufacturing. Starting with wire-wrap type of fuel bundles, NFC had switched over to split spacer type fuel bundle production in mid 80's. On the upstream side slurry extraction was introduced to prepare the pure uranyl nitrate solution directly from the MDU cake. Applying a thin layer of graphite to the inside of the tube was another modification. The Complex has developed cost effective and innovative techniques for these processes, especially for resistance welding of appendages on the fuel elements which has been a unique feature of the Indian PHWR fuel assemblies. Initially, the fuel fabrication plants were set-up with imported process equipment for most of the pelletisation and assembly operations. Gradually with design and development of indigenous equipment both for production and quality control, NFC has demonstrated total self reliance in fuel production by getting these special purpose machines manufactured indigenously. With the expertise gained in different areas of process development and equipment manufacturing, today NFC is in a position to offer know-how and process equipment at very attractive prices. The paper discusses some of the new processes that are developed/introduced in this field and describes different features of a few PLC based automatic equipment developed. Salient features of innovative techniques being adopted in the area Of UO 2 powder production are also briefly indicated. (author)

  9. Problems of nuclear fuel reprocessing in Japan

    International Nuclear Information System (INIS)

    Tanaka, Naojiro

    1974-01-01

    The reprocessing capacity of the plant No. 1 of Power Reactor and Nuclear Fuel Development Corporation, which is scheduled to start operation in fiscal year 1975, will be insufficient after fiscal year 1978 for the estimated demand for reprocessing based on Japanese nuclear energy development program. Taking into consideration the results examined by JAIF's study team to Europe and the U.S., it is necessary that Japan builds 2nd reprocessing plant. But there will be a gap from 1978 to 1984 during which Japan must rely on overseas reprocessing services. The establishment of a reprocessing system is a task of national scale, and there are many problems to be solved before it can be done. These include the problems of site and environment, the problem of treatment and disposal of radioactive wastes, the raising of huge required funds and so on. Therefore, even if a private enterprise is allowed to undertake the task, it will be impossible to achieve the aim without the cooperation and assistance of the government. (Wakatsuki, Y.)

  10. Storage rack for spent nuclear fuels

    International Nuclear Information System (INIS)

    Kiyama, Yoichi.

    1996-01-01

    A storage rack comprises a number of rack cells for containing spent nuclear fuels and two upper and lower rack support plates. Small through holes are formed to lateral walls of the rack cell each at a position slightly above the position of the upper rack support plate. Finger members each having a protrusion which fits the small through hole is secured at the upper surface of the upper rack support plate. The finger member is a metal leaf-spring erected at the periphery of a rack insertion hole of the rack support plate. Gaps for allowing thermal expansion of the rack cell are formed each between the edge of the rack cell insertion hole of the rack support plate and the rack cell, and between the lower edge of the small through hole on a side wall of the rack cell and the lower portion of the protrusion of the finger member. If the rack cell is inserted to a bottom, the protrusion of the finger member fits the small through hole on the side of the rack cell. With such a constitution, the rack cell is prevented from withdrawing in conjunction with removal of fuels. (I.N.)

  11. Truck accident involving unirradiated nuclear fuel

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1993-01-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 unirradiated nuclear fuel assemblies in 12 containers on Interstate I-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and assesses the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1,300 F and 1,800 F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk

  12. Artificial vision in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Dorado, P.

    2007-01-01

    The development of artificial vision techniques opens a door to the optimization of industrial processes which the nuclear industry cannot miss out on. Backing these techniques represents a revolution in security and reliability in the manufacturing of a highly technological products as in nuclear fuel. Enusa Industrias Avanzadas S. A. has successfully developed and implemented the first automatic inspection equipment for pellets by artificial vision in the European nuclear industry which is nowadays qualified and is already developing the second generation of this machine. There are many possible applications for the techniques of artificial vision in the fuel manufacturing processes. Among the practices developed by Enusa Industrias Avanzadas are, besides the pellets inspection, the rod sealing drills detection and positioning in the BWR products and the sealing drills inspection in the PWR fuel. The use of artificial vision in the arduous and precise processes of full inspection will allow the absence of human error, the increase of control in the mentioned procedures, the reduction of doses received by the personnel, a higher reliability of the whole of the operations and an improvement in manufacturing costs. (Author)

