WorldWideScience

Sample records for impedance tapering technique

  1. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    Science.gov (United States)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  2. Vertical Dynamic Impedance of Tapered Pile considering Compacting Effect

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2013-01-01

    Full Text Available Based on complex stiffness transfer model, the vertical vibration of tapered pile embedded in layered soil is theoretically investigated by considering the compacting effect of the soil layer surrounding the tapered pile in the piling process. Allowing for the stratification of the surrounding soil and variable crosssection of the tapered pile, the pile-soil system is discretized into finite segments. By virtue of the complex stiffness transfer model to simulate the compacting effect, the complex stiffness of different soil segments surrounding the tapered pile is obtained. Then, substituting the complex stiffness into the vertical dynamic governing equation of tapered pile, the analytical solution of vertical dynamic impedance of tapered pile under vertical exciting force is derived by means of the Laplace technique and impedance function transfer method. Based on the presented solutions, the influence of compacting effect of surrounding soil on vertical dynamic impedance at the pile head is investigated within the low frequency range concerned in the design of dynamic foundation.

  3. High efficiency 600-mW pHEMT distributed power amplifier employing drain impedance tapering technique

    DEFF Research Database (Denmark)

    Narendra, Kumar; Anand, Lokesh; Pragash, Sangaran;

    2008-01-01

    4-stage distributed power amplifier (DPA) employing tapering the drain load networks to achieve high efficiency is reported. The active device with enhancement mode pHEMT (pseudomorphic High Electron Mobility Transistor) technology is used. Measurement results of 600 mW, 30 % of power-aided-effic......-aided-efficiency (PAE) and gain of 10 dB is achieved within frequency range of 10–1800 MHz. Low supply voltage of 4.5 V is used for each device. Good agreement between measured and simulated results is obtained....

  4. High efficiency 600-mW pHEMT distributed power amplifier employing drain impedance tapering technique

    DEFF Research Database (Denmark)

    Narendra, Kumar; Anand, Lokesh; Pragash, Sangaran

    2008-01-01

    4-stage distributed power amplifier (DPA) employing tapering the drain load networks to achieve high efficiency is reported. The active device with enhancement mode pHEMT (pseudomorphic High Electron Mobility Transistor) technology is used. Measurement results of 600 mW, 30 % of power-aided-efficiency...... (PAE) and gain of 10 dB is achieved within frequency range of 10–1800 MHz. Low supply voltage of 4.5 V is used for each device. Good agreement between measured and simulated results is obtained....

  5. Electrochemical impedance spectroscopy investigation on the clinical lifetime of ProTaper rotary file system.

    Science.gov (United States)

    Penta, Virgil; Pirvu, Cristian; Demetrescu, Ioana

    2014-01-01

    The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.

  6. Electrochemical Impedance Spectroscopy Investigation on the Clinical Lifetime of ProTaper Rotary File System

    Science.gov (United States)

    Pirvu, Cristian; Demetrescu, Ioana

    2014-01-01

    The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects. PMID:24605336

  7. Electrochemical Impedance Spectroscopy Investigation on the Clinical Lifetime of ProTaper Rotary File System

    Directory of Open Access Journals (Sweden)

    Virgil Penta

    2014-01-01

    Full Text Available The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.

  8. High-frequency impedance of small-angle tapers and collimators

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2010-10-01

    Full Text Available Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya’s formula (for axisymmetric geometry, much less is known about the behavior of the impedance in the high-frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

  9. Artificial Inhomogeneous Tapered Impedance Sheet Characterization and Applications

    Science.gov (United States)

    2010-03-01

    properties of the φ-dependent impedance sheet. iv Acknowledgements I would like to express my deepest appreciation to my advisor Dr. Michael Havrilla ...and future. Electromagnetic Compatibility, IEEE Transactions on, 51(1):78–100, Feb. 2009. [2] B. Glover, K. Whites, M. Hyde, and M. Havrilla ...2008. [3] M.W. Hyde, M.J. Havrilla , and P.E. Crittenden. A novel method for deter- mining the r-card sheet impedance using the transmission coefficient

  10. Performance of nonsynchronous noncommensurate impedance transformers in comparison to tapered line transformers

    DEFF Research Database (Denmark)

    Kim, Kseniya; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of high- and low-impedance transmission lines. The present work is dedicated to the synthesis of such transformers. They are analyzed employing wave transmission matrices. The performance of the transformer is compared...

  11. Damage detection technique by measuring laser-based mechanical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeonseok; Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (Daehak-ro 291, Yuseong-gu, Daejeon 305-701) (Korea, Republic of)

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  12. Bladder Cancer Detection Using Electrical Impedance Technique (Tabriz Mark 1

    Directory of Open Access Journals (Sweden)

    Ahmad Keshtkar

    2012-01-01

    Full Text Available Bladder cancer is the fourth most common malignant neoplasm in men and the eighth in women. Bladder pathology is usually investigated visually by cystoscopy. In this technique, biopsies are obtained from the suspected area and then, after needed procedure, the diagnostic information can be taken. This is a relatively difficult procedure and is associated with discomfort for the patient and morbidity. Therefore, the electrical impedance spectroscopy (EIS, a minimally invasive screening technique, can be used to separate malignant areas from nonmalignant areas in the urinary bladder. The feasibility of adapting this technique to screen for bladder cancer and abnormalities during cystoscopy has been explored and compared with histopathological evaluation of urinary bladder lesions. Ex vivo studies were carried out in this study by using a total of 30 measured points from malignant and 100 measured points from non-malignant areas of patients bladders in terms of their biopsy reports matching to the electrical impedance measurements. In all measurements, the impedivity of malignant area of bladder tissue was significantly higher than the impedivity of non-malignant area this tissue (<0.005.

  13. Bladder cancer detection using electrical impedance technique (tabriz mark 1).

    Science.gov (United States)

    Keshtkar, Ahmad; Salehnia, Zeinab; Keshtkar, Asghar; Shokouhi, Behrooz

    2012-01-01

    Bladder cancer is the fourth most common malignant neoplasm in men and the eighth in women. Bladder pathology is usually investigated visually by cystoscopy. In this technique, biopsies are obtained from the suspected area and then, after needed procedure, the diagnostic information can be taken. This is a relatively difficult procedure and is associated with discomfort for the patient and morbidity. Therefore, the electrical impedance spectroscopy (EIS), a minimally invasive screening technique, can be used to separate malignant areas from nonmalignant areas in the urinary bladder. The feasibility of adapting this technique to screen for bladder cancer and abnormalities during cystoscopy has been explored and compared with histopathological evaluation of urinary bladder lesions. Ex vivo studies were carried out in this study by using a total of 30 measured points from malignant and 100 measured points from non-malignant areas of patients bladders in terms of their biopsy reports matching to the electrical impedance measurements. In all measurements, the impedivity of malignant area of bladder tissue was significantly higher than the impedivity of non-malignant area this tissue (P < 0.005).

  14. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis

    OpenAIRE

    Heidmann, Iris; Schade-Kampmann, Grit; Lambalk, Joep; Ottiger, Marcel; Di Berardino, Marco

    2016-01-01

    Introduction An efficient and reliable method to estimate plant cell viability, especially of pollen, is important for plant breeding research and plant production processes. Pollen quality is determined by classical methods, like staining techniques or in vitro pollen germination, each having disadvantages with respect to reliability, analysis speed, and species dependency. Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a comm...

  15. Development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique

    Science.gov (United States)

    Giurgiutiu, Victor; Xu, Buli

    2004-07-01

    Electromechanical (E/M) impedance method is emerging as an effective and powerful technique for structural health monitoring. The E/M impedance method utilizes as its main apparatus an impedance analyzer that reads the in-situ E/M impedance of piezoelectric wafer active sensors (PWAS) attached to the monitored structure. Laboratory-type impedance analyzers (e.g. HP4194) are bulky, heavy, and expensive. They cannot be easily carried into the field for on-site structural health monitoring. To address this issue, means of to reduce the size of the impedance analyzer making the impedance analyzer more compact and field-portable are explored. In this paper, we present a systematic approach to the development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique. Our approach consists of several developmental stages. First, we perform a simulation of the E/M Impedance technique and develop the software tools for analyzing the signal in a fast and efficient way while maintaining the desired accuracy. The objective of this signal processing part is to obtain the complex impedance, ZR+iZI)=|Z| angle arg Z, at a number of frequencies in a predetermined range. Several signal processing methods were explored such as: (a) integration method; (b) correlation method; (c) Discrete Fourier transform (DFT) method. Second, we discuss the hardware issues associated with the implementation of this approach. The hardware system architecture consists of several blocks: (a) reference signal generation; (b) voltage and current measurements; and (c) digital signal acquisition and processing. Practical results obtained during proof-of-concept experiments are presented and comparatively examined.

  16. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis.

    Science.gov (United States)

    Heidmann, Iris; Schade-Kampmann, Grit; Lambalk, Joep; Ottiger, Marcel; Di Berardino, Marco

    2016-01-01

    An efficient and reliable method to estimate plant cell viability, especially of pollen, is important for plant breeding research and plant production processes. Pollen quality is determined by classical methods, like staining techniques or in vitro pollen germination, each having disadvantages with respect to reliability, analysis speed, and species dependency. Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a common method for cellular characterisation in microbiology and medicine during the last decade. The aim of this study is to demonstrate the potential of IFC in plant cell analysis with the focus on pollen. Developing and mature pollen grains were analysed during their passage through a microfluidic chip to which radio frequencies of 0.5 to 12 MHz were applied. The acquired data provided information about the developmental stage, viability, and germination capacity. The biological relevance of the acquired IFC data was confirmed by classical staining methods, inactivation controls, as well as pollen germination assays. Different stages of developing pollen, dead, viable and germinating pollen populations could be detected and quantified by IFC. Pollen viability analysis by classical FDA staining showed a high correlation with IFC data. In parallel, pollen with active germination potential could be discriminated from the dead and the viable but non-germinating population. The presented data demonstrate that IFC is an efficient, label-free, reliable and non-destructive technique to analyse pollen quality in a species-independent manner.

  17. Performance Comparison for Virtual Impedance Techniques Used in Droop Controlled Islanded Microgrids

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril;

    2016-01-01

    of the current harmonics which can add to the voltage distortion at the PCC. This paper compares the performance of resistive, inductive, inductiveresistive and resistive-capacitive virtual impedance loops with respect to current sharing and voltage harmonic distortion at the PCC. Simulation results are given......). Virtual impedance loops were proposed in literature to improve the current sharing between the inverters by normalizing the output impedance of the inverters. However, virtual impedance loops have constraints in this respect since the improvement in the current sharing occurs through redistribution...... for a single phase microgrid setup to achieve a fair performance comparison of the different virtual impedance techniques....

  18. Investigation of Nucleation Mechanism and Tapering Observed in ZnO Nanowire Growth by Carbothermal Reduction Technique.

    Science.gov (United States)

    Kar, Ayan; Low, Ke-Bin; Oye, Michael; Stroscio, Michael A; Dutta, Mitra; Nicholls, Alan; Meyyappan, M

    2011-12-01

    ZnO nanowire nucleation mechanism and initial stages of nanowire growth using the carbothermal reduction technique are studied confirming the involvement of the catalyst at the tip in the growth process. Role of the Au catalyst is further confirmed when the tapering observed in the nanowires can be explained by the change in the shape of the catalyst causing a variation of the contact area at the liquid-solid interface of the nanowires. The rate of decrease in nanowire diameter with length on the average is found to be 0.36 nm/s and this rate is larger near the base. Variation in the ZnO nanowire diameter with length is further explained on the basis of the rate at which Zn atoms are supplied as well as the droplet stability at the high flow rates and temperature. Further, saw-tooth faceting is noticed in tapered nanowires, and the formation is analyzed crystallographically.

  19. Investigation of Nucleation Mechanism and Tapering Observed in ZnO Nanowire Growth by Carbothermal Reduction Technique

    Directory of Open Access Journals (Sweden)

    Oye Michael

    2011-01-01

    Full Text Available Abstract ZnO nanowire nucleation mechanism and initial stages of nanowire growth using the carbothermal reduction technique are studied confirming the involvement of the catalyst at the tip in the growth process. Role of the Au catalyst is further confirmed when the tapering observed in the nanowires can be explained by the change in the shape of the catalyst causing a variation of the contact area at the liquid–solid interface of the nanowires. The rate of decrease in nanowire diameter with length on the average is found to be 0.36 nm/s and this rate is larger near the base. Variation in the ZnO nanowire diameter with length is further explained on the basis of the rate at which Zn atoms are supplied as well as the droplet stability at the high flow rates and temperature. Further, saw-tooth faceting is noticed in tapered nanowires, and the formation is analyzed crystallographically.

  20. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis

    National Research Council Canada - National Science Library

    Heidmann, Iris; Schade-Kampmann, Grit; Lambalk, Joep; Ottiger, Marcel; Di Berardino, Marco

    2016-01-01

    .... Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a common method for cellular characterisation in microbiology and medicine during the last decade...

  1. A Retrofit Technique for Kicker Beam-Coupling Impedance Reduction

    CERN Document Server

    Caspers, Friedhelm; Kroyer, T; Timmins, M; Uythoven, J; Kurennoy, S

    2004-01-01

    The reduction of the impedance of operational ferrite kicker structures may be desirable in order to avoid rebuilding such a device. Often resistively coated ceramic plates or tubes are installed for this purpose but at the expense of available aperture. Ceramic U-shaped profiles with a resistive coating fitting between the ellipse of the beam and the rectangular kicker aperture have been used to significantly reduce the impedance of the magnet, while having a limited effect on the available physical aperture. Details of this method, constraints, measurements and simulation results as well as practical aspects are presented and discussed.

  2. Impedance technique for measuring dielectrophoretic collection of microbiological particles

    CERN Document Server

    Allsopp, D W E; Brown, A P; Betts, W B

    1999-01-01

    Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)

  3. Improved techniques of impedance calculation and localization in particle accelerators

    CERN Document Server

    Biancacci, Nicolò; Migliorati, Mauro; Métral, Elias; Salvant, Benoit

    In this thesis we mainly focus on particle accelerators applied to high energy physics research where a fundamental parameter, the luminosity, is maximized in order to increase the rate of particle collisions useful to particle physicists. One way to increase this parameter is to increase the intensity of the circulating beams which is limited by the onset of collective effects that may drive the beam unstable and eventually provoke beam losses or reduce the beam quality required by the particle physics experiments. One major cause of collective effects is the beam coupling impedance, a quantity that quantifies the effect of the fields scattered by a beam passing through any accelerator device. The development of an impedance budget is required in those machines that are planning substantial upgrades as shown in this thesis for the CERN PS case. The main source of impedance in the CERN LHC are the collimators. Within an impedance reduction perspective, in order to reach the goals of the planned upgrades, it ...

  4. A Computer Aided Broad Band Impedance Matching Technique Using a Comparison Reflectometer. Ph.D. Thesis

    Science.gov (United States)

    Gordy, R. S.

    1972-01-01

    An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.

  5. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    Science.gov (United States)

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation.

  6. Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique

    Directory of Open Access Journals (Sweden)

    Thanh-Canh Huynh

    2014-01-01

    Full Text Available In this paper, a portable PZT interface for tension force monitoring in the cable-anchorage subsystem is developed. Firstly, the theoretical background of the impedance-based method is presented. A few damage evaluation approaches are outlined to quantify the variation of impedance signatures. Secondly, a portable PZT interface is designed to monitor impedance signatures from the cable-anchorage subsystem. One degree-of-freedom analytical model of the PZT interface is established to explain how to represent the loss of cable force from the change in the electromechanical impedance of the PZT interface as well as reducing the sensitive frequency band by implementing the interface device. Finally, the applicability of the proposed PZT-interface technique is experimentally evaluated for cable force-loss monitoring in a lab-scaled test structure.

  7. Quantitative comparison of calcium hydroxide removal by EndoActivator, ultrasonic and ProTaper file agitation techniques: an in vitro study.

    Science.gov (United States)

    Khaleel, Huda Yasir; Al-Ashaw, Ahmed Jawad; Yang, Yan; Pang, Ai-hui; Ma, Jing-zhi

    2013-02-01

    Calcium hydroxide (CH) dressing residues can compromise endodontic sealing. This study aimed to evaluate the amount of remaining CH in root canals after mechanical removal by four groups of irrigation techniques including needle irrigation only, ProTaper file, EndoActivator, and ultrasonic file. Fifteen extracted single-rooted teeth were collected and used for all four groups. The samples were firstly prepared by ProTaper rotary instruments, and then sectioned longitudinally through the long axis of the root canals, followed by final reassembling by wires. CH was kept in the canals for 7 days setting. The removal procedure began with 5 mL of 2.5% sodium hypochlorite (NaOCl) followed by 1 mL of 17% ethylenediaminetetraacetic acid and a final irrigation with 5 mL of 2.5% NaOCl solution for all groups. No additional agitation of the irrigant was performed in group 1, while agitation for 20 s between irrigants was done with F2 ProTaper rotary file in group 2, EndoActivator with tip size 25/.04 in group 3 and by an ultrasonic file 25/.02 in group 4. The total activation time was 60 s. The roots were then disassembled and captured by digital camera. The ratio of CH coated surface area to the surface area of the whole canal as well as each third of the canal was calculated. The data were statistically analyzed by one-way ANOVA using post hoc Tukey test. Results showed that none of the four techniques could remove all CH. No significant difference was found between EndoActivator and ultrasonic techniques. However, they both removed significantly more CH than ProTaper and needle irrigation (P=0.0001). In conclusion, the sonic and ultrasonic agitation techniques were more effective in removing intracanal medicaments than the ProTaper rotary file and needle irrigation in all thirds of the canal.

  8. Characteristics of a tapered undulator for the X-ray absorption fine-structure technique at PLS-II.

    Science.gov (United States)

    Sung, Nark-Eon; Lee, Ik-Jae; Jeong, Sung-hoon; Kang, Seen-Woong

    2014-11-01

    An in-vacuum undulator (IVU) with a tapered configuration was installed in the 8C nanoprobe/XAFS beamlime (BL8C) of the Pohang Light Source in Korea for hard X-ray nanoprobe and X-ray absorption fine-structure (XAFS) experiments. It has been operated in planar mode for the nanoprobe experiments, while gap-scan and tapered modes have been used alternatively for XAFS experiments. To examine the features of the BL8C IVU for XAFS experiments, spectral distributions were obtained theoretically and experimentally as functions of the gap and gap taper. Beam profiles at a cross section of the X-ray beam were acquired using a slit to visualize the intensity distributions which depend on the gap, degree of tapering and harmonic energies. To demonstrate the effect of tapering around the lower limit of the third-harmonic energy, V K-edge XAFS spectra were obtained in each mode. Owing to the large X-ray intensity variation around this energy, XAFS spectra of the planar and gap-scan modes show considerable spectral distortions in comparison with the tapered mode. This indicates that the tapered mode, owing to the smooth X-ray intensity profile at the expense of the highest and most stable intensity, can be an alternative for XAFS experiments where the gap-scan mode gives a considerable intensity variation; it is also suitable for quick-XAFS scanning.

  9. A Wideband IM3 Cancellation Technique using Negative Impedance for LNAs with Cascode Topology

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2012-01-01

    A negative impedance is used to enable distortion cancellation between the transconductor and the cascode transistor for LNAs with a cascode topology. As a proof of concept, a resistive feedback LNA using this IM3 cancellation technique in a standard 0.16μm CMOS process shows that for 0.1GHz to 1GHz

  10. A Wideband IM3 Cancellation Technique using Negative Impedance for LNAs with Cascode Topology

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2012-01-01

    A negative impedance is used to enable distortion cancellation between the transconductor and the cascode transistor for LNAs with a cascode topology. As a proof of concept, a resistive feedback LNA using this IM3 cancellation technique in a standard 0.16μm CMOS process shows that for 0.1GHz to

  11. A cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Zhang, Jiaying; Breinbjerg, Olav

    2010-01-01

    are represented in terms of spherical wave expansions (SWEs), and the propagation is accounted for by a transmission formula. In this paper the measurement results by the proposed technique will be presented for several AUTs, including a standard gain horn antenna, a monopole antenna, and an electrically small......Impedance and gain measurements for electrically small antennas represent a great challenge due to influences of the feeding cable. The leaking current along the cable and scattering effects are two main issues caused by the feed line. In this paper, a novel cable-free antenna impedance and gain...... measurement technique for electrically small antennas is proposed. The antenna properties are extracted by measuring the signal scattered by the antenna under test (AUT), when it is loaded with three known loads. The technique is based on a rigorous electromagnetic model where the probe and AUT...

  12. Influence of a laser profile in impedance mismatch techniques applied to carbon EOS measurement

    Institute of Scientific and Technical Information of China (English)

    A.Aliverdiev; D.Batani; R.Dezulian

    2013-01-01

    We present a recent numerical analysis of impedance mismatch technique applied to carbon equation of state measurements.We consider high-power laser pulses with a Gaussian temporal profile of different durations.We show that for the laser intensity(≈1014W/cm2)and the target design considered in this paper we need to have laser pulses with rise-time less than 150 ps.

  13. Characterization and modeling of electrochemical energy conversion systems by impedance techniques

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Dino

    2012-07-01

    This work introduces (i) amendments to basic electrochemical measurement techniques in the time and frequency domain suitable for electrochemical energy conversion systems like fuel cells and batteries, which enable shorter measurement times and improved precision in both measurement and parameter identification, and (ii) a modeling approach that is able to simulate a technically relevant system just by information gained through static and impedance measurements of laboratory size cells.

  14. Damage Localization and Quantification of Truss Structure Based on Electromechanical Impedance Technique and Neural Network

    Directory of Open Access Journals (Sweden)

    Cunfu He

    2014-01-01

    Full Text Available Truss structure is widely used in civil engineering. However, it is difficult to quantitatively monitor the state of truss structures because of the connection diversity and complexity of truss structures. In this paper, electromechanical impedance (EMI technique was proposed to measure impedance spectra by using PZT elements and backpropagation (BP neural network was used as an effective nonlinear conversion tool to quantify the health state of truss structures. Firstly, frequency band of the spectrum was experimentally determined by the trial-and-error approach. Then four connection rods of this truss structure were selected for experimental research. These connection rods were loosened gradually with a small angle increment and the impedance spectra were recorded. Then, the measured data were compressed through dividing the frequency range into multiple subbands. And RMSD values of these bands showed that data points were reduced while damage features remained. Finally, one four-layered BP neural network model was constructed based on these compressed data. The research results showed that compressed impedance data could retain their damage features. After the training, the developed neural network model could not only determine the location of loosened rod, but also quantify the loosening levels.

  15. Structural characterization and impedance studies of PbO nanofibers synthesized by electrospinning technique

    Energy Technology Data Exchange (ETDEWEB)

    Hari Prasad, Kamatam [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Vinoth, S. [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Centre for Nanoscience, Pondicherry University, Puducherry, 605014 (India); Jena, Paramananda [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); School of Materials Science and Technology, Indian Institute of Technology(BHU), Varanasi, 221 005 (India); Venkateswarlu, M. [R & D, Amara Raja Batteries Ltd, Karakambadi, 517 520, A.P (India); Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Puducherry, 605 014 (India)

    2017-06-15

    One-dimensional electrospun lead oxide nanofibers synthesized by a simple electrospinning technique. The prepared lead oxide nanofibers investigated by using TG/DTA, FTIR, Raman, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analyzer, scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), Transmission electron microscopy (TEM), and impedance spectroscopy techniques. TG/DTA results confirmed the thermal behavior of the as-spun nanofibers. XRD, FTIR, and Raman spectra results, respectively, confirm the formation of pure orthorhombic crystalline phase and structural coordination of the lead oxide (β-PbO) nanofibers. The BET specific surface area of β-PbO nanofibers sample is found to be 51.23 m{sup 2} g{sup -1}. SEM and AFM micrographs showed the formation of β-PbO nanofibers with a diameter of 85–300 nm. The impedance measurements of lead oxide nanofibers as a function of temperature, 25–150 °C, was evaluated by analyzing the measured impedance data using the winfit software. The electrical conductivity of the lead oxide (β-PbO) nanofibers evaluated by analyzing the measured impedance data using the winfit software is found to be 5.68 × 10{sup -6} S cm{sup -1} at 150 °C. Also, an activation energy (E{sub a}) for the migration of the charge carrier evaluated from the temperature dependence of conductivity plot is found to be 0.27 eV. The temperature dependence AC conductivity of β-PbO nanofibers was evaluated using the measured impedance data and sample dimension. The observed variation of high-frequency AC conductivity attributed to the hopping electrons between the adjacent sites. - Highlights: • First time, β-PbO nanofibers were successfully prepared by electrospinning technique. • Structural, morphological, roughness and electrical properties are studied. • TG/DTA, XRD, FTIR, Raman, SEM/AFM, TEM-EDX, and impedance measurements were made.

  16. Detection of microbial concentration in ice-cream using the impedance technique.

    Science.gov (United States)

    Grossi, M; Lanzoni, M; Pompei, A; Lazzarini, R; Matteuzzi, D; Riccò, B

    2008-06-15

    The detection of microbial concentration, essential for safe and high quality food products, is traditionally made with the plate count technique, that is reliable, but also slow and not easily realized in the automatic form, as required for direct use in industrial machines. To this purpose, the method based on impedance measurements represents an attractive alternative since it can produce results in about 10h, instead of the 24-48h needed by standard plate counts and can be easily realized in automatic form. In this paper such a method has been experimentally studied in the case of ice-cream products. In particular, all main ice-cream compositions of real interest have been considered and no nutrient media has been used to dilute the samples. A measurement set-up has been realized using benchtop instruments for impedance measurements on samples whose bacteria concentration was independently measured by means of standard plate counts. The obtained results clearly indicate that impedance measurement represents a feasible and reliable technique to detect total microbial concentration in ice-cream, suitable to be implemented as an embedded system for industrial machines.

  17. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique

    Science.gov (United States)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing

    2016-09-01

    Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.

  18. Recanalization strategy for chronic total occlusions with tapered and stiff-tip guidewire. The results of CTO new techniQUE for STandard procedure (CONQUEST) trial.

    Science.gov (United States)

    Mitsudo, Kazuaki; Yamashita, Takehiro; Asakura, Yasushi; Muramatsu, Toshiya; Doi, Osamu; Shibata, Yoshisato; Morino, Yoshihiro

    2008-11-01

    The success rate of percutaneous coronary intervention (PCI) for chronic total coronary occlusion (CTO) lesions varies depending on the guidewire manipulation skills of the operator. The standardization of guidewire technique is very important. A new technique with a new tapered wire (Conquest, Confianza Pro) was tested to verify effectiveness for higher initial success rates and standardization of PCI for CTO. A prospective, multicenter registry was conducted at 6 investigational sites. In the CONQUEST trial, The CTO lesions were treated by using an intermediate guidewire to cross the lesion. If it did not cross, the guidewire was changed to the Conquest guidewire. If it did not cross, "seesaw-wiring" or the "parallel-wire technique" was performed. The primary endpoint was the initial procedural success rate. A total of 110 patients representing 116 CTO lesions were treated from July 2003 through March 2004. The procedural success rate was 86.2% on the first try, and 88.8% on the second try, respectively. The guidewire success rate on the second try was 90.5% during the hospital stay; no deaths, or acute myocardial infarctions were confirmed. Two patients deteriorated into tamponade, and surgical or percutaneous drainage was performed in each patient without any sequelae. A guidewire technique in PCI for CTOs that starts with the intermediate guidewire and moves to the Confianza Pro tapered guidewire, either alone or by performing a see-saw or parallel-wire technique, can achieve a high initial success rate with an acceptably low major complication rate.

  19. Monitoring the integrity of massive aluminum structures using PZT transducers and the technique of impedance

    Science.gov (United States)

    da Costa, Rosalba; Maia, Joaquim M.; Assef, Amauri A.; Pichorim, Sergio F.; Costa, Eduardo T.; L. S. N. Button, Vera

    2015-04-01

    Safety, performance, economy and durability are essential items to qualify materials for the manufacturing of structures used in different areas. Generally, the materials used for this purpose are formed by composites and sometimes they can present failure during the manufacturing process. Such failures can also occur during use due to fatigue and wear, causing damage often difficult to be visually detected. In these cases, the use of non destructive testing (NDT) has proven to be a good choice for assessing the materials quality. The objective of this work was the electromechanical impedance evaluation of massive aluminum structures using ultrasonic transducers to detect discontinuities in the material. The tests have been done using an impedance analyzer (Agilent 4294A), an ultrasound transducer (1.6 MHz of central frequency), two types of PZT ceramics (0.267 mm and 1 mm thickness) and four aluminum samples (250 x 50 x 50 mm) with the transducer placed at three different regions. One sample was kept intact (reference) and the others were drilled in three positions with different sizes of holes (5 mm. 8 mm and 11 mm). The electromechanical impedance was recorded for each sample. The root mean square deviation index (RMSD) between the impedance magnitude of the reference and damaged samples was calculated and it was observed an increase in the RMSD due to the increase of the diameter of the holes (failures) in the samples completely drilled. The results show that the proposed methodology is suitable for monitoring the integrity of aluminum samples. The technique may be evaluated in characterizing other materials to be used in the construction of prostheses and orthoses.

  20. Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor.

    Science.gov (United States)

    Mayorga Martinez, Carmen C; Treo, Ernesto F; Madrid, Rossana E; Felice, Carmelo C

    2011-11-15

    Chrono-impedance technique (CIT) was implemented as a new transduction method for real time measurement of glucose in a biosensor system based in carbon paste (CP)/Ferrocene (FC)/glucose oxidase (GOx). The system presents high selectivity because the optimal stimulation signal composed by a 165mV DC potential and 50mV(RMS) AC signal at 0.4Hz was used. The low DC potential used decreased the interfering species effect and the biosensor showed a linear impedance response toward glucose detection at concentrations from 0mM to 20mM,with 0.9853 and 0.9945 correlation coefficient for impedance module (|Z|) and phase (Φ), respectively. The results of quadruplicate sets reveal the high repeatability and reproducibility of the measurements with a relative standard deviation (RSD) less than 10%. CIT presented good accuracy (within 10% of the actual value) and precision did not exceed 15% of RSD for high concentration values and 20% for the low concentration ones. In addition, a high correlation coefficient (R(2)=0.9954) between chrono-impedance and colorimetric methods was obtained. On the other hand, when two samples prepared at the same conditions were measured in parallel with both methods (the measurement was repeated four times), it should be noticed that student's t-test produced no difference between the two mentioned methods (p=1). The biosensor system hereby presented is highly specific to glucose detection and shows a better linear range than the one reported on the previous article.

  1. Diagnosis of Lithium-Ion Batteries State-of-Health based on Electrochemical Impedance Spectroscopy Technique

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2014-01-01

    Lithium-ion batteries have developed into a popular energy storage choice for a wide range of applications because of their superior characteristics in comparison to other energy storage technologies. Besides modelling the performance behavior of Lithium-ion batteries, it has become of huge...... interest to accurately diagnose their state-of-health (SOH). At present, Lithium-ion batteries are diagnosed by performing capacity or resistance (current pulse) measurements; however, in the majority of the cases, these measurements are time consuming and result in changing the state of the battery...... as well. This paper investigates the use of the electrochemical impedance spectroscopy (EIS) technique for SOH diagnosis of Lithium-ion battery cells, instead of using the aforementioned techniques, since this new method allows for online and direct measurement of the battery cell response in any working...

  2. Impedance spectroscopy studies of surface engineered TiO2 nanoparticles using slurry technique

    Indian Academy of Sciences (India)

    Sasidhar Siddabattuni; Sri Harsha Akella; Abilash Gangula; Sandeep Patnaik

    2015-09-01

    Dielectric analysis of nanometre range size ceramic particles like TiO2 is very important in the understanding of the performance and design of their polymer nanocomposites for energy storage and other applications. In recent times, impedance spectroscopy is shown to be a very powerful tool to investigate the dielectric characteristics of not only sintered and/or pelleted ceramic materials but also particulates/powders (both micron-sized and nano-sized) using the slurry technique. In the present work, impedance spectroscopy employing slurry methodology was extended to study the influence of various chemical groups on the nano-TiO2 surface on the electrical resistivity and the dielectric permittivity of nanoparticles. In this regard, different organophosphate ligands with linear, aromatic and extended aromatic nature of organic groups were employed to remediate the surface effects of nanoTiO2. It was observed that the type of chemical nature of surface engineered nanoparticles’ surface played significant role in controlling the surface electrical resistivity of nanoparticles. Surface passivated nanoTiO2 yielded dielectric permittivity of about 70–80, respectively.

