Sample records for implantable medical device

  1. Implantable Medical Devices

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  2. Implantable electronic medical devices

    Fitzpatrick, Dennis


    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  3. Body Implanted Medical Device Communications

    Yazdandoost, Kamya Yekeh; Kohno, Ryuji

    The medical care day by day and more and more is associated with and reliant upon concepts and advances of electronics and electromagnetics. Numerous medical devices are implanted in the body for medical use. Tissue implanted devices are of great interest for wireless medical applications due to the promising of different clinical usage to promote a patient independence. It can be used in hospitals, health care facilities and home to transmit patient measurement data, such as pulse and respiration rates to a nearby receiver, permitting greater patient mobility and increased comfort. As this service permits remote monitoring of several patients simultaneously it could also potentially decrease health care costs. Advancement in radio frequency communications and miniaturization of bioelectronics are supporting medical implant applications. A central component of wireless implanted device is an antenna and there are several issues to consider when designing an in-body antenna, including power consumption, size, frequency, biocompatibility and the unique RF transmission challenges posed by the human body. The radiation characteristics of such devices are important in terms of both safety and performance. The implanted antenna and human body as a medium for wireless communication are discussed over Medical Implant Communications Service (MICS) band in the frequency range of 402-405MHz.

  4. Implantable Medical Devices; Networking Security Survey

    Siamak Aram; Rouzbeh A. Shirvani; Eros G. Pasero; Mohamd F. Chouikha


    The industry of implantable medical devices (IMDs) is constantly evolving, which is dictated by the pressing need to comprehensively address new challenges in the healthcare field. Accordingly, IMDs are becoming more and more sophisticated. Not long ago, the range of IMDs’ technical capacities was expanded, making it possible to establish Internet connection in case of necessity and/or emergency situation for the patient. At the same time, while the web connectivity of today’s implantable dev...

  5. [Design and application of implantable medical device information management system].

    Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying


    Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.

  6. Implantable Medical Devices; Networking Security Survey

    Siamak Aram


    Full Text Available The industry of implantable medical devices (IMDs is constantly evolving, which is dictated by the pressing need to comprehensively address new challenges in the healthcare field. Accordingly, IMDs are becoming more and more sophisticated. Not long ago, the range of IMDs’ technical capacities was expanded, making it possible to establish Internet connection in case of necessity and/or emergency situation for the patient. At the same time, while the web connectivity of today’s implantable devices is rather advanced, the issue of equipping the IMDs with sufficiently strong security system remains unresolved. In fact, IMDs have relatively weak security mechanisms which render them vulnerable to cyber-attacks that compromise the quality of IMDs’ functionalities. This study revolves around the security deficiencies inherent to three types of sensor-based medical devices; biosensors, insulin pump systems and implantable cardioverter defibrillators. Manufacturers of these devices should take into consideration that security and effectiveness of the functionality of implants is highly dependent on the design. In this paper, we present a comprehensive study of IMDs’ architecture and specifically investigate their vulnerabilities at networking interface.

  7. Power Approaches for Implantable Medical Devices

    Achraf Ben Amar


    Full Text Available Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health. In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources.

  8. Security and privacy for implantable medical devices

    Carrara, Sandro


     This book presents a systematic approach to analyzing the challenging engineering problems posed by the need for security and privacy in implantable medical devices (IMD).  It describes in detail new issues termed as lightweight security, due to the associated constraints on metrics such as available power, energy, computing ability, area, execution time, and memory requirements. Coverage includes vulnerabilities and defense across multiple levels, with basic abstractions of cryptographic services and primitives such as public key cryptography, block ciphers and digital signatures. Experts from engineering introduce to some IMD systems that have  recently been proposed and developed. Experts from Computer Security and Cryptography present new research, which shows vulnerabilities in existing IMDs and proposes solutions. Experts from Privacy Technology and Policy will discuss the societal, legal and ethical challenges surrounding IMD security as well as technological solutions that build on the latest in C...

  9. Implantable photonic devices for improved medical treatments

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev


    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient's body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment.

  10. Development of Implantable Medical Devices: From an Engineering Perspective

    Yeun-Ho Joung


    Full Text Available From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind.

  11. Security Belt for Wireless Implantable Medical Devices.

    Kulaç, Selman


    In this study, a new protective design compatible with existing non-secure systems was proposed, since it is focused on the secure communication of wireless IMD systems in all transmissions. This new protector is an external wearable device and appears to be a belt fitted around for the patients IMD implanted. However, in order to provide effective full duplex transmissions and physical layer security, some sophisticated transceiver antennas have been placed on the belt. In this approach, beam-focused multi-antennas in optimal positions on the belt are randomly switched when transmissions to the IMD are performed and multi-jammer switching with MRC combining or majority-rule based receiving techniques are applied when transmissions from the IMD are carried out. This approach can also reduce the power consumption of the IMDs and contribute to the prolongation of the IMD's battery life.

  12. [Radiotherapy and implantable medical device: example of infusion pumps].

    Abrous-Anane, S; Benhassine, S; Lopez, S; Cristina, K; Mazeron, J-J


    Indication for radiotherapy is often questioned for patients equipped with implantable medical devices like infusion pumps as the radiation tolerance is poor or not known. We report here on the case of a patient who we treated with pelvic radiotherapy for cervical cancer and who had an infusion pump in iliac fossa. We conducted a series of tests on five identical pumps that insured that the treatment protocol is harmless to the implanted device. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  13. The effects of cosmic radiation on implantable medical devices

    Bradley, P.


    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  14. Wireless energy transfer platform for medical sensors and implantable devices.

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui


    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  15. Implantable Glucose BioFuel Cells for Medical Devices

    Cinquin, P; Martin, D K; Cosnier, S; Belgacem, N; Cosnier, M L; Dal Molin, R


    An Implantable BioFuel Cell (IBFC) is a device that produces power only from the chemicals that are naturally occurring inside the body. We have been working on two approaches to creating an IBFC. The first approach is to use chemicals such as glucose and oxygen to provide the fuel for an enzymatic IBFC. The second approach is to use electrolytes such as sodium to provide the fuel for a biomimetic IBFC

  16. Identification of Bodies by Unique Serial Numbers on Implanted Medical Devices.

    Blessing, Melissa M; Lin, Peter T


    Visual identification is the most common identification method used by medical examiners but is not always possible. Alternative methods include X-ray, fingerprint, or DNA comparison, but these methods require additional resources. Comparison of serial numbers on implanted medical devices is a rapid and definitive method of identification. To assess the practicality of using this method, we reviewed 608 consecutive forensic autopsies performed at a regional medical examiner office. Of these, 56 cases required an alternative method of identification due to decomposition (n = 35), gunshot wound (n = 9), blunt trauma (n = 6), or charring (n = 6). Of these 56 cases, eight (14.3%) were known to have an implanted medical device. Of these eight cases, five (63%) could be positively identified by comparing serial numbers. If an implanted medical device is known to be present, and medical records are available, identification by medical device serial number should be a first-line method. © 2017 American Academy of Forensic Sciences.

  17. Methodological considerations in observational comparative effectiveness research for implantable medical devices: an epidemiologic perspective.

    Jalbert, Jessica J; Ritchey, Mary Elizabeth; Mi, Xiaojuan; Chen, Chih-Ying; Hammill, Bradley G; Curtis, Lesley H; Setoguchi, Soko


    Medical devices play a vital role in diagnosing, treating, and preventing diseases and are an integral part of the health-care system. Many devices, including implantable medical devices, enter the market through a regulatory pathway that was not designed to assure safety and effectiveness. Several recent studies and high-profile device recalls have demonstrated the need for well-designed, valid postmarketing studies of medical devices. Medical device epidemiology is a relatively new field compared with pharmacoepidemiology, which for decades has been developed to assess the safety and effectiveness of medications. Many methodological considerations in pharmacoepidemiology apply to medical device epidemiology. Fundamental differences in mechanisms of action and use and in how exposure data are captured mean that comparative effectiveness studies of medical devices often necessitate additional and different considerations. In this paper, we discuss some of the most salient issues encountered in conducting comparative effectiveness research on implantable devices. We discuss special methodological considerations regarding the use of data sources, exposure and outcome definitions, timing of exposure, and sources of bias. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail:

  18. Wireless communication with implanted medical devices using the conductive properties of the body.

    Ferguson, John E; Redish, A David


    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

  19. The Challenges of Balancing Safety and Security in Implantable Medical Devices.

    Katzis, Konstantinos; Jones, Richard W; Despotou, George


    Modern Implantable Medical Devices (IMDs), implement capabilities that have contributed significantly to patient outcomes, as well as quality of life. The ever increasing connectivity of IMD's does raise security concerns though there are instances where implemented security measures might impact on patient safety. The paper discusses challenges of addressing both of these attributes in parallel.

  20. Security and privacy issues in implantable medical devices: A comprehensive survey.

    Camara, Carmen; Peris-Lopez, Pedro; Tapiador, Juan E


    Bioengineering is a field in expansion. New technologies are appearing to provide a more efficient treatment of diseases or human deficiencies. Implantable Medical Devices (IMDs) constitute one example, these being devices with more computing, decision making and communication capabilities. Several research works in the computer security field have identified serious security and privacy risks in IMDs that could compromise the implant and even the health of the patient who carries it. This article surveys the main security goals for the next generation of IMDs and analyzes the most relevant protection mechanisms proposed so far. On the one hand, the security proposals must have into consideration the inherent constraints of these small and implanted devices: energy, storage and computing power. On the other hand, proposed solutions must achieve an adequate balance between the safety of the patient and the security level offered, with the battery lifetime being another critical parameter in the design phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Implantable Medical Device for Measuring Electrocardiogram to Improve Human Wellness

    Jong-Ha Lee


    Full Text Available Prolonged monitoring is more likely to diagnose atrial fibrillation accurately than intermittent or short-term monitoring. In this study, an implantable electrocardiograph (ECG sensor to monitor atrial fibrillation patients in real time was developed. The implantable sensor is composed of a micro controller unit, an analog-to-digital converter, a signal transmitter, an antenna, and two electrodes. The sensor detects ECG signals from the two electrodes and transmits these to an external receiver carried by the patient. Because the sensor continuously transmits signals, its battery consumption rate is extremely high; therefore, the sensor includes a wireless power transmission module that allows it to charge wirelessly from an external power source. The integrated sensor has the approximate dimensions 0.12 in × 1.18 in × 0.19 in, which is small enough to be inserted into a patient without the need for major surgery. The signal and power transmission data sampling rate and frequency of the unit are 300 samples/s and 430 Hz, respectively. To validate the developed sensor, experiments were conducted on small animals.

  2. A temperature sensor implant for active implantable medical devices for in vivo subacute heating tests under MRI.

    Silemek, Berk; Acikel, Volkan; Oto, Cagdas; Alipour, Akbar; Aykut, Zaliha Gamze; Algin, Oktay; Atalar, Ergin


    To introduce a temperature sensor implant (TSI) that mimics an active implantable medical device (AIMD) for animal testing of MRI heating. Computer simulations and phantom experiments poorly represent potential temperature increases. Animal experiments could be a better model, but heating experiments conducted immediately after the surgery suffer from alterations of the thermoregulatory and tissue properties during acute testing conditions. Therefore, the aim of this study was to introduce a temperature sensor implant that mimics an AIMD and capable of measuring the electrode temperature after implantation of the device without any further intervention at any time after the surgery in an animal model. A battery-operated TSI, which resembled an AIMD, was used to measure the lead temperature and impedance and the case temperature. The measured values were transmitted to an external computer via a low-power Bluetooth communication protocol. In addition to validation experiments on the phantom, a sheep experiment was conducted to test the feasibility of the system in subacute conditions. The measurements had a maximum of 0.5°C difference compared to fiber-optic temperature probes. In vivo animal experiments demonstrated feasibility of the system. An active implant, which can measure its own temperature, was proposed to investigate implant heating during MRI examinations. Magn Reson Med 79:2824-2832, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.

    Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A


    Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications.

  4. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands.

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi


    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  5. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.

    Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P


    We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.

  6. Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices.

    Bocan, Kara N; Mickle, Marlin H; Sejdic, Ervin


    The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.

  7. Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices

    Bocan, Kara N.; Mickle, Marlin H.


    The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology. PMID:29018637

  8. Security Mechanism Based on Hospital Authentication Server for Secure Application of Implantable Medical Devices


    After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient's life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician's treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance. PMID:25276797

  9. Security Mechanism Based on Hospital Authentication Server for Secure Application of Implantable Medical Devices

    Chang-Seop Park


    Full Text Available After two recent security attacks against implantable medical devices (IMDs have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient’s life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician’s treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance.

  10. Security mechanism based on Hospital Authentication Server for secure application of implantable medical devices.

    Park, Chang-Seop


    After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient's life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician's treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance.

  11. Remaining useful life assessment of lithium-ion batteries in implantable medical devices

    Hu, Chao; Ye, Hui; Jain, Gaurav; Schmidt, Craig


    This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid data-driven/model-based method is employed for remaining useful life assessment. The method is developed on and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications exhibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules: 1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade behavior switches between multiple fade models.

  12. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    Wu, Wei; Fang, Qiang


    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  13. Complications after cardiac implantable electronic device implantations

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard


    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  14. Isopropyl Myristate-Modified Polyether-Urethane Coatings as Protective Barriers for Implantable Medical Devices

    Roohpour, Nima; Wasikiewicz, Jaroslaw M.; Moshaverinia, Alireza; Paul, Deepen; Rehman, Ihtesham U.; Vadgama, Pankaj


    Polyurethane films have potential applications in medicine, especially for packaging implantable medical devices. Although polyether-urethanes have superior mechanical properties and are biocompatible, achieving water resistance is still a challenge. Polyether based polyurethanes with two different molecular weights (PTMO1000, PTMO2000) were prepared from 4,4’-diphenylmethane diisocyanate and poly(tetra-methylene oxide). Polymer films were introduced using different concentrations (0.5-10 wt %) of isopropyl myristate lipid (IPM) as a non-toxic modifying agent. The physical and mechanical properties of these polymers were characterised using physical and spectroscopy techniques (FTIR, Raman, DSC, DMA, tensile testing). Water contact angle and water uptake of the membranes as a function of IPM concentration was also determined accordingly. The FTIR and Raman data indicate that IPM is dispersed in polyurethane at ≤ 2wt% and thermal analysis confirmed this miscibility to be dependent on soft segment length. Modified polymers showed increased tensile strength and failure strain as well as reduced water uptake by up to 24% at 1-2 wt% IPM.

  15. Isopropyl Myristate-Modified Polyether-Urethane Coatings as Protective Barriers for Implantable Medical Devices

    Pankaj Vadgama


    Full Text Available Polyurethane films have potential applications in medicine, especially for packaging implantable medical devices. Although polyether-urethanes have superior mechanical properties and are biocompatible, achieving water resistance is still a challenge. Polyether based polyurethanes with two different molecular weights (PTMO1000, PTMO2000 were prepared from 4,4’-diphenylmethane diisocyanate and poly(tetra-methylene oxide. Polymer films were introduced using different concentrations (0.5-10 wt % of isopropyl myristate lipid (IPM as a non-toxic modifying agent. The physical and mechanical properties of these polymers were characterised using physical and spectroscopy techniques (FTIR, Raman, DSC, DMA, tensile testing. Water contact angle and water uptake of the membranes as a function of IPM concentration was also determined accordingly. The FTIR and Raman data indicate that IPM is dispersed in polyurethane at ≤ 2wt% and thermal analysis confirmed this miscibility to be dependent on soft segment length. Modified polymers showed increased tensile strength and failure strain as well as reduced water uptake by up to 24% at 1-2 wt% IPM.

  16. Cochlear implants and medical tourism.

    McKinnon, Brian J; Bhatt, Nishant


    To compare the costs of medical tourism in cochlear implant surgery performed in India as compared to the United States. In addition, the cost savings of obtaining cochlear implant surgery in India were compare d to those of other surgical interventions obtained as a medical tourist. Searches were conducted on Medline and Google using the search terms: 'medical tourism', 'medical offshoring', 'medical outsourcing', 'cochlear implants' and 'cochlear implantation'. The information regarding cost of medical treatment was obtained from personal communication with individuals familiar with India's cochlear implantation medical tourism industry. The range of cost depended on length of stay as well as the device chosen. Generally the cost, inclusive of travel, surgery and device, was in the range of $21,000-30,000, as compared to a cost range of $40,000-$60,000 in the US. With the escalating cost of healthcare in the United States, it is not surprising that some patients would seek to obtain surgical care overseas at a fraction of the cost. Participants in medical tourism often have financial resources, but lack health insurance coverage. While cardiovascular and orthopedic surgery performed outside the United States in India at centers that cater to medical tourists are often performed at one-quarter to one-third of the cost that would have been paid in the United States, the cost differential for cochlear implants is not nearly as favorable.

  17. Medical Devices

    Verkerke, Gijsbertus Jacob; Mahieu, H.F.; Geertsema, A.A.; Hermann, I.F.; van Horn, J.R.; Hummel, J. Marjan; van Loon, J.P.; Mihaylov, D.; van der Plaats, A.; Schraffordt Koops, H.; Schutte, H.K.; Veth, R.P.H.; de Vries, M.P.; Rakhorst, G.; Shi, Donglu


    The development of new medical devices is a very time-consuming and costly process. Besides the time between the initial idea and the time that manufacturing and testing of prototypes takes place, the time needed for the development of production facilities, production of test series, marketing,

  18. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    Radziemski, Leon; Makin, Inder Raj S


    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery

    Hollander, Jenny; Genina, Natalja; Jukarainen, Harri


    The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used...... prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between...

  20. Medical implants and methods of making medical implants

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug


    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  1. A Web-based searchable system to confirm magnetic resonance compatibility of implantable medical devices in Japan: a preliminary study.

    Fujiwara, Yasuhiro; Fujioka, Hitoshi; Watanabe, Tomoko; Sekiguchi, Maiko; Murakami, Ryuji


    Confirmation of the magnetic resonance (MR) compatibility of implanted medical devices (IMDs) is mandatory before conducting magnetic resonance imaging (MRI) examinations. In Japan, few such confirmation methods are in use, and they are time-consuming. This study aimed to develop a Web-based searchable MR safety information system to confirm IMD compatibility and to evaluate the usefulness of the system. First, MR safety information for intravascular stents and stent grafts sold in Japan was gathered by interviewing 20 manufacturers. These IMDs were categorized based on the descriptions available on medical package inserts as: "MR Safe," "MR Conditional," "MR Unsafe," "Unknown," and "No Medical Package Insert Available". An MR safety information database for implants was created based on previously proposed item lists. Finally, a Web-based searchable system was developed using this database. A questionnaire was given to health-care personnel in Japan to evaluate the usefulness of this system. Seventy-nine datasets were collected using information provided by 12 manufacturers and by investigating the medical packaging of the IMDs. Although the datasets must be updated by collecting data from other manufacturers, this system facilitates the easy and rapid acquisition of MR safety information for IMDs, thereby improving the safety of MRI examinations.

  2. Telemetry and Telestimulation via Implanted Devices Necessary in Long-Term Experiments Using Conscious Untethered Animals for the Development of New Medical Treatments

    Sugimachi, Masaru; Kawada, Toru; Uemura, Kazunori

    Effective countermeasures against explosive increase in healthcare expenditures are urgently needed. A paradigm shift in healthcare is called for, and academics and governments worldwide are working hard on the application of information and communication technologies (ICT) as a feasible and effective measure for reducing medical cost. The more prevalent the disease and the easier disease outcome can be improved, the more efficient is medical ICT in reducing healthcare cost. Hypertension and diabetes mellitus are such examples. Chronic heart failure is another disease in which patients may benefit from ICT-based medical practice. It is conceivable that daily monitoring of hemodynamics together with appropriate treatments may obviate the expensive hospitalization. ICT potentially permit continuous monitoring with wearable or implantable medical devices. ICT may also help accelerate the development of new therapeutic devices. Traditionally effectiveness of treatments is sequentially examined by sacrificing a number of animals at a given time point. These inefficient and inaccurate methods can be replaced by applying ICT to the devices used in chronic animal experiments. These devices allow researchers to obtain biosignals and images from live animals without killing them. They include implantable telemetric devices, implantable telestimulation devices, and imaging devices. Implanted rather than wired monitoring and stimulation devices permit experiments to be conducted under even more physiological conditions, i.e., untethered, free-moving states. Wireless communication and ICT are indispensible technologies for the development of such telemetric and telestimulation devices.

  3. Cochlear implantation in the world's largest medical device market: utilization and awareness of cochlear implants in the United States.

    Sorkin, Donna L


    Provision of cochlear implants (CIs) for those within the criteria for implantation remains lower in the United States than in some other developed nations. When adults and children are grouped together, the rate of utilization/provision remains low at around 6%. For children, the provision rate is about 50% of those who could benefit from an implant, compared with figures of about 90% for the Flanders part of Belgium, the United Kingdom and other European countries. The probable reasons for this underprovision include: low awareness of the benefits of CIs among the population; low awareness among health-care professionals; the lack of specific referral pathways; some political issues relating to the Deaf Community; and financial issues related to health provision. Such financial issues result in situations which either fail to provide for access to implants or provide too low a level of the necessary funding, especially for low-income individuals covered by public health-care programs such as Medicaid. These issues might be mitigated by adoption and publication of standards for best clinical practices for CI provision, availability of current cost-effectiveness data, and the existence of an organization dedicated to cochlear implantation. Such an organization, the American Cochlear Implant Alliance (ACI Alliance), was recently organized and is described in the paper by Niparko et al. in this Supplement.

  4. Existing reporting guidelines for clinical trials are not completely relevant for implantable medical devices: a systematic review.

    Motte, Anne-France; Diallo, Stéphanie; van den Brink, Hélène; Châteauvieux, Constance; Serrano, Carole; Naud, Carole; Steelandt, Julie; Alsac, Jean-Marc; Aubry, Pierre; Cour, Florence; Pellerin, Olivier; Pineau, Judith; Prognon, Patrice; Borget, Isabelle; Bonan, Brigitte; Martelli, Nicolas


    The aim of this study was to determine relevant items for reporting clinical trials on implantable medical devices (IMDs) and to identify reporting guidelines which include these items. A panel of experts identified the most relevant items for evaluating IMDs from an initial list based on reference papers. We then conducted a systematic review of articles indexed in MEDLINE. We retrieved reporting guidelines from the EQUATOR network's library for health research reporting. Finally, we screened these reporting guidelines to find those using our set of reporting items. Seven relevant reporting items were selected that related to four topics: randomization, learning curve, surgical setting, and device information. A total of 348 reporting guidelines were identified, among which 26 met our inclusion criteria. However, none of the 26 reporting guidelines presented all seven items together. The most frequently reported item was timing of randomization (65%). On the contrary, device information and learning curve effects were poorly specified. To our knowledge, this study is the first to identify specific items related to IMDs in reporting guidelines for clinical trials. We have shown that no existing reporting guideline is totally suitable for these devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. RF link for Implanted Medical Devices (IMDs) and Sub-GHz Inductive Power Transmission

    Diet , Antoine; Koulouridis , Satvros; Le Bihan , Yann; Luu , Quang-Trung; Meyer , Olivier; Pichon , Lionel; Biancheri-Astier , Marc


    International audience; Ce travail s'inscrit dan sune etude exploratoire sur les possibilités de télé-alimentation RF des implants médicaux et/ou de communication entre eux. En effet, la durée de fonctionnement de certains implants avec batterie rend leur utilisation critique car il ne faut pas privilégier une intervention chirurgicale lourde s'il est possible d'agir de manière non-invasive. La transmission d'énergie sans fil ou WPT (Wireless Power Transfer) est au cœur de nombreuses autres t...

  6. Can machine learning complement traditional medical device surveillance? A case-study of dual-chamber implantable cardioverter–defibrillators

    Ross JS


    Full Text Available Joseph S Ross,1–4 Jonathan Bates,4 Craig S Parzynski,4 Joseph G Akar,4,5 Jeptha P Curtis,4,5 Nihar R Desai,4,5 James V Freeman,4,5 Ginger M Gamble,4 Richard Kuntz,6 Shu-Xia Li,4 Danica Marinac-Dabic,7 Frederick A Masoudi,8 Sharon-Lise T Normand,9,10 Isuru Ranasinghe,11 Richard E Shaw,12 Harlan M Krumholz2–5 1Section of General Medicine, Department of Medicine, 2Robert Wood Johnson Foundation Clinical Scholars Program, Yale School of Medicine, 3Department of Health Policy and Management, Yale School of Public Health, 4Center for Outcomes Research and Evaluation, Yale–New Haven Hospital, 5Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, 6Medtronic Inc, Minneapolis, MN, 7Division of Epidemiology, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 8Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, 9Department of Health Care Policy, Harvard Medical School, 10Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA; 11Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; 12Department of Clinical Informatics, California Pacific Medical Center, San Francisco, CA, USA Background: Machine learning methods may complement traditional analytic methods for medical device surveillance.Methods and results: Using data from the National Cardiovascular Data Registry for implantable cardioverter–defibrillators (ICDs linked to Medicare administrative claims for longitudinal follow-up, we applied three statistical approaches to safety-signal detection for commonly used dual-chamber ICDs that used two propensity score (PS models: one specified by subject-matter experts (PS-SME, and the other one by machine learning-based selection (PS-ML. The first approach used PS-SME and cumulative incidence (time-to-event, the second approach used PS-SME and cumulative risk (Data Extraction and

  7. Implanted Antennas in Medical Wireless Communications

    Rahmat-Samii, Yahya; Balanis, Constantine


    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  8. Implantation damage in silicon devices

    Nicholas, K.H.


    Ion implantation, is an attractive technique for producing doped layers in silicon devices but the implantation process involves disruption of the lattice and defects are formed, which can degrade device properties. Methods of minimizing such damage are discussed and direct comparisons made between implantation and diffusion techniques in terms of defects in the final devices and the electrical performance of the devices. Defects are produced in the silicon lattice during implantation but they are annealed to form secondary defects even at room temperature. The annealing can be at a low temperature ( 0 C) when migration of defects in silicon in generally small, or at high temperature when they can grow well beyond the implanted region. The defect structures can be complicated by impurity atoms knocked into the silicon from surface layers by the implantation. Defects can also be produced within layers on top of the silicon and these can be very important in device fabrication. In addition to affecting the electrical properties of the final device, defects produced during fabrication may influence the chemical properties of the materials. The use of these properties to improve devices are discussed as well as the degradation they can cause. (author)

  9. Medical Device Safety

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They ... may need one in a hospital. To use medical devices safely Know how your device works. Keep ...

  10. Modulation Techniques for Biomedical Implanted Devices and Their Challenges

    Salina A. Samad


    Full Text Available Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK, frequency shift keying (FSK and phase shift keying (PSK of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices.

  11. Progress in application of magnesium alloys in the implanted medical devices%镁合金在植入医疗器械中的应用进展

    范仲雄; 智丽丽; 郭富强; 侯振清


    Magnesium alloys have been a hotspot in the field of implanted medical devices due to their biodegradable absorbability, excellent mechanical properties and good biocompatibility.The reduction in their rapid corrosion rates becomes the key to the application of implant medical device materials.In this paper, the latest research progress and the existing problems of magnesium alloys as the material for implantation of medical devices in the fracture internal fixation, bone tissue porous scaffold, and cardiovascular stent are reviewed.Improving corrosion resistant of magnesium alloys by means of alloying, improving purity, surface modification,rapid solidification, deformation processing, non crystallization and preparation of nano alloy technology in body fluid are expounded, and research direction and application prospect of magnesium alloys in the field of implanted medical devices are also expected.%镁合金因具有可降解吸收性、优良的力学性能和生物相容性等优点成为植入医疗器械领域的研究热点,降低镁合金过快的腐蚀速度成为其作为植入医疗器械材料应用的关键.综述了镁合金作为植入医疗器械材料在骨折内固定件、骨组织多孔支架和心血管支架等方面应用的最新研究进展及存在的问题,阐述了通过合金化、提高纯度、表面改性、快速凝固、变形加工、非晶化和制备纳米合金等方法提高镁合金材料耐体液腐蚀性能,并展望了镁合金在植入医疗器械领域中的研究方向和应用前景.

  12. Medical device development.

    Panescu, Dorin


    The development of a successful medical product requires not only engineering design efforts, but also clinical, regulatory, marketing and business expertise. This paper reviews items related to the process of designing medical devices. It discusses the steps required to take a medical product idea from concept, through development, verification and validation, regulatory approvals and market release.

  13. Implantable devices in the electromagnetic environment

    Luca Santini


    Full Text Available In the last few years we are witnessing a dramatic increase in the number of CIEDs implanted. At the same time new emitters are constantly entering the marketplace and more and more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of CIEDs with the EMI is a real, actual and challenging one. In the non-medical environment several types of devices may be intentional or non-intentional sources of EMI. Most of the studies reported in literature focused on mobile phones, metal detectors, as well as on headphones or digital players, but many other instruments and tools may generate electromagnetic fields. In the medical environment most of the attention is paid to MRI and recently new PM and MRI conditional ICDs have been developed and launched in the market, but the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. Pacemaker/ICD manufacturers are incorporating state of the art technology to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  14. MDR (Medical Device Reporting)

    U.S. Department of Health & Human Services — This database allows you to search the CDRH's database information on medical devices which may have malfunctioned or caused a death or serious injury during the...

  15. Electromagnetic Interference in Implantable Rhythm Devices - The Indian Scenario

    Johnson Francis


    Full Text Available Implantable rhythm device (IRD is the generic name for the group of implantable devices used for diagnosis and treatment of cardiac arrhythmias. Devices in this category include cardiac pacemakers, implantable cardioverter defibrillators and implantable loop recorders. Since these devices have complex microelectronic circuitry and use electromagnetic waves for communication, they are susceptible to interference from extraneous sources of electromagnetic radiation and magnetic energy. Electromagnetic interference (EMI is generally not a major problem outside of the hospital environment. The most important interactions occur when a patient is subjected to medical procedures such as magnetic resonance imaging (MRI, electrocautery and radiation therapy. Two articles in this issue of the journal discusses various aspects of EMI on IRD1,2 . Together these articles provide a good review of the various sources of EMI and their interaction with IRD for the treating physician.

  16. Capacitive Feedthroughs for Medical Implants.

    Grob, Sven; Tass, Peter A; Hauptmann, Christian


    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  17. A Medical Delivery Device


    The present invention relates to a medical delivery device comprising at least two membrane electrode assembly units each of which comprises three layers: an upper and a lower electrode and a selective ionic conductive membrane provided there-between. At least one of the three layers are shared...

  18. Preventing medical device recalls

    Raheja, Dev


    Introduction to Medical Device RequirementsIntroductionThe ChallengesSources of ErrorsUnderstanding the Science of Safety     Overview of FDA Quality System Regulation     Overview of Risk Management Standard ISO 14971     Overview of FDA Device Approval Process     Overview of Regulatory Requirements for Clinical TrialsSummaryReferencesPreventing Recalls during Specification WritingIntroductionConduct Requirements Analysis to Identify Missing RequirementsSpecifications for Safety, Durability, and

  19. Degradability of Polymers for Implantable Biomedical Devices

    Lyu, SuPing; Untereker, Darrel


    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  20. EpiHosp: A web-based visualization tool enabling the exploratory analysis of complications of implantable medical devices from a nationwide hospital database.

    Ficheur, Grégoire; Ferreira Careira, Lionel; Beuscart, Régis; Chazard, Emmanuel


    Administrative data can be used for the surveillance of the outcomes of implantable medical devices (IMDs). The objective of this work is to build a web-based tool allowing for an exploratory analysis of time-dependent events that may occur after the implementation of an IMD. This tool should enable a pharmacoepidemiologist to explore on the fly the relationship between a given IMD and a potential outcome. This tool mine the French nationwide database of inpatient stays from 2008 to 2013. The data are preprocessed in order to optimize the queries. A web tool is developed in PHP, MySQL and Javascript. The user selects one or a group of IMD from a tree, and can filter the results using years and hospital names. Four result pages describe the selected inpatient stays: (1) temporal and demographic description, (2) a description of the geographical location of the hospital, (3) a description of the geographical place of residence of the patient and (4) a table showing the rehospitalization reasons by decreasing order of frequency. Then, the user can select one readmission reason and display dynamically the probability of readmission by mean of a Kaplan-Meier curve with confidence intervals. This tool enables to dynamically monitor the occurrence of time-dependent complications of IMD.

  1. Toward biomaterial-based implantable photonic devices

    Humar Matjaž


    Full Text Available Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  2. Case outsourcing medical device reprocessing.

    Haley, Deborah


    IN THE INTEREST OF SAVING MONEY, many hospitals are considering extending the life of some single-use medical devices by using medical device reprocessing programs. FACILITIES OFTEN LACK the resources required to meet the US Food and Drug Administration's tough quality assurance standards. BY OUTSOURCING, hospitals can reap the benefits of medical device reprocessing without assuming additional staffing and compliance burdens. OUTSOURCING enables hospitals to implement a medical device reprocessing program quickly, with no capital investment and minimal effort.

  3. Integrated VCOs for Medical Implant Transceivers

    Ahmet Tekin


    Full Text Available The 402–405 MHz medical implant communication service (MICS band has recently been allocated by the US Federal Communication Commission (FCC with the potential to replace the low-frequency inductive coupling techniques in implantable devices. This band was particularly chosen to provide full-integration, low-power, faster data transfer, and longer communication range. This paper investigates the design of a voltage-controlled oscillator (VCO that will be an essential building block of such wireless implantable devices operating in the MICS service band. Three different integrated quadrature VCOs that meet the requirements of the MICS standard are designed in 0.18 μm TSMC CMOS process to propose an optimum choice. Their performances in terms of power consumption, die area, linearity, and phase noise are compared. The fabricated VCOs are a four-stage differential ring VCO, an LC tank VCO directly loaded with a poly-phase filter, and an 800 MHz LC tank VCO with a high-frequency master-slave divider. All three architectures target a VCO gain of Kvco = 15 MHz/V with 3 calibration control and 2 frequency-shift keying (FSK control signals and are designed for 1.5 V supply voltage in a 0.18-μm standard CMOS process.

  4. A Cellular Automata Model of Infection Control on Medical Implants

    Prieto-Langarica, Alicia; Kojouharov, Hristo; Chen-Charpentier, Benito; Tang, Liping


    S. epidermidis infections on medically implanted devices are a common problem in modern medicine due to the abundance of the bacteria. Once inside the body, S. epidermidis gather in communities called biofilms and can become extremely hard to eradicate, causing the patient serious complications. We simulate the complex S. epidermidis-Neutrophils interactions in order to determine the optimum conditions for the immune system to be able to contain the infection and avoid implant rejection. Our cellular automata model can also be used as a tool for determining the optimal amount of antibiotics for combating biofilm formation on medical implants. PMID:23543851

  5. An Assessment of Hazards Caused by Electromagnetic Interaction on Humans Present near Short-Wave Physiotherapeutic Devices of Various Types Including Hazards for Users of Electronic Active Implantable Medical Devices (AIMD

    Jolanta Karpowicz


    Full Text Available Leakage of electromagnetic fields (EMF from short-wave radiofrequency physiotherapeutic diathermies (SWDs may cause health and safety hazards affecting unintentionally exposed workers (W or general public (GP members (assisting patient exposed during treatment or presenting there for other reasons. Increasing use of electronic active implantable medical devices (AIMDs, by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users. Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated. Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both—GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment.

  6. Batteries for implantable biomedical devices

    Owens, B.B.


    The special requirements of power cells for a variety of medical applications and the technical means by which the needs have been met are taken up in 11 contributed chapters. Both chemicals (lithium/halogen, nickel/cadmium, etc.) and nuclear batteries are considered

  7. Quantum effects in ion implanted devices

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Yang, C.; Dzurak, A.S.; Yang, C.; Clark, R.G.; Yang, C.


    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because it will be necessary to control quantum states at the level of individual atoms, electrons or photons. We have developed a pathway to the construction of quantum devices using ion implantation and demonstrate, using charge transport analysis, that the devices exhibit single electron effects. We construct devices that employ two P donors in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved leading to the fabrication of prototype devices that display quantum effects in the transport of single charge quanta between the islands of implanted donors. (author). 9 refs., 4 figs., 1 tab

  8. Medical instruments and devices principles and practices

    Schreiner, Steven; Peterson, Donald R


    Medical Instruments and Devices: Principles and Practices originates from the medical instruments and devices section of The Biomedical Engineering Handbook, Fourth Edition. Top experts in the field provide material that spans this wide field. The text examines how biopotential amplifiers help regulate the quality and content of measured signals. It includes instruments and devices that span a range of physiological systems and the physiological scale: molecular, cellular, organ, and system. The book chronicles the evolution of pacemakers and their system operation and discusses oscillometry, cardiac output measurement, and the direct and indirect methods of measuring cardiac output. The authors also expound on the mechanics and safety of defibrillators and cover implantable stimulators, respiration, and the structure and function of mechanical ventilators. In addition, this text covers in depth: Anesthesia Delivery Electrosurgical Units and Devices Biomedical Lasers Measuring Cellular Traction Forces Blood G...

  9. Human Factors and Medical Devices

    Dick Sawyer


    Medical device hardware- and software-driven user interfaces should be designed to minimize the likelihood of use-related errors and their consequences. The role of design-induced errors in medical device incidents is attracting widespread attention. The U.S. Food and Drug Administration (FDA) is fully cognizant that human factors engineering is critical to the design of safe medical devices, and user interface design is receiving substantial attention by the agency. Companies are paying more attention to the impact of device design, including user instructions, upon the performance of those health professionals and lay users who operate medical devices. Concurrently, the FDA is monitoring human factors issues in its site inspections, premarket device approvals, and postmarket incident evaluations. Overall, the outlook for improved designs and safer device operation is bright

  10. Simulation study of a high power density rectenna array for biomedical implantable devices

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.


    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  11. Quantum effects in ion implanted devices

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Dzurak, A.S.; Clark, R.G.


    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because of the need to control quantum states at the level of individual atoms, electrons or photons. We have used ion implantation to fabricate devices on the scale of 10 nm that have allowed the development and test of nanocircuitry for the control of charge transport at the level of single electrons. This fabrication method is compatible with the construction of devices that employ counted P dopants in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon substrates by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved. Prototype devices fabricated by this method have been used to investigate quantum effects in the control and transport of single electrons with potential applications to solid state quantum information processing devices

  12. Remote Monitoring of Cardiac Implantable Electronic Devices.

    Cheung, Christopher C; Deyell, Marc W


    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  13. Hacking medical devices a review - biomed 2013.

    Frenger, Paul


    Programmable, implantable and external biomedical devices (such as pacemakers, defibrillators, insulin pumps, pain management pumps, vagus nerve stimulators and others) may be vulnerable to unauthorized access, commonly referred to as “hacking”. This intrusion may lead to compromise of confidential patient data or loss of control of the device itself, which may be deadly. Risks to health from unauthorized access is in addition to hazards from faulty (“buggy”) software or circuitry. Historically, this aspect of medical device design has been underemphasized by both manufacturers and regulatory bodies until recently. However, an insulin pump was employed as a murder weapon in 2001 and successful hacking of an implantable defibrillator was demonstrated in 2008. To remedy these problems, professional groups have announced a variety of design standards and the governmental agencies of several countries have enacted device regulations. In turn, manufacturers have developed new software products and hardware circuits to assist biomedical engineering firms to improve their commercial offerings. In this paper the author discusses these issues, reviewing known problems and zero-day threats, with potential solutions. He outlines his approach to secure software and hardware challenges using the Forth language. A plausible scenario is described in which hacking of an implantable defibrillator by terrorists results in a severe national security threat to the United States.

  14. Surgical tools and medical devices

    Jackson, Mark


    This new edition presents information and knowledge on the field of biomedical devices and surgical tools. The authors look at the interactions between nanotechnology, nanomaterials, design, modeling, and tools for surgical and dental applications, as well as how nanostructured surfaces can be created for the purposes of improving cell adhesion between medical devices and the human body. Each original chapter is revised in this second edition and describes developments in coatings for heart valves, stents, hip and knee joints, cardiovascular devices, orthodontic applications, and regenerative materials such as bone substitutes. There are also 8 new chapters that address: Microvascular anastomoses Inhaler devices used for pulmonary delivery of medical aerosols Surface modification of interference screws Biomechanics of the mandible (a detailed case study) Safety and medical devices The synthesis of nanostructured material Delivery of anticancer molecules using carbon nanotubes Nano and micro coatings for medic...

  15. Percutaneous Implantation of A Parachute Device For Treatment of Ischemic Heart Failure

    Cilingiroglu, Mehmet; Rollefson, William A.; Mego, David


    Congestive heart failure (CHF) secondary to ischemic cardiomyopathy is associated with significant morbidity and mortality despite currently available medical therapy. The Parachute TM device is a novel left ventricular partitioning device that is delivered percutaneously in the left ventricle (LV) in patients with anteroapical regional wall motion abnormalities, dilated LV and systolic dysfunction after anterior myocardial infarction with favorable clinical and LV hemodynamic improvements post-implantation. Here, we do review the current literature and present a case of the Parachute device implantation

  16. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Feiner, Ron; Dvir, Tal


    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  17. Management of antithrombotic therapy during cardiac implantable device surgery.

    AlTurki, Ahmed; Proietti, Riccardo; Birnie, David H; Essebag, Vidal


    Anticoagulants are commonly used drugs that are frequently encountered during device placement. Deciding when to halt or continue the use of anticoagulants is a balance between the risks of thromboembolism versus bleeding. Patients taking warfarin with a high risk of thromboembolism should continue to take their warfarin without interruption during device placement while ensuring their international normalized ratio remains below 3. For patients who are taking warfarin and have low risk of thromboembolism, either interrupted or continued warfarin may be used, with no evidence to clearly support either strategy. There is little evidence to support continuing direct acting oral anticoagulants (DOACs) for device implantation. The timing of halting these medications depends largely on renal function. If bleeding occurs, warfarin׳s anticoagulation effect is reversible with vitamin K and activated prothrombin complex concentrate. There are no DOAC reversal agents currently available, but some are under development. Regarding antiplatelet agents, aspirin alone can be safely continued while clopidogrel alone may also be continued, but with a slightly higher bleeding risk. Dual antiplatelet therapy for bare-metal stent/drug-eluting stent implanted within 4 weeks/6 months, respectively, should be continued due to high risk of stent thrombosis; however, if they are implanted after this period, then clopidogrel can be halted 5 days before the procedure and resumed soon after, while aspirin is continued. If the patient is taking both aspirin and warfarin, aspirin should be halted 5 days prior to the procedure, while warfarin is continued.

  18. Electronic medical devices: a primer for pathologists.

    Weitzman, James B


    Electronic medical devices (EMDs) with downloadable memories, such as implantable cardiac pacemakers, defibrillators, drug pumps, insulin pumps, and glucose monitors, are now an integral part of routine medical practice in the United States, and functional organ replacements, such as the artificial heart, pancreas, and retina, will most likely become commonplace in the near future. Often, EMDs end up in the hands of the pathologist as a surgical specimen or at autopsy. No established guidelines for systematic examination and reporting or comprehensive reviews of EMDs currently exist for the pathologist. To provide pathologists with a general overview of EMDs, including a brief history; epidemiology; essential technical aspects, indications, contraindications, and complications of selected devices; potential applications in pathology; relevant government regulations; and suggested examination and reporting guidelines. Articles indexed on PubMed of the National Library of Medicine, various medical and history of medicine textbooks, US Food and Drug Administration publications and product information, and specifications provided by device manufacturers. Studies were selected on the basis of relevance to the study objectives. Descriptive data were selected by the author. Suggested examination and reporting guidelines for EMDs received as surgical specimens and retrieved at autopsy. Electronic medical devices received as surgical specimens and retrieved at autopsy are increasing in number and level of sophistication. They should be systematically examined and reported, should have electronic memories downloaded when indicated, will help pathologists answer more questions with greater certainty, and should become an integral part of the formal knowledge base, research focus, training, and practice of pathology.

  19. Value-based purchasing of medical devices.

    Obremskey, William T; Dail, Teresa; Jahangir, A Alex


    Health care in the United States is known for its continued innovation and production of new devices and techniques. While the intention of these devices is to improve the delivery and outcome of patient care, they do not always achieve this goal. As new technologies enter the market, hospitals and physicians must determine which of these new devices to incorporate into practice, and it is important these devices bring value to patient care. We provide a model of a physician-engaged process to decrease cost and increase review of physician preference items. We describe the challenges, implementation, and outcomes of cost reduction and product stabilization of a value-based process for purchasing medical devices at a major academic medical center. We implemented a physician-driven committee that standardized and utilized evidence-based, clinically sound, and financially responsible methods for introducing or consolidating new supplies, devices, and technology for patient care. This committee worked with institutional finance and administrative leaders to accomplish its goals. Utilizing this physician-driven committee, we provided access to new products, standardized some products, decreased costs of physician preference items 11% to 26% across service lines, and achieved savings of greater than $8 million per year. The implementation of a facility-based technology assessment committee that critically evaluates new technology can decrease hospital costs on implants and standardize some product lines.

  20. Stretchable bioelectronics for medical devices and systems

    Ghaffari, Roozbeh; Kim, Dae-Hyeong


    This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more. Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.

  1. Implantable medical electronics prosthetics, drug delivery, and health monitoring

    Khanna, Vinod Kumar


    This book is a comprehensive, interdisciplinary resource for the latest information on implantable medical devices, and is intended for graduate students studying electrical engineering, electronic instrumentation, and biomedical engineering. It is also appropriate for academic researchers, professional engineers, practicing doctors, and paramedical staff. Divided into two sections on Basic Concepts and Principles, and Applications, the first section provides an all-embracing perspective of the electronics background necessary for this work. The second section deals with pacing techniques used for the heart, brain, spinal cord, and the network of nerves that interlink the brain and spinal cord with the major organs, including ear and eye prostheses. The four main offshoots of implantable electronics, which this book discusses, are: The insertion of an implantable neural amplifier for accurate recording of neural signals for neuroengineering studies The use of implantable pulse generators for pacing the activi...