  13. Dismantling method for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Shuji; Kato, Akihiro; Yoshida, Masafumi.

    1993-01-01

    An upper nozzle is detached from a control rod guide tube and an instrumentation tube. Subsequently, slots (slits) having a predetermined width are formed longitudinally at enlarged diameter portions of the control rod guide tube and the instrumentation tube. Then, the control rod guide tube and the instrumentation tube are separated from a lower nozzle, and pulled out from the lattice space of each of the support lattices. Thereafter, a predetermined key is inserted to a key insertion window formed at each of the support lattices, to distort a spring and take the fuel rod out of the lattice space of each of the support lattices. With such procedures, when the control rod guide tube and the instrumentation tube are pulled out of the lattice space of the support lattice, the enlarged diameter portion is narrowed to reduce the diameter, thereby enabling to take them out easily. Accordingly, since the space for inserting the key can be ensured, the nuclear fuel assemblies can easily be dismantled. In addition, fuel rods can be taken out smoothly and in an intact state. (I.N.)

  14. Thermal phenomenae in nuclear fuel rods

    International Nuclear Information System (INIS)

    Baigorria, Carlos.

    1983-12-01

    Thermal phenomenae occurring in a nuclear fuel rod under irradiation are studied. The most important parameters of either steady or transient thermal states are determined. The validity of applying the Fourier's approximation equations to these problems is also studied. A computer program TRANS is developed in order to study the transient cases. This program solves a system of coupled, non-linear partial differential equations, of parabolic type, in cylindrical coordinates with various boundary conditions. The benchmarking of the TRANS program is done by comparing its predictions with the analytical solution of some simplified transient cases. Complex transient cases such as those corresponding to characteristic reactor accidents are studied, in particular for typical pressurized heavy water reactor (PHWR) fuel rods, such as those of Atucha I. The Stefan problem emerging in the case of melting of the fuel element is solved. Qualitative differences between the classical Stefan problem, without inner sources, and that one, which includes sources are discussed. The MSA program, for solving the Stefan problem with inner sources is presented; and furthermore, it serves to predict thermal evolution, when the fuel element melts. Finally a model for fuel phase change under irradiation is developed. The model is based on the dimensional invariants of the percolation theory when applied to the connectivity of liquid spires nucleated around each fission fragment track. Suggestions for future research into the subject are also presented. (autor) [es

  15. Use of Prothrombin Complex Concentrate in Patients during Heart Transplantation after Implantation of a Left Ventricular Mechanical Support System

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2012-01-01

    Full Text Available Heart transplantation in patients after implantation of mechanical cardiac support devices entails an extremely high risk for perioperative bleeding. Recombinant activated coagulation factor VII is presently used to reduce the volume of bleeding in this patient group. There are parallel data on its administration-induced thromboembolic events in the literature. This paper describes a case of using a prothrombin complex concentrate in a patient during explantation of a left ventricular bypass system and subsequent orthotopic heart transplantation in the presence of significant hypocoagulation. At the end of a surgery, 1200 IU of the agent was used at a remaining bleeding rate of more than 1000 ml/hour. Within the first 24 hours after surgery, the rate of discharge drainage was less than 100 ml/hour. A control plain chest X-ray study revealed massive left-sided hydrothorax on day 2 postsurgery. The left pleural cavity was revised under thoracoscopic guidance and 1000 ml of blood clots were evacuated. Although the administration of prothrombin complex concentrate did not guard against re-intervention, its use seems a promising strategy in life-threatening bleedings in patients after explantation of mechanical cardiac support devices. Further multicenter investigations are required to determine the efficacy and safety of prothrom-bin complex concentration in cardiac surgery. Key words: Recombinant activated coagulation factor VII, prothrombin complex concentration, mechanical cardiac support device, orthotopic heart transplantation.