  3. A hybrid MAS/MoM technique for 2D impedance scatterers illuminated by closely positioned sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2005-01-01

    A hybrid technique for 2D scattering problems with impedance structures and closely positioned illuminating sources is presented. This technique combines the method of auxiliary sources (MAS) with a localized method of moments (MoM) region near the source. Significant improvements over standard MAS...

  4. Electromagnetic model of a near-field cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    the signal scattered by it when it is loaded in turn with three known loads. The determination of the antenna impedance and gain is formulated by using the spherical wave expansion technique. The advantages of this measurement technique are summarized as follows. First, the limited dynamic range problem...

  5. 复合波阻技术波阻特性分析%Wave impedance characteristic analysis of composite wave impedance techniques

    Institute of Scientific and Technical Information of China (English)

    林永水; 吴卫国

    2015-01-01

    A wave dynamic response matrix method is proposed in this paper to investigate the problem of impeding structure-borne sound transmission from wave impedance facilities based on the wave approach, the impedance method, and the finite element idea. First, the structure is discretized into many wave ele-ments and a general equilibrium equation of wave dynamic response is developed according to the displace-ment compatibility, force, and moment equilibrium at the junction node. Then, the wave dynamic response matrices of wave elements and the added wave dynamic response matrices of wave impedance facilities are deduced. The vibration amplitudes of wave elements are obtained by resolving the equilibrium equation, and the transmission efficiencies and transmission loss are then obtained. The method is then illustrated by a series of wave attenuation models such as blocking mass, elastic interlayer, and dynamic vibration absorb-er. Finally, numerical analysis focusing on the attenuation of structure-borne sound through the composite wave impedance facilities is conducted. The numerical simulation results show that the wave transmission loss within the full frequency domain is greatly reduced by using the composite wave impedance technique with a reasonable selection of design parameters and an optimal layout. The study provides certain guid-ance and a new control policy for the structural acoustic design of composite wave impedance facilities, which further offers guidance for the acoustic design of impedance techniques.%复合波阻技术在舰船减振降噪中的应用日益广泛.基于有限元思想,综合运用波分析法和阻抗法,提出一种复合波阻元件阻抑结构声传递特性的波动力响应矩阵分析法.该方法将结构离散为若干波导单元和波阻单元,建立附加波阻元件的结构连接的波动力响应广义平衡方程,推导出波导单元波动力响应矩阵及波阻单元附加波动响应矩阵,代入平衡方程求出

  6. Exponentially tapered Josephson flux-flow oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    1996-01-01

    We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias current the static solution becomes unstable and gives rise to a train of flu......, and (iv) better impedance matching to a load....

  7. Electrochemical impedance characteristics of LC4 aluminum alloytreated with ZH1 technique

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    ZHI technique was used to form a corrosion resistant layer on LC4 alloy. The composition of the layer was studied by X-ray photoelectron spectroscopy (XPS). It is found that the layer is composed of oxides of metals on the substrate, such as Al2O3, ZnO, MgO2, CuO, and MnO2. The electrochemical impedance spectrums (EIS) of LC4 aluminum alloy specimen were measured in NaCl solutions to study the mechanism of the corrosion resistance of the alloy treated with ZH1 technique. The results show that in NaCl solutions the capacitance of the Helmholtz layer and space charge layer of the oxide coating formed on the surface of LC4 alloy is less than that of a normal metal electrode while its ohmic resistance is relatively greater. At the same time, the thickness of the Helmholtz layer is 1-3 exponentially greater than that of a normal metal electrode. Compared with a normal metal electrode, all these characteristics make it more difficult for charges to transfer between the solution and the surface of the electrode. That is why the polarized current density of LC4 alloy treated with ZH1 technique kept small in 3.5% NaCl solution within a wide range of potential, and why the polarized curves of LC4 alloy treated with ZH1 technique changed a little in 3.5% NaCl solution of different pHi values.Moreover, according to the capacitance of the space charge layer (Csc) obtained at different potentials in 3.5% NaCl solution, I/C2sc-E curve was laid out. It is found that there does not exist a simple linear relation between l/C2sc and the potential. Therefore, the oxide coating formed on LC4 alloy with ZH1 technique is not a semiconductor at room temperature.

  8. Beam Coupling Impedance Localization Technique Validation and Measurements in the CERN Machines

    CERN Document Server

    Biancacci, N; Argyropoulos, T; Bartosik, H; Calaga, R; Cornelis, K; Gilardoni, S; Métral, E; Mounet, N; Papaphilippou, Y; Persichelli, S; Rumolo, G; Salvant, B; Sterbini, G; Tomàs, R; Wasef, R; Migliorati, M; Palumbo, L

    2013-01-01

    The beam coupling impedance could lead to limitations in beam brightness and quality, and therefore it needs accurate quantification and continuous monitoring in order to detect and mitigate high impedance sources. In the CERN machines, for example, kickers and collimators are expected to be important contributors to the total imaginary part of the transverse impedance. In order to detect the other sources, a beam based measurement was developed: from the variation of betatron phase beating with intensity, it is possible to detect the locations of main impedance sources. In this work we present the application of the method with beam measurements in the CERN PS, SPS and LHC.

  9. Process techniques for human thoracic electrical bio-impedance signal in remote healthcare systems.

    Science.gov (United States)

    Rahman, Muhammad Zia Ur; Mirza, Shafi Shahsavar

    2016-06-01

    Analysis of thoracic electrical bio-impedance (TEB) facilitates heart stroke volume in sudden cardiac arrest. This Letter proposes several efficient and computationally simplified adaptive algorithms to display high-resolution TEB component. In a clinical environment, TEB signal encounters with various physiological and non-physiological phenomenon, which masks the tiny features that are important in identifying the intensity of the stroke. Moreover, computational complexity is an important parameter in a modern wearable healthcare monitoring tool. Hence, in this Letter, the authors propose a new signal conditioning technique for TEB enhancement in remote healthcare systems. For this, the authors have chosen higher order adaptive filter as a basic element in the process of TEB. To improve filtering capability, convergence speed, to reduce computational complexity of the signal conditioning technique, the authors apply data normalisation and clipping the data regressor. The proposed implementations are tested on real TEB signals. Finally, simulation results confirm that proposed regressor clipped normalised higher order filter is suitable for a practical healthcare system.

  10. A selective medium for the rapid detection by an impedance technique of Pseudomonas spp. associated with poultry meat.

    Science.gov (United States)

    Salvat, G; Rudelle, S; Humbert, F; Colin, P; Lahellec, C

    1997-10-01

    A new medium for detecting and enumerating Pseudomonas spp. associated with poultry meat spoilage by a rapid impedance technique was developed, after testing potential growth promoters for eight Pseudomonas strains and inhibitors against eight competing strains (Enterobacteriaceae) able to grow on the medium of Mead and Adams (1977). Four basal media (brain heart infusion, brucella broth, Shaedler broth and Whitley impedance broth (WIB)) and a synthetic medium were evaluated. Whitley impedance broth was the best basal medium for detecting variations in impedance in relation to Pseudomonas growth. The efficiency of WIB was improved by adding compounds which enhanced the growth of Pseudomonas on the synthetic medium. Among the incubation temperatures tested, 22 degrees C proved to be the best compromise between growth of Pseudomonas associated with poultry meat spoilage and inhibition of competitors. Among the 15 inhibitory substances evaluated against Pseudomonas competitors, five were chosen for inclusion in the final medium: metronidazole, carbenicilline, cetrimide, cycloheximide and diamide (MCCCD medium). Preliminary results obtained from experiments with beef and pork meat showed that this medium could also be used without diamide and at an incubation temperature of 25 degrees C. The impedance technique using MCCCD medium was then compared with an official method which uses the medium of Mead and Adams (1977) on 106 samples of poultry neck skin. The linear regression coefficient between the two techniques was approximately r = 0.85. Impedance was able to detect 10(3) Pseudomonas g-1 within less than 19 h making it a promising technique for predicting poultry meat spoilage.

  11. Comparison of the Effect of Canal Preparation by Step Back Technique Using Hand Instruments and Gates Glidden Drills with ProTaper Universal Rotary System on the Root Resistance to Vertical Fracture

    Directory of Open Access Journals (Sweden)

    A Abbaszadegan

    2013-06-01

    Full Text Available Introduction: Cleaning and shaping of the root canal system with an efficient and safe technique are the major goals of root canal treatment. The aim of this study was to compare the conventional root canal preparation technique by hand instruments and Gates Glidden drills with ProTaper Universal Rotary system on the root susceptibility to vertical fracture. Methods: Thirty extracted human mandibular premolars were randomly assigned to two groups. In group I, apical preparation was performed with k-files up to #40 utilizing step back technique and coronal flaring was done with Gates Glidden drills. In group II, ProTaper Universal Rotary instruments were used up to the file F4. All teeth were obturated with lateral compaction technique using gutta-percha and AH26 sealer. A simulated periodontal ligament was fabricated, and the teeth were mounted. A stainless steel finger spreader #35 was mounted in an Instron testing machine and the necessary load to cause a root fracture was inserted and recorded. The obtained data were analyzed statistically using T-test. Results: The force required to fracture was significantly lower for the roots prepared by ProTaper instruments in comparison with the specimens prepared by hand instruments and Gates Glidden drills (P< 0.001. Conclusion: Canal preparation with ProTaper rotary instruments can make the roots more susceptible to vertical fracture than traditional instrumentation with k-files and Gates Glidden drills.

  12. Correlation between percentage of body fat measured by the Slaughter equation and bio impedance analysis technique in Mexican schoolchildren

    Directory of Open Access Journals (Sweden)

    Mariana Orta Duarte

    2014-01-01

    Full Text Available Introduction: Obesity is considered one of the most serious public health problems of the 21st century in children and adolescents. The percentile or Z-score of the body mass index is widely used in children and adolescents to define and assess overweight and obesity, but it does not determine the percentage of total body fat. Other anthropometric measurements that determine total body fat are skinfold thickness and methods of body composition assessment such as bio impedance analysis, both of which are rapid and inexpensive. Objetive: The aim of the study was to correlate the percentage of body fat determined by the Slaughter equation with the percentage of body fat determined by the bio impedance analysis technique, and the body mass index in schoolchildren. Methods: The design of the study is cross-sectional and it was performed on a random selection of 74 children (9.47 ± 1.55 years old attending a primary school in Colima, Mexico during 2011. The percentage of body fat was measured by the Slaughter equation and bio impedance analysis technique. Body mass index was calculated. Inferential statistics were performed with the non-paired Student's t test, Pearson's correlation for quantitative variables (percentage of body fat by the Slaughter equation and bio impedance analysis and the Fisher exact test for qualitative variables. Results: A significant correlation (r = 0.74; p < 0.001 was identified between the percentage of fat measured by the Slaughter equation and bio impedance analysis. We also identified a significant correlation between the percentage of fat measured by the Slaughter equation and body mass index (r = 0. 85; p < 0.001 and the percentage of fat measured by bio impedance analysis and body mass index (r = 0.78; p < 0.001. Conclusion: Given that we identified a significant positive correlation between BIA and STE, we conclude that both are adequate alternatives for measuring the percentage of body fat among schoolchildren in

  13. Implementation and Test of an Online Embedded Grid Impedance Estimation Technique for PV Inverters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    New and stronger power quality requirements are issued due to the increased amount of photovoltaic (PV) installations. In this paper different methods are used for continuous grid monitoring in PV inverters. By injecting a noncharacteristic harmonic current and measuring the grid voltage response...... it is possible to evaluate the grid impedance directly by the PV inverter, providing a fast and low-cost implementation. This principle theoretically provides an accurate result of the grid impedance but when using it in the context of PV integration, different implementation issues strongly affect the quality...... of the results. This paper also presents a new impedance estimation method including typical implementation problems encountered, and it also presents adopted solutions for online grid impedance measurement. Practical tests on an existing PV inverter validate the chosen solution....

  14. Tapered optical fibres for sensing

    Science.gov (United States)

    Martan, Tomas; Kanka, Jiri; Kasik, Ivan; Matejec, Vlastimil

    2008-11-01

    Recently, optical fibre tapers have intensively been investigated for many applications e.g. in telecommunications, medicine and (bio-) chemical sensing. The paper deals with enhancement of evanescent-field sensitivity of the solid-core microstructured fibre with steering-wheel air-cladding. Enhancement of a performance of the microstructured fibre is based on reduction of fibre core diameter down to narrow filament by tapering thereby defined part of light power is guided by an evanescent wave traveling in axial cladding air holes. The original fibre structure with outer diameter of 125 µm was reduced 2×, 2.5×, 3.33×, and 4× for increasing relatively small intensity overlap of guided core mode at wavelength of 1.55 μm with axial air holes. The inner structures of tapered microstructured fibre with steering-wheel aircladding were numerically analyzed and mode intensity distributions were calculated using the FDTD technique. Analyzed fiber tapers were prepared by constructed fibre puller employing 'flame brush technique'.

  15. Parabolic tapers for overmoded waveguides

    Science.gov (United States)

    Doane, J.L.

    1983-11-25

    A waveguide taper with a parabolic profile, in which the distance along the taper axis varies as the square of the tapered dimension, provides less mode conversion than equal length linear tapers and is easier to fabricate than other non-linear tapers.

  16. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Science.gov (United States)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  17. A flicker noise/IM3 cancellation technique for active mixer using negative impedance

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2013-01-01

    Abstract—This paper presents an approach to simultaneously cancel flicker noise and IM3 in Gilbert-type mixers, utilizing negative impedances. For proof of concept, two prototype double-balanced mixers in 0.16- m CMOS are fabricated. The first demonstration mixer chip was optimized for full IM3 canc

  18. A flicker noise/IM3 cancellation technique for active mixer using negative impedance

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2013-01-01

    Abstract—This paper presents an approach to simultaneously cancel flicker noise and IM3 in Gilbert-type mixers, utilizing negative impedances. For proof of concept, two prototype double-balanced mixers in 0.16- m CMOS are fabricated. The first demonstration mixer chip was optimized for full IM3

  19. Mechanical impedance and acoustic mobility measurement techniques of specifying vibration environments

    Science.gov (United States)

    Kao, G. C.

    1973-01-01

    Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.

  20. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Energy Technology Data Exchange (ETDEWEB)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R. [Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Torino (Italy)

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  1. Tapered structure construction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Eric D.; Takata, Rosalind K.; Slocum, Alexander H.; Nayfeh, Samir A.

    2016-04-05

    Feeding stock used to form a tapered structure into a curving device such that each point on the stock undergoes rotational motion about a peak location of the tapered structure; and the stock meets a predecessor portion of stock along one or more adjacent edges.

  2. The effects of modified exponential tapering technique on perceived exertion, heart rate, time trial performance, VO2max and power output among highly trained junior cyclists.

    Science.gov (United States)

    Ishak, Asmadi; Hashim, Hairul A; Krasilshchikov, Oleksandr

    2016-09-01

    The present study investigated the effects of a 2-week modified exponential taper on physiological adaptation and time trial performance among junior cyclists. Participants (N.=27) with the mean age of 16.95±0.8 years, height of 165.6±6.1 cm and weight of 54.19±8.1 kg were matched into either modified exponential taper (N.=7), normal exponential taper (N.=7), or control (N.=7) groups using their initial VO2max values. Both experimental groups followed a 12-week progressive endurance training program and subsequently, a 2-week tapering phase. A simulated 20-km time trial performance along with VO2max, power output, heart rate and rating of perceived exertion were measured at baseline, pre and post-taper. One way ANOVA was used to analyze the difference between groups before the start of the intervention while mixed factorial ANOVA was used to analyze the difference between groups across measurement sessions. When homogeneity assumption was violated, the Greenhouse-Geisser Value was used for the corrected values of the degrees of freedom for the within subject factor the analysis. Significant interactions between experimental groups and testing sessions were found in VO2max (F=6.67, df=4, P<0.05), power output (F=5.02, df=4, P<0.05), heart rate (F=10.87, df=2.51, P<0.05) rating of perceived exertion (F=13.04, df=4, P<0.05) and 20KM time trial (F=4.64, df=2.63, P<0.05). Post-hoc analysis revealed that both types of taper exhibited positive effects compared to the non-taper condition in the measured performance markers at post-taper while no different were found between the two taper groups. It was concluded that both taper protocols successfully inducing physiological adaptations among the junior cyclists by reducing the volume and maintaining the intensity of training.

  3. Analogies between the measurement of acoustic impedance via the reaction on the source method and the automatic microwave vector network analyzer technique

    Science.gov (United States)

    McLean, James; Sutton, Robert; Post, John

    2003-10-01

    One useful method of acoustic impedance measurement involves the measurement of the electrical impedance ``looking into'' the electrical port of a reciprocal electroacoustic transducer. This reaction on the source method greatly facilitates the measurement of acoustic impedance by borrowing highly refined techniques to measure electrical impedance. It is also well suited for in situ acoustic impedance measurements. In order to accurately determine acoustic impedance from the measured electrical impedance, the characteristics of the transducer must be accurately known, i.e., the characteristics of the transducer must be ``removed'' completely from the data. The measurement of acoustic impedance via the measurement of the reaction on the source is analogous to modern microwave measurements made with an automatic vector network analyzer. The action of the analyzer is described as de-embedding the desired data (such as acoustic impedance) from the raw data. Such measurements are fundamentally substitution measurements in that the transducer's characteristics are determined by measuring a set of reference standards. The reaction on the source method is extended to take advantage of improvements in microwave measurement techniques which allow calibration via imperfect standard loads. This removes one of the principal weaknesses of the method in that the requirement of high-quality reference standards is relaxed.

  4. An improvement to the data processing course of electrochemical impedance technique

    Institute of Scientific and Technical Information of China (English)

    Yinglv Jiang; Yinshun Wu; Hong Chu

    2003-01-01

    For some electrochemical systems the traditional data processing methods can not be met, so it is necessary to develop a new method to deal with these problems. When processing the electrochemical AC impedance data of titanium alloy TA12 in 3% NaC1 solution (at free corrosion potential, room temperature) a new method is developed which can detach the information of the interface resistance demonstrably from the interface capacitance. The results show that the interface resistance and capacitance are all functions of frequency. And the AC impedance of the resistance and capacitance obey the following relations: C(f) = 104.01982 f-0.9292,R(f) =104.80011 (f+0.008)-0.90897, which is completely different from the traditional conception that the interface resistance and capacitance are constants. And this phenomenon is ubiquitous in titanium alloys according to the study. So perhaps it is an innate characteristic of interface.

  5. The tapered slot antenna - A new integrated element for millimeter-wave applications

    Science.gov (United States)

    Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.

    1989-02-01

    Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.

  6. The tapered slot antenna - A new integrated element for millimeter-wave applications

    Science.gov (United States)

    Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.

    1989-01-01

    Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.

  7. Impact of exacerbations on respiratory system impedance measured by a forced oscillation technique in COPD: a prospective observational study

    Science.gov (United States)

    Kamada, Takahiro; Kaneko, Masahiro; Tomioka, Hiromi

    2017-01-01

    Background Forced oscillation technique (FOT) has been reported to be useful in the evaluation and management of obstructive lung disease, including COPD. To date, no data are available concerning long-term changes in respiratory system impedance measured by FOT. Additionally, although exacerbations have been reported to be associated with excessive lung function decline in COPD, the impact of exacerbations on the results of FOT has not been demonstrated. The aim of this study was to investigate the longitudinal changes in respiratory system impedance and the influence of exacerbations thereon. Methods Between March 2011 and March 2012, outpatients who attended Kobe City Medical Center West Hospital with a diagnosis of COPD were assessed for eligibility. Baseline patient characteristics (age, sex, body mass index, smoking history, current smoking status, COPD stage), lung function (post-bronchodilator forced expiratory volume in 1 second [FEV1]), blood tests (neutrophils and eosinophils), FOT, and COPD assessment test results were collected at enrollment. Lung function and FOT were examined every 6 months until March 2016. Annual changes in FEV1 and FOT parameters were obtained from the slope of the linear regression curve. The patients were divided into 2 groups based on exacerbation history. Results Fifty-one of 58 patients with COPD were enrolled in this study. The median follow-up period was 57 (52–59) months. Twenty-five (49%) patients experienced exacerbations. A significant annual decline in FEV1 and respiratory system impedance were shown. Additionally, annual changes in FEV1, respiratory system resistance at 5 Hz, respiratory system reactance at 5 Hz, and resonant frequency were greater in patients with exacerbations than in those without exacerbations. Conclusion Exacerbations of COPD lead not only to a decline in lung function but also to an increase in respiratory system impedance.

  8. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures

    Science.gov (United States)

    Wissenwasser, J.; Vellekoop, M. J.; Kapferer, W.; Lepperdinger, G.; Heer, R.

    2011-11-01

    An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.

  9. Study of metal corrosion using ac impedance techniques in the STS launch environment

    Science.gov (United States)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  10. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures.

    Science.gov (United States)

    Wissenwasser, J; Vellekoop, M J; Kapferer, W; Lepperdinger, G; Heer, R

    2011-11-01

    An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.

  11. Phase Centers of Subapertures in a Tapered Aperture Array.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Antenna apertures that are tapered for sidelobe control can also be parsed into subapertures for Direction of Arrival (DOA) measurements. However, the aperture tapering complicates phase center location for the subapertures, knowledge of which is critical for proper DOA calculation. In addition, tapering affects subaperture gains, making gain dependent on subaperture position. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures’ gains. Sidelobe characteristics and mitigation are also discussed.

  12. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range....... The spectral width of the tapered laser is significantly narrowed compared to the freely running laser....

  13. Backscatter coefficient estimation using tapers with gaps.

    Science.gov (United States)

    Luchies, Adam C; Oelze, Michael L

    2015-04-01

    When using the backscatter coefficient (BSC) to estimate quantitative ultrasound parameters such as the effective scatterer diameter (ESD) and the effective acoustic concentration (EAC), it is necessary to assume that the interrogated medium contains diffuse scatterers. Structures that invalidate this assumption can affect the estimated BSC parameters in terms of increased bias and variance and decrease performance when classifying disease. In this work, a method was developed to mitigate the effects of echoes from structures that invalidate the assumption of diffuse scattering, while preserving as much signal as possible for obtaining diffuse scatterer property estimates. Backscattered signal sections that contained nondiffuse signals were identified and a windowing technique was used to provide BSC estimates for diffuse echoes only. Experiments from physical phantoms were used to evaluate the effectiveness of the proposed BSC estimation methods. Tradeoffs associated with effective mitigation of specular scatterers and bias and variance introduced into the estimates were quantified. Analysis of the results suggested that discrete prolate spheroidal (PR) tapers with gaps provided the best performance for minimizing BSC error. Specifically, the mean square error for BSC between measured and theoretical had an average value of approximately 1.0 and 0.2 when using a Hanning taper and PR taper respectively, with six gaps. The BSC error due to amplitude bias was smallest for PR (Nω = 1) tapers. The BSC error due to shape bias was smallest for PR (Nω = 4) tapers. These results suggest using different taper types for estimating ESD versus EAC. © The Author(s) 2014.

  14. Experimental Study on Damage Detection in Timber Specimens Based on an Electromechanical Impedance Technique and RMSD-Based Mahalanobis Distance

    Directory of Open Access Journals (Sweden)

    Dansheng Wang

    2016-10-01

    Full Text Available In the electromechanical impedance (EMI method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.

  15. Experimental Study on Damage Detection in Timber Specimens Based on an Electromechanical Impedance Technique and RMSD-Based Mahalanobis Distance.

    Science.gov (United States)

    Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping

    2016-10-22

    In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.

  16. Easy installation method of piezoceramic (PZT) transducers for health monitoring of structures using electro-mechanical impedance technique

    Science.gov (United States)

    Annamdas, Venu Gopal Madhav; Radhika, Madhav Annamdas; Yang, Yaowen

    2009-03-01

    Impedance-based structural health monitoring (SHM) technique has been developed using piezo-ceramic (PZT) transducers either by surface bonding or embedding inside the structure to detect damage at the earliest possible stage using signatures. However, this technique requires PZT to be permanently attached to the structures. Furthermore permanent attachment will influence the appearance of the host structure and during replacement of faulty transducer, the use of de bonding tools may spoils the surface and beneath. Hence the present study is aimed to fabricate a portable structure, where PZTs are bonded on it and later the portable structure is attached to the host structure. This portable structure is easy to install during monitoring period and uninstall after recording the monitoring signatures of the host structure. This method protects the surface of the host structure to be monitored and will have same efficiency as that of permanently attached PZTs.

  17. AN IMPEDANCE ANALYSIS FOR CRACK DETECTION IN THE TIMOSHENKO BEAM BASED ON THE ANTI-RESONANCE TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An alternative technique for crack detection in a Timoshenko beam based on the first anti-resonant frequency is presented in this paper. Unlike the natural frequency, the anti-resonant frequency is a local parameter rather than a global parameter of structures, thus the proposed technique can be used to locate the structural defects. An impedance analysis of a cracked beam stimulated by a harmonic force based on the Timoshenko beam formulation is investigated. In order to characterize the local discontinuity due to cracks, a rotational spring model based on fracture mechanics is proposed to model the crack. Subsequently, the proposed method is verified by a numerical example of a simply-supported beam with a crack. The effect of the crack size on the anti-resonant frequency is investigated. The position of the crack of the simply-supported beam is also determined by the anti-resonance technique. The proposed technique is further applied to the "contaminated" anti-resonant frequency to detect crack damage, which is obtained by adding 1-3% noise to the calculated data. It is found that the proposed technique is effective and free from the environment noise. Finally, an experimental study is performed, which further verifies the validity of the proposed crack identification technique.

  18. A Cuffless Blood Pressure Measurement Based on the Impedance Plethysmography Technique

    Directory of Open Access Journals (Sweden)

    Shing-Hong Liu

    2017-05-01

    Full Text Available In the last decade, cuffless blood pressure measurement technology has been widely studied because it could be applied to a wearable apparatus. Electrocardiography (ECG, photo-plethysmography (PPG, and phonocardiography are always used to detect the pulse transit time (PTT because the changed tendencies of the PTT and blood pressure have a negative relationship. In this study, the PPG signal was replaced by the impedance plethysmography (IPG signal and was used to detect the PTT. The placement and direction of the electrode array for the IPG measurement were discussed. Then, we designed an IPG ring that could measure an accurate IPG signal. Twenty healthy subjects participated in this study. The changes in blood pressure after exercise were evaluated through the changes of the PTT. The results showed that the change of the systolic pressure had a better relationship with the change of the PTTIPG than that of the PTTPPG (r = 0.700 vs. r = 0.450. Moreover, the IPG ring with spot electrodes would be more suitable to develop with the wearable cuffless blood pressure monitor than the PPG sensor.

  19. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    Science.gov (United States)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2004-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  20. Respiratory-gated electrical impedance tomography: a potential technique for quantifying stroke volume

    Science.gov (United States)

    Arshad, Saaid H.; Murphy, Ethan K.; Halter, Ryan J.

    2016-03-01

    Telemonitoring is becoming increasingly important as the proportion of the population living with cardiovascular disease (CVD) increases. Currently used health parameters in the suite of telemonitoring tools lack the sensitivity and specificity to accurately predict heart failure events, forcing physicians to play a reactive versus proactive role in patient care. A novel cardiac output (CO) monitoring device is proposed that leverages a custom smart phone application and a wearable electrical impedance tomography (EIT) system. The purpose of this work is to explore the potential of using respiratory-gated EIT to quantify stroke volume (SV) and assess its feasibility using real data. Simulations were carried out using the 4D XCAT model to create anatomically realistic meshes and electrical conductivity profiles representing the human thorax and the intrathoracic tissue. A single 5-second period respiration cycle with chest/lung expansion was modeled with end-diastole (ED) and end-systole (ES) heart volumes to evaluate how effective EIT-based conductivity changes represent clinically significant differences in SV. After establishing a correlation between conductivity changes and SV, the applicability of the respiratory-gated EIT was refined using data from the PhysioNet database to estimate the number of useful end-diastole (ED) and end-systole (ES) heart events attained over a 3.3 minute period. The area associated with conductivity changes was found to correlate to SV with a correlation coefficient of 0.92. A window of 12.5% around peak exhalation was found to be the optimal phase of the respiratory cycle from which to record EIT data. Within this window, ~47 useable ED and ES were found with a standard deviation of 28 using 3.3 minutes of data for 20 patients.

  1. Experimental investigation for an isolation technique on conducting the electromechanical impedance method in high-temperature pipeline facilities

    Science.gov (United States)

    Na, Wongi S.; Lee, Hyeonseok

    2016-11-01

    In general, the pipelines within a nuclear power plant facility may experience high temperatures up to several hundred degrees. Thus it is absolutely vital to monitor these pipes to prevent leakage of radioactive substances which may lead to a catastrophic outcome of the surrounding environment. Over the years, one of the structural health monitoring technique known as the electromechanical impedance (EMI) technique has been of great interests in various fields including civil infrastructures, mechanical and aerospace structures. Although it has one of the best advantages to be able for a single piezoelectric transducer to act as a sensor and an actuator, simultaneously, its low curie temperature makes it difficult for the EMI technique to be conducted at high temperature environment. To overcome this problem, this study shows a method to avoid attaching the piezoelectric transducer directly onto the target structure using a metal wire for damage detection at high temperature. By shifting the frequency to compensate the signature changes subjected to the variations in temperature, the experimental results indicate that damage identification is more successful above 200 oC, making the metal wire method suitable for the EMI technique at high temperature environment.

  2. Improving image quality in Electrical Impedance Tomography (EIT using Projection Error Propagation-based Regularization (PEPR technique: A simulation study

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2011-03-01

    Full Text Available A Projection Error Propagation-based Regularization (PEPR method is proposed and the reconstructed image quality is improved in Electrical Impedance Tomography (EIT. A projection error is produced due to the misfit of the calculated and measured data in the reconstruction process. The variation of the projection error is integrated with response matrix in each iterations and the reconstruction is carried out in EIDORS. The PEPR method is studied with the simulated boundary data for different inhomogeneity geometries. Simulated results demonstrate that the PEPR technique improves image reconstruction precision in EIDORS and hence it can be successfully implemented to increase the reconstruction accuracy in EIT.>doi:10.5617/jeb.158 J Electr Bioimp, vol. 2, pp. 2-12, 2011

  3. Advanced Pulse Width Technique in Impedance Source Cascaded Multilevel Inverter with Asymmetric Topology

    Directory of Open Access Journals (Sweden)

    Rajnish Kumar Sharma

    2016-08-01

    Full Text Available In this research, a single phase Z-source cascading Multilevel Inverter, Nine-level inverter topologies with a trinary DC sources are offered. The recommended topologies are expanded by cascading a full bridge inverter with dissimilar DC sources. This paper recommends advanced pulse with modulation technique as a switching scheme. In this PWM technology, trapezoidal modulation technique is used as variable amplitude pulse width modulation. These topologies compromise reduced harmonics present in the output voltage and superior root mean square (RMS values of the output voltages linked with the traditional trapezoidal pulse width modulation. The simulation of proposed circuit is carried out by using MATLAB/SIMULINK.

  4. Electrochemical surface modification technique to impede mild steel corrosion using perfluorooctanoic acid

    Directory of Open Access Journals (Sweden)

    Shubha H Natarj

    2016-02-01

    Full Text Available The present work demonstrated that corrosion inhibition efficiency of electrochemically generated organic coat is remarkably effective than self-assembled monolayer (SAM generated by dip coating technique. Perfluorooctanoic Acid (PFOA is used to modify mild steel surface for effective protection. Infrared reflection absorption spectroscopy and contact angle measurements substantiate the modification of mild steel surface and its effect on surface hydrophobicity. A comparison between electrochemical properties of PFOA SAM generated by dip coat method (DC-PFOA and PFOA coat generated by electrochemical method (EC-PFOA is presented. Electrochemical measurements reveal that the corrosion protection efficiency of EC-PFOA (91% is much superior to DC-PFOA (28%.