  2. An update on mobile phones interference with medical devices

    Pashazadeh, A. M.; Aghajani, M.; Nabipour, I.; Assadi, M.


    Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems. (authors)

  3. An update on mobile phones interference with medical devices.

    Mahmoud Pashazadeh, Ali; Aghajani, Mahdi; Nabipour, Iraj; Assadi, Majid


    Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems.

  4. Problems associated with direct-to-consumer advertising (DTCA) of restricted, implantable medical devices: should the current regulatory approach be changed?

    Patsner, Bruce


    Advertising and promotion of Food and Drug Administration (FDA)-approved medical products has been one of the most controversial and bitterly litigated areas in food and drug law in the U.S. for more than a decade. Hundreds of newspaper articles and dozens of law review articles have been written on the subject of the risks and benefits of direct to consumer advertising (DTCA) of medical products, but until very recently virtually all of this literature and commentary has focused exclusively on prescription and over-the-counter drugs. Even when FDA has sponsored public hearings to address the issue of DTCA of all medical products, as it did in 2005, review of the content of the speakers' presentations reveals that almost all of the subject matter, nearly all of the data, and the majority of comments concerned DTCA of drugs. Not a single law review article has ever been devoted exclusively to the subject of advertising and promotion of medical devices to consumers--until now.

  5. Infective endocarditis and risk of death after cardiac implantable electronic device implantation

    Özcan, Cengiz; Raunsø, Jakob; Lamberts, Morten


    AIMS: To determine the incidence, risk factors, and mortality of infective endocarditis (IE) following implantation of a first-time, permanent, cardiac implantable electronic device (CIED). METHODS AND RESULTS: From Danish nationwide administrative registers (beginning in 1996), we identified all...

  6. Medical device market in China.

    Boyer, Philip; Morshed, Bashir I; Mussivand, Tofy


    With China's growing old-age population and economic presence on the international stage, it has become important to evaluate its domestic and foreign market contribution to medical devices. Medical devices are instruments or apparatuses used in the prevention, rehabilitation, treatment, or knowledge generation with respect to disease or other abnormal conditions. This article provides information drawn from recent publications to describe the current state of the Chinese domestic market for medical devices and to define opportunities for foreign investment potential therein. Recent healthcare reforms implemented to meet rising demand due to an aging and migrating population are having a positive effect on market growth-a global market with a projected growth of 15% per year over the next decade. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Medical devices and human engineering

    Bronzino, Joseph D


    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Medical Devices and Human Engineering, the second volume of the handbook, presents material from respected scientists with diverse backgrounds in biomedical sensors, medical instrumentation and devices, human performance engineering, rehabilitation engineering, and clinical engineering.More than three doze

  8. Radiation sterilization of medical devices

    Kaluska, I.; Stuglik, Z.


    Overview of sterilization methods of medical devices has been given, with the special stress put on radiation sterilization. A typical validation program for radiation sterilization has been shown and also a comparison of European and ISO standards concerning radiation sterilization has been discussed. (author). 13 refs, 1 fig., 2 tabs

  9. Assurance Cases for Medical Devices


    the patient, and the hospital setting. Some pumps allow the patient to control part of the injection process (e.g. to inject more painkiller ...overdose, incorrect therapy, etc.   Design and development decisions that bear on safety and effectiveness

  10. Bio-tribocorrosion in biomaterials and medical implants

    Yan, Yu


    During their service life, most biomaterials and medical implants are vulnerable to tribological damage. In addition, the environments in which they are placed are often corrosive. The combination of triobology, corrosion and the biological environment has been named 'bio-tribocorrosion'. Understanding this complex phenomenon is critical to improving the design and service life of medical implants. This important book reviews recent key research in this area. After an introduction to the topography of bio-tribocorrosion, Part one discusses different types of tribocorrosion including fatigue-corrosion, fretting-corrosion, wear-corrosion and abrasion-corrosion. The book also discusses the prediction of wear in medical devices. Part two looks at biological effects on tribocorrosion processes, including how proteins interact with material surfaces and the evolution of surface changes due to bio-tribocorrosion resulting from biofilms and passive films. Part three reviews the issue of bio-tribocorrosion in clinical...

  11. MEDIC: medical embedded device for individualized care.

    Wu, Winston H; Bui, Alex A T; Batalin, Maxim A; Au, Lawrence K; Binney, Jonathan D; Kaiser, William J


    Presented work highlights the development and initial validation of a medical embedded device for individualized care (MEDIC), which is based on a novel software architecture, enabling sensor management and disease prediction capabilities, and commercially available microelectronic components, sensors and conventional personal digital assistant (PDA) (or a cell phone). In this paper, we present a general architecture for a wearable sensor system that can be customized to an individual patient's needs. This architecture is based on embedded artificial intelligence that permits autonomous operation, sensor management and inference, and may be applied to a general purpose wearable medical diagnostics. A prototype of the system has been developed based on a standard PDA and wireless sensor nodes equipped with commercially available Bluetooth radio components, permitting real-time streaming of high-bandwidth data from various physiological and contextual sensors. We also present the results of abnormal gait diagnosis using the complete system from our evaluation, and illustrate how the wearable system and its operation can be remotely configured and managed by either enterprise systems or medical personnel at centralized locations. By using commercially available hardware components and software architecture presented in this paper, the MEDIC system can be rapidly configured, providing medical researchers with broadband sensor data from remote patients and platform access to best adapt operation for diagnostic operation objectives.

  12. Hip Implant Systems

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  13. [Consideration of Mobile Medical Device Regulation].

    Peng, Liang; Yang, Pengfei; He, Weigang


    The regulation of mobile medical devices is one of the hot topics in the industry now. The definition, regulation scope and requirements, potential risks of mobile medical devices were analyzed and discussed based on mobile computing techniques and the FDA guidance of mobile medical applications. The regulation work of mobile medical devices in China needs to adopt the risk-based method.

  14. Nanostructured titanium-based materials for medical implants: Modeling and development

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.


    Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. C...

  15. Percutaneous Implantation of A Parachute Device For Treatment of Ischemic Heart Failure

    Cilingiroglu, Mehmet, E-mail:; Rollefson, William A.; Mego, David


    Congestive heart failure (CHF) secondary to ischemic cardiomyopathy is associated with significant morbidity and mortality despite currently available medical therapy. The Parachute{sup TM} device is a novel left ventricular partitioning device that is delivered percutaneously in the left ventricle (LV) in patients with anteroapical regional wall motion abnormalities, dilated LV and systolic dysfunction after anterior myocardial infarction with favorable clinical and LV hemodynamic improvements post-implantation. Here, we do review the current literature and present a case of the Parachute device implantation.

  16. 78 FR 27971 - Dental Products Panel of the Medical Devices Advisory Committee; Notice of Meeting


    ...] Dental Products Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Dental Products Panel of the Medical Devices Advisory Committee. General Function of the Committee: To... regulatory classification for dental devices known as Endosseous Dental Implants (Blade-form), one of the...

  17. Medical devices regulations, standards and practices

    Ramakrishna, Seeram; Wang, Charlene


    Medical Devices and Regulations: Standards and Practices will shed light on the importance of regulations and standards among all stakeholders, bioengineering designers, biomaterial scientists and researchers to enable development of future medical devices. Based on the authors' practical experience, this book provides a concise, practical guide on key issues and processes in developing new medical devices to meet international regulatory requirements and standards. Provides readers with a global perspective on medical device regulationsConcise and comprehensive information on how to desig

  18. Handbook of materials for medical devices

    Davis, J. R


    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Introduction Chapter 1 Overview of Biomaterials and Their Use in Medical Devices . . . . . . . . . . . . . . . . 1 Uses for Biomaterials...

  19. Biomedical Impact in Implantable Devices-The Transcatheter Aortic Valve as an example

    Anastasiou, Alexandros; Saatsakis, George


    Objective: To update of the scientific community about the biomedical engineering involvement in the implantable devices chain. Moreover the transcatheter Aortic Valve (TAV) replacement, in the field of cardiac surgery, will be analyzed as an example of contemporary implantable technology. Methods: A detailed literature review regarding biomedical engineers participating in the implantable medical product chain, starting from the design of the product till the final implantation technique. Results: The scientific role of biomedical engineers has clearly been established. Certain parts of the product chain are implemented almost exclusively by experienced biomedical engineers such as the transcatheter aortic valve device. The successful professional should have a multidisciplinary knowledge, including medicine, in order to pursue the challenges for such intuitive technology. This clearly indicates that biomedical engineers are among the most appropriate scientists to accomplish such tasks. Conclusions: The biomedical engineering involvement in medical implantable devices has been widely accepted by the scientific community, worldwide. Its important contribution, starting from the design and extended to the development, clinical trials, scientific support, education of other scientists (surgeons, cardiologists, technicians etc.), and even to sales, makes biomedical engineers a valuable player in the scientific arena. Notably, the sector of implantable devices is constantly raising, as emerging technologies continuously set up new targets.

  20. Metrological Reliability of Medical Devices

    Costa Monteiro, E.; Leon, L. F.


    The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.

  1. Radiographic appearances of uncommon paediatric implants and devices

    Urquia, Arlen; Watson, Tom A.; Arthurs, Owen J. [Great Ormond Street Hospital NHS Foundation Trust, Department of Radiology, London (United Kingdom)


    As childhood survival of chronic illness improves, long-term implanted devices will be encountered more frequently in routine radiology. In our paediatric tertiary referral hospital, we have come across several types of implanted devices that were not confidently recognised or identified by front-line staff and were often only identified by discussion with the patient, family or clinical team. This pictorial review highlights the appearance of nonvascular devices on paediatric radiographs in order to help clinicians identify the most frequent complications and to improve awareness of these important devices. (orig.)

  2. [Medical Devices Law for pain therapists].

    Regner, M; Sabatowski, R


    Medical Devices Law is a relatively new legal system, which has replaced the Medical Devices Regulations still well-known in Germany. German Medical Devices Law is based on European directives, which are, in turn, incorporated into national law by the Medical Devices Act. The Medical Devices Act is a framework law and covers a number of regulations that address specific topics within Medical Devices Law. In turn, in individual regulations, reference is made to guidelines, recommendations, etc. from other sources that provide detailed technical information on specific topics. Medical Devices Law is a very complex legal system, which needs to be permanently observed due to constant updating and adjustment. In the current article, the design and the structure of the system will be described, but special emphasis will be laid on important problem areas that need to be considered when applying and operating medical products, in this case by pain therapists in particular.

  3. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.

    Bocan, Kara N; Sejdić, Ervin


    Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver.

  4. Pain-only complaint about cochlear implant device: A five-patient pediatric experience.

    Todd, Norman Wendell; Fainberg, Jolie C; Ukatu, CeIsha Chinwe; Venable, Claudia Y; Segel, Phil


    To present the case histories and management of five pediatric patients who experienced pain at the receiver-stimulator site, but no other indication that the device was failing. Patients were from a sole-surgeon pediatric practice (600 + implant surgeries before June 2013; about even proportions of Advanced Bionics, Cochlear Corporation, and MED-EL devices). The University Institutional Review Board-approved review of sole-surgeon pediatric case series. The onset of pain ranged from 2 to 16 years post implantation. Pain, not amenable to conventional medical therapy, was present regardless of whether or not the external appliance was 'on', or even being worn on the head. Four of the five patients were bilaterally implanted, but pain was only at one receiver-stimulator package. Clinical management ultimately included revision surgery in all five cases, with immediate resolution of the pain in four. For those four, the replacement cochlear implant (CI) performed well; the other patient fears pain if her replacement device is used, but continues enjoying her contralateral implant. At analysis by the company, two of five explanted devices exhibited problems: loss of hermeticity; insulation failure. Though infrequently reported, pain-only complaint by a CI user is a challenging dilemma. Pain may be the sole clinical manifestation of cochlear implant device failure. We offer a flowchart for the care of CI patients with pain, encourage a worldwide registry of such cases, and offer ideas to try to understand better the problem.

  5. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review

    Kara N. Bocan


    Full Text Available Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters and variability (changes over time. Current strategies in adaptive (or tunable systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver.

  6. New horizon for infection prevention technology and implantable device

    Yusuke Kondo, MD, PhD


    Full Text Available There has been a significant increase in the number of patients receiving cardiovascular implantable electronic devices (CIED over the last two decades. CIED infection represents a serious complication after CIED implantation and is associated with significant morbidity and mortality. Recently, newly advanced technologies have offered attractive and suitable therapeutic alternatives. Notably, the leadless pacemaker and anti-bacterial envelope decrease the potential risk of CIED infection and the resulting mortality, when it does occur. A completely subcutaneous implantable cardioverter defibrillator is also an alternative to the transvenous implantable cardioverter defibrillator (ICD, as it does not require implantation of any transvenous or epicardial leads. Among the patients who require ICD removal and subsequent antibiotics secondary to infection, the wearable cardioverter defibrillator represents an alternative approach to inpatient monitoring for the prevention of sudden cardiac death. In this review paper, we aimed to introduce the advanced technologies and devices for prevention of CIED infection.

  7. Polypyrrole RVC biofuel cells for powering medical implants.

    Roxby, Daniel N; Ting, S R Simon; Nguyen, Hung T


    Batteries for implanted medical devices such as pacemakers typically require surgical replacement every 5 to 10 years causing stress to the patient and their families. A Biofuel cell uses two electrodes with enzymes embedded to convert sugar into electricity. To evaluate the power producing capabilities of biofuel cells to replace battery technology, polypyrrole electrodes were fabricated by compression with Glucose oxidase and Laccase. Vitreous carbon was added to increase the conductivity, whilst glutaraldehyde acted as a crosslinking molecule. A maximum open circuit potential of 558.7 mV, short circuit current of 1.09 mA and maximum power of 0.127 mW was obtained from the fuel cells. This was able to turn on a medical thermometer through a TI BQ25504 energy harvesting circuit, hence showing the powering potential for biomedical devices.

  8. Medical devices of the head, neck, and spine.

    Hunter, Tim B; Yoshino, Mark T; Dzioba, Robert B; Light, Rick A; Berger, William G


    There are many medical devices used for head, neck, and spinal diseases and injuries, and new devices are constantly being introduced. Many of the newest devices are variations on a previous theme. Knowing the specific name of a device is not important. It is important to recognize the presence of a device and to have an understanding of its function as well as to be able to recognize the complications associated with its use. The article discusses the most common and important devices of the head, neck, and spine, including cerebrospinal fluid shunts and the Codman Hakim programmable valve; subdural drainage catheters, subdural electrodes, intracranial electrodes, deep brain stimulators, and cerebellar electrodes; coils, balloons, adhesives, particles, and aneurysm clips; radiation therapy catheters, intracranial balloons for drug installation, and carmustine wafers; hearing aids, cochlear implants, and ossicular reconstruction prostheses; orbital prostheses, intraocular silicone oil, and lacrimal duct stents; anterior and posterior cervical plates, posterior cervical spine wiring, odontoid fracture fixation devices, cervical collars and halo vests; thoracic and lumbar spine implants, anterior and posterior instrumentation for the thoracic and lumbar spine, vertebroplasty, and artificial disks; spinal column stimulators, bone stimulators, intrathecal drug delivery pumps, and sacral stimulators; dental and facial implant devices; gastric and tracheal tubes; vagus nerve stimulators; lumboperitoneal shunts; and temperature- and oxygen-sensing probes. Copyright RSNA, 2004

  9. Performance enhancement of implantable medical antenna using differential feed technique

    Shankar Bhattacharjee


    Full Text Available The health care industry is continuously revolutionizing and advancing towards developing more efficient system suitable for human body. Today implantable devices have become a more interesting topic in health care services which primarily started with the pacemakers. Since then it is continuously evolving due to its non-invasive nature, instant monitoring and diagnosis, and periodic simulation. The main goal of these implantable devices is to efficiently monitor or inspect various ailments in the body and then transmits this to the server or base station. For proper communication between the implant and the base station, antenna design is of prime importance. In this paper MEMS based differentially fed dual band antenna has been proposed and can be used both in Medical Implant Communication Service (MICS band for transmission of data and industrial, scientific and medical (ISM band for wake-up purpose. The proposed antenna has been simulated for free space scenario and has been found to radiate in both MICS & ISM band with S11 of −17.62 dB and −14.31 dB respectively. Subsequently the antenna is inserted within a skin mimicking model with equivalent dielectric features and the results show variation in radiation characteristics between free space condition and within skin phantom. The design of the antenna has been optimized in such a way that minimum deviation occurs between the two conformal conditions. With the use of differential feeding technique performance of the antenna is quite enhanced in terms of various parameters when compared with single feed.

  10. Low Power Design for Future Wearable and Implantable Devices

    Lundager, Katrine; Zeinali, Behzad; Tohidi, Mohammad


    limit, which is a critical limit for further miniaturization to develop smaller and smarter wearable/implantable devices (WIDs), especially for multi-task continuous computing purposes. Developing smaller and smarter devices with more functionality requires larger batteries, which are currently the main...

  11. Ion implantation in advanced planar and vertical devices

    Gossmann, Hans-Joachim L.


    The extent ('gate overlap') and slope ('abruptness') of the lateral junction are quickly replacing vertical junction depth as the most important physical junction metrics in advanced device architectures. This is in particular true for ultra-thin body devices, where the vertical junction is limited by a geometric constraint. The optimum gate overlap is quite small, or may even be negative, making a process without the need of high-tilt implantation feasible, even for dopant activation with negligible diffusion by flash annealing or laser thermal processing. Dopant activation by solid phase epitaxial regrowth might require high-tilt implants for a positive overlap. The use of such implants, however, is expected to lead to severe gate-poly and gate-oxide degradation. Scaling the 150 nm technology has drastically shrunk the overlap, accomplished by an equally aggressive reduction in thermal budget. For a 65 nm node device, a significant fraction of the overlap originates in the as-implanted dopant profile and the importance of diffusion is diminished. As a consequence small changes in the as-implanted profile are beginning to have a disproportionate impact on device characteristics. Small angular deviations of the incident beam from normal incidence, as seen by the wafer, lead to large changes in on-current. This can be alleviated significantly by a quad implant provided the tilt-angle is sufficiently large, in the order >5 deg.

  12. The Biological Responses to Magnesium-Based Biodegradable Medical Devices

    Lumei Liu


    Full Text Available The biocompatibility of Magnesium-based materials (MBMs is critical to the safety of biodegradable medical devices. As a promising metallic biomaterial for medical devices, the issue of greatest concern is devices’ safety as degrading products are possibly interacting with local tissue during complete degradation. The aim of this review is to summarize the biological responses to MBMs at the cellular/molecular level, including cell adhesion, transportation signaling, immune response, and tissue growth during the complex degradation process. We review the influence of MBMs on gene/protein biosynthesis and expression at the site of implantation, as well as throughout the body. This paper provides a systematic review of the cellular/molecular behavior of local tissue on the response to Mg degradation, which may facilitate a better prediction of long-term degradation and the safe use of magnesium-based implants through metal innovation.

  13. Dental implants in medically complex patients-a retrospective study.

    Manor, Yifat; Simon, Roy; Haim, Doron; Garfunkel, Adi; Moses, Ofer


    Dental implant insertion for oral rehabilitation is a worldwide procedure for healthy and medically compromised patients. The impact of systemic disease risks on the outcome of implant therapy is unclear, since there are few if any published randomized controlled trials (RCTs). The objective of this study is to investigate the rate of complications and failures following dental implantation in medically compromised patients in order to elucidate risk factors and prevent them. A retrospective cohort study was conducted from patient files treated with dental implantation between the years 2008-2014. The study group consisted of medically complex patients while the control group consisted of healthy patients. Preoperative, intraoperative, and post operative clinical details were retrieved from patients' files. The survival rate and the success rate of the dental implants were evaluated clinically and radiographically. A total of 204 patients (1003 dental implants) were included in the research, in the study group, 93 patients with 528 dental implants and in the control group, 111 patients with 475 dental implants. No significant differences were found between the groups regarding implant failures or complications. The failure rate of dental implants among the patients was 11.8 % in the study group and 16.2 % in the control group (P = 0.04). It was found that patients with a higher number of implants (mean 6.8) had failures compared with patients with a lower number of implants (mean 4.2) regardless of their health status (P dental implantation in medically complex patients and in healthy patients. Medically complex patients can undergo dental implantation. There are similar rates of complications and failures of dental implants in medically complex patients and in healthy patients.

  14. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses

    Potter, Kelsey A.; Buck, Amy C.; Self, Wade K.; Capadona, Jeffrey R.


    An estimated 25 million people in the US alone rely on implanted medical devices, ˜2.5 million implanted within the nervous system. Even though many devices perform adequately for years, the host response to medical devices often severely limits tissue integration and long-term performance. This host response is believed to be particularly limiting in the case of intracortical microelectrodes, where it has been shown that glial cell encapsulation and localized neuronal cell loss accompany intracortical microelectrode implantation. Since neuronal ensembles must be within ˜50 µm of the electrode to obtain neuronal spikes and local field potentials, developing a better understanding of the molecular and cellular environment at the device-tissue interface has been the subject of significant research. Unfortunately, immunohistochemical studies of scar maturation in correlation to device function have been inconclusive. Therefore, here we present a detailed quantitative study of the cellular events and the stability of the blood-brain barrier (BBB) following intracortical microelectrode implantation and cortical stab injury in a chronic survival model. We found two distinctly inverse multiphasic profiles for neuronal survival in device-implanted tissue compared to stab-injured animals. For chronically implanted animals, we observed a biphasic paradigm between blood-derived/trauma-induced and CNS-derived inflammatory markers driving neurodegeneration at the interface. In contrast, stab injured animals demonstrated a CNS-mediated neurodegenerative environment. Collectively these data provide valuable insight to the possibility of multiple roles of chronic neuroinflammatory events on BBB disruption and localized neurodegeneration, while also suggesting the importance to consider multiphasic neuroinflammatory kinetics in the design of therapeutic strategies for stabilizing neural interfaces.

  15. Medical device software: defining key terms.

    Pashkov, Vitalii; Gutorova, Nataliya; Harkusha, Andrii

    one of the areas of significant growth in medical devices has been the role of software - as an integral component of a medical device, as a standalone device and more recently as applications on mobile devices. The risk related to a malfunction of the standalone software used within healthcare is in itself not a criterion for its qualification or not as a medical device. It is therefore, necessary to clarify some criteria for the qualification of stand-alone software as medical devices Materials and methods: Ukrainian, European Union, United States of America legislation, Guidelines developed by European Commission and Food and Drug Administration's, recommendations represented by international voluntary group and scientific works. This article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. the legal regulation of software which is used for medical purpose in Ukraine limited to one definition. In European Union and United States of America were developed and applying special guidelines that help developers, manufactures and end users to difference software on types standing on medical purpose criteria. Software becomes more and more incorporated into medical devices. Developers and manufacturers may not have initially appreciated potential risks to patients and users such situation could have dangerous results for patients or users. It is necessary to develop and adopt the legislation that will intend to define the criteria for the qualification of medical device software and the application of the classification criteria to such software, provide some illustrative examples and step by step recommendations to qualify software as medical device.

  16. Implantable optical-electrode device for stimulation of spinal motoneurons

    Matveev, M V; Erofeev, A I; Zakharova, O A; Vlasova, O L; Pyatyshev, E N; Kazakin, A N


    Recent years, optogenetic method of scientific research has proved its effectiveness in the nerve cell stimulation tasks. In our article we demonstrate an implanted device for the spinal optogenetic motoneurons activation. This work is carried out in the Laboratory of Molecular Neurodegeneration of the Peter the Great St. Petersburg Polytechnic University, together with Nano and Microsystem Technology Laboratory. The work of the developed device is based on the principle of combining fiber optic light stimulation of genetically modified cells with the microelectrode multichannel recording of neurons biopotentials. The paper presents a part of the electrode implant manufacturing technique, combined with the optical waveguide of ThorLabs (USA). (paper)

  17. 21 CFR 892.2040 - Medical image hardcopy device.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a medical...

  18. Classification and evaluation of medical devices

    Edina Vranić


    Full Text Available Medical devices and medical disposables contribute significantly to the quality and effectiveness of the health care system. It is necessary to commit scientifically sound regulatory environment that will provide consumers with the best medical care. This includes continued services to small manufacturers, readily available guidance on FDA requirements, predictable and reasonable response times on applications for marketing, and equitable enforcement. But in the public interest, this commitment to the industry must be coupled with a reciprocal commitment: that medical device firms will meet high standards in the design, manufacture, and evaluation of their products. The protections afforded our consumer, and the benefits provided the medical device industry, cannot be underestimated.

  19. A survey of cardiac implantable electronic device implantation in India: By Indian Society of Electrocardiology and Indian Heart Rhythm Society

    Jayaprakash Shenthar


    Conclusion: A large proportion of CIED implants in India are PM for bradyarrhythmic indications, predominantly AV block. ICD's are implanted almost equally for primary and secondary prophylaxis. Most CRT devices are implanted for NYHA Class III. There is a male predominance for implantation of CIED.

  20. The Computer in a Programmable Implantable Medication System (PIMS)

    Sanders, K. H.; Radford, W. E.


    The Programmable Implantable Medication System (PIMS) developed at APL can be used in the treatment of diabetes, reproductive hormone dysfunction, hypertension, cancer, chronic pain, thrombosis, and the delivery of growth hormone. The Implantable Programmable Infusion Pump (IPIP) is the implanted element of PIMS. Under control of a microprocessor, the IPIP administers medication and stores data pertaining to its operation. An external unit can read out the stored data, as well as program the ...

  1. Scaling of ion implanted Si:P single electron devices

    Escott, C C; Hudson, F E; Chan, V C; Petersson, K D; Clark, R G; Dzurak, A S


    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n + ) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number

  2. Scaling of ion implanted Si:P single electron devices

    Escott, C C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Hudson, F E [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Chan, V C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Petersson, K D [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Clark, R G [Centre for Quantum Computer Technology, School of Physics, UNSW, Sydney, 2052 (Australia); Dzurak, A S [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)


    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n{sup +}) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number.

  3. Regulation E 69-14. Monitoring requirements for medical devices


    In the 'Regulations for the State Evaluation and Registration of Medical Equipment' force (Hereinafter Rules) set forth in Chapter VII, Articles 79 and 86, the monitoring activity as one of the programs necessary for evaluating the safety and effectiveness of medical monitoring equipment. In the years 2008 and 2011 were approved and implemented by the Center for State Control of Medical Equipment (CCEEM) Regulations and -1.1 ER and ER-1 that support and regulatory requirements 'Control and monitoring of pacemakers and implantable defibrillators' and 'Assessment, recording and control after market surgical silicone implants,' which are specific to these products and have provided a useful result for the performance of the activity. Given the number and diversity of high-risk medical devices as implantable or sustain human life that are brought into our National Health System (SNS), a regulation establishing control over the behavior becomes necessary safety and effectiveness of this equipment during use, which provide inputs to risk management. The objective of this regulation is to establish the regulatory requirements for tracking medical equipment introduced in the NHS. The provisions of this Regulation is aimed at health institutions, to CECMED as manufacturers, suppliers, distributors and importers of medical equipment.

  4. Personalized Remote Monitoring of the Atrial Fibrillation Patients with Electronic Implant Devices

    Gokce B. Laleci


    Full Text Available Cardiovascular Implantable Electronic Devices (CIED are gaining popularity in treating patients with heart disease. Remote monitoring through care management systems enables continuous surveillance of such patients by checking device functions and clinical events. These care management systems include decision support capabilities based on clinical guidelines. Data input to such systems are from different information sources including medical devices and Electronic Health Records (EHRs. Although evidence-based clinical guidelines provides numerous benefits such as standardized care, reduced costs, efficient and effective care management, they are currently underutilized in clinical practice due to interoperability problems among different healthcare data sources. In this paper, we introduce the iCARDEA care management system for atrial fibrillation patients with implant devices and describe how the iCARDEA care plan engine executes the clinical guidelines by seamlessly accessing the EHR systems and the CIED data through standard interfaces.

  5. Wireless microsensor network solutions for neurological implantable devices

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.


    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  6. Medical device reliability and associated areas

    Dhillon, Balbir S


    .... Although the history of reliability engineering can be traced back to World War II, the application of reliability engineering concepts to medical devices is a fairly recent idea that goes back to the latter part of the 1960s when many publications on medical device reliability emerged. Today, a large number of books on general reliability have been...

  7. The medically compromised patient: Are dental implants a feasible option?

    Vissink, A; Spijkervet, Fkl; Raghoebar, G M


    In healthy subjects, dental implants have evolved to be a common therapy to solve problems related to stability and retention of dentures as well as to replace failing teeth. Although dental implants are applied in medically compromised patients, it is often not well known whether this therapy is also feasible in these patients, whether the risk of implant failure and developing peri-implantitis is increased, and what specific preventive measures, if any, have to be taken when applying dental implants in these patients. Generally speaking, as was the conclusion by the leading review of Diz, Scully, and Sanz on placement of dental implants in medically compromised patients (J Dent, 41, 2013, 195), in a few disorders implant survival may be lower, and the risk of a compromised peri-implant health and its related complications be greater, but the degree of systemic disease control outweighs the nature of the disorder rather than the risk accompanying dental implant treatment. So, as dental implant treatment is accompanied by significant functional benefits and improved oral health-related quality of life, dental implant therapy is a feasible treatment in almost any medically compromised patient when the required preventive measures are taken and follow-up care is at a high level. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Class 1 devices case studies in medical devices design

    Ogrodnik, Peter J


    The Case Studies in Medical Devices Design series consists of practical, applied case studies relating to medical device design in industry. These titles complement Ogrodnik's Medical Device Design and will assist engineers with applying the theory in practice. The case studies presented directly relate to Class I, Class IIa, Class IIb and Class III medical devices. Designers and companies who wish to extend their knowledge in a specific discipline related to their respective class of operation will find any or all of these titles a great addition to their library. Class 1 Devices is a companion text to Medical Devices Design: Innovation from Concept to Market. The intention of this book, and its sister books in the series, is to support the concepts presented in Medical Devices Design through case studies. In the context of this book the case studies consider Class I (EU) and 510(k) exempt (FDA) . This book covers classifications, the conceptual and embodiment phase, plus design from idea to PDS. These title...

  9. Ultrasound appearances of Implanon implanted contraceptive devices.

    McNeill, G


    Subdermal contraceptive devices represent a popular choice of contraception. Whilst often removed without the use of imaging, circumstances exist where imaging is required. Ultrasound is the modality of choice. The optimal technique and typical sonographic appearances are detailed in this article.

  10. Pectoral nerves (PECS) and intercostal nerve block for cardiac resynchronization therapy device implantation.

    Fujiwara, Atsushi; Komasawa, Nobuyasu; Minami, Toshiaki


    A 71-year-old man was scheduled to undergo cardiac resynchronization therapy device (CRTD) implantation. He was combined with severe chronic heart failure due to ischemic heart disease. NYHA class was 3 to 4 and electrocardiogram showed non-sustained ventricular. Ejection fraction was about 20% revealed by transthoracic echocardiogram. He was also on several anticoagulation medications. We planned to implant the device under the greater pectoral muscle. As general anesthesia was considered risky, monitored anesthesia care utilizing peripheral nerve block and slight sedation was scheduled. Pectoral nerves (PECS) block and intercostal block was performed under ultrasonography with ropivacaine. For sedation during the procedure, continuous infusion of dexmedetomidine without a loading dose was performed. The procedure lasted about 3 hours, but the patient showed no pain or restlessness. Combination of PECS block and intercostal block may provide effective analgesia for CRTD implantation.

  11. Anti-malware software and medical devices.


    Just as much as healthcare information systems, medical devices need protection against cybersecurity threats. Anti-malware software can help safeguard the devices in your facility-but it has limitations and even risks. Find out what steps you can take to manage anti-malware applications in your devices.

  12. Recall management of patients with Rofil Medical breast implants.

    Schott, Sarah; Bruckner, Thomas; Golatta, Michael; Wallwiener, Markus; Küffner, Livia; Mayer, Christine; Paringer, Carmen; Domschke, Christoph; Blumenstein, Maria; Schütz, Florian; Sohn, Christof; Heil, Joerg


    Some Rofil Medical breast implants are relabelled Poly Implant Prothèse (PIP) implants, and it is recommended that Rofil implants be managed in the same way as PIP implants. We report the results of a systematic recall of patients who had received Rofil implants. All patients who received Rofil implants at our centre were identified and invited for specialist consultation. In patients who opted for explantation, preoperative and intraoperative work-up was performed in accordance with national guidelines and analysed. In cases suspicious for rupture, an MRI scan was performed. Two-hundred and twenty-five patients (average age 56; range 28-80) received a total of 321 Rofil implants an average of 5.8 (range 1-11) years previously, 225/321 (70%) implants were used for reconstruction after breast cancer. A total of 43 implants were removed prior to 2011, mainly due to capsular contracture (CC). A total of 188 patients were still affected at the time of recall. Of the 188 patients, 115 (61%) attended for specialist consultation, of which 50 (44%) requested immediate implant removal. To date, 72 of 115 (63%) women attending consultation (38% of all affected) have chosen explantation, 66 of 72 (92%) opting for new implants. Of the 108 explanted implants, 25 (23%) had capsular rupture and 57 (53%) had implant bleeding. Preoperative clinical assessment was unreliable for predicting CC or rupture. The majority of patients attended for consultation and requested explantation. The quality of the explanted Rofil implants was comparable to PIP implants, with a higher rupture prevalence compared with other, non-affected implants. Nevertheless, the acceptance of breast implants for reimplantation remained high. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Critical appraisal of cardiac implantable electronic devices: complications and management

    Padeletti L


    Full Text Available Luigi Padeletti1, Giosuè Mascioli2, Alessandro Paoletti Perini1, Gino Grifoni1, Laura Perrotta1, Procolo Marchese3, Luca Bontempi3, Antonio Curnis31Istituto di Clinica Medica e Cardiologia, Università degli Studi di Firenze, Italia; 2Elettrofisiologia, Istituto Humanitas Gavazzeni, Bergamo, Italia; 3Elettrofisiologia, Spedali Civili, Brescia, ItaliaAbstract: Population aging and broader indications for the implant of cardiac implantable electronic devices (CIEDs are the main reasons for the continuous increase in the use of pacemakers (PMs, implantable cardioverter-defibrillators (ICDs and devices for cardiac resynchronization therapy (CRT-P, CRT-D. The growing burden of comorbidities in CIED patients, the greater complexity of the devices, and the increased duration of procedures have led to an augmented risk of infections, which is out of proportion to the increase in implantation rate. CIED infections are an ominous condition, which often implies the necessity of hospitalization and carries an augmented risk of in-hospital death. Their clinical presentation may be either at pocket or at endocardial level, but they can also manifest themselves with lone bacteremia. The management of these infections requires the complete removal of the device and subsequent, specific, antibiotic therapy. CIED failures are monitored by competent public authorities, that require physicians to alert them to any failures, and that suggest the opportune strategies for their management. Although the replacement of all potentially affected devices is often suggested, common practice indicates the replacement of only a minority of devices, as close follow-up of the patients involved may be a safer strategy. Implantation of a PM or an ICD may cause problems in the patients' psychosocial adaptation and quality of life, and may contribute to the development of affective disorders. Clinicians are usually unaware of the psychosocial impact of implanted PMs and ICDs. The

  14. Safety, efficacy, and performance of implanted recycled cardiac rhythm management (CRM) devices in underprivileged patients.

    Hasan, Reema; Ghanbari, Hamid; Feldman, Dustin; Menesses, Daniel; Rivas, Daniel; Zakhem, Nicole C; Duarte, Carlos; Machado, Christian


    Patients in underdeveloped nations have limited access to life-saving medical technology including cardiac rhythm management (CRM) devices. We evaluated alternative means to provide such technology to this patient population while assessing the safety and efficacy of such a practice. Patients in the United States with clinical indications for extraction of CRM devices were consented. Antemortem CRM devices were cleaned and sterilized following a protocol established at our institution. Surveillance in vitro cultures were performed for quality assurance. The functional status of pulse generators was tested with a pacing system analyzer to confirm at least 70% battery life. Most generators were transported, in person, to an implanting institution in Nicaragua. Recipients with a Class I indication for CRM implantation, and meeting economical criteria set forth, were consented for implantation of a recycled device. Between 2003 and 2009, implantation was performed in 17 patients with an average age of 42.1 ± 20.3 years. Of the 17 patients, nine were male and eight were female. Mean follow-up was 68 ± 38 months. Device evaluation occurred prior to discharge, 4 weeks post implantation, and every 6 months thereafter. There were three deaths during the follow-up period secondary to myocardial infarction, stroke, and heart failure. Hematoma formation occurred in one patient. No infections, early battery depletion, or device malfunction were identified during follow-up. Our case series is the longest follow-up of recipients of recycled antemortem CRM devices. Our findings support the feasibility and safety of this alternative acquisition of life-saving technology. ©2011, The Authors. Journal compilation ©2011 Wiley Periodicals, Inc.

  15. 77 FR 72924 - Taxable Medical Devices


    ... in hospitals, doctors offices and other medical institutions, such as x-ray machines, magnetic... the medical device context include sales to hospitals and other medical service providers. Although... of a taxable article to charity constitutes a taxable use under section 4218. However, the IRS and...


    Y. L. Nechyporenko


    Full Text Available The concept designed by electronic medical card for heterogeneous environment of medical information systems at various levels. Appropriate model and technical solution. Done evaluating operating systems for mobile devices. Designed and produced by the project mobile application on Android OS as an electronic medical record on a Tablet PC Acer.

  17. Biomaterials and medical devices a perspective from an emerging country

    Hermawan, Hendra


    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  18. Patient perspective on remote monitoring of cardiovascular implantable electronic devices

    Versteeg, H; Pedersen, Susanne S.; Mastenbroek, M H


    -implantation, other check-ups are performed remotely. Patients are asked to complete questionnaires at five time points during the 2-year follow-up. CONCLUSION: The REMOTE-CIED study will provide insight into the patient perspective on remote monitoring in ICD patients, which could help to support patient......BACKGROUND: Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. OBJECTIVES: The primary...

  19. Radioactive implants for medical applications; Radioaktive Implantate fuer medizinische Anwendungen

    Schubert, M.


    The long-term success of surgery is often diminished by excessive wound healing, which makes another intervention necessary. Locally applied radionuclides with short range radiation can prevent such benign hyperproliferation. As pure electron emitter with a half-life of 14.3 days and a mean energy of 694.9 keV (E{sub max}=1710.48 keV) {sup 32}P is a suitable radionuclide which can be produced from the stable {sup 31}P by the capture of thermal neutrons (1 x 10{sup 14} /s/cm{sup 2}) in a nuclear reactor. After a typical irradiation time (14 days) the ratio of {sup 32}P to {sup 31}P is 1.4 x 10{sup -5} to 1. Implants made of polymer and/or bioabsorbable material functioning as a carrier of the radioactive emitter allow - as opposed to metallic implants - for new applications for this type of radiotherapy. In this thesis a manufacturing method for previously not available organic, radioactive implants has been developed and a corresponding dosimetry system has been established. By means of ion implantation, {sup 32}P ions with up to 180 keV can be shot some 100 nm deep into organic implant materials. For a typical dose (15 Gy over 7 days, 1 mm distance from the implant) an activity of 75 kBq is needed corresponding to 1.3 x 10{sup 11} {sup 32}P ions. The sputter ion gun, which has been optimized for this application, creates an ion beam with high beam current (> 14 {mu}A P{sup -}) and low emittance (< 4 {pi} mm mrad {radical}(MeV)). Because of the good beam quality also small implants (<1 mm{sup 2}) can be manufactured with high efficiency. The unintentionally co-implanted portion of molecules and nuclides of the same mass (e.g. {sup 31}PH, {sup 16}O{sub 2} and {sup 32}S) could be reduced from approximately 500 to 50 by an improvement of the isotope selection at {sup 32}P beam creation. Hence, in comparison with the best hitherto existing implantation methods, the radiation dose of the implant could be reduced by an order of magnitude. With regard to the beta

  20. Contextual inquiry for medical device design

    Privitera, Mary Beth


    Contextual Inquiry for Medical Device Design helps users understand the everyday use of medical devices and the way their usage supports the development of better products and increased market acceptance. The text explains the concept of contextual inquiry using real-life examples to illustrate its application. Case studies provide a frame of reference on how contextual inquiry is successfully used during product design, ultimately producing safer, improved medical devices. Presents the ways contextual inquiry can be used to inform the evaluation and business case of technologyHelps users

  1. Centrifuge-simulated suborbital spaceflight in subjects with cardiac implanted devices.

    Blue, Rebecca S; Reyes, David P; Castleberry, Tarah L; Vanderploeg, James M


    Future commercial spaceflight participants (SFPs) with conditions requiring personal medical devices represent a unique challenge. The behavior under stress of cardiac implanted devices (CIDs) such as pacemakers is of special concern. No known data currently exist on how such devices may react to the stresses of spaceflight. We examined the responses of two volunteer subjects with CIDs to G forces in a centrifuge to evaluate how similar potential commercial SFPs might tolerate the forces of spaceflight. Two subjects, 75- and 79-yr-old men with histories of atrial fibrillation and implanted dual-lead, rate-responsive pacemakers, underwent seven centrifuge runs over 2 d. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx/+Gz). Data collected included blood pressures, electrocardiograms, pulse oximetry, neurovestibular exams, and postrun questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Despite both subjects' significant medical histories, neither had abnormal physiological responses. Post-spin analysis demonstrated no lead displacement, damage, or malfunction of either CID. Potential risks to SFPs with CIDs include increased arrhythmogenesis, lead displacement, and device damage. There are no known prior studies of individuals with CIDs exposed to accelerations anticipated during the dynamic phases of suborbital spaceflight. These cases demonstrate that even individuals with significant medical histories and implanted devices can tolerate the acceleration exposures of commercial spaceflight. Further investigation will determine which personal medical devices present significant risks during suborbital flight and beyond.

  2. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian


    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  3. Accuracy of mechanical torque-limiting devices for dental implants.

    L'Homme-Langlois, Emilie; Yilmaz, Burak; Chien, Hua-Hong; McGlumphy, Edwin


    A common complication in implant dentistry is unintentional implant screw loosening. The critical factor in the prevention of screw loosening is the delivery of the appropriate target torque value. Mechanical torque-limiting devices (MTLDs) are the most frequently recommended devices by the implant manufacturers to deliver the target torque value to the screw. Two types of MTLDs are available: friction-style and spring-style. Limited information is available regarding the influence of device type on the accuracy of MTLDs. The purpose of this study was to determine and compare the accuracy of spring-style and friction-style MTLDs. Five MTLDs from 6 different dental implant manufacturers (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI], and Nobel Biocare) (n=5 per manufacturer) were selected to determine their accuracy in delivering target torque values preset by their manufacturers. All torque-limiting devices were new and there were 3 manufacturers for the friction-style and 3 manufacturers for the spring-style. The procedure of target torque measurement was performed 10 times for each device and a digital torque gauge (Chatillon Model DFS2-R-ND; Ametek) was used to record the measurements. Statistical analysis used nonparametric tests to determine the accuracy of the MTLDs in delivering target torque values and Bonferroni post hoc tests were used to assess pairwise comparisons. Median absolute difference between delivered torque values and target torque values of friction-style and spring-style MTLDs were not significantly different (P>.05). Accuracy of Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly different than Biohorizons torque-limiting devices (Ptorque value. Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly more accurate than Biohorizons (C) torque-limiting devices (Ptorque-limiting devices fell within ±10% of the target torque value preset by the

  4. Mobile medical device connectivity: real world solutions.

    Pettus, Dan


    Mobile medical devices, such as infusion pumps, provide an important therapeutic function. They are also valuable sources of information about treatment patterns at the point of care. However, these mobile devices have been independent islands of valuable information, unable to share the data they gather with other hospital information resources on a real time basis. Although data from these devices can provide significant improvements for medical safety and vital information needed for clinical best practice development, gathering that data poses significant challenges when interfacing with hospital information systems. Mobile medical devices move from place to place as independent actors, raising a series of security and identification issues when they need to be disconnected and reconnected using traditional tethered cable connections. The continuing lack of accepted communications protocol standards, in spite of the concentrated efforts of organizations like the IEEE and the Medical Information Bus (IEEE 1073) to establish them, has made integration into the hospital information system a complex and non-standard task. The rapid spread in availability and adoption of high-speed 802.11 wireless systems in hospitals offers a realistic connectivity solution for mobile medical devices. Inspite of this, the 802.11 standard is still evolving, and current security methods designed for user-based products like PDAs and laptop computers are not ideal for unmanned mobile medical devices because they assume the availability of a human operator to authenticate a wireless session. In the absence of accepted standards, manufacturers have created practical and innovative solutions to support the collection of clinical data from mobile medical devices and the integration of that data with hospital information systems. This paper will explore the potential benefits of integrating mobile medical devices into the hospital information system, and describe the challenges in

  5. [A totally implantable venous access device. Implantation in general or local anaesthesia? A retrospective cost analysis].