  16. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  17. Review of oxidation rates of DOE spent nuclear fuel : Part 1 : nuclear fuel

    International Nuclear Information System (INIS)

    Hilton, B.A.

    2000-01-01

    The long-term performance of Department of Energy (DOE) spent nuclear fuel (SNF) in a mined geologic disposal system depends highly on fuel oxidation and subsequent radionuclide release. The oxidation rates of nuclear fuels are reviewed in this two-volume report to provide a baseline for comparison with release rate data and technical rationale for predicting general corrosion behavior of DOE SNF. The oxidation rates of nuclear fuels in the DOE SNF inventory were organized according to metallic, Part 1, and non-metallic, Part 2, spent nuclear fuels. This Part 1 of the report reviews the oxidation behavior of three fuel types prototypic of metallic fuel in the DOE SNF inventory: uranium metal, uranium alloys and aluminum-based dispersion fuels. The oxidation rates of these fuels were evaluated in oxygen, water vapor, and water. The water data were limited to pure water corrosion as this represents baseline corrosion kinetics. Since the oxidation processes and kinetics discussed in this report are limited to pure water, they are not directly applicable to corrosion rates of SNF in water chemistry that is significantly different (such as may occur in the repository). Linear kinetics adequately described the oxidation rates of metallic fuels in long-term corrosion. Temperature dependent oxidation rates were determined by linear regression analysis of the literature data. As expected the reaction rates of metallic fuels dramatically increase with temperature. The uranium metal and metal alloys have stronger temperature dependence than the aluminum dispersion fuels. The uranium metal/water reaction exhibited the highest oxidation rate of the metallic fuel types and environments that were reviewed. Consequently, the corrosion properties of all DOE SNF may be conservatively modeled as uranium metal, which is representative of spent N-Reactor fuel. The reaction rate in anoxic, saturated water vapor was essentially the same as the water reaction rate. The long-term intrinsic

  18. Quality assurance monitoring during nuclear fuel production in JSC 'TVEL'

    International Nuclear Information System (INIS)

    Filimonov, G.; Tchirkov, V.

    2000-01-01

    The paper describes Quality Assurance (QA) monitoring during fabrication of nuclear fuel in Russian Federation. Joint Stock Company 'TVEL', natural state monopoly of the type of holding that fabricates and supplies nuclear fuel for the NPPs of Russia, CIS and Europe, incorporates the major enterprises of the nuclear fuel cycle including JSC 'Mashinostroitelny zavod', Electrostal (fabrication of fuel pellets, rods and assemblies for different types of reactors), JSC 'Novosibirsky zavod khimconcentratov', Novosibirsk (fabrication of fuel rods and assemblies for WWER-440 and WWER-1000), JSC 'Tchepetsky mechanitchesky zavod', Tchepetsk (fabrication of Zr tubing). Monitoring of QA is an important element of Quality Management System (QMS) developed and implemented at the above-mentioned enterprises of the JSC 'TVEL' and it is performed on three levels including external and internal audits and author's supervision. Paper also describes short- and long-term policies of the JSC 'TVEL' in nuclear fuel quality field. (author)

  19. Nuclear fuel cycle and waste management in France

    International Nuclear Information System (INIS)

    Sousselier, Yves.

    1981-05-01

    After a short description of the nuclear fuel cycle mining, milling, enrichment and reprocessing, radioactive waste management in France is exposed. The different types of radioactive wastes are examined. Storage, solidification and safe disposal of these wastes are described

  20. Nuclear fuel, mass balances, conversion ratio, doubling time, and uncertainty

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1976-11-01

    Information on the performance aspects of nuclear power plants is presented concerning conversion ratio, criticality, primitive economic analysis, stable breeder-converter industry, doubling time, breeder industry economic benefit, defining nuclear fuel, recommendations, and uncertainty