  5. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    Science.gov (United States)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2012-01-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  6. Heat-and-pull rig for fiber taper fabrication

    Science.gov (United States)

    Ward, Jonathan M.; O'Shea, Danny G.; Shortt, Brian J.; Morrissey, Michael J.; Deasy, Kieran; Nic Chormaic, Síle G.

    2006-08-01

    We describe a reproducible method of fabricating adiabatic tapers with 3-4μm diameter. The method is based on a heat-and-pull rig, whereby a CO2 laser is continuously scanned across a length of fiber that is being pulled synchronously. Our system relies on a CO2 mirror mounted on a geared stepper motor in order to scan the laser beam across the taper region. We show that this system offers a reliable alternative to more traditional rigs incorporating galvanometer scanners. We have routinely obtained transmission losses between 0.1 and 0.3dB indicating the satisfactory production of adiabatic tapers. The operation of the rig is described in detail and an analysis on the produced tapers is provided. The flexibility of the rig is demonstrated by fabricating prolate dielectric microresonators using a microtapering technique. Such a rig is of interest to a range of fields that require tapered fiber fabrication such as microcavity-taper coupling, atom guiding along a tapered fiber, optical fiber sensing, and the fabrication of fused biconical tapered couplers.

  7. Tapered capillary optics

    Science.gov (United States)

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  8. A compact broadband nonsynchronous noncommensurate impedance transformer

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison to the tradit......Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison...... to the traditional tapered line transformers. This flexibility of the broadband nonsynchronous noncommensurate impedance transformers is experimentally demonstrated in this article allowing the length reduction by almost three times. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1832–1835, 2012; View...

  9. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Claudia Conesa

    2015-09-01

    Full Text Available Electrochemical Impedance Spectroscopy (EIS has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%. These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.

  10. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production.

    Science.gov (United States)

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-09-11

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.

  11. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    Science.gov (United States)

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  12. The Application of Electrochemical Impedance Techniques in Analyzing the AC Response of Some Two-electron Transfer Dye Systems

    Directory of Open Access Journals (Sweden)

    Farouk Rashwan

    2005-01-01

    Full Text Available The Electrochemical Impedance Spectroscopic techniques (EIS were used to investigate the behavior of some dye compounds (quinoid systems characterized with 2e-transfer processes. For this purpose, Alizarin Red S (ARS, Alizarin Cyanine (AC, Alizarin Viridin (AV and carminic acid were chosen for the measurements. The EIS experiments were performed using a small AC amplitude (10 mV p-p in addition to a relatively wide frequency range (0.01 Hz ≤ f ≤ 105 Hz. The investigations were carried out at room temperature in aqueous media (HClO4, NaClO4 and KNO3 on the Hanging Mercury Drop Electrode (HMDE and for comparison one experiment only was measured in aprotic solvent (DMF on the Pt-disc electrode. The EIS diagrams of these systems were characterized in the complex plane by two fundamental observations, the first of which is a straight line crossing the real axis at an angle of 45° (or at least nearly so and the second one is two semicircles beside each other corresponding to high-frequency and low-frequency regions, which are implying the presence of well-separated time constants. The EIS characteristic parameters for these dye systems were calculated and discussed.

  13. Optimized tapered dipole nanoantenna as efficient energy harvester.

    Science.gov (United States)

    El-Toukhy, Youssef M; Hussein, Mohamed; Hameed, Mohamed Farhat O; Heikal, A M; Abd-Elrazzak, M M; Obayya, S S A

    2016-07-11

    In this paper, a novel design of tapered dipole nanoantenna is introduced and numerically analyzed for energy harvesting applications. The proposed design consists of three steps tapered dipole nanoantenna with rectangular shape. Full systematic analysis is carried out where the antenna impedance, return loss, harvesting efficiency and field confinement are calculated using 3D finite element frequency domain method (3D-FEFD). The structure geometrical parameters are optimized using particle swarm algorithm (PSO) to improve the harvesting efficiency and reduce the return loss at wavelength of 500 nm. A harvesting efficiency of 55.3% is achieved which is higher than that of conventional dipole counterpart by 29%. This enhancement is attributed to the high field confinement in the dipole gap as a result of multiple tips created in the nanoantenna design. Furthermore, the antenna input impedance is tuned to match a wide range of fabricated diode based upon the multi-resonance characteristic of the proposed structure.

  14. Non-Newtonian model study for blood flow through a tapered artery with a stenosis

    Directory of Open Access Journals (Sweden)

    Noreen Sher Akbar

    2016-03-01

    Full Text Available The blood flow through a tapered artery with a stenosis is analyzed, assuming the blood as tangent hyperbolic fluid model. The resulting nonlinear implicit system of partial differential equations is solved analytically with the help of perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of power law index m, Weissenberg number We, shape of stenosis n and stenosis size δ are discussed different type of tapered arteries.

  15. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block...

  16. A Novel Grid Impedance Estimation Technique based on Adaptive Virtual Resistance Control Loop Applied to Distributed Generation Inverters

    DEFF Research Database (Denmark)

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem;

    2013-01-01

    The penetration of the distributed power generation systems (DPGSs) based on renewable sources (PV, WT) is strongly dependent on the quality of the power injected to the utility grid. However, the grid impedance variation, mainly caused by grid faults somewhere in the electric network, can degrade...... the power quality and even damage some sensitive loads connected at the point of the common coupling (PCC). This paper presents detection-estimation method of the grid impedance variation. This estimation tehnique aims to improve the dynamic of the distributed generation (DG) interfacing inverter control...... and to take the decision of either keep the DG connected, or disconnect it from the utility grid. The proposed method is based on a fast and easy grid fault detection method. A virtual damping resistance is used to drive the system to the resonance in order to extract the grid impedance parameters, both...

  17. Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces

    Science.gov (United States)

    Navidi, Sal; Agdinaoay, Rodell; Walter, Keith

    2013-01-01

    High-speed serial communication (i.e., Gigabit Ethernet) requires differential transmission and controlled impedances. Impedance control is essential throughout cabling, connector, and circuit board construction. An impedance discontinuity arises at the interface of a high-speed quadrax and twinax connectors and the attached printed circuit board (PCB). This discontinuity usually is lower impedance since the relative dielectric constant of the board is higher (i.e., polyimide approx. = 4) than the connector (Teflon approx. = 2.25). The discontinuity can be observed in transmit or receive eye diagrams, and can reduce the effective link margin of serial data networks. High-speed serial data network transmission improvements can be made at the connector-to-board interfaces as well as improving differential via hole impedances. The impedance discontinuity was improved by 10 percent by drilling a 20-mil (approx. = 0.5-mm) hole in between the pin of a differential connector spaced 55 mils (approx. = 1.4 mm) apart as it is attached to the PCB. The effective dielectric constant of the board can be lowered by drilling holes into the board material between the differential lines in a quadrax or twinax connector attachment points. The differential impedance is inversely proportional to the square root of the relative dielectric constant. This increases the differential impedance and thus reduces the above described impedance discontinuity. The differential via hole impedance can also be increased in the same manner. This technique can be extended to multiple smaller drilled holes as well as tapered holes (i.e., big in the middle followed by smaller ones diagonally).

  18. Impedance plethysmography of thoracic region: impedance cardiography.

    Directory of Open Access Journals (Sweden)

    Deshpande A

    1990-10-01

    Full Text Available Impedance plethysmograms were recorded from thoracic region in 254 normal subjects, 183 patients with coronary artery disease, 391 patients with valvular heart disease and 107 patients with congenital septal disorder. The data in 18 normal subjects and 55 patients showed that basal impedance decreases markedly during exercise in patients with ischaemic heart disease. Estimation of cardiac index by this technique in a group of 99 normal subjects has been observed to be more consistent than that of the stroke volume. Estimation of systolic time index from impedance plethysmograms in 34 normal subjects has been shown to be as reliable as that from electrocardiogram, phonocardiogram and carotid pulse tracing. Changes in the shape of plethysmographic waveform produced by valvular and congenital heart diseases are briefly described and the role of this technique in screening cardiac patients has been highlighted.

  19. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    Science.gov (United States)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made

  20. Impedance Scaling and Impedance Control

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; Griffin, J.

    1997-06-01

    When a machine becomes really large, such as the Very Large Hadron Collider (VLHC), of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ``normal`` way. It is shown that the beam would be intrinsically unstable for the VLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane.

  1. Cooling arrangement for a tapered turbine blade

    Science.gov (United States)

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  2. On-line blood viscosity monitoring in vivo with a central venous catheter, using electrical impedance technique.

    Science.gov (United States)

    Pop, Gheorghe A M; Bisschops, Laurens L A; Iliev, Blagoy; Struijk, Pieter C; van der Hoeven, Johannes G; Hoedemaekers, Cornelia W E

    2013-03-15

    Blood viscosity is an important determinant of microvascular hemodynamics and also reflects systemic inflammation. Viscosity of blood strongly depends on the shear rate and can be characterized by a two parameter power-law model. Other major determinants of blood viscosity are hematocrit, level of inflammatory proteins and temperature. In-vitro studies have shown that these major parameters are related to the electrical impedance of blood. A special central venous catheter was developed to measure electrical impedance of blood in-vivo in the right atrium. Considering that blood viscosity plays an important role in cerebral blood flow, we investigated the feasibility to monitor blood viscosity by electrical bioimpedance in 10 patients during the first 3 days after successful resuscitation from a cardiac arrest. The blood viscosity-shear rate relationship was obtained from arterial blood samples analyzed using a standard viscosity meter. Non-linear regression analysis resulted in the following equation to estimate in-vivo blood viscosity (Viscosity(imp)) from plasma resistance (R(p)), intracellular resistance (R(i)) and blood temperature (T) as obtained from right atrium impedance measurements: Viscosity(imp)=(-15.574+15.576R(p)T)SR ((-.138RpT-.290Ri)). This model explains 89.2% (R(2)=.892) of the blood viscosity-shear rate relationship. The explained variance was similar for the non-linear regression model estimating blood viscosity from its major determinants hematocrit and the level of fibrinogen and C-reactive protein (R(2)=.884). Bland-Altman analysis showed a bias between the in-vitro viscosity measurement and the in-vivo impedance model of .04 mPa s at a shear rate of 5.5s(-1) with limits of agreement between -1.69 mPa s and 1.78 mPa s. In conclusion, this study demonstrates the proof of principle to monitor blood viscosity continuously in the human right atrium by a dedicated central venous catheter equipped with an impedance measuring device. No safety

  3. A Cubic Tree Taper Model

    National Research Council Canada - National Science Library

    Goodwin, Adrian N

    2009-01-01

    A flexible tree taper model based on a cubic polynomial is described. It is algebraically invertible and integrable, and can be constrained by one or two diameters, neither of which need be diameter at breast height (DBH...

  4. Tapered undulators for SASE FELs

    CERN Document Server

    Fawley, W M; Vinokurov, N A

    2002-01-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  5. Towards a self-reporting coronary artery stent--measuring neointimal growth associated with in-stent restenosis using electrical impedance techniques.

    Science.gov (United States)

    Shedden, Laurie; Kennedy, Simon; Wadsworth, Roger; Connolly, Patricia

    2010-10-15

    Implantable medical devices have become the standard method for treating a variety of cardiovascular diseases (NICE, 2003, 2009), such as coronary artery disease, where coronary artery stents are the device of choice (Fischman et al., 1994; Babapulle et al., 2004). One post-operative problem with these devices is the long-term monitoring of the device-tissue interface, with respect to the complications that often arise from in-stent restenosis. This monitoring, where it is available, is currently performed using imaging techniques such as contrast angiography, IVUS, CT and MRI. In this study we propose an alternative method for the non-invasive monitoring of restenosis in coronary artery stents. This preliminary study uses impedance spectroscopy to measure the electrical impedance of cells and tissues associated with the neointimal growth that characterises in-stent restenosis in coronary artery stents. An in vitro organ culture model, using a stent implanted in a section of pig coronary artery, simulated tissue growth inside a stent. Impedance measurements were made regularly over a 28-day culture period. In a novel step, the stent itself was employed as an electrode. Differences in electrical impedance could be seen between control (stent alone) and artery-embedded stents in culture, which were associated with the presence of biological tissue. This method could potentially be developed to produce a stent that was capable of self-reporting in-stent restenosis. The advantages of such a device would be that monitoring could be non-invasively and easily carried out, allowing more routine follow-ups and the early identification and management of any device complications.

  6. Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques.

    Science.gov (United States)

    Fu, Yingzi; Yuan, Ruo; Tang, Dianping; Chai, Yaqin; Xu, Lan

    2005-01-15

    The immobilization of anti-IgG on Au-colloid modified gold electrodes has been investigated. A cleaned gold electrode was first immersed in a mercaptoethylamine (AET) solution, and then gold nanoparticles were chemisorbed onto the thiol groups of the mercaptoethylamine. Finally, anti-IgG was adsorbed onto the surface of the gold nanoparticles. Potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques were used to investigate the immobilization of anti-IgG on Au colloids. In the impedance spectroscopic study, an obvious difference of the electron transfer resistance between the Au-colloid modified electrode and the bare gold electrode was observed. The cyclic voltammogram tends to be more irreversible with increased anti-IgG concentration. Using the potentiometric immunosensor, the proposed technique is based on that the specific agglutination of antibody-coated gold nanoparticles, averaging 16 nm in diameter, in the presence of the corresponding antigen causes a potential change that is monitored by a potentiometry. It is found that the developed immunoagglutination assay system is sensitive to the concentration of IgG antigen as low as 12 ng mL(-1). Experimental results showed that the developed technique is in satisfactory agreement with the ELISA method, and that gold nanoparticles can be used as a biocompatible matrix for antibody or antigen immobilization.

  7. The measurement of peripheral blood volume reactions to tilt test by the electrical impedance technique after exercise in athletes

    Science.gov (United States)

    Melnikov, A. A.; Popov, S. G.; Nikolaev, D. V.; Vikulov, A. D.

    2013-04-01

    We have investigated the distribution of peripheral blood volumes in different regions of the body in response to the tilt-test in endurance trained athletes after aerobic exercise. Distribution of peripheral blood volumes (ml/beat) simultaneously in six regions of the body (two legs, two hands, abdomen, neck and ECG) was assessed in response to the tilt-test using the impedance method (the impedance change rate (dZ/dT). Before and after exercise session cardiac stroke (CSV) and blood volumes in legs, arms and neck were higher in athletes both in lying and standing positions. Before exercise the increase of heart rate and the decrease of a neck blood volume in response to tilting was lower (p blood volumes was higher (pblood volumes were similar. Also, the neck blood volumes as percentage of CSV (%/CSV) did not change in the control but increased in athletes (p exercise (mean HR = 156±8 beat/min, duration 30 min) blood volumes in neck and arms in response to the tilting were reduced equally, but abdomen (pblood volumes (p blood flow (%/CSV) did not change in athletes but decreased in control (pexercise. The data demonstrate greater orthostatic tolerance in athletes both before and after exercise during fatigue which is due to effective distribution of blood flows aimed at maintaining cerebral blood flow.

  8. Evaluation of Temper Embrittlement of 30Cr2MoV Rotor Steels Using Electrochemical Impedance Spectroscopy Technique

    Directory of Open Access Journals (Sweden)

    Zhang Shenghan

    2015-01-01

    Full Text Available Temper embrittlement tends to occur in the turbine rotor after long running, which refers to the decrease in notch toughness of alloy steels in a certain temperature range (e.g., 400°C to 600°C. The severity of temper embrittlement must be monitored timely to avoid further damagement, and the fracture appearance transition temperature (FATT50 is commonly used as an indicator parameter to characterize the temper embrittlement. Compared with conventional destructive methods (e.g., small punch test, nondestructive approaches have drawn significant attention in predicting the material degradation in turbine rotor steels without impairing the integrity of the components. In this paper, laboratory experiments were carried out based on a nondestructive method, electrochemical impedance spectroscopy (EIS, with groups of lab-charged specimens for predicting the temper embrittlement (FATT50 of turbine rotor steel. The results show that there was a linear relationship of interfacial impedance of the specimens and their FATT50 values. The predictive error based on the experiment study is within the range of ±15°C, indicating the predicting model is precise, effective, and reasonable.

  9. Analysis and Design of Tapered Slot Antenna for Ultra-Wideband Applications

    Institute of Scientific and Technical Information of China (English)

    YAO Yuan; CHEN Wenhua; HUANG Bin; FENG Zhenghe; ZHANG Zhijun

    2009-01-01

    The tapered slot antenna,such as Vivaldi,has been widely used due to its ultra-wideband,high gain,simple feed structure,and easy fabrication.However,there is no rigorous analytical theory for this type of antenna.This paper analyzed the metal parts of a tapered slot antenna in a conical coordinate system with the medium analyzed in rectangular coordinates.This mixed mode gave an approximate analytical form for the tapered slot antenna with the field distribution and radiation characteristics.A planar tapered slot antenna was proposed according to the results of the analysis methods.Measured and simulated results demonstrate the antenna performance.The antenna shows good impedance matching over a wide bandwidth of 9 GHz,from 2 GHz to 11 GHz,and good radiation patterns.It is suitable for ultra-wideband applications.

  10. Cationic effect on dye-sensitized solar cell properties using electrochemical impedance and transient absorption spectroscopy techniques

    Science.gov (United States)

    Gupta, Ravindra Kumar; Bedja, Idriss

    2017-06-01

    Redox-couple polymer electrolytes, (poly(ethylene oxide)-succinonitrile) blend/MI-I2, where M  =  Li or K, were prepared by the solution cast method. Owing to the plasticizing property of K+ ions, the K+ ion-based electrolyte exhibited better electrical conductivity than the Li+ ion-based electrolyte, which did however exhibit better photovoltaic properties. Electrochemical impedance spectroscopy revealed faster redox species diffusions and interfacial processes in the Li+ ion-based dye-sensitized solar cells than in the K+ ion-based ones. Transient absorption spectroscopy ascertained faster dye-regeneration by the Li+ ion-based electrolyte than the K+ ion-based electrolyte.

  11. Tapering of Polymer Optical Fibers for Compound Parabolic Concentrator Fiber Tip Fabrication

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Fasano, Andrea; Nielsen, Kristian

    2015-01-01

    We propose a process for Polymer Optical Fiber (POF) Compound Parabolic Compound (CPC) tip manufacturing using a heat and pull fiber tapering technique. The POF, locally heated above its glass transition temperature, is parabolically tapered down in diameter, after which it is cut to the desired ...

  12. Loss Factor of Tapered Structures for Short Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Blednykh, A.

    2011-03-28

    Using the electromagnetic simulation code ECHO, we have found a simple phenomenological formula that accurately describes the loss factor for short bunches traversing an axisymmetric tapered collimator. In this paper, we consider tapered collimators with rectangular cross-section and use the GdfidL code to calculate the loss factor dependence on the geometric parameters for short bunches. The results for both axisymmetric and rectangular collimators are discussed. The behaviour of the impedance of tapered structures for very short bunches in the optical regime has been determined in refs. [10,11]. Here, for the loss factors for two particular geometries, we have studied the departure from the optical regime behaviour as bunch length is increased. In both cases, the ratio of the loss factor for the tapered collimator to the loss factor in the optical regime is a function only of the scaling parameter {sigma}L/d{sup 2}. The fact that the bunch length a and the taper length L appear as a product is consistent with the recent scaling derived by Stupakov in ref. [12], since there is only a weak dependence on g. One noteworthy fact that is not a priori expected is that only the larger radius or vertical half-aperture d appears. The reduction factor is independent of b. Moreover, it is striking that the specific form involving the arctan given in Eq. (5) holds for both geometries, with only the coefficient {mu} differing by a factor of {approx}2 for flat vs round. This suggests that there may be a useful phenomenological form for more general geometries which may follow from natural extensions of Eq. (5). This possibility is presently being investigated.

  13. Tapering Enhanced Stimulated Superradiant Amplification

    CERN Document Server

    Duris, Joseph; Musumeci, Pietro

    2014-01-01

    High conversion efficiency between electrical and optical power is highly desirable both for high peak and high average power radiation sources. In this paper we discuss a new mechanism based on stimulated superradiant emission in a strongly tapered undulator whereby an optimal undulator tapering is calculated by dynamically matching the resonant energy variation to the ponderomotive decelerating gradient. The method has the potential to allow the extraction of a large fraction (~50%) of power from a relativistic electron beam and convert it into coherent narrow-band tunable radiation, and shows a clear path to very high average power radiation sources.

  14. Characterization of arbitrary fiber taper profiles with optical microscopy and image processing algorithms

    Science.gov (United States)

    Farias, Heric D.; Sebem, Renan; Paterno, Aleksander S.

    2014-08-01

    This work reports results from the development of a software to process the parameters involved in the characterization of fiber taper profiles, while using optical microscopy, a high-definition camera and a high- precision translation stage as the moveable base on which the taper is positioned. In addition to this procedure, image processing algorithms were customized to process the acquired images. With edge detection algorithms in the stitched image, one would be able to characterize the given taper radius curve that represents the taper profile when the camera has a sufficient resolution. As a consequence, the proposed fiber taper characterization procedure is a first step towards a high-resolution characterization of fiber taper diameters with arbitrary profiles, specially this case, in which tapers are fabricated with the stepwise technique that allows the production of non- biconical profiles. The parameters of the stitched images depends on the used microscope objective and the length of the characterized tapers. A non-biconical arbitrary taper is measured as an example for the illustration of the developed software and procedure.

  15. A Liquid Level Measurement Technique Outside a Sealed Metal Container Based on Ultrasonic Impedance and Echo Energy

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-01-01

    Full Text Available The proposed method for measuring the liquid level focuses on the ultrasonic impedance and echo energy inside a metal wall, to which the sensor is attached directly, not on ultrasonic waves that penetrate the gas–liquid medium of a container. Firstly, by analyzing the sound field distribution characteristics of the sensor in a metal wall, this paper proposes the concept of an "energy circle" and discusses how to calculate echo energy under three different states in detail. Meanwhile, an ultrasonic transmitting and receiving circuit is designed to convert the echo energy inside the energy circle into its equivalent electric power. Secondly, in order to find the two critical states of the energy circle in the process of liquid level detection, a program is designed to help with calculating two critical positions automatically. Finally, the proposed method is evaluated through a series of experiments, and the experimental results indicate that the proposed method is effective and accurate in calibration of the liquid level outside a sealed metal container.

  16. In Situ Determination of the Transport Properties of Near-Surface Concrete Using AC Impedance Spectroscopy Techniques

    Directory of Open Access Journals (Sweden)

    Lipeng Wu

    2016-01-01

    Full Text Available The durability of existing concrete structures has increasingly attracted widespread attention in recent years. The phenomenon of performance degradation is often associated with the intrusion of hazardous ions from outside. As the first barrier to external substances intrusion, the near-surface concrete plays an important role in durability. So the performance of in-service concrete structures often depends on the transport properties of the near-surface concrete. Accordingly, information on service conditions and life prediction can be obtained by testing these transport properties. In this paper, an in situ method for chloride ion diffusion coefficient determination is proposed based on the relationship between the alternating current impedance spectroscopy parameters and the chloride ion diffusion coefficient. By a rational design, the new method can synthetically reflect the transport properties of near-surface concrete and is not affected by the presence of the reinforcing bar. In addition, the experimental results show that the method is in good agreement with “PERMIT” migration test which has been widely used. The proposed method is less time consuming and nondestructive and has good reproducibility.

  17. A Liquid Level Measurement Technique Outside a Sealed Metal Container Based on Ultrasonic Impedance and Echo Energy.

    Science.gov (United States)

    Zhang, Bin; Wei, Yue-Juan; Liu, Wen-Yi; Zhang, Yan-Jun; Yao, Zong; Zhao, Li-Hui; Xiong, Ji-Jun

    2017-01-19

    The proposed method for measuring the liquid level focuses on the ultrasonic impedance and echo energy inside a metal wall, to which the sensor is attached directly, not on ultrasonic waves that penetrate the gas-liquid medium of a container. Firstly, by analyzing the sound field distribution characteristics of the sensor in a metal wall, this paper proposes the concept of an "energy circle" and discusses how to calculate echo energy under three different states in detail. Meanwhile, an ultrasonic transmitting and receiving circuit is designed to convert the echo energy inside the energy circle into its equivalent electric power. Secondly, in order to find the two critical states of the energy circle in the process of liquid level detection, a program is designed to help with calculating two critical positions automatically. Finally, the proposed method is evaluated through a series of experiments, and the experimental results indicate that the proposed method is effective and accurate in calibration of the liquid level outside a sealed metal container.

  18. Impedance plethysmography: basic principles.

    Directory of Open Access Journals (Sweden)

    Babu J

    1990-04-01

    Full Text Available Impedance Plethysmography technique has been discussed with explanation of two compartment model and parallel conductor theory for the estimation of peripheral blood flow and stroke volume. Various methods for signal enhancement to facilitate computation of blood flow are briefly described. Source of error in the estimation of peripheral blood flow is identified and the correction has been suggested.

  19. Taper Preparation Variability Compared to Current Taper Standards Using Computed Tomography

    Directory of Open Access Journals (Sweden)

    Richard Gergi

    2012-01-01

    Full Text Available Introduction. The purpose of this study was to compare the taper variation in root canal preparations among Twisted Files and PathFiles-ProTaper .08 tapered rotary files to current standards. Methods. 60 root canals with severe angle of curvature (between 25∘ and 35∘ and short radius (<10 mm were selected. The canals were divided randomly into two groups of 30 each. After preparation with Twisted Files and PathFiles-ProTaper to size 25 taper .08, the diameter was measured using computed tomography (CT at 1, 3, and 16 mm. Canal taper preparation was calculated at the apical third and at the middle-cervical third. Results. Of the 2 file systems, both fell within the ±.05 taper variability. All preparations demonstrated variability when compared to the nominal taper .08. In the apical third, mean taper was significantly different between TF and PathFiles-ProTaper ( value < 0.0001; independent -test. Mean Taper was significantly higher with PathFile-ProTaper. In the middle-cervical third, mean Taper was significantly higher with TF ( value = 0.015; independent -test. Conclusion. Taper preparations of the investigated size 25 taper .08 were favorable but different from the nominal taper.

  20. Controlling nanowire emission profile using conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    2008-01-01

    The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics.......The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics....

  1. STUDY OF THE X70 PIPELINE STEEL CORRODING IN 3.0wt% NaCl SOLUTION USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    L.J. Zhang; Z. Zhang; F.H. Cao; J.Q. Zhang; J.M. Wang; C.N. Cao

    2004-01-01

    The corrosion process of the X70 pipeline steel in 3.0wt% NaCl solution were studied using polarization method, and the chronological characteristics during the entire polarization plot were investigated in detail using EIS technique. In the active region of X70 steel such as 20mV potential bias applied on open circuit potential (OCP), the impedance spectra was comprised of three parts: a high-frequency capacitive loop, a middle-frequency capacitive loop and a low-frequency inductive component. When positive polarization potential increased, the capacitive loops at high and middle frequency range merged, and the inductive component at low frequency shrunk. At high positive polarization potential bias (500-800mV vs. OCP), the high-frequency capacitive loop and the low-frequency inductive loop exhibited as disheveled points due to the synergism of the inhomogeneity of the corroding material and the localized corrosion. The results were fitted utilizing the equivalent circuits to simulate the impedance spectra and to interpret the electrochemical features shown during the experiments.

  2. Frequency characteristics of tapered backfire helical antenna with loaded termination

    Science.gov (United States)

    Nakano, H.; Iio, S.; Yamauchi, J.

    1984-06-01

    Effects of loaded termination on a tapered backfire bifilar helical antenna are numerically and experimentally investigated over a wide frequency range of ratio 1:1.7. With the help of the scalar potential for a lumped resistance at the arm end, the current distribution along the helical wire is determined. It is found that nearly constant input impedance, high front-to-back ratio and low axial ratio are realised. The inherent absolute gain is not significantly deteriorated in spite of the use of a terminal resistor. The existence of the phase centre is also demonstrated, and the phase centre location is presented as a function of frequency.

  3. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  4. The investigation of the some body parameters of obese and (obese+diabetes) patients with using bioelectrical impedance analysis techniques

    Science.gov (United States)

    Yerlikaya, Emrah; Karageçili, Hasan; Aydin, Ruken Zeynep

    2016-04-01

    Obesity is a key risk for the development of hyperglycemia, hypertension, hyperlipidemia, insulin resistance and is totally referred to as the metabolic disorders. Diabetes mellitus, a metabolic disorder, is related with hyperglycemia, altered metabolism of lipids, carbohydrates and proteins. The minimum defining characteristic feature to identify diabetes mellitus is chronic and substantiated elevation of circulating glucose concentration. In this study, it is aimed to determine the body composition analyze of obese and (obese+diabetes) patients.We studied the datas taken from three independent groups with the body composition analyzer instrument. The body composition analyzer calculates body parameters, such as body fat ratio, body fat mass, fat free mass, estimated muscle mass, and base metabolic rate on the basis of data obtained by Dual Energy X-ray Absorptiometry using Bioelectrical Impedance Analysis. All patients and healthy subjects applied to Siirt University Medico and their datas were taken. The Statistical Package for Social Sciences version 21 was used for descriptive data analysis. When we compared and analyzed three groups datas, we found statistically significant difference between obese, (obese+diabetes) and control groups values. Anova test and tukey test are used to analyze the difference between groups and to do multiple comparisons. T test is also used to analyze the difference between genders. We observed the statistically significant difference in age and mineral amount peducation level among the illiterate and university graduates; fat mass kg, fat percentage, internal lubrication, body mass index, water percentage, protein mass percentage, mineral percentage p<0.05, significant statistically difference were observed. This difference especially may result of a sedentary lifestyle.

  5. Confinement loss in adiabatic photonic crystal fiber tapers

    Science.gov (United States)

    Kuhlmey, Boris T.; Nguyen, Hong C.; Steel, M. J.; Eggleton, Benjamin J.

    2006-09-01

    We numerically study confinement loss in photonic crystal fiber (PCF) tapers and compare our results with previously published experimental data. Agreement between theory and experiment requires taking into account hole shrinkage during the tapering process, which we measure by using a noninvasive technique. We show that losses are fully explained within the adiabatic approximation and that they are closely linked to the existence of a fundamental core-mode cutoff. This cutoff is equivalent to the core-mode cutoff in depressed-cladding fibers, so that losses in PCF tapers can be obtained semiquantitatively from an equivalent depressed-cladding fiber model. Finally, we discuss the definition of adiabaticity in this open boundary problem.

  6. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    Science.gov (United States)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  7. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  8. Comparison of debris extruded apically and working time used by ProTaper Universal rotary and ProTaper retreatment system during gutta-percha removal

    OpenAIRE

    Mary Kinue Nakamune Uezu; Maria Leticia Borges Britto; Cleber K. Nabeshima; Raul Capp Pallotta

    2010-01-01

    OBJECTIVE: The aim of this study was to evaluate the in vitro action of ProTaper retreatment files and ProTaper Universal in the retreatment of mandibular premolars. MATERIAL AND METHODS: The amount of debris extruded apically was measured and the time to reach the working length and to complete the removal of gutta-percha was observed. Thirty teeth had their canals prepared using ProTaper Universal files and were obturated by the single cone technique. The teeth were then stored at 37ºC in a...

  9. Reconfigurable tapered coaxial slot antenna for hepatic microwave ablation.

    Science.gov (United States)

    Malhotra, Neeru; Marwaha, Anupma; Kumar, Ajay

    2016-01-01

    Microwave ablation is rapidly being rediscovered and developed for treating many cancers of liver, lung, kidney and bone, as well as arrhythmias and other medical conditions. The microwaves ablate tissue by heating it to cytotoxic temperatures. The microwave antenna design suffers the challenges of effective coupling and penetration into body tissues, uncontrolled power deposition due to applicator construction limitations affecting uniform heating of target region, and narrowband operation leading to mismatch for many patients and detrimental heating. To meet out the requirements of wideband operation and localized lesion reconfigurable linearly tapered slot interstitial wideband antenna has been proposed for working in the 1.38 GHz to 4.31 GHz frequency band. The performance of the antenna is evaluated by using FEM-based HFSS software. The slot height and taper height are reconfigured for parametric analysis achieving maximum impedance matching and spherical ablation zone without requiring any additional adjustable structures. The tapering of the slot in coaxial antenna generates current distribution at the edges of the slot for maximizing specific absorption rate.