    Schuld, J; Richter, S; Moussavian, M R; Kollmar, O; Schilling, M K


    Implantation of venous access port systems can be performed in local or general anesthesia. In spite of the increasing rate of interventionally implanted systems, the surgical cut-down represents a safe alternative. Thus, the question arises whether--in context to the increasing health-economic pressure--open implantation in general anesthesia is still a feasible alternative to implantation in local anesthesia regarding OR efficiency and costs. In a retrospective analysis, 993 patients receiving a totally implantable venous access device between 2001 and 2007 were evaluated regarding OR utilization, turnover times, intraoperative data and costs. Implantations in local (LA) and general anesthesia (GA) were compared. GA was performed in 762 cases (76.6 %), LA was performed in 231 patients (23.3 %). Mean operation time was similar in both groups (LA 47.27 +/- 1.40 min vs. GA 45.41 +/- 0.75 min, p = 0.244). Patients receiving local anesthesia had a significantly shorter stay in the OR unit (LA 95.9 +/- 1.78 min vs. GA 105.92 +/- 0.92 min; p cut (LA 39.57 +/- 0.69 min vs. GA 50.46 +/- 0.52 min; p material costs were significantly lower in the LA group compared with the GA group (LA: 400.72 +/- 8.25 euro vs. GA: 482.86 +/- 6.23 euro; p systems in local anesthesia is superior in comparison to the implantation under general anesthesia regarding procedural times in the OR unit and costs. With the same operation duration, but less personnel and material expenditure, implantation in local anesthesia offers a potential economic advantage by permitting faster changing times. Implantation in GA only should be performed at a special request by the patient or in difficult venous conditions. Georg Thieme Verlag Stuttgart.New York.

  6. Home Healthcare Medical Devices: A Checklist

    ... not using it. Contact your doctor and home healthcare team often to review your health condition. * Check ... assurance of their safety and effectiveness. A home healthcare medical device is any product or equipment used ...

  7. Innovating transformative medical devices and growing the local medical device manufacturing sector

    Bunn, Tony


    Full Text Available . The 4IR is marked by emerging technology breakthroughs in a number of fields, including robotics, genomics, biosensors and wearables, AI, the internet of things, quantum computing, big data predictive analytics, 3D printing/additive manufacturing... of personalized prosthetics and products • Personalized devices and technologies for precision medicine Secure Airway Clamp for safer Anaesthesia MANDIBULAR IMPLANTS PATIENT 2 PATIENT 1 PATIENT 3 PATIENT CT SCAN 3D PRINTED TITANIUM IMPLANT PROPOSED...


    A. Yu. Galkin; A. G. Komar; A. A. Grigorenko


    In article we analyzed national and international regulations concerning the quality and safety of medical devices for in vitro diagnostics. We discussed the possibility of a partial application of the recommendations of the State Pharmacopoeia of Ukraine to this type of product. The main guiding regulatory documents establishing requirements for quality and safety tools for the serological diagnosis products are The technical regulation on medical devices for the diagnosis in vitro, DSTU ISO...

  9. Medical device-related pressure ulcers

    Black JM


    Full Text Available Joyce M Black,1 Peggy Kalowes2 1Adult Health and Illness Department, College of Nursing, University of Nebraska Medical Center, Omaha, NE, 2Nursing Research and Innovation, Long Beach Memorial Miller Children’s & Women’s Hospital, Long Beach, CA, USA Abstract: Pressure ulcers from medical devices are common and can cause significant morbidity in patients of all ages. These pressure ulcers appear in the shape of the device and are most often found from the use of oxygen delivery devices. A hospital program designed to reduce the number of pressure ulcers from medical devices was successful. The program involved the development of a team that focused on skin, the results were then published for the staff to track their performance, and it was found that using foam dressings helped reduce the pressure from the device. The incidence of ulcers from medical devices has remained at zero at this hospital since this program was implemented. Keywords: pressure ulcer, medical device related

  10. Use of mobile devices for medical imaging.

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin


    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Sudden visual loss after cardiac resynchronization therapy device implantation.

    De Vitis, Luigi A; Marchese, Alessandro; Giuffrè, Chiara; Carnevali, Adriano; Querques, Lea; Tomasso, Livia; Baldin, Giovanni; Maestranzi, Gisella; Lattanzio, Rosangela; Querques, Giuseppe; Bandello, Francesco


    To report a case of sudden decrease in visual acuity possibly due to a cardiogenic embolism in a patient who underwent cardiac resynchronization therapy (CRT) device implantation. A 62-year-old man with severe left ventricular systolic dysfunction and a left bundle branch block was referred to our department because of a sudden decrease in visual acuity. Nine days earlier, he had undergone cardiac transapical implantation of a CRT device, which was followed, 2 days later, by an inflammatory reaction. The patient underwent several general and ophthalmologic examinations, including multimodal imaging. At presentation, right eye (RE) best-corrected visual acuity (BCVA) was counting fingers and RE pupil was hyporeactive. Fundus examination revealed white-centered hemorrhagic dots suggestive of Roth spots. Fluorescein angiography showed delay in vascular perfusion during early stage, late hyperfluorescence of the macula and optic disk, and peripheral perivascular leakage. The first visual field test showed complete loss of vision RE and a normal left eye. Due to suspected giant cell arteritis, temporal artery biopsy was performed. Thirty minutes after the procedure, an ischemic stroke with right hemisyndrome and aphasia occurred. The RE BCVA worsened to hands motion. Four months later, RE BCVA did not improve, despite improvement in fluorescein angiography inflammatory sign. We report a possible cardiogenic embolism secondary to undiagnosed infective endocarditis causing monocular visual loss after CRT device implantation. It remains unclear how the embolus caused severe functional damage without altering the retinal anatomical structure.

  12. Medical simulator with injection device


    medical simulator 611 comprises a vessel 609 representing a simulated blood vessel. The vessel comprises a simulated vessel wall capable of being punctured by an electrically conductive injection needle 503. The vessel wall comprises a first electrically conductive layer for closing an electric

  13. Anesthesia management for MitraClip device implantation

    Harikrishnan Kothandan


    Full Text Available Aims and Objectives: Percutaneous MitraClip implantation has been demonstrated as an alternative procedure in high-risk patients with symptomatic severe mitral regurgitation (MR who are not suitable (or denied mitral valve repair/replacement due to excessive co morbidity. The MitraClip implantation was performed under general anesthesia and with 3-dimensional transesophageal echocardiography (TEE and fluoroscopic guidance. Materials and Methods: Peri-operative patient data were extracted from the electronic and paper medical records of 21 patients who underwent MitraClip implantations. Results: Four MitraClip implantation were performed in the catheterization laboratory; remaining 17 were performed in the hybrid operating theatre. In 2 patients, procedure was aborted, in one due to migration of the Chiari network into the left atrium and in second one, the leaflets and chords of the mitral valve torn during clipping resulting in consideration for open surgery. In the remaining 19 patients, MitraClip was implanted and the patients showed acute reduction of severe MR to mild-moderate MR. All the patients had invasive blood pressure monitoring and the initial six patients had central venous catheterization prior to the procedure. Intravenous heparin was administered after the guiding catheter was introduced through the inter-atrial septum and activated clotting time was maintained beyond 250 s throughout the procedure. Protamine was administered at the end of the procedure. All the patients were monitored in the intensive care unit after the procedure. Conclusions: Percutaneous MitraClip implantation is a feasible alternative in high-risk patients with symptomatic severe MR. Anesthesia management requirements are similar to open surgical mitral valve repair or replacement. TEE plays a vital role during the MitraClip implantation.

  14. Handheld Diagnostic Device Delivers Quick Medical Readings


    To monitor astronauts' health remotely, Glenn Research Center awarded SBIR funding to Cambridge, Massachusetts-based DNA Medical Institute, which developed a device capable of analyzing blood cell counts and a variety of medical biomarkers. The technology will prove especially useful in rural areas without easy access to labs.

  15. 78 FR 18233 - Medical Devices; Technical Amendment


    ... human environment. Therefore, neither an environmental assessment nor an environmental impact statement..., Confidential business information, Medical devices, Medical research, Reporting and recordkeeping requirements... revising the second sentence in paragraph (a) to read as follows: Sec. 870.3600 External pacemaker pulse...

  16. "Real life" longevity of implantable cardioverter-defibrillator devices.

    Manolis, Antonis S; Maounis, Themistoklis; Koulouris, Spyridon; Vassilikos, Vassilios


    Manufacturers of implantable cardioverter-defibrillators (ICDs) promise a 5- to 9-year projected longevity; however, real-life data indicate otherwise. The aim of the present study was to assess ICD longevity among 685 consecutive patients over the last 20 years. Real-life longevity of ICDs may differ from that stated by the manufacturers. The study included 601 men and 84 women (mean age, 63.1 ± 13.3 years). The underlying disease was coronary (n = 396) or valvular (n = 15) disease, cardiomyopathy (n = 220), or electrical disease (n = 54). The mean ejection fraction was 35%. Devices were implanted for secondary (n = 562) or primary (n = 123) prevention. Single- (n = 292) or dual-chamber (n = 269) or cardiac resynchronization therapy (CRT) devices (n = 124) were implanted in the abdomen (n = 17) or chest (n = 668). Over 20 years, ICD pulse generator replacements were performed in 238 patients (209 men; age 63.7 ± 13.9 years; ejection fraction, 37.7% ± 14.0%) who had an ICD for secondary (n = 210) or primary (n = 28) prevention. The mean ICD longevity was 58.3 ± 18.7 months. In 20 (8.4%) patients, devices exhibited premature battery depletion within 36 months. Most (94%) patients had none, minor, or modest use of ICD therapy. Longevity was longest for single-chamber devices and shortest for CRT devices. Latest-generation devices replaced over the second decade lasted longer compared with devices replaced during the first decade. When analyzed by manufacturer, Medtronic devices appeared to have longer longevity by 13 to 18 months. ICDs continue to have limited longevity of 4.9 ± 1.6 years, and 8% demonstrate premature battery depletion by 3 years. CRT devices have the shortest longevity (mean, 3.8 years) by 13 to 17 months, compared with other ICD devices. These findings have important implications, particularly in view of the high expense involved with this type of electrical

  17. In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection

    Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed


    A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.

  18. Current use of implantable electrical devices in Sweden: data from the Swedish pacemaker and implantable cardioverter-defibrillator registry.

    Gadler, Fredrik; Valzania, Cinzia; Linde, Cecilia


    The National Swedish Pacemaker and Implantable Cardioverter-Defibrillator (ICD) Registry collects prospective data on all pacemaker and ICD implants in Sweden. We aimed to report the 2012 findings of the Registry concerning electrical devices implantation rates and changes over time, 1 year complications, long-term device longevity and patient survival. Forty-four Swedish implanting centres continuously contribute implantation of pacemakers and ICDs to the Registry by direct data entry on a specific website. Clinical and technical information on 2012 first implants and postoperative complications were analysed and compared with previous years. Patient survival data were obtained from the Swedish population register database. In 2012, the mean pacemaker and ICD first implantation rates were 697 and 136 per million inhabitants, respectively. The number of cardiac resynchronization therapy (CRT) first implantations/million capita was 41 (CRT pacemakers) and 55 (CRT defibrillators), with only a slight increase in CRT-ICD rate compared with 2011. Most device implantations were performed in men. Complication rates for pacemaker and ICD procedures were 5.3 and 10.1% at 1 year, respectively. Device and lead longevity differed among manufacturers. Pacemaker patients were older at the time of first implant and had generally worse survival rate than ICD patients (63 vs. 82% after 5 years). Pacemaker and ICD implantation rates seem to have reached a level phase in Sweden. Implantable cardioverter-defibrillator and CRT implantation rates are very low and do not reflect guideline indications. Gender differences in CRT and ICD implantations are pronounced. Device and patient survival rates are variable, and should be considered when deciding device type. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email:

  19. Medical ice slurry production device

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL


    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  20. Training contraceptive providers to offer intrauterine devices and implants in contraceptive care: a cluster randomized trial.

    Thompson, Kirsten M J; Rocca, Corinne H; Stern, Lisa; Morfesis, Johanna; Goodman, Suzan; Steinauer, Jody; Harper, Cynthia C


    US unintended pregnancy rates remain high, and contraceptive providers are not universally trained to offer intrauterine devices and implants to women who wish to use these methods. We sought to measure the impact of a provider training intervention on integration of intrauterine devices and implants into contraceptive care. We measured the impact of a continuing medical education-accredited provider training intervention on provider attitudes, knowledge, and practices in a cluster randomized trial in 40 US health centers from 2011 through 2013. Twenty clinics were randomly assigned to the intervention arm; 20 offered routine care. Clinic staff participated in baseline and 1-year surveys assessing intrauterine device and implant knowledge, attitudes, and practices. We used a difference-in-differences approach to compare changes that occurred in the intervention sites to changes in the control sites 1 year later. Prespecified outcome measures included: knowledge of patient eligibility for intrauterine devices and implants; attitudes about method safety; and counseling practices. We used multivariable regression with generalized estimating equations to account for clustering by clinic to examine intervention effects on provider outcomes 1 year later. Overall, we surveyed 576 clinic staff (314 intervention, 262 control) at baseline and/or 1-year follow-up. The change in proportion of providers who believed that the intrauterine device was safe was greater in intervention (60% at baseline to 76% at follow-up) than control sites (66% at both times) (adjusted odds ratio, 2.48; 95% confidence interval, 1.13-5.4). Likewise, for the implant, the proportion increased from 57-77% in intervention, compared to 61-65% in control sites (adjusted odds ratio, 2.57; 95% confidence interval, 1.44-4.59). The proportion of providers who believed they were experienced to counsel on intrauterine devices also increased in intervention (53-67%) and remained the same in control sites (60

  1. Retrospective analysis of RF heating measurements of passive medical implants.

    Song, Ting; Xu, Zhiheng; Iacono, Maria Ida; Angelone, Leonardo M; Rajan, Sunder


    The test reports for the RF-induced heating of metallic devices of hundreds of medical implants have been provided to the U.S. Food and Drug Administration as a part of premarket submissions. The main purpose of this study is to perform a retrospective analysis of the RF-induced heating data provided in the reports to analyze the trends and correlate them with implant geometric characteristics. The ASTM-based RF heating test reports from 86 premarket U.S. Food and Drug Administration submissions were reviewed by three U.S. Food and Drug Administration reviewers. From each test report, the dimensions and RF-induced heating values for a given whole-body (WB) specific absorption rate (SAR) and local background (LB) SAR were extracted and analyzed. The data from 56 stents were analyzed as a subset to further understand heating trends and length dependence. For a given WB SAR, the LB/WB SAR ratio varied significantly across the test labs, from 2.3 to 11.3. There was an increasing trend on the temperature change per LB SAR with device length. The maximum heating for stents occurred at lengths of approximately 100 mm at 3 T, and beyond 150 mm at 1.5 T. Differences in the LB/WB SAR ratios across testing labs and various MRI scanners could lead to inconsistent WB SAR labeling. Magnetic resonance (MR) conditional labeling based on WB SAR should be derived from a conservative estimate of global LB/WB ratios. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  2. Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices

    Pron, G; Ieraci, L; Kaulback, K


    Executive Summary Objective The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions. Clinical Need: Condition and Target Population Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD. Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities. Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs. Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however

  3. Challenges to validation of a complex nonsterile medical device tray.

    Prince, Daniel; Mastej, Jozef; Hoverman, Isabel; Chatterjee, Raja; Easton, Diana; Behzad, Daniela


    Validation by steam sterilization of reusable medical devices requires careful attention to many parameters that directly influence whether or not complete sterilization occurs. Complex implant/instrument tray systems have a variety of configurations and components. Geobacillus stearothermophilus biological indicators (BIs) are used in overkill cycles to to simulate worst case conditions and are intended to provide substantial sterilization assurance. Survival of G. stearothermophilus spores was linked to steam access and size of load in the chamber. By a small and reproducible margin, it was determined that placement of the trays in a rigid container into minimally loaded chambers were more difficult to completely sterilize than maximally loaded chambers.

  4. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei


    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  5. Low Power Design for Future Wearable and Implantable Devices

    Katrine Lundager


    Full Text Available With the fast progress in miniaturization of sensors and advances in micromachinery systems, a gate has been opened to the researchers to develop extremely small wearable/implantable microsystems for different applications. However, these devices are reaching not to a physical limit but a power limit, which is a critical limit for further miniaturization to develop smaller and smarter wearable/implantable devices (WIDs, especially for multi-task continuous computing purposes. Developing smaller and smarter devices with more functionality requires larger batteries, which are currently the main power provider for such devices. However, batteries have a fixed energy density, limited lifetime and chemical side effect plus the fact that the total size of the WID is dominated by the battery size. These issues make the design very challenging or even impossible. A promising solution is to design batteryless WIDs scavenging energy from human or environment including but not limited to temperature variations through thermoelectric generator (TEG devices, body movement through Piezoelectric devices, solar energy through miniature solar cells, radio-frequency (RF harvesting through antenna etc. However, the energy provided by each of these harvesting mechanisms is very limited and thus cannot be used for complex tasks. Therefore, a more comprehensive solution is the use of different harvesting mechanisms on a single platform providing enough energy for more complex tasks without the need of batteries. In addition to this, complex tasks can be done by designing Integrated Circuits (ICs, as the main core and the most power consuming component of any WID, in an extremely low power mode by lowering the supply voltage utilizing low-voltage design techniques. Having the ICs operational at very low voltages, will enable designing battery-less WIDs for complex tasks, which will be discussed in details throughout this paper. In this paper, a path towards battery

  6. Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management

    Dharani Manickavasagam


    Full Text Available Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure. However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a patient tolerability and acceptance, (b drug stability and drug release profiles, (c therapeutic efficacy, and (d toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma.

  7. Electromagnetic Radiation Efficiency of Body-Implanted Devices

    Nikolayev, Denys; Zhadobov, Maxim; Karban, Pavel; Sauleau, Ronan


    Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d ≳3 cm ) lies in the (108- 109 )-Hz range and can be approximated as f =2.2 ×107/d . For a subcutaneous case (d ≲3 cm ), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2 ×108 to 3 ×109 Hz ), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.

  8. International Standards for Radiation Sterilization of Medical Devices

    Miller, A.


    For a terminally sterilized medical device to be designated '' STERILE '', probability of finding the viable micro-organisms in the device shall be equal to or less than 1 x 10 -6 (EN 556-1:2001: Sterilization of medical devices - Requirements for medical devices to be designated '' STERILE '' - Part 1: Requirements for terminally sterilized medical devices). Author presents the main legal aspects of the international standards for radiation sterilization of medical devices

  9. Real-world geographic variations in the use of cardiac implantable electronic devices - The PANORAMA 2 observational cohort study.

    Bastian, Dirk; Ebrahim, Iftikhar O; Chen, Ju-Yi; Chen, Mien-Cheng; Huang, Dejia; Huang, Jin-Long; Kuznetsov, Vadim A; Maus, Bärbel; Naik, Ajay M; Verhees, Koen J P; Fagih, Ahmed R Al


    Currently, several geographies around the world remain underrepresented in medical device trials. The PANORAMA 2 study was designed to assess contemporary region-specific differences in clinical practice patterns of patients with cardiac implantable electronic devices (CIEDs). In this prospective, multicenter, observational, multi-national study, baseline and implant data of 4,706 patients receiving Medtronic CIEDs (either de novo device implants, replacements, or upgrades) were analyzed, consisting of: 54% implantable pulse generators (IPGs), 20.3% implantable cardiac defibrillators (ICDs), 15% cardiac resynchronization therapy defibrillators (CRT-Ds), 5.1% cardiac resynchronization therapy pacemakers (CRT-Ps), from 117 hospitals in 23 countries across 4 geographical regions between 2012 and 2016. For all device types, in all regions, there were less females than males enrolled, and women were less likely to have ischemic cardiomyopathy. Implant procedure duration differed significantly across the geographies for all device types. Subjects from emerging countries, women and older patients were less likely to receive a magnetic resonance imaging (MRI)-compatible device. Defibrillation testing differed significantly between the regions. European patients had the highest rates of atrial fibrillation (AF), and the lowest number of implanted single-chamber IPGs. Evaluation of stroke history suggested that the general embolic risk is more strongly associated with stroke than AF. We provide comprehensive descriptive data on patients receiving Medtronic CIEDs from several geographies, some of which are understudied in randomized controlled trials (RCTs). We found significant variations in patient characteristics. Several medical decisions appear to be affected by socioeconomic factors. Long-term follow-up data will help evaluate if these variations require adjustments to outcome expectations. This article is protected by copyright. All rights reserved. This article is

  10. Regulatory affairs for biomaterials and medical devices

    Amato, Stephen F; Amato, B


    All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clearance. This book provides readers with information on the systems in place in the USA and the rest of the world. Chapters focus on a series of procedures and policies including topics such as commercialization, clinical development, general good practise manufacturing and post market surveillance.Addresses global regulations and regulatory issues surrounding biomaterials and medical devicesEspecially useful for smaller co

  11. Modelling degradation of bioresorbable polymeric medical devices

    Pan, J


    The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices.

  12. [Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment].

    Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo


    In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  13. Medical applications for pharmacists using mobile devices.

    Aungst, Timothy Dy


    Mobile devices (eg, smartphones, tablet computers) have become ubiquitous and subsequently there has been a growth in mobile applications (apps). Concurrently, mobile devices have been integrated into health care practice due to the availability and quality of medical apps. These mobile medical apps offer increased access to clinical references and point-of-care tools. However, there has been little identification of mobile medical apps suitable for the practice of pharmacy. To address the shortage of recommendations of mobile medical apps for pharmacists in daily practice. Mobile medical apps were identified via the iTunes and Google Play Stores via the "Medical" app categories and key word searches (eg, drug information, medical calculators). In addition, reviews provided by professional mobile medical app review websites were used to identify apps. Mobile medical apps were included if they had been updated in the previous 3 months, were available in the US, used evidence-based information or literature support, had dedicated app support, and demonstrated stability. Exclusion criteria included apps that were not available in English, had advertisement bias, used nonreferenced sources, were available only via an institution-only subscription, and were web-based portals. Twenty-seven mobile apps were identified and reviewed that involved general pharmacy practice, including apps that involved drug references, clinical references, medical calculators, laboratory references, news and continuing medical education, and productivity. Mobile medical apps have a variety of features that are beneficial to pharmacy practice. Individual clinicians should consider several characteristics of these apps to determine which are suitable to incorporate into their daily practice.

  14. Modification of medical metals by ion implantation of copper

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.


    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  15. The medical physics of ventricular assist devices

    Wood, Houston G; Throckmorton, Amy L; Untaroiu, Alexandrina; Song Xinwei


    Millions of patients, from infants to adults, are diagnosed with congestive heart failure each year all over the world. A limited number of donor hearts available for these patients results in a tremendous demand for alternative, supplemental circulatory support in the form of artificial heart pumps or ventricular assist devices (VADs). The development procedure for such a device requires careful consideration of biophysical factors, such as biocompatibility, haemolysis, thrombosis, implantability, physiologic control feasibility and pump performance. Conventional pump design equations based on Newton's law and computational fluid dynamics (CFD) are readily used for the initial design of VADs. In particular, CFD can be employed to predict the pressure-flow performance, hydraulic efficiencies, flow profile through the pump, stress levels and biophysical factors, such as possible blood cell damage. These computational flow simulations may involve comprehensive steady and transient flow analyses. The transient simulations involve time-varying boundary conditions and virtual modelling of the impeller rotation in the blood pumps. After prototype manufacture, laser flow measurements with sophisticated optics and mock circulatory flow loop testing assist with validation of pump design and identification of irregular flow patterns for optimization. Additionally, acute and chronic animal implants illustrate the blood pump's ability to support life physiologically. These extensive design techniques, coupled with fundamental principles of physics, ensure a reliable and effective VAD for thousands of heart failure patients each year

  16. An implantable thermoresponsive drug delivery system based on Peltier device.

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury


    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.

    Moon, Eunseong; Blaauw, David; Phillips, Jamie D


    Wireless biomedical implantable devices on the mm-scale enable a wide range of applications for human health, safety, and identification, though energy harvesting and power generation are still looming challenges that impede their widespread application. Energy scavenging approaches to power biomedical implants have included thermal [1-3], kinetic [4-6], radio-frequency [7-11] and radiative sources [12-14]. However, the achievement of efficient energy scavenging for biomedical implants at the mm-scale has been elusive. Here we show that photovoltaic cells at the mm-scale can achieve a power conversion efficiency of more than 17 % for silicon and 31 % for GaAs under 1.06 μW/mm 2 infrared irradiation at 850 nm. Finally, these photovoltaic cells demonstrate highly efficient energy harvesting through biological tissue from ambient sunlight, or irradiation from infrared sources such as used in present-day surveillance systems, by utilizing the near infrared (NIR) transparency window between the 650 nm and 950 nm wavelength range [15-17].

  18. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Kim, Do-Hyun; Kim, Moon S.; Hwang, Jeeseong


    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially lifethreatening infections. Other types of medical devices such as bronchoscopes and duodenoscopes account for the highest number of reported endoscopic infections where microbial biofilm is one of the major causes for these infections. We applied a hyperspectral imaging method to detect biofilm contamination on the surface of several common materials used for medical devices. Such materials include stainless steel, titanium, and stainless-steeltitanium alloy. Potential uses of hyperspectral imaging technique to monitor biofilm attachment to different material surfaces are discussed.

  19. 77 FR 6028 - Taxable Medical Devices


    ... sold as part of an x-ray system. Commentators also requested information on the tax treatment of..., mitigation, treatment, or prevention of disease; or intended to affect the structure or any function of the... subject to an IDE is not a ``taxable medical device'' under the proposed regulations. VI. Dental...

  20. Medical devices for the anesthetist: current perspectives

    Ingrande J


    Full Text Available Jerry Ingrande, Hendrikus JM LemmensDepartment of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USAAbstract: Anesthesiologists are unique among most physicians in that they routinely use technology and medical devices to carry out their daily activities. Recently, there have been significant advances in medical technology. These advances have increased the number and utility of medical devices available to the anesthesiologist. There is little doubt that these new tools have improved the practice of anesthesia. Monitoring has become more comprehensive and less invasive, airway management has become easier, and placement of central venous catheters and regional nerve blockade has become faster and safer. This review focuses on key medical devices such as cardiovascular monitors, airway equipment, neuromonitoring tools, ultrasound, and target controlled drug delivery software and hardware. This review demonstrates how advances in these areas have improved the safety and efficacy of anesthesia and facilitate its administration. When applicable, indications and contraindications to the use of these novel devices will be explored as well as the controversies surrounding their use.Keywords: catheters, echocardiography, ultrasound, fiberoptic bronchoscope, laryngeal mask airway, closed-loop anesthesia

  1. [Impact of an automated dispensing system for medical devices in cardiac surgery department].

    Clou, E; Dompnier, M; Kably, B; Leplay, C; Poupon, E; Archer, V; Paul, M


    To secure medical devices' management, the implementation of automated dispensing system in surgical service has been realized. The objective of this study was to evaluate security, organizational and economic impact of installing automated dispensing system for medical devices (ASDM). The implementation took place in a cardiac surgery department. Security impact was assessed by comparing traceability rate of implantable medical devices one year before and one year after installation. Questionnaire on nurses' perception and satisfaction completed this survey. Resupplying costs, stocks' evolution and investments for the implementation of ASDM were the subject of cost-benefit study. After one year, traceability rate is excellent (100%). Nursing staffs were satisfied with 87.5% by this new system. The introduction of ASDM allowed a qualitative and quantitative decrease in stocks, with a reduction of 30% for purchased medical devices and 15% for implantable medical devices in deposit-consignment. Cost-benefit analysis shows a rapid return on investment. Real stock decrease (purchased medical devices) is equivalent to 46.6% of investment. Implementation of ASDM allows to secure storage and dispensing of medical devices. This system has also an important economic impact and appreciated by users. Copyright © 2017 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  2. Development of bacterially resistant polyurethane for coating medical devices

    Roohpour, Nima; Moshaverinia, Alireza; Wasikiewicz, Jaroslaw M; Paul, Deepen; Vadgama, Pankaj; Wilks, Mark; Millar, Michael


    Polyurethanes have been widely used in medicine for coating and packaging implantable and other medical devices. Polyether-urethanes, in particular, have superior mechanical properties and are biocompatible, but in common with other medical materials they are susceptible to microbial film formation. In this study, polyether-urethane was end-capped with silver lactate and silver sulfadiazine functional groups to produce a bacterially resistant polymer without sacrificing the useful mechanical properties of the polyether-polyurethane. The silver ions were covalently incorporated into the polymer during chain extension of the prepolymer. The functionalized polymers were structurally characterized by light scattering, electron microscopy, NMR, FTIR and Raman spectroscopy. Mechanical properties, hydrophilicity, in vitro stability and antibacterial action of polymers were also investigated. Results indicate that both silver salts were successfully incorporated into the polymer structure without significant effect on mechanical properties, whilst conferring acceptable bacterial resistance.

  3. Inhaled Milrinone After Left Ventricular Assist Device Implantation.

    Haglund, Nicholas A; Burdorf, Adam; Jones, Tara; Shostrom, Valerie; Um, John; Ryan, Timothy; Shillcutt, Sasha; Fischer, Patricia; Cox, Zachary L; Raichlin, Eugenia; Anderson, Daniel R; Lowes, Brian D; Dumitru, Ioana


    Proven strategies to reduce right ventricular (RV) dysfunction after continuous-flow left ventricular assist device (CF-LVAD) implantation are lacking. We sought to evaluate the tolerability, feasibility, efficacy, and pharmacokinetics of inhaled milrinone (iMil) delivery after CF-LVAD implantation. We prospectively evaluated fixed-dose nebulized iMil delivered into a ventilator circuit for 24 hours in 10 postoperative CF-LVAD (Heartmate-II) patients. Tolerability (arrhythmias, hypotension, and hypersensitivity reaction), efficacy (hemodynamics), pharmacokinetics (plasma milrinone levels), and cost data were collected.Mean age was 56 ± 9 years, 90% were male, and mean INTERMACS profile was 2.5 ± 0.8. No new atrial arrhythmia events occurred, although 3 (30%) ventricular tachycardia (1 nonsustained, 2 sustained) events occurred. Sustained hypotension, drug hypersensitivity, death, or need for right ventricular assist device were not observed. Invasive mean pulmonary arterial pressure from baseline to during iMil therapy was improved (P = .017). Mean plasma milrinone levels (ng/mL) at baseline, and 1, 4, 8, 12, and 24 hours were 74.2 ± 35.4, 111.3 ± 70.9, 135.9 ± 41.5, 205.0 ± 86.7, 176.8 ± 61.3 187.6 ± 105.5, respectively. Reduced institutional cost was observed when iMil was compared with nitric oxide therapy over 24 hours ($165.29 vs $1,944.00, respectively). iMil delivery after CF-LVAD implantation was well tolerated, feasible, and demonstrated favorable hemodynamic, pharmacokinetic, and cost profiles. iMil therapy warrants further study in larger clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.


    A. Yu. Galkin


    Full Text Available In article we analyzed national and international regulations concerning the quality and safety of medical devices for in vitro diagnostics. We discussed the possibility of a partial application of the recommendations of the State Pharmacopoeia of Ukraine to this type of product. The main guiding regulatory documents establishing requirements for quality and safety tools for the serological diagnosis products are The technical regulation on medical devices for the diagnosis in vitro, DSTU ISO 13485 “Medical devices. Quality management system. Regulatory requirements”, and DSTU ISO/IEC 17025 “General requirements for the competence of testing and calibration laboratories”. Similar requirements of the State Pharmacopoeia of Ukraine which are used for drug standardization can not be directly applied to the medical devises for in vitro diagnostics due to a number of features, namely, the serological diagnosis products pre-designed to determine the unknown concentration of a particular analyte in a biological material, the diagnostic kits has to include the control samples (internal standard systems that need to be calibrated. It was determined following parameters of bioanalytical standardization and validation characterization for of qualitative (semi quantitative test-kits for serological diagnosis: precision (convergence, intralaboratory precision and reproducibility, diagnostic and analytical specificity, diagnostic sensitivity. It’s necessary to inspect additional parameters for quantitative test-kits such as accuracy (precision, linearity, analytical sensitivity and range.

  5. Open-source hardware for medical devices.

    Niezen, Gerrit; Eslambolchilar, Parisa; Thimbleby, Harold


    Open-source hardware is hardware whose design is made publicly available so anyone can study, modify, distribute, make and sell the design or the hardware based on that design. Some open-source hardware projects can potentially be used as active medical devices. The open-source approach offers a unique combination of advantages, including reducing costs and faster innovation. This article compares 10 of open-source healthcare projects in terms of how easy it is to obtain the required components and build the device.

  6. 78 FR 68853 - International Medical Device Regulators Forum; Medical Device Single Audit Program International...


    ... its inaugural meeting in Singapore in 2012, identified a Work Group (WG) to develop specific documents... Assessment Method for the Recognition and Monitoring of Medical Device Auditing Organizations;'' and IMDRF...

  7. Low permanent pacemaker rates following Lotus device implantation for transcatheter aortic valve replacement due to modified implantation protocol.

    Krackhardt, Florian; Kherad, Behrouz; Krisper, Maximilian; Pieske, Burkert; Laule, Michael; Tschöpe, Carsten


    Conduction disturbances requiring permanent pacemaker implantation following transcatheter aortic valve replacement (TAVR) are a common problem. Pacemaker implantation rates after TAVR appear to be higher compared to conventional aortic valve replacement. The aim of this study was to analyze whether a high annulus implantation conveys the benefit of a decreased rate of permanent pacemaker implantation while being safe and successful according to Valve Academic Research Consortium 2 (VARC2)-criteria. A total of 23 patients with symptomatic severe aortic valve stenosis, an aortic annulus of 19-27 mm and at high risk for surgery were treated with the Lotus valve. In all patients the valve was implanted in a high annulus position via femoral access. The primary device performance endpoint was VARC2-defined device success after 30 days and the primary safety endpoint was the need for permanent pacemaker implantation. The mean age was 73.23 ± 7.65 years, 46% were female, 38% were New York Heart Association class III/IV at baseline. Thirty-day follow-up data were available for all patients. The VARC2-defined device success rate after 30 days was 22/23 (96%). 2/21 (10%) patients required a newly implanted pacemaker due to 3rd degree atrioventricular block. 25% of the patients developed a new left bundle branch block after valvuloplasty or device implantation. 21 of the 23 patients (96%) had no other signs of conduction disturbances after 30 days. The approach of the modified implantation technique of Lotus TAVR device was safe and effective. The incidence of need for a permanent pacemaker following TAVR could be significantly reduced due to adopted implantation protocol.

  8. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K


    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices.

  9. 78 FR 2647 - Dental Devices; Reclassification of Blade-Form Endosseous Dental Implant


    .... FDA-2012-N-0677] Dental Devices; Reclassification of Blade-Form Endosseous Dental Implant AGENCY: Food...) is proposing to reclassify the blade- form endosseous dental implant, a preamendments class III... proposing to revise the classification of blade-form endosseous dental implants. DATES: Submit either...

  10. Exploiting spatial degrees of freedom for high data rate ultrasound communication with implantable devices

    Wang, Max L.; Arbabian, Amin


    We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.

  11. Design of an Implantable Device for Ocular Drug Delivery

    Jae-Hwan Lee


    Full Text Available Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD, diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics.

  12. Initiatives in the Australian Medical Devices Industry

    Whelan, Luke


    The medical device industry is as diverse as it is specialised and calls on the innovative use of design and components and utilises all facets of precision manufacturing from printed circuit boards, injection-moulded plastics to engineering, using a wide range of materials. It generally requires exacting standards, starting with design, particularly for devices that are invasive or have direct contact with the human body. Of course this brings the further consideration of sterilisation and whether it is for single or multiple use. There is an ever-present need to produce more accurate less invasive and cheaper devices. The driving motivation appears to be meeting clinical needs at a reduced cost. The push to treat people outside the hospital is growing, creating new demands and directions. The advent of the Internet and wireless technology has opened a whole new direction of research and development opportunities

  13. Osseoconductive and Corrosion-Inhibiting Plasma-Sprayed Calcium Phosphate Coatings for Metallic Medical Implants

    Robert B. Heimann


    Full Text Available During the last several decades, research into bioceramic coatings for medical implants has emerged as a hot topic among materials scientists and clinical practitioners alike. In particular, today, calcium phosphate-based bioceramic materials are ubiquitously used in clinical applications to coat the stems of metallic endoprosthetic hips as well as the surfaces of dental root implants. Such implants frequently consist of titanium alloys, CoCrMo alloy, or austenitic surgical stainless steels, and aim at replacing lost body parts or restoring functions to diseased or damaged tissues of the human body. In addition, besides such inherently corrosion-resistant metals, increasingly, biodegradable metals such as magnesium alloys are being researched for osseosynthetic devices and coronary stents both of which are intended to remain in the human body for only a short time. Biocompatible coatings provide not only vital biological functions by supporting osseoconductivity but may serve also to protect the metallic parts of implants from corrosion in the aggressive metabolic environment. Moreover, the essential properties of hydroxylapatite-based bioceramic coatings including their in vitro alteration in contact with simulated body fluids will be addressed in this current review paper. In addition, a paradigmatic shift is suggested towards the development of transition metal-substituted calcium hexa-orthophosphates with the NaSiCON (Na superionic conductor structure to be used for implant coatings with superior degradation resistance in the corrosive body environment and with pronounced ionic conductivity that might be utilized in novel devices for electrical bone growth stimulation.

  14. Prospects of radiation sterilization of medical devices

    Hosobuchi, Kazunari


    Since radiation sterilization was first introduced in the United States in 1956 in the field of disposable medical devices, it has become an indispensable technique for sterilization because of the following reasons: (1) introduction into dialyzers, (2) introduction in medical device makers, (3) development of disposable medical devices associated with developing both high molecular chemistry and cool sterilization, (4) rationality of sterilization process, and (5) problems of sterilization with ethylene oxide gas. To promote the further development of radiation sterilization, the following items are considered necessary: (1) an increase in the number of facilities for radiation sterilization, (2) recommendation of the international standardization of sterilization method, (3) decrease in radiation doses associated with sterilization, (4) development of electron accelerators and bremsstrahlung equipments for radiation sources, and (5) simplification of sterilization process management. Factors precluding the development of radiation sterilization are: (1) development of other methods than radiation sterilization, (2) development of technique for sterile products, (3) high facility cost, (4) high irradiation cost, (5) benefits and limits of sterilization markets, and (6) influences of materials. (N.K.)

  15. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    Bates, J. B.; Dudney, N. J.


    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  16. A Novel Enhanced Positioning Trilateration Algorithm Implemented for Medical Implant In-Body Localization

    Peter Brida


    Full Text Available Medical implants based on wireless communication will play crucial role in healthcare systems. Some applications need to know the exact position of each implant. RF positioning seems to be an effective approach for implant localization. The two most common positioning data typically used for RF positioning are received signal strength and time of flight of a radio signal between transmitter and receivers (medical implant and network of reference devices with known position. This leads to positioning methods: received signal strength (RSS and time of arrival (ToA. Both methods are based on trilateration. Used positioning data are very important, but the positioning algorithm which estimates the implant position is important as well. In this paper, the proposal of novel algorithm for trilateration is presented. The proposed algorithm improves the quality of basic trilateration algorithms with the same quality of measured positioning data. It is called Enhanced Positioning Trilateration Algorithm (EPTA. The proposed algorithm can be divided into two phases. The first phase is focused on the selection of the most suitable sensors for position estimation. The goal of the second one lies in the positioning accuracy improving by adaptive algorithm. Finally, we provide performance analysis of the proposed algorithm by computer simulations.

  17. Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects.

    Guag, Joshua; Addissie, Bisrat; Witters, Donald


    There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED

  18. From micro- to nanostructured implantable device for local anesthetic delivery

    Zorzetto, Laura; Brambilla, Paola; Marcello, Elena; Bloise, Nora; De Gregori, Manuela; Cobianchi, Lorenzo; Peloso, Andrea; Allegri, Massimo; Visai, Livia; Petrini, Paola


    Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies

  19. Ion implantation in compound semiconductors for high-performance electronic devices

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.


    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  20. Additively manufactured custom load-bearing implantable devices: grounds for caution

    Elisabetta M Zanetti


    Full Text Available Background Additive manufacturing technologies are being enthusiastically adopted by the orthopaedic community since they are providing new perspectives and new possibilities. First applications were finalised for educational purposes, pre-operative planning, and design of surgical guides; recent applications also encompass the production of implantable devices where 3D printing can bring substantial benefits such as customization, optimization, and manufacturing of very complex geometries. The conceptual smoothness of the whole process may lead to the idea that any medical practitioner can use a 3D printer and her/his imagination to design and produce novel products for personal or commercial use. Aims Outlining how the whole process presents more than one critical aspects, still demanding further research in order to allow a safe application of this technology for fully-custom design, in particular confining attention to orthopaedic/orthodontic prostheses defined as components responding mainly to a structural function. Methods Current knowledge of mechanical properties of additively manufactured components has been examined along with reasons why the behaviour of these components might differ from traditionally manufactured components. The structural information still missing for mechanical design is outlined. Results Mechanical properties of additively manufactured components are not completely known, and especially fatigue limit needs to be examined further. Conclusion At the present stage, with reference to load-bearing implants subjected to many loading cycles, the indication of custom-made additively manufactured medical devices should be restricted to the cases with no viable alternative.

  1. 78 FR 21129 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... radiofrequency band ranging between 13 megahertz to 27.12 megahertz and is intended for the treatment of medical...] Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: Orthopaedic and Rehabilitation Devices Panel of the Medical Devices...

  2. Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy.

    Didier, P; Piotrowski, B; Fischer, M; Laheurte, P


    The advent of new manufacturing technologies such as additive manufacturing deeply impacts the approach for the design of medical devices. It is now possible to design custom-made implants based on medical imaging, with complex anatomic shape, and to manufacture them. In this study, two geometrical configurations of implant devices are studied, standard and anatomical. The comparison highlights the drawbacks of the standard configuration, which requires specific forming by plastic strain in order to be adapted to the patient's morphology and induces stress field in bones without mechanical load in the implant. The influence of low elastic modulus of the materials on stress distribution is investigated. Two biocompatible alloys having the ability to be used with SLM additive manufacturing are considered, commercial Ti-6Al-4V and Ti-26Nb. It is shown that beyond the geometrical aspect, mechanical compatibility between implants and bones can be significantly improved with the modulus of Ti-26Nb implants compared with the Ti-6Al-4V. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Percutaneous Endovascular Salvage Techniques for Implanted Venous Access Device Dysfunction

    Breault, Stéphane; Glauser, Frédéric; Babaker, Malik; Doenz, Francesco; Qanadli, Salah Dine


    PurposeImplanted venous access devices (IVADs) are often used in patients who require long-term intravenous drug administration. The most common causes of device dysfunction include occlusion by fibrin sheath and/or catheter adherence to the vessel wall. We present percutaneous endovascular salvage techniques to restore function in occluded catheters. The aim of this study was to evaluate the feasibility, safety, and efficacy of these techniques.Methods and MaterialsThrough a femoral or brachial venous access, a snare is used to remove fibrin sheath around the IVAD catheter tip. If device dysfunction is caused by catheter adherences to the vessel wall, a new “mechanical adhesiolysis” maneuver was performed. IVAD salvage procedures performed between 2005 and 2013 were analyzed. Data included clinical background, catheter tip position, success rate, recurrence, and rate of complication.ResultsEighty-eight salvage procedures were performed in 80 patients, mostly women (52.5 %), with a mean age of 54 years. Only a minority (17.5 %) of evaluated catheters were located at an optimal position (i.e., cavoatrial junction ±1 cm). Mechanical adhesiolysis or other additional maneuvers were used in 21 cases (24 %). Overall technical success rate was 93.2 %. Malposition and/or vessel wall adherences were the main cause of technical failure. No complications were noted.ConclusionThese IVAD salvage techniques are safe and efficient. When a catheter is adherent to the vessel wall, mechanical adhesiolysis maneuvers allow catheter mobilization and a greater success rate with no additional risk. In patients who still require long-term use of their IVAD, these procedures can be performed safely to avoid catheter replacement

  4. Percutaneous Endovascular Salvage Techniques for Implanted Venous Access Device Dysfunction

    Breault, Stéphane, E-mail: [Lausanne University Hospital, Diagnostic and Interventional Radiology Department (Switzerland); Glauser, Frédéric, E-mail: [Lausanne University Hospital, Angiology and Diagnostic and Interventional Radiology Departments (Switzerland); Babaker, Malik, E-mail:; Doenz, Francesco, E-mail:; Qanadli, Salah Dine, E-mail: [Lausanne University Hospital, Diagnostic and Interventional Radiology Department (Switzerland)


    PurposeImplanted venous access devices (IVADs) are often used in patients who require long-term intravenous drug administration. The most common causes of device dysfunction include occlusion by fibrin sheath and/or catheter adherence to the vessel wall. We present percutaneous endovascular salvage techniques to restore function in occluded catheters. The aim of this study was to evaluate the feasibility, safety, and efficacy of these techniques.Methods and MaterialsThrough a femoral or brachial venous access, a snare is used to remove fibrin sheath around the IVAD catheter tip. If device dysfunction is caused by catheter adherences to the vessel wall, a new “mechanical adhesiolysis” maneuver was performed. IVAD salvage procedures performed between 2005 and 2013 were analyzed. Data included clinical background, catheter tip position, success rate, recurrence, and rate of complication.ResultsEighty-eight salvage procedures were performed in 80 patients, mostly women (52.5 %), with a mean age of 54 years. Only a minority (17.5 %) of evaluated catheters were located at an optimal position (i.e., cavoatrial junction ±1 cm). Mechanical adhesiolysis or other additional maneuvers were used in 21 cases (24 %). Overall technical success rate was 93.2 %. Malposition and/or vessel wall adherences were the main cause of technical failure. No complications were noted.ConclusionThese IVAD salvage techniques are safe and efficient. When a catheter is adherent to the vessel wall, mechanical adhesiolysis maneuvers allow catheter mobilization and a greater success rate with no additional risk. In patients who still require long-term use of their IVAD, these procedures can be performed safely to avoid catheter replacement.