  10. Impedance analysis of acupuncture points and pathways

    Science.gov (United States)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  11. Kinetics of electrochemically controlled surface reactions on bulk and thin film metals studied with Fourier transform impedance spectroscopy and surface plasmon resonance techniques

    Science.gov (United States)

    Assiongbon, Kankoe A.

    2005-07-01

    In the work presented in this thesis, the surface sensitive electrochemical techniques of cyclic voltametry (CV), potential step (PS) and Fourier transform impedance spectroscopy (FT-EIS), as well as the optical technique of surface plasmon resonance (SPR), were used to probe a wide variety of surface processes at various metal/liquid interface. Three polycrystalline metals (Au, Ta and Cu) and a Cr-coated gold film were used for these studies in different aqueous environments. A combination of CV with FT-EIS and PS was used to investigate electronic and structural proprieties of a modified bulk electrode of Au. This experimental system involved under potential deposition (UPD) of Bi3+ on Au in a supporting aqueous electrolyte containing ClO-4 . UPD range of Bi3+ was determined, and adsorption kinetics of Bi3+ in the presence of coadsorbing anion, ClO-4 were quantified. Potentiodynamic growth of oxide films of Ta in the following electrolytes NaNO3, NaNO3 + 5wt% H2O2, NaOH and NaOH + 5wt% H2O2 had been investigated. The oxide films were grown in the range -0.1 → +0.4V (high electric field) at a scan rate of 10 mV/s. Time resolved A.C. impedance spectroscopy measurements in the frequency range (0.1--20 KHz) were performed to characterize the surface reactions of oxide formation. The results are interpreted in terms of charge conductivity O2- through the oxide film, and disintegration of H2O2 into OH-. In a high pH medium (pH 12), dissociation of H2O2 was catalytically enhanced. This led to destabilization of the electrogenerated tantalum oxide surface film in the form of a soluble hexatantalate species. In contrast with the electrolytes, NaNO3, NaNO3 + 5wt% H2O2, NaOH, where only the oxide growth was observed, the A.C. impedance spectroscopy measurements in NaOH + 5wt% H 2O2 showed competition between oxide formation and its removal. These results are relevant for chemical slurry design in chemical mechanical polishing (CMP) of Ta. Further investigations were

  12. Modeling of nonlinear propagation in fiber tapers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2012-01-01

    A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...... numerical schemes for interpolation of fiber parameters along the taper are discussed and tested in numerical simulations on soliton propagation and generation of continuum radiation in short photonic-crystal fiber tapers....

  13. ProTaper联合根管加压冲洗治疗窦道型慢性根尖周炎的临床分析%Clinical analysis on ProTaper combined with root canal pressure washing technique for treatment of chronic apical periodontitis with fistula

    Institute of Scientific and Technical Information of China (English)

    周瑾; 阿依古丽·依沙克

    2014-01-01

    目的:对应用ProTaper与根管加压冲洗技术联合对患有窦道型慢性根尖周炎的患者实施治疗的临床效果进行研究。方法将我院收治的82例患有窦道型慢性根尖周炎的患者随机分为对照组和治疗组,平均每组41例。采用ProTaper与注射器冲管技术联合对对照组患者实施治疗;采用ProTaper与根管加压冲洗技术联合对治疗组患者实施治疗。结果治疗组患者窦道型慢性根尖周炎病情治疗效果明显优于对照组;治疗操作总时间和牙齿功能复常时间明显短于对照组。结论应用ProTaper与根管加压冲洗技术联合对患有窦道型慢性根尖周炎的患者实施治疗的临床效果非常明显。%Objective To study the clinical effects of ProTaper combined with root canal pressure washing technique for treatment of chronic apical periodontitis with fistula. Methods 82 patients with chronic apical periodontitis with fistula admitted and treated in our hospital were randomly assigned to the control group and the treatment group with 41 cases in each group. The control group was given ProTaper combined with syringe flushing pipe technique while the treatment group was given ProTaper combined with root canal pressure washing technique. Results The treatment group had better efficacy for treatment of chronic apical periodontitis with fistula than the control group. The treatment group had shorter operating time and faster recovery of tooth functions than the control group. Conclusion ProTaper combined with root canal pressure washing technique demonstrates excellent clinical effects for treatment of chronic apical periodontitis with fistula.

  14. Comparison of debris extruded apically and working time used by ProTaper Universal rotary and ProTaper retreatment system during gutta-percha removal

    Directory of Open Access Journals (Sweden)

    Mary Kinue Nakamune Uezu

    2010-12-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the in vitro action of ProTaper retreatment files and ProTaper Universal in the retreatment of mandibular premolars. MATERIAL AND METHODS: The amount of debris extruded apically was measured and the time to reach the working length and to complete the removal of gutta-percha was observed. Thirty teeth had their canals prepared using ProTaper Universal files and were obturated by the single cone technique. The teeth were then stored at 37ºC in a humid environment for 7 days. During the use of the rotary instruments for root canal filling removal, the apical portions of the teeth were attached to the open end of a resin tube to collect the apically extruded debris. RESULTS: ProTaper Universal files were significantly faster (p=0.0011 than the ProTaper retreatment files to perform gutta-percha removal, but no significant difference was found between the files regarding the time to reach the working length or the amount of apical extrusion. CONCLUSIONS: ProTaper Universal rotary had better results for endodontic retreatment, and both techniques promote similar apical extrusion of debris.

  15. Mode field diameter preserving fiber tapers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Maack, M. D.; Skovgaard, P. M. W.

    2011-01-01

    concentric dual-core fibers, which couple light from an inner core to an outer core through a taper. Fibers with a 6 μm MFD feedthrough and a 15 μm polarization maintaining feedthrough are demonstrated experimentally. Simulations of the MFD in the tapered dual-core fibers are also presented....

  16. Empirical Optimization of Undulator Tapering at FLASH2 and Comparison with Numerical Simulations

    CERN Document Server

    Mak, Alan; Faatz, Bart; Werin, Sverker

    2016-01-01

    In a free-electron laser equipped with variable-gap undulator modules, the technique of undulator tapering opens up the possibility to increase the radiation power beyond the initial saturation point, thus enhancing the efficiency of the laser. The effectiveness of the enhancement relies on the proper optimization of the taper profile. In this work, a multidimensional optimization approach is implemented empirically in the x-ray free-electron laser FLASH2. The empirical results are compared with numerical simulations.

  17. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    OpenAIRE

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT se...

  18. Empirical optimization of undulator tapering at FLASH2 and comparison with numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mak, Alan; Curbis, Francesca; Werin, Sverker [Lund Univ. (Sweden). MAX IV Laboratory; Faatz, Bart [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-08-15

    In a free-electron laser equipped with variable-gap undulator modules, the technique of undulator tapering opens up the possibility to increase the radiation power beyond the initial saturation point, thus enhancing the efficiency of the laser. The effectiveness of the enhancement relies on the proper optimization of the taper profile. In this work, a multidimensional optimization approach is implemented empirically in the X-ray free-electron laser FLASH2. The empirical results are compared with numerical simulations.

  19. Tapered optical fibers as tools for probing magneto-optical trap characteristics

    OpenAIRE

    2009-01-01

    We present a novel technique for measuring the characteristics of a magneto-optical trap (MOT) for cold atoms by monitoring the spontaneous emission from trapped atoms coupled into the guided mode of a tapered optical nanofiber. We show that the nanofiber is highly sensitive to very small numbers of atoms close to its surface. The size and shape of the MOT, determined by translating the cold atom cloud across the tapered fiber, is in excellent agreement with measurements obtained using the co...

  20. Scattering patterns of dihedral corner reflectors with impedance surface impedances

    Science.gov (United States)

    Balanis, Constantine A.; Griesser, Timothy; Liu, Kefeng

    The radar cross section patterns of lossy dihedral corner reflectors are calculated using a uniform geometrical theory of diffraction for impedance surfaces. All terms of up to third order reflections are considered for patterns in the principal plane. The surface waves are included whenever they exist for reactive surface impedances. The dihedral corner reflectors examined have right, obtuse, and acute interior angles, and patterns over the entire 360 deg azimuthal plane are calculated. The surface impedances can be different on the four faces of the dihedral corner reflector; however, the surface impedance must be uniform over each face. Computed cross sections are compared with a moment method technique for a dielectric/ferrite absorber coating on a metallic corner reflector. The analysis of the dihedral corner reflector is important because it demonstrates many of the important scattering contributors of complex targets including both interior and exterior wedge diffraction, half-plane diffraction, and dominant multiple reflections and diffractions.

  1. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well...

  2. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Nunes

    Full Text Available Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  3. Attenuation measurement of infrared optical fibers by use of a hollow-taper-based coupling method.

    Science.gov (United States)

    Ilev, I K; Waynant, R W; Bonaguidi, M A

    2000-07-01

    An alternative method for attenuation measurement of infrared (IR) fibers is described. The method includes a simple technique for direct laser-to-fiber coupling with an uncoated glass hollow taper. The operating principle of the hollow taper is based on the grazing-incidence effect of light reflection. The hollow taper forms a smooth Gaussian-shaped profile of the output laser emission and provides the proper conditions for equilibrium-mode distribution of optical power within the test IR fibers. The experimental hollow-taper-based coupling method is used for measurement of attenuation and bending losses of various kinds of IR fiber, including solid-core (fluoride, chalcogenide, and germanium-doped) and hollow fibers.

  4. Tapered optical fibers as tools for probing magneto-optical trap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, Michael J.; Deasy, Kieran [Department of Applied Physics and Instrumentation, Cork Institute of Technology, Cork (Ireland); Photonics Centre, Tyndall National Institute, University College Cork, Prospect Row, Cork (Ireland); Wu Yuqiang; Nic Chormaic, Sile [Photonics Centre, Tyndall National Institute, University College Cork, Prospect Row, Cork (Ireland); Department of Physics, University College Cork, Cork (Ireland); Chakrabarti, Shrabana [Photonics Centre, Tyndall National Institute, University College Cork, Prospect Row, Cork (Ireland)

    2009-05-15

    We present a novel technique for measuring the characteristics of a magneto-optical trap (MOT) for cold atoms by monitoring the spontaneous emission from trapped atoms coupled into the guided mode of a tapered optical nanofiber. We show that the nanofiber is highly sensitive to very small numbers of atoms close to its surface. The size and shape of the MOT, determined by translating the cold atom cloud across the tapered fiber, is in excellent agreement with measurements obtained using the conventional method of fluorescence imaging using a charge coupled device camera. The coupling of atomic fluorescence into the tapered fiber also allows us to monitor the loading and lifetime of the trap. The results are compared to those achieved by focusing the MOT fluorescence onto a photodiode and it was seen that the tapered fiber gives slightly longer loading and lifetime measurements due to the sensitivity of the fiber, even when very few atoms are present.

  5. Tapered optical fibers as tools for probing magneto-optical trap characteristics

    Science.gov (United States)

    Morrissey, Michael J.; Deasy, Kieran; Wu, Yuqiang; Chakrabarti, Shrabana; Nic Chormaic, Síle

    2009-05-01

    We present a novel technique for measuring the characteristics of a magneto-optical trap (MOT) for cold atoms by monitoring the spontaneous emission from trapped atoms coupled into the guided mode of a tapered optical nanofiber. We show that the nanofiber is highly sensitive to very small numbers of atoms close to its surface. The size and shape of the MOT, determined by translating the cold atom cloud across the tapered fiber, is in excellent agreement with measurements obtained using the conventional method of fluorescence imaging using a charge coupled device camera. The coupling of atomic fluorescence into the tapered fiber also allows us to monitor the loading and lifetime of the trap. The results are compared to those achieved by focusing the MOT fluorescence onto a photodiode and it was seen that the tapered fiber gives slightly longer loading and lifetime measurements due to the sensitivity of the fiber, even when very few atoms are present.

  6. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    Science.gov (United States)

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  7. Model-based optimization of tapered free-electron lasers

    Directory of Open Access Journals (Sweden)

    Alan Mak

    2015-04-01

    Full Text Available The energy extraction efficiency is a figure of merit for a free-electron laser (FEL. It can be enhanced by the technique of undulator tapering, which enables the sustained growth of radiation power beyond the initial saturation point. In the development of a single-pass x-ray FEL, it is important to exploit the full potential of this technique and optimize the taper profile a_{w}(z. Our approach to the optimization is based on the theoretical model by Kroll, Morton, and Rosenbluth, whereby the taper profile a_{w}(z is not a predetermined function (such as linear or exponential but is determined by the physics of a resonant particle. For further enhancement of the energy extraction efficiency, we propose a modification to the model, which involves manipulations of the resonant particle’s phase. Using the numerical simulation code GENESIS, we apply our model-based optimization methods to a case of the future FEL at the MAX IV Laboratory (Lund, Sweden, as well as a case of the LCLS-II facility (Stanford, USA.

  8. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  9. Tapered silicon nanowires for enhanced nanomechanical sensing

    Science.gov (United States)

    Malvar, O.; Gil-Santos, E.; Ruz, J. J.; Ramos, D.; Pini, V.; Fernandez-Regulez, M.; Calleja, M.; Tamayo, J.; San Paulo, A.

    2013-07-01

    We investigate the effect of controllably induced tapering on the resonant vibrations and sensing performance of silicon nanowires. Simple analytical expressions for the resonance frequencies of the first two flexural modes as a function of the tapering degree are presented. Experimental measurements of the resonance frequencies of singly clamped nanowires are compared with the theory. Our model is valid for any nanostructure with tapered geometry, and it predicts a reduction beyond two orders of magnitude of the mass detection limit for conical resonators as compared to uniform beams with the same length and diameter at the clamp.

  10. Tapered and linearly chirped fiber Bragg gratings with co-directional and counter-directional resultant chirps

    Science.gov (United States)

    Osuch, Tomasz

    2016-05-01

    A method of spectral width tailoring of tapered fiber Bragg gratings is theoretically analyzed and experimentally verified. This concept is based on inscription grating structures in which synthesis of chirps comes from both taper profile and a linearly chirped phase mask used for grating inscription. It is shown that under UV exposure and depending on the orientation of the optical fiber taper relative to the variable-pitch phase mask, tapered and linearly chirped fiber Bragg gratings (TCFBG) with resultant co-directional or counter-directional chirps are achieved. Thus, both effects, those of reduction and enhancement of the grating chirp, as well as their influence on the grating spectral response, are presented. In particular, using the above approach TCFBG with significantly narrowed spectral width are shown. Moreover, fused tapered chirped FBG with relatively large waist diameter are shown having broad spectrum, something that prior to now was not attainable using previously developed techniques.

  11. The advantages of a tapered whisker.

    Science.gov (United States)

    Williams, Christopher M; Kramer, Eric M

    2010-01-20

    The role of facial vibrissae (whiskers) in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker), and that this may explain why the taper has been preserved during the evolution of terrestrial mammals.

  12. The advantages of a tapered whisker.

    Directory of Open Access Journals (Sweden)

    Christopher M Williams

    Full Text Available The role of facial vibrissae (whiskers in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker, and that this may explain why the taper has been preserved during the evolution of terrestrial mammals.

  13. An inexpensive heat-and-pull rig for fiber taper fabrication

    CERN Document Server

    Ward, J; Shortt, B; Morrissey, M; Deasy, K; Chormaic, S N

    2006-01-01

    We describe an inexpensive and reproducible method of fabricating adiabatic tapers with 3-4 micron diameter. The method is based on a heat-and-pull rig, whereby a CO2 laser is continuously scanned across a length of fiber that is being pulled synchronously. Our system relies on a CO2 mirror mounted on an inexpensive geared stepper motor in order to scan the laser beam across the taper region and ensure adiabaticity. We show that this system offers a reliable alternative to more traditional rigs incorporating galvanometer scanners. We have routinely obtained transmission losses between 0.1 and 0.3 dB. The operation of the rig is described in detail and an analysis on the produced tapers is provided. The flexibility of the rig is demonstrated by fabricating prolate dielectric microresonators using the microtapering technique. Such a rig is of interest to a range of fields that require tapered fiber fabrication such as microcavity-taper coupling, atom guiding along a tapered fiber, optical fiber sensing and the ...

  14. A Triple-band Bandpass Filter using Tri-section Step-impedance and Capacitively Loaded Step-impedance Resonators for GSM, WiMAX, and WLAN systems

    Science.gov (United States)

    Chomtong, P.; Akkaraekthalin, P.

    2014-05-01

    This paper presents a triple-band bandpass filter for applications of GSM, WiMAX, and WLAN systems. The proposed filter comprises of the tri-section step-impedance and capacitively loaded step-impedance resonators, which are combined using the cross coupling technique. Additionally, tapered lines are used to connect at both ports of the filter in order to enhance matching for the tri-band resonant frequencies. The filter can operate at the resonant frequencies of 1.8 GHz, 3.7 GHz, and 5.5 GHz. At resonant frequencies, the measured values of S11 are -17.2 dB, -33.6 dB, and -17.9 dB, while the measured values of S21 are -2.23 dB, -2.98 dB, and -3.31 dB, respectively. Moreover, the presented filter has compact size compared with the conventional open-loop cross coupling triple band bandpass filters

  15. Analyzing Impedance Spectroscopy Results

    Institute of Scientific and Technical Information of China (English)

    Yoed Tsur; Sioma Baltianski

    2006-01-01

    In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments. A number of different approaches, which differ even by the definition of the problem, are used in the literature. Some aimed towards finding an equivalent circuit. Others aimed towards finding directly dielectric properties of the material under an assumed model. Others towards finding distribution of relaxation times, either parametric or point-by point. No matter what the approach is, this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well. Therefore some a-priori knowledge about the system must be used. In addition, we should remember that the ultimate goal is to get physical insight about the system.

  16. A review of impedance measurements of whole cells.

    Science.gov (United States)

    Xu, Youchun; Xie, Xinwu; Duan, Yong; Wang, Lei; Cheng, Zhen; Cheng, Jing

    2016-03-15

    Impedance measurement of live biological cells is widely accepted as a label free, non-invasive and quantitative analytical method to assess cell status. This method is easy-to-use and flexible for device design and fabrication. In this review, three typical techniques for impedance measurement, i.e., electric cell-substrate impedance sensing, Impedance flow cytometry and electric impedance spectroscopy, are reviewed from the aspects of theory, to electrode design and fabrication, and applications. Benefiting from the integration of microelectronic and microfluidic techniques, impedance sensing methods have expanded their applications to nearly all aspects of biology, including living cell counting and analysis, cell biology research, cancer research, drug screening, and food and environmental safety monitoring. The integration with other techniques, the fabrication of devices for certain biological assays, and the development of point-of-need diagnosis devices is predicted to be future trend for impedance sensing techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A wave dynamic response matrix method for solving problems about impeding structure-borne sound transmission from composite wave impedance technique%组合波阻技术的波动力响应矩阵分析法及其特性研究

    Institute of Scientific and Technical Information of China (English)

    林永水; 吴卫国; 甘进

    2016-01-01

    This paper proposes a wave dynamic response matrix method to investigate the problem of im-peding structure-borne sound transmission from wave impedance facilities based on the wave approach, impedance method and finite element idea. The structure is discretized into many wave elements and a gen-eral wave dynamic response equilibrium equation is developed according to the displacement compatibility, force and moment equilibrium at the junction node. And, the wave dynamic response matrices of wave ele-ments and the added wave dynamic response matrices of wave impedance facilities are deduced. The vibra-tion amplitudes of wave elements are obtained by resolving the equilibrium equation and the transmission efficiencies and transmission loss are then obtained. The method is illustrated by a series of wave attenua-tion models such as blocking mass, elastic interlayer and dynamic vibration absorber. Finally, numerical analysis focuses on the attenuation of structure-borne sound through the composite wave impedance facilities.The numerical simulation results show that the wave transmission loss of the whole frequency domain will be greatly improved by using composite wave impedance technique with reasonable selection of design pa-rameters and the optimal layout. This study provides a new analysis method for the structural acoustic design of composite wave impedance facilities and a new kind of control policy, which has great theoretical signif-icance and important value for engineering application in the field of noise and vibration reduction.%基于有限元思想,综合运用波分析法和阻抗法,提出了波阻元件阻抑结构声传递的波动力响应矩阵分析法。将结构离散为多个波导单元和波阻单元,根据连接节点的位移连续,力与力矩平衡,建立附加波阻元件的结构连接广义波动力响应平衡方程,推导出波单元波动力响应特征矩阵及波阻元件附加波动响应特征矩阵,并代入波

  18. Crystallographic Analysis of Tapering of ADP Crystallites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of crystallographic characteristics of ADP (ammonium dihydrogen phosphate) crystals and the selected growth conditions, the growth habit of ADP crystals was studied. In comparison with pyramidal planes, the growth rate of prismatic faces is slower and more sensitive to the additives and impurities for ADP crystals. When the supersaturation is low, the advance of growth steps on prismatic face can be blocked by ethanol or impurities, the crystal morphology is changed from the tetragonal prism to shuttle (i.e., the tapered shape). The tapering formation of ADP crystallites was structurally studied in a novel view.

  19. Microfabricated Thin Film Impedance Sensor & AC Impedance Measurements

    Directory of Open Access Journals (Sweden)

    Jinsong Yu

    2010-06-01

    Full Text Available Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS and equivalent circuit analysis of the small amplitude (±5 mV AC impedance measurements (frequency range: 1 MHz to 0.1 Hz at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (~3 μm and sand (~300 μm particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively. A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness.

  20. Intermodal Energy Transfer in a Tapered Optical Fiber: Optimizing Transmission

    CERN Document Server

    Ravets, S; Kordell, P R; Wong-Campos, J D; Rolston, S L; Orozco, L A

    2013-01-01

    We present an experimental and theoretical study of the energy transfer between modes during the tapering process of an optical nanofiber through spectrogram analysis. The results allow optimization of the tapering process, and we measure transmission in excess of 99.95% for the fundamental mode. We quantify the adiabaticity condition through calculations and place an upper bound on the amount of energy transferred to other modes at each step of the tapering, giving practical limits to the tapering angle.

  1. Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ellahi, R., E-mail: rellahi@engr.ucr.edu [Department of Mechanical Engineering, University of California Riverside (United States); Department of Mathematics and Statistics, FBAS, IIU, Islamabad (Pakistan); Rahman, S.U. [Department of Mathematics and Statistics, FBAS, IIU, Islamabad (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University Islamabad (Pakistan)

    2014-08-14

    Current letter deals with the mathematical models of Jeffrey fluid via nanoparticles in the tapered stenosed atherosclerotic arteries. The convection effects of heat transfer with catheter are also taken into account. The nonlinear coupled equations of nanofluid model are simplified under mild stenosis. The solutions for concentration and temperature are found by using homotopy perturbation method, whereas for velocity profile the exact solution is calculated. Moreover, the expressions for flow impedance and pressure rise are computed and discussed through graphs for different physical quantities of interest. The streamlines have also been presented to discuss the trapping bolus discipline.

  2. Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles

    Science.gov (United States)

    Ellahi, R.; Rahman, S. U.; Nadeem, S.

    2014-08-01

    Current letter deals with the mathematical models of Jeffrey fluid via nanoparticles in the tapered stenosed atherosclerotic arteries. The convection effects of heat transfer with catheter are also taken into account. The nonlinear coupled equations of nanofluid model are simplified under mild stenosis. The solutions for concentration and temperature are found by using homotopy perturbation method, whereas for velocity profile the exact solution is calculated. Moreover, the expressions for flow impedance and pressure rise are computed and discussed through graphs for different physical quantities of interest. The streamlines have also been presented to discuss the trapping bolus discipline.

  3. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  4. Coupling impedance of an in-vacuum undulator. Measurement, simulation, and analytical estimation

    Energy Technology Data Exchange (ETDEWEB)

    Simaluk, Victor [Science and Technology Facilities Council (STFC), Harwell Campus, Oxford (United Kingdom). Diamond Light Source, Ltd.; Blednykh, Alexei [Brookhaven National Lab. (BNL), Upton, NY (United States); Fielder, Richard [Science and Technology Facilities Council (STFC), Harwell Campus, Oxford (United Kingdom). Diamond Light Source, Ltd.; Rehm, Guenther [Science and Technology Facilities Council (STFC), Harwell Campus, Oxford (United Kingdom). Diamond Light Source, Ltd.; Bartolini, Riccardo [Science and Technology Facilities Council (STFC), Harwell Campus, Oxford (United Kingdom). Diamond Light Source, Ltd.; Univ. of Oxford (United Kingdom)

    2014-07-25

    One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. In order to get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID) straights. Moreover, the impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  5. Coupling impedance of an in-vacuum undulator: Measurement, simulation, and analytical estimation

    Science.gov (United States)

    Smaluk, Victor; Fielder, Richard; Blednykh, Alexei; Rehm, Guenther; Bartolini, Riccardo

    2014-07-01

    One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. To get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID) straights. The impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  6. Coupling impedance of an in-vacuum undulator: Measurement, simulation, and analytical estimation

    Directory of Open Access Journals (Sweden)

    Victor Smaluk

    2014-07-01

    Full Text Available One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. To get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID straights. The impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  7. Time series tapering for short data samples

    DEFF Research Database (Denmark)

    Kaimal, J.C.; Kristensen, L.

    1991-01-01

    We explore the effect of applying tapered windows on atmospheric data to eliminate overestimation inherent in spectra computed from short time series. Some windows are more effective than others in correcting this distortion. The Hamming window gave the best results with experimental data...

  8. Radial Distance Estimation with Tapered Whisker Sensors.

    Science.gov (United States)

    Ahn, Sejoon; Kim, DaeEun

    2017-07-19

    Rats use their whiskers as tactile sensors to sense their environment. Active whisking, moving whiskers back and forth continuously, is one of prominent features observed in rodents. They can discriminate different textures or extract features of a nearby object such as size, shape and distance through active whisking. There have been studies to localize objects with artificial whiskers inspired by rat whiskers. The linear whisker model based on beam theory has been used to estimate the radial distance, that is, the distance between the base of the whisker and a target object. In this paper, we investigate deflection angle measurements instead of forces or moments, based on a linear tapered whisker model to see the role of tapered whiskers found in real animals. We analyze how accurately this model estimates the radial distance, and quantify the estimation errors and noise sensitivity. We also compare the linear model simulation and nonlinear numerical solutions. It is shown that the radial distance can be estimated using deflection angles at two different positions on the tapered whisker. We argue that the tapered whisker has an advantage of estimating the radial distance better, as compared to an untapered whisker, and active sensing allows that estimation without the whisker's material property and thickness or the moment at base. In addition, we investigate the potential of passive sensing for tactile localization.

  9. Wakefields and coupling impedances

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Superconducting Super Collider Laboratory, 2550 Beckleymeade Ave., Dallas, Texas 75237 (United States))

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example. [copyright] 1995 [ital American] [ital Institute] [ital of] [ital Physics

  10. Wakefields and coupling impedances

    Science.gov (United States)

    Kurennoy, Sergey

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.

  11. Experimental stress-strain analysis of tapered silica optical fibers with nanofiber waist

    CERN Document Server

    Holleis, Sigrid; Wuttke, Christian; Schneeweiss, Philipp; Rauschenbeutel, Arno

    2014-01-01

    We experimentally determine tensile force-elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force-elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress-strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on the well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.

  12. Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist

    Energy Technology Data Exchange (ETDEWEB)

    Holleis, S.; Hoinkes, T.; Wuttke, C.; Schneeweiss, P.; Rauschenbeutel, A. [Vienna Center for Quantum Science and Technology, TU Wien—Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2014-04-21

    We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on the well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.

  13. Radiation losses of step-tapered channel waveguides.

    Science.gov (United States)

    Marcuse, D

    1980-11-01

    We compute the radiation losses of a rectangular dielectric waveguide (integrated optics channel waveguide) that is tapered so that its wider cross-sectional dimension increases by roughly a factor of three while its narrow dimension remains constant. As the waveguide widens its refractive index decreases to ensure that the waveguide supports only one guided mode. The taper is approximated by a discontinuous staircase curve. A rectangular waveguide taper of 2-microm thickness, tapering from 3- to 10-microm width through fourteen steps of 0.25-microm height, has a minimum loss (at 0.6328-microm wavelength) of 0.13 dB for a 200-microm taper length.

  14. An impedance grasping strategy

    NARCIS (Netherlands)

    Muñoz Arias, Mauricio; Scherpen, Jacqueline M.A.; Macchelli, Alessandro

    2014-01-01

    This work is devoted to an impedance grasping strategy for a class of standard mechanical systems in the port- Hamiltonian framework. The presented control strategy re- quires a set of coordinate transformations, since the impedance control in the port-Hamiltonian framework with structure preservati

  15. Electrical Impedance Measurements of PZT Nanofiber Sensors

    Directory of Open Access Journals (Sweden)

    Richard Galos

    2017-01-01

    Full Text Available Electrical impedance measurements of PZT nanofiber sensors were performed using a variety of methods over a frequency spectrum ranging from DC to 1.8 GHz. The nanofibers formed by electrospinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. Special matching circuits with ultrahigh input impedance were fabricated to produce low noise, measurable sensor outputs. Material properties including resistivity and dielectric constant are derived from the impedance measurements. The resulting material properties are also compared with those of individual nanofibers being tested using conductive AFM and Scanning Conductive Microscopy.

  16. A Rotative Electrical Impedance Tomography Reconstruction System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F-M [St. John' s and St. Mary' s Institute of Technology, Department of computer science and information Engineering, 499, Sec. 4, Tam King Road Tamsui, Taipei, Taiwan (China); Huang, C-N [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China); Chang, F-W [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China); Chung, H-Y [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China)

    2006-10-15

    Electrical impedance tomography (EIT) is a powerful tool for mapping the conductivity distribution of estimated objects. The EIT system is entirely implemented by electrical technique, so it is a relatively cheap system and data can be collected very rapidly. But it has few commercially medical EIT systems available. This is because impedance image unable to achieve the essential spatial resolution and this technique has an intrinsically poor signal to noise ratio. In this paper, we have developed a high performance rotative EIT system (REIT) for expanding the independent measurements. By rotate the electrodes successive, REIT could change the position of electrodes and acquire more measurement data. This rotative measurement method not only can increase the resolution of impedance images, but also reduce the complexity of measurement system. We hope the improvement of REIT will bring some help in electrical impedance tomography.

  17. A comparative study of the inhibition effects of benzotriazole and 6-aniline-1,3,5-triazine-2,4-dithiol monosodium salt on the corrosion of copper by potentiodynamic polarization, AC impedance and surface-enhanced Raman spectroscopic techniques

    Science.gov (United States)

    Zhou, Guoding; Cai, Shengmin; Song, Liqun; Yang, Huaquan; Fujishima, A.; Ibrahim, A.; Lee, Y. G.; Loo, B. H.

    1991-11-01

    The inhibition effects of benzotriazole (BTA) and 6-aniline-1,3,5-triazine-2,4-dithiol (ATD) monosodium salt on copper corrosion have been studied by the potentiodynamic polarization, AC impedance and surface-enhanced Raman spectroscopic techniques. The polarization resistance Rp increases with the concentration of either BTA or ATD. From the plots of the phase shift θ versus logarithm of the frequency, it is found that θ is close to 90° after the copper electrode is immersed for a long period of time in BTA-containing solution which indicates the behavior of an ideal capacitor. In ATD-containing solutions, θ is close to 45 ° which shows the appearance of a Warburg impedance for a diffusion process. Surface-enhanced Raman spectroscopic studies of the competitive adsorption of BTA and ATD on copper surfaces indicate that BTA adsorbs better than ATD. Based on these results, it is concluded that the inhibition action of BTA is better than that of ATD.

  18. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  19. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  20. Performance of a tapered pulse tube

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Allen, M.; Woolan, J.J. [Cryenco Inc., Denver, CO (United States)

    1998-02-01

    In a well instrumented pulse tube refrigerator having 1,500 W of cooling power at 125 K, the authors have measured the figure of merit of a tapered pulse tube at several operating points. At operating points near the operating point for which the taper was designed, the figure of merit is 0.96. This is close to the theoretical optimum figure of merit 0.97 calculated for this pulse tube considering only two loss mechanisms: heat conduction in the metal pulse tube wall and ordinary thermoacoustic heat transport in the gas within a few thermal penetration depths of the wall. At operating points farther from the design operating point, the measured figure of merit is much lower, as streaming driven convection adds a third loss mechanism.

  1. Performance of an elliptically tapered neutron guide

    Science.gov (United States)

    Mühlbauer, Sebastian; Stadlbauer, Martin; Böni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-11-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  2. Performance of an elliptically tapered neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Sebastian [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany)]. E-mail: sebastian.muehlbauer@frm2.tum.de; Stadlbauer, Martin [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Schanzer, Christan [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Stahn, Jochen [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Filges, Uwe [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland)

    2006-11-15

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  3. Performance of a tapered pulse tube

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Allen, M.; Woolan, J.J. [Cryenco Inc., Denver, CO (United States)

    1998-02-01

    In a well instrumented pulse tube refrigerator having 1,500 W of cooling power at 125 K, the authors have measured the figure of merit of a tapered pulse tube at several operating points. At operating points near the operating point for which the taper was designed, the figure of merit is 0.96. This is close to the theoretical optimum figure of merit 0.97 calculated for this pulse tube considering only two loss mechanisms: heat conduction in the metal pulse tube wall and ordinary thermoacoustic heat transport in the gas within a few thermal penetration depths of the wall. At operating points farther from the design operating point, the measured figure of merit is much lower, as streaming driven convection adds a third loss mechanism.

  4. Wave breaking in tapered holey fibers

    Institute of Scientific and Technical Information of China (English)

    Shuguang Li; Lei Zhang; Bo Fu; Yi Zheng; Ying Han; Xingtao Zhao

    2011-01-01

    We numerically study the propagation of 1-ps laser pulse in three tapered holey fibers (THFs). The curvature indices of the concave, linear, and convex tapers are 2.0, 1.0, and 0.5, respectively. The central wavelength, located in the normal dispersion regime, is 800 nm. The nonlinear coefficient of the THFs increases from the initial 0.095 m-1· W-1 to the final 0.349 m-l·W-1. Wave breaking accompanied by oscillatory structures occurs near pulse edges, and sidelobes appear in the pulse spectrum. With the increase in propagation distance z, the pulse shape becomes broader and the pulse spectrum flattens. A concave THF is advantageous to the generation of wave breaking and enables easier achievement of super fiat spectra at short lengths.%@@ We numerically study the propagation of 1-ps laser pulse in three tapered holey fibers (THFs).The curvature indices of the concave, linear, and convex tapers are 2.0, 1.0, and 0.5, respectively.The central wavelength, located in the normal dispersion regime, is 800 nm.The nonlinear coefficient of the THFs increases from the initial 0.095 m-1.W-1 to the final 0.349 m-1.W-1.Wave breaking accompanied by oscillatory structures occurs near pulse edges, and sidelobes appear in the pulse spectrum.With the increase in propagation distance z, the pulse shape becomes broader and the pulse spectrum flattens.A concave THF is advantageous to the generation of wave breaking and enables easier achievement of super flat spectra at short lengths.

  5. Sunflower Array Antenna with Adjustable Density Taper

    OpenAIRE

    Maria Carolina Viganó; Giovanni Toso; Gerard Caille; Cyril Mangenot; Lager, Ioan E.

    2009-01-01

    A deterministic procedure to design a nonperiodic planar array radiating a rotationally symmetric pencil beam pattern with an adjustable sidelobe level is proposed. The elements positions are derived by modifying the peculiar locations of the sunflower seeds in such a way that the corresponding spatial density fits a Taylor amplitude tapering law which guarantees the pattern requirements in terms of beamwidth and sidelobe level. Different configurations, based on a Voronoi cell spatial tessel...

  6. Impedance and Collective Effects

    CERN Document Server

    Metral, E; Rumolo, R; Herr, W

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling

  7. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2014-01-01

    Full Text Available Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA, electrical impedance spectroscopy (EIS, electrical impedance plethysmography (IPG, impedance cardiography (ICG, and electrical impedance tomography (EIT have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

  8. Impedance and component heating

    CERN Document Server

    Métral, E; Mounet, N; Pieloni, T; Salvant, B

    2015-01-01

    The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.

  9. Application of dynamic impedance spectroscopy to atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski

    2008-01-01

    Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.

  10. The LEP impedance model

    Energy Technology Data Exchange (ETDEWEB)

    Zotter, B. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)

  11. Antenna impedance matching with neural networks.

    Science.gov (United States)

    Hemminger, Thomas L

    2005-10-01

    Impedance matching between transmission lines and antennas is an important and fundamental concept in electromagnetic theory. One definition of antenna impedance is the resistance and reactance seen at the antenna terminals or the ratio of electric to magnetic fields at the input. The primary intent of this paper is real-time compensation for changes in the driving point impedance of an antenna due to frequency deviations. In general, the driving point impedance of an antenna or antenna array is computed by numerical methods such as the method of moments or similar techniques. Some configurations do lend themselves to analytical solutions, which will be the primary focus of this work. This paper employs a neural control system to match antenna feed lines to two common antennas during frequency sweeps. In practice, impedance matching is performed off-line with Smith charts or relatively complex formulas but they rarely perform optimally over a large bandwidth. There have been very few attempts to compensate for matching errors while the transmission system is in operation and most techniques have been targeted to a relatively small range of frequencies. The approach proposed here employs three small neural networks to perform real-time impedance matching over a broad range of frequencies during transmitter operation. Double stub tuners are being explored in this paper but the approach can certainly be applied to other methodologies. The ultimate purpose of this work is the development of an inexpensive microcontroller-based system.

  12. New Regularization Method in Electrical Impedance Tomography

    Institute of Scientific and Technical Information of China (English)

    侯卫东; 莫玉龙

    2002-01-01

    Image reconstruction in elecrical impedance tomography(EIT)is a highly ill-posed inverse problem,Regularization techniques must be used in order to solve the problem,In this paper,a new regularization method based on the spatial filtering theory is proposed.The new regularized reconstruction for EIT is independent of the estimation of impedance distribution,so it can be implemented more easily than the maxiumum a posteriori(MAP) method.The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution.We implemented our regularization method with two dimensional computer simulations.The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.

  13. Effects of taper on swim performance. Practical implications.

    Science.gov (United States)

    Houmard, J A; Johns, R A

    1994-04-01

    Competitive swimmers commonly focus upon optimising performance at a single competition. A period where training volume is incrementally reduced or "tapered" often precedes such a competition. The use of taper is justified as increases in muscular power, and the restoration of plasma haematocrit, haemoglobin and creatine kinase are evident with this training reduction. A consistent performance improvement of approximately 3% has also been reported with taper in competitive swimmers. However, there are limitations in terms of what comprises a successful taper schedule. It appears that a taper which improves performance involves a substantial (60 to 90%) graded reduction in training volume, and daily high intensity interval work over a 7- to 21-day period. Training frequency should be reduced by no more than 50%; a more conservative estimate would be to reduce frequency by approximately 20%. Optimal performance is likely when the reduction in training frequency is combined with the qualitative knowledge of the coach and/or athlete during taper.

  14. Plasma Diagnostics by Antenna Impedance Measurements

    Science.gov (United States)

    Swenson, C. M.; Baker, K. D.; Pound, E.; Jensen, M. D.

    1993-01-01

    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described.

  15. Concept modeling of tapered thin-walled tubes

    Institute of Scientific and Technical Information of China (English)

    Yu-cheng LIU; Michael L.DAY

    2009-01-01

    This paper presents a method to create concept models for the tapered thin-walled tubes using beam elements and spring elements. Developed concept tapered beam models with different taper angles and cross sections are compared with those detailed models through impact analyses. Important crash results are recorded and compared, and the relatively good agreement is achieved between these analyses. Concept modeling steps are illustrated in detail, and a general concept modeling method for such thin-walled tubes is summarized and presented.

  16. Tapering practices of Croatian open-class powerlifting champions.

    Science.gov (United States)

    Grgic, Jozo; Mikulic, Pavle

    2016-10-27

    The aim of this study was to explore tapering practices among 10 Croatian open-class powerlifting champions (mean ± SD: age 29.2 ± 3.2 years; Wilks coefficient 355.1 ± 54.8). The athletes were interviewed about their tapering practices using a semi-structured interview, after which the audio content was transcribed. The athletes reported decreasing training volume during the taper by 50.5 ± 11.7% using a step type or an exponential type of taper with a fast decay. Training intensity was maintained or increased during the taper, and it reached its highest values 8 ± 3 days before the competition. Training frequency was reduced or maintained during the taper. The final week included a reduction in training frequency by 47.9 ± 17.5% with the last training session performed 3 ± 1 days before the competition. The participants typically stated that the main reasons for conducting the taper were maintaining strength and reducing the amount of fatigue. They also stated that (a) the taper was structured identically for the squat, bench press, and the deadlift; (b) the training during the taper was highly specific, the assistance exercises were removed, and the same equipment was used as during competition; (c) the source of information for tapering was their coach, and training fluctuated based on the coach's feedback; and (d) nutrition, foam rolling, static stretching, and massage were all given extra attention during the taper. These results may aid athletes and coaches in strength sports in terms of the optimization of tapering variables.

  17. Research on taper zone coupling from single-core fiber to annular-core hollow beam fiber

    Science.gov (United States)

    Tong, Chengguo; Zhang, Tao; Li, Jianqi; Wang, Pengfei; Kang, Chong; Yuan, Libo

    2016-11-01

    We designed and manufactured a novel annular-core hollow beam fiber which could directly yield ring light with a central dark spot inside the beam employing MCVD technique and a custom-made fiber drawing tower. The tapered fiber zone geometric shapes at varied stretching speed between the single-core fiber and the annular-core hollow beam fiber were studied theoretically. According to the beam propagation method, the bi-tapered coupling energy transmission between these two fibers was simulated and analyzed. Moreover, by adopting a fusion splicing and stretching technique at the fiber-linked point, an effective coupling approach had been fulfilled.

  18. High power supercontinuum generation in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper;

    2012-01-01

    Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. In this contribution we will discuss the underlying mechanisms of supercontinuum generation in tapers. We show, by introducing...... the concept of a group-acceleration mismatch, that for a given taper length, the downtapering section should be as long as possible to enhance the amount of blueshifted light. We also discuss the noise properties of supercontinuum in uniform and tapered fibers and we demonstrate that the amplitude noise...

  19. Optimum PCF tapers for blue-enhanced supercontinuum sources

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Sørensen, Simon Toft; Larsen, Casper;

    2012-01-01

    Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. In this article we will review the state-of-the-art in fiber tapers, and discuss the underlying mechanisms of supercontinuum...... generation in tapers. We show, by introducing the concept of a group-acceleration mismatch, that for a given taper length, the downtapering section should be as long as possible to enhance the amount of blueshifted light. We also discuss the noise properties of supercontinuum generation in uniform...

  20. Laminar phase flow for an exponentially tapered Josephson oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    2000-01-01

    Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...... the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow...

  1. Ultra-low-loss tapered optical fibers with minimal lengths

    CERN Document Server

    Nagai, Ryutaro

    2014-01-01

    We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.

  2. Welding-fume-induced transmission loss in tapered optical fibers

    Science.gov (United States)

    Yi, Ji-Haeng

    2015-09-01

    This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.

  3. Measurement of Liquid Viscosities in Tapered or Parabolic Capillaries.

    Science.gov (United States)

    Ershov; Zorin; Starov

    1999-08-01

    The possibility of using tapered or parabolic capillaries for measurement of liquid viscosities is investigated both experimentally and theoretically. It is demonstrated that even small deviations in capillary radius from a constant value may substantially affect measurement results. Equations are derived which allow correct analysis of the measurement results in tapered or parabolic capillaries. The following cases are analyzed: a water imbibition into a tapered or parabolic capillary and displacement of one liquid by another immiscible liquid in tapered or parabolic capillaries. Two possibilities are considered: (a) the narrow end of the capillary as capillary inlet and (b) the wide end of the capillary as capillary inlet. Copyright 1999 Academic Press.

  4. Low-crosstalk Si arrayed waveguide grating with parabolic tapers.

    Science.gov (United States)

    Ye, Tong; Fu, Yunfei; Qiao, Lei; Chu, Tao

    2014-12-29

    A silicon arrayed waveguide grating (AWG) with low channel crosstalk was demonstrated by using ultra-short parabolic tapers to connect the AWG's free propagation regions and single-mode waveguides. The tapers satisfied the requirements of low-loss mode conversion and lower channel crosstalk from the coupling of neighboring waveguides in the AWGs. In this work, three different tapers, including parabolic tapers, linear tapers, and exponential tapers, were theoretically analyzed and experimentally investigated for a comparison of their effects when implemented in AWGs. The experimental results showed that the AWG with parabolic tapers had a crosstalk improvement up to 7.1 dB compared with the others. Based on the advantages of parabolic tapers, a 400-GHz 8 × 8 cyclic AWG with 2.4 dB on-chip loss and -17.6~-25.1 dB crosstalk was fabricated using a simple one-step etching process. Its performance was comparable with that of existing AWGs with bi-level tapers, which require complicated two-step etching fabrication processes.

  5. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2011-03-01

    Full Text Available This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG antibody-antigen pair.

  6. Soliton blueshift in tapered photonic crystal fibers.

    Science.gov (United States)

    Stark, S P; Podlipensky, A; Russell, P St J

    2011-02-25

    We show that solitons undergo a strong blueshift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards a shorter wavelength. This is accompanied by strong emission of radiation into the UV and IR spectral regions. The experimental results are confirmed by numerical simulation.

  7. Window taper functions for subaperture processing.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-12-01

    It is well known that the spectrum of a signal can be calculated with a Discrete Fourier Transform (DFT), where best resolution is achieved by processing the entire data set. However, in some situations it is advantageous to use a staged approach, where data is first processed within subapertures, and the results are then combined and further processed to a final result. An artifact of this approach is the creation of grating lobes in the final response. The nature of the grating lobes, including their amplitude and spacing, is an artifact of window taper functions, subaperture offsets, and subaperture processing parameters. We assess these factors and exemplify their effects.

  8. Finemet cavity impedance studies

    CERN Document Server

    Persichelli, S; Migliorati, M; Salvant, B

    2013-01-01

    The aim of the study is to evaluate the impedance of the Finemet kicker cavity to be installed in the PS straight section 02 during LS1, under realistic assumptions of bunch length. Time domain simulations with CST Particle Studio have been performed in order to get the impedance of the cavity and make a comparison with the longitudinal impedance measured for a single cell prototype. The study has been performed on simplified 3D geometries imported from a mechanical CATIA drawing, assuming that the simplications have small impact on the nal results. Simulations confirmed that the longitudinal impedance observed with measurements can be excited by bunches circulating in the PS. In the six-cells Finemet cavity, PS bunches circulating in the center can excite a longitudinal impedance, the real part of which has a maximum of 2 kOhm at 4 MHz. This mode does not seem to have any transverse component. All the eigenmodes of the cavity are strongly damped by the Finemet rings: we predict to have no issues regarding tr...

  9. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems

    Science.gov (United States)

    Pastor-Fernández, Carlos; Uddin, Kotub; Chouchelamane, Gael H.; Widanage, W. Dhammika; Marco, James

    2017-08-01

    Degradation of Lithium-ion batteries is a complex process that is caused by a variety of mechanisms. For simplicity, ageing mechanisms are often grouped into three degradation modes (DMs): conductivity loss (CL), loss of active material (LAM) and loss of lithium inventory (LLI). State of Health (SoH) is typically the parameter used by the Battery Management System (BMS) to quantify battery degradation based on the decrease in capacity and the increase in resistance. However, the definition of SoH within a BMS does not currently include an indication of the underlying DMs causing the degradation. Previous studies have analysed the effects of the DMs using incremental capacity and differential voltage (IC-DV) and electrochemical impedance spectroscopy (EIS). The aim of this study is to compare IC-DV and EIS on the same data set to evaluate if both techniques provide similar insights into the causes of battery degradation. For an experimental case of parallelized cells aged differently, the effects due to LAM and LLI were found to be the most pertinent, outlining that both techniques are correlated. This approach can be further implemented within a BMS to quantify the causes of battery ageing which would support battery lifetime control strategies and future battery designs.

  10. Impedance modelling of pipes

    Science.gov (United States)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  11. Impeded Dark Matter

    CERN Document Server

    Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...

  12. Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress

    Science.gov (United States)

    Ortiz-Ricardo, E.; Bertoni-Ocampo, C.; Ibarra-Borja, Z.; Ramirez-Alarcon, R.; Cruz-Delgado, D.; Cruz-Ramirez, H.; Garay-Palmett, K.; U'Ren, A. B.

    2017-09-01

    We explore three different mechanisms designed to controllably tune the joint spectrum of photon pairs produced by the spontaneous four-wave mixing (SFWM) process in optical fibres. The first of these is fibre tapering, which exploits the modified optical dispersion resulting from reducing the core radius. We have presented a theory of SFWM for tapered fibres, as well as experimental results for the SFWM coincidence spectra as a function of the reduction in core radius due to tapering. The other two techniques that we have explored are temperature variation and application of longitudinal stress. While the maximum spectral shift observed with these two techniques is smaller than for fibre tapering, they are considerably simpler to implement and have the important advantage that they are based on the use of a single, suitably controlled, fibre specimen.

  13. Effectiveness of ProTaper retreatment system associated with organic solvents in the removal of root canal filling material

    OpenAIRE

    Guiotti, Flávia Angélica [UNESP; Kuga, Milton Carlos; Renato de Toledo LEONARDO; Gisselle Moraima CHÁVEZ-ANDRADE; Magro, Miriam Graziele [UNESP; Cavenago, Bruno Cavalini; Faria, Gisele

    2013-01-01

    Aim: To evaluate the effectiveness of ProTaper universal retreatment system in the removal of root canal filling material with thermomechanical compaction, in comparison to manualmechanical technique, associated with orange oil or eucalyptol. Materials and methods: Forty extracted lower incisors were filled with thermomechanical compaction technique. After 3 years, the root canal filling was removed by: G1 - manualmechanical technique with orange oil; G2 - manual-mechanical technique with euc...

  14. Negative transverse impedance

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    1989-06-12

    Recently, measurements in the SPS show that the coherent tune shift in the horizontal direction has positive values whereas that in the vertical direction has negative ones. Thus the existence of negative transverse impedance gets confirmed in a real machine. This stimulates us to start a new round of systematic studies on this interesting phenomenon. The results obtained from our computer simulations are presented in this note. Our simulations demonstrate that the negative transverse impedance may appear when the rotational symmetry embedded in a discontinuity is broken, and that the geometries that we have studies may be the source of the positive horizontal tune shift measured in the SPS.

  15. Impedance of accelerator components

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N. [Center for Beam Physics, Lawrence Berkeley National Laboratory, I Cyclotron Road, Berkeley, California 94720 (United States)

    1997-01-01

    As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q=1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed. {copyright} {ital 1997 American Institute of Physics.}

  16. Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application.

    Science.gov (United States)

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-05-04

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.

  17. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    Directory of Open Access Journals (Sweden)

    Arafat Shabaneh

    2015-05-01

    Full Text Available Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%, the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s towards ethanol.

  18. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  19. Polarization of Tapered Semiconductor Travelling-Wave Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Huang Dexiu; Li Hong

    2001-01-01

    The polarization of a tapered semi-conductor travelling-wave amplifier has been investigated with the transfer matrix method based on convective equation. It is shown that the apparent polarization mode competition exists, and polarization-independent tapered semiconductor travellingwave amplifiers can be obtained through the optimization of amplifier parameters.

  20. Gap and channeled plasmons in tapered grooves: a review

    DEFF Research Database (Denmark)

    Smith, C. L. C.; Stenger, Nicolas; Kristensen, Anders

    2015-01-01

    ) that are confined laterally between the tapered groove sidewalls and propagate either along the groove axis or normal to the planar surface, and channeled plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment...

  1. Catalog of Window Taper Functions for Sidelobe Control

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2017-04-01

    Window taper functions of finite apertures are well-known to control undesirable sidelobes, albeit with performance trades. A plethora of various taper functions have been developed over the years to achieve various optimizations. We herein catalog a number of window functions, and com pare principal characteristics.

  2. 5 CFR 353.303 - Restoration rights of TAPER employees.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Restoration rights of TAPER employees... Restoration rights of TAPER employees. An employee serving in the competitive service under a temporary... employee serving in a position classified above GS-15), is entitled to be restored to the position he...

  3. A broadband tapered nanocavity for efficient nonclassical light emission

    DEFF Research Database (Denmark)

    Gregersen, Niels; McCutcheon, Dara; Mørk, Jesper

    2016-01-01

    emission rate of an embedded quantum dot (Purcell factor: 6), while offering a wide operation bandwidth (full-width half-maximum: 20 nm). In addition, the top tapered section shapes the cavity far-field emission into a very directive output beam, with a Gaussian spatial profile. For realistic taper...

  4. Coupling of single NV Center to adiabatically tapered optical single mode fiber

    CERN Document Server

    Vorobyov, Vadim V; Bolshedvorskii, Stepan V; Javadzade, Javid; Lebedev, Nikolay; Smolyaninov, Andrey N; Sorokin, Vadim N; Akimov, Alexey V

    2016-01-01

    We demonstrated a simple and reliable technique of coupling diamond nanocrystal containing NV center to tapered optical fiber. We carefully studied fluorescence of the fiber itself and were able to suppress it to the level lower than single photon emission from the NV center. Single photon statistics was demonstrated at the fiber end as well as up to 3 times improvement in collection efficiency with respect to our confocal microscope

  5. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-06-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  6. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2003-10-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  7. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2003-04-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  8. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2005-01-17

    This project aimed at developing a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GTI. GTI proposed to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment

  9. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2003-01-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  10. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-10-29

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  11. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  12. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2004-02-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  13. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2002-11-27

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  14. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2004-05-03

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  15. Realization of Tapered Waveguide by Stretching the Rod Waveguide

    Institute of Scientific and Technical Information of China (English)

    XIA Ke-yu; YU Rong-jin; MENG Hua-mao

    2004-01-01

    By stretching the rod waveguide with different velocities in opposite directions,the tapered waveguide can be fabricated.In condition of taking no account of volume expansion caused by heating and under the assumptions of volume conservation,the rod waveguide can be stretched freely in the heated region without being stretched outside of the heated region. A model,which shows the relation of the transition shape and the two factors,that is the ratio of two velocity and the heated region length,is presented for the shape of the taper transition through mathematic deduction.Based on this model,a desired tapered waveguide can be fabricated.The tapered waveguide are widely used for fabricating tapered fiber couplers and sensors.In addition,the conclusion can be used for fabricating fused fiber coupler.

  16. Sensitive acoustic vibration sensor using single-mode fiber tapers.

    Science.gov (United States)

    Li, Yi; Wang, Xiaozhen; Bao, Xiaoyi

    2011-05-01

    Optical fiber sensors are a good alternative to piezoelectric devices in electromagnetic sensitive environments. In this study, we reported a fiber acoustic sensor based on single-mode fiber (SMF) tapers. The fiber taper is used as the sensing arm in a Mach-Zehnder interferometer. Benefiting from their micrometer dimensions, fiber tapers have shown higher sensitivities to the acoustic vibrations than SMFs. Under the same conditions, the thinnest fiber taper in this report, with a diameter of 1.7 µm, shows a 20 dB improvement in the signal to noise ratio as compared to that of an SMF. This acoustic vibration sensor can detect the acoustic waves over the frequencies of 30 Hz-40 kHz, which is limited by the acoustic wave generator in experiments. We also discussed the phase changes of fiber tapers with different diameters under acoustic vibrations.

  17. Longitudinal impedance of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  18. Implantable Impedance Plethysmography

    OpenAIRE

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term.

  19. Implantable Impedance Plethysmography

    Directory of Open Access Journals (Sweden)

    Michael Theodor

    2014-08-01

    Full Text Available We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term.

  20. Thorax mapping for localised lung impedance change using focused impedance measurement (FIM: A pilot study

    Directory of Open Access Journals (Sweden)

    Humayra Ferdous

    2013-12-01

    Full Text Available Focused Impedance Measurement (FIM is a technique where impedance can be measured with the optimum level of localization without much increase in complexity of measuring instrument. The electrodes are applied on the skin surface but the organs inside also contributes to the measurement, as the body is a volume conductor. In a healthy and disease free lung region, the air enters at breathe-in increases the impedance of the lung and impedance reduces during breathe-out. In contrast, for a diseased lung, where part of the lungs is filled with water or some fluid, air will not enter into this zone reducing impedance change between inspiration and expiration. With this idea, the current work had been executed to have general view of localised impedance change throughout thorax using 6-electrode FIM. This generated a matrix mapping from both the front and from the back of the thorax, which  afterwards provided that how impedance change due to ventilation varies from frontal plane to back plane of human bodies.

  1. High Impedance Comparator for Monitoring Water Resistivity.

    Science.gov (United States)

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  2. Tapering Practices of New Zealand's Elite Raw Powerlifters.

    Science.gov (United States)

    Pritchard, Hayden J; Tod, David A; Barnes, Matthew J; Keogh, Justin W; McGuigan, Michael R

    2016-07-01

    Pritchard, HJ, Tod, DA, Barnes, MJ, Keogh, JW, and McGuigan, MR. Tapering practices of New Zealand's elite raw powerlifters. J Strength Cond Res 30(7): 1796-1804, 2016-The major aim of this study was to determine tapering strategies of elite powerlifters. Eleven New Zealand powerlifters (28.4 ± 7.0 years, best Wilks score of 431.9 ± 43.9 points) classified as elite were interviewed, using semistructured interviews, about their tapering strategies. Interviews were transcribed verbatim and content analyzed. Total training volume peaked 5.2 ± 1.7 weeks from competition while average training intensity (of 1 repetition maximum) peaked 1.9 ± 0.8 weeks from competition. During tapering, volume was reduced by 58.9 ± 8.4% while intensity was maintained (or slightly reduced) and the final weight training session was performed 3.7 ± 1.6 days out from competition. Participants generally stated that tapering was performed to achieve full recovery; that accessory work was removed around 2 weeks out from competition; and deadlifting takes longer to recover from than other lifts. Typically participants stated that trial and error, and changes based on "feel" were the sources of tapering strategies; equipment used and movements performed during tapering are the same as in competition; nutrition was manipulated during the taper (for weight cutting or performance aims); and poor tapering occurred when too long (1 week or more) was taken off training. These results suggest that athletes may benefit from continuing to strength train before important events with reduced volume and maintained intensity. Only exercises that directly assist sports performance should remain in the strength program during tapering, to assist with reductions in fatigue while maintaining/improving strength expression and performance.

  3. Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis

    Institute of Scientific and Technical Information of China (English)

    Noreen Sher Akbar; S. Nadeem

    2012-01-01

    Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.

  4. Lithium ionic mobility study in xLi{sub 2}CO{sub 3}-yLiI (x = 95-70, y = 5-30 wt.%) solid electrolyte by impedance spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Mohd Khari; Ahmad, Azizah Hanom [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia)

    2015-08-28

    A detailed systematic study on the effects of different amount (wt.%) of LiI addition on the electrical conductivity and dielectric behavior of the xLi{sub 2}CO{sub 3}-xLiI (x = 95-70, y = 5-30 wt.%) electrolyte system was carried out. The samples with different compositions were prepared and ground by mechanical milling method. The electrical and dielectric properties of the samples over a range of frequency (50Hz – 1MHz) were investigated by deploying electrical impedance spectroscopy (EIS) technique in a series of temperature set (298–373K). Normally, Li{sub 2}CO{sub 3} itself shows a very low electrical conductivity (10{sup −5} Scm{sup −1}). However, the electrical conductivity of the system was found to be increased (10{sup −3} Scm{sup −1}) as the lithium salt (LiI) were introduced to the system. The dielectric analysis displayed that the activation energy was inversely proportional to the increment of LiI (wt.%). As the electrical conductivity reached their maximum value (4.63 × 10{sup −3} Scm{sup −1}) at the 20 wt.% of LiI, the activation energy was dropped to the minimum (0.1 eV). The electrical conductivity increases with the temperature (298 – 373K) indicate that the system obeys Arrhenius law.

  5. Lithium ionic mobility study in xLi2CO3-yLiI (x = 95-70, y = 5-30 wt.%) solid electrolyte by impedance spectroscopy technique

    Science.gov (United States)

    Omar, Mohd Khari; Ahmad, Azizah Hanom

    2015-08-01

    A detailed systematic study on the effects of different amount (wt.%) of LiI addition on the electrical conductivity and dielectric behavior of the xLi2CO3-xLiI (x = 95-70, y = 5-30 wt.%) electrolyte system was carried out. The samples with different compositions were prepared and ground by mechanical milling method. The electrical and dielectric properties of the samples over a range of frequency (50Hz - 1MHz) were investigated by deploying electrical impedance spectroscopy (EIS) technique in a series of temperature set (298-373K). Normally, Li2CO3 itself shows a very low electrical conductivity (10-5 Scm-1). However, the electrical conductivity of the system was found to be increased (10-3 Scm-1) as the lithium salt (LiI) were introduced to the system. The dielectric analysis displayed that the activation energy was inversely proportional to the increment of LiI (wt.%). As the electrical conductivity reached their maximum value (4.63 × 10-3 Scm-1) at the 20 wt.% of LiI, the activation energy was dropped to the minimum (0.1 eV). The electrical conductivity increases with the temperature (298 - 373K) indicate that the system obeys Arrhenius law.

  6. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    Science.gov (United States)

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  7. Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain

    Science.gov (United States)

    Arias-Rodil, Manuel; Castedo-Dorado, Fernando; Cámara-Obregón, Asunción; Diéguez-Aranda, Ulises

    2015-01-01

    Stem taper data are usually hierarchical (several measurements per tree, and several trees per plot), making application of a multilevel mixed-effects modelling approach essential. However, correlation between trees in the same plot/stand has often been ignored in previous studies. Fitting and calibration of a variable-exponent stem taper function were conducted using data from 420 trees felled in even-aged maritime pine (Pinus pinaster Ait.) stands in NW Spain. In the fitting step, the tree level explained much more variability than the plot level, and therefore calibration at plot level was omitted. Several stem heights were evaluated for measurement of the additional diameter needed for calibration at tree level. Calibration with an additional diameter measured at between 40 and 60% of total tree height showed the greatest improvement in volume and diameter predictions. If additional diameter measurement is not available, the fixed-effects model fitted by the ordinary least squares technique should be used. Finally, we also evaluated how the expansion of parameters with random effects affects the stem taper prediction, as we consider this a key question when applying the mixed-effects modelling approach to taper equations. The results showed that correlation between random effects should be taken into account when assessing the influence of random effects in stem taper prediction. PMID:26630156

  8. Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses

    Science.gov (United States)

    Ahmad, H.; Faruki, M. J.; Razak, M. Z. A.; Tiu, Z. C.; Ismail, M. F.

    2017-02-01

    Pulses with picosecond pulse widths are highly desired for high precision laser applications. A mode-locked pulse laser utilizing evanescent field interaction of a tapered fiber with graphene oxide (GO) is demonstrated. A homemade fabrication stage was used to fabricate the tapered fiber using systematic flame brushing and a GO solution was used to coat the microfiber using optical deposition technique. Pulse trains with a pulse width of 3.46 ps, a 3 dB optical bandwidth of 11.82 nm and a repetition rate of 920 kHz were obtained. The system has substantial potential for many crucial medical, communication, bio processing, military, and industrial applications.

  9. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  10. Pulse propagation in the tapered wiggler

    Science.gov (United States)

    Al-Abawi, H.; McIver, J. K.; Moore, G. T.; Scully, M. O.

    Theory and preliminary numerical calculations are presented for coherent optical and electron pulse propagation in a free-electron laser with a tapered wiggler. Since only trapped electrons contribute significantly to the laser radiation, it is possible to define generalized 'slow' space-time coordinates in terms of which the electron pulse envelope may be considered constant. The theory is outlined first for the helical wiggler and then is developed for an arbitrary quasiperiodic wiggler, using a more rigorous 'multiple-scaling' approach. In the latter case a modified definition of the electron phase angle is required, and optical harmonic generation is predicted. The numerical calculations show that substantial energy extraction is achievable, but that the optical pulse rapidly breaks up into a series of spikes in the time domain. Surprisingly, the optical spectrum remains quite smooth in appearance.