  5. 76 FR 7220 - Medical Device Innovation Initiative; Request for Comments


    ... medical device innovation. 6. Other actions CDRH should take to facilitate the development, assessment...] Medical Device Innovation Initiative; Request for Comments AGENCY: Food and Drug Administration, HHS... availability of a document for public comment entitled ``Medical Device Innovation Initiative'' (the report...

  6. Medical applications of superconducting quantum interference devices

    Uehara, Gen


    SQUIDs (Superconducting Quantum Interference Devices) are applied to clinical areas and basic medical science fields because of their potential for measuring a minute magnetic signal from the human body. Magnetoencephalography, one of their applications, is used for the functional mapping of the brain cortex before surgery and the localization of focus of epilepsy. Recently, their applications to the early-stage detection of dementia and the localization of brain ischemia are suggested. Another application of SQUIDs is magnetospinography, which detects the conduction block in spinal cord signal propagation. (author)

  7. Design controls for the medical device industry

    Teixeira, Marie B


    The second edition of a bestseller, Design Controls for the Medical Device Industry provides a comprehensive review of the latest design control requirements, as well as proven tools and techniques to ensure your company's design control program evolves in accordance with current industry practice. The text assists in the development of an effective design control program that not only satisfies the US FDA Quality System Regulation (QSR) and ISO 9001 and 13485 standards, but also meets today's third-party auditor/investigator expectations and saves you valuable time and money.The author's cont

  8. Practical design control implementation for medical devices

    Justiniano, Jose


    Bringing together the concepts of design control and reliability engineering, this book is a must for medical device manufacturers. It helps them meet the challenge of designing and developing products that meet or exceed customer expectations and also meet regulatory requirements. Part One covers motivation for design control and validation, design control requirements, process validation and design transfer, quality system for design control, and measuring design control program effectiveness. Part Two discusses risk analysis and FMEA, designing-in reliability, reliability and design verific

  9. Analytical Chemistry in the Regulatory Science of Medical Devices.

    Wang, Yi; Guan, Allan; Wickramasekara, Samanthi; Phillips, K Scott


    In the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration-regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e.g., diagnostic devices), and it can be used to support medical device development throughout the TPLC. In this review, we focus on analytical chemistry as a tool for the regulatory science of medical devices. We highlight recent progress in companion diagnostics, medical devices on chips for preclinical testing, mass spectrometry for postmarket monitoring, and detection/characterization of bacterial biofilm to prevent infections.

  10. Post-operative orbital imaging: a focus on implants and prosthetic devices

    Adams, Ashok; Mankad, Kshitij; Poitelea, Cornelia; Verity, David H.; Davagnanam, Indran


    Accurate interpretation of orbital imaging in the presence of either orbital implants requires a sound knowledge of both the surgical approach used and the imaging characteristics of the implanted devices themselves. In this article, the radiological appearance of the various devices used in ophthalmology, and their relationship to other orbital structures, is reviewed. In addition, the intended anatomical location, function of these devices, and clinical indications for their use are provided. (orig.)

  11. Pinch-off syndrome: transection of implantable central venous access device

    Sugimoto, Takuya; Nagata, Hiroshi; Hayashi, Ken; Kano, Nobuyasu


    As the population of people with cancer increases so does the number of patients who take chemotherapy. Majority of them are administered parentally continuously. Implantable central venous catheter device is a good choice for those patients; however, severe complication would occur concerning the devices. Pinch-off syndrome is one of the most severe complications. The authors report a severe case of pinch-off syndrome. The patient with the implantable central venous device could not take che...

  12. Investigational Clinical Trial of a Prototype Optoelectronic Computer-Aided Navigation Device for Dental Implant Surgery.

    Jokstad, Asbjørn; Winnett, Brenton; Fava, Joseph; Powell, David; Somogyi-Ganss, Eszter

    New digital technologies enable real-time computer-aided (CA) three-dimensional (3D) guidance during dental implant surgery. The aim of this investigational clinical trial was to demonstrate the safety and effectiveness of a prototype optoelectronic CA-navigation device in comparison with the conventional approach for planning and effecting dental implant surgery. Study participants with up to four missing teeth were recruited from the pool of patients referred to the University of Toronto Graduate Prosthodontics clinic. The first 10 participants were allocated to either a conventional or a prototype device study arm in a randomized trial. The next 10 participants received implants using the prototype device. All study participants were restored with fixed dental prostheses after 3 (mandible) or 6 (maxilla) months healing, and monitored over 12 months. The primary outcome was the incidence of any surgical, biologic, or prosthetic adverse events or device-related complications. Secondary outcomes were the incidence of positioning of implants not considered suitable for straightforward prosthetic restoration (yes/no); the perception of the ease of use of the prototype device by the two oral surgeons, recorded by use of a Likert-type questionnaire; and the clinical performance of the implant and superstructure after 1 year in function. Positioning of the implants was appraised on periapical radiographs and clinical photographs by four independent blinded examiners. Peri-implant bone loss was measured on periapical radiographs by a blinded examiner. No adverse events occurred related to placing any implants. Four device-related complications led to a switch from using the prototype device to the conventional method. All implants placed by use of the prototype device were in a position considered suitable for straightforward prosthetic restoration (n = 21). The qualitative evaluation by the surgeons was generally positive, although ergonomic challenges were identified

  13. 77 FR 18829 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Gastroenterology and Urology Devices Panel of the Medical Devices Advisory...

  14. 76 FR 71983 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Gastroenterology and Urology Devices Panel of the Medical Devices Advisory...

  15. 75 FR 57968 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ...] Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Gastroenterology and Urology Devices Panel of the Medical Devices Advisory... committee will discuss, make recommendations, and vote on information related to the PMA for the LAP-BAND...

  16. 78 FR 26786 - Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Microbiology Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To...

  17. 76 FR 48871 - Immunology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Immunology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Immunology Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To...

  18. 76 FR 55398 - Immunology Devices Panel of the Medical Devices Advisory Committee: Notice of Postponement of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Immunology Devices Panel of the Medical Devices Advisory Committee: Notice of Postponement of Meeting AGENCY... postponing the meeting of the Immunology Devices Panel of the Medical Devices Advisory Committee scheduled...

  19. Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types.

    Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S


    Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.

  20. Placing a price on medical device innovation: the example of total knee arthroplasty.

    Lisa G Suter

    Full Text Available BACKGROUND: Total knee arthroplasty (TKA is common, effective, and cost-effective. Innovative implants promising reduced long-term failure at increased cost are under continual development. We sought to define the implant cost and performance thresholds under which innovative TKA implants are cost-effective. METHODS: We performed a cost-effectiveness analysis using a validated, published computer simulation model of knee osteoarthritis. Model inputs were derived using published literature, Medicare claims, and National Health and Nutrition Examination Survey data. We compared projected TKA implant survival, quality-adjusted life expectancy (QALE, lifetime costs, and cost-effectiveness (incremental cost-effectiveness ratios or ICERs of standard versus innovative TKA implants. We assumed innovative implants offered 5-70% decreased long-term TKA failure rates at costs 20-400% increased above standard implants. We examined the impact of patient age, comorbidity, and potential increases in short-term failure on innovative implant cost-effectiveness. RESULTS: Implants offering ≥50% decrease in long-term TKA failure at ≤50% increased cost offered ICERs <$100,000 regardless of age or baseline comorbidity. An implant offering a 20% decrease in long-term failure at 50% increased cost provided ICERs <$150,000 per QALY gained only among healthy 50-59-year-olds. Increasing short-term failure, consistent with recent device failures, reduced cost-effectiveness across all groups. Increasing the baseline likelihood of long-term TKA failure among younger, healthier and more active individuals further enhanced innovative implant cost-effectiveness among younger patients. CONCLUSIONS: Innovative implants must decrease actual TKA failure, not just radiographic wear, by 50-55% or more over standard implants to be broadly cost-effective. Comorbidity and remaining life span significantly affect innovative implant cost-effectiveness and should be considered in the

  1. On the impact of medical device regulations on software architecture

    Hansen, Klaus Marius; Manikas, Konstantinos


    Compliance to regulations and regulatory approval are requirements for many medical device software systems. In this paper, we investigate the implications of medical device software regulations to the design of software systems. We do so by focusing on the American and European regulatory author...... of the device. Moreover, we review software modularity in the implementation of software medical device and propose a set of preliminary principles for architectural design of software medical device based on a set of constrains identified from the reviewed regulations....

  2. Autologous Cell Delivery to the Skin-Implant Interface via the Lumen of Percutaneous Devices in vitro

    Antonio Peramo


    Full Text Available Induced tissue regeneration around percutaneous medical implants could be a useful method to prevent the failure of the medical device, especially when the epidermal seal around the implant is disrupted and the implant must be maintained over a long period of time. In this manuscript, a novel concept and technique is introduced in which autologous keratinocytes were delivered to the interfacial area of a skin-implant using the hollow interior of a fixator pin as a conduit. Full thickness human skin explants discarded from surgeries were cultured at the air-liquid interface and were punctured to fit at the bottom of hollow cylindrical stainless steel fixator pins. Autologous keratinocytes, previously extracted from the same piece of skin and cultured separately, were delivered to the specimens thorough the interior of the hollow pins. The delivered cells survived the process and resembled undifferentiated epithelium, with variations in size and shape. Viability was demonstrated by the lack of morphologic evidence of necrosis or apoptosis. Although the cells did not form organized epithelial structures, differentiation toward a keratinocyte phenotype was evident immunohistochemically. These results suggest that an adaptation of this technique could be useful for the treatment of complications arising from the contact between skin and percutaneous devices in vivo.

  3. Monitoring device acceptance in implantable cardioverter defibrillator patients using the Florida Patient Acceptance Survey

    Versteeg, Henneke; Starrenburg, Annemieke; Denollet, Johan


    Patient device acceptance might be essential in identifying patients at risk for adverse patient-reported outcomes following implantation of an implantable cardioverter defibrillator (ICD). We examined the validity and reliability of the Florida Patient Acceptance Scale (FPAS) and identified corr...

  4. Right ventricular failure after implantation of a continuous-flow left ventricular assist device

    Cordtz, Johan Joakim; Nilsson, Jens C; Hansen, Peter B


    Right ventricular failure (RVF) is a significant complication after implantation of a left ventricular assist device. We aimed to identify haemodynamic changes in the early postoperative phase that predicted subsequent development of RVF in a cohort of HeartMate II (HMII) implanted patients....

  5. Sequential bilateral cochlear implantation in children: parents' perspective and device use.

    Sparreboom, M.; Leeuw, A.R.; Snik, A.F.M.; Mylanus, E.A.M.


    OBJECTIVE: The purpose of this study was (1) to measure parental expectations before surgery of a sequentially placed second cochlear implant and compare these results with parental observations postoperatively and (2) to measure device use of the second cochlear implant and compare to unilateral

  6. 78 FR 68714 - Medical Devices; Ophthalmic Devices; Classification of the Scleral Plug


    ... amendments), as ``preamendments devices.'' FDA classifies these devices after the Agency takes the following.... FDA-2012-N-1238] Medical Devices; Ophthalmic Devices; Classification of the Scleral Plug AGENCY: Food... scleral plugs in order to provide a reasonable assurance of safety and effectiveness of the device. The...



    Various totally implantable drug delivery systems from single access ports to micropumps are now available for administration of repeated boluses, and continuous or programmable infusions. In this respect, emphasis is given to a relatively cheap, totally implantable system for self-administering

  8. Deep ion implantation for bipolar silicon devices; investigations into the use of the third dimension

    Mouthaan, A.J.


    This thesis covers various aspects of the use of deep ion implantations in digital bipolar circuits. It starts with the implications of the use of deep ion implantations for numerical process, device and circuit simulation. It shows the use of 1MeV boron and phosphorus implantations in the realization of a fully vertical IIL, here named Buried Injector Logic, which can also be used as static and dynamic memory device in several different configurations. The author presents a combined MOS-bipolar device, called the Charge Injection Device as a dynamic memory cell. Finally, deep ion implantations are used to realize a stack of photovoltaic cells that produces a multiple of the open circuit voltage of one photodiode. (Auth.)

  9. Implanting inequality: empirical evidence of social and ethical risks of implantable radio-frequency identification (RFID) devices.

    Monahan, Torin; Fisher, Jill A


    The aim of this study was to assess empirically the social and ethical risks associated with implantable radio-frequency identification (RFID) devices. Qualitative research included observational studies in twenty-three U.S. hospitals that have implemented new patient identification systems and eighty semi-structured interviews about the social and ethical implications of new patient identification systems, including RFID implants. The study identified three primary social and ethical risks associated with RFID implants: (i) unfair prioritization of patients based on their participation in the system, (ii) diminished trust of patients by care providers, and (iii) endangerment of patients who misunderstand the capabilities of the systems. RFID implants may aggravate inequalities in access to care without any clear health benefits. This research underscores the importance of critically evaluating new healthcare technologies from the perspective of both normative ethics and empirical ethics.

  10. From micro- to nanostructured implantable device for local anesthetic delivery

    Zorzetto L


    Full Text Available Laura Zorzetto,1 Paola Brambilla,1 Elena Marcello,1 Nora Bloise,2 Manuela De Gregori,3 Lorenzo Cobianchi,4,5 Andrea Peloso,4,5 Massimo Allegri,6 Livia Visai,2,7 Paola Petrini1 1Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, Milan, 2Department of Molecular Medicine, Centre for Health Technologies (CHT, INSTM UdR of Pavia, University of Pavia, 3Pain Therapy Service, IRCCS Foundation Policlinico San Matteo Pavia, Pavia, 4General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, 5Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 6Department of Surgical Sciences, University of Parma, Parma, 7Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Lab of Nanotechnology, Pavia, Italy Abstract: Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured

  11. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing

    Adiloğlu, K.; Herzke, T.


    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. PMID:26721923

  12. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing.

    Backus, B; Adiloğlu, K; Herzke, T


    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. © The Author(s) 2015.

  13. Medical device integration: CIOs must bridge the digital divide between devices and electronic medical records.

    Raths, David


    To get funding approved for medical device integration, ClOs suggest focusing on specific patient safety or staff efficiency pain points. Organizations that make clinical engineering part of their IT team report fewer chain-of-command issues. It also helps IT people understand the clinical goals because the engineering people have been working closely with clinicians for years. A new organization has formed to work on collaboration between clinical engineers and IT professionals. For more information, go to ECRI Institute has written a guide to handling the convergence of medical technology and hospital networks. Its "Medical Technology for the IT Professional: An Essential Guide for Working in Today's Healthcare Setting" also details how IT professionals can assist hospital technology planning and acquisition, and provide ongoing support for IT-based medical technologies. For more information, visit

  14. Low-Power Implantable Device for Onset Detection and Subsequent Treatment of Epileptic Seizures: A Review

    Muhammad Tariqus Salam


    Full Text Available Over the past few years, there has been growing interest in neuro-responsive intracerebral local treatments of seizures, such as focal drug delivery, focal cooling, or electrical stimulation. This mode of treatment requires an effective intracerebral electroencephalographic acquisition system, seizure detector, brain stimulator, and wireless system that consume ultra-low power. This review focuses on alternative brain stimulation treatments for medically intractable epilepsy patients. We mainly discuss clinical studies of long-term responsive stimulation and suggest safer optimized therapeutic options for epilepsy. Finally, we conclude our study with the proposed low-power, implantable fully integrated device that automatically detects low-voltage fast activity ictal onsets and triggers focal treatment to disrupt seizure progression. The detection performance was verified using intracerebral electroencephalographic recordings from two patients with epilepsy. Further experimental validation of this prototype is underway.

  15. Pinch-off syndrome: transection of implantable central venous access device.

    Sugimoto, Takuya; Nagata, Hiroshi; Hayashi, Ken; Kano, Nobuyasu


    As the population of people with cancer increases so does the number of patients who take chemotherapy. Majority of them are administered parentally continuously. Implantable central venous catheter device is a good choice for those patients; however, severe complication would occur concerning the devices. Pinch-off syndrome is one of the most severe complications. The authors report a severe case of pinch-off syndrome. The patient with the implantable central venous device could not take chemotherapy because the device occluded. Further examination revealed the transection of the catheter. The transected fragment of the catheter in the heart was successfully removed by using a loop snare placed through the right femoral vein.

  16. Legislative aspects of the development of medical devices.

    Marešová, Petra; Klímová, Blanka; Krejcar, Ondřej; Kuča, Kamil


    European industry of medical device technologies represents 30% of all worlds sales. New health technologies bring effective treatment approaches, help shorten stays in hospital1),bring better treatment results and accelerate rehabilitation which leads to the earlier patients recovery.Legislative aspects are one of the key areas influencing the speed of development of medical devices and their launching. The aim of this article is to specify current state of legislation in the development of medical devices in the European Union in comparison with the market leaders such as China, Japan and USA.The best established market of medical devices is in the USA. Both Japan and China follow the USA model. However, a non-professional code of ethics in China in some respect contributes to the decrease of quality of medical devices, while Japan as well as the EU countries try really hard to conform to all the regulations imposed on the manufacturing of medical devices.

  17. Ion implantation on nickel targets by means of repetitive plasma focus device

    Vitulli, S.; Rapezzi, L. [ENEA Brasimone, Camugnano, Bologna (Italy); Apicella, M.L.; Samuelli, M. [ENEA Frascati, Frascati, Roma (Italy)


    Some test has been done in order to assess the possible use of a plasma focus as an implanter. The device utilized is the repetitive Plasma Focus operating in the ENEA Brasimone Center. The implanted sample is a sheet of Nickel with a surface of 17 cm{sup 2} inserted in a rigid sample at a variable distance from the top of the anode. After irradiation the sample is analyzed with Auger spectroscopy that provides the surface concentration of the various elements on the sample at different implantation depths. The result of the analysis shows that the Plasma Focus is an effective implantation source, even for metallurgical applications. (orig.)

  18. Science and technology of biocompatible thin films for implantable biomedical devices.

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division


    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  19. Buprenorphine implants in medical treatment of opioid addiction.

    Chavoustie, Steven; Frost, Michael; Snyder, Ole; Owen, Joel; Darwish, Mona; Dammerman, Ryan; Sanjurjo, Victoria


    Opioid use disorder is a chronic, relapsing disease that encompasses use of both prescription opioids and heroin and is associated with a high annual rate of overdose deaths. Medical treatment has proven more successful than placebo treatment or psychosocial intervention, and the partial µ-opioid receptor agonist and κ-opioid receptor antagonist buprenorphine is similar in efficacy to methadone while offering lower risk of respiratory depression. However, frequent dosing requirements and potential for misuse and drug diversion contribute to significant complications with treatment adherence for available formulations. Areas covered: This review describes the development of and preliminary data from clinical trials of an implantable buprenorphine formulation. Efficacy and safety data from comparative studies with other administrations of buprenorphine, including tablets and sublingual film, will be described. Key premises of the Risk Evaluation and Mitigation Strategy program for safely administering buprenorphine implants, which all prescribing physicians must complete, are also discussed. Expert commentary: Long-acting implantable drug formulations that offer consistent drug delivery and lower risk of misuse, diversion, or accidental pediatric exposure over traditional formulations represent a promising development for the effective treatment of opioid use disorder.

  20. Probabilistic predictive modelling of carbon nanocomposites for medical implants design.

    Chua, Matthew; Chui, Chee-Kong


    Modelling of the mechanical properties of carbon nanocomposites based on input variables like percentage weight of Carbon Nanotubes (CNT) inclusions is important for the design of medical implants and other structural scaffolds. Current constitutive models for the mechanical properties of nanocomposites may not predict well due to differences in conditions, fabrication techniques and inconsistencies in reagents properties used across industries and laboratories. Furthermore, the mechanical properties of the designed products are not deterministic, but exist as a probabilistic range. A predictive model based on a modified probabilistic surface response algorithm is proposed in this paper to address this issue. Tensile testing of three groups of different CNT weight fractions of carbon nanocomposite samples displays scattered stress-strain curves, with the instantaneous stresses assumed to vary according to a normal distribution at a specific strain. From the probabilistic density function of the experimental data, a two factors Central Composite Design (CCD) experimental matrix based on strain and CNT weight fraction input with their corresponding stress distribution was established. Monte Carlo simulation was carried out on this design matrix to generate a predictive probabilistic polynomial equation. The equation and method was subsequently validated with more tensile experiments and Finite Element (FE) studies. The method was subsequently demonstrated in the design of an artificial tracheal implant. Our algorithm provides an effective way to accurately model the mechanical properties in implants of various compositions based on experimental data of samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Phrenic paralysis during cardiac electronic device implantation: incidence, causes and clinical course.

    López-Gil, María; Fontenla, Adolfo; Juliá, Justo; Parra, Juan José; Arribas, Fernando


    Phrenic paralysis is a known complication of central venous catheterization, but it is not listed as a complication related to cardiac implantable electronic device (CIED) implants. The aim of this study is to describe the incidence, causes, clinical picture, and management of phrenic paralysis occurring in this scenario. We retrospectively analysed data from our CIED implantation database and identified those patients who suffered phrenic paralysis during the implantation procedure. Four of 891 patients (subclavian puncture in 626) developed phrenic paralysis during pacemaker or defibrillator implant procedures. Severe respiratory failure needing ventilatory support occurred in two, being the phrenic paralysis transient in all of the cases. Transient phrenic paralysis may occur during CIED implantation probably related to the infiltration of local anaesthesia in the subclavian area. Mechanism, prevention, and management are discussed. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email:

  2. Single-Ion Implantation for the Development of Si-Based MOSFET Devices with Quantum Functionalities

    Jeffrey C. McCallum


    Full Text Available Interest in single-ion implantation is driven in part by research into development of solid-state devices that exhibit quantum behaviour in their electronic or optical characteristics. Here, we provide an overview of international research work on single ion implantation and single ion detection for development of electronic devices for quantum computing. The scope of international research into single ion implantation is presented in the context of our own research in the Centre for Quantum Computation and Communication Technology in Australia. Various single ion detection schemes are presented, and limitations on dopant placement accuracy due to ion straggling are discussed together with pathways for scale-up to multiple quantum devices on the one chip. Possible future directions for ion implantation in quantum computing and communications are also discussed.

  3. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.

    Wancket, L M


    Bone implants and devices are a rapidly growing field within biomedical research, and implants have the potential to significantly improve human and animal health. Animal models play a key role in initial product development and are important components of nonclinical data included in applications for regulatory approval. Pathologists are increasingly being asked to evaluate these models at the initial developmental and nonclinical biocompatibility testing stages, and it is important to understand the relative merits and deficiencies of various species when evaluating a new material or device. This article summarizes characteristics of the most commonly used species in studies of bone implant materials, including detailed information about the relevance of a particular model to human bone physiology and pathology. Species reviewed include mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and nonhuman primates. Ultimately, a comprehensive understanding of the benefits and limitations of different model species will aid in rigorously evaluating a novel bone implant material or device. © The Author(s) 2015.

  4. Power loss measurement of implantable wireless power transfer components using a Peltier device balance calorimeter

    Leung, Ho Yan; Budgett, David M; Taberner, Andrew; Hu, Patrick


    Determining heat losses in power transfer components operating at high frequencies for implantable inductive power transfer systems is important for assessing whether the heat dissipated by the component is acceptable for implantation and medical use. However, this is a challenge at high frequencies and voltages due to limitations in electronic instrumentation. Calorimetric methods of power measurement are immune to the effects of high frequencies and voltages; hence, the measurement is independent of the electrical characteristics of the system. Calorimeters have been widely used to measure the losses of high power electrical components (>50 W), however it is more difficult to perform on low power components. This paper presents a novel power measurement method for components dissipating anywhere between 0.2 W and 1 W of power based on a heat balance calorimeter that uses a Peltier device as a balance sensor. The proposed balance calorimeter has a single test accuracy of ±0.042 W. The experimental results revealed that there was up to 35% difference between the power measurements obtained with electrical methods and the proposed calorimeter. (paper)

  5. Determining Threshold Distance Providing Less Interference for Wireless Medical Implant Communication Systems in Coexisting Environments under Shadow Fading Conditions

    Selman KULAÇ


    Full Text Available Important interference problems will be able to be encountered especially close areas to the hospitals where wireless implantable medical systems' communication traffic occurs heavily in near future. It is possible that these interferences could cause wireless implant devices to malfunction and harmful effects on patients. In this study, it is proposed to determine threshold distance in order to get less interference for wireless implantable medical systems under shadow fading conditions where MICS band and MetAids band users coexist intensely simultaneously. In this method, threshold power according to the \\cite{FCC} is pulled down by adding extra distance margin in order to minimize the interference effects to the MICS systems using confidence interval calculations. Because received signal strength just below the monitoring threshold power according to the \\cite{FCC} brings about much more interferences for the MICS systems even if listen-before-talk technique is applied.

  6. 78 FR 15878 - Taxable Medical Devices; Correction


    ...--MANUFATURERS AND RETAILERS EXCISE TAXES 0 Paragraph 1. The authority citation for part 48 continues to read in... device. * * * * * (b) * * * (2) * * * A device will be considered to be of a type that is generally..., the mobile x-ray systems are not devices that are of a type that are generally purchased by the...

  7. Halo and spillover effect illustrations for selected beneficial medical devices and drugs

    Brent D. Kerger


    Full Text Available Abstract Background Negative news media reports regarding potential health hazards of implanted medical devices and pharmaceuticals can lead to a ‘negative halo effect,’ a phenomenon whereby judgments about a product or product type can be unconsciously altered even though the scientific support is tenuous. To determine how a ‘negative halo effect’ may impact the rates of use and/or explantation of medical products, we analyzed the occurrence of such an effect on three implanted medical devices and one drug: 1 intrauterine contraceptive devices (IUDs; 2 silicone gel-filled breast implants (SGBI; 3 metal-on-metal hip implants (MoM; and 4 the drug Tysabri. Methods Data on IUD use from 1965 to 2008 were gathered from the Department of Health and Human Services Vital and Health Statistics and peer-reviewed publications. Data regarding SGBI implant and explantation rates from 1989 to 2012 were obtained from the Institute of Medicine and the American Society of Plastic Surgeons. MoM implant and explantation data were extracted from the England and Wales National Joint Registry and peer-reviewed publications. Tysabri patient data were reported by Elan Corporation or Biogen Idec Inc. Data trends for all products were compared with historical recall or withdrawal events and discussed in the context of public perceptions following such events. Results We found that common factors altered public risk perceptions and patterns of continued use. First, a negative halo effect may be driven by continuing patient anxiety despite positive clinical outcomes. Second, negative reports about one product can spill over to affect the use of dissimilar products in the same category. Third, a negative halo effect on an entire category of medical devices can be sustained regardless of the scientific findings pertaining to safety. Fourth, recovery of a product’s safety reputation and prevalent use may take decades in the U.S., even while these products may

  8. 77 FR 69488 - Medical Devices; Custom Devices; Request for Comments


    ... strategy and policy for the custom device exemption criteria in the FD&C Act amended by FDASIA. FDA is... States in finished form through labeling or advertising by the manufacturer, importer, or distributor for...

  9. An Implantable MEMS Drug Delivery Device for Rapid Delivery in Ambulatory Emergency Care


    controlled devices provide advantages over passive release devices, as the drug delivery process can be controlled actively after implantation, 5 μm, 100 Å, Alltech Associates, USA), with methanol and 0.1% trifluoroacetic acid (TFA) in water. The gradient used was 2 % TFA/min, starting

  10. An unusual etiological agent of implantable cardioverter device endocarditis: Corynebacterium mucifaciens

    Adnan Kaya


    Full Text Available Cardiac pacing devices and implantable cardioverter defibrillator (ICD are becoming the mainstay of therapy in cardiology and infective endocarditis (IE and pocket infection; however, these devices require careful monitoring. Here, we describe a case of a 68-year-old female with an ICD presenting with a previously unknown etiological agent of IE, Corynebacterium mucifaciens.

  11. Assessment of the genetic risks of a metallic alloy used in medical implants.

    Gomes, Cristiano C; Moreira, Leonardo M; Santos, Vanessa J S V; Ramos, Alfeu S; Lyon, Juliana P; Soares, Cristina P; Santos, Fabio V


    The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials.

  12. Failure of Urological Implants in Spinal Cord Injury Patients due to Infection, Malfunction, and Implants Becoming Obsolete due to Medical Progress and Age-Related Changes in Human Body Making Implant Futile: Report of Three Cases

    Subramanian Vaidyanathan


    Full Text Available Any new clinical data, whether positive or negative, generated about a medical device should be published because health professionals should know which devices do not work, as well as those which do. We report three spinal cord injury patients in whom urological implants failed to work. In the first, paraplegic, patient, a sacral anterior root stimulator failed to produce erection, and a drug delivery system for intracavernosal administration of vasoactive drugs was therefore implanted; however, this implant never functioned (and, furthermore, such penile drug delivery systems to produce erection had effectively become obsolete following the advent of phosphodiesterase type 5 inhibitors. Subsequently, the sacral anterior root stimulator developed a malfunction and the patient therefore learned to perform self-catheterisation. In the second patient, also paraplegic, an artificial urinary sphincter was implanted but the patient developed a postoperative sacral pressure sore. Eight months later, a suprapubic cystostomy was performed as urethral catheterisation was very difficult. The pressure sore had not healed completely even after five years. In the third case, a sacral anterior root stimulator was implanted in a tetraplegic patient in whom, after five years, a penile sheath could not be fitted because of penile retraction. This patient was therefore established on urethral catheter drainage. Later, infection with Staphylococcus aureus around the receiver block necessitated its removal. In conclusion, spinal cord injury patients are at risk of developing pressure sores, wound infections, malfunction of implants, and the inability to use implants because of age-related changes, as well as running the risk of their implants becoming obsolete due to advances in medicine. Some surgical procedures such as dorsal rhizotomy are irreversible. Alternative treatments such as intermittent catheterisations may be less damaging than bladder stimulator in

  13. Percutaneous Repair of Postoperative Mitral Regurgitation After Left Ventricular Assist Device Implant.

    Cork, David P; Adamson, Robert; Gollapudi, Raghava; Dembitsky, Walter; Jaski, Brian


    Mitral regurgitation commonly improves after implantation of a left ventricular assist device without concomitant valvular repair owing to the mechanical unloading of the left ventricle. However, the development (or persistence) of significant mitral regurgitation after implantation of a left ventricular assist device is associated with adverse clinical events. We present a case of a left ventricular assist device patient who successfully underwent a percutaneous MitraClip procedure for repair of persistent late postoperative mitral insufficiency with demonstrable clinical and hemodynamic improvement. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators.

    Hassani, Faezeh Arab; Peh, Wendy Yen Xian; Gammad, Gil Gerald Lasam; Mogan, Roshini Priya; Ng, Tze Kiat; Kuo, Tricia Li Chuen; Ng, Lay Guat; Luu, Percy; Yen, Shih-Cheng; Lee, Chengkuo


    Underactive bladder or detrusor underactivity (DU) is defined as a reduction of contraction strength or duration of the bladder wall. Despite the serious healthcare implications of DU, there are limited solutions for affected individuals. A flexible 3D printed implantable device driven by shape memory alloys (SMA) actuators is presented here for the first time to physically contract the bladder to restore voluntary control of the bladder for individuals suffering from DU. This approach is used initially in benchtop experiments with a rubber balloon acting as a model for the rat bladder to verify its potential for voiding, and that the operating temperatures are safe for the eventual implantation of the device in a rat. The device is then implanted and tested on an anesthetized rat, and a voiding volume of more than 8% is successfully achieved for the SMA-based device without any surgical intervention or drug injection to relax the external sphincter.

  15. Current State and Future Perspectives of Energy Sources for Totally Implantable Cardiac Devices.

    Bleszynski, Peter A; Luc, Jessica G Y; Schade, Peter; PhilLips, Steven J; Tchantchaleishvili, Vakhtang

    There is a large population of patients with end-stage congestive heart failure who cannot be treated by means of conventional cardiac surgery, cardiac transplantation, or chronic catecholamine infusions. Implantable cardiac devices, many designated as destination therapy, have revolutionized patient care and outcomes, although infection and complications related to external power sources or routine battery exchange remain a substantial risk. Complications from repeat battery replacement, power failure, and infections ultimately endanger the original objectives of implantable biomedical device therapy - eliminating the intended patient autonomy, affecting patient quality of life and survival. We sought to review the limitations of current cardiac biomedical device energy sources and discuss the current state and trends of future potential energy sources in pursuit of a lifelong fully implantable biomedical device.

  16. Cybersecurity and the Medical Device Product Development Lifecycle.

    Jones, Richard W; Katzis, Konstantinos


    Protecting connected medical devices from evolving cyber related threats, requires a continuous lifecycle approach whereby cybersecurity is integrated within the product development lifecycle and both complements and re-enforces the safety risk management processes therein. This contribution reviews the guidance relating to medical device cybersecurity within the product development lifecycle.

  17. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.

    Liu, Chenghu; Luo, Hongyu; Wan, Min; Hou, Li; Wang, Xin; Shi, Yanping


    During the last two decades, biodegradable/absorbable materials which have many benefits over conventional implants are being sought in clinical practices. However, to date, it still remains obscure for us to perform full physic-chemical characterization and biological risk assessment for these materials and related devices due to their complex design and coherent processing. In this review, based on the art of knowledge for biodegradable/absorbable materials and biological risk assessment, we demonstrated some promising strategies to establish and improve the current biological evaluation systems for these biodegradable/absorbable materials and related medical devices.

  18. Towards sustainable design for single-use medical devices.

    Hanson, Jacob J; Hitchcock, Robert W


    Despite their sophistication and value, single-use medical devices have become commodity items in the developed world. Cheap raw materials along with large scale manufacturing and distribution processes have combined to make many medical devices more expensive to resterilize, package and restock than to simply discard. This practice is not sustainable or scalable on a global basis. As the petrochemicals that provide raw materials become more expensive and the global reach of these devices continues into rapidly developing economies, there is a need for device designs that take into account the total life-cycle of these products, minimize the amount of non-renewable materials consumed and consider alternative hybrid reusable / disposable approaches. In this paper, we describe a methodology to perform life cycle and functional analyses to create additional design requirements for medical devices. These types of sustainable approaches can move the medical device industry even closer to the "triple bottom line"--people, planet, profit.

  19. Model-based engineering for medical-device software.

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi


    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  20. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    Bilek, Marcela M. M.


    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  1. Cybersecurity and medical devices: A practical guide for cardiac electrophysiologists

    Kramer, Daniel B.; Foo Kune, Denis; Auto de Medeiros, Julio; Yan, Chen; Xu, Wenyuan; Crawford, Thomas; Fu, Kevin


    Abstract Medical devices increasingly depend on software. While this expands the ability of devices to perform key therapeutic and diagnostic functions, reliance on software inevitably causes exposure to hazards of security vulnerabilities. This article uses a recent high‐profile case example to outline a proactive approach to security awareness that incorporates a scientific, risk‐based analysis of security concerns that supports ongoing discussions with patients about their medical devices. PMID:28512774

  2. Medical Device Integration Model Based on the Internet of Things

    Hao, Aiyu; Wang, Ling


    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  3. New implantable therapeutic device for the control of an atrial fibrillation attack using the Peltier element.

    Yambe, Tomoyuki; Sumiyoshi, Taketada; Koga, Chihiro; Shiraishi, Yasuyuki; Miura, Hidekazu; Sugita, Norihiro; Tanaka, Akira; Yoshizawa, Makoto


    For the development of the new therapeutic device for the atrial fibrillation, implantable cooling device using Peltier element was developed in this study. An implantable cooling device had been consisted from Peltier element with transcutaneous energy transmission system (TETS). 1st coil can be contacted from outside of the body, when the patients will feel palpitation. Electrical current will be induced to the implanted 2nd coil. Peltier element will able to cool the surface of the atrium. For the confirmation of the effect of the cooling device, trial manufacture model was developed. Animal experiments using six healthy adult goats after animal ethical committee allowance was carried out. Fourth intercostals space had been opened after anesthesia inhalation, and various sensors had been inserted. AF was induced by the electrical current with battery. As the results, AF had been recovered to the normal sinus rhythm after cooling in all six goats. So, this cooling system for the control of AF showed evident effect in these experiments. Smaller size cooling device has been under development aiming at totally implantable type. Catheter type cooling device for the insertion by the use of fiber-scope type is now under planning for the clinical application. This new type device may be able to become good news for the patients with uncontrollable AF.

  4. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    Webster TJ


    Full Text Available Alexandra P Ross, Thomas J WebsterSchool of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Current titanium-based implants are often anodized in sulfuric acid (H2SO4 for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study

  5. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    Ross, Alexandra P; Webster, Thomas J


    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  6. "Pseudo" Faraday cage: a solution for telemetry link interaction between a left ventricular assist device and an implantable cardioverter defibrillator.

    Jacob, Sony; Cherian, Prasad K; Ghumman, Waqas S; Das, Mithilesh K


    Patients implanted with left ventricular assist devices (LVAD) may have implantable cardioverter defibrillators (ICD) implanted for sudden cardiac death prevention. This opens the possibility of device-device communication interactions and thus interferences. We present a case of such interaction that led to ICD communication failure following the activation of an LVAD. In this paper, we describe a practical solution to circumvent the communication interference and review the communication links of ICDs and possible mechanisms of ICD-LVAD interactions.

  7. 78 FR 12329 - Distinguishing Medical Device Recalls From Product Enhancements; Reporting Requirements; Draft...


    ... medical devices to take timely action to correct violative devices or remove them from the marketplace...] Distinguishing Medical Device Recalls From Product Enhancements; Reporting Requirements; Draft Guidance for... draft guidance entitled ``Distinguishing Medical Device Recalls From Product Enhancements; Reporting...

  8. Radiographic implications of procedures involving cardiac implantable electronic devices (CIEDs – Selected aspects

    Roman Steckiewicz


    Full Text Available Background: Some cardiac implantable electronic device (CIED implantation procedures require the use of X-rays, which is reflected by such parameters as total fluoroscopy time (TFT and dose-area product (DAP – defined as the absorbed dose multiplied by the area irradiated. Material and Methods: This retrospective study evaluated 522 CIED implantation (424 de novo and 98 device upgrade and new lead placement procedures in 176 women and 346 men (mean age 75±11 years over the period 2012–2015. The recorded procedure-related parameters TFT and DAP were evaluated in the subgroups specified below. The group of 424 de novo procedures included 203 pacemaker (PM and 171 implantable cardioverter-defibrillator (ICD implantation procedures, separately stratified by single-chamber and dual-chamber systems. Another subgroup of de novo procedures involved 50 cardiac resynchronization therapy (CRT devices. The evaluated parameters in the group of 98 upgrade procedures were compared between 2 subgroups: CRT only and combined PM and ICD implantation procedures. Results: We observed differences in TFT and DAP values between procedure types, with PM-related procedures showing the lowest, ICD – intermediate (with values for single-chamber considerably lower than those for dual-chamber systems and CRT implantation procedures – highest X-ray exposure. Upgrades to CRT were associated with 4 times higher TFT and DAP values in comparison to those during other upgrade procedures. Cardiac resynchronization therapy de novo implantation procedures and upgrades to CRT showed similar mean values of these evaluated parameters. Conclusions: Total fluoroscopy time and DAP values correlated progressively with CIED implantation procedure complexity, with CRT-related procedures showing the highest values of both parameters. Med Pr 2017;68(3:363–374

  9. Pacemaker implantation rate after transcatheter aortic valve implantation with early and new-generation devices: a systematic review.

    van Rosendael, Philippe J; Delgado, Victoria; Bax, Jeroen J


    The incidence of new-onset conduction abnormalities requiring permanent pacemaker implantation (PPI) after transcatheter aortic valve implantation (TAVI) with new-generation prostheses remains debated. This systematic review analyses the incidence of PPI after TAVI with new-generation devices and evaluates the electrical, anatomical, and procedural factors associated with PPI. In addition, the incidence of PPI after TAVI with early generation prostheses was reviewed for comparison. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, this systematic review screened original articles published between October 2010 and October 2017, reporting on the incidence of PPI after implantation of early and new-generation TAVI prostheses. Of the 1406 original articles identified in the first search for new-generation TAVI devices, 348 articles were examined for full text, and finally, 40 studies (n = 17 139) were included. The incidence of a PPI after the use of a new-generation TAVI prosthesis ranged between 2.3% and 36.1%. For balloon-expandable prostheses, the PPI rate remained low when using an early generation SAPIEN device (ranging between 2.3% and 28.2%), and with the new-generation SAPIEN 3 device, the PPI rate was between 4.0% and 24.0%. For self-expandable prostheses, the PPI rates were higher with the early generation CoreValve device (16.3-37.7%), and despite a reduction in PPI rates with the new Evolut R, the rates remained relatively higher (14.7-26.7%). When dividing the studies according to the highest (>26.0%) and the lowest (left ventricular outflow tract (anatomical factor), and balloon valvuloplasty and depth of implantation (procedural factors) were associated with increased risk of PPI. The rate of PPI after TAVI with new-generation devices is highly variable. Specific recommendations for implantation of each prosthesis, taking into consideration the presence of pre-existent conduction abnormalities and

  10. Implantation of a HeartMate II left ventricular assist device via left thoracotomy.

    Cho, Yang Hyun; Deo, Salil V; Schirger, John A; Pereira, Naveen L; Stulak, John M; Park, Soon J


    Left thoracotomy was used as an approach for the implantation of pulsatile ventricular assist devices. Avoiding the standard approach of median sternotomy is attractive in patients undergoing complicated redo cardiac surgery, especially with prior mediastinal radiation. We report a case of the use of left thoracotomy for the implantation of the HeartMate II axial-flow pump. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Bioceramic coatings for medical implants trends and techniques

    Heimann, Robert B


    Reflecting the progress in recent years, this book provides in-depth information on the preparation, chemistry, and engineering of bioceramic coatings for medical implants. It is authored by two renowned experts with over 30 years of experience in industry and academia, who know the potentials and pitfalls of the techniques concerned. Following an introduction to the principles of biocompatibility, they present the structures and properties of various bioceramics from alumina to zirconia. The main part of the work focuses on coating technologies, such as chemical vapor deposition, sol-gel deposition and thermal spraying. There then follows a discussion of the major interactions of bioceramics with bone or tissue cells, complemented by an overview of the in-vitro testing methods of the biomineralization properties of bioceramics. The text is rounded off by chapters on the functionalization of bioceramic coatings and a look at future trends. As a result, the authors bring together all aspects of the latest tech...

  12. Successful Implantation of a Left Ventricular Assist Device After Treatment With the Paracor HeartNet.

    Schweiger, Martin; Stepanenko, Alexander; Potapov, Evgenji; Drews, Thorsten; Hetzer, Roland; Krabatsch, Thomas


    The Paracor HeartNet, a ventricular constraint device for the treatment of heart failure (HF), is implanted through a left lateral thoracotomy. It envelopes the heart like a mesh "bag." This method of application raises the question of whether adhesions with the pericardium allow the safe implantation of a left ventricular assist device (LVAD) if HF worsens. A male patient who had undergone implantation of the Paracor HeartNet 42 months earlier presented with advanced HF for cardiac transplantation. The patient's condition deteriorated, and because no suitable organ for transplantation was available, implantation of an LVAD became necessary. Surgery was performed via a median sternotomy without complications. No severe adhesions were found. This is the first report on "how to do" LVAD implantation after Paracor HeartNet implantation with images and information about cutting the constraint. Because the Paracor HeartNet is "wrapped" around the heart, concerns persist that severe adhesions with the pericardium might occur. In this case, LVAD implantation after therapy with the Paracor HeartNet was without complications, and the expected massive adhesions were absent.

  13. Cardiac implantable electronic device hematomas: Risk factors and effect of prophylactic pressure bandaging.

    Koh, Youlin; Bingham, Nicholas E; Law, Natalie; Le, Dustin; Mariani, Justin A


    Cardiac implantable electronic device (CIED) hematomas are associated with many adverse outcomes. We examined the incidence and risk factors associated with hematoma formation post-CIED implantation, and explored the preventative effect of prophylactic pressure bandaging (PPB) in a large tertiary center. 1,091 devices were implanted during October 2011-December 2014. Clinically significant hematomas (CSH) were those that necessitated prolonged admission, including those due to reoperation, and clinically suspicious hematomas were swellings noted by medical/nursing staff. We screened for variables affecting hematoma incidence prior to conducting multivariate logistic regression analyses, one for all hematomas and one for CSH. 61 hematomas were identified (5.6% of patients), with 12 of those clinically significant (1.1% of patients). Factors significantly increasing the odds of developing any hematoma were stage 2 (odds ratio [OR] = 2.93, 95% confidence interval [CI] [1.08-7.94], P = 0.034) and 3 chronic kidney disease (CKD) (OR = 3.39 [1.20-9.56], P = 0.021), unfractionated heparin/therapeutic enoxaparin (OR = 3.15 [1.22-8.14], P = 0.018), and dual antiplatelets-aspirin + clopidogrel (OR = 2.95 [1.14-7.65], P = 0.026) + other combinations. Body Mass index (BMI) 25.0-29.9 (OR 0.52 [0.28-0.98], P = 0.044) and >30 were associated with decreased hematoma risk (OR 0.43 [0.20-0.91], P = 0.028). Factors significant for CSH formation were unfractionated heparin/therapeutic enoxaparin (OR = 9.55 [1.83-49.84], P = 0.007) and aspirin + clopidogrel (OR = 7.19 [1.01-50.91], P = 0.048). PPB nonsignificantly increased the odds of total hematoma development (OR = 1.53 [0.87-2.69], P = 0.135), and reduced CSH (OR = 0.67 [0.18-2.47], P = 0.547). Heparin and dual antiplatelet use remain strong predictors of overall hematoma formation. CKD is a comparatively moderate predictor. BMI > 25 may decrease the risk of hematoma formation. PPB had nonsignificant effects on hematoma development

  14. 21 CFR 872.3640 - Endosseous dental implant.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  15. 21 CFR 872.3980 - Endosseous dental implant accessories.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...