  11. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.

    Science.gov (United States)

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-10-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.

  12. Impedance calculation for ferrite inserts

    Energy Technology Data Exchange (ETDEWEB)

    Breitzmann, S.C.; Lee, S.Y.; /Indiana U.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  13. Complex impedance studies of lithium iodine batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, C.L.; Skarstad, P.M. (Promeon Division Medtronic, Inc. Minneapolis, MN (US))

    1990-08-01

    Complex impedance spectra of conductivity cells containing iodine/poly-2-vinylpyridine cathode material were taken by two- and four-probe techniques. The impedance spectra contain a current-independent bulk resistance in series with a current-dependent interfacial resistance. The current-dependent interfacial resistance has the characteristics expected of a charge-transfer resistance. Moreover, electronically blocked (lithium/lithium iodide) electrodes give the same result as non-blocked (stainless steel) electrodes. This is exactly what would be expected if the medium were an ionic conductor. Complex impedance spectra of lithium/iodine batteries show additional structure, as might be expected, but are consistent with results from the conductivity cells.

  14. Acoustic ground impedance meter

    Science.gov (United States)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  15. Tensor Impedance Surfaces

    Science.gov (United States)

    2010-11-30

    ELECTROMAGNEETIC SURFACE IMPEDANCE PROPERTIES FA9550-09-C-0198 DR. ADOUR KABAKIAN HUGHES RESEARCH LABS AFOSR / RSE 875 North Randolph Street, Suit...325 Room 3112 Arlington, Virginia 22203-1768 AFOSR / RSE AFRL-OSR-VA-TR-2012-0770 Distribution A We have investigated and determined how the tensor...the case of a TM wave, which favors propagation along the shorter principal axis. Standard terms apply U U U UU Arje Nachman RSE (Program Manager

  16. Impeded Dark Matter

    OpenAIRE

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonst...

  17. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between two microphone...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  18. Longitudinal Impedance Measurements of the Components for the BEPCII

    CERN Document Server

    Zhou, Demin; Kang, Wen; Wang Jiu Qing; Zhou, Lijuan

    2005-01-01

    A longitudinal impedance measurement system was established for the BEPCII. The measurements, done in the frequency domain, are based on the coaxial wire method using HP/Agilent 8720ES network analyzer. The applications of the TRL calibration technique and absorbers were investigated to find a good approach for impedance measurements. The impedance, larger than 20 Ohm and below 6 GHz, can be measured using the TRL calibration technique in the experiment. And better measurement results were got using the reference pipes with the absorbers. So, this system satisfies the requirements of the BEPCII. This paper gives a review on this impedance measurements system for the BEPCII. The measurements results show that there are no serious impedance problems for BEPCII bellows and injection kickers, agreeing well with the numerical simulations. More improvements on this system are in progress.

  19. Development of small bore, high speed tapered roller bearing

    Science.gov (United States)

    Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.

    1981-01-01

    The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.

  20. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  1. Group delay and dispersion tailoring in nonadiabatic tapered fibers

    Science.gov (United States)

    Mas, Sara; Palací, Jesús; Martí, Javier

    2016-09-01

    The dispersion profile of a nonadiabatic tapered singlemode fiber is characterized and dynamically tuned. Its group delay and dispersion parameters are measured and compared to those of a standard singlemode fiber. The dispersion profile can be tuned by introducing a phase shift through mechanical stretching. Coarse tuning is also obtained by varying the surrounding medium of the tapered fiber. Dispersion values up to 700 ps/nm·km in nonadiabatic tapered fibers are obtained for the first time. Dynamic tuning exposed here can be very useful in applications such as nonlinearities or soliton generation.

  2. Inductively Shorted Bicone Fed Tapered Dipole Antenna

    Science.gov (United States)

    2012-05-23

    Switching from a balun feed to a coaxial cable feed showed expected similar impedances for the shorted antenna with number 14 wire shorts. Switching ...possibility is to add broadband ferrite core chokes placed about the shorts 70 near their ends 50, 52, 54, 56, 58, 60 ,62, 64 to prevent antenna...currents from flowing onto the shorts. Some problems with this method are that ferrites have loss and limited bandwidth, and the resulting floating

  3. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  4. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2015-04-01

    Full Text Available This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1 early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2 microfluidic impedance flow cytometry with enhanced sensitivity; (3 microfluidic impedance and optical flow cytometry for single-cell analysis and (4 integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  5. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-04-29

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  6. Adiabatic tapered optical fiber fabrication in two step etching

    Science.gov (United States)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  7. Low Loss S-Bend Structure With Tapered Curved Waveguides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel S-bend with tapered curved waveguides is proposed. The normalized transmitted power is greater than the conventional bend with weakly guided waveguides. Small size and low loss can be reached by the proposed S-bend.

  8. Fiber-diffraction Interferometer using Coherent Fiber Optic Taper

    CERN Document Server

    Kihm, Hagyong

    2010-01-01

    We present a fiber-diffraction interferometer using a coherent fiber optic taper for optical testing in an uncontrolled environment. We use a coherent fiber optic taper and a single-mode fiber having thermally-expanded core. Part of the measurement wave coming from a test target is condensed through a fiber optic taper and spatially filtered from a single-mode fiber to be reference wave. Vibration of the cavity between the target and the interferometer probe is common to both reference and measurement waves, thus the interference fringe is stabilized in an optical way. Generation of the reference wave is stable even with the target movement. Focus shift of the input measurement wave is desensitized by a coherent fiber optic taper.

  9. Spontaneous radiation from relativistic electrons in a tapered undulator

    Science.gov (United States)

    Bosco, P.; Colson, W. B.

    1983-01-01

    The spectrum, angular distribution, polarization, and coherence properties of the radiation emitted by relativistic electrons undulating through a quasiperiodic tapered magnetic field are studied. Tapering the wavelength and/or field strength along the undulator's axis has the effect of spreading the spectral line to higher frequencies; interference over this broader spectral range results in a more complex line shape. The angular dependence, on the other hand, is not affected by the amount of taper. The polarization of the radiation in the forward direction is determined by the transverse polarization of the undulator, but the polarization changes off axis. The radiation patterns predicted here are distinct from those of untapered undulators and their detection is now feasible. They will provide useful diagnostics of electron trajectories and threshold behavior in free-electron-laser oscillators using tapered undulators.

  10. Slow light in tapered slot photonic crystal waveguide

    Institute of Scientific and Technical Information of China (English)

    WU Jun; LI YanPing; YANG ChuanChuan; PENG Chao; WANG ZiYu

    2009-01-01

    A slotted single-mode photonic crystal waveguide with a linear tapered slot is presented to realize slow light, whose dispersion curve is shifted by changing the slot width. When the slot width is reduced, the band curve shifts in the tapered structure, and the group velocity of light approach zero at the cut-off frequency. Therefore, different frequency components of the guided light are slowed down even loca-lized along the propagation direction inside a tapered slot photonic crystal waveguide. Furthermore, this structure can confine slow light-wave in a narrow slot waveguide, which may effectively enhance the interaction between slow light and the low-index wave-guiding materials filled in the slot. In addition, this tapered slot structure can be used to compensate group velocity dispersion of slow light by mod-ifying the structure, thus opening the opportunity for ultra-wide bandwidth slow light.

  11. Optical inclinometer based on fibre-taper-modal Michelson interferometer

    Science.gov (United States)

    Amaral, L. M. N.; Frazão, O.; Santos, J. L.; Lobo Ribeiro, A. B.

    2010-09-01

    An inclinometer sensor based on optical fibre-taper-modal Michelson interferometer is demonstrated. The magnitude of the tilt (bending angle of the fibre taper interferometer) is obtained by passive interferometric interrogation based on the generation of two quadrature phase-shifted signals from two fibre Bragg gratings. Optical phase-to-rotation sensitivity of 1.13 rad/degree with a 14 mrad/√Hz resolution is achieved.

  12. Optimization of tapered busses for solar cell contacts

    Science.gov (United States)

    Landis, G. A.

    1979-01-01

    Some fraction of the power produced by a solar cell is necessarily lost by series resistance associated with the metallized contact grid and by shadowing of cell active area by the grid. There are several approaches to reducing these losses, such as choosing a more efficient pattern, optimizing line spacing, and using tapered buses. The present paper analyzes tapered lines and derives from this analysis a theoretical lower bound to metallization power loss, independent of pattern chosen.

  13. Impedance group summary

    Science.gov (United States)

    Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.

    1999-12-01

    The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)

  14. Practical application of the Kramers-Kronig transformation on impedance measurements in solid state electrochemistry

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    1993-01-01

    A method is presented for executing the Kramers-Kronig transforms of electrochemical impedance data on a computer. Attention is paid to the extrapolation techniques for impedance data with a limited frequency range. It is shown that impedance spectra of systems with blocking electrodes, exhibiting a

  15. Second-Order Nonlinear Analysis of Steel Tapered Beams Subjected to Span Loading

    Directory of Open Access Journals (Sweden)

    Ali Hadidi

    2014-03-01

    Full Text Available A second-order elastic analysis of tapered steel members with I-shaped sections subjected to span distributed and concentrated loadings is developed. Fixed end forces and moments as well as exact stiffness matrix of tapered Timoshenko-Euler beam are obtained with exact geometrical properties of sections. The simultaneous action of bending moment, shear, and axial force including P−δ effects is also considered in the analysis. A computer code has been developed in MATLAB software using a power series method to solve governing second-order differential equation of equilibrium with variable coefficients for beams with distributed span loading. A generalized matrix condensation technique is then utilized for analysis of beams with concentrated span loadings. The accuracy and efficiency of the results of the proposed method are verified through comparing them to those obtained from other approaches such as finite element methods, which indicates the robustness and time saving of this method even for large scale frames with tapered members.

  16. Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler

    Institute of Scientific and Technical Information of China (English)

    Maryam Zahedian; B.Maraghechi; M.H.Rouhani

    2012-01-01

    A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented.The two beams are assumed to have different energies,and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam.By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams,coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method.The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs.By simulation,the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found.This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions.The effect of tapering on the dynamical stability of the fast electron beam is also studied.

  17. A short tapered stem reduces intraoperative complications in primary total hip arthroplasty.

    Science.gov (United States)

    Molli, Ryan G; Lombardi, Adolph V; Berend, Keith R; Adams, Joanne B; Sneller, Michael A

    2012-02-01

    While short-stem design is not a new concept, interest has surged with increasing utilization of less invasive techniques. Short stems are easier to insert through small incisions. Reliable long-term results including functional improvement, pain relief, and implant survival have been reported with standard tapered stems, but will a short taper perform as well? We compared short, flat-wedge, tapered, broach-only femoral stems to standard-length, double-tapered, ream and broach femoral stems in terms of intraoperative complications, short-term survivorship, and pain and function scores. We retrospectively reviewed the records of 606 patients who had 658 THAs using a less invasive direct lateral approach from January 2006 to March 2008. Three hundred sixty patients (389 hips) had standard-length stems and 246 (269 hips) had short stems. Age averaged 63 years, and body mass index averaged 30.7 kg/m(2). We recorded complications and pain and function scores and computed short-term survival. Minimum followup was 0.8 months (mean, 29.2 months; range, 0.8-62.2 months). We observed a higher rate of intraoperative complications with the standard-length stems (3.1%; three trochanteric avulsions, nine femoral fractures) compared with the shorter stems (0.4%; one femoral fracture) and managed all complications with application of one or more cerclage cables. There were no differences in implant survival, Harris hip score, and Lower Extremity Activity Scale score between groups. Fewer intraoperative complications occurred with the short stems, attesting to the easier insertion of these devices. While longer followup is required, our early results suggest shortened stems can be used with low complication rates and do not compromise the survival and functional outcome of cementless THA. Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  18. Comparison of ProTaper and Mtwo retreatment systems in the removal of resin-based root canal obturation materials during retreatment.

    Science.gov (United States)

    Iriboz, Emre; Sazak Öveçoğlu, Hesna

    2014-04-01

    To evaluate the effectiveness of the ProTaper and Mtwo retreatment systems for removal of resin-based obturation techniques during retreatment. A total of 160 maxillary anterior teeth were enlarged to size 30 using ProTaper and Mtwo rotary instruments. Teeth were randomly divided into eight groups. Resilon + Epiphany, gutta-percha + Epiphany, gutta-percha + AH Plus and gutta-percha + Kerr Pulp Canal Sealer (PCS) combinations were used for obturation. ProTaper and Mtwo retreatment files were used for removal of root canal treatments. After clearing the roots, the teeth were split vertically into halves, and the cleanliness of the canal walls was determined by scanning electron microscopy. Specimens obturated with gutta-percha and Kerr PCS displayed significantly more remnant obturation material than did specimens filled with resin-based obturation materials. Teeth prepared with Mtwo instruments contained significantly more remnant filling material than did teeth prepared with ProTaper. ProTaper files were significantly faster than Mtwo instruments in terms of the mean time of retreatment and time required to reach working length. The Resilon + Epiphany and AH Plus + gutta-percha obturation materials were removed more easily than were the Epiphany + gutta-percha and Kerr PCS + gutta-percha obturation materials. Although ProTaper retreatment files worked faster than did Mtwo retreatment files in terms of removing root canal obturation materials, both retreatment systems are effective, reliable and fast.

  19. Outdoor ground impedance models.

    Science.gov (United States)

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  20. Metamaterial buffer for broadband non-resonant impedance matching of obliquely incident acoustic waves.

    Science.gov (United States)

    Fleury, Romain; Alù, Andrea

    2014-12-01

    Broadband impedance matching and zero reflection of acoustic waves at a planar interface between two natural materials is a rare phenomenon, unlike its optical counterpart, frequently observed for polarized light incident at the Brewster angle. In this article, it is shown that, by inserting a metamaterial layer between two acoustic materials with different impedance, it is possible to artificially realize an extremely broadband Brewster-like acoustic intromission angle window, in which energy is totally transmitted from one natural medium to the other. The metamaterial buffer, composed of acoustically hard materials with subwavelength tapered apertures, provides an interesting way to match the impedances of two media in a broadband fashion, different from traditional methods like quarter-wave matching or Fabry-Pérot resonances, inherently narrowband due to their resonant nature. This phenomenon may be interesting for a variety of applications including energy harvesting, acoustic imaging, ultrasonic transducer technology, and noise control.

  1. Electrochemical impedance studies of AB{sub 5}-type hydrogen storage alloy

    Energy Technology Data Exchange (ETDEWEB)

    Slepski, Pawel; Darowicki, Kazimierz; Andrearczyk, Karolina [Department of Electrochemistry Corrosion and Materials Engineering, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk (Poland); Kopczyk, Maciej; Sierczynska, Agnieszka [Institute of Non-ferrous Metals, Department in Poznan, Central Laboratory of Batteries and Cells, 12 Forteczna Street, 61-362 Poznan (Poland)

    2010-05-01

    Electrochemical impedance spectroscopy technique was used to describe behavior of AB{sub 5}-type hydrogen storage alloy. Impedance investigations were performed during cyclic voltammetry measurement and charge/discharge cycles. The comprehensive interpretation of instantaneous impedance spectra obtained in potentiostatic mode allowed further to interpret impedance results in galvanostatic mode. Proposed methodology enabled to trace electrical parameters as a function of state of charge (SOC) and depth of discharge (DOD). (author)

  2. A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash;

    2016-01-01

    A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...... with an example single-switch 400 W dc-dc converter. For the closed-loop control design and stability assessment, a small signal model and its analysis of the proposed network are also presented in brief.......A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance...

  3. Optically stimulated differential impedance spectroscopy

    Science.gov (United States)

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  4. IMPEDANCE OF FINITE LENGTH RESISTOR

    Energy Technology Data Exchange (ETDEWEB)

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  5. Stem taper equations for poplars growing on farmland in Sweden

    Institute of Scientific and Technical Information of China (English)

    Birger Hjelm

    2013-01-01

    We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations.In Sweden there is an increasing interest in the use of poplar.Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations.In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland.The outputs of the polynomial taper equation were compared with five published equations.Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat.55-60° N).The mean age of the stands was 21 years (range 14-43),the mean density 984 stemsha-1 (198-3,493),and the mean diameter at breast height (outside bark) 25 cm (range 12-40).To verify the tested equations,performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed.Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended.The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management.The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked.Due to the statistical complexity of Kozak's equation,the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.

  6. An experimental study of an FEL oscillator with a linear taper

    CERN Document Server

    Benson, S; Neil, G R

    2001-01-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed surprisingly well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values both due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL.

  7. An experimental study of an FEL oscillator with a linear taper

    Science.gov (United States)

    Benson, S.; Gubeli, J.; Neil, G. R.

    2001-12-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed surprisingly well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values both due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL.

  8. Determination of beam coupling impedance in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, Uwe

    2016-07-01

    The concept of beam coupling impedance describes the electromagnetic interaction of uniformly moving charged particles with their surrounding structures in the Frequency Domain (FD). In synchrotron accelerators, beam coupling impedances can lead to beam induced component heating and coherent beam instabilities. Thus, in order to ensure the stable operation of a synchrotron, its impedances have to be quantified and their effects have to be controlled. Nowadays, beam coupling impedances are mostly obtained by Fourier transform of wake potentials, which are the results of Time Domain (TD) simulations. However, at low frequencies, low beam velocity, or for dispersive materials, TD simulations become unhandy. In this area, analytical calculations of beam coupling impedance in the FD, combined with geometry approximations, are still widely used. This thesis describes the development of two electromagnetic field solvers to obtain the beam coupling impedance directly in the FD, where the beam velocity is only a parameter and dispersive materials can be included easily. One solver is based on the Finite Integration Technique (FIT) on a staircase mesh. It is implemented both in 2D and 3D. However, the staircase mesh is inefficient on curved structures, which is particularly problematic for the modeling of a dipole source, that is required for the computation of the transverse beam coupling impedance. This issue is overcome by the second solver developed in this thesis, which is based on the Finite Element Method (FEM) on an unstructured triangular mesh. It is implemented in 2D and includes an optional Surface Impedance Boundary Condition (SIBC). Thus, it is well suited for the computation of longitudinal and transverse impedances of long beam pipe structures of arbitrary cross-section. Besides arbitrary frequency and beam velocity, also dispersive materials can be chosen, which is crucial for the computation of the impedance of ferrite kicker magnets. Numerical impedance

  9. A self-consistent impedance method for electromagnetic surface impedance modeling

    Science.gov (United States)

    Thiel, David V.; Mittra, Raj

    2001-01-01

    A two-dimensional, self-consistent impedance method has been derived and used to calculate the electromagnetic surface impedance above buried objects at very low frequencies. The earth half space is discretized using an array of impedance elements. Inhomogeneities in the complex permittivity of the earth are reflected in variations in these impedance elements. The magnetic field is calculated for each cell in the solution space using a difference equation derived from Faraday's and Ampere's laws. It is necessary to include an air layer above the earth's surface to allow the scattered magnetic field to be calculated at the surface. The source field is applied above the earth's surface as a Dirichlet boundary condition, whereas the Neumann condition is employed at all other boundaries in the solution space. This, in turn, enables users to use both finite and infinite magnetic field sources as excitations. The technique is shown to be computationally efficient and yields reasonably accurate results when applied to a number of one- and two-dimensional earth structures with a known surface impedance distribution.

  10. Experiences with active damping and impedance-matching compensators

    Science.gov (United States)

    Betros, Robert S.; Alvarez, Oscar S.; Bronowicki, Allen J.

    1993-09-01

    TRW has been implementing active damping compensators on smart structures for the past five years. Since that time there have been numerous publications on the use of impedance matching techniques for structural damping augmentation. The idea of impedance matching compensators came about by considering the flow of power in a structure undergoing vibration. The goal of these compensators is to electronically dissipate as much of this flowing power as possible. This paper shows the performance of impedance matching compensators used in smart structures to be comparable to that of active damping compensators. Theoretical comparisons between active damping and impedance matching methods are made using PZT actuators and sensors. The effects of these collocated and non-collocated PZT sensors and actuators on the types of signals they sense and actuate are investigated. A method for automatically synthesizing impedance matching compensators is presented. Problems with implementing broad band active damping and impedance matching compensators on standard Digital Signal Processing (DSP) chips are discussed. Simulations and measurements that compare the performance of active damping and impedance matching techniques for a lightly damped cantilevered beam are shown.

  11. Single muscle fiber gene expression with run taper.

    Science.gov (United States)

    Murach, Kevin; Raue, Ulrika; Wilkerson, Brittany; Minchev, Kiril; Jemiolo, Bozena; Bagley, James; Luden, Nicholas; Trappe, Scott

    2014-01-01

    This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I) and fast-twitch (MHC IIa) muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1) during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax) while in heavy training (∼72 km/wk) and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14), Myostatin (MSTN), Heat shock protein 72 (HSP72), Muscle ring-finger protein-1 (MURF1), Myogenic factor 6 (MRF4), and Insulin-like growth factor 1 (IGF1) via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (Ptwitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.

  12. Temperature distribution and scuffing of tapered roller bearing

    Science.gov (United States)

    Wang, Ailin; Wang, Jiugen

    2014-11-01

    In the field of aerospace, high-speed trains and automobile, etc, analysis of temperature filed and scuffing failure of tapered roller bearings are more important than ever, and the scuffing failure of elements of such rolling bearings under heavy load and high speed still cannot be effectively predicted yet. A simplified model of tapered roller bearings consisted of one inner raceway, one outer raceway and a tapered roller was established, in which the interaction of several heat sources is ignored. The contact mechanics model, temperature model and model of scuffing failure are synthesized, and the corresponding computer programs are developed to analyze the effects of bearings parameters, different material and operational conditions on thermal performance of bearings, and temperature distribution and the possibility of surface scuffing are obtained. The results show that load, speed, thermal conductivity and tapered roller materials influence temperature rise and scuffing failure of bearings. Ceramic material of tapered roller results in the decrease of scuffing possibility of bearings to a high extent than the conventional rolling bearing steel. Compared with bulk temperature, flash temperature on the surfaces of bearing elements has a little influence on maximum temperature rise of bearing elements. For the rolling bearings operated under high speed and heavy load, this paper proposes a method which can accurately calculate the possibility of scuffing failure of rolling bearings.

  13. Temperature Distribution and Scuffing of Tapered Roller Bearing

    Institute of Scientific and Technical Information of China (English)

    WANG Ailin; WANG Jiugen

    2014-01-01

    In the field of aerospace, high-speed trains and automobile, etc, analysis of temperature filed and scuffing failure of tapered roller bearings are more important than ever, and the scuffing failure of elements of such rolling bearings under heavy load and high speed still cannot be effectively predicted yet. A simplified model of tapered roller bearings consisted of one inner raceway, one outer raceway and a tapered roller was established, in which the interaction of several heat sources is ignored. The contact mechanics model, temperature model and model of scuffing failure are synthesized, and the corresponding computer programs are developed to analyze the effects of bearings parameters, different material and operational conditions on thermal performance of bearings, and temperature distribution and the possibility of surface scuffing are obtained. The results show that load, speed, thermal conductivity and tapered roller materials influence temperature rise and scuffing failure of bearings. Ceramic material of tapered roller results in the decrease of scuffing possibility of bearings to a high extent than the conventional rolling bearing steel. Compared with bulk temperature, flash temperature on the surfaces of bearing elements has a little influence on maximum temperature rise of bearing elements. For the rolling bearings operated under high speed and heavy load, this paper proposes a method which can accurately calculate the possibility of scuffing failure of rolling bearings.

  14. Modeling and multidimensional optimization of a tapered free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Jiao

    2012-05-01

    Full Text Available Energy extraction efficiency of a free electron laser (FEL can be greatly increased using a tapered undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead to saturation of the peak intensity and power. To better understand these effects, we develop a model extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction, optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the electron-radiation interaction along the tapered undulator and show that the decreasing of refractive guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the radiation power. With this understanding, we develop a multidimensional optimization scheme based on GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the dependence of the maximum extractable radiation power on various parameters of the initial electron beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that together strongly limit the overall energy extraction efficiency.

  15. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  16. Impedance of Finite Length Resistor

    CERN Document Server

    Krinsky, Samuel; Podobedov, Boris

    2005-01-01

    We determine the impedance of a cylindrical metal tube (resistor) of radius a and length g, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the behavior of the impedance at high frequency (k>>1/a). In the equilibrium regime, ka2

  17. Using ac dipoles to localize sources of beam coupling impedance

    Directory of Open Access Journals (Sweden)

    N. Biancacci

    2016-05-01

    Full Text Available The beam coupling impedance is one of the main sources of beam instabilities and emittance blow up in circular accelerators. A refined machine impedance evaluation is therefore required in order to understand and model intensity dependent effects and instabilities that may limit the machine performance. For this reason, many impedance source localization techniques have been developed. In this work we present the impedance localization technique based on the observation of phase advance versus intensity at the beam position monitors using ac dipoles to force betatron oscillations. We present analytical formulas for the interpretation of measurements together with simulations to benchmark and illustrate the equations. Studies on the method accuracy for different Fourier transform algorithms are presented as well as first exploratory measurements performed in the LHC.

  18. Bioelectrical impedance analysis for bovine milk: Preliminary results

    Science.gov (United States)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  19. Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip

    CERN Document Server

    Garoli, Denis; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    We demonstrate the generation of far-field propagating optical beams with a desired orbital angular momentum by using a smooth optical mode transformation between a plasmonic vortex and free space Laguerre-Gaussian modes. This is obtained by means of an adiabatically tapered gold tip surrounded by a spiral slit. The proposed physical model, backed up by the numerical study, brings about an optimized structure which is fabricated by using highly reproducible secondary electron lithography technique. Optical measurements of the structure excellently agree with the theoretically predicted far-field distributions. This architecture provides a unique platform for a localized excitation of plasmonic vortices followed by its beaming.

  20. Electrical impedance spectroscopy and the diagnosis of bladder pathology.

    Science.gov (United States)

    Keshtkar, Ahmad; Keshtkar, Asghar; Smallwood, Rod H

    2006-07-01

    Bladder pathology is usually investigated visually by cystoscopy. At present, definitive diagnosis of the bladder can be made by biopsy only, usually under general anaesthesia. This is a relatively high-cost procedure in terms of both time and money and is associated with discomfort for the patient and morbidity. Thus, we used an electrical impedance spectroscopy technique for differentiating pathological changes in the urothelium and improving cystoscopic detection. For ex vivo study, a whole or part of the patient's urinary bladder was used to take the readings less than half an hour after excision at room temperature, about 27 degrees C, using the Mk3.5 Sheffield System (2-384 kHz in 24 frequencies). In this study, 145 points (from 16 freshly excised bladders from patients) were studied in terms of their biopsy reports matching to the electrical impedance measurements. For in vivo study, a total of 106 points from 38 patients were studied to take electrical impedance and biopsy samples. The impedance data were evaluated in both malignant and benign groups, and revealed a significant difference between these two groups. The impedivity of the malignant bladder tissue was significantly higher than the impedivity of the benign tissue, especially at lower frequencies (p < 0.001). In addition, the receiver operating characteristic (ROC) curve for impedance measurements indicated that this technique could provide diagnostic information (individual classification is possible). Thus, the authors have investigated the application of bio-impedance measurements to the bladder tissue as a novel and minimally invasive technique to characterize human bladder urothelium. Therefore, this technique, especially at lower frequencies, can be a complementary method for cystoscopy, biopsy and histopathological evaluation of the bladder abnormalities.

  1. Scattering of wedges and cones with impedance boundary conditions

    CERN Document Server

    Lyalinov, Mikhail

    2012-01-01

    This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. The applicability of the reported solution procedures and formulae to existing software packages designed for real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section.

  2. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number o...... analysis methods and integrates the analysis process in a modular workflow – data validation (Kramers-Kronig), clean-up, visualization (DRT and others), modeling (nonlinear least-squares fitting), and final plotting for publication....

  3. Application of impedance spectroscopy to SOFC research

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, G.; Mason, T.O. [Northwestern Univ., Evanston, IL (United States); Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  4. Optically active mechanical modes of tapered optical fibers

    CERN Document Server

    Wuttke, Chrisitan; Rauschenbeutel, Arno

    2013-01-01

    Tapered optical fibers with a nanofiber waist are widely used tools for efficient coupling of light to photonic devices or quantum emitters via the nanofiber's evanescent field. In order to ensure well-controlled coupling, the phase and polarization of the nanofiber guided light field have to be stable. Here, we show that in typical tapered optical fibers these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that opto-mechanically couple to the nanofiber-guided light. We present a simple ab-initio theoretical model that quantitatively explains the torsional mode spectrum and that can be used to design tapered optical fibers with tailored mechanical properties.

  5. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  6. Induced Charge Electrokinetic Phenomena in Tapered Conducting Nanochannels

    CERN Document Server

    Zhao, Cunlu

    2010-01-01

    We conducted a fundamental study of electrokinetics in conducting (ideally polarizable) tapered nanochannels. Based on the theory of induced charge electrokinetics, the external driving electric fields polarize the uncharged conducting walls of nanochannels and consequently induce surface charges on these walls which also can play the roles of physiochemical bond charges in conventional electrokinetics. Due to complex coupling involved in the problem, the complete model including the Poisson equation for electric potential, the Nernst-Planck equation for ions transport and the Navier-stokes equation for liquid transport are adopted to numerically investigate the electrokinetic phenomena inside the tapered nanofluidic nanochannel with conducting walls. The results reveal that, the flow inside the tapered conducting nanochannel exhibit so-called full wave flow rectification that the electrolyte solution always flows from the narrow end of a nanochannel to the wide end for either a forward bias (electric field f...

  7. Acoustic vibration sensor based on nonadiabatic tapered fibers.

    Science.gov (United States)

    Xu, Ben; Li, Yi; Sun, Miao; Zhang, Zhen-Wei; Dong, Xin-Yong; Zhang, Zai-Xuan; Jin, Shang-Zhong

    2012-11-15

    A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB.

  8. Development on electromagnetic impedance function modeling and its estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id [Earth Physics and Complex System Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  9. Single muscle fiber gene expression with run taper.

    Directory of Open Access Journals (Sweden)

    Kevin Murach

    Full Text Available This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I and fast-twitch (MHC IIa muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1 during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax while in heavy training (∼72 km/wk and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14, Myostatin (MSTN, Heat shock protein 72 (HSP72, Muscle ring-finger protein-1 (MURF1, Myogenic factor 6 (MRF4, and Insulin-like growth factor 1 (IGF1 via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05. MSTN was suppressed with exercise in both fiber types and training states (P<0.05 while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05. Robust induction of FN14 (previously shown to strongly correlate with hypertrophy and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.

  10. FEM electrode refinement for electrical impedance tomography.

    Science.gov (United States)

    Grychtol, Bartlomiej; Adler, Andy

    2013-01-01

    Electrical Impedance Tomography (EIT) reconstructs images of electrical tissue properties within a body from electrical transfer impedance measurements at surface electrodes. Reconstruction of EIT images requires the solution of an inverse problem in soft field tomography, where a sensitivity matrix, J, of the relationship between internal changes and measurements is calculated, and then a pseudo-inverse of J is used to update the image estimate. It is therefore clear that a precise calculation of J is required for solution accuracy. Since it is generally not possible to use analytic solutions, the finite element method (FEM) is typically used. It has generally been recommended in the EIT literature that FEMs be refined near electrodes, since the electric field and sensitivity is largest there. In this paper we analyze the accuracy requirement for FEM refinement near electrodes in EIT and describe a technique to refine arbitrary FEMs.

  11. Perambatan Gelombang Optik pada Grating Sinusoidal dengan Chirp dan Taper

    Directory of Open Access Journals (Sweden)

    Isnani Darti

    2009-11-01

    menggunakan MIL, dipelajari perubahan respon optik pada grating sinusoidal akibat variasi amplitudo modulasi indeks (taper dan variasi frekuensi spasial grating (chirp. Hasil simulasi menunjukkan bahwa taper menyebabkan adanya fenomena penghilangan side-lobe pada spektrum transmitansi. Adanya chirp menyebabkan penghalusan side-lobe pada spektrum transmitansi dengan semakin besar parameter chirp menyebabkan peningkatan transmitansi di sekitar pusat band-gap dari grating homogen. Selain implementasi integrasi numerik (Runge-Kutta, MIL merupakan metode eksak sehingga dapat digunakan untuk mengevaluasi validitas metode yang sering digunakan yaitu Persamaan Moda Tergandeng (PMT. Dari hasil perbandingan dapat disimpulkan bahwa secara umum PMT kurang akurat dalam menganalisis struktur grating sinusoidal baik homogen maupun tak-homogen.

  12. Tapered amplifier laser with frequency-shifted feedback

    CERN Document Server

    Bayerle, A; Vlaar, P; Pasquiou, B; Schreck, F

    2016-01-01

    We present a frequency-shifted feedback (FSF) laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.

  13. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    Science.gov (United States)

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  14. The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2015-01-01

    This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS......) technique for the entire state-of-charge (SOC) interval and considering five temperatures between 5oC and 45oC. By analyzing the measured impedance spectra of the LTO-based battery cell, it was found out that the cell’s impedance is extremely dependent on the operating conditions. By further processing...

  15. Development and First Results of the Width-Tapered Beam Method for Adhesion Testing of Photovoltaic Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Nick; Tracy, Jared; Dauskardt, Reinhold; Kurtz, Sarah

    2016-11-21

    A fracture mechanics based approach for quantifying adhesion at every interface within the PV module laminate is presented. The common requirements of monitoring crack length and specimen compliance are circumvented through development of a width-tapered cantilever beam method. This technique may be applied at both the module and coupon level to yield a similar, quantitative, measurement. Details of module and sample preparation are described and first results on field-exposed modules deployed for over 27 years presented.

  16. Comparison of the cleaning capacity of Mtwo and Pro Taper rotary systems and manual instruments in primary teeth

    OpenAIRE

    Mohammad Reza Azar; Laya Safi; Afshin Nikaein

    2012-01-01

    Background: Root canal cleaning is an important step in endodontic therapy. In order to develop better techniques, a new generation of endodontic instruments has been designed. The aim of this study was to compare the effectiveness of manual K-files (Mani Co, Tokyo, Japan) and two rotary systems-Mtwo (Dentsply-Maillefer, Ballaigues, Switzerland) and ProTaper (VDW, Munich, Germany)-for root canal preparation in primary molars. Materials and Methods: India ink was injected to 160 mesiobucca...

  17. GB-R impedances: new approach to impedance simulation

    Science.gov (United States)

    Serrano, L.; Carlosena, A.

    1995-04-01

    A new design procedure is presented for obtaining simulated inductors and large capacitors from classical opamp circuits. Such impedances exploit almost all of the available bandwidth of the operational amplifier.

  18. Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper

    Science.gov (United States)

    Luo, Baohua; Wang, Yingying; Sun, Ya'nan; Dai, Shixun; Yang, Peilong; Zhang, Peiqing; Wang, Xunsi; Chen, Feifei; Wang, Rongping

    2017-01-01

    In this work, Ge15Sb20Se65 bare glass fiber with a diameter of 500 μm was fabricated, and then tapered with different tapering parameters. The analysis of Raman and energy dispersive X-ray spectra (EDS) indicated that, a slight change in the chemical composition of the glass, fiber and tapering fiber has negligible effect on the glass structure. It was found that, the waist diameter decreases exponentially with increasing tapering length and speed, and high quality taper fiber with the cone diameter of 2.65 μm can be achieved under the optimal tapering conditions. Finally, the simulated and experimental results of the output transmission under different waist length and taper ratio show that the transmission decreases with increasing waist length and taper ratio.

  19. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  20. HDR reservoir flow impedance and potentials for impedance reduction

    Energy Technology Data Exchange (ETDEWEB)

    DuTeau, R.; Brown, D.

    1993-06-01

    The data from flow tests which employed two different production zones in a well at Fenton Hill indicates the flow impedance of a wellbore zone damaged by rapid depressurization was altered, possibly by pressure spallation, which appears to have mechanically propped the joint apertures of outlet flow paths intersecting the altered wellbore. The rapid depressurization and subsequent flow test data derived from the damaged well has led to the hypothesis that pressure spallation and the resultant mechanical propping of outlet flow paths reduced the outlet flow impedance of the damaged wellbore. Furthermore, transient pressure data shows the largest pressure drop between the injection and production wellheads occurs near the production wellbore, so lowering the outlet impedance by increasing the apertures of outlet flow paths will have the greatest effect on reducing the overall reservoir impedance. Fenton Hill data also reveals that increasing the overall reservoir pressure dilates the apertures of flow paths, which likewise serves to reduce the reservoir impedance. Data suggests that either pressure dilating the wellbore connected joints with high production wellhead pressure, or mechanically propping open the outlet flow paths will increase the near-wellbore permeability. Finally, a new method for calculating and comparing near-wellbore outlet impedances has been developed. Further modeling, experimentation, and engineered reservoir modifications, such as pressure dilation and mechanical propping, hold considerable potential for significantly improving the productivity of HDR reservoirs.

  1. Optimization of group delay response of (apodized) tapered fiber Bragg grating by shaping taper transition and apodization window

    Science.gov (United States)

    Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz

    2016-09-01

    This article presents implementation of the Simulated Annealing (SA) algorithm for tapered fiber Bragg gratings (TFBGs) design. Particularly, together with well-known Coupled Mode Theory (CMT) and Transfer Matrix Method (TMM) the algorithm optimizes the group delay response of TFBG, by simultaneous shaping of both apodization function and tapered fiber transition profile. Prior to the optimization process, numerical model for TFBG design has been validated. Preliminary results reveal great potential of the SA-based approach and with proper definition of the design criteria may be even applied for optimization of the spectral properties of TFBGs.

  2. Impedance matching vertical optical waveguide couplers for dense high index contrast circuits.

    Science.gov (United States)

    Sun, Rong; Beals, Mark; Pomerene, Andrew; Cheng, Jing; Hong, Ching-Yin; Kimerling, Lionel; Michel, Jurgen

    2008-08-04

    We designed and demonstrated a compact, high-index contrast (HIC) vertical waveguide coupler for TE single mode operation with the lowest coupling loss of 0.20 dB +/- 0.05 dB at 1550 nm. Our vertical coupler consists of a pair of vertically overlapping inverse taper structures made of SOI and amorphous silicon. The vertical coupler can suppress power oscillation observed in regular directional couplers and guarantees vertical optical impedance matching with great tolerance for fabrication and refractive index variations of the waveguide materials. The coupler furthermore shows excellent broadband coupling efficiencies between 1460 nm and 1570 nm.

  3. Optimization of Tapered Photonic Crystal Fibers for Blue-Enhanced Supercontinuum Generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper;

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for blue-enhanced supercontinuum generation.......Tapering of photonic crystal fibers is an effective way of shifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for blue-enhanced supercontinuum generation....

  4. Mathematical modelling of couple stresses on fluid flow in constricted tapered artery in presence of slip velocity-effects of catheter

    Institute of Scientific and Technical Information of China (English)

    J. V. R. REDDY; D. SRIKANTH; S. K. MURTHY

    2014-01-01

    This paper explores the mathematical model for couple stress fluid flow through an annular region. The above model is used for studying the blood flow be-tween the clogged (stenotic) artery and the catheter. The asymmetric nature of the stenosis is considered. The closed form expressions for the physiological parameters such as impedance and shear stress at the wall are obtained. The effects of various geomet-ric parameters and the parameters arising out of the fluid considered are discussed by considering the slip velocity and tapering angle. The study of the above model is very significant as it has direct applications in the treatment of cardiovascular diseases.

  5. Deep-blue supercontinnum sources with optimum taper profiles – verification of GAM

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe; Larsen, Casper;

    2012-01-01

    We use an asymmetric 2 m draw-tower photonic crystal fiber taper to demonstrate that the taper profile needs careful optimisation if you want to develop a supercontinuum light source with as much power as possible in the blue edge of the spectrum. In particular we show, that for a given taper...

  6. In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck-stem modular taper: Emergent behavior in a new mechanism of in vivo corrosion.

    Science.gov (United States)

    Gilbert, Jeremy L; Mali, Sachin; Urban, Robert M; Silverton, Craig D; Jacobs, Joshua J

    2012-02-01

    In vivo modular taper corrosion in orthopedic total joint replacements has been documented to occur for head-neck tapers, modular-body tapers, and neck-stem tapers. While the fretting corrosion mechanism by which this corrosion occurs has been described in the literature, this report shows new and as yet unreported mechanisms at play. A retrieved Ti-6Al-4V/Ti-6Al-4V neck-stem taper interface, implanted for 6 years is subjected to failure analysis to document taper corrosion processes that lead to oxide driven crack formation on the medial side of the taper. Metallurgical sectioning techniques and scanning electron microscopy analysis are used to document the taper corrosion processes. The results show large penetrating pitting attack of both sides of the taper interface where corrosion selectively attacks the beta phase of the microstructure and eventually consumes the alpha phase. The pitting attack evolves into plunging pits that ultimately develop into cracks where the crack propagation process is one of corrosion resulting in oxide formation and subsequent reorganization. This process drives open the crack and advances the front by a combination of oxide-driven crack opening stresses and corrosion attack at the tip. The oxide that forms has a complex evolving structure including a network of transport channels that provide access of fluid to the crack tip. This emergent behavior does not appear to require continued fretting corrosion to propagate the pitting and cracking. This new mechanism is similar to stress corrosion cracking where the crack tip stresses arise from the oxide formation in the crack and not externally applied tensile stresses.

  7. Tapered optical fiber sensor for chemical pollutants detection in seawater

    Science.gov (United States)

    Irigoyen, Maite; Sánchez-Martin, Jose Antonio; Bernabeu, Eusebio; Zamora, Alba

    2017-04-01

    Three tapered silica optical fibers, uncoated and coated with metallic (Al or Cu) and dielectric layers (TiO2), are employed to determine the presence of oil and Hazardous and Noxious Substances (HNS from now on) in water, by means of the measurement of their spectral transmittance. With our experimental assembly, the presence of oil and HNS spills can be detected employing the three different kinds of tapers, since the complete range of refractive indices of the pollutants (1.329-1.501) is covered with these tapers. The most suitable spectral range to detect the presence of a chemical pollutant in seawater has been identified and a complete spectral characterization of the three types of optical fiber tapers has been carried out. The results obtained show that, in general terms, these devices working together can be employed for the early detection of oil and HNS spills in seawater in a marine industrial environment. These sensors have many advantages, such as its low cost, its simplicity and versatility (with interesting properties as quick response and repeatability), and especially that they can be self-cleaned with seawater in motion.

  8. Tapered composite likelihood for spatial max-stable models

    KAUST Repository

    Sang, Huiyan

    2014-05-01

    Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.

  9. Terahertz field imaging inside tapered parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    We present a non-invasive broadband air photonic method of terahertz field imaging inside a tapered parallel plate waveguide. The method is based on the terahertz-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We also demonstrate the direct...

  10. Opioid Abstinence Reinforcement Delays Heroin Lapse during Buprenorphine Dose Tapering

    Science.gov (United States)

    Greenwald, Mark K.

    2008-01-01

    A positive reinforcement contingency increased opioid abstinence during outpatient dose tapering (4, 2, then 0 mg/day during Weeks 1 through 3) in non-treatment-seeking heroin-dependent volunteers who had been maintained on buprenorphine (8 mg/day) during an inpatient research protocol. The control group (n = 12) received $4.00 for completing…

  11. Structural Analysis of Taper-Threaded Rebar Couplers

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Seok Jae [Univ. of Ulsan, Ulsan (Korea, Republic of); Kwon, Hyuk Mo; Seo, Sang Hwan [Sammi Precision Co. Ltd., Ulsan (Korea, Republic of)

    2014-05-15

    A number of rebar couplers were developed by the leading companies. The information about the products is available from the company website. However, the theory on the taper-threaded coupler is not available. In this paper, the mechanics of the taper-thread was developed to understand the effect of the tightening torque. Structural analysis of our own newly developed rebar coupler was done to improve the strength of the coupler. The taper-threaded rebar coupler was analyzed. The tightening of the rebar into the coupler developed a circumferential stress in the coupler. The circumferential stress depends on the coefficient of friction as well as the tightening torque. The circumferential stress is less than the allowable stress 20 kgf/mm{sup 2} of the material for the coefficient of friction greater than 0.1. The tightening of the rebar into the coupler and the subsequent tensioning was simulated using CATIA. Linear elastic analysis considering contact was done. The tightening of the taper-threaded rebar developed a uniform stress distribution in both standard coupler and position coupler. On the other hand, the tightening of the nut in the axial direction developed a non-uniform stress distribution. Similarly the tensioning also developed a non-uniform stress distribution.

  12. FDML swept source at 1060 nm using a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang;

    2010-01-01

    in this wavelength range. We demonstrate that a tapered amplifier can be integrated into a fiber-based swept source and allows for high-speed FDML operation. The developed light source operates at a sweep rate of 116kHz with an effective average output power in excess of 30mW. With a total sweep range of 70 nm...

  13. Heat-and-pull rig for fiber taper fabrication

    NARCIS (Netherlands)

    Ward, Jonathan M.; O'Shea, Danny G.; Shortt, Brian J.; Morrissey, Michael J.; Deasy, Kieran; Chormaic, Sile G. Nic

    2006-01-01

    We describe a reproducible method of fabricating adiabatic tapers with 3-4 mu m diameter. The method is based on a heat-and-pull rig, whereby a CO(2) laser is continuously scanned across a length of fiber that is being pulled synchronously. Our system relies on a CO(2) mirror mounted on a geared ste

  14. Vibration frequencies of tapered bars with nonclassical boundary conditions

    Science.gov (United States)

    Craver, W. Lionel, Jr.

    1988-01-01

    The goals for this research were revised and clarified. The goals are restated along with an evaluation of the accomplishment of the goal. All of the cases of the truncated-cone beams that were originally proposed to be solved were solved. A summary of these solutions is presented. Some cases of beams with unequal tapers were solved and are discussed.

  15. Drug taper during long-term video-EEG monitoring

    DEFF Research Database (Denmark)

    Guld, Asger Toke; Sabers, A; Kjaer, T W

    2017-01-01

    OBJECTIVES: Anti-epileptic drugs (AED) are often tapered to reduce the time needed to record a sufficient number of seizure during long-term video-EEG monitoring (LTM). Fast AED reduction is considered less safe, but few studies have examined this. Our goal is to examine whether the rate of AED...

  16. Linearly tapered slot antenna circular array for mobile communications

    Science.gov (United States)

    Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.

    1993-01-01

    The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.

  17. Nonlinear Vibration of an Elastically Restrained Tapered Beam

    DEFF Research Database (Denmark)

    Karimpour, S; Ganji, S.S; Barari, Amin;

    2012-01-01

    This paper presents the analytical simulation of an elastically restrained tapered cantilever beam using the energy balance method (EBM) and the iteration perturbation method (IPM). To assess the accuracy of solutions, we compare the results with the harmonic balance method (HBM). The obtained re...

  18. IMPEDANCE CHARACTERISTICS OF POLYFURAN FILMS

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Xiao-bo Wan; Gi Xue

    2002-01-01

    Electrochemical impedance spectroscopy (EIS) was first used for the characterization of polyfuran (PFu) films that had been formed electrochemically on an Au electrode. The polyfuran was measured in high oxidation state, intermediate oxidation state and reduction state, respectively. As the oxidation level is increased, the ionic conductivity of PFu/BF4-increases. And impedance studies on PFu show that the anion BF4- appears to be mobile with a high diffusion coefficient of approximately 10-8 cm2 @ s-1.

  19. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates

    KAUST Repository

    Almuhammadi, Khaled

    2017-02-16

    Techniques that monitor the change in the electrical properties of materials are promising for both non-destructive testing and structural health monitoring of carbon-fiber-reinforced polymers (CFRPs). However, achieving reliable monitoring using these techniques requires an in-depth understanding of the impedance response of these materials when subjected to an alternating electrical excitation, information that is only partially available in the literature. In this work, we investigate the electrical impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface ply and the probing depth for different CFRP configurations for more efficient electrical signal-based inspections. We also investigate the effect of the amplitude of the input signal.

  20. Experimental study on the standing-wave tube with tapered section and its extremely nonlinear standing-wave field

    Institute of Scientific and Technical Information of China (English)

    MIN Qi; YIN Yao; LI Xiaodong; LIU Ke

    2011-01-01

    A standing-wave tube with tapered section (STTS) was evolved from a standingwave tube with abrupt section (STAS) whose abrupt section was replaced with tapered section. The research was intended to compare the acoustic properties and the extremely nonlinear pure standing waves of STTS with those of STAS. The acoustic properties of the STTS were studied with transfer matrix. It was proved, like the STAS, that the STTS was dissonant standingwave tube. With its dissonant property, the 181 dB extremely nonlinear pure standing wave was obtained in the STTS excited at its first resonance frequency. Then the comparative experimental studies on the saturation properties of the extremely nonlinear standing waves were carried out in the STTS and the STAS with the same length. It was found that the STTS could suppress the harmonics and meanwhile reduce energy loss of the standing wave more effectively. Compared with the STAS, under the same voltage of loudspeaker, the STTS obtained a higher extremely nonlinear pure standing wave. Moreover, it was found for the STTS that the third harmonic of the third resonance frequency was close to the seventh resonance frequency of sound source impedance, to which the valley value of the sound pressure level transfer function corresponded. Because of this, the third harmonic increased rapidly with the increase of fundamental wave and tended to saturate.

  1. Effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered time-variant stenotic artery

    Directory of Open Access Journals (Sweden)

    A. Zaman

    2015-03-01

    Full Text Available A two-dimensional model is used to analyze the unsteady pulsatile flow of blood through a tapered artery with stenosis. The rheology of the flowing blood is captured by the constitutive equation of Carreau model. The geometry of the time-variant stenosis has been used to carry out the present analysis. The flow equations are set up under the assumption that the lumen radius is sufficiently smaller than the wavelength of the pulsatile pressure wave. A radial coordinate transformation is employed to immobilize the effect of the vessel wall. The resulting partial differential equations along with the boundary and initial conditions are solved using finite difference method. The dimensionless radial and axial velocity, volumetric flow rate, resistance impedance and wall shear stress are analyzed for normal and diseased artery with particular focus on variation of these quantities with non-Newtonian parameters.

  2. A digital controlled PV-inverter with grid impedance estimation for ENS detection

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    of a PV-inverter with different advanced, robust control strategies and an embedded online technique to determine the utility grid impedance. By injecting an interharmonic current and measuring the voltage response it is possible to estimate the grid impedance at the fundamental frequency. The presented...... technique, which is implemented with the existing sensors and the CPU of the PV-inverter, provides a fast and low cost approach for online impedance measurement, which may be used for detection of islanding operation. Practical tests on an existing PV-inverter validate the control methods, the impedance...... measurement, and the islanding detection....

  3. A simple fabrication method for tapered capillary tip and its applications in high-speed CE and ESI-MS.

    Science.gov (United States)

    Cheng, Yong-Qiang; Su, Yuan; Fang, Xiao-Xia; Pan, Jian-Zhang; Fang, Qun

    2014-05-01

    Fabrication of capillaries with tapered tips is an important technique that is required in many analytical chemistry areas, such as ESI-MS, CE, electrochemical analysis, and microinjection. This paper describes a simple and effective grinding-based fabrication method for capillaries with tapered tips. A novel grinding mode utilizing the combination of rotation and precession of an elastic capillary was developed, which significantly improved the controllability to the grinding process as well as the capillary tip shape. The capillary was fabricated by fixing it in an electric drill installed perpendicularly, and grind the capillary tip rotated around its own axis as well as the drill axis on sandpapers. Compared with conventional fabrication techniques for capillary tips, the present method is easy to control the capillary tip shape in routine laboratories without the requirement of expensive equipments or poisonous reagent (e.g. hydrofluoric acid (HF) solution). Various capillaries with different tip diameters and tip taper angles could be fabricated using the present method with good controllability and reproducibility. These capillaries were applied in high-speed CE and ESI-MS analysis to demonstrate the feasibility and potential of this fabrication method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Wenjie Xu

    2017-02-01

    Full Text Available A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L.

  5. Some boundary problems in electrical impedance tomography.

    Science.gov (United States)

    Pidcock, M; Ciulli, S; Ispas, S

    1996-11-01

    Accurate mathematical modelling is important in the development of iterative image reconstruction algorithms for electrical impedance tomography (EIT). In such schemes the forward problem of calculating the electric potential from Neumann boundary data is solved many times. One aspect of this problem which has received some attention is the mathematical modelling of the electrodes used in the technique. In this paper we describe an integral equation formulation of a boundary value problem associated with this tissue and we indicate some of the ways in which this formulation can be used to obtain numerical and analytic results.

  6. Transferring human impedance regulation skills to robots

    CERN Document Server

    Ajoudani, Arash

    2016-01-01

    This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.

  7. Carbon dioxide laser fabrication of fused-fiber couplers and tapers.

    Science.gov (United States)

    Dimmick, T E; Kakarantzas, G; Birks, T A; Russell, P S

    1999-11-20

    We report the development of a fiber taper and fused-fiber coupler fabrication rig that uses a scanning, focused, CO(2) laser beam as the heat source. As a result of the pointlike heat source and the versatility associated with scanning, tapers of any transition shape and uniform taper waist can be produced. Tapers with both a linear shape and an exponential transition shape were measured. The taper waist uniformity was measured and shown to be better than +/-1.2%. The rig was also used to make fused-fiber couplers. Couplers with excess loss below -0.1 dB were routinely produced.

  8. Theoretical model of the modulation transfer function for fiber optic taper

    Science.gov (United States)

    Wang, Yaoxiang; Tian, Weijian; Bin, XiangLi

    2005-02-01

    Fiber optic taper has been used more and more widely as a relay optical component in the integrated taper assembly image intensified sensors for military and medical imaging application. In this paper, the transmission characteristic of energy in the taper is analyzed, and following the generalized definition of the modulation transfer function for sampled imaging system, a spatial averaged impulse response and a corresponding MTF component that are inherent in the sampling process of taper are deduced, and the mathematical model for evaluating the modulation transfer function of fiber optic taper is built. Finally, the dynamic and static modulation transfer function curves simulated by computer have been exhibited.

  9. Back-action evasion as an alternative to impedance matching.

    Science.gov (United States)

    Yurke, B

    1991-04-26

    Back-action evasion is a measurement technique originally devised to overcome certain limits imposed by quantum mechanics on the sensitivity of gravitational radiation detectors. The technique is, however, more generally applicable and can be used to improve the sensitivity of instrumentation with noise floors much greater than the quantum noise floor. The principle of back-action evasion is described here by means of a simple example. A comparison of back-action evasion with impedance matching is made to clarify when back-action evasion may be useful. Back-action evasion allows one to achieve a sensitivity comparable to that achieved by impedance matching.

  10. Refractive index sensors based on the fused tapered special multi-mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  11. Reconfigured and Notched Tapered Slot UWB Antenna for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    Tamer Aboufoul

    2012-01-01

    Full Text Available A compact reconfigurable and notched ultra-wideband (UWB tapered slot antenna (TSA is presented. The antenna reconfiguration operation principle relies on 2 mechanisms: in the first mechanism a resonator parasitic microstrip line electrically coupled to the TSA is used to notch the TSA at a specific frequency and the second mechanism relies on changing the input impedance matching of the antenna by means of changing the length of a stub line extended from an additional tiny partial ground on the back side of the antenna. The reflection coefficient, radiation patterns, and gain simulations and measurements for the proposed antenna are presented to verify the design concepts featuring a very satisfactory performance. Total efficiency simulations and measurements are also presented to highlight the filtering performance of the reconfigured antenna. When the antenna was reconfigured from the UWB to work into multiple frequency bands, the radiation patterns were still the same and the total peak gain has slightly improved compared to the UWB case. In addition, when the antenna operated in the notched mode, the gain has significantly dropped at the notch frequency. The simplicity and flexibility of the proposed multimode antenna make it a good candidate for future cognitive radio front ends.

  12. Report of the SSC impedance workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-10-28

    This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.

  13. 适应实际电网阻抗特性的 DFIG 不平衡电压解耦补偿技术%An Unbalanced Voltage Decoupling Compensation Technique for DFIG Adaptive to Grid Impedance

    Institute of Scientific and Technical Information of China (English)

    年珩; 王涛; 程鹏

    2015-01-01

    A compensation strategy using doubly-fed induction generator (DFIG) to rebalance the voltage at point of common coupling (PCC) is proposed.By tuning the decoupling controller based on the estimated network impedance,d-q components of the negative sequence voltage at PCC is decoupling controlled,which gives the DFIG system good stability and fast response under arbitrary network impedance ratio.The design principles of the proposed strategy is introduced in detail,then the closed loop transfer function of a DFIG system utilizing the proposed strategy is derived,and the loci of the closed loop poles with varying network impedance ratio are plotted,with which the impact of the network impedance estimation error on the system performance is analyzed.Simulation model is built to compare the control performance of the traditional non-decoupling strategy and the proposed decoupling strategy.Finally,experiments on a prototype validate the effectiveness and superiority of the proposed strategy.%提出了一种利用双馈感应发电机(DFIG)补偿公共连接点(PCC)不平衡电压的方法。在DFIG 负序数学模型基础上,使用基于电网阻抗观测的解耦控制器实现 DFIG 对 PCC 负序电压交、直轴分量的解耦控制,确保 DFIG 系统在任意电网阻抗比下具有优良的负序电压补偿性能。详细介绍了该方法的设计思路,推导了使用该方法的 DFIG 系统的闭环传递函数,通过研究电网阻抗比变化时系统闭环极点的轨迹分析了所提不平衡补偿方法的稳定运行能力,并分析了所提方法对电网阻抗动态变化及阻抗估计误差的适应能力。搭建了 Simulink 仿真模型,对比分析了所提解耦补偿方法与传统不解耦补偿方法的控制性能。最后,搭建了单机实验平台,实验结果证明了所提补偿方法的有效性和相比不解耦补偿方法的优越性。

  14. Definition of the characteristic impedance

    Institute of Scientific and Technical Information of China (English)

    徐云生; Abbas Sayed OMAR

    1996-01-01

    Currently available definitions of the characteristic impedance are ambiguous andior inaccurate.A general definition,based on the description of discontinuities between adjacent waveguides,is given.This definition is accurate and independent of the structure concerned.So it can be applied to the design of passive components in any type of transmission lines.Using this definition,a given structure can be uniquely characterized,but the absolute value of the characteristic impedance has no sense any more.As an example,the design of a microstrip impedance transformer using this new definition is presented.Numerical results using the mode-matching method prove the accuracy of the theory.

  15. Transverse Impedance of LHC Collimators

    CERN Document Server

    Métral, E; Assmann, Ralph Wolfgang; Boccardi, A; Bracco, C; Bohl, T; Caspers, Friedhelm; Gasior, M; Jones, O R; Kasinski, K; Kroyer, T; Redaelli, S; Robert-Demolaize, R; Roncarolo, F; Rumolo, G; Salvant, B; Steinhagen, R; Weiler, T; Zimmermann, F

    2007-01-01

    The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS.

  16. Impedances of Laminated Vacuum Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  17. An in vitro analysis of separation of multi-use ProTaper Universal and ProTaper Next instruments in extracted mandibular molar teeth.

    Science.gov (United States)

    Ertas, Huseyin; Capar, Ismail Davut

    2015-01-01

    This study investigated the separation incidence of reused ProTaper Universal and ProTaper Next rotary instruments and identified the location of separated fragments. The root canals of extracted human mandibular molars were prepared with 10 assorted sets of ProTaper Universal and ProTaper Next instruments. After each preparation, instrument sets were autoclaved. This arrangement was repeated until an instrument fractured. The number of prepared teeth until fracture occurred was recorded for each instrument set. Teeth in which the instruments fractured were analyzed to determine the separation grade, apical relation, and coronal position. Fracture surfaces of the instruments were examined with scanning electron microscope. ProTaper Universal instruments fractured after application to a mean of 7.3 teeth, and ProTaper Next instruments after application to a mean of 5.7 teeth (p > 0.05). In the ProTaper Universal and ProTaper Next groups, F2 and X1 were the most commonly fractured instruments, respectively. Torsional and cyclic failures were evenly distributed in both the groups. The mean lengths of the fractured fragments of the instruments showed no statistically significant difference. The distance between the tip of the fractured instruments and apical constriction was similar (p > 0.05). However, the mean distance between the root canal orifice and coronal part of the fractured instrument was shorter in the ProTaper Next group (p ProTaper Universal and ProTaper Next instruments was the same for preparation of mandibular molar teeth. None of the instruments were fractured in the first usage.

  18. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    Science.gov (United States)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  19. Hybrid-Source Impedance Networks

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang;

    2010-01-01

    the cascaded networks would have a higher output voltage gain and other unique advantages that currently have not been investigated yet. It is anticipated that these advantages would help the formed inverters find applications in photovoltaic and other renewable systems, where a high voltage gain is usually......Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...

  20. Y-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Loh, Poh Chiang; Blaabjerg, Frede;

    2014-01-01

    This letter introduces a new versatile Y-shaped impedance network for realizing converters that demand a very high-voltage gain, while using a small duty ratio. To achieve that, the proposed network uses a tightly coupled transformer with three windings, whose obtained gain is presently not matched...... by existing networks operated at the same duty ratio. The proposed impedance network also has more degrees of freedom for varying its gain, and hence, more design freedom for meeting requirements demanded from it. This capability has been demonstrated by mathematical derivation, and proven in experiment...

  1. Complex coupled-mode theory for tapered optical waveguides.

    Science.gov (United States)

    Mu, Jianwei; Huang, Wei-Ping

    2011-03-15

    A coupled-mode formulation based on complex local modes is developed for tapered and longitudinally varying optical waveguides. Different from the conventional coupled-mode theory that requires integration over the entire spectrum of radiation modes, the new formulation treats the radiation fields via discrete complex modes similarly to the guided modes. Accuracy, convergence, and scope of validity for the solutions of the complex coupled-mode equations are investigated in detail for a typical single-mode waveguide taper. It is demonstrated that the complex coupled-mode theory has overcome the difficulties of the conventional theory in simulation of radiation field effects while preserving the simplicity and intuitiveness of this popular method.

  2. Piezoelectric energy harvester having planform-tapered interdigitated beams

    Science.gov (United States)

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  3. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle

    2011-01-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope...... in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has...... been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order...

  4. Input impedance characteristics of microstrip structures

    Directory of Open Access Journals (Sweden)

    A. I. Nazarko

    2015-06-01

    Full Text Available Introduction. Electromagnetic crystals (EC and EC-inhomogeneities are one of the main directions of microstrip devices development. In the article the input impedance characteristics of EC- and traditional microstrip inhomogeneities and filter based on EC-inhomogeneities are investigated. Transmission coefficient characteristics. Transmission coefficient characteristics of low impedance EC- and traditional inhomogeneities are considered. Characteristics are calculated in the software package Microwave Studio. It is shown that the efficiency of EC-inhomogeneity is much higher. Input impedance characteristics of low impedance inhomogeneities. Dependences of input impedance active and reactive parts of EC- and traditional inhomogeneities are given. Dependences of the active part illustrate significant low impedance transformation of nominal impedance. The conditions of impedance matching of structure and input medium are set. Input impedance characteristics of high impedance inhomogeneities. Input impedance characteristics of high impedance EC- and traditional inhomogeneities are considered. It was shown that the band of transformation by high impedance inhomogeneities is much narrower than one by low impedance inhomogeneities. Characteristics of the reflection coefficient of inhomogeneities are presented. Input impedance characteristics of narrowband filter. The structure of narrowband filter based on the scheme of Fabry-Perot resonator is presented. The structure of the filter is fulfilled by high impedance EC-inhomogeneities as a reflectors. Experimental and theoretical amplitude-frequency characteristics of the filter are presented. Input impedance characteristics of the filter are shown. Conclusions. Input impedance characteristics of the structure allow to analyse its wave properties, especially resonant. EC-inhomogeneity compared with traditional microstrip provide substantially more significant transformation of the the input impedance.