  16. 21 CFR 872.3645 - Subperiosteal implant material.


    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3645 Subperiosteal implant material. (a) Identification. Subperiosteal implant material is a device composed of titanium or cobalt chrome molybdenum... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Subperiosteal implant material. 872.3645 Section...

  17. First-in-man use of a novel embolic protection device for patients undergoing transcatheter aortic valve implantation.

    Naber, Christoph K; Ghanem, Alexander; Abizaid, Alexander A; Wolf, Alexander; Sinning, Jan-Malte; Werner, Nikos; Nickenig, Georg; Schmitz, Thomas; Grube, Eberhard


    We describe the first-in-human experience with a novel cerebral embolic protection device used during transcatheter aortic valve implantation (TAVI). One current challenge of TAVI is the reduction of procedural stroke. Procedural mobilisation of debris is a known source of cerebral embolisation. Mechanical protection by transient filtration of cerebral blood flow might reduce the embolic burden during TAVI. We aimed to evaluate the feasibility and safety of the Claret CE Pro™ cerebral protection device in patients undergoing TAVI. Patients scheduled for TAVI were prospectively enrolled at three centres. The Claret CE Pro™ (Claret Medical, Inc. Santa Rosa, CA, USA) cerebral protection device was placed via the right radial/brachial artery prior to TAVI and was removed after the procedure. The primary endpoint was technical success rate. Secondary endpoints encompassed procedural and 30-day stroke rates, as well as device-related complications. Deployment of the Claret CE Pro™ cerebral protection device was intended for use in 40 patients, 35 devices were implanted into the aortic arch. Technical success rate with delivery of the proximal and distal filter was 60% for the first generation device and 87% for the second-generation device. Delivery times for the first-generation device were 12.4±12.1 minutes and 4.4 ± 2.5 minutes for the second-generation device (pto the Claret CE Pro System was 19.6 ± 3.8 ml. Captured debris was documented in at least 19 of 35 implanted devices (54.3%). No procedural transient ischaemic attacks, minor strokes or major strokes occurred. Thirty-day follow-up showed one minor stroke occurring 30 days after the procedure, and two major strokes both occurring well after the patient had completed TAVI. The use of the Claret CE Pro™ system is feasible and safe. Capture of debris in more than half of the patients provides evidence for the potential to reduce the procedural cerebral embolic burden utilising this dedicated filter

  18. Electromyography tests in patients with implanted cardiac devices are safe regardless of magnet placement.

    Ohira, Masayuki; Silcox, Jade; Haygood, Deavin; Harper-King, Valerie; Alsharabati, Mohammad; Lu, Liang; Morgan, Marla B; Young, Angela M; Claussen, Gwen C; King, Peter H; Oh, Shin J


    We compared the problems or complications associated with electrodiagnostic testing in 77 patients with implanted cardiac devices. Thirty tests were performed after magnet placement, and 47 were performed without magnet application. All electrodiagnostic tests were performed safely in all patients without any serious effect on the implanted cardiac devices with or without magnet placement. A significantly higher number of patient symptoms and procedure changes were reported in the magnet group (P magnet group patients had an approximately 11-fold greater risk of symptoms than those in the control group. Our data do not support a recommendation that magnet placement is necessary for routine electrodiagnostic testing in patients with implanted cardiac devices, as long as our general and specific guidelines are followed. Copyright © 2012 Wiley Periodicals, Inc.

  19. Product-based Safety Certification for Medical Devices Embedded Software.

    Neto, José Augusto; Figueiredo Damásio, Jemerson; Monthaler, Paul; Morais, Misael


    Worldwide medical device embedded software certification practices are currently focused on manufacturing best practices. In Brazil, the national regulatory agency does not hold a local certification process for software-intensive medical devices and admits international certification (e.g. FDA and CE) from local and international industry to operate in the Brazilian health care market. We present here a product-based certification process as a candidate process to support the Brazilian regulatory agency ANVISA in medical device software regulation. Center of Strategic Technology for Healthcare (NUTES) medical device embedded software certification is based on a solid safety quality model and has been tested with reasonable success against the Class I risk device Generic Infusion Pump (GIP).

  20. Practice of Regulatory Science (Development of Medical Devices).

    Niimi, Shingo


    Prototypes of medical devices are made in accordance with the needs of clinical practice, and for systems required during the initial process of medical device development for new surgical practices. Verification of whether these prototypes produce the intended performance specifications is conducted using basic tests such as mechanical and animal tests. The prototypes are then improved and modified until satisfactory results are obtained. After a prototype passes through a clinical trial process similar to that for new drugs, application for approval is made. In the approval application process, medical devices are divided into new, improved, and generic types. Reviewers judge the validity of intended use, indications, operation procedures, and precautions, and in addition evaluate the balance between risk and benefit in terms of efficacy and safety. Other characteristics of medical devices are the need for the user to attain proficiency in usage techniques to ensure efficacy and safety, and the existence of a variety of medical devices for which assessment strategies differ, including differences in impact on the body in cases in which a physical burden to the body or failure of a medical device develops. Regulatory science of medical devices involves prediction, judgment, and evaluation of efficacy, safety, and quality, from which data result which can become indices in the development stages from design to application for approval. A reduction in the number of animals used for testing, improvement in efficiency, reduction of the necessity for clinical trials, etc. are expected through rational setting of evaluation items.

  1. Utilization of YouTube as a Tool to Assess Patient Perception Regarding Implanted Cardiac Devices.

    Hayes, Kevin; Mainali, Prajeena; Deshmukh, Abhishek; Pant, Sadip; Badheka, Apurva O; Paydak, Hakan


    The outreach of YouTube may have a dramatic role in the widespread dissemination of knowledge on implantable cardioverter devices (ICD). This study was designed to review and analyze the information available on YouTube pertaining to implantable cardiac devices such as implantable cardioverter defibrillators (ICDs) and pacemakers. YouTube was queried for the terms "ICD", "Implantable Cardioverter Defibrillator", and "Pacemaker". The videos were reviewed and categorized as according to content; number of views and "likes" or "dislikes" was recorded by two separate observers. Of the 55 videos reviewed, 18 of the videos were categorized as patient education, 12 were advertisements, 8 were intraoperative videos documenting the device implantation procedures, 7 of the videos were produced to document personal patient experiences, and 4 were categorized as documentation of a public event. 3 were intended to educate health care workers. The remaining 3 were intended to raise public awareness about sudden cardiac death. The videos portraying intraoperative procedures generated the most "likes" or "dislikes" per view. While YouTube provides a logical platform for delivery of health information, the information on this platform is not regulated. Initiative by reputed authorities and posting accurate information in such platform can be a great aid in public education regarding device therapy.

  2. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices

    Hugo Dinis


    Full Text Available Implantable electronic devices have been evolving at an astonishing pace, due to the development of fabrication techniques and consequent miniaturization, and a higher efficiency of sensors, actuators, processors and packaging. Implantable devices, with sensing, communication, actuation, and wireless power are of high demand, as they pave the way for new applications and therapies. Long-term and reliable powering of such devices has been a challenge since they were first introduced. This paper presents a review of representative state of the art implantable electronic devices, with wireless power capabilities, ranging from inductive coupling to ultrasounds. The different power transmission mechanisms are compared, to show that, without new methodologies, the power that can be safely transmitted to an implant is reaching its limit. Consequently, a new approach, capable of multiplying the available power inside a brain phantom for the same specific absorption rate (SAR value, is proposed. In this paper, a setup was implemented to quadruple the power available in the implant, without breaking the SAR limits. A brain phantom was used for concept verification, with both simulation and measurement data.

  3. 75 FR 68200 - Medical Devices; Radiology Devices; Reclassification of Full-Field Digital Mammography System


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 892 [Docket No. FDA-2008-N-0273] Medical Devices; Radiology Devices; Reclassification of Full- Field Digital... and Drugs, 21 CFR part 892 is amended as follows: PART 892--RADIOLOGY DEVICES 0 1. The authority...

  4. 77 FR 14272 - Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus Serological...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2012-N-0165] Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus... AND MICROBIOLOGY DEVICES 0 1. The authority citation for 21 CFR part 866 continues to read as follows...

  5. A concept ideation framework for medical device design.

    Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar


    Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Device-length changes and implant function following surgical implantation of the KineSpring in cadaver knees

    McNicholas MJ


    Full Text Available Michael J McNicholas,1 Stefan M Gabriel,2 Anton G Clifford,2 Evelyne M Hasler2 1Aintree University Hospital, Teaching Hospital, Major Trauma Centre, NHS Foundation Trust, Liverpool, UK; 2Moximed, Hayward, CA, USA Introduction: The KineSpring implant system has been shown to provide load reductions at the medial compartment of the knee, and has demonstrated clinical success in reducing pain and increasing function in patients with medial knee osteoarthritis. These results depend on the ability of the KineSpring to rotate, lengthen, and shorten to accommodate knee motions, and in response to knee position and loading. Purpose: The present study was undertaken to determine length changes of the implanted KineSpring in response to a range of knee positions, external knee loads, and placements by different orthopedic surgeons. Materials and methods: KineSpring system components were implanted in ten cadaver leg specimens by ten orthopedic surgeons, and absorber-length changes were measured under combined loading and in different positions of the knee. Results and conclusion: Spring compression consistent with knee-load reduction, and device lengthening and shortening to accommodate knee loads and motions were seen. These confirm the functionality of the KineSpring when implanted medially to the knee. Keywords: KineSpring, knee, function, preservation, offloading, osteoarthritis

  7. Characterization of Bacterial Etiologic Agents of Biofilm Formation in Medical Devices in Critical Care Setup

    Sangita Revdiwala


    Full Text Available Background. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim. Critical care units of any healthcare institute follow various interventional strategies with use of medical devices for the management of critical cases. Bacteria contaminate medical devices and form biofilms. Material and Methods. The study was carried out on 100 positive bacteriological cultures of medical devices which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate. All the isolates were subjected to antibiotic susceptibility testing by VITEK 2 compact automated systems. Results. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. A 16–20-hour incubation period was found to be optimum for biofilm development. 85% isolates were multidrug resistants and different mechanisms of bacterial drug resistance like ESBL, carbapenemase, and MRSA were found among isolates. Conclusion. Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Time and availability of glucose are important factors for assessment of biofilm progress. It is an alarm for those who are associated with invasive procedures and indwelling medical devices especially in patients with low immunity.

  8. Identification of proteins involved in the adhesionof Candida species to different medical devices.

    Núñez-Beltrán, Arianna; López-Romero, Everardo; Cuéllar-Cruz, Mayra


    Adhesion is the first step for Candida species to form biofilms on medical devices implanted in the human host. Both the physicochemical nature of the biomaterial and cell wall proteins (CWP) of the pathogen play a determinant role in the process. While it is true that some CWP have been identified in vitro, little is known about the CWP of pathogenic species of Candida involved in adhesion. On this background, we considered it important to investigate the potential role of CWP of C. albicans, C. glabrata, C. krusei and C. parapsilosis in adhesion to different medical devices. Our results indicate that the four species strongly adher to polyvinyl chloride (PVC) devices, followed by polyurethane and finally by silicone. It was interesting to identify fructose-bisphosphate aldolase (Fba1) and enolase 1 (Eno1) as the CWP involved in adhesion of C. albicans, C. glabrata and C. krusei to PVC devices whereas phosphoglycerate kinase (Pgk) and Eno1 allow C. parapsilosis to adher to silicone-made implants. Results presented here suggest that these CWP participate in the initial event of adhesion and are probably followed by other proteins that covalently bind to the biomaterial thus providing conditions for biofilm formation and eventually the onset of infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A pilot study of implantable cardiac device interrogation by emergency department personnel.

    Neuenschwander, James F; Hiestand, Brian C; Peacock, W Frank; Billings, John M; Sondrup, Cole; Hummel, John D; Abraham, William T


    Implanted devices (eg, pacemakers and defibrillators) provide valuable information and may be interrogated to obtain diagnostic information and to direct management. During admission to an emergency department (ED), significant time and cost are spent waiting for device manufacturer representatives or cardiologists to access the data. If ED personnel could safely interrogate implanted devices, more rapid disposition could occur, thus leading to potentially better outcomes at a reduced cost. This was a pilot study examining the feasibility of ED device interrogation. This was a prospective convenience sample study of patients presenting to the ED with any chief complaint and who had an implantable device capable of being interrogated by a Medtronic reader. After obtaining informed consent, study patients underwent device interrogation by ED research personnel. After reviewing the device data, the physician documented their opinions of the value of data in aiding care. Patients were followed up at intervals ranging from 30 days out to 1 year to determine adverse events relating to interrogation. Forty-four patients underwent device interrogation. Their mean age was 56 ± 14.7 years (range, 28-83), 75% (33/44) were male and 75% (33/44) were hospitalized from the ED. The interrogations took less than 10 minutes 89% of the time. In 60% of the cases, ED physicians reported the data-assisted patient care. No adverse events were reported relating to the ED interrogations. In this pilot study, we found that ED personnel can safely and quickly interrogate implantable devices to obtain potentially useful clinical data.

  10. Leadless Cardiac Pacemaker Implantation After Lead Extraction in Patients With Severe Device Infection.

    Kypta, Alexander; Blessberger, Hermann; Kammler, Juergen; Lambert, Thomas; Lichtenauer, Michael; Brandstaetter, Walter; Gabriel, Michael; Steinwender, Clemens


    Conventional pacemaker therapy is limited by short- and long-term complications, most notably device infection. Transcatheter pacing systems (TPS) may be beneficial in this kind of patients as they eliminate the need for a device pocket and leads and thus may reduce the risk of re-infection. We assessed a novel procedure in 6 patients with severe device infection who were pacemaker dependent. After lead extraction a single chamber TPS was implanted into the right ventricle. Of the 6 patients who underwent lead extraction due to severe device infection at our institution, 3 were diagnosed with a pocket infection only, whereas the other 3 showed symptoms of both pocket and lead infection. Successful lead extraction and TPS implantation was accomplished in all patients. Four patients were bridged with a temporary pacemaker between 2 hours and 2 days after lead extraction, whereas 2 patients had the TPS implanted during the same procedure just before traditional pacemaker system removal. All patients stayed free of infection during the follow-up period of 12 weeks. An additional positron emission tomography scan was performed in each patient and indicated no signs of an infection around the TPS. Transcather pacemaker implantation was safe and feasible in 6 patients and did not result in re-infection even if implanted before removal of the infected pacemaker system within the same procedure. Therefore, implantation of a TPS may be an option for patients with severe device infection, especially in those with blocked venous access or who are pacemaker dependent. © 2016 Wiley Periodicals, Inc.

  11. Making Medical Devices Safer at Home

    ... things found in a home environment, such as pet hair, well water or temperature variations. Other challenges include the user's and the caregiver's physical and emotional health. People taking medications that affect their alertness or ...

  12. Electromagnetic interference of implantable cardiac devices from a shoulder massage machine.

    Yoshida, Saeko; Fujiwara, Kousaku; Kohira, Satoshi; Hirose, Minoru


    Shoulder massage machines have two pads that are driven by solenoid coils to perform a per cussive massage on the shoulders. There have been concerns that such machines might create electromagnetic interference (EMI) in implantable cardiac devices because of the time-varying magnetic fields produced by the alternating current in the solenoid coils. The objective of this study was to investigate the potential EMI from one such shoulder massage machine on implantable cardiac devices. We measured the distribution profile of the magnetic field intensity around the massage machine. Furthermore, we performed an inhibition test and an asynchronous test on an implantable cardiac pacemaker using the standardized Irnich human body model. We examined the events on an implantable cardioverter-defibrillator (ICD) using a pacemaker programmer while the massage machine was in operation. The magnetic field distribution profile exhibited a peak intensity of 212 (A/m) in one of the solenoid coils. The maximal interference distance between the massage machine and the implantable cardiac pacemaker was 28 cm. Ventricular fibrillation was induced when the massage machine was brought near the electrode of the ICD and touched the Irnich human body model. It is necessary to provide a "don't use" warning on the box or the exterior of the massage machines or in the user manuals and to caution patients with implanted pacemakers about the dangers and appropriate usage of massage machines.

  13. Spatial memory in nonhuman primates implanted with the subdural pharmacotherapy device.

    Ludvig, Nandor; Tang, Hai M; Baptiste, Shirn L; Stefanov, Dimitre G; Kral, John G


    This study investigated the possible influence of the Subdural Pharmacotherapy Device (SPD) on spatial memory in 3 adult, male bonnet macaques (Macaca radiata). The device was implanted in and above the subdural/subarachnoid space and cranium overlaying the right parietal/frontal cortex: a circuitry involved in spatial memory processing. A large test chamber, equipped with four baited and four non-baited food-ports at different locations, was used: reaches into empty food ports were counted as spatial memory errors. In this study of within-subject design, before SPD implantation (control) the animals made mean 373.3 ± 114.9 (mean ± SEM) errors in the first spatial memory test session. This value dropped to 47.7 ± 18.4 by the 8th session. After SPD implantation and alternating cycles of transmeningeal saline delivery and local cerebrospinal fluid (CSF) drainage in the implanted cortex the spatial memory error count, with the same port locations, was 33.0 ± 12.2 during the first spatial memory test session, further decreasing to 5.7 ± 3.5 by the 8th post-implantation session (Pmemory performance, which in fact included at least one completely error-free session per animal over time. The study showed that complication-free implantation and use of the SPD over the parietal and frontal cortices for months leave spatial memory processes intact in nonhuman primates. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. #DDOD Use Case: Consolidated reporting of medical device recalls

    U.S. Department of Health & Human Services — SUMMARY DDOD use case request for consolidated, consistent reporting of medical device recalls. WHAT IS A USE CASE? A “Use Case” is a request that was made by the...

  15. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming


    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  16. Implantable optogenetic device with CMOS IC technology for simultaneous optical measurement and stimulation

    Haruta, Makito; Kamiyama, Naoya; Nakajima, Shun; Motoyama, Mayumi; Kawahara, Mamiko; Ohta, Yasumi; Yamasaki, Atsushi; Takehara, Hiroaki; Noda, Toshihiko; Sasagawa, Kiyotaka; Ishikawa, Yasuyuki; Tokuda, Takashi; Hashimoto, Hitoshi; Ohta, Jun


    In this study, we have developed an implantable optogenetic device that can measure and stimulate neurons by an optical method based on CMOS IC technology. The device consist of a blue LED array for optically patterned stimulation, a CMOS image sensor for acquiring brain surface image, and eight green LEDs surrounding the CMOS image sensor for illumination. The blue LED array is placed on the CMOS image sensor. We implanted the device in the brain of a genetically modified mouse and successfully demonstrated the stimulation of neurons optically and simultaneously acquire intrinsic optical images of the brain surface using the image sensor. The integrated device can be used for simultaneously measuring and controlling neuronal activities in a living animal, which is important for the artificial control of brain functions.

  17. Status and progress in ion implantation technology for semiconductor device manufacturing

    Takahashi, Noriyuki


    Rapid growth in implant applications in the fabrication of semiconductors has encouraged a dramatic increase in the range of energies, beam currents and ion species used. The challenges of a wider energy range, higher beam currents, continued reduction in contamination, improved angle integrity and larger substrates have motivated the development of many innovations. Advanced processes in submicron device production uses up to twenty implantation steps. Thus the outstanding growth of this industry has led to the evolution of a thriving business of hundreds of implantation equipment systems each year with very specific requirements. The present paper reviews the principal process requirements which resulted in the evolution of the equipment technology, and describes the recent trends in the ion implanter technology all three principal categories: high current, medium current and high energy. (author)

  18. A phone-assistive device based on Bluetooth technology for cochlear implant users.

    Qian, Haifeng; Loizou, Philipos C; Dorman, Michael F


    Hearing-impaired people, and particularly hearing-aid and cochlear-implant users, often have difficulty communicating over the telephone. The intelligibility of telephone speech is considerably lower than the intelligibility of face-to-face speech. This is partly because of lack of visual cues, limited telephone bandwidth, and background noise. In addition, cellphones may cause interference with the hearing aid or cochlear implant. To address these problems that hearing-impaired people experience with telephones, this paper proposes a wireless phone adapter that can be used to route the audio signal directly to the hearing aid or cochlear implant processor. This adapter is based on Bluetooth technology. The favorable features of this new wireless technology make the adapter superior to traditional assistive listening devices. A hardware prototype was built and software programs were written to implement the headset profile in the Bluetooth specification. Three cochlear implant users were tested with the proposed phone-adapter and reported good speech quality.

  19. Reduced Anxiety and Depression in Patients With Advanced Heart Failure After Left Ventricular Assist Device Implantation.

    Yost, Gardner; Bhat, Geetha; Mahoney, Edward; Tatooles, Antone

    Despite the high prevalence of depression and anxiety in patients with advanced heart failure, the effects of left ventricular assist device (LVAD) implantation on these critically important aspects of mental health are not well understood. We sought to assess changes in depression and anxiety following LVAD implantation. The Beck Depression Inventory-II (BDI-II) and Beck Anxiety Inventory (BAI) were administered to 54 patients by a clinical psychologist at a mean of 12 days before LVAD implantation and 251 days after implantation. Patient demographics and clinical data were collected concurrently to psychologic testing. Changes in BDI-II, BAI, and clinical markers of heart failure were assessed using paired t-tests. A p Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  20. [Ethic review on clinical experiments of medical devices in medical institutions].

    Shuai, Wanjun; Chao, Yong; Wang, Ning; Xu, Shining


    Clinical experiments are always used to evaluate the safety and validity of medical devices. The experiments have two types of clinical trying and testing. Ethic review must be done by the ethics committee of the medical department with the qualification of clinical research, and the approval must be made before the experiments. In order to ensure the safety and validity of clinical experiments of medical devices in medical institutions, the contents, process and approval criterions of the ethic review were analyzed and discussed.

  1. Benefit of a Contralateral Routing of Signal Device for Unilateral Cochlear Implant Users.

    Weder, Stefan; Kompis, Martin; Caversaccio, Marco; Stieger, Christof


    Objective: To investigate objective and subjective effects of an adjunctive contralateral routing of signal (CROS) device at the untreated ear in patients with a unilateral cochlear implant (CI). Design: Prospective study of 10 adult experienced unilateral CI users with bilateral severe-to-profound hearing loss. Speech in noise reception (SNR) and sound localization were measured with and without the additional CROS device. SNR was measured by applying speech signals at the untreated/CROS sid...

  2. Evaluation of 39 medical implants at 7.0 T

    Feng, David X; McCauley, Joseph P; Morgan–Curtis, Fea K; Salam, Redoan A; Pennell, David R; Loveless, Mary E


    Objective: With increased signal to noise ratios, 7.0-T MRI has the potential to contribute unique information regarding anatomy and pathophysiology of a disease. However, concerns for the safety of subjects with metallic medical implants have hindered advancement in this field. The purpose of the present research was to evaluate the MRI safety for 39 commonly used medical implants at 7.0 T. Methods: Selected metallic implants were tested for magnetic field interactions, radiofrequency-induced heating and artefacts using standardized testing techniques. Results: 5 of the 39 implants tested may be unsafe for subjects undergoing MRI at 7.0 T. Conclusion: Implants were deemed either “MR Conditional” or “MR Unsafe” for the 7.0-T MRI environment. Further research is needed to expand the existing database categorizing implants that are acceptable for patients referred for MRI examinations at 7.0 T. Advances in knowledge: Lack of MRI testing for common metallic medical implants limits the translational potential of 7.0-T MRI. For safety reasons, patients with metallic implants are not allowed to undergo a 7.0-T MRI scan, precluding part of the population that can benefit from the detailed resolution of ultra-high-field MRIs. This investigation provides necessary MRI testing of common medical implants at 7.0 T. PMID:26481696

  3. 21 CFR 892.2010 - Medical image storage device.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892.2010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., and digital memory. (b) Classification. Class I (general controls). The device is exempt from the...

  4. Sterilization and reprocessing of materials and medical devices--reusability.

    Jayabalan, M


    Problems associated with reprocessing of disposable medical devices such as hemodialysers with resterilization for reuse and changes in material properties with resterilization of polymeric (PVC, polypropylene, polyester, polycarbonate) materials intended for development of disposable devices are reviewed. Reprocessing of hospital supplies, polystyrene microtiter plate and angiographic catheter for reuse is also discussed.

  5. Perioperative management for the prevention of bacterial infection in cardiac implantable electronic device placement

    Katsuhiko Imai


    Full Text Available Cardiac implantable electronic devices (CIEDs have become important in the treatment of cardiac disease and placement rates increased significantly in the last decade. However, despite the use of appropriate antimicrobial prophylaxis, CIED infection rates are increasing disproportionately to the implantation rate. CIED infection often requires explantation of all hardware, and at times results in death. Surgical site infection (SSI is the most common cause of CIED infection as a pocket infection. The best method of combating CIED infection is prevention. Prevention of CIED infections comprises three phases: before, during, and after device implantation. The most critical factors in the prevention of SSIs are detailed operative techniques including the practice of proper technique by the surgeon and surgical team.

  6. Transdermal power transfer for recharging implanted drug delivery devices via the refill port.

    Evans, Allan T; Chiravuri, Srinivas; Gianchandani, Yogesh B


    This paper describes a system for transferring power across a transdermal needle into a smart refill port for recharging implantable drug delivery systems. The device uses a modified 26 gauge (0.46 mm outer diameter) Huber needle with multiple conductive elements designed to couple with mechanical springs in the septum of the refill port of a drug delivery device to form an electrical connection that can sustain the current required to recharge a battery during a reservoir refill session. The needle is fabricated from stainless steel coated with Parylene, and the refill port septum is made from micromachined stainless steel contact springs and polydimethylsiloxane. The device properties were characterized with dry and wet ambient conditions. The needle and port pair had an average contact resistance of less than 2 Omega when mated in either environment. Electrical isolation between the system, the liquid in the needle lumen, and surrounding material has been demonstrated. The device was used to recharge a NiMH battery with currents up to 500 mA with less than 15 degrees C of resistive heating. The system was punctured 100 times to provide preliminary information with regard to device longevity, and exhibited about 1 Omega variation in contact resistance. The results suggest that this needle and refill port system can be used in an implant to enable battery recharging. This allows for smaller batteries to be used and ultimately increases the volume efficiency of an implantable drug delivery device.

  7. Medical device integration using mobile telecommunications infrastructure.

    Moorman, Bridget A; Cockle, Richard A


    Financial pressures, an aging population, and a rising number of patients with chronic diseases, have encouraged the use of remote monitoring technologies. This usually entails at least one physiological parameter measurement for a clinician. Mobile telecommunication technologies lend themselves to this functionality, and in some cases, avoid some of the issues encountered with device integration. Moreover, the inherent characteristics of the mobile telecommunications infrastructure allow a coupling of business and clinical functions that were not possible before. Table I compares and contrasts some key aspect of device integration in and out of a healthcare facility. An HTM professional may be part of the team that acquires and/or manages a system using a mobile telecommunications technology. It is important for HTM professionals to ensure the data is in a standard format so that the interfaces across this system don't become brittle and break easily if one part changes. Moreover, the security and safety considerations of the system and the data should be a primary consideration in and y purchase, with attention given to the proper environmental and encryption mechanisms. Clinical engineers and other HTM professionals are unique in that they understand the patient/clinician/device interface and the need to ensure its safety and effectiveness regardless of geographical environment.

  8. Left Ventricular Assist Device Implantation with Concomitant Aortic Valve and Ascending Aortic Replacement.

    Huenges, Katharina; Panholzer, Bernd; Cremer, Jochen; Haneya, Assad


    Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed.

  9. Adult patient decision-making regarding implantation of complex cardiac devices: a scoping review.

    Malecki-Ketchell, Alison; Marshall, Paul; Maclean, Joan


    Complex cardiac rhythm management device (CRMD) therapy provides an important treatment option for people at risk of sudden cardiac death. Despite the survival benefit, device implantation is associated with significant physical and psychosocial concerns presenting considerable challenges for the decision-making process surrounding CRMD implantation for patients and physicians. The purpose of this scoping review was to explore what is known about how adult (>16 years) patients make decisions regarding implantation of CRMD therapy. Published, peer reviewed, English language studies from 2000 to 2016 were identified in a search across eight healthcare databases. Eligible studies were concerned with patient decision-making for first time device implantation. Quality assessment was completed using the mixed methods appraisal tool for all studies meeting the inclusion criteria. The findings of eight qualitative and seven quantitative studies, including patients who accepted or declined primary or secondary sudden cardiac death prevention devices, were clustered into two themes: knowledge acquisition and the process of decision-making, exposing similarities and distinctions with the treatment decision-making literature. The review revealed some insight in to the way patients approach decision-making but also exposed a lack of clarity and research activity specific to CRMD patients. Further research is recommended to support the development and application of targeted decision support mechanisms.

  10. Protocol updated for the treatment of patients in radiotherapy with implanted cardiac devices

    Martin Martin, G.; Bermudez Luna, R.; Rodriguez Rodriguez, C.; Lopez Fernandez, A.; Rodriguez Perez, A.; Sotoca Ruiz, A.


    Radiotherapy treatment can be safely performed in patients with pacemakers or implanted defibrillators, however, it is very important to ensure that the patient receives the minimum dose possible in your heart device. Is considered essential good coordination with the cardiology service before, during and after radiotherapy treatment for the patient safety. Finally we present a protocol updated to treat these patients in radiotherapy. (Author)

  11. Minimally Invasive Cochlear Implantation Assisted by Bi-planar Device: An Exploratory Feasibility Study in vitro

    Jia Ke


    Conclusions: This exploratory study demonstrated the safety of the newly developed image-guided minimally invasive cochlear implantation assisted by the bi-planar device and established the operational procedures. Further, more in vitro experiments are needed to improve the system operation and its safety.

  12. Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants

    Jensen, Thomas B; Overgaard, Søren; Lind, Martin


    In each femoral condyle of 8 Labrador dogs, a non weight-bearing hydroxyapatite-coated implant was inserted surrounded by a 3 mm gap. Each gap was filled with bone allograft or ProOsteon with or without OP-1 delivered in a bovine collagen type I carrier (OP-1 device). 300 microg OP-1 was used...

  13. Cardiac implantable electronic device and associated risk of infective endocarditis in patients undergoing aortic valve replacement

    Østergaard, Lauge; Valeur, Nana; Bundgaard, Henning


    Aims: Patients undergoing aortic valve replacement (AVR) are at increased risk of infective endocarditis (IE) as are patients with a cardiac implantable electronic device (CIED). However, few data exist on the IE risk after AVR surgery in patients with a CIED. Methods and results: Using the Danish...

  14. X-ray exposure hazards for physicians performing ablation procedures and device implantation

    Marinskis, Germanas; Bongiorni, Maria Grazia; Dagres, Nikolaos


    The purpose of the survey was to evaluate physician's and authorities policies and clinical practices when using occupational X-ray during ablation procedures and device implantation. This survey shows infrequent use of lead gloves, radiation absorbing pads, and lead glass cabins, but increasing ...

  15. bility of passive implants and devices in an MR environment


    al risk to the patient or other individ- ... magnetic field strength MR systems ... alloy, or commercially pure titanium) .... The Lea shield is a silicon rubber ... Copper is the metal most used in an IUCD without side-effect. • The Mirena device is safe ...

  16. Legal, ethical, and procedural bases for the use of aseptic techniques to implant electronic devices

    Mulcahy, Daniel M.


    The popularity of implanting electronic devices such as transmitters and data loggers into captive and free-ranging animals has increased greatly in the past two decades. The devices have become smaller, more reliable, and more capable (Printz 2004; Wilson and Gifford 2005; Metcalfe et al. 2012). Compared with externally mounted devices, implanted devices are largely invisible to external viewers such as tourists and predators; exist in a physically protected, thermally stable environment in mammals and birds; and greatly reduce drag and risk of entanglement. An implanted animal does not outgrow its device or attachment method as can happen with collars and harnesses, which allows young animals to be more safely equipped. However, compared with mounting external devices, implantation requires greater technical ability to perform the necessary anesthesia, analgesia, and surgery. More than 83% of publications in the 1990s that used radiotelemetry on animals assumed that there were no adverse effects on the animal (Godfrey and Bryant 2003). It is likely that some studies using implanted electronic devices have not been published due to a high level of unexpected mortality or to aberrant behavior or disappearance of the implanted animals, a phenomenon known as the “file drawer” problem (Rosenthal 1979; Scargle 2000). The near absence of such studies from the published record may be providing a false sense of security that procedures being used are more innocuous than they actually are. Similarly, authors sometimes state that it was unlikely that device implantation was problematic because study animals appeared to behave normally, or authors state that previous investigators used the same technique and saw no problems. Such statements are suppositions if no supporting data are provided or if the animals were equipped because there was no other way to follow their activity. Moreover, such suppositions ignore other adverse effects that affect behavior indirectly, and

  17. Medical device problem reporting for the betterment of healthcare.


    Given that there are nearly 5,000 individual classes of medical devices, tens of thousands of medical device suppliers, and millions of healthcare providers around the world, device-related problems are bound to happen. But effective problem reporting can help reduce or eliminate many of these problems--not only within an institution, but also potentially around the world. In this article, we trace the problem reporting process from its beginnings in the hospital to its global impact in making critical information available throughout the healthcare community.

  18. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures

    Lin, Liwen; Wang, Hui; Ni, Ming; Rui, Yunfeng; Cheng, Tian-Yuan; Cheng, Cheng-Kung; Pan, Xiaohua; Li, Gang; Lin, Changjian


    Biomimetic design and substrate-based surface modification of medical implants will help to improve the integration of tissue to its material interfaces. Surface energy, composition, roughness, and topography all influence the biological responses of the implants, such as protein adsorption and cell adhesion, proliferation and differentiation. In the current study, different surface structures of Ti implants were constructed using facile surface techniques to create various micro-, nano-, and...

  19. An Implantable Intravascular Pressure Sensor for a Ventricular Assist Device

    Luigi Brancato


    Full Text Available The aim of this study is to investigate the intravascular application of a micro-electro-mechanical system (MEMS pressure sensor to directly measure the hemodynamic characteristics of a ventricular assist device (VAD. A bio- and hemo-compatible packaging strategy is implemented, based on a ceramic thick film process. A commercial sub-millimeter piezoresistive sensor is attached to an alumina substrate, and a double coating of polydimethylsiloxane (PDMS and parylene-C is applied. The final size of the packaged device is 2.6 mm by 3.6 mm by 1.8 mm. A prototype electronic circuit for conditioning and read-out of the pressure signal is developed, satisfying the VAD-specific requirements of low power consumption (less than 14.5 mW in continuous mode and small form factor. The packaged sensor has been submitted to extensive in vitro tests. The device displayed a temperature-independent sensitivity (12 μ V/V/mmHg and good in vitro stability when exposed to the continuous flow of saline solution (less than 0.05 mmHg/day drift after 50 h. During in vivo validation, the transducer has been successfully used to record the arterial pressure waveform of a female sheep. A small, intravascular sensor to continuously register the blood pressure at the inflow and the outflow of a VAD is developed and successfully validated in vivo.

  20. Medical device risk management and its economic impact

    Katerina Krsteva Jakimovska


    Full Text Available The importance of medical devices in everyday users/patients lives is imensse. This is the reason why emphasis must be put on safety during their use. Satisfactory safety level can be achived by implementation of quality and risk management standards. Medical device manufacturers must learn to deal with the potential risks by using theoretical and practical examples and measures in order to protect their users/patients and themselves from suffering huge losses arising from adverse events or recall of their products. The best moment for implementation of risk management methods and analysis begins from the device design and development through manufacturing, sales and distribution. These way medical device manufacturers will succseed in protecting their users/patients from serious adverse events and at the same time protect their brand and society status, while minimizing economic losses.

  1. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho


    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm 2 ) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. 75 FR 61507 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of...


    ...] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of Notice... announcing an amendment to the notice of meeting of the General and Plastic Surgery Devices Panel of the..., FDA announced that a meeting of the General and Plastic Surgery Devices Panel of the Medical Devices...

  3. Design considerations for medical devices in the home environment.

    Kaufman-Rivi, Diana; Collins-Mitchell, Janette; Jetley, Raoul


    Patient demographics, economic forces, and technological advancements contribute to the rise in home care services. Advanced medical devices and equipment originally designed for use by trained personnel in hospitals and clinics are increasingly migrating into the home. Unlike the clinical setting, the home is an uncontrolled environment with additional hazards. The compatibility of the device with the recipient's knowledge, abilities, lifestyle, and home environment plays a significant role in their therapy and rehabilitation. The advent of new device technologies such as wireless devices and interoperability of systems lends a new and complex perspective for medical device use in the home that must also be addressed. Adequately assessing and matching the patient and their caregiver with the appropriate device technology while considering the suitability of the home environment for device operation and maintenance is a challenge that relies on good human factors principles. There is a need to address these challenges in the growing home care sector In this article, the authors take a look at some important considerations and design issues for medical devices used in the home care environment.

  4. Medical device development: managing conflicts of interest encountered by physicians.

    Baim, Donald S; Donovan, Aine; Smith, John J; Briefs, Nancy; Geoffrion, Richard; Feigal, David; Kaplan, Aaron V


    New technologies introduced over the past three decades have transformed medical diagnosis and treatment, and significantly improved patient outcomes. These changes have been mediated by the introduction of new medical devices, particularly for the treatment of cardiovascular, orthopedic, and ophthalmic disorders. These devices, in turn, have created large markets and spawned a burgeoning medical device industry, including six Fortune 500 companies whose combined market capitalization now exceeds 400 billion dollars. This success story, which has unquestionably benefited patients and society alike, has been dependent upon an intense collaboration among industry, clinicians, and regulatory authorities. However, when physicians actively involved in patient care participate in such collaborations, they are increasingly vulnerable to creating potential conflicts between these two (clinical and device development) roles. Such conflicts, which may ultimately erode public trust, have important consequences not only for the individual physicians, but also for their parent institutions, their patients, sponsoring companies, and the entire clinical research enterprise that makes the development and introduction of new devices possible. The third Dartmouth Device Development Symposium held in October 2005 brought together thought leaders within the medical device community, including academicians, clinical investigators, regulators from the Food and Drug Administration and Centers for Medicare and Medicaid Services (CMS), large and small device manufacturers and the financial (venture capital and investment banks) community. The Symposium examined the conflicts of interest encountered during the early development and commercialization of a medical device. The goal of these discussions was to (1) identify and characterize the conflicts that arise and (2) provide strategies to address these conflicts. This manuscript was prepared by a writing committee to provide a summary

  5. Perioperative management of antithrombotic treatment during implantation or revision of cardiac implantable electronic devices

    Deharo, Jean-Claude; Sciaraffia, Elena; Leclercq, Christophe


    .7% of patients, with heparin bridging in 25.6%, but accounted for only 25.3% of the oral anticoagulants used. A total of 108 complications were observed in 98 patients. No intracranial haemorrhage or embolic events were observed. Chronic NOAC treatment before surgery was associated with lower rates of minor...... pocket haematoma (1.4%; P= 0.042) vs. dual antiplatelet therapy (13.0%), VKA (11.4%), VKA + antiplatelet (9.2%), or NOAC + antiplatelet (7.7%). Similar results were observed for bleeding complications (P= 0.028). Perioperative management of patients undergoing CIED implantation/surgical revision while...

  6. Hybrid Donor-Dot Devices made using Top-down Ion Implantation for Quantum Computing

    Bielejec, Edward; Bishop, Nathan; Carroll, Malcolm


    We present progress towards fabricating hybrid donor -- quantum dots (QD) for quantum computing. These devices will exploit the long coherence time of the donor system and the surface state manipulation associated with a QD. Fabrication requires detection of single ions implanted with 10's of nanometer precision. We show in this talk, 100% detection efficiency for single ions using a single ion Geiger mode avalanche (SIGMA) detector integrated into a Si MOS QD process flow. The NanoImplanter (nI) a focused ion beam system is used for precision top-down placement of the implanted ion. This machine has a 10 nm resolution combined with a mass velocity filter, allowing for the use of multi-species liquid metal ion sources (LMIS) to implant P and Sb ions, and a fast blanking and chopping system for single ion implants. The combination of the nI and integration of the SIGMA with the MOS QD process flow establishes a path to fabricate hybrid single donor-dot devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Medical device for applying therapeutic radiation

    Tokita, K.M.; Haller, B.L.


    A device is described for applying therapeutic radiation from a preselected radiation source to a predetermined portion of a body comprising, in combination: a body member having: an external peripheral surface; a first end surface; and a second end surface spaced from the first end surface; the body member further comprising: at least first internal walls defining a first radiation source receiving channel means spaced a preselected distance from the peripheral surface, and having: a first portion extending from the second end surface to regions adjacent the first end surface; and a second portion extending from the first portion at the first end surface to the second end surface; and, the channel means communicating with regions external the body member at the second surface whereby the radiation source of a preselected intensity inserted at least along a preselected portion of the channel means is applied to the predetermined area of the body requiring therapeutic radiation treatment

  8. A wireless power transmission system for implantable devices in freely moving rodents.

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June


    Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3.

  9. Symmetric Encryption Relying on Chaotic Henon System for Secure Hardware-Friendly Wireless Communication of Implantable Medical Systems

    Taha Belkhouja


    Full Text Available Healthcare remote devices are recognized as a promising technology for treating health related issues. Among them are the wireless Implantable Medical Devices (IMDs: These electronic devices are manufactured to treat, monitor, support or replace defected vital organs while being implanted in the human body. Thus, they play a critical role in healing and even saving lives. Current IMDs research trends concentrate on their medical reliability. However, deploying wireless technology in such applications without considering security measures may offer adversaries an easy way to compromise them. With the aim to secure these devices, we explore a new scheme that creates symmetric encryption keys to encrypt the wireless communication portion. We will rely on chaotic systems to obtain a synchronized Pseudo-Random key. The latter will be generated separately in the system in such a way that avoids a wireless key exchange, thus protecting patients from the key theft. Once the key is defined, a simple encryption system that we propose in this paper will be used. We analyze the performance of this system from a cryptographic point of view to ensure that it offers a better safety and protection for patients.

  10. Perioperative Interrogation of St. Jude Cardiovascular Implantable Electronic Devices: A Guide for Anesthesiologists.

    Cronin, Brett; Essandoh, Michael K


    Feelings of trepidation or uncertainty regarding cardiovascular implantable electronic devices (CIEDs) in the perioperative period can often be mitigated by a thorough knowledge of societal recommendations, recommended management options, and familiarity with CIEDs. Given that effective interpretation of an interrogation report is vital to determining perioperative management options and applying societal recommendations, the creation and interpretation of St. Jude CIED interrogation reports are discussed. In an effort to increase the familiarity with St. Jude transvenous CIEDs amongst anesthesiologists, basic programming of a St. Jude pacemaker and implantable cardioverter defibrillator (ICD) also are described. Published by Elsevier Inc.

  11. Determining the sample size required to establish whether a medical device is non-inferior to an external benchmark.

    Sayers, Adrian; Crowther, Michael J; Judge, Andrew; Whitehouse, Michael R; Blom, Ashley W


    The use of benchmarks to assess the performance of implants such as those used in arthroplasty surgery is a widespread practice. It provides surgeons, patients and regulatory authorities with the reassurance that implants used are safe and effective. However, it is not currently clear how or how many implants should be statistically compared with a benchmark to assess whether or not that implant is superior, equivalent, non-inferior or inferior to the performance benchmark of interest.We aim to describe the methods and sample size required to conduct a one-sample non-inferiority study of a medical device for the purposes of benchmarking. Simulation study. Simulation study of a national register of medical devices. We simulated data, with and without a non-informative competing risk, to represent an arthroplasty population and describe three methods of analysis (z-test, 1-Kaplan-Meier and competing risks) commonly used in surgical research. We evaluate the performance of each method using power, bias, root-mean-square error, coverage and CI width. 1-Kaplan-Meier provides an unbiased estimate of implant net failure, which can be used to assess if a surgical device is non-inferior to an external benchmark. Small non-inferiority margins require significantly more individuals to be at risk compared with current benchmarking standards. A non-inferiority testing paradigm provides a useful framework for determining if an implant meets the required performance defined by an external benchmark. Current contemporary benchmarking standards have limited power to detect non-inferiority, and substantially larger samples sizes, in excess of 3200 procedures, are required to achieve a power greater than 60%. It is clear when benchmarking implant performance, net failure estimated using 1-KM is preferential to crude failure estimated by competing risk models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No

  12. 76 FR 14414 - Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES [Docket No. FDA-2011-N-0002] Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... and Drug Administration (FDA). The meeting will be open to the public. Name of Committee: Microbiology...

  13. 76 FR 22322 - Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0026] Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass Assessment Score Test System; Correction AGENCY: Food and Drug Administration, HHS. ACTION...

  14. 77 FR 19534 - Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus Serological...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2012-N-0165] Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus Serological Reagents; Correction AGENCY: Food and Drug Administration, HHS. ACTION: Final rule; correction...

  15. 76 FR 16292 - Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2011-N-0026] Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian... of Food and Drugs, 21 CFR part 866 is amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY...

  16. 75 FR 70112 - Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered Suction...


    .... FDA-2010-N-0513] Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered... risks. Adverse tissue reaction Material degradation Improper function of suction apparatus (e.g., reflux.... Material degradation Section 8. Stability and Shelf Life. [[Page 70113

  17. 75 FR 68972 - Medical Devices; General and Plastic Surgery Devices; Classification of Tissue Adhesive With...


    .... FDA-2010-N-0512] Medical Devices; General and Plastic Surgery Devices; Classification of Tissue... running to unintended areas, etc. B. Wound dehiscence C. Adverse tissue reaction and chemical burns D..., Clinical Studies, Labeling. Adverse tissue reaction and chemical Biocompatibility Animal burns. Testing...

  18. Follow-up of Temporary Implantable Nitinol Device (TIND) Implantation for the Treatment of BPH: a Systematic Review.

    Bertolo, Riccardo; Fiori, Cristian; Amparore, Daniele; Porpiglia, Francesco


    The purpose of the present systematic review is to offer a narrative synthesis of the available literature regarding the role of the temporary implantable nitinol device (TIND) (Medi-Tate®; Medi-Tate Ltd., Or Akiva, Israel) for the treatment of benign prostatic hyperplasia (BPH)-related lower urinary tract symptoms (LUTS), specifically focusing on the follow-up data. Current available evidences are limited in this topic. Sample size of patients available for analysis is small. Moreover, the duration of follow-up period is intermediate and longer follow-up is required. At the available 3 years follow-up, the TIND implantation is safe, effective, and well tolerated. The extended follow-up of the first and only available cohort of patients who underwent TIND for LUTS related to BPH corroborated previous literature findings. Further studies are required in order to assess the durability of TIND outcomes over a longer follow-up, to better define the indications of this approach, and to demonstrate the advantages of second-generation device over the first.


    Maya Lyapina


    Full Text Available Defining a given product as a medical device and interpretation of the application of the classification rules fall within the competence of the competent authorities of the Member States where the product is on the market. Different interpretations of Community legislation occur, and, can put public health at risk and distort the internal market. Borderline cases are considered to be those cases where it is not clear from the outset whether a given product is a medical device, an in vitro diagnostic medical device, an active implantable medical device or not. Classification cases can be described as those cases where there exists a difficulty in the uniform application of the classification rules as laid down in the Medical Devices Directive (MDD, or where for a given device, depending on interpretation of the rules, different classifications can occur. The aim of the present work is to make a brief review on discussion on classification in the community regulatory framework for medical devices of some dentistry products.

  20. 21 CFR 872.3630 - Endosseous dental implant abutment.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  1. State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids

    Jong-Seok Oh


    Full Text Available Recently, smart fluids have drawn significant attention and growing a great interest in a broad range of engineering applications such as automotive and medical areas. In this article, two smart fluids called electro-rheological (ER fluid and magneto-rheological (MR fluid are reviewed in terms of medical applications. Especially, this article describes the attributes and inherent properties of individual medical and rehabilitation devices. The devices surveyed in this article include multi-degree-of-freedom haptic masters for robot surgery, thin membrane touch panels for braille readers, sponge-like tactile sensors to feel human tissues such as liver, rehabilitation systems such as prosthetic leg, and haptic interfaces for dental implant surgery. The operating principle, inherent characteristics and practical feasibility of each medical device or system are fully discussed in details.

  2. Current Trends in Implantable Left Ventricular Assist Devices

    Jens Garbade


    Full Text Available The shortage of appropriate donor organs and the expanding pool of patients waiting for heart transplantation have led to growing interest in alternative strategies, particularly in mechanical circulatory support. Improved results and the increased applicability and durability with left ventricular assist devices (LVADs have enhanced this treatment option available for end-stage heart failure patients. Moreover, outcome with newer pumps have evolved to destination therapy for such patients. Currently, results using nonpulsatile continuous flow pumps document the evolution in outcomes following destination therapy achieved subsequent to the landmark Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Trial (REMATCH, as well as the outcome of pulsatile designed second-generation LVADs. This review describes the currently available types of LVADs, their clinical use and outcomes, and focuses on the patient selection process.

  3. Implantation of venous access devices under local anesthesia: patients’ satisfaction with oral lorazepam

    Chang DH


    Full Text Available De-Hua Chang,1 Sonja Hiss,1 Lena Herich,2 Ingrid Becker,2 Kamal Mammadov,1 Mareike Franke,1 Anastasios Mpotsaris,1 Robert Kleinert,3 Thorsten Persigehl,1 David Maintz,1 Christopher Bangard1 1Department of Radiology, 2Institute of Medical Statistics, Informatics and Epidemiology, 3Department of Surgery, University Hospital of Cologne, Cologne, Germany Objective: The aim of the study reported here was to evaluate patients’ satisfaction with implantation of venous access devices under local anesthesia (LA with and without additional oral sedation.Materials and methods: A total of 77 patients were enrolled in the prospective descriptive study over a period of 6 months. Subcutaneous implantable venous access devices through the subclavian vein were routinely implanted under LA. Patients were offered an additional oral sedative (lorazepam before each procedure. The level of anxiety/tension, the intensity of pain, and patients’ satisfaction were evaluated before and immediately after the procedure using a visual analog scale (ranging from 0 to 10 with a standardized questionnaire.Results: Patients’ satisfaction with the procedure was high (mean: 1.3±2.0 with no significant difference between the group with premedication and the group with LA alone (P=0.54. However, seven out of 30 patients (23.3% in the group that received premedication would not undergo the same procedure without general anesthesia. There was no significant influence of lorazepam on the intensity of pain (P=0.88. In 12 out of 30 patients (40% in the premedication group, the level of tension was higher than 5 on the visual analog scale during the procedure. In 21 out of 77 patients (27.3%, the estimate of the level of tension differed between the interventionist and the patient by 3 or more points in 21 out of 77 patients (27.3%.Conclusion: Overall patient satisfaction is high for implantation of venous access devices under LA. A combination of LA with lorazepam administered

  4. More than a device: today's medical technology companies provide value through service.

    McCoy, Fred


    When physicians implant cardiac rhythm management devices, they establish a long-term relationship with those devices and with the manufacturers of those devices. The therapeutic value that each device will provide to its patient is enhanced throughout the life of the device by the services that the manufacturer provides. Services are provided prior to, during and long after implantation. Services include physician and allied health professional training, quality assurance programs, therapy outreach initiatives, on site technical support during device implantation and follow-up, technical service expertise and customer service support. The costs of these services are substantial. When assessed on a per device basis, the service costs may actually exceed the costs of manufacture. Further, the costs of these services are rising. Over the past five years, the number of implanted cardiac rhythm management devices has doubled. Industry field forces have tripled in size. Clearly, industry is dedicated to providing service as a critical element in achieving excellent patient outcomes.

  5. Transmitting patient and device data via GSM--central management for decentral mobile medical devices.

    Bachmor, T; Schöchlin, J; Bolz, A


    Equipping medical devices with long range telemetry opens completely new possibilities for emergency response, home care and remote diagnosis. Mobile communications nowadays seem to be a generally accepted part of our modern world, but bridging the gap between new (consumer-) technologies and medical devices still is a challenge today. Providing a telemetry link (GSM) is just the trivial part--ensuring security, reliability and service management are the more critical tasks that need to be addressed. Therefore, a complete system concept consists of an automatic fleet management (e.g. periodic device-initiated service calls) as well as customer relationship management (CRM), including technical service and a trouble-ticket system.

  6. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe


    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  7. CT pre-operative planning of a new semi-implantable bone conduction hearing device

    Law, Eric K.C.; Bhatia, Kunwar S.S. [Prince of Wales Hospital, The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Hong Kong, SAR (China); Tsang, Willis S.S.; Tong, Michael C.F. [Prince of Wales Hospital, The Chinese University of Hong Kong, Department of Otorhinolaryngology, Head and Neck Surgery, Hong Kong, SAR (China); Shi, Lin [The Chinese University of Hong Kong, Department of Medicine and Therapeutics, Hong Kong, SAR (China); The Chinese University of Hong Kong, Chow Yuk Ho Technology Center for Innovative Medicine, Hong Kong, SAR (China)


    Accommodating a novel semi-implantable bone conduction hearing device within the temporal bone presents challenges for surgical planning. This study describes the utility of CT in pre-operative assessment of such an implant. Retrospective review of pre-operative CT, clinical and surgical records of 16 adults considered for device implantation. Radiological suitability was assessed on CT using 3D simulation software. Antero-posterior (AP) dimensions of the mastoid bone and minimum skull thickness were measured. CT planning results were correlated with operative records. Eight and five candidates were suitable for device placement in the transmastoid and retrosigmoid positions, respectively, and three were radiologically unsuitable. The mean AP diameter of the mastoid cavity was 14.6 mm for the transmastoid group and 4.6 mm for the retrosigmoid group (p < 0.05). Contracted mastoid and/or prior surgery were predisposing factors for unsuitability. Four transmastoid and five retrosigmoid positions required sigmoid sinus/dural depression and/or use of lifts due to insufficient bone capacity. A high proportion of patients being considered have contracted or operated mastoids, which reduces the feasibility of the transmastoid approach. This finding combined with the complex temporal bone geometry illustrates the importance of careful CT evaluation using 3D software for precise device simulation. (orig.)

  8. Development of high impedance measurement system for water leakage detection in implantable neuroprosthetic devices.

    Yousif, Aziz; Kelly, Shawn K


    There has been a push for a greater number of channels in implantable neuroprosthetic devices; but, that number has largely been limited by current hermetic packaging technology. Microfabricated packaging is becoming reality, but a standard testing system is needed to prepare these devices for clinical trials. Impedance measurements of electrodes built into the packaging layers may give an early warning of device failure and predict device lifetime. Because the impedance magnitudes of such devices can be on the order of gigaohms, a versatile system was designed to accommodate ultra-high impedances and allow future integrated circuit implementation in current neural prosthetic technologies. Here we present the circuitry, control software, and preliminary testing results of our designed system.

  9. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    Cronin, Edmond M; Varma, Niraj


    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  10. Stakeholder challenges in purchasing medical devices for patient safety.

    Hinrichs, Saba; Dickerson, Terry; Clarkson, John


    This study identifies the stakeholders who have a role in medical device purchasing within the wider system of health-care delivery and reports on their particular challenges to promote patient safety during purchasing decisions. Data was collected through observational work, participatory workshops, and semi-structured qualitative interviews, which were analyzed and coded. The study takes a systems-based and engineering design approach to the study. Five hospitals took part in this study, and the participants included maintenance, training, clinical end-users, finance, and risk departments. The main stakeholders for purchasing were identified to be staff from clinical engineering (Maintenance), device users (Clinical), device trainers (Training), and clinical governance for analyzing incidents involving devices (Risk). These stakeholders display varied characteristics in terms of interpretation of their own roles, competencies for selecting devices, awareness and use of resources for purchasing devices, and attitudes toward the purchasing process. The role of "clinical engineering" is seen by these stakeholders to be critical in mediating between training, technical, and financial stakeholders but not always recognized in practice. The findings show that many device purchasing decisions are tackled in isolation, which is not optimal for decisions requiring knowledge that is currently distributed among different people within different departments. The challenges expressed relate to the wider system of care and equipment management, calling for a more systemic view of purchasing for medical devices.

  11. Evaluation of biofouling in stainless microfluidic channels for implantable multilayered dialysis device

    Ota, Takashi; To, Naoya; Kanno, Yoshihiko; Miki, Norihisa


    An implantable artificial kidney can markedly improve the quality of life of renal disease patients. Our group has developed an implantable multilayered dialysis system consisting of microfluidic channels and dialysis membranes. Long-term evaluation is necessary for implant devices where biofouling is a critical factor, culminating in the deterioration of dialysis performance. Our previous work revealed that surface conditions, which depend on the manufacturing process, determine the amount of biofouling, and that electrolytic etching is the most suitable technique for forming a channel wall free of biofouling. In this study, we investigated the electrolytic etching conditions in detail. We conducted in vitro experiments for 7 d and evaluated the adhesion of biomaterials by scanning electron microscopy. The experiments revealed that a surface mirror-finished by electrolytic etching effectively prevents biofouling.

  12. Implantable batteryless device for on-demand and pulsatile insulin administration

    Lee, Seung Ho; Lee, Young Bin; Kim, Byung Hwi; Lee, Cheol; Cho, Young Min; Kim, Se-Na; Park, Chun Gwon; Cho, Yong-Chan; Choy, Young Bin


    Many implantable systems have been designed for long-term, pulsatile delivery of insulin, but the lifetime of these devices is limited by the need for battery replacement and consequent replacement surgery. Here we propose a batteryless, fully implantable insulin pump that can be actuated by a magnetic field. The pump is prepared by simple-assembly of magnets and constituent units and comprises a drug reservoir and actuator equipped with a plunger and barrel, each assembled with a magnet. The plunger moves to noninvasively infuse insulin only when a magnetic field is applied on the exterior surface of the body. Here we show that the dose is easily controlled by varying the number of magnet applications. Also, pump implantation in diabetic rats results in profiles of insulin concentration and decreased blood glucose levels similar to those observed in rats treated with conventional subcutaneous insulin injections.

  13. Developing medical device software in compliance with regulations.

    Zema, M; Rosati, S; Gioia, V; Knaflitz, M; Balestra, G


    In the last decade, the use of information technology (IT) in healthcare has taken a growing role. In fact, the adoption of an increasing number of computer tools has led to several benefits related to the process of patient care and allowed easier access to social and health care resources. At the same time this trend gave rise to new challenges related to the implementation of these new technologies. Software used in healthcare can be classified as medical devices depending on the way they are used and on their functional characteristics. If they are classified as medical devices they must satisfy specific regulations. The aim of this work is to present a software development framework that can allow the production of safe and high quality medical device software and to highlight the correspondence between each software development phase and the appropriate standard and/or regulation.

  14. Pricing and reimbursement of drugs and medical devices in Hungary.

    Gulácsi, L; Dávid, T; Dózsa, Cs


    Similarly to other countries of Central and Eastern Europe, Hungary has witnessed massive diffusion of healthcare technology such as drugs and medical devices since 1990. While substantial new pharmaceuticals, medical devices, and procedures have been liberalized, there has been no proper evaluation or training in their use. Healthcare providers have come to find themselves as entrepreneurs in private practice, while patients are acquiring an increasing awareness as customers of healthcare,demanding services in return for their taxes and contributions. This has led to extremely irrational patterns of investment in technology, with most an obvious waste of resources, while leaving basic needs unmet. Both the National Health Insurance Fund and the Ministry of Finance believe that the current pharmaceutical and medical device bill is too high. However, introducing a more transparent and flexible pricing and reimbursement framework may enable a more efficient allocation of the limited resources to be achieved.

  15. Analysis of implantable defibrillator longevity under clinical circumstances: implications for device selection.

    Knops, Paul; Theuns, Dominic A M J; Res, Jan C J; Jordaens, Luc


    Information about implantable cardioverter-defibrillator (ICD) longevity is mostly calculated from measurements under ideal laboratory conditions. However, little information about longevity under clinical circumstances is available. This survey gives an overview on ICD service times and generator replacements in a cohort of consecutive ICD patients. Indications for replacement were classified as a normal end-of-service (EOS), premature EOS, system malfunction, infection and device advisory, or recall actions. From the premature and normal EOS group, longevity from single-chamber (SC), dual-chamber (DC), and cardiac resynchronization therapy defibrillator (CRT-D), rate-responsive (RR) settings, high output (HO) stimulation, and indication for ICD therapy was compared. Differences between brands were compared as well. In a total of 854 patients, 203 ICD replacements (165 patients) were recorded. Premature and normal EOS replacements consisted of 32 SC, 98 DC and 24 CRT-D systems. Longevity was significantly longer in SC systems compared to DC and CRT-D systems (54 +/- 19 vs. 40 +/- 17 and 42 +/- 15 months; P = 0.008). Longevity between non-RR (n = 143) and RR (n = 11) settings was not significantly different (43 +/- 18 vs. 45 +/- 13 months) as it also was not for HO versus non-HO stimulation (43 +/- 19 vs. 46 +/- 17 months). Longevity of ICDs was not significantly different between primary and secondary prevention (42 +/- 19 vs. 44 +/- 18 months). The average longevity on account of a device-based EOS message was 43 +/- 18 months. Average longevity for Biotronik (BIO, n = 72) was 33 +/- 10 months, for ELA Medical (ELA, n = 12) 44 +/- 17 months, for Guidant (GDT, n = 36) 49 +/- 12 months, for Medtronic (MDT, n = 29) 62 +/- 22 months, and for St. Jude Medical (SJM, n = 5) 31 +/- 9 months (P generators had a longer service time compared to DC and CRT-D systems. No influence of indication for ICD therapy and HO stimulation on generator longevity was observed in this

  16. Current status of the regulation for medical devices

    Shah Anuja; Goyal R


    In the light of escalating use of medical devices, stringent regulatory standards are required to ensure that the devices are safe, well studied and have least adverse reactions. Recently introduced guidelines and the amendment in the law will provide adequate guidance for both the manufacturers and competent authorities to manage cases efficiently and appropriately. India has emerged as one of the leaders in pharmaceutical industry. Like many other amendments in Drugs and Cosmetics Act that ...

  17. A Novel Transdermal Power Transfer Device for the Application of Implantable Microsystems

    Jing-Quan Liu


    Full Text Available This paper presents a transdermal power transfer device for the application of implantable devices or systems. The device mainly consists of plug and socket. The power transfer process can be started after inserting the plug into the socket with an applied potential on the plug. In order to improve the maneuverability and reliability of device during power transfer process, the metal net with mesh structure were added as a part of the socket to serve as intermediate electrical connection layer. The socket was encapsulated by polydimethylsiloxane (PDMS with good biocompatibility and flexibility. Two stainless steel hollow needles placed in the same plane acted as the insertion part of the needle plug, and Parylene C thin films were deposited on needles to serve as insulation layers. At last, the properties of the transdermal power transfer device were tested. The average contact resistance between needle and metal mesh was 0.454 Ω after 50 random insertions, which showed good electrical connection. After NiMH (nickel-metal hydride batteries were recharged for 10 min with current up to 200 mA, the caused resistive heat was less than 0.6 °C, which also demonstrated the low charging temperature and was suitable for charging implantable devices.

  18. Medical Devices Assess, Treat Balance Disorders


    series of dynamic protocols to isolate and assess balance function deficiencies. The technology was based on Nashner s novel, engineering-inspired concept of balance as an adaptable collaboration between multiple sensory and motor systems. CDP proved useful not only for examining astronauts, but for anyone suffering from balance problems. Today, CDP is the standard medical tool for objectively evaluating balance control.

  19. Low power signal processing electronics for wearable medical devices.

    Casson, Alexander J; Rodriguez-Villegas, Esther


    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  20. Intraoperative Transesophageal Echocardiography and Right Ventricular Failure After Left Ventricular Assist Device Implantation.

    Silverton, Natalie A; Patel, Ravi; Zimmerman, Josh; Ma, Jianing; Stoddard, Greg; Selzman, Craig; Morrissey, Candice K


    To determine whether intraoperative measures of right ventricular (RV) function using transesophageal echocardiography are associated with subsequent RV failure after left ventricular assist device (LVAD) implantation. Retrospective, nonrandomized, observational study. Single tertiary-level, university-affiliated hospital. The study comprised 100 patients with systolic heart failure undergoing elective LVAD implantation. Transesophageal echocardiographic images before and after cardiopulmonary bypass were analyzed to quantify RV function using tricuspid annular plane systolic excursion (TAPSE), tricuspid annular systolic velocity (S'), fractional area change (FAC), RV global longitudinal strain, and RV free wall strain. A chart review was performed to determine which patients subsequently developed RV failure (right ventricular assist device placement or prolonged inotrope requirement ≥14 days). Nineteen patients (19%) subsequently developed RV failure. Postbypass FAC was the only measure of RV function that distinguished between the RV failure and non-RV failure groups (21.2% v 26.5%; p = 0.04). The sensitivity, specificity, and area under the curve of an abnormal RV FAC (failure after LVAD implantation were 84%, 20%, and 0.52, respectively. No other intraoperative measure of RV function was associated with subsequent RV failure. RV failure increased ventilator time, intensive care unit and hospital length of stay, and mortality. Intraoperative measures of RV function such as tricuspid annular plane systolic excursion, tricuspid annular systolic velocity, and RV strain were not associated with RV failure after LVAD implantation. Decreased postbypass FAC was significantly associated with RV failure but showed poor discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Intraoperative Cochlear Implant Device Testing Utilizing an Automated Remote System: A Prospective Pilot Study.

    Lohmann, Amanda R; Carlson, Matthew L; Sladen, Douglas P


    Intraoperative cochlear implant device testing provides valuable information regarding device integrity, electrode position, and may assist with determining initial stimulation settings. Manual intraoperative device testing during cochlear implantation requires the time and expertise of a trained audiologist. The purpose of the current study is to investigate the feasibility of using automated remote intraoperative cochlear implant reverse telemetry testing as an alternative to standard testing. Prospective pilot study evaluating intraoperative remote automated impedance and Automatic Neural Response Telemetry (AutoNRT) testing in 34 consecutive cochlear implant surgeries using the Intraoperative Remote Assistant (Cochlear Nucleus CR120). In all cases, remote intraoperative device testing was performed by trained operating room staff. A comparison was made to the "gold standard" of manual testing by an experienced cochlear implant audiologist. Electrode position and absence of tip fold-over was confirmed using plain film x-ray. Automated remote reverse telemetry testing was successfully completed in all patients. Intraoperative x-ray demonstrated normal electrode position without tip fold-over. Average impedance values were significantly higher using standard testing versus CR120 remote testing (standard mean 10.7 kΩ, SD 1.2 vs. CR120 mean 7.5 kΩ, SD 0.7, p automated testing with regard to the presence of open or short circuits along the array. There were, however, two cases in which standard testing identified an open circuit, when CR120 testing showed the circuit to be closed. Neural responses were successfully obtained in all patients using both systems. There was no difference in basal electrode responses (standard mean 195.0 μV, SD 14.10 vs. CR120 194.5 μV, SD 14.23; p = 0.7814); however, more favorable (lower μV amplitude) results were obtained with the remote automated system in the apical 10 electrodes (standard 185.4 μV, SD 11.69 vs. CR

  2. Implementation of a transcutaneous charger for fully implantable middle ear hearing device.

    Lim, H; Yoon, Y; Lee, C; Park, I; Song, B; Cho, J


    A transcutaneous charger for the fully implantable middle ear hearing device (F-IMEHD), which can monitor the charging level of battery, has been designed and implemented. In order to recharge the battery of F-IMEHD, the electromagnetic coupling between primary coil at outer body and secondary coil at inner body has been used. Considering the implant condition of the F-IMEHD, the primary coil and the secondary coil have been designed. Using the resonance of LC tank circuit at each coil, transmission efficiency was increased. Since the primary and the secondary coil are magnetically coupled, the current variation of the primary coil is related with the impedance of internal resonant circuit. Using the principle mentioned above, the implanted module could transmit outward the information about charging state of battery or coupling between two coils by the changing internal impedance. As in the demonstrated results of experiment, the implemented charger has supplied the sufficient operating voltage for the implanted battery within about 10 mm distance. And also, it has been confirmed that the implanted module can transmit information outward by control of internal impedance.

  3. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June


    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.

  4. [Industry regulation and its relationship to the rapid marketing of medical devices].

    Matsuoka, Atsuko


    In the market of medical devices, non-Japanese products hold a large part even in Japan. To overcome this situation, the Japanese government has been announcing policies to encourage the medical devices industry, such as the 5-year strategy for medical innovation (June 6, 2012). The Division of Medical Devices has been contributing to rapid marketing of medical devices by working out the standards for approval review and accreditation of medical devices, guidances on evaluation of medical devices with emerging technology, and test methods for biological safety evaluation of medical devices, as a part of practice in the field of regulatory science. The recent outcomes are 822 standards of accreditation for Class II medical devices, 14 guidances on safety evaluation of medical devices with emerging technology, and the revised test methods for biological safety evaluation (MHLW Notification by Director, OMDE, Yakushokuki-hatsu 0301 No. 20 "Basic Principles of Biological Safety Evaluation Required for Application for Approval to Market Medical Devices").

  5. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  6. 78 FR 16684 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  7. 77 FR 20642 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  8. 75 FR 47606 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of... General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee scheduled for August...

  9. 76 FR 14415 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  10. 76 FR 62419 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  11. 75 FR 49940 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  12. 78 FR 30928 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  13. 76 FR 39882 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0478] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  14. Hearing improvement with softband and implanted bone-anchored hearing devices and modified implantation surgery in patients with bilateral microtia-atresia.

    Wang, Yibei; Fan, Xinmiao; Wang, Pu; Fan, Yue; Chen, Xiaowei


    To evaluate auditory development and hearing improvement in patients with bilateral microtia-atresia using softband and implanted bone-anchored hearing devices and to modify the implantation surgery. The subjects were divided into two groups: the softband group (40 infants, 3 months to 2 years old, Ponto softband) and the implanted group (6 patients, 6-28 years old, Ponto). The Infant-Toddler Meaning Auditory Integration Scale was used conducted to evaluate auditory development at baseline and after 3, 6, 12, and 24 months, and visual reinforcement audiometry was used to assess the auditory threshold in the softband group. In the implanted group, bone-anchored hearing devices were implanted combined with the auricular reconstruction surgery, and high-resolution CT was used to assess the deformity preoperatively. Auditory threshold and speech discrimination scores of the patients with implants were measured under the unaided, softband, and implanted conditions. Total Infant-Toddler Meaning Auditory Integration Scale scores in the softband group improved significantly and approached normal levels. The average visual reinforcement audiometry values under the unaided and softband conditions were 76.75 ± 6.05 dB HL and 32.25 ± 6.20 dB HL (P hearing devices is effective for auditory development and hearing improvement in infants with bilateral microtia-atresia. Wearing softband bone-anchored hearing devices before auricle reconstruction and combining bone-anchored hearing device implantation with auricular reconstruction surgery may bethe optimal clinical choice for these patients, and results in more significant hearing improvement and minimal surgical and anesthetic injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Results of remote follow-up and monitoring in young patients with cardiac implantable electronic devices.

    Silvetti, Massimo S; Saputo, Fabio A; Palmieri, Rosalinda; Placidi, Silvia; Santucci, Lorenzo; Di Mambro, Corrado; Righi, Daniela; Drago, Fabrizio


    Remote monitoring is increasingly used in the follow-up of patients with cardiac implantable electronic devices. Data on paediatric populations are still lacking. The aim of our study was to follow-up young patients both in-hospital and remotely to enhance device surveillance. This is an observational registry collecting data on consecutive patients followed-up with the CareLink system. Inclusion criteria were a Medtronic device implanted and patient's willingness to receive CareLink. Patients were stratified according to age and presence of congenital/structural heart defects (CHD). A total of 221 patients with a device - 200 pacemakers, 19 implantable cardioverter defibrillators, and two loop recorders--were enrolled (median age of 17 years, range 1-40); 58% of patients were younger than 18 years of age and 73% had CHD. During a follow-up of 12 months (range 4-18), 1361 transmissions (8.9% unscheduled) were reviewed by technicians. Time for review was 6 ± 2 minutes (mean ± standard deviation). Missed transmissions were 10.1%. Events were documented in 45% of transmissions, with 2.7% yellow alerts and 0.6% red alerts sent by wireless devices. No significant differences were found in transmission results according to age or presence of CHD. Physicians reviewed 6.3% of transmissions, 29 patients were contacted by phone, and 12 patients underwent unscheduled in-hospital visits. The event recognition with remote monitoring occurred 76 days (range 16-150) earlier than the next scheduled in-office follow-up. Remote follow-up/monitoring with the CareLink system is useful to enhance device surveillance in young patients. The majority of events were not clinically relevant, and the remaining led to timely management of problems.

  16. Perioperative management of calves undergoing implantation of a left ventricular assist device.

    Wilson, D V; Kantrowitz, A; Pacholewicz, J; Salat, O; Paules, B R; Zhou, Y; Dawe, E J


    To describe perioperative management of calves that underwent left lateral thoracotomy, aortic cross-clamping, partial left heart bypass and implantation of a left ventricular assist device. A total of 43 healthy castrated male calves, weighing 121 +/- 24 kg. Diazepam (mean +/- SD, 0.26 +/- 0.07 mg/kg), ketamine (5.9 +/- 2.17 mg/kg) and isoflurane were used in the anesthetic management of calves undergoing implantation of a left ventricular assist device in the descending thoracic aorta. Other adjunctive agents administered were fentanyl (11 +/- 5.4 microg/kg), lidocaine (4.9 +/- 3.19 mg/kg), bupivacaine (0.75%) and butorphanol (0.49 +/- 0.13 mg/kg). None of the calves regurgitated at induction or during intubation. A tube was used to drain the rumen and prevent bloat during the procedure. Partial left heart bypass was used to perfuse the caudal half of the body during the period of aortic cross clamp and device implantation. Initial mean systemic blood pressure was 96 +/- 25 mm Hg, and pressures measured in the auricular artery increased during aortic cross-clamping and bypass. Vasoconstrictor therapy was required to treat caudal arterial hypotension during the procedure in 9 calves. Mean systemic arterial pressures returned to baseline values by the end of the anesthetic period. Initial mean pulmonary arterial pressures (PAP) were 22 +/- 3 mm Hg. A significant but transient increase in pulmonary arterial pressure occurred after both heparin and protamine administration. The described anesthetic protocol was effective for thoracotomy and implantation of an intra-aortic left ventricular assist device in normal calves. Partial left ventricular bypass was a useful adjunct during the period of aortic cross clamp. The doses of heparin and protamine administered were effective. Responsibility to monitor oxygenation of the cranial half of the animal continues during the bypass period as hypoxemia due to pulmonary dysfunction will not be detected by the perfusionist.

  17. Implanted cardiac devices are reliably detected by commercially available metal detectors

    Holm, Katja Fiedler; Hjortshøj, Søren Pihlkjær; Pehrson, Steen


    Explosions of Cardiovascular Implantable Electronic Devices (CIEDs) (pacemakers, defibrillators, and loop recorders) are a well-recognized problem during cremation, due to lithium-iodine batteries. In addition, burial of the deceased with a CIED can present a potential risk for environmental...... contamination. Therefore, detection of CIEDs in the deceased would be of value. This study evaluated a commercially available metal detector for detecting CIEDs....

  18. Risk evaluation of medical and industrial radiation devices

    Jones, E.D.; Cunningham, R.E.; Rathbun, P.A.


    In 1991, the NRC, Division of Industrial and Medical Nuclear Safety, began a program to evaluate the use of probabilistic risk assessment (PRA) in regulating medical devices. This program represents an initial step in an overall plant to evaluate the use of PRA in regulating the use of nuclear by-product materials. The NRC envisioned that the use of risk analysis techniques could assist staff in ensuring that the regulatory approach was standardized, understandable, and effective. Traditional methods of assessing risk in nuclear power plants may be inappropriate to use in assessing the use of by-product devices. The approaches used in assessing nuclear reactor risks are equipment-oriented. Secondary attention is paid to the human component, for the most part after critical system failure events have been identified. This paper describes the risk methodology developed by Lawrence Livermore National Laboratory (LLNL), initially intended to assess risks associated with the use of the Gamma Knife, a gamma stereotactic radiosurgical device. For relatively new medical devices such as the Gamma Knife, the challenge is to perform a risk analysis with very little quantitative data but with an important human factor component. The method described below provides a basic approach for identifying the most likely risk contributors and evaluating their relative importance. The risk analysis approach developed for the Gamma Knife and described in this paper should be applicable to a broader class of devices in which the human interaction with the device is a prominent factor. In this sense, the method could be a prototypical model of nuclear medical or industrial device risk analysis

  19. Ventricular assist device implantation in a young patient with non-compaction cardiomyopathy and hereditary spherocytosis.

    Huenges, Katharina; Panholzer, Bernd; Cremer, Jochen; Haneya, Assad


    A case of a 15-year-old female patient with acute heart failure due to non-compaction cardiomyopathy and hereditary anaemia (hereditary spherocytic elliptocytosis) requiring ventricular assist device implantation as a bridge to transplantation is presented. The possible effects of mechanical stress on erythrocytes potentially induced by mechanical circulatory support remains unclear, but it may lead to haemolytic crisis in patients suffering from hereditary anaemia. In our case, ventricular assist device therapy was feasible, and haematological complications did not occur within 6 weeks of bridging our patient to heart transplantation.

  20. Accelerated life-test methods and results for implantable electronic devices with adhesive encapsulation.

    Huang, Xuechen; Denprasert, Petcharat May; Zhou, Li; Vest, Adriana Nicholson; Kohan, Sam; Loeb, Gerald E


    We have developed and applied new methods to estimate the functional life of miniature, implantable, wireless electronic devices that rely on non-hermetic, adhesive encapsulants such as epoxy. A comb pattern board with a high density of interdigitated electrodes (IDE) could be used to detect incipient failure from water vapor condensation. Inductive coupling of an RF magnetic field was used to provide DC bias and to detect deterioration of an encapsulated comb pattern. Diodes in the implant converted part of the received energy into DC bias on the comb pattern. The capacitance of the comb pattern forms a resonant circuit with the inductor by which the implant receives power. Any moisture affects both the resonant frequency and the Q-factor of the resonance of the circuitry, which was detected wirelessly by its effects on the coupling between two orthogonal RF coils placed around the device. Various defects were introduced into the comb pattern devices to demonstrate sensitivity to failures and to correlate these signals with visual inspection of failures. Optimized encapsulation procedures were validated in accelerated life tests of both comb patterns and a functional neuromuscular stimulator under development. Strong adhesive bonding between epoxy and electronic circuitry proved to be necessary and sufficient to predict 1 year packaging reliability of 99.97% for the neuromuscular stimulator.

  1. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].

    Guo, Xudong; Ge, Bin; Wang, Wenxing


    In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.

  2. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels


    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  3. 76 FR 71982 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...


    ... Multiplexed Microbiology Devices: Their clinical application and public health/clinical needs; inclusion of...] Advancing Regulatory Science for Highly Multiplexed Microbiology/ Medical Countermeasure Devices; Public... Multiplexed Microbiology/ Medical Countermeasure Devices'' that published in the Federal Register of August 8...

  4. Remote Access: A Vision for Mobile Medical Devices

    Herbert Ernst


    Full Text Available During the Symposium for Remote Engineering and Virtual Instrumentation held at Brasov in early July 2005 an outlook was presented regarding the future potential of remote engineering for mobile medical devices. It is the intention of this article to recapitulate the content of the initiated discussions and to stimulate work in this complex and until now largely neglected field of application.

  5. Optical tests for using smartphones inside medical devices

    Bernat, Amir S.; Acobas, Jennifer K.; Phang, Ye Shang; Hassan, David; Bolton, Frank J.; Levitz, David


    Smartphones are currently used in many medical applications and are more frequently being integrated into medical imaging devices. The regulatory requirements in existence today however, particularly the standardization of smartphone imaging through validation and verification testing, only partially cover imaging characteristics with a smartphone. Specifically, it has been shown that smartphone camera specifications are of sufficient quality for medical imaging, and there are devices which comply with the FDA's regulatory requirements for a medical device such as a device's field of view, direction of viewing and optical resolution and optical distortion. However, these regulatory requirements do not call specifically for color testing. Images of the same object using automatic settings or different light sources can show different color composition. Experimental results showing such differences are presented. Under some circumstances, such differences in color composition could potentially lead to incorrect diagnoses. It is therefore critical to control the smartphone camera and illumination parameters properly. This paper examines different smartphone camera settings that affect image quality and color composition. To test and select the correct settings, a test methodology is proposed. It aims at evaluating and testing image color correctness and white balance settings for mobile phones and LED light sources. Emphasis is placed on color consistency and deviation from gray values, specifically by evaluating the ΔC values based on the CIEL*a*b* color space. Results show that such standardization minimizes differences in color composition and thus could reduce the risk of a wrong diagnosis.

  6. Analysis of medical device materials with the local electrode atom probe

    Goodman, S.L.; Mengelt, T.J.; Ali, M.; Ulfig, R.M.; Martens, R.M.; Kelly, T.F.; Kostrna, S.L.P.; Kostrna, M.S.; Carmichael, W.J.


    Full text: As medical technology advances towards microsurgical and minimally invasive techniques, there is a drive to produce ever-smaller devices that demand higher material performance and hence enhanced nano and micro-scale control of material structure. These devices are made from stainless steel alloys, Nitinol, titanium, CoCrMo, and non-metals such as pyrolytic carbon and silicon. These applications are made possible due to suitable physical and mechanical properties, good corrosion resistance in biological environments, reasonable biocompatibility, and good manufacturability. With respect to the metals, the nano-structure and composition of the material surface, typically an oxide, is especially critical since biological responses and corrosion occur at the material-environment interface. Thus, there is an increasing need to understand the 3-D structure and composition of metallic biomaterials at the atomic scale. Three-dimensional atom probe microscopy can uniquely provide such atomic-level structural information. In the present study several of these medical device materials were examined. These include a 316L stainless steel alloy which is widely used in implanted spinal fixation devices, bone screws, cardiovascular and neurological stents, a cast CoCrMo acetabular hip cup of a Cormet metal-on-metal Hip Resurfacing System (Corin Group, Cirencester, England) that was rejected for clinical use, Nitinol wires specimens such as are used for stents and guide wires, and low temperature pyrolytic carbon as used in clinical heart valve prosthetics. (author)

  7. French Sizing of Medical Devices is not Fit for Purpose

    Kibriya, Nabil; Hall, Rebecca; Powell, Steven; How, Thien; McWilliams, Richard G.


    PurposeThe purpose of the study is to quantify the variation in the metric equivalent of French size in a range of medical devices, from various manufacturers, used in interventional radiology.MethodsThe labelling of a range of catheters, introducers, drains, balloons, stents, and endografts was examined. Products were chosen to achieve a broad range of French sizes from several manufacturers. To assess manufacturing accuracy, eight devices were selected for measurement using a laser micrometer. The external diameters of three specimens of each device were measured at centimeter intervals along the length of the device to ensure uniformity.ResultsA total of 200 labels of interventional radiology equipment were scrutinized. The results demonstrate a wide variation in the metric equivalent of French sizing. Labelled products can vary in diameter across the product range by up to 0.79 mm.The devices selected for measurement with the non-contact laser micrometer demonstrate acceptable manufacturing consistency. The external diameter differed by 0.05 mm on average.ConclusionsOur results demonstrate wide variation in the interpretation of the French scale by different manufacturers of medical devices. This has the potential to lead to problems using coaxial systems especially when the products are from different manufacturers. It is recommended that standard labelling should be employed by all manufacturers conveying specific details of the equipment. Given the wide variation in the interpretation of the French scale, our opinion is that this scale either needs to be abandoned or be strictly defined and followed

  8. Outcomes of ventricular assist device implantation in children and young adults: the Melbourne experience.

    Shi, William Y; Marasco, Silvana F; Saxena, Pankaj; d'Udekem, Yves; Yong, Matthew S; Mitnovetski, Sergei; Brizard, Christian P; McGiffin, David C; Weintraub, Robert G; Konstantinov, Igor E


    We evaluated our experience with ventricular assist device (VAD) implantation in children and young adults. A total of 64 patients underwent VAD implantation in two centres. The mean age was 15 ± 7.2 years. Thirty-five (55%) patients were under 18 years of age. Devices implanted included the Thoratec Paracorporeal in 30 (47%) patients, Berlin Heart EXCOR in 11 (17%) and VentrAssist in 14 (22%). The diagnosis was cardiomyopathy in 53, congenital heart disease in 11, and graft failure in four patients. There were 10 (16%) in-hospital deaths. Mortality was higher in patients <18 years of age (26% compared with 3.4% for those ≥18 years, P = 0.02). The use of extracorporeal membrane oxygenation prior to VAD implantation was associated with higher mortality (P = 0.006). Seventeen (27%) patients experienced stroke. Nine patients (14%) required change of VAD because of thrombosis. Transplantation was performed in 44 patients after a mean of 131 ± 141 days on VAD, 11 patients died without transplantation and three patients currently await transplantation. The VAD was explanted in six patients because of recovery. Overall survival from VAD implantation was 69% and 61% at 5 and 10 years, respectively. The 5-year post-transplant survival for those bridged with VAD support was 91% and was comparable with a cohort of patients who did not receive a pre-transplant VAD. Children requiring pre-transplant VAD support have a higher mortality and morbidity compared with young adults. Survival after heart transplantation those supported with VADs was similar to patients of similar age who did not require pre-transplant support. © 2015 Royal Australasian College of Surgeons.

  9. - LAA Occluder View for post-implantation Evaluation (LOVE) - standardized imaging proposal evaluating implanted left atrial appendage occlusion devices by cardiac computed tomography

    Behnes, Michael; Akin, Ibrahim; Sartorius, Benjamin; Fastner, Christian; El-Battrawy, Ibrahim; Borggrefe, Martin; Haubenreisser, Holger; Meyer, Mathias; Schoenberg, Stefan O.; Henzler, Thomas


    A standardized imaging proposal evaluating implanted left atrial appendage (LAA) occlusion devices by cardiac computed tomography angiography (cCTA) has never been investigated. cCTA datasets were acquired on a 3 rd generation dual-source CT system and reconstructed with a slice thickness of 0.5 mm. An interdisciplinary evaluation was performed by two interventional cardiologists and one radiologist on a 3D multi-planar workstation. A standardized multi-planar reconstruction algorithm was developed in order to assess relevant clinical aspects of implanted LAA occlusion devices being outlined within a pictorial essay. The following clinical aspects of implanted LAA occlusion devices were evaluated within the most appropriate cCTA multi-planar reconstruction: (1) topography to neighboring structures, (2) peri-device leaks, (3) coverage of LAA lobes, (4) indirect signs of neo-endothelialization. These are illustrated within concise CT imaging examples emphasizing the potential value of the proposed cCTA imaging algorithm: Starting from anatomical cCTA planes and stepwise angulation planes perpendicular to the base of the LAA devices generates an optimal LAA Occluder View for post-implantation Evaluation (LOVE). Aligned true axial, sagittal and coronal LOVE planes offer a standardized and detailed evaluation of LAA occlusion devices after percutaneous implantation. This pictorial essay presents a standardized imaging proposal by cCTA using multi-planar reconstructions that enables systematical follow-up and comparison of patients after LAA occlusion device implantation. The online version of this article (doi:10.1186/s12880-016-0127-y) contains supplementary material, which is available to authorized users

  10. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui


    Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  11. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Shitong Mao


    Full Text Available Many medical implants need to be designed in the shape of a cylinder (rod, a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT direction is from the external power transmission pad (a planar coil to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT. The power transfer efficiency (PTE relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  12. Regulatory Science in Practice (Pharmaceuticals and Medical Devices Agency).

    Hojo, Taisuke


    Review, safety, and relief services of the Pharmaceuticals and Medical Devices Agency are primarily focused on scientifically evaluating pharmaceuticals, medical devices, and cellular and tissue-based products referring to their quality, efficacy, and safety, which requires a variety of scientific knowledge and methods. Pharmaceutical regulation should be established based on the most advanced scientific expertise at all times. In order to evaluate products that use cutting-edge technology such as induced pluripotent stem cells and information and communication technology adequately, since fiscal year 2012 the Science Committee has been established as a platform to exchange opinions among members from top-ranking domestic and international academia and to enhance personnel exchanges through the Initiative to Facilitate Development of Innovative Drugs. In addition, the Regulatory Science Center will be established in 2018 to increase the integrity of our services for product reviews and safety measures. In particular, requiring electronic data submissions for clinical trial applications followed by an advanced approach to analysis should not only enhance the quality of reviews of individual products but should also support the development of pharmaceuticals and medical devices by providing pharmaceutical affairs consultations on research and development strategies with various guidelines based on new insights resulting from product-bridging data analysis. Moreover, a database including electronic health records with comprehensive medical information collected mainly from 10 cooperating medical institutions will be developed with the aim of developing safety measures in a more timely manner using methods of pharmacoepidemiological analysis.

  13. Magnesium as a biodegradable and bioabsorbable material for medical implants

    Brar, Harpreet S.; Platt, Manu O.; Sarntinoranont, Malisa; Martin, Peter I.; Manuel, Michele V.


    For many years, stainless steel, cobalt-chromium, and titanium alloys have been the primary biomaterials used for load-bearing applications. However, as the need for structural materials in temporary implant applications has grown, materials that provide short-term structural support and can be reabsorbed into the body after healing are being sought. Since traditional metallic biomaterials are typically biocompatible but not biodegradable, the potential for magnesium-based alloys in biomedical applications has gained more interest. This paper summarizes the history and current status of magnesium as a bioabsorbable implant material. Also discussed is the development of a magnesium-zinc-calcium alloy that demonstrates promising degradation behavior.

  14. Lessons learned: mobile device encryption in the academic medical center.

    Kusche, Kristopher P


    The academic medical center is faced with the unique challenge of meeting the multi-faceted needs of both a modern healthcare organization and an academic institution, The need for security to protect patient information must be balanced by the academic freedoms expected in the college setting. The Albany Medical Center, consisting of the Albany Medical College and the Albany Medical Center Hospital, was challenged with implementing a solution that would preserve the availability, integrity and confidentiality of business, patient and research data stored on mobile devices. To solve this problem, Albany Medical Center implemented a mobile encryption suite across the enterprise. Such an implementation comes with complexities, from performance across multiple generations of computers and operating systems, to diversity of application use mode and end user adoption, all of which requires thoughtful policy and standards creation, understanding of regulations, and a willingness and ability to work through such diverse needs.

  15. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo


    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  16. Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation.

    Stulak, John M; Deo, Salil; Schirger, John; Aaronson, Keith D; Park, Soon J; Joyce, Lyle D; Daly, Richard C; Pagani, Francis D


    Because no series has specifically analyzed the impact of preoperative atrial fibrillation (AF) on patients already at higher risk of thromboembolism after implantation of a left ventricular assist device (LVAD), we review our experience with these patients. Between July 2003 and September 2011, 389 patients (308 male) underwent implantation of a continuous flow LVAD at University of Michigan Hospital and Mayo Clinic. Median age at implant was 60 years (range, 18 to 79 years). Preoperative AF was present in 120 patients (31%). Outcomes were analyzed for the association of preoperative AF and postoperative thromboembolic (TE) events defined as stroke, transient ischemic attack, hemolysis, or pump thrombosis. Thromboembolic events occurring within the first 30 days were not counted. One hundred thirty-eight TEs events occurred in 97/389 patients (25%) for an event rate of 0.31 TE events/patient-years of support. Freedom from a TE event in patients with preoperative AF was 62% at 1 year and 46% at 2 years compared with 79% and 72% at 1 and 2 years, respectively, in patients without preoperative AF (p < 0.001). Median survival was 10 months (maximum 7.2 years, total 439 patient-years). Preoperative AF did not decrease late survival at 1 and 2 years after LVAD implant (preop AF: 85% and 70% versus no preop AF: 82% and 70%, respectively; p = 0.55). Patients with preoperative AF have a lower freedom from TE events after LVAD implant. While overall late survival was not significantly reduced in these patients, refinement in anticoagulation strategies after VAD implant may be required. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications.

    Tran, Phong A; Hocking, Dianna M; O'Connor, Andrea J


    Bacterial infection associated with medical devices remains a challenge to modern medicine as more patients are being implanted with medical devices that provide surfaces and environment for bacteria colonization. In particular, bacteria are commonly found to adhere more preferably to hydrophobic materials and many of which are used to make medical devices. Bacteria are also becoming increasingly resistant to common antibiotic treatments as a result of misuse and abuse of antibiotics. There is an urgent need to find alternatives to antibiotics in the prevention and treatment of device-associated infections world-wide. Silver nanoparticles have emerged as a promising non-drug antimicrobial agent which has shown effectiveness against a wide range of both Gram-negative and Gram-positive pathogen. However, for silver nanoparticles to be clinically useful, they must be properly incorporated into medical device materials whose wetting properties could be detrimental to not only the incorporation of the hydrophilic Ag nanoparticles but also the release of active Ag ions. This study aimed at impregnating the hydrophobic polycaprolactone (PCL) polymer, which is a FDA-approved polymeric medical device material, with hydrophilic silver nanoparticles. Furthermore, a novel approach was employed to uniformly, incorporate silver nanoparticles into the PCL matrix in situ and to improve the release of Ag ions from the matrix so as to enhance antimicrobial efficacy. Copyright © 2014. Published by Elsevier B.V.

  18. Comparison of early versus delayed timing of left ventricular assist device implantation as a bridge-to-transplantation: An analysis of the UNOS dataset.

    Kitada, Shuichi; Schulze, P Christian; Jin, Zhezhen; Clerkin, Kevin; Homma, Shunichi; Mancini, Donna M


    Placement of left ventricular assist devices (LVAD) as a bridge-to-heart transplantation (HTx) has rapidly expanded due to organ donor shortage. However, the timing of LVAD implantation is variable and it remains unclear if earlier implantation improves survival. We analyzed 14,187 adult candidates from the United Network of Organ Sharing database. Patients were classified by 3 treatment strategies including patients medically treated alone (MED, n=11,009), patients on LVAD support at listing (Early-LVAD, n=1588) and patients undergoing LVAD placement while awaiting HTx (Delayed-LVAD, n=1590). Likelihood of HTx and event-free survival were assessed in patients subcategorized by clinical strategies and UNOS status at listing. The device support strategy, despite the timing of placement, was not associated with increased likelihood of HTx compared to MED group. However, both LVAD implantation strategies showed better survival compared to MED group (Early-LVAD: HR 0.811 and 0.633, 95% CI 0.668-0.984 and 0.507-0.789, for 1A and 1B; p=0.034 and p<0.001, Delayed-LVAD: HR 0.553 and 0.696, 95% CI 0.415-0.736 and 0.571-0.847, for 1A and 1B; both p<0.001, respectively). Furthermore, there was no significant difference in survival between these LVAD implantation strategies in patients listed as 1B (p=0.500), although Early-LVAD implantation showed worse survival in patients listed as 1A (HR 1.467, 95% CI 1.076-2.000; p=0.015). LVAD support strategies offer a safe bridge-to-HTx. Those candidates who receive urgent upfront LVAD implantation for HTx, and improve to 1B status, would achieve competitive survival with those who receive elective LVAD implantation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.

    Haghi, Mostafa; Thurow, Kerstin; Stoll, Regina


    Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.

  20. Feasibility of energy harvesting techniques for wearable medical devices.

    Voss, Thaddaeus J; Subbian, Vignesh; Beyette, Fred R


    Wearable devices are arguably one of the most rapidly growing technologies in the computing and health care industry. These systems provide improved means of monitoring health status of humans in real-time. In order to cope with continuous sensing and transmission of biological and health status data, it is desirable to move towards energy autonomous systems that can charge batteries using passive, ambient energy. This not only ensures uninterrupted data capturing, but could also eliminate the need to frequently remove, replace, and recharge batteries. To this end, energy harvesting is a promising area that can lead to extremely power-efficient portable medical devices. This paper presents an experimental prototype to study the feasibility of harvesting two energy sources, solar and thermoelectric energy, in the context of wearable devices. Preliminary results show that such devices can be powered by transducing ambient energy that constantly surrounds us.

  1. Field Safety Notes in Product Problems of Medical Devices for Use in Pulmonology.

    Hannig, Jürgen; Siekmeier, Rüdiger


    The current European system for medical devices is governed by three EC directives: the Medical Device Directive 93/42/EEC, the In-Vitro Diagnostic Directive 98/79/EC and the Active Implantable Medical Device Directive 90/385/EEC and regulates marketing and post-market surveillance of medical devices in the European Economic Area. In cases of incidents and field safety corrective actions (FSCA) manufacturers have to inform the responsible Competent Authority, which is the Federal Institute for Drugs and Medical Devices (BfArM) and the public by field safety notices (FSN). In this study we analyzed FSN of medical devices exclusively serving for diagnostics or treatment in pulmonology (e.g. nebulizers, oxygen concentrators, pulse oximeters, lung function analyzers, and non-active devices for treatment). FSCA and FSN publicized by BfArM in 2005-2013 were analyzed in respect to the MEDDEV 2.12-1 rev 8. In total 41 FSCA were publicized for the included products. German and English FSN were found in 36/35 cases, respectively. FSN were clearly characterized as FSN in 22/20 cases and declaration of the type of action was found in 27/26 cases, respectively. Product names were provided in all cases. Lot numbers or other information for product characterization were available in 7/8 and 26/24 cases, respectively. Detailed information regarding FSCA and product malfunction were found in 27/33 and 36/35 cases, respectively. Information on product related risks with previous use of the affected product was provided in 24/23 cases. In 34/34 cases manufacturers provided information to mitigate product related risks. Requests to pass FSN to persons needing awareness were found in 10/14 cases. Contact data were provided in 30/30 cases. Confirmation that the Competent Authority was informed was found in 12/14 cases and in 19/18 cases a customer confirmation was included. The obtained data suggest that there is an increasing annual number of FSCA and most FSN fulfill the criteria of

  2. A cardiac implantable device infection by Raoultella planticola in an immunocompromized patient.

    Adjodah, Chandra; D'Ivernois, Chistophe; Leyssene, David; Berneau, Jean-Baptiste; Hemery, Yann


    Introduction. Infection of cardiac implantable electronic devices is a severe condition associated with high mortality, particularly in patients who are dependent upon heart-pacing devices. Staphylococci are found in 70 % of reported cases. Case presentation. We report the case of a cardiac-pacemaker infection in a 79-year-old man, cumulating a history of rheumatoid arthritis treated by corticosteroids and methotrexate by a recently identified micro-organism: Raoultella planticola . He presented local signs of infection on his VVI pacemaker implantation site and underwent urgent pocket device replacement under cefamandole antibioprophylaxis. On incision thick pus oozed out. It was necessary to perform a complete hardware extraction comprising the pulse generator and the ancient lead. Pus was inoculated into aerobic and anaerobic culture vials and Gram staining unveiled Gram-negative rods. Microbiology analysis identified the organism as R. planticola. A new pacing device was inserted on the contrlateral pectoral region. Ciprofloxacin enabled full recovery. A literature review concerning this pathogen revealed that it is involved in severe infections such as bloodstream infections, peritonitis, cellulitis, pneumonia and lung abscesses, and urinary tract infections. In these case reports, underlying co-morbidities were identified such as solid active neoplasia, recent chemotherapy, corticosteroids, solid-organ-recipient patients and recent open surgery. Conclusion. R. planticola is a serious emerging pathogen and contributes to the burden of various infectious conditions. Its pathogenicity and occurrence should be known by clinicians and a high level of awareness is necessary to precisely identify it provide the correct antibiotic regimen.

  3. 31 CFR 594.515 - In-kind donations of medicine, medical devices, and medical services.


    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine....515 In-kind donations of medicine, medical devices, and medical services. (a) Effective July 6, 2006, nongovernmental organizations that are U.S. persons are authorized to provide in-kind donations of medicine...

  4. 31 CFR 595.513 - In-kind donations of medicine, medical devices, and medical services.


    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine...-kind donations of medicine, medical devices, and medical services. (a) Effective July 6, 2006, nongovernmental organizations that are U.S. persons are authorized to provide in-kind donations of medicine...

  5. 31 CFR 597.511 - In-kind donations of medicine, medical devices, and medical services.


    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine... Licensing Policy § 597.511 In-kind donations of medicine, medical devices, and medical services. (a... incident to the provision by nongovernmental organizations that are U.S. persons of in-kind donations of...

  6. Research on dose setting for radiation sterilization of medical device

    Zhang Tongcheng; Liu Qingfang; Zhong Hongliang; Mi Zhisu; Wang Chunlei; Jiang Jianping


    Objective: To establish the radiation sterilization dose for medical devices using data of bioburden on the medical device. Methods: Firstly determination of recovery ratio and correction coefficient of the microbiological test method was used according to ISO11737 standard, then determination of bioburden on the products, finally the dose setting was completed based on the Method 1 in ISO11137 standard. Results: Fifteen kinds of medical devices were tested. Bioburden range was from 8.6-97271.2 CFU/device, recovery ration range 54.6%-100%, correction co-efficiency range 1.00-1.83, D 10 distribution from 1.40 to 2.82 kGy, verification dose (dose at SAL = 10 -2 ) range 5.1-17.6 kGy and sterilization dose (dose at SAL 10 -6 ) range 17.5-32.5 kGy. Conclusion: One hundred samples of each kind of product were exposed to the pre-determined verification dose and then the sterility test was performed. Each sterility test showed positive number was not greater than two. This indicated that the sterilization dose established for each kind of product was statistically acceptable

  7. A model of user engagement in medical device development.

    Grocott, Patricia; Weir, Heather; Ram, Mala Bridgelal


    The purpose of this paper is to address three topical themes: user involvement in health services research; determining the value of new medical technologies in patient care pathways, furthering knowledge related to quality in health and social care; and knowledge exchange between manufacturers, health service supply chain networks and device users. The model is being validated in a case study in progress. The latter is a "proving ground" study for a translational research company. Medical devices play a pivotal role in the management of chronic diseases, across all care settings. Failure to engage users in device development inevitably affects the quality of clinical outcomes. A model of user engagement is presented, turning unmet needs for medical devices into viable commercial propositions. A case study investigating the perceptions of individuals with Epidermolysis Bullosa (EB), their lay and professional carers into unmet needs. EB is an inherited condition affecting the skin and mucosal linings that leads to blistering and wounds. Qualitative data are being collected to generate understanding of unmet needs and wound care products. These needs are being translated into new design concepts and prototypes. Prototypes will be evaluated in an n = 1 experimental design, generating quantitative outcomes data. There are generalisations from the case study, and the model outlined. New products for managing EB wounds can logically benefit other groups. The model is transferable to other clinical problems, which can benefit from research and technological advances that are integral to clinical needs and care.

  8. Single ion implantation for single donor devices using Geiger mode detectors

    Bielejec, E; Seamons, J A; Carroll, M S


    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 μm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ∼600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of -1 and 10 -4 for operation temperatures of ∼300 K and ∼77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10 -4 at an average ion number per gated window of 0.015.

  9. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries

    Charanpreet Singh


    Full Text Available Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants.

  10. A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices

    Oncescu, Vlad; Erickson, David

    In the past decade the scientific community has showed considerable interest in the development of implantable medical devices such as muscle stimulators, neuroprosthetic devices, and biosensors. Those devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper, we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10 μA cm -2. A non-enzymatic approach is preferred because of higher long term stability. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. An important characteristic of the fuel cell is that it has no membrane separating the electrodes, which results in low ohmic losses and small fuel cell volume. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2 μW cm -2 and has a sustainable power density of 1.5 μW cm -2 at 10 μA cm -2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.

  11. Management information system of medical equipment using mobile devices

    Núñez, C.; Castro, D.


    The large numbers of technologies currently incorporated into mobile devices transform them into excellent tools for capture and to manage the information, because of the increasing computing power and storage that allow to add many miscellaneous applications. In order to obtain benefits of these technologies, in the biomedical engineering field, it was developed a mobile information system for medical equipment management. The central platform for the system it's a mobile phone, which by a connection with a web server, it's capable to send and receive information relative to any medical equipment. Decoding a type of barcodes, known as QR-Codes, the management process is simplified and improved. These barcodes identified the medical equipments in a database, when these codes are photographed and decoded with the mobile device, you can access to relevant information about the medical equipment in question. This Project in it's actual state is a basic support tool for the maintenance of medical equipment. It is also a modern alternative, competitive and economic in the actual market.

  12. The role of ion-implantation in the realization of spintronic devices in diamond

    Kalish, Rafi, E-mail: [Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel)


    The application of single photons emitted by specific quantum systems is promising for quantum computers, cryptography and for other future nano-applications. These heavily rely on ion implantation both for selective single ion implantations as well as for the introduction of controlled damage with specific properties. Of particular promise is the negatively charged nitrogen-vacancy (NV{sup -}) defect center in diamond. This center has many desirable luminescence properties required for spintronic devices operational at room temperature, including a long relaxation time of the color center, emission of photons in the visible and the fact that it is produced in diamond, a material with outstanding mechanical and optical properties. This center is usually realized by nitrogen and/or vacancy producing ion implantations into diamond which, following annealing, leads to the formation of the desired NV{sup -} center. The single photons emitted by the decay of this center have to be transported to allow their exploitation. This can be best done by realizing very thin wave guides in single crystal diamond with/or without nano-scale cavities in the same diamond in which NV centers are produced. For this, advantage is taken of the unique property of heavily ion-damaged diamond to be converted, following annealing, to etchable graphite. Thus a free standing submicron thick diamond membrane containing the NV center can be obtained. If desirable, specific photonic crystal structures can be realized in them by the use of FIB. The various ion-implantation schemes used to produce NV centers in diamond, free standing diamond membranes, and photonic crystal structures in them are reviewed. The scientific problems and the technological challenges that have to be solved before actual practical realization of diamond based spintronic devices can be produced are discussed.

  13. Optimal Timing of Heart Transplant After HeartMate II Left Ventricular Assist Device Implantation.

    Steffen, Robert J; Blackstone, Eugene H; Smedira, Nicholas G; Soltesz, Edward G; Hoercher, Katherine J; Thuita, Lucy; Starling, Randall C; Mountis, Maria; Moazami, Nader


    Optimal timing of heart transplantation in patients supported with second-generation left ventricular assist devices (LVADs) is unknown. Despite this, patients with LVADs continue to receive priority on the heart transplant waiting list. Our objective was to determine the optimal timing of transplantation for patients bridged with continuous-flow LVADs. A total of 301 HeartMate II LVADs (Thoratec Corp, Pleasanton, CA) were implanted in 285 patients from October 2004 to June 2013, and 86 patients underwent transplantation through the end of follow-up. Optimal transplantation timing was the product of surviving on LVAD support and surviving transplant. Three-year survival after both HeartMate II implantation and heart transplantation was unchanged when transplantation occurred within 9 months of implantation. Survival decreased as the duration of support exceeded this. Preoperative risk factors for death on HeartMate II support were prior valve operation, prior coronary artery bypass grafting, low albumin, low glomerular filtration rate, higher mean arterial pressure, hypertension, and earlier date of implant. Survival for patients without these risk factors was lowest when transplant was performed within 3 months but was relatively constant with increased duration of support. Longer duration of support was associated with poorer survival for patients with many of these risk factors. Device reimplantation, intracranial hemorrhage, and postimplant dialysis during HeartMate II support were associated with decreased survival. Survival of patients supported by the HeartMate II is affected by preoperative comorbidities and postoperative complications. Transplantation before complications is imperative in optimizing survival. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Additive Manufacturing for Robust and Affordable Medical Devices

    Wolozny Gomez Robelo, Daniel Andre


    Additive manufacturing in the form of 3D printing is a revolutionary technology that has developed within the last two decades. Its ability to print an object with accurate features down to the micro scale have made its use in medical devices and research feasible. A range of life-saving technologies can now go from the laboratory and into field with the application of 3D-printing. This technology can be applied to medical diagnosis of patients in at-risk populations. Living biosensors a...

  15. 76 FR 65200 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee: Notice of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee: Notice of... Administration (FDA) is postponing the meeting of the General and Plastic Surgery Devices Panel of the Medical...

  16. Towards automated assistance for operating home medical devices.

    Gao, Zan; Detyniecki, Marcin; Chen, Ming-Yu; Wu, Wen; Hauptmann, Alexander G; Wactlar, Howard D


    To detect errors when subjects operate a home medical device, we observe them with multiple cameras. We then perform action recognition with a robust approach to recognize action information based on explicitly encoding motion information. This algorithm detects interest points and encodes not only their local appearance but also explicitly models local motion. Our goal is to recognize individual human actions in the operations of a home medical device to see if the patient has correctly performed the required actions in the prescribed sequence. Using a specific infusion pump as a test case, requiring 22 operation steps from 6 action classes, our best classifier selects high likelihood action estimates from 4 available cameras, to obtain an average class recognition rate of 69%.

  17. Dosimetric studies for gamma radiation validation of medical devices

    Soliman, Y.S.; Beshir, W.B.; Abdel-Fattah, A.A.; Abdel-Rehim, F.


    The delivery and validation of a specified dose to medical devices are key concerns to operators of gamma radiation facilities. The objective of the present study was to characterize the industrial gamma radiation facility and map the dose distribution inside the product-loading pattern during the validation and routine control of the sterilization process using radiochromic films. Cardboard phantoms were designed to achieve the homogeneity of absorbed doses. The uncertainty of the dose delivered during validation of the sterilization process was assessed. - Highlights: ► Using γ-rays for sterilization of hollow fiber dialyzers and blood tubing sets according to ISO 11137, 2006. ► Dosimetry studies of validations of γ-irradiation facility and sterilized medical devices. ► Places of D min and D max have been determined using FWT-60 films. ► Determining the target minimum doses required to meet the desired SAL of 10 −6 for the two products.

  18. El Centro de Cardioestimuladores del Uruguay. CCC Medical Devices

    Pablo Darscht


    Full Text Available Estudio de caso del Centro de Cardioestimuladores del Uruguay - CCC Medical Devices preparado a solicitud de Ingenio en el marco del proyecto financiado por la Iniciativa para Incubadoras de InfoDev - Grupo Banco Mundial. Este estudio detalla los pasos seguidos por una empresa nacional con un fuerte factor de innovación y los cambios producidos en el entorno de los negocios de la empresa. El comienzo de una pequeña empresa de marcapasos que tras pasar por diferentes etapas hoy gana mercados en el área de ingeniería para dispositivos médicos para diferentes empresas de investigación biomédica a nivel internacional.AbstractCase study of the Centro de Cardioestimuladores del Uruguay - CCC Medical Devices prepared on behalf of Ingenio within the project financed by de Incubator Initiative of InfoDev-World Bank Group. This study refers to the steps followed by a highly innovative local company and to the changes in its business environment. The start up of a small pacemakers company that after going through different stages is presently increasing its market share in the area of engineering of medical devices for biomedic research companies worldwide.

  19. Campaign to gather medical devices containing radium: results

    Pierre, J.P.; Vidal, J.P.; Martin, J.C.; Pasquier, J.L.


    Campaign to gather medical devices containing radium: results. On December 1, 1999, at the request of the French Health Ministry, OPRI and ANDRA launched a campaign to gather medical devices containing radium, formerly used in brachytherapy. This campaign addressed a public health issue because of the risks actually involved in a careless handling of these objects. Moreover the growing number of reported scattered radium medical devices in the last few years reinforced the necessity of the campaign. The gathering was initiated by a call of the owners (hospitals, caring centers, retired doctors or their heirs) to a toll free number. OPRI or ANDRA then appreciated the situation urgency. Priority was given to private people because most of them did not have suitable storage facilities. OPRI teams operated according a strict protocol guaranteeing their own safety, proper procedures and compliance with transport regulations for radioactive materials. 517 objects amounting to an activity of 1.32 x 10 11 Bq have been gathered in 90 operations. Properly packaged they were transported to and safely stored at the CEA Saclay site before their permanent storage in the ANDRA facilities. (author)

  20. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release

    Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Ani, C.J. [Department of Theoretical Physics, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Odusanya, O.S. [Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Federal Capital Territory (Nigeria); Oni, Y. [Department of Chemistry, Bronx Community College, New York, NY (United States); Anuku, N. [Department of Chemistry, Bronx Community College, New York, NY (United States); Princeton Institute for the Science and Technology of Materials (PRISM), 70 Prospect Street, Princeton, NJ 08544 (United States); Malatesta, K. [Department of Chemistry, Bronx Community College, New York, NY (United States); Soboyejo, W.O., E-mail: [Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Princeton Institute for the Science and Technology of Materials (PRISM), 70 Prospect Street, Princeton, NJ 08544 (United States); Department of Mechanical and Aerospace Engineering 1 Olden Street, Princeton, NJ 08544 (United States)


    This paper presents an implantable encapsulated structure that can deliver localized heating (hyperthermia) and controlled concentrations of prodigiosin (a cancer drug) synthesized by bacteria (Serratia marcesce (subsp. marcescens)). Prototypical Poly-di-methyl-siloxane (PDMS) packages, containing well-controlled micro-channels and drug storage compartments, were fabricated along with a drug-storing polymer produced by free radical polymerization of Poly(N-isopropylacrylamide)(PNIPA) co-monomers of Acrylamide (AM) and Butyl-methacrylate (BMA). The mechanisms of drug diffusion of PNIPA-base gels were elucidated. Scanning Electron Microscopy (SEM) was also used to study the heterogeneous porous structure of the PNIPA-based gels. The release exponents, n, of the gels were found to between 0.5 and 0.7. This is in the range expected for Fickian (n = 0.5). Deviation from Fickian diffusion was also observed (n > 0.5) diffusion. The gel diffusion coefficients were shown to vary between 2.1 × 10{sup −12} m{sup 2}/s and 4.8 × 10{sup −6} m{sup 2}/s. The implications of the results are then discussed for the localized treatment of cancer via hyperthermia and the controlled delivery of prodigiosin from encapsulated PNIPA-based devices. - Highlights: • Fabricated thermo-sensitive hydrogels for localized drug release from an implantable biomedical device. • Determined the cancer drug diffusion mechanisms of PNIPA-co-AM copolymer hydrogel. • Encapsulated PNIPA-based hydrogels in PDMS capsules for controlled drug delivery. • Established the kinetics of drug release from gels and channels in an implantable biomedical device. • Demonstrated the potential for the controlled release of prodigiosin (PG) as an anticancer drug.

  1. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.


    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  2. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release

    Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Ani, C.J.; Odusanya, O.S.; Oni, Y.; Anuku, N.; Malatesta, K.; Soboyejo, W.O.


    This paper presents an implantable encapsulated structure that can deliver localized heating (hyperthermia) and controlled concentrations of prodigiosin (a cancer drug) synthesized by bacteria (Serratia marcesce (subsp. marcescens)). Prototypical Poly-di-methyl-siloxane (PDMS) packages, containing well-controlled micro-channels and drug storage compartments, were fabricated along with a drug-storing polymer produced by free radical polymerization of Poly(N-isopropylacrylamide)(PNIPA) co-monomers of Acrylamide (AM) and Butyl-methacrylate (BMA). The mechanisms of drug diffusion of PNIPA-base gels were elucidated. Scanning Electron Microscopy (SEM) was also used to study the heterogeneous porous structure of the PNIPA-based gels. The release exponents, n, of the gels were found to between 0.5 and 0.7. This is in the range expected for Fickian (n = 0.5). Deviation from Fickian diffusion was also observed (n > 0.5) diffusion. The gel diffusion coefficients were shown to vary between 2.1 × 10 −12 m 2 /s and 4.8 × 10 −6 m 2 /s. The implications of the results are then discussed for the localized treatment of cancer via hyperthermia and the controlled delivery of prodigiosin from encapsulated PNIPA-based devices. - Highlights: • Fabricated thermo-sensitive hydrogels for localized drug release from an implantable biomedical device. • Determined the cancer drug diffusion mechanisms of PNIPA-co-AM copolymer hydrogel. • Encapsulated PNIPA-based hydrogels in PDMS capsules for controlled drug delivery. • Established the kinetics of drug release from gels and channels in an implantable biomedical device. • Demonstrated the potential for the controlled release of prodigiosin (PG) as an anticancer drug

  3. Bandwidth Efficient Overlapped FSK Coded Secure Command Transmission for Medical Implant Communication Systems

    Selman KULAÇ


    Full Text Available Nowadays, wireless communication systems are exploited in most health care systems. Implantable Medical Systems (IMS also have wireless communication capability. However, it is very important that secure wireless communication should be provided in terms of both patient rights and patient health. Therefore, wireless transmission systems of IMS should also be robust against to eavesdroppers and adversaries. In this study, a specific overlapped and coded frequency shift keying (FSK modulation technique is developed and security containing with low complexity is provided by this proposed technique. The developed method is suitable for wireless implantable medical systems since it provides low complexity and security as well as bandwidth efficiency.

  4. Value-based procurement of medical devices: Application to devices for mechanical thrombectomy in ischemic stroke.

    Trippoli, Sabrina; Caccese, Erminia; Marinai, Claudio; Messori, Andrea


    In the acute ischemic stroke, endovascular devices have shown promising clinical results and are also likely to represent value for money, as several modeling studies have shown. Pharmacoeconomic evaluations in this field, however, have little impact on the procurement of these devices. The present study explored how complex pharmacoeconomic models that evaluate effectiveness and cost can be incorporated into the in-hospital procurement of thrombectomy devices. As regards clinical modeling, we extracted outcomes at three months from randomized trials conducted for four thrombectomy devices, and we projected long-term results using standard Markov modeling. In estimating QALYs, the same model was run for the four devices. As regards economic modeling, we firstly estimated for each device the net monetary benefit (NMB) per patient (threshold = $60,000 per QALY); then, we simulated a competitive tender across the four products by determining the tender-based score (on a 0-to-100 scale). Prices of individual devices were obtained from manufacturers. Extensive sensitivity testing was applied to our analyses. For the four devices (Solitaire, Trevo, Penumbra, Solumbra), QALYs were 1.86, 1.52, 1,79, 1.35, NMB was $101,824, $83,546, $101,923, $69,440, and tender-based scores were 99.70, 43.43, 100, 0, respectively. Sensitivity analysis confirmed findings from base-case. Our results indicate that, in the field of thrombectomy devices, incorporating the typical tools of cost-effectiveness into the processes of tenders and procurement is feasible. Bridging the methodology of cost-effectiveness with the every-day practice of in-hospital procurement can contribute to maximizing the health returns that are generated by in-hospital expenditures for medical devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Low power digital communication in implantable devices using volume conduction of biological tissues.

    Yao, Ning; Lee, Heung-No; Sclabassi, R J; Sun, Mingui


    This work investigates the data communication problem of implantable devices using fundamental theories in communications. We utilize the volume conduction property of biological tissues to establish a digital communications link. Data obtained through animal experiments are used to analyze the time and frequency response of the volume conduction channel as well as to characterize the biological signals and noises present in the system. A low power bandwidth efficient channel-coded modulation scheme is proposed to conserve battery power and reduce the health risks associated.

  6. Technical devices for hearing-impaired individuals: cochlear implants and brain stem implants - developments of the last decade.

    Müller, Joachim


    Over the past two decades, the fascinating possibilities of cochlear implants for congenitally deaf or deafened children and adults developed tremendously and created a rapidly developing interdisciplinary research field.The main advancements of cochlear implantation in the past decade are marked by significant improvement of hearing and speech understanding in CI users. These improvements are attributed to the enhancement of speech coding strategies.The Implantation of more (and increasingly younger) children as well as the possibilities of the restoration of binaural hearing abilities with cochlear implants reflect the high standards reached by this development. Despite this progress, modern cochlear implants do not yet enable normal speech understanding, not even for the best patients. In particular speech understanding in noise remains problematic [1]. Until the mid 1990ies research concentrated on unilateral implantation. Remarkable and effective improvements have been made with bilateral implantation since 1996. Nowadays an increasing numbers of patients enjoy these benefits.

  7. Wireless induction coils embedded in diamond for power transfer in medical implants.

    Sikder, Md Kabir Uddin; Fallon, James; Shivdasani, Mohit N; Ganesan, Kumaravelu; Seligman, Peter; Garrett, David J


    Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.

  8. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C


    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metastatic Breast Cancer in Medication-Related Osteonecrosis Around Mandibular Implants.

    Favia, Gianfranco; Tempesta, Angela; Limongelli, Luisa; Crincoli, Vito; Piattelli, Adriano; Maiorano, Eugenio


    Many authors have considered dental implants to be unrelated to increased risk of medication-related osteonecrosis of the jaw (MRONJ). Nevertheless, more recently, more cases of peri-implant MRONJ (PI-MRONJ) have been described, thus becoming a challenging health problem. Also, metastatic cancer deposits are not infrequently found at peri-implant sites and this may represent an additional complication for such treatments. We present the case of a breast cancer patient with PI-MRONJ, presenting a clinically and radiologically undetected metastasis within the necrotic bone, and highlight the necessity of an accurate histopathological analysis. A 66-year-old female patient, who had received intravenous bisphosphonates for bone breast cancer metastases, came to our attention for a non-implant surgery-triggered PI-MRONJ. After surgical resection of the necrotic bone, conventional and immunohistochemical examinations were performed, which showed breast cancer deposits within the necrotic bone. Cancer patients with metastatic disease, who are undergoing bisphosphonate treatment, may develop unusual complications, including MRONJ, which is a site at risk for hosting additional metastatic deposits that may be clinically and radiologically overlooked. Such risk is increased by previous or concomitant implant procedures. Consequently, clinicians should be prudent when performing implant surgery in cancer patients with advanced-stage disease and consider the possible occurrence of peri-implant metastases while planning adequate treatments in such patients.

  10. Improvised explosive devices: pathophysiology, injury profiles and current medical management.

    Ramasamy, A; Hill, A M; Clasper, J C


    The improvised explosive device (IED), in all its forms, has become the most significant threat to troops operating in Afghanistan and Iraq. These devices range from rudimentary home made explosives to sophisticated weapon systems containing high-grade explosives. Within this broad definition they may be classified as roadside explosives and blast mines, explosive formed pojectile (EFP) devices and suicide bombings. Each of these groups causeinjury through a number of different mechanisms and can result in vastly different injury profiles. The "Global War on Terror" has meant that incidents which were previously exclusively seen in conflict areas, can occur anywhere, and clinicians who are involved in emergency trauma care may be required to manage casualties from similar terrorist attacks. An understanding of the types of devices and their pathophysiological effects is necessary to allow proper planning of mass casualty events and to allow appropriate management of the complex poly-trauma casualties they invariably cause. The aim of this review article is to firstly describe the physics and injury profile from these different devices and secondly to present the current clinical evidence that underpins their medical management.

  11. Ion implantation

    Dearnaley, Geoffrey


    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  12. Our experience with implantation of VentrAssist left ventricular assist device

    Hiriyur Shivalingappa Jayanthkumar


    Full Text Available Perioperative anaesthetic management of the VentrAssist TM left ventricular assist device (LVAD is a challenge for anaesthesiologists because patients presenting for this operation have long-standing cardiac failure and often have associated hepatic and renal impairment, which may significantly alter the pharmacokinetics of administered drugs and render the patients coagulopathic. The VentrAssist is implanted by midline sternotomy. A brief period of cardiopulmonary bypass (CPB for apical cannulation of left ventricle is needed. The centrifugal pump, which produces non-pulsatile, continuous flow, is positioned in the left sub-diaphragmatic pocket. This LVAD is preload dependent and afterload sensitive. Transoesophageal echocardiography is an essential tool to rule out contraindications and to ensure proper inflow cannula position, and following the implantation of LVAD, to ensure right ventricular (RV function. The anaesthesiologist should be prepared to manage cardiac decompensation and acute desaturation before initiation of CPB, as well as RV failure and severe coagulopathic bleeding after CPB. Three patients had undergone implantation of VentrAssist in our hospital. This pump provides flow of 5 l/min depending on preload, afterload and pump speed. All the patients were discharged after an average of 30 days. There was no perioperative mortality.

  13. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.

    Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun


    Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.

  14. Usefulness of Totally Implantable Central Venous Access Devices in Elderly Patients: A Retrospective Study.

    Imaoka, Yuki; Kuranishi, Fumito; Ogawa, Yoshiteru


    The need for totally implantable central venous access devices (TICVADs) has increased with increased opportunities in the use of chemotherapy and parenteral nutrition. This study aimed to determine the outcomes of TICVAD implantation and use in patients aged ≥85 years. Between January 2010 and August 2016, 117 patients underwent TICVAD implantation and their records were retrospectively reviewed. Participants were divided into 2 groups (plus-85 and sub-85 groups). Fifty-five patients (47.0%) had solid organ cancer alone; 35 patients (29.9%) had cerebrovascular or cranial nerve disease. The average follow-up period was 201 (2-1,620) days. Major complications were identified in 6 (14.6%) plus-85 patients and 11 (14.5%) sub-85 patients (p = 0.9813). Catheter-related infections developed in 3 plus-85 (7.3%) and 4 sub-85 patients (5.3%; p = 0.6549). There were no significant group differences in hematoma, pneumothorax, occlusion, and removal rates. In plus-85 patients examined just before surgery and a month after surgery, increased rates of serum albumin and Onodera's prognostic nutritional index were observed in 48% (14/39) and 41% (12/39), respectively. The use of TICVADs in the plus-85 group resulted in effective outcomes. The results of this retrospective study support the wider use of TICVADs in patients aged ≥85 years. © 2018 S. Karger AG, Basel.

  15. Comparison of two systems for rigidly connecting 2.0-mm bone screws to an implantable device : in vitro stability testing

    van Loon, JP; de Bont, LGM; Verkerke, GJ

    The stability of a screw-fixed implantable device can be improved by eliminating the freedom of movement between the screws and the device. Two systems have been developed for rigidly connecting 2.0-mm bone screws to an implantable device, and the aim of this study was to test and compare the

  16. A 3-DOF SOI MEMS ultrasonic energy harvester for implanted devices

    Fowler, A G; Moheimani, S O R; Behrens, S


    This paper reports the design and testing of a microelectromechanical systems (MEMS) energy harvester that is designed to harvest electrical energy from an external source of ultrasonic waves. This mechanism is potentially suited to applications including the powering of implanted devices for biomedical applications. The harvester employs a novel 3-degree of freedom design, with electrical energy being generated from displacements of a proof mass via electrostatic transducers. A silicon-on-insulator MEMS process was used to fabricate the device, with experimental characterization showing that the harvester can generate 24.7 nW, 19.8 nW, and 14.5 nW of electrical power respectively through its x-, y-, and z-axis vibrational modes

  17. Biventricular assist using a portable driver in combination with implanted devices: preliminary experience.

    von Segesser, L K; Tkebuchava, T; Leskosek, B; Marty, B; Pei, Y C; Turina, M


    Left ventricular assist systems with portable drive units are increasingly used in the clinical setting. However, such systems usually are not suitable for right ventricular support, and therefore, in the case of biventricular heart failure, they must be combined with other support devices that require additional drive consoles. As a result, most of the benefits of the wearable drive units (early mobilization and outpatient care) are lost. This present study was performed to evaluate biventricular support with implanted assist devices and a portable DC/battery-powered driver (Thoratec TLC-II). Electronic control by nonvolatile RAM accessible via RS232 interface, internal backup emergency battery, and optional manual activation are additional features of this 6 kg biventricular drive unit. In 3 bovine experiments (body weight 70 +/- 5 kg) partial cardiopulmonary bypass (CPB) was established, and two ventricular assist devices were implanted into a preperitoneal pocket on each side after connection to the right atrium and the pulmonary artery and to the left atrium and aorta, respectively. After weaning the patient from CPB, activated coagulation time (ACT) was kept at greater than 180 s, and biventricular support with the portable driver was activated. After 10 min, mean device flow stabilized at 3.5 +/- 0 L/min and remained at that level throughout the ensuing 6 h (3.5 +/- 0.3 L/min; NS). The heart rate moved from 130 +/- 13 beats per minute (bpm) at the end of CPB to 116 +/- 13 bpm after 10 min of assist (p < 0.05). Right atrial pressure moved from 11 +/- 2 mm Hg at the end of CPB to 13 +/- 3 mm Hg after 10 min of assist (not significant [NS]). Mean pulmonary artery pressure was 18 +/- mm Hg at the end of CPB and 17 +/- 5 mm Hg after 10 min of assist (NS). Left atrial pressure was 10 +/- 1 mm Hg at the end of CPB and 13 +/- 3 mm Hg after 10 min of assist (NS). Mean aortic pressure was 73 +/- 11 mm Hg at the end of CPB and 77 +/- 3 mm Hg after 10 min of assist (NS

  18. Malfunctions of Implantable Cardiac Devices in Patients Receiving Proton Beam Therapy: Incidence and Predictors

    Gomez, Daniel R.; Poenisch, Falk; Pinnix, Chelsea C.; Sheu, Tommy; Chang, Joe Y.; Memon, Nada; Mohan, Radhe; Rozner, Marc A.; Dougherty, Anne H.


    Purpose: Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods and Materials: From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIED; 28 pacemakers and 14 cardioverter-defibrillators) underwent 42 courses of PBT for thoracic (23, 55%), prostate (15, 36%), liver (3, 7%), or base of skull (1, 2%) tumors at a single institution. The median prescribed dose was 74 Gy (relative biological effectiveness; range 46.8-87.5 Gy), and the median distance from the treatment field to the CIED was 10 cm (range 0.8-40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results: Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13-21 Gy) and 346 Sv (range 11-1100 mSv). Six CIED malfunctions occurred in 5 patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and 1 patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9-8 cm), and the mean maximum neutron dose was 655 mSv (range 330-1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the elective replacement indicator message was replaced uneventfully after treatment. Conclusions: The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving

  19. Medical devices made into weapons by prisoners: an unrecognized risk.

    Hayden, J W; Laney, C; Kellermann, A L


    The alteration of a knee immobilizer into a sharp weapon by a prisoner prompted us to survey neighboring penal institutions to determine the frequency of such events. We mailed a nine-item survey to all detention facilities in Tennessee, Arkansas, and Mississippi. A second survey was sent to nonresponding institutions 6 weeks after the initial mailing. The Regional Medical Center at Memphis, the designated facility for evaluation and treatment of prisoners from the county jail and state penitentiary. Survey respondents included 25 state penitentiaries, 31 county jails, 1 state minimum-security facility, 1 state maximum-security facility, 1 work-release center, 1 county detention center for drunken-driving offenders, and 1 federal penitentiary. Of the 81 institutions surveyed, 77% responded to one of the two mailings. Forty percent responded in the affirmative when asked whether stolen or unauthorized medical equipment from outside their institutions had been discovered among inmates. When respondents were questioned as to whether medical equipment, prescribed or not, had been used or altered in a criminal manner, 34% responded "yes." Medications and medical appliances were listed in the responses. A survey of 81 local and neighboring penal institutions in a three-state area revealed that the illicit use of medicine and medical devices by prisoners is a legitimate safety concern of prison personnel and health care workers when medical care for inmates must be sought outside the security of their institutions. The modification of medical equipment into weapons by incarcerated patients, although clearly recognized as a security and safety problem by police authorities, appears to be unappreciated by health care workers providing episodic care to inmates.

  20. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    Farhadi, Rozita; Farhadi, Bita


    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  1. [Cognitive emotion regulation of patients qualified for implantation of heart rhythm control device].

    Ziętalewicz, Urszula; Jędrzejczyk, Jan; Mojkowski, Włodzimierz; Mojkowski, Dariusz


    The aim of the artificial heart stimulation is not only saving lives, but also improvement of the quality of life of patients with cardiac arrhythmias. One of the key dimensions of quality of life is psychological functioning. Until now, little research assess this dimension in patients before the implantation of the heart rhythm control device. The aim of the study was to assess the severity of depression and anxiety and the frequency of the used cognitive emotion regulation strategies and to examine the relationship between them. The study group consisted of 60 people qualified for pacemaker implantation (42 PM patients and 18 ICD): 15 women and 45 men ranging in age from 43 to 85. To assess cognitive emotion regulation strategies Cognitive Emotion Regulation Questionnaire was used, and to assess the severity of depression and anxiety - Mood Assessment Questionnaire. Patients with PM more often than patients with ICD use the strategy of Positive Reappraisal (U = 231.50, p = 0.045). There were no statistically significant differences in the frequency of use of other strategies and severity of depression and anxiety. In PM patients there are negative correlations between the severity of depression and anxiety and the use of Acceptance ( τ = -0.380), a Positive Reappraisal ( τ = -0.278), Positive Refocusing ( τ = -0.366) and between the level of anxiety and Putting into Perspective ( τ = -0.402). In ICD patients there was a positive relationship between anxiety and Cathastrophizing ( τ = 0.324). The severity of depression and anxiety, and emotion regulation strategies in patients qualified for PM implantation in comparison with patients qualified for ICD implantation are similar. Both groups of patients show a good adaptation of the psychological.

  2. Long-Term Experience with First-Generation Implantable Neurostimulation Device in Central Sleep Apnea Treatment.

    Fox, Henrik; Bitter, Thomas; Horstkotte, Dieter; Oldenburg, Olaf; Gutleben, Klaus-Jürgen


    Sleep-disordered breathing (SDB) and Cheyne-Stokes respiration (CSR) are associated with shorter survival in patients with heart failure. A novel treatment method for this patient group is unilateral phrenic nerve stimulation by the remedē® system (Respicardia Inc., Minnetonka, MN, USA), a transvenously implantable neurostimulation device, which has recently been studied in a large randomized, controlled trial. Previous literature has shown efficacy and safety of the treatment with this first-generation device, but hardly any data are available on long-term clinical parameters, the remedē® device's battery lifetime, device exchangeability, lead position stability, surgical accessibility, and manageability. We performed remedē® device replacements in consecutive patients for battery depletion, and documented clinical parameters, longevity, operation procedure, complications, and difficulties. All patients were on neurostimulation treatment by phrenic nerve neurostimulation when device replacement became necessary. Apnea-hypopnea index (from 45 ± 4/h to 9 ± 4/h), oxygen-desaturation index (from 35 ± 7/h to 7 ± 6/h), and time spent with oxygen saturation of ray documentation of stable lead positions in a long-term setting, no radiation or contrast dye usage was needed and no major complications occurred. In addition, clinical exercise capacity and sleepiness symptoms improved. Novel remedē® device shows sustained therapy efficacy and safety in terms of stable lead positions over 4 years. Long-term phrenic nerve neurostimulation therapy for central SDB/CSR appears feasible in a clinical routine setting. © 2017 Wiley Periodicals, Inc.

  3. Calculation of the ALMA Risk of Right Ventricular Failure After Left Ventricular Assist Device Implantation.

    Loforte, Antonio; Montalto, Andrea; Musumeci, Francesco; Amarelli, Cristiano; Mariani, Carlo; Polizzi, Vincenzo; Lilla Della Monica, Paola; Grigioni, Francesco; Di Bartolomeo, Roberto; Marinelli, Giuseppe


    Right ventricular failure after continuous-flow left ventricular assist device (LVAD) implantation is still an unsolved issue and remains a life-threatening event for patients. We undertook this study to determine predictors of the patients who are candidates for isolated LVAD therapy as opposed to biventricular support (BVAD). We reviewed demographic, echocardiographic, hemodynamic, and laboratory variables for 258 patients who underwent both isolated LVAD implantation and unplanned BVAD because of early right ventricular failure after LVAD insertion, between 2006 and 2017 (LVAD = 170 and BVAD = 88). The final study patients were randomly divided into derivation (79.8%, n = 206) and validation (20.1%, n = 52) cohorts. Fifty-seven preoperative risk factors were compared between patients who were successfully managed with an LVAD and those who required a BVAD. Nineteen variables demonstrated statistical significance on univariable analysis. Multivariable logistic regression analysis identified destination therapy (odds ratio [OR] 2.0 [1.7-3.9], p = 0.003), a pulmonary artery pulsatility index right ventricle/left ventricle end-diastolic diameter ratio >0.75 (OR 2.7 [1.5-5.5], p = 0.001), an right ventricle stroke work index 17 (OR 3.5 [1.9-6.9], p the major predictors of the need for BVAD. Using these data, we propose a simple risk calculator to determine the suitability of patients for isolated LVAD support in the era of continuous-flow mechanical circulatory support devices.

  4. Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs.

    Attanasio, Chiara; Latancia, Marcela T; Otterbein, Leo E; Netti, Paolo A


    Recent advances in the fields of artificial organs and regenerative medicine are now joining forces in the areas of organ transplantation and bioengineering to solve continued challenges for patients with end-stage renal disease. The waiting lists for those needing a transplant continue to exceed demand. Dialysis, while effective, brings different challenges, including quality of life and susceptibility to infection. Unfortunately, the majority of research outputs are far from delivering satisfactory solutions. Current efforts are focused on providing a self-standing device able to recapitulate kidney function. In this review, we focus on two remarkable innovations that may offer significant clinical impact in the field of renal replacement therapy: the implantable artificial renal assist device (RAD) and the transplantable bioengineered kidney. The artificial RAD strategy utilizes micromachining techniques to fabricate a biohybrid system able to mimic renal morphology and function. The current trend in kidney bioengineering exploits the structure of the native organ to produce a kidney that is ready to be transplanted. Although these two systems stem from different technological approaches, they are both designed to be implantable, long lasting, and free standing to allow patients with kidney failure to be autonomous. However, for both of them, there are relevant issues that must be addressed before translation into clinical use and these are discussed in this review.

  5. Long-acting reversible contraceptives: intrauterine devices and the contraceptive implant.

    Espey, Eve; Ogburn, Tony


    The provision of effective contraception is fundamental to the practice of women's health care. The most effective methods of reversible contraception are the so-called long-acting reversible contraceptives, intrauterine devices and implants. These methods have multiple advantages over other reversible methods. Most importantly, once in place, they do not require maintenance and their duration of action is long, ranging from 3 to 10 years. Despite the advantages of long-acting reversible contraceptive methods, they are infrequently used in the United States. Short-acting methods, specifically oral contraceptives and condoms, are by far the most commonly used reversible methods. A shift from the use of short-acting methods to long-acting reversible contraceptive methods could help reduce the high rate of unintended pregnancy in the United States. In this review of long-acting reversible contraceptive methods, we discuss the intrauterine devices and the contraceptive implant available in the United States, and we describe candidates for each method, noncontraceptive benefits, and management of complications.

  6. 78 FR 66941 - Design Considerations for Pivotal Clinical Investigations for Medical Devices; Guidance for...


    .... 66, rm. 2110, Silver Spring, MD 20993-0002, 301- 796-5750. For devices regulated by CBER: Stephen... the best clinical and statistical practices for investigational medical device studies. A medical...

  7. 78 FR 35940 - Content of Premarket Submissions for Management of Cybersecurity in Medical Devices; Draft...


    ...] Content of Premarket Submissions for Management of Cybersecurity in Medical Devices; Draft Guidance for... draft guidance entitled ``Content of Premarket Submissions for Management of Cybersecurity in Medical Devices.'' This guidance identifies cybersecurity issues that manufacturers should consider in preparing...

  8. Home Healthcare Medical Devices: Infusion Therapy - Getting the Most Out of Your Pump

    ... Medical Procedures Home Health and Consumer Devices Brochure - Home Healthcare Medical Devices: Infusion Therapy - Getting the Most ... if needed. What is the role of your home healthcare provider and supplier in your infusion therapy? ...

  9. Feasibility and Safety of Endovascular Stripping of Totally Implantable Venous Access Devices

    Heye, Sam; Maleux, Geert; Goossens, G. A.; Vaninbroukx, Johan; Jerôme, M.; Stas, M.


    Purpose: To evaluate the safety and feasibility of percutaneous stripping of totally implantable venous access devices (TIVAD) in case of catheter-related sleeve and to report a technique to free the catheter tip from vessel wall adherence. Materials and Methods: A total of 37 stripping procedures in 35 patients (14 men, 40%, and 21 women, 60%, mean age 53 ± 14 years) were reviewed. Totally implantable venous access devices were implanted because of malignancy in most cases (85.7%). Catheter-related sleeve was confirmed as cause of persistent catheter dysfunction despite instillation of thrombolytics. A technique to mobilize the catheter tip from the vessel wall was used when stripping with the snare catheter was impossible. Technical success, complication rate, and outcome were noted. Results: A total of 55.9% (n = 19) of the 34 technically successful procedures (91.9%) could be done with the snare catheter. In 15 cases (44.1%), additional maneuvers to free the TIVAD’s tip from the vessel wall were needed. Success rate was not significantly lower before (72.4%) than after (96.7%) implementation of the new technique (P = 0.09). No complications were observed. Follow-up was available in 67.6% of cases. Recurrent catheter dysfunction was found in 17 TIVADs (78.3%) at a mean of 137.7 days and a median of 105 days. Conclusions: Stripping of TIVADs is technically feasible and safe, with an overall success rate of 91.9%. Additional endovascular techniques to mobilize the distal catheter tip from the wall of the superior vena cava or right atrium to allow encircling the TIVAD tip with the snare catheter may be needed in 44.1% of cases.

  10. Effects of Sterilization Cycles on PEEK for Medical Device Application

    Yap, Wai Teng; Foo, Soo Leong; Lee, Teck Kheng


    The effects of the sterilization process have been studied on medical grade thermoplastic polyetheretherketone (PEEK). For a reusable medical device, material reliability is an important parameter to decide its lifetime, as it will be subjected to the continuous steam sterilization process. A spring nature, clip component was selected out of a newly designed medical device (patented) to perform this reliability study. This clip component was sterilized for a predetermined number of cycles (2, 4, 6, 8, 10, 20…100) at 121 °C for 30 min. A significant decrease of ~20% in the compression force of the spring was observed after 30 cycles, and a ~6% decrease in the lateral dimension of the clip was observed after 50 cycles. No further significant change in the compression force or dimension was observed for the subsequent sterilization cycles. Vickers hardness and differential scanning calorimetry (DSC) techniques were used to characterize the effects of sterilization. DSC results exhibited no significant change in the degree of cure and melting behavior of PEEK before and after the sterilization. Hardness measurement exhibited an increase of ~49% in hardness after just 20 cycles. When an unsterilized sample was heated for repetitive cycles without the presence of moisture (121 °C, 10 and 20 cycles), only ~7% of the maximum change in hardness was observed. PMID:29466289

  11. Effects of Sterilization Cycles on PEEK for Medical Device Application.

    Kumar, Amit; Yap, Wai Teng; Foo, Soo Leong; Lee, Teck Kheng


    The effects of the sterilization process have been studied on medical grade thermoplastic polyetheretherketone (PEEK). For a reusable medical device, material reliability is an important parameter to decide its lifetime, as it will be subjected to the continuous steam sterilization process. A spring nature, clip component was selected out of a newly designed medical device (patented) to perform this reliability study. This clip component was sterilized for a predetermined number of cycles (2, 4, 6, 8, 10, 20…100) at 121 °C for 30 min. A significant decrease of ~20% in the compression force of the spring was observed after 30 cycles, and a ~6% decrease in the lateral dimension of the clip was observed after 50 cycles. No further significant change in the compression force or dimension was observed for the subsequent sterilization cycles. Vickers hardness and differential scanning calorimetry (DSC) techniques were used to characterize the effects of sterilization. DSC results exhibited no significant change in the degree of cure and melting behavior of PEEK before and after the sterilization. Hardness measurement exhibited an increase of ~49% in hardness after just 20 cycles. When an unsterilized sample was heated for repetitive cycles without the presence of moisture (121 °C, 10 and 20 cycles), only ~7% of the maximum change in hardness was observed.

  12. 78 FR 41125 - Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting


    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0114] Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting AGENCY: Nuclear Regulatory Commission. ACTION: Policy statement; revision. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is issuing an interim Enforcement Policy that allows...

  13. Surgical Outcomes of Ahmed or Baerveldt Tube Shunt Implantation for medically Uncontrolled Traumatic Glaucoma.

    Yadgarov, Arkadiy; Liu, Dan; Crane, Elliot S; Khouri, Albert S


    To describe postoperative surgical success of either Ahmed or Baerveldt tube shunt implantation for eyes with medically uncontrolled traumatic glaucoma. A review was carried out to identify patients with traumatic glaucoma that required tube shunt implantation between 2009 and 2015 at Rutgers University in Newark, New Jersey, USA. Seventeen eyes from 17 patients met inclusion criteria, including at least 3-month postoperative follow-up. The main outcome measure was surgical success at 1-year follow-up after tube implantation. Mean preoperative intraocular pressure (IOP) was 34.1 ± 8.2 mm Hg on 3.1 ± 1.6 ocular hypotensive medications. Nine eyes (53%) sustained closed globe injury. Ten eyes (59%) received an Ahmed valve shunt and seven eyes (41%) received a Baerveldt tube shunt. Surgical success rate at 1 year postoperatively was 83%. Compared to preoperative, the mean postoperative IOP was significantly lower (16.1 ± 3.5 mm Hg, p Ahmed or Baerveldt tube shunt provided successful control of IOP in patients with medically uncontrollable traumatic glaucoma. Yadgarov A, Liu D, Crane ES, Khouri AS. Surgical Outcomes of Ahmed or Baerveldt Tube Shunt Implantation for medically Uncontrolled Traumatic Glaucoma. J Curr Glaucoma Pract 2017;11(1):16-21.

  14. Growing pains: medical device interoperability. Regulators and new standards are helping to bring about the convergence of medical devices and information management systems on IT networks.

    Degaspari, John


    Both provider organizations and medical device vendors have made significant, if slow-going, progress over the last several years to network their digitally-enabled medical devices. Recent strides in both the regulatory and standards arenas have provided renewed impetus on the part of both stakeholder groups to bring more interoperability to disparate medical devices, resulting in better security and quality of patient data.

  15. Navigating conflicts of interest for the medical device entrepreneur.

    Donovan, Aine; Kaplan, Aaron V


    The past fifty years has witnessed dramatic progress in the understanding and treatment of patients suffering from cardiovascular disease leading to symptomatic relief and impressive increases in longevity. These advances have been due in large part to the development, study and implementation of new technology. Within interventional cardiology in particular, these advances have been driven by the availability of new technology in the form of medical devices. Successful device development efforts require close collaboration among basic scientist, clinician-inventors/entrepreneurs, clinician-investigators and corporations. Though the role of the clinician is central to this process, these activities present important conflicts-of-interest (COIs). The purpose of this paper is to 1) characterize these conflicts, 2) provide a context from which to approach their management and 3) recommend management strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: Is it safe?

    Skonieczki, Brendan D., E-mail: [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States); Wells, Catherine, E-mail: [Department of Radiology, Harvard Medical School/Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 (United States); Wasser, Elliot J., E-mail: [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States); Dupuy, Damian E., E-mail: [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States)


    Purpose: To identify malfunction of implanted cardiac devices during or after thermal ablation of tumors in lung, kidney, liver or bone, using radiofrequency (RF) or microwave (MW) energy. Materials and methods: After providing written consent, 19 patients (15 men and 4 women; mean age 78 years) with pacemakers or pacemaker/defibrillators underwent 22 CT image-guided percutaneous RF or MW ablation of a variety of tumors. Before and after each procedure, cardiac devices were interrogated and reprogrammed by a trained cardiac electrophysiology fellow. Possible pacer malfunctions included abnormalities on electrocardiographic (EKG) monitoring and alterations in device settings. Our institutional review board approved this Health Insurance Portability and Accountability Act-compliant study. Informed consent for participation in this retrospective study was deemed unnecessary by our review board. Results: During 20 of 22 sessions, no abnormalities were identified in continuous, EKG tracings or pacemaker functions. However, in two sessions significant changes, occurred in pacemaker parameters: inhibition of pacing during RF application in one, session and resetting of mode by RF energy in another session. These changes did not, result in hemodynamic instability of either patient. MW ablation was not associated with, any malfunction. In all 22 sessions, pacemakers were undamaged and successfully reset to original parameters. Conclusion: RF or MW ablation of tumors in liver, kidney, bone and lung can be performed safely in patients with permanent intra-cardiac devices, but careful planning between radiology and cardiology is essential to avoid adverse outcomes.


    O. M. Rozhnova


    Full Text Available The objective of the research is a review of approaches to the evaluation of biocompatibility of medical devices on the basis of metals and alloys, and to find ways of overcoming the low engraftment of implanted structures. Implantation by artificial materials allows us to regain the use of human organs and tissues and to date has no rivals. The advantage of using metals and alloys for implanted structures is their high reliability in operation, long servicelife, and high functionality. The nature of the interaction between the human body and the implant has an impact on resource use and the durability of the structures. Manufacturers of scientific research into medical implants at the present stage are directed to obtain materials that will not adversely affect the human body, and to ensure the maximum survival rate when using them. At the same time, the data presented in the article suggests that attempts to make higher biocompatible material properties tend to reduce the development of new methods for the surface treatment and the chemical composition modulation implants. World literature demonstrates the lack of a systematic approach to the problem of increased sensitivity of patients to different metals and alloys (metal sensitization, resulting in the development of complications such as the development of aseptic inflammation and infectious complications of unstable structures, and loss of functionality. Consequently, there is a need to search for ways to improve the biocompatibility of materials used in medicine, based on an assessment of immune defense mechanisms, and the development of algorithms preoperative tactics. 

  18. 78 FR 33849 - Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request...


    ... after the public workshop on the Internet at, compact, and mobile, the number of battery-powered medical devices will continue to increase. While many...] Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request for...

  19. Evaluating and Predicting Patient Safety for Medical Devices With Integral Information Technology


    323 Evaluating and Predicting Patient Safety for Medical Devices with Integral Information Technology Jiajie Zhang, Vimla L. Patel, Todd R...errors are due to inappropriate designs for user interactions, rather than mechanical failures. Evaluating and predicting patient safety in medical ...the users on the identified trouble spots in the devices. We developed two methods for evaluating and predicting patient safety in medical devices

  20. 77 FR 8260 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Device...


    ... will be used to evaluate risks associated with medical devices which will enable FDA to take...] Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Device Reporting... comment in response to the notice. This notice solicits comments on medical device reporting (MDR...

  1. 42 CFR 410.36 - Medical supplies, appliances, and devices: Scope.


    ... 42 Public Health 2 2010-10-01 2010-10-01 false Medical supplies, appliances, and devices: Scope... Services § 410.36 Medical supplies, appliances, and devices: Scope. (a) Medicare Part B pays for the following medical supplies, appliances and devices: (1) Surgical dressings, and splints, casts, and other...

  2. Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant

    Mario Birkholz


    Full Text Available An integration concept for an implantable biosensor for the continuous monitoring of blood sugar levels is presented. The system architecture is based on technical modules used in cardiovascular implants in order to minimize legal certification efforts for its perspective usage in medical applications. The sensor chip operates via the principle of affinity viscometry, which is realized by a fully embedded biomedical microelectromechanical systems (BioMEMS prepared in 0.25-µm complementary metal–oxide–semiconductor (CMOS/BiCMOS technology. Communication with a base station is established in the 402–405 MHz band used for medical implant communication services (MICS. The implant shall operate within the interstitial tissue, and the hermetical sealing of the electronic system against interaction with the body fluid is established using titanium housing. Only the sensor chip and the antenna are encapsulated in an epoxy header closely connected to the metallic housing. The study demonstrates that biosensor implants for the sensing of low-molecular-weight metabolites in the interstitial may successfully rely on components already established in cardiovascular implantology.

  3. Plasma immersion ion implantation for the efficient surface modification of medical materials

    Slabodchikov, Vladimir A.; Borisov, Dmitry P.; Kuznetsov, Vladimir M.


    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate. The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment

  4. Establishment Of Dose Correlation During Dose Mapping On Medical Devices

    Ruzalina Baharin; Hasan Sham; Ahsanulkhaliqin Abdul Wahab


    This paper explains the work done during product dose mapping in order to get the correlation between doses at MINTec-Sinagama plant. Product used was medical devices in aluminium tubes packaged in cardboard kegs packaging with average weight of 12 kg per carton. 12 cartons were loaded in every one tote to give 0.2 g/ cm 3 of density. Ceric cerous dosimeters were placed at specific locations as indicated in SP14: Product Dose Mapping, QMS of MINTec-Sinagama around three planes. Three processes were made at different days as a three replicates to show the reproducibility of measurements. (author)

  5. Device for film deposition and implantation of ions inside pipes of low diameter

    Pogrebnjak, A.D.; Perekrjostov, V.I.; Tyurin, Yu.N.; Wood, B.P.


    Two principally new devices, which can be applied to deposit coatings inside the pipes of low diameter, have been developed. The thickness of coatings and films can be varied. To deposit coatings of a low thickness (about 2 nm) on inside pipe walls using a vacuum-arc source and a sputtering device, which is composed of the pipe applied for anode cooling, the constant magnet, the magnetic circuit, the anode, the cathode, the pipe subjected for coating deposition, the cathode holder, etc. Using this device, we have deposited TiC, Ta, Cr, TiN coatings of various thickness ranging from scores of nano-meters to several micro-meters and with very good adhesion to the substrate. To increase adhesion, we applied 10 to 20 kV voltage during ion implantation to the substrate. To study element and structure composition, we applied RBS, TEM, SEM, XRD analyses, micro-hardness, wear resistance tests and also those for corrosion resistance in acid media. Another version of the source was based on the pulsed plasma-detonation technology and applied an evaporating electrode (for implantation) and a powder, which was injected into a plasma jet. The jet velocity reached several kilometers per second. Current of several kilo-amps passed through the plasma jet and increased its energy. The produced in this way coating thickness reached 30 to 400 micro-meter. Application of the vacuum-arc source for subsequent coating deposition allowed us to improve the servicing characteristics of surface layers. We have deposited NiAl, CoAl, A1 2 O 3 , WC-Co, Hastelloy and stainless steel SS316L

  6. SU-F-T-03: Radiobiological Evaluation of a Directional Brachytherapy Device Surgically Implanted Following EBRT

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Emrich, JG; Poli, J [Drexel University College of Medicine, Philadelphia, PA (United States)


    Purpose: Preceding surgical implantation following external-beam radiotherapy (EBRT) delivery, a radiobiological evaluation was performed for a new LDR Pd-103 directional brachytherapy device (CivaSheet). As this was the first case with the device used in combination with EBRT, there was concern to determine the appropriate prescription dose. Methods: The radiobiological model of Dale (1985, 1989) was used for a permanent LDR implant including radioactive decay. The biological effective dose (BED) was converted to the equivalent dose in 2 Gy fractions (EQD2) for comparison with EBRT prescription expectations. Given IMRT delivery of 50.4 Gy, an LDR brachytherapy dose of approximately 15–20 Gy EQD2 was desired. To be specific to the treatment site (leiomyosarcoma T2bN0M0, grade 2 with R1 surgical margin), the radiobiological model required several radiobiological parameters with values taken from the literature. A sensitivity analysis was performed to determine their relative importance on the calculated BED and subsequent EQD2. The Pd-103 decay constant (λ=0.0017 h{sup −1}) was also used. DVHs were prepared for pre- and post-surgical geometries to glean the possible and realized implant geometric configuration. DVHs prepared in VariSeed9 were converted to BEDVHs and subsequently EQD2 values for each volume-element. Results: For a physical dose of 28 Gy to a 0.5 cm depth, BED=21.7 Gy and EQD2=17.6 Gy, which was near the center of the desired EQD2 range. Tumor bed (CTV=4 cm{sup 3}) coverage was 99.2% with 48 sources implanted. In order of decreasing importance from the sensitivity analysis, the radiobiological parameters were α=0.25 Gy{sup −1}, T{sub POT}=23 days, α/β=8.6 Gy, and T=1.5 h. Percentage variations in these values produced EQD2 variations of 40%, 20%, 18%, and 1%, respectively. Conclusion: This radiobiological evaluation indicated that prescription dose may be determined for comparison with the desired EQD2, and that radiobiologicalparameter

  7. Role of 18F-FDG PET/CT in the diagnosis of infective endocarditis in patients with an implanted cardiac device: a prospective study

    Graziosi, Maddalena; Lorenzini, Massimiliano; Diemberger, Igor; Pasquale, Ferdinando; Ziacchi, Matteo; Biffi, Mauro; Martignani, Cristian; Boriani, Giuseppe; Rapezzi, Claudio; Nanni, Cristina; Bonfiglioli, Rachele; Fanti, Stefano; Bartoletti, Michele; Tumietto, Fabio; Viale, Pier Luigi


    Infective endocarditis (IE) is widely underdiagnosed or diagnosed after a major delay. The diagnosis is currently based on the modified DUKE criteria, where the only validated imaging technique is echocardiography, and remains challenging especially in patients with an implantable cardiac device. The aim of this study was to assess the incremental diagnostic role of 18 F-FDG PET/CT in patients with an implanted cardiac device and suspected IE. We prospectively analysed 27 consecutive patients with an implantable device evaluated for suspected device-related IE between January 2011 and June 2013. The diagnostic probability of IE was defined at presentation according to the modified DUKE criteria. PET/CT was performed as soon as possible following the clinical suspicion of IE. Patients then underwent medical or surgical treatment based on the overall clinical evaluation. During follow-up, we considered: lead cultures in patients who underwent extraction, direct inspection and lead cultures in those who underwent surgery, and a clinical/instrumental reevaluation after at least 6 months in patients who received antimicrobial treatment or had an alternative diagnosis and were not treated for IE. After the follow-up period, the diagnosis was systematically reviewed by the multidisciplinary team using the modified DUKE criteria and considering the new findings. Among the ten patients with a positive PET/CT scan, seven received a final diagnosis of ''definite IE'', one of ''possible IE'' and two of ''IE rejected''. Among the 17 patients with a negative PET/CT scan, four were false-negative and received a final diagnosis of definite IE. These patients underwent PET/CT after having started antibiotic therapy (≥48 h) or had a technically suboptimal examination. In patients with a cardiac device, PET/CT increases the diagnostic accuracy of the modified Duke criteria for IE, particularly in the subset of patients with possible IE in whom it may help the clinician manage a

  8. Home Use Devices: How to Prepare for and Handle Power Outages for Medical Devices That Require Electricity

    ... to Create a Personal Emergency File My personal emergency file contains: □ Instructions for using the medical device and all device manuals. □ First aid kit □ Medical records □ Insurance cards □ Current home care doctor’s orders □ Plan of treatment □ What a family ...

  9. The future of the pharmaceutical, biological and medical device industry

    Burgess LJ


    Full Text Available Lesley J Burgess, Marli TerblancheTREAD Research/Cardiology Unit, Department of Internal Medicine, Tygerberg Hospital and University of Stellenbosch, Parow, South AfricaAbstract: Numerous factors contribute to the declining pharmaceutical industry on the one hand and the rapidly growing generic industry together with the growing importance of medical devices and biologicals on the other. It is clear that the pharmaceutical industry is going to undergo a change in the next decade in order to meet the current challenges facing it and ultimately sustain its profitability and growth. This paper aims to identify a number of fairly obvious trends that are likely to have a significant impact on the product development pipeline in the next decade. It is more than clear that the current production pipeline for pharmaceutical, biotechnology and medical device industries is no longer sustainable and that urgent interventions are required in order to maintain its current level of profitability.Keywords: pharmaceutical industry, personalized medicine, trends, generics, biotechnology

  10. Reducing hospital noise: a review of medical device alarm management.

    Konkani, Avinash; Oakley, Barbara; Bauld, Thomas J


    Increasing noise in hospital environments, especially in intensive care units (ICUs) and operating rooms (ORs), has created a formidable challenge for both patients and hospital staff. A major contributing factor for the increasing noise levels in these environments is the number of false alarms generated by medical devices. This study focuses on discovering best practices for reducing the number of false clinical alarms in order to increase patient safety and provide a quiet environment for both work and healing. The researchers reviewed Pub Med, Web of Knowledge and Google Scholar sources to obtain original journal research and review articles published through January 2012. This review includes 27 critically important journal articles that address different aspects of medical device alarms management, including the audibility, identification, urgency mapping, and response time of nursing staff and different solutions to such problems. With current technology, the easiest and most direct method for reducing false alarms is to individualize alarm settings for each patient's condition. Promoting an institutional culture change that emphasizes the importance of individualization of alarms is therefore an important goal. Future research should also focus on the development of smart alarms.

  11. 75 FR 1395 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-N-0606] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of Notice...) is announcing an amendment to the notice of a meeting of the General and Plastic Surgery Devices...

  12. 76 FR 42713 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of...


    ...] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of Notice... announcing an amendment to the notice of meeting of the General and Plastic Surgery Devices Panel of the... INFORMATION: In the Federal Register of July 7, 2011, FDA announced that a meeting of the General and Plastic...

  13. [Study on the reform and improvement of the medical device registration system in China].

    Wang, Lanming


    Based on the theories of the Government Regulation and Administrative Licensure, aiming at the current situations of medical device registration system in China, some policy suggestions for future reform and improvement were provided as follows. (1) change the concepts of medical device registration administration. (2) perfect the regulations of medical device registration administration. (3) reform the medical device review organizational system. (4) Optimize the procedure of review and approval. (5) set up and maintain a professional team of review and approval staff. (6) reinforce the post-marketing supervision of medical devices. (7) foster and bring into play of the role of non-government organizations.

  14. Neutrophil Responses to Sterile Implant Materials.

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  15. Frailty and outcomes after implantation of left ventricular assist device as destination therapy.

    Dunlay, Shannon M; Park, Soon J; Joyce, Lyle D; Daly, Richard C; Stulak, John M; McNallan, Sheila M; Roger, Véronique L; Kushwaha, Sudhir S


    Frailty is recognized as a major prognostic indicator in heart failure. There has been interest in understanding whether pre-operative frailty is associated with worse outcomes after implantation of a left ventricular assist device (LVAD) as destination therapy. Patients undergoing LVAD implantation as destination therapy at the Mayo Clinic, Rochester, Minnesota, from February 2007 to June 2012, were included in this study. Frailty was assessed using the deficit index (31 impairments, disabilities and comorbidities) and defined as the proportion of deficits present. We divided patients based on tertiles of the deficit index (>0.32 = frail, 0.23 to 0.32 = intermediate frail, <0.23 = not frail). Cox proportional hazard regression models were used to examine the association between frailty and death. Patients were censored at death or last follow-up through October 2013. Among 99 patients (mean age 65 years, 18% female, 55% with ischemic heart failure), the deficit index ranged from 0.10 to 0.65 (mean 0.29). After a mean follow-up of 1.9 ± 1.6 years, 79% of the patients had been rehospitalized (range 0 to 17 hospitalizations, median 1 per person) and 45% had died. Compared with those who were not frail, patients who were intermediate frail (adjusted HR 1.70, 95% CI 0.71 to 4.31) and frail (HR 3.08, 95% CI 1.40 to 7.48) were at increased risk for death (p for trend = 0.004). The mean (SD) number of days alive out of hospital the first year after LVAD was 293 (107) for not frail, 266 (134) for intermediate frail and 250 (132) for frail patients. Frailty before destination LVAD implantation is associated with increased risk of death and may represent a significant patient selection consideration. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  16. 21 CFR 874.3695 - Mandibular implant facial prosthesis.


    ... made of materials such as stainless steel, tantalum, titanium, cobalt-chromium based alloy... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mandibular implant facial prosthesis. 874.3695... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3695 Mandibular implant...

  17. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).


    ... implant). 872.3970 Section 872.3970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3970 Interarticular disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis...

  18. Advertising of medical devices: foreign experience and Ukrainian practice.

    Pashkov, Vitalii; Harkusha, Andrii; Bytiak, Oleksii

    Chosen European foreign policy vector for Ukraine establishes its obligation to enforce the process of adaptation of the EU law regulations in the internal legal policy. The approximation of Ukrainian law to the European Union (EU) "acquis communautaire" is not only the instrument for deepening our economic cooperation with the European Union, but also the important measure to enhance further development of Ukraine in general. National legislation, which regulate advertising and promotion of medical devices (MD), is not an exception. Some key points on legal regulation of abovementioned sphere is a base of this study. Ukrainian legislation, European Union`s Law Acts, EU's member-states law, WHO Acts and Recommendations, European Medical Technology Industry Association (EUCOMED) Acts. Article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. In accordance with Ukrainian legislation, there is no special law that concerns advertising on MD in Ukraine, this sphere is regulated by general law that named ≪About advertisement≫, but it doesn't take into account even main characteristics of such a special object as medical devices (MD). Moreover, the law ≪About advertisement≫ contain discrepancies in terms that are used, these contradictions, in our opinion, must be eliminated by appropriate law reforms. The advertising and promotion of MD in EU is regulated by a combination of EU and national legislation of EU Member States, national advertising and promotion of MD are not harmonized with the EU MDD for now, resulting in a fragmented legal landscape that differs from one EU Member State to the other. Practice of adopting different codes and guides that regulate advertising, including advertising of MD, is widespread in EU and EU Member States and thus must be used in Ukraine with appropriate reformation of national law.

  19. An ontology-based annotation of cardiac implantable electronic devices to detect therapy changes in a national registry.

    Rosier, Arnaud; Mabo, Philippe; Chauvin, Michel; Burgun, Anita


    The patient population benefitting from cardiac implantable electronic devices (CIEDs) is increasing. This study introduces a device annotation method that supports the consistent description of the functional attributes of cardiac devices and evaluates how this method can detect device changes from a CIED registry. We designed the Cardiac Device Ontology, an ontology of CIEDs and device functions. We annotated 146 cardiac devices with this ontology and used it to detect therapy changes with respect to atrioventricular pacing, cardiac resynchronization therapy, and defibrillation capability in a French national registry of patients with implants (STIDEFIX). We then analyzed a set of 6905 device replacements from the STIDEFIX registry. Ontology-based identification of therapy changes (upgraded, downgraded, or similar) was accurate (6905 cases) and performed better than straightforward analysis of the registry codes (F-measure 1.00 versus 0.75 to 0.97). This study demonstrates the feasibility and effectiveness of ontology-based functional annotation of devices in the cardiac domain. Such annotation allowed a better description and in-depth analysis of STIDEFIX. This method was useful for the automatic detection of therapy changes and may be reused for analyzing data from other device registries.

  20. Si+ and N+ ion implantation for improving blood compatibility of medical poly(methyl methacrylate)

    Li, D.J.; Cui, F.Z; Cui, F.Z.


    Si + and N + ion implantation into medical poly(methyl methacrylate) (PMMA) were performed at an energy of 80 keV with fluences ranging from 5x10 12 to 5x10 15 ions/cm 2 at room temperature to improve blood compatibility. The results of the blood contacting measurements in vitro showed that the anticoagulability and anticalcific behaviour on the surface morphology were enhanced after ion implantation. No appreciable change in the surface morphology was detected by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) analysis indicated that ion implantation broke some original chemical bonds on the surface to form some new Si- and N-containing groups. These results were considered responsible for the enhancement in the blood compatibility of PMMA. (author)

  1. The current situation and development of medical device testing institutes in China.

    Yang, Xiaofang; Mu, Ruihong; Fan, Yubo; Wang, Chunren; Li, Deyu


    This article analyses the current situation and development of Chinese medical device testing institutes from the perspectives of the two most important functions - testing functions and medical device standardization functions. Areas Covered: The objective of the Chinese government regulations for medical device industry is to ensure the safety and effectiveness of medical devices for Chinese patients. To support the regulation system, the Chinese government has established medical device testing institutes at different levels for example, the national, provincial, and municipal levels. These testing institutes also play an important role in technical support during medical device premarket registration and post market surveillance, they are also the vital practitioners of Chinese medical device standardization. Expert Commentary: Chinese medical device testing institutes are technical departments established by government, and serve the regulatory functions of government agency. In recent years, with the rapid development of medical device industry as well as constantly increasing international and domestic medical device market, the importance of medical device testing institute is more prominent, However, there are still some problems unsolved, such as their overall capacity remains to be improved, construction of standardization is to be strengthened, etc.

  2. Operation and control of an ion-implantation/sputtering storage device for 85Kr

    McClanahan, E.D.; Moss, R.W.; Greenwell, E.N.


    The design and operation of a device for implanting 85 Kr in a sputtered Cu-Y alloy for long-term storage tests are described. A total of approx.400 Ci of 85 Kr, in a 4.2% mixture with nonradioactive isotopes, was implanted in three batches at a rate of 6.1 sccm. A triode discharge operating at a pressure of 0.4 Pa with a plasma current of 4.5 A was maintained with a potential of 67 V. The target and substrate potentials were 2400 and 290, respectively, with an ion current density of approx.100 A/m 2 . The discharge and pumping action was started with nonradioactive Kr, then was switched to the radioactive gas until all in the reservoir was consumed, then again was switched to the nonradioactive gas to apply a closeout layer. The control feature used made it possible to empty the 85 Kr reservoir without use of an auxiliary pumping system. 13 refs., 4 figs

  3. DEGRO/DGK guideline for radiotherapy in patients with cardiac implantable electronic devices

    Gauter-Fleckenstein, Benjamin; Steil, Volker; Wenz, Frederik; Israel, Carsten W.; Dorenkamp, Marc; Dunst, Juergen; Roser, Mattias; Schimpf, Rainer; Schaefer, Joerg; Hoeller, Ulrike


    An increasing number of patients undergoing radiotherapy (RT) have cardiac implantable electronic devices [CIEDs, cardiac pacemakers (PMs) and implanted cardioverters/defibrillators (ICDs)]. Ionizing radiation can cause latent and permanent damage to CIEDs, which may result in loss of function in patients with asystole or ventricular fibrillation. Reviewing the current literature, the interdisciplinary German guideline (DEGRO/DGK) was developed reflecting patient risk according to type of CIED, cardiac condition, and estimated radiation dose to the CIED. Planning for RT should consider the CIED specifications as well as patient-related characteristics (pacing-dependent, previous ventricular tachycardia/fibrillation). Antitachyarrhythmia therapy should be suspended in patients with ICDs, who should be under electrocardiographic monitoring with an external defibrillator on stand-by. The beam energy should be limited to 6 (to 10) MV CIEDs should never be located in the beam, and the cumulative scatter radiation dose should be limited to 2 Gy. Personnel must be able to respond adequately in the case of a cardiac emergency and initiate basic life support, while an emergency team capable of advanced life support should be available within 5 min. CIEDs need to be interrogated 1, 3, and 6 months after the last RT due to the risk of latent damage. (orig.) [de

  4. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.

    Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred


    This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.

  5. Rechargeable membraneless glucose biobattery: Towards solid-state cathodes for implantable enzymatic devices

    Yazdi, Alireza Ahmadian; Preite, Roberto; Milton, Ross D.; Hickey, David P.; Minteer, Shelley D.; Xu, Jie


    Enzymatic biobatteries can be implanted in living organisms to exploit the chemical energy stored in physiological fluids. Generally, commonly-used electron donors (such as sugars) are ubiquitous in physiological environments, while electron acceptors such as oxygen are limited due to many factors including solubility, temperature, and pressure. The wide range of solid-state cathodes, however, may replace the need for oxygen breathing electrodes and serve in enzymatic biobatteries for implantable devices. Here, we have fabricated a glucose biobattery suitable for in vivo applications employing a glucose oxidase (GOx) anode coupled to a solid-state Prussian Blue (PB) thin-film cathode. PB is a non-toxic material and its electrochemistry enables fast regeneration if used in a secondary cell. This novel biobattery can effectively operate in a membraneless architecture as PB can reduce the peroxide produced by some oxidase enzymes. The resulting biobattery delivers a maximum power and current density of 44 μW cm-2 and 0.9 mA cm-2 , respectively, which is ca. 37% and 180% higher than an equivalent enzymatic fuel cell equipped with a bilirubin oxidase cathode. Moreover, the biobattery demonstrated a stable performance over 20 cycles of charging and discharging periods with only ca. 3% loss of operating voltage.

  6. Remote monitoring of implantable cardiac devices: current state and future directions.

    Ganeshan, Raj; Enriquez, Alan D; Freeman, James V


    Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.

  7. Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard.

    Janß, Armin; Thorn, Johannes; Schmitz, Malte; Mildner, Alexander; Dell'Anna-Pudlik, Jasmin; Leucker, Martin; Radermacher, Klaus


    Nowadays, only closed and proprietary integrated operating room systems (IORS) from big manufacturers are available on the market. Hence, the interconnection of components from third-party vendors is only possible with increased time and costs. In the context of the German Federal Ministry of Education and Research (BMBF)-funded project OR.NET (2012-2016), the open integration of medical devices from different manufacturers was addressed. An integrated operating theater based on the open communication standard IEEE 11073 shall give clinical operators the opportunity to choose medical devices independently of the manufacturer. This approach would be advantageous especially for hospital operators and small- and medium-sized enterprises (SME) of medical devices. Actual standards and concepts regarding technical feasibility and the approval process do not cope with the requirements for a modular integration of medical devices in the operating room (OR), based on an open communication standard. Therefore, innovative approval strategies and corresponding certification and test procedures, which cover actual legal and normative standards, have to be developed in order to support the future risk management and the usability engineering process of open integrated medical devices in the OR. The use of standardized device and service profiles and a three-step testing procedure, including conformity, interoperability and integration tests are described in this paper and shall support the manufacturers to integrate their medical devices without disclosing the medical devices' risk analysis and related confidential expertise or proprietary information.

  8. Optimal position of the transmitter coil for wireless power transfer to the implantable device.

    Jinghui Jian; Stanaćević, Milutin


    The maximum deliverable power through inductive link to the implantable device is limited by the tissue exposure to the electromagnetic field radiation. By moving away the transmitter coil from the body, the maximum deliverable power is increased as the magnitude of the electrical field at the interface with the body is kept constant. We demonstrate that the optimal distance between the transmitter coil and the body is on the order of 1 cm when the current of the transmitter coil is limited to 1 A. We also confirm that the conditions on the optimal frequency of the power transmission and the topology of the transmission coil remain the same as if the coil was directly adjacent to the body.

  9. Cochlear Implant

    Mehrnaz Karimi


    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  10. In vivo delivery of recombinant human growth hormone from genetically engineered human fibroblasts implanted within Baxter immunoisolation devices.

    Josephs, S F; Loudovaris, T; Dixit, A; Young, S K; Johnson, R C


    Continuous delivery of therapeutic peptide to the systemic circulation would be the optimal treatment for a variety of diseases. The Baxter TheraCyte system is a membrane encapsulation system developed for implantation of tissues, cells such as endocrine cells or cell lines genetically engineered for therapeutic peptide delivery in vivo. To demonstrate the utility of this system, cell lines were developed which expressed human growth hormone (hGH) at levels exceeding 1 microgram per million cells per day. These were loaded into devices which were then implanted into juvenile nude rats. Significant levels of hGH of up to 2.5 ng/ml were detected in plasma throughout the six month duration of the study. In contrast, animals implanted with free cells showed peak plasma levels of 0.5 to 1.2 ng four days after implantation with no detectable hGH beyond 10 days. Histological examination of explanted devices showed they were vascularized and contained cells that were viable and morphologically healthy. After removal of the implants, no hGH could be detected which confirmed that the source of hGH was from cells contained within the device. The long term expression of human growth hormone as a model peptide has implications for the peptide therapies for a variety of human diseases using membrane encapsulated cells.

  11. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices

    Genina, Natalja; Hollander, Jenny; Jukarainen, Harri


    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS......) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug...... affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30 days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable...

  12. Evolution and acceptability of medical applications of RFID implants among early users of technology.

    Smith, Alan D


    RFID as a wireless identification technology that may be combined with microchip implants have tremendous potential in today's market. Although these implants have their advantages and disadvantages, recent improvements how allowed for implants designed for humans. Focus was given to the use of RFID tags and its effects on technology and CRM through a case study on VeriChip, the only corporation to hold the rights and the patent to the implantable chip for humans, and an empirically based study on working professionals to measure perceptions by early adopters of such technology. Through hypotheses-testing procedures, it was found that although some resistance to accept microchip implants was found in several applications, especially among gender, it was totally expected that healthcare and medical record keeping activities would be universally treated in a positive light and the use of authorities (namely governmental agencies) would be equally treated in a negative light by both sexes. Future trends and recommendations are presented along with statistical results collected through personal interviews.

  13. Biomaterials in medical devices: an interview with Jörg Vienken of Fresenius Medical Care, Germany.

    Vienken, Jörg


    Biomaterial and biopolymer research have significant impact on the development as well as application of biotechnology. Biotechnology Journal recently attended the "Nanomaterials for Biomedical Technologies 2012" conference. We were privileged to have the opportunity to ask Prof. Dr. Jörg Vienken, VP of BioSciences at Fresenius Medical Care, a few questions relating to medical devices, the importance of publishing for industry, and also his advice for young scientists/engineers looking for a career in industry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W.


    Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering...

  15. A multicenter retrospective comparison of goniotomy versus trabecular bypass device implantation in glaucoma patients undergoing cataract extraction

    Dorairaj SK


    Full Text Available Syril K Dorairaj,1 Malik Y Kahook,2 Blake K Williamson,3 Leonard K Seibold,4 Mohammed K ElMallah,5 Inder P Singh6 On behalf of the KDB Goniotomy Study Group 1Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, 2School of Medicine, University of Colorado, Denver, CO, 3Williamson Eye Center, Baton Rouge, LA, 4School of Medicine, University of Colorado, Aurora, CO, 5Ocala Eye, Ocala, FL, 6The Eye Center of Racine and Kenosha, Kenosha, WI, USA Purpose: The aim of this study was to compare intraocular pressure (IOP outcomes in eyes with cataract and glaucoma undergoing phacoemulsification (phaco in combination with goniotomy using the Kahook Dual Blade (KDB or implantation of a single iStent trabecular bypass device.Methods: Retrospective analysis of IOP and IOP-lowering medication reduction in eyes undergoing phaco-goniotomy with KDB (n=237 or phaco-iStent (n=198. Preoperative, intraoperative, and postoperative data were collected through 6 months of follow-up. Outcome measures included mean IOP reduction, mean reduction in IOP-lowering medications, and the proportion of eyes achieving ≥20% IOP reduction or ≥1 medication reduction from baseline.Results: Mean IOP in the phaco-goniotomy with KDB group decreased from 17.9±4.4 mmHg at baseline to 13.6±2.7 mmHg at Month 6 (P<0.001, with mean medication use decreasing from 1.7±0.9 to 0.6±1.0 (P<0.001. In the phaco-iStent group, mean IOP decreased from 16.7±4.4 mmHg to 13.9±2.7 mmHg (P<0.001, with mean IOP-lowering medication use decreasing from 1.9±0.9 to 1.0±1.0 (P<0.001. Mean IOP reduction from baseline was significantly greater in the phaco-goniotomy with KDB group at Month 6 (phaco-goniotomy with KDB −4.2 mmHg [23.7%] vs phaco-iStent −2.7 mmHg [16.4%]; P<0.001. IOP-lowering medication reduction was greater in the phaco-goniotomy with KDB group compared to the phaco-iStent group (1.1 vs 0.9 medications, respectively; P=0.001. The most common adverse event was IOP spikes

  16. State-of-the-art implantable cardiac assist device therapy for heart failure: bridge to transplant and destination therapy.

    Park, S J; Kushwaha, S S; McGregor, C G A


    Congestive heart failure is associated with poor quality of life (QoL) and low survival rates. The development of state-of-the-art cardiac devices holds promise for improved therapy in patients with heart failure. The field of implantable cardiac assist devices is changing rapidly with the emergence of continuous-flow pumps (CFPs). The important developments in this field, including pertinent clinical trials, registry reports, innovative research, and potential future directions are discussed in this paper.

  17. Implantation of a cardiac resynchronization therapy-defibrillator device in a patient with persistent left superior vena cava.

    Atar, İlyas; Karaçağlar, Emir; Özçalık, Emre; Özin, Bülent; Müderrisoğlu, Haldun


    Presence of a persistent left superior vena cava (PLSVC) is generally clinically asymptomatic and discovered incidentally during central venous catheterization. However, PLSVC may cause technical difficulties during cardiac device implantation. An 82-year-old man with heart failure symptoms and an ejection fraction (EF) of 20% was scheduled for resynchronization therapy-defibrillator device (CRT-D) implantation. A PLSVC draining via a dilated coronary sinus into an enlarged right atrium was diagnosed. First, an active-fixation right ventricular lead was inserted into the right atrium through the PLSVC. The stylet was preshaped to facilitate its passage to the right ventricular apex. An atrial lead was positioned on the right atrium free wall, and an over-the-wire coronary sinus lead deployed to a stable position. CRT-D implantation procedure was successfully completed.

  18. 78 FR 38994 - Implanted Blood Access Devices for Hemodialysis; Draft Guidance for Industry and Food and Drug...


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0749] Implanted Blood Access Devices for Hemodialysis; Draft Guidance for Industry and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food...

  19. Early Healing Events around Titanium Implant Devices with Different Surface Microtopography: A Pilot Study in an In Vivo Rabbit Model

    Ester Orsini


    Full Text Available In the present pilot study, the authors morphologically investigated sandblasted, acid-etched surfaces (SLA at very early experimental times. The tested devices were titanium plate-like implants with flattened wide lateral sides and jagged narrow sides. Because of these implant shape and placement site, the device gained a firm mechanical stability but the largest portion of the implant surface lacked direct contact with host bone and faced a wide peri-implant space rich in marrow tissue, intentionally created in order to study the interfacial interaction between metal surface and biological microenvironment. The insertion of titanium devices into the proximal tibia elicited a sequence of healing events. Newly formed bone proceeded through an early distance osteogenesis, common to both surfaces, and a delayed contact osteogenesis which seemed to follow different patterns at the two surfaces. In fact, SLA devices showed a more osteoconductive behavior retaining a less dense blood clot, which might be earlier and more easily replaced, and leading to a surface-conditioning layer which promotes osteogenic cell differentiation and appositional new bone deposition at the titanium surface. This model system is expected to provide a starting point for further investigations which clarify the early cellular and biomolecular events occurring at the metal surface.

  20. Possibilities of radiation sterilization for re-usage of medical devices in the medical management

    Tabei, Masae; Kudo, Hisaaki; Katsumura, Yosuke


    The rule for re-usage of medical single-use devices was established in US in 2000 based on the concept of Managed Care (total management of medicare on cost, quality and patients' satisfaction) and 20-30% of those devices are re-used at present. The re-usage is conducted in not only US but also Canada, Denmark, UK, India, China etc. Standing on the viewpoint, this paper described and discussed the possibility of re-usage of the single-use devices now prohibited in Japan, possible re-sterilization, possible re-usage of hollow fiber-type hemodialyzer following γ-ray sterilization with consideration for D-values against bacteria and viruses, cost estimation of electron beam sterilization for re-usage, and radiation sterilization of waste water and plastic materials. Radiation sterilization for re-usage of medical devices was concluded possible if their materials and records for their usage processes are proper, and should be conducted in a large scale after sufficient examinations by industries/government/academia. (N.I.)