  5. A new contactless impedance sensor for void fraction measurement of gas-liquid two-phase flow

    Science.gov (United States)

    Ji, Haifeng; Chang, Ya; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2016-12-01

    With impedance elimination principle and phase sensitive demodulation (PSD) technique, this work aims to develop a new contactless impedance sensor, which is suitable for the void fraction measurement of gas-liquid two-phase flow. The impedance elimination principle is used to overcome the unfavorable influences of the coupling capacitances, i.e. the capacitive reactances of the coupling capacitances are eliminated by the inductive reactance of an introduced inductor. PSD technique is used to implement the impedance measurement. Unlike the conventional conductance/impedance sensors which use the equivalent conductance (the real part of the impedance) or the amplitude of the impedance of gas-liquid two-phase flow, the new contactless impedance sensor makes full use of the total impedance information of gas-liquid two-phase flow (including the amplitude, the real part and the imaginary part of the impedance, especially the imaginary part) to implement the void fraction measurement. As a preliminary study, to verify the effectiveness of the new contactless impedance sensor, two prototypes (with different inner diameters of 17.0 mm and 22.0 mm) are developed and experiments are carried out. Two typical flow patterns (bubble flow and stratified flow) of gas-liquid two-phase flow are investigated. The experimental results show that the new contactless impedance sensor is successful and effective. Compared with the conventional conductance/impedance sensors, the new contactless impedance sensor can avoid polarization effect and electrochemical erosion effect. The total impedance information is used and the void fraction measurement performance of the new sensor is satisfactory. The experimental results also indicate that the imaginary part of the impedance of gas-liquid two-phase flow is very useful for the void fraction measurement. Making full use of the total impedance information of gas-liquid two-phase flow can effectively improve the void fraction measurement

  6. Electrical impedance imaging of water distribution in the root zone

    Science.gov (United States)

    Newill, P.; Karadaglić, D.; Podd, F.; Grieve, B. D.; York, T. A.

    2014-05-01

    The paper describes a technique that is proposed for imaging water transport in and around the root zone of plants using distributed measurements of electrical impedance. The technique has the potential to analyse sub-surface phenotypes, for instance drought tolerance traits in crop breeding programmes. The technical aim is to implement an automated, low cost, instrument for high-throughput screening. Ultimately the technique is targeted at in-field, on-line, measurements. For demonstration purposes the present work considers measurements on laboratory scale rhizotrons housing growing maize plants. Each rhizotron is fitted with 60 electrodes in a rectangular array. To reduce electrochemical effects the capacitively coupled contactless conductivity (C4D) electrodes have an insulating layer on the surface and the resistance of the bulk material is deduced from spectroscopic considerations. Electrical impedance is measured between pairs of electrodes to build up a two-dimensional map. A modified electrical model of such electrodes is proposed which includes the resistive and reactive components of both the insulating layer and the bulk material. Measurements taken on a parallel-plate test cell containing water confirm that the C4D technique is able to measure electrical impedance. The test cell has been used to explore the effects of water content, compaction and temperature on measurements in soil. Results confirm that electrical impedance measurements are very sensitive to moisture content. Impedance fraction changes up to 20% are observed due to compaction up to a pressure of 0.21 kg cm-2 and a temperature fraction sensitivity of about 2%/°C. The effects of compaction and temperature are most significant under dry conditions. Measurements on growing maize reveal the changes in impedance across the rhizotron over a period of several weeks. Results are compared to a control vessel housing only soil.

  7. Design optimization of a tapered mirror for microfocusing optics

    Institute of Scientific and Technical Information of China (English)

    MAO Cheng-Wen; XI Zai-Jun; YU Xiao-Han; XIAO Ti-Qiao

    2009-01-01

    A facile microfocusing optical design is presented which is optimized for less slope error against the traditional tapered mirror. The essential idea of the innovation is based on the characteristics of the slope-error curve for the prototype. The relationship between the mirror shape of the improved model and the driving moments is established. Analytical results have been compared with the results of the prototype. The design demonstrates theoretically that smaller slope error is obtained with longer active length.

  8. Tapered Diode-pumped continuous-wave alexandrite laser

    OpenAIRE

    2013-01-01

    Tapered diode-pumped continuous-wave alexandrite laser Ersen Beyatli,1 Ilyes Baali,2 Bernd Sumpf,3 Götz Erbert,3 Alfred Leitenstorfer,4 Alphan Sennaroglu,1 and Umit Demirbas2,4,* 1Laser Research Laboratory, Departments of Physics and Electrical-Electronics Engineering, Koç University, Rumelifeneri, Sariyer, Istanbul 34450, Turkey 2Laser Technology Laboratory, Department of Electrical and Electronics Engineering, Antalya International University, 07190 Dosemealti, Antalya,...

  9. Plasmonic Sensors Based on Doubly-Deposited Tapered Optical Fibers

    Directory of Open Access Journals (Sweden)

    Agustín González-Cano

    2014-03-01

    Full Text Available A review of the surface plasmon resonance (SPR transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced.

  10. The structural damping of composite beams with tapered boundaries

    Science.gov (United States)

    Coni, M.; Benchekchou, B.; White, R. G.

    1994-11-01

    Most metallic and composite structures of conventional construction are lightly damped. It is obviously advantageous, in terms of response to in-service dynamic loading, if damping can be increased with minimal weight addition. This report describes finite element analyses and complementary experiments carried out on composite, carbon fiber reinforced plastic, beams with tapered boundaries composed of layers of highly damped composite material. It is shown that modal damping of the structure may be significantly increased by this method.

  11. Coherent beam combining architectures for high power tapered laser arrays

    Science.gov (United States)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  12. Stratification criteria to fit taper functions on pine boles

    Directory of Open Access Journals (Sweden)

    Hassan Camil David

    2014-09-01

    Full Text Available This paper aimed to evaluate the accuracy of taper functions fitted with and without stratification on Pinus sp. trees. Three strata were allocated using diameter at 1.3 m above the ground, artificial form factor and Schiffel’s form quotient as stratification criteria. Schöepfer, Kozak et al. Hradetzky, Garcia et al., Ormerod and Demaerchalk taper functions were tested and the one which best fitted to the total population was selected by statistics standard error of estimate in percentage (syx%, adjusted coefficient of determination (R²aj. and residual scatterplots. After this, the selected function was fitted with data stratified and the gain of accuracy was evaluated by two statistical methods. As results, Hradetzky’s function adjusted better when compared to the others. Equations obtained for the total population and for strata are statistically different. Stratification by form factor and by form quotient provide considerable reduction of errors, reaching up to 50%, however it was not observed expressive reduction for stratification by diameter at 1.3 above the ground. So, the stratification by form factor is recommended for fitting taper functions to boles of Pinus sp.

  13. Single-mode fiber linearly tapered planar waveguide tunable coupler

    Science.gov (United States)

    Das, Alok K.; Hussain, Anwar

    1997-09-01

    We developed a simple system of tunable fiber film coupler using a linearly tapered thin-film planar waveguide (PWG) evanescently coupled by a single-mode distributed fiber half-coupler. We investigate the characteristics of the coupler theoretically and experimentally taking into consideration the refractive index ( n f ) of nonuniform films, the magnitude of nonuniformity ( m ) of the films, and the source wavelength ( ). The thickness variation of the nonuniform film is along the direction of propagation of optical power. Tapered and plano concave thin films of a mix of oils as well as a plano concave poly(methyl methacrylate) film were fabricated to serve as nonuniform PWG s. Similar to single-mode fiber with a uniform thickness PWG coupler, such a coupler also provides light modulation with a change of n f . However, position shifting of a half-coupler in a tapered PWG structure along the direction of propagation exhibits the variation of fiber throughput power. This action serves as a simple system for a tunable fiber film coupler. Wavelength-dependent throughput fiber power for such a coupler also behaves as a filter. The center wavelength can be controlled by shifting the position of the half-coupler. A coupling fiber as a half-coupler can be used for efficient coupling. We performed a theoretical analysis of the structure using Marcuse s model and observed good agreement with the experimental results.

  14. Large deflection of flexible tapered functionally graded beam

    Institute of Scientific and Technical Information of China (English)

    A.R.Davoodinik; G.H.Rahimi

    2011-01-01

    In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied.In order to derive the fully non-linear equations governing the non-linear deformation,a curvilinear coordinate system is introduced.A general non-linear second order differential equation that governs the shape of a deflected beam is derived based on the geometric nonlinearities,infinitesimal local displacements and local rotation concepts with remarkable physical properties of functionally graded materials.The solutions obtained from semi-analytical methods are numerically compared with the existing elliptic integral solution for the case of a flexible uniform cantilever functionally graded beam.The effects of taper ratio,inclined end load angle and material property gradient on large deflection of the beam are evaluated.The Adomian decomposition method will be useful toward the design of tapered functionally graded compliant mechanisms driven by smart actuators.

  15. Thermomechanical Behavior in Continuous Bloom Casting with Different Mold Tapers

    Institute of Scientific and Technical Information of China (English)

    LUO Xin; CHEN Yong; SHEN Houfa

    2008-01-01

    A two-dimensional finite element model was used to analyze the thermal and mechanical behavior dunng solidification of the strand in a continuous bloom casting mold.The coupled heat transfer and defermation were analyzed to simulate the formation of the air gap between the mold and the strand.The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand.The results show that the air gap mainly forms around the strand corner,causing a hoRer and thinner solidifying shell in this region.The mold taper partially compensates for the strand shell shnnkage and reduces the infiuence of the air gap on the heat transfer.The mold taper compresses the shell and changes the stress state around the stmnd comer region.As the strand moves down into the mold,the mold constraint causes compressive stress beneath the comer surface.which reduces the hot tear that forms on the strand.

  16. Portable fiber-optic taper coupled optical microscopy platform

    Science.gov (United States)

    Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping

    2017-04-01

    The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.

  17. Comparative evaluation of apically extruded debris with V-Taper, ProTaper Next, and the Self-adjusting File systems

    Directory of Open Access Journals (Sweden)

    Nishant K Vyavahare

    2016-01-01

    Full Text Available Background: Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. Aim: To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF system. Materials and Methods: Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20, Group II - ProTaper Next (n = 20, Group III - SAF (n = 20. Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey′s test. Results: All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001. Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124. Conclusion: The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF.

  18. Nonlinear feature identification of impedance-based structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, A. C. (Amanda C.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)

    2004-01-01

    The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.

  19. Maximizing switching current of superconductor nanowires via improved impedance matching

    Science.gov (United States)

    Zhang, Labao; Yan, Xiachao; Jia, Xiaoqing; Chen, Jian; Kang, Lin; Wu, Peiheng

    2017-02-01

    The temporary resistance triggered by phase slips will result in the switching of a superconductor nanowire to a permanent normal state, decreasing the switching current. In this letter, we propose an improved impedance matching circuit that releases the transition triggered by phase slips to the load resistor through the radio frequency (RF) port of a bias tee. The transportation properties with different load resistors indicate that the switching current decreases due to the reflection caused by impedance mismatching, and it is maximized by optimized impedance matching. Compared to the same setup without the impedance matching circuit, the switching current was increased from 8.0 μA to 12.2 μA in a niobium nitride nanowire after releasing the temporary transition triggered by phase slips. The leakage process with impedance matching outputs a voltage pulse, which enables the user to directly register the transition triggered by phase slips. The technique for maximizing the switching current has a potential practical application in superconductor devices, and the technique for counting phase slips may be applied to explore the behavior of phase slips.

  20. The efficacy of the self-adjusting file and ProTaper for removal of calcium hydroxide from root canals

    Directory of Open Access Journals (Sweden)

    Gisele Faria

    2013-07-01

    Full Text Available OBJECTIVE: The goal of this study was to evaluate the efficacy of the Self-Adjusting File (SAF and ProTaper for removing calcium hydroxide [Ca(OH2] from root canals. MATERIAL AND METHODS: Thirty-six human mandibular incisors were instrumented with the ProTaper system up to instrument F2 and filled with a Ca(OH2-based dressing. After 7 days, specimens were distributed in two groups (n=15 according to the method of Ca(OH2 removal. Group I (SAF was irrigated with 5 mL of NaOCl and SAF was used for 30 seconds under constant irrigation with 5 mL of NaOCl using the Vatea irrigation device, followed by irrigation with 3 mL of EDTA and 5 mL of NaOCl. Group II (ProTaper was irrigated with 5 mL of NaOCl, the F2 instrument was used for 30 seconds, followed by irrigation with 5 mL of NaOCl, 3 mL of EDTA, and 5 mL of NaOCl. In 3 teeth Ca(OH2 was not removed (positive control and in 3 teeth canals were not filled with Ca(OH2 (negative control. Teeth were sectioned and prepared for the scanning electron microscopy. The amounts of residual Ca(OH2 were evaluated in the middle and apical thirds using a 5-score system. RESULTS: None of the techniques completely removed the Ca(OH2 dressing. No difference was observed between SAF and ProTaper in removing Ca(OH2 in the middle (P=0.11 and the apical (P=0.23 thirds. CONCLUSION: The SAF system showed similar efficacy to rotary instrument for removal of Ca(OH2 from mandibular incisor root canals.

  1. Acoustic Ground-Impedance Meter

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  2. Small Signal Loudspeaker Impedance Emulator

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold

    2014-01-01

    Specifying the performance of audio amplifiers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterized by the mechanical resonance between the mass of the diaphragm and the compliance of its suspension which vary...

  3. Recursive impedance inversion of ground-penetrating radar data in stochastic media

    Science.gov (United States)

    Zeng, Zhao-Fa; Chen, Xiong; Li, Jing; Chen, Ling-Na; Lu, Qi; Liu, Feng-Shan

    2015-12-01

    The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.

  4. Impedance-based monitoring for tissue engineering applications

    DEFF Research Database (Denmark)

    Canali, Chiara; Heiskanen, Arto; Martinsen, Ø.G.

    2015-01-01

    Impedance is a promising technique for sensing the overall process of tissue engineering. Different electrode configurations can be used to characterize the scaffold that supports cell organization in terms of hydrogel polymerization and degree of porosity, monitoring cell loading, cell prolifera...

  5. Analysis of Surface Characteristics of ProTaper Universal and ProTaper Next Instruments by Scanning Electron Microscopy.

    Science.gov (United States)

    Bennett, Jeffery; Chung, Kwok-Hung; Fong, Hanson; Johnson, James; Paranjpe, Avina

    2017-07-01

    Many new rotary files systems have been introduced, however, limited research has been conducted related to the surface irregularities of these files and if these have any effects on the files themselves. Hence, the aim of the present study was to analyze surface irregularities of the ProTaper® Universal rotary files (PTU) and the ProTaper Next™ rotary files (PTN) before and after instrumentation in curved canals. The main objective was to investigate the nature of these irregularities and how they might influence the use and fracture of rotary files during root-canal treatments. The files were examined pre-operatively using a stereomicroscope and scanning electron microscopy(SEM) to analyze surface imperfections and the presence of particles. Mesial roots of forty extracted mandibular molars were selected. Each instrument was used to prepare one of the mesial canals. The files were then rinsed with alcohol, and autoclaved and analyzed again. Of the 80 files used in this study, five files fractured, five files unwound and seven files were curved or bent and they all belonged to the PTU group. Irregularities and debris could be visualized with the SEM on both unused PTU and PTN files. Most of the debris was found associated with deeper milling grooves and defects on the surface of the metal. Surface analysis of the files that were used and sterilized were performed and the SEM images demonstrated organic debris, metal flash, and crack formation and initiation of fractures for both file types. All files showed machining grooves, metal flash, debris, and defects on cutting edges. These irregularities appear to be critical in the accumulation of debris and initiation of fatigue and crack propagation within the NiTi alloy. The accumulation of debris could be a concern due to the potential exchange of organic debris between patients. Key words:ProTaper® Universal, ProTaper Next™, surface characteristics, SEM.

  6. Low-cost digital impedance meter for the detection of micro-organisms.

    Science.gov (United States)

    Felice, C J; Clavin, O E; Spinelli, J C; Valentinuzzi, M E; Gallo, B V

    1988-10-01

    The digital impedance meter is a microprocessor-based instrument able to detect, quantify and identify micro-organisms. The equipment makes use of the bipolar technique of measuring the impedance modulus of six cells containing inoculated culture broth. It performs temperature compensation automatically. Growth curves are stored in memory as time course events and can be displayed on any suitable device.

  7. Insertion Loss Estimation of EMI Filters in Unmatched Input/Output Impedance System

    Directory of Open Access Journals (Sweden)

    J. Drinovsky

    2011-04-01

    Full Text Available One of the problems in the design of powerline EMI filters is the uncertainty and ambiguity of their source/load impedances which results in breach of expected filter parameters in a real installation. The paper presents a simple technique for prediction of insertion loss limit values of EMI filters working in arbitrary unmatched mains line impedance systems.

  8. Concept for E.coli detection using interdigitated microelectrode impedance sensor.

    Science.gov (United States)

    Settu, Kalpana; Liu, Jen-Tsai; Chen, Ching-Jung; Tsai, Jang-Zern; Chang, Shwu Jen

    2013-01-01

    This paper presents the concept to detect Escherichia coli O157:H7 based on electrochemical impedance spectroscopy at interdigitated microelectrode. Interdigitated microelectrode structures was designed and fabricated, with glass as substrate material and gold electrodes. The performance of the sensors was studied by measuring the capacitance in air and impedance spectra in DI water. The feasibility of the fabricated sensor for detecting different concentrations of Escherichia coli in water was demonstrated. Electrochemical impedance spectroscopy (EIS) was employed as the detection technique. The impedance based response significant change for different E.coli concentrations in the frequency range between 1 kHz to 100 kHz.

  9. An Electrochemical Impedance Spectroscopy Study on a Lithium Sulfur Pouch Cell

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef;

    2016-01-01

    The impedance behavior of a 3.4 Ah pouch Lithium-Sulfur cell was extensively characterized using the electrochemical impedance spectroscopy (EIS) technique. EIS measurements were performed at various temperatures and over the entire state-of-charge (SOC) interval without applying a superimposed DC...... current. The obtained results have revealed a high dependency of the pouch cell’s impedance spectrum on the operating conditions. An equivalent electrical circuit was proposed to further analyze the results and to quantify the contributions of different resistances to the total impedance of the Li-S pouch...

  10. Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit

    Science.gov (United States)

    Huang, Jer-Shing; Feichtner, Thorsten; Biagioni, Paolo; Hecht, Bert

    2009-05-01

    An experimentally realizable prototype nanophotonic circuit consisting of a receiving and an emitting nano antenna connected by a two-wire optical transmission line is studied using finite-difference time- and frequency-domain simulations. To optimize the coupling between nanophotonic circuit elements we apply impedance matching concepts in analogy to radio frequency technology. We show that the degree of impedance matching, and in particular the impedance of the transmitting nano antenna, can be inferred from the experimentally accessible standing wave pattern on the transmission line. We demonstrate the possibility of matching the nano antenna impedance to the transmission line characteristic impedance by variations of the antenna length and width realizable by modern microfabrication techniques. The radiation efficiency of the transmitting antenna also depends on its geometry but is independent of the degree of impedance matching. Our systems approach to nanophotonics provides the basis for realizing general nanophotonic circuits and a large variety of derived novel devices.

  11. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer

    Science.gov (United States)

    Wang, Dansheng; Li, Zhi; Zhu, Hongping

    2016-07-01

    In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.

  12. Local resolved electrochemical impedance spectroscopy of PEFC single cells

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, M.; Gulzow, E. [German Aerospace Center, Inst. of Technical Thermodynamics, Stuttgart (Germany)

    2009-07-01

    Experimental data on a spatial resolved level is needed to understand the integral behaviour of fuel cells as well as to validate models describing fuel cell behaviour. This paper described a new tool developed to increase the accuracy of current density measurements. Based on a printed circuit board, the tool integrated local electrochemical impedance spectroscopy techniques in order to determine local membrane resistance, electrochemical reactions, and transport processes. Solutions for locally resolved impedance spectroscopy measurements were presented. It was concluded that the tool will help to provide a more detailed understanding of fuel cell behaviour.

  13. Computationally generated velocity taper for efficiency enhancement in a coupled-cavity traveling-wave tube

    Science.gov (United States)

    Wilson, Jeffrey D.

    1989-01-01

    A computational routine has been created to generate velocity tapers for efficiency enhancement in coupled-cavity TWTs. Programmed into the NASA multidimensional large-signal coupled-cavity TWT computer code, the routine generates the gradually decreasing cavity periods required to maintain a prescribed relationship between the circuit phase velocity and the electron-bunch velocity. Computational results for several computer-generated tapers are compared to those for an existing coupled-cavity TWT with a three-step taper. Guidelines are developed for prescribing the bunch-phase profile to produce a taper for efficiency. The resulting taper provides a calculated RF efficiency 45 percent higher than the step taper at center frequency and at least 37 percent higher over the bandwidth.

  14. Ion-exchanged tapered-waveguide laser in neodymium-doped BK7 glass.

    Science.gov (United States)

    Hettrick, S J; Mackenzie, J I; Harris, R D; Wilkinson, J S; Shepherd, D P; Tropper, A C

    2000-10-01

    We report what is to our knowledge the first operation of a planar dielectric tapered-waveguide laser. The waveguide laser is fabricated by potassium-ion exchange in Nd(3+) -doped BK7 glass and consists of a single-mode channel waveguide of a few micrometers' width followed by a linear taper up to a broad region with a width of ~180microm . A slope efficiency of 42% is found both in the tapers and in standard channel waveguides fabricated upon the same substrate, indicating that the tapers and the channels have similar internal losses; hence the low-loss nature of the tapered beam expansion. The output from either end of the tapered structure is found to be nearly diffraction limited.

  15. Microwave sidebands for laser cooling by direct modulation of a tapered amplifier

    Science.gov (United States)

    Mahnke, J.; Kulas, S.; Geisel, I.; Jöllenbeck, S.; Ertmer, W.; Klempt, C.

    2013-06-01

    Laser cooling of atoms usually necessitates several laser frequencies. Alkaline atoms, for example, are cooled by two lasers with a frequency difference in the gigahertz range. This gap cannot be closed with simple shifting techniques. Here, we present a method of generating sidebands at 6.6 GHz by modulating the current of a tapered amplifier, which is seeded by an unmodulated master laser. The sidebands enable trapping of 1.1 × 109 87Rb atoms in a chip-based magneto-optical trap. Compared to the direct modulation of the master laser, this method allows for an easy implementation, a fast adjustment over a wide frequency range, and the simultaneous extraction of unmodulated light for manipulation and detection. The low power consumption, small size, and applicability for multiple frequencies benefit a wide range of applications reaching from atom-based mobile sensors to the laser cooling of molecules.

  16. All-fibre micro-ring resonator based on tapered microfibre

    Institute of Scientific and Technical Information of China (English)

    Dong Xiao-Wei; Lu Shao-Hua; Feng Su-Chun; Xu Ou; Jian Shui-Sheng

    2008-01-01

    In this paper, bendloss characteristics of an optical fibre are investigated in detail, and the results show that the resonator with a smaller ring radius, wider free spectrum range (FSR), higher fineness (f) and quality-factor (Q) can be achieved by using microfibres. Based on the improved fused taper technique, a high-quality microfibre with 5 μm radius has been fabricated, and an all-fibre micro-ring resonator with a radius of only 500 μm is realized using self-coiling coupling method. The good-resonant characteristic makes the all-fibre device be expected to avoid bendloss and connection loss associated with planar waveguide integration.

  17. Microwave sidebands for laser cooling by direct modulation of a tapered amplifier

    CERN Document Server

    Mahnke, Jan; Geisel, Ilka; Jöllenbeck, Stefan; Ertmer, Wolfgang; Klempt, Carsten

    2013-01-01

    Laser cooling of atoms usually necessitates several laser frequencies. Alkaline atoms, for example, are cooled by two lasers with a frequency difference in the Gigahertz range. This gap cannot be closed with simple shifting techniques. Here, we present a method of generating sidebands at 6.6 GHz by modulating the current of a tapered amplifier which is seeded by an unmodulated master laser. The sidebands enable trapping of 1.1*10^9 Rubidium 87 atoms in a chip-based magneto-optical trap. Compared to the direct modulation of the master laser, this method allows for an easy implementation, a fast adjustment over a wide frequency range and the simultaneous extraction of unmodulated light for manipulation and detection. The low power consumption, small size and applicability for multiple frequencies benefits a wide range of applications, reaching from atom-based mobile sensors to the laser cooling of molecules.

  18. Sub-nanometer tuning of mode-locked pulse by mechanical strain on tapered fiber

    Science.gov (United States)

    Ahmad, Harith; Faruki, Md Jahid; Tiu, Zian Cheak; Thambiratnam, K.

    2017-03-01

    A tunable mode-locked fiber laser based on the non-linear polarization rotation (NPR) technique is proposed and demonstrated. A passively generated mode-locked output is obtained with a repetition rate of about 70 ns and an average output power of 0.7 mW, as well as a laser efficiency of 0.53%. The mode-locked pulses can be tuned over a span of 4.4 nm, from 1560.6 nm to 1556.2, corresponding to a stretching of the tapered fiber from 0 to 100 μm in 10 μm increments. The pulses have an average signal-to-noise ratio of about 41 dB in the frequency domain, indicating a highly stable mode-locked output. The system can repeat and reverse the generation of these pulses, a crucial criterion of many communications and sensing applications.

  19. Microwave sidebands for laser cooling by direct modulation of a tapered amplifier.

    Science.gov (United States)

    Mahnke, J; Kulas, S; Geisel, I; Jöllenbeck, S; Ertmer, W; Klempt, C

    2013-06-01

    Laser cooling of atoms usually necessitates several laser frequencies. Alkaline atoms, for example, are cooled by two lasers with a frequency difference in the gigahertz range. This gap cannot be closed with simple shifting techniques. Here, we present a method of generating sidebands at 6.6 GHz by modulating the current of a tapered amplifier, which is seeded by an unmodulated master laser. The sidebands enable trapping of 1.1 × 10(9) (87)Rb atoms in a chip-based magneto-optical trap. Compared to the direct modulation of the master laser, this method allows for an easy implementation, a fast adjustment over a wide frequency range, and the simultaneous extraction of unmodulated light for manipulation and detection. The low power consumption, small size, and applicability for multiple frequencies benefit a wide range of applications reaching from atom-based mobile sensors to the laser cooling of molecules.

  20. Beam Coupling Impedances of Small Discontinuities

    CERN Document Server

    Kurennoy, S S

    2000-01-01

    A general derivation of the beam coupling impedances produced by small discontinuities on the wall of the vacuum chamber of an accelerator is reviewed. A collection of analytical formulas for the impedances of small obstacles is presented.

  1. Calculation of Taper Rolling Time in Plan View Pattern Control Process

    Institute of Scientific and Technical Information of China (English)

    JIAO Zhi-jie; HU Xian-lei; ZHAO Zhong; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    The forward slip model with adhesion was used to derive the formula of calculating taper rolling time. The relation between the rolling time and the taper length and the relation between the rolling time and the taper thickness can be obtained. The numerical solution for this formula was used on-site. According to the simulation result, the roll gap value should be changed linearly with rolling time.

  2. Adiabatic tapered optical fiber fabrication for exciting whispering gallery modes in microcavities

    Science.gov (United States)

    Chenari, Z.; Latifi, H.; Hashemi, R. S.; Doroudmand, F.

    2014-05-01

    This article demonstrates an investigation and analysis of a tapered fiber fabrication using an etchant droplet method. To achieve precise control on process, a two-step etching method is proposed (using 48% concentration of HF acid and Buffered HF) which results in low-loss adiabatic tapered fiber. A spectrum analysis monitoring in addition to a microscopy system was used to verify the etching progress. Tapers with losses less than 0.4 dB in air and 4.5 dB in water are demonstrated. A biconical fiber taper fabricated using this method was used to excite the WGMs on a microsphere surface in aquatic environment.

  3. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...

  4. Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber

    DEFF Research Database (Denmark)

    Judge, A.C.; Bang, Ole; Eggleton, B.J.

    2009-01-01

    Soliton propagation is modeled in a tapered photonic crystal fiber for various taper profiles with the purpose of optimizing the soliton self-frequency shift (SSFS) in such geometries. An optimal degree of tapering is found to exist for tapers with an axially uniform waist. In the case of axially...... of dispersive waves. In doing so, the increased nonlinearity and dispersion engineering afforded by the reduction of the core size are exploited while circumventing the limitation imposed on the soliton redshift by the associated shortening of the red zero-dispersion wavelength....

  5. Controlling the emission profile of a nanowire with a conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Claudon, J.

    2008-01-01

    The influence of a tapering on nanowire light-emission profiles is studied. We show that, for nanowires with divergent output beams, the introduction of a conical tapering with a small opening angle reduces the beam divergence and increases transmission. This results in a dramatic increase...... in the collection efficiency of the detection optics. For a realistic tapering and a modest NA, the collection efficiency is enhanced by more than a factor of 2. This improvement is ensured by the adiabatic expansion of the guided mode in the tapering....

  6. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  7. A spatial impedance controller for robotic manipulation

    NARCIS (Netherlands)

    Fasse, Ernest D.; Broenink, Jan F.

    1997-01-01

    Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the

  8. Application of plant impedance for diagnosing plant disease

    Science.gov (United States)

    Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin

    2006-10-01

    Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.

  9. Coupling impedances of small discontinuities: Dependence on beam velocity

    Science.gov (United States)

    Kurennoy, Sergey S.

    2006-05-01

    The beam coupling impedances of small discontinuities of an accelerator vacuum chamber have been calculated [e.g., Kurennoy, Gluckstern, and Stupakov, Phys. Rev. E 52, 4354 (1995)PLEEE81063-651X10.1103/PhysRevE.52.4354] for ultrarelativistic beams using the Bethe diffraction theory. Here we extend the results to an arbitrary beam velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along the beam path, cross section. The longitudinal and transverse coupling impedances are derived in terms of series over cross-section eigenfunctions, while the discontinuity shape enters via its polarizabilities. Simple explicit formulas for two important particular cases—circular and rectangular chamber cross sections—are presented. The impedance dependence on the beam velocity exhibits some unusual features: for example, the reactive impedance, which dominates in the ultrarelativistic limit, can vanish at a certain beam velocity, or its magnitude can exceed the ultrarelativistic value many times. In addition, we demonstrate that the same technique, the field expansion into a series of cross-section eigenfunctions, is convenient for calculating the space-charge impedance of uniform beam pipes with arbitrary cross section.

  10. Impedance testing on cochlear implants after electroconvulsive therapy.

    Science.gov (United States)

    McRackan, Theodore R; Rivas, Alejandro; Hedley-Williams, Andrea; Raj, Vidya; Dietrich, Mary S; Clark, Nathaniel K; Labadie, Robert F

    2014-12-01

    Cochlear implants (CI) are neural prostheses that restore hearing to individuals with profound sensorineural hearing loss. The surgically implanted component consists of an electrode array, which is threaded into the cochlea, and an electronic processor, which is buried under the skin behind the ear. The Food and Drug Administration and CI manufacturers contend that electroconvulsive therapy (ECT) is contraindicated in CI recipients owing to risk of damage to the implant and/or the patient. We hypothesized that ECT does no electrical damage to CIs. Ten functional CIs were implanted in 5 fresh cadaveric human heads. Each head then received a consecutive series of 12 unilateral ECT sessions applying maximum full pulse-width energy settings. Electroconvulsive therapy was delivered contralaterally to 5 CIs and ipsilaterally to 5 CIs. Electrical integrity testing (impedance testing) of the electrode array was performed before and after CI insertion, and after the first, third, fifth, seventh, ninth, and 12th ECT sessions. Electroconvulsive therapy was performed by a staff psychiatrist experienced with the technique. Explanted CIs were sent back to the manufacturer for further integrity testing. No electrical damage was identified during impedance testing. Overall, there were statistically significant decreases in impedances (consistent with no electrical damage) when comparing pre-ECT impedance values to those after 12 sessions. There was no statistically significant difference (P > 0.05) in impedance values comparing ipsilateral to contralateral ECT. Manufacturer testing revealed no other electrical damage to the CIs. Electroconvulsive therapy does not seem to cause any detectable electrical injury to CIs.

  11. A systematic uncertainty analysis for liner impedance eduction technology

    Science.gov (United States)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  12. Wideband impedance spectrum analyzer for process automation applications

    Science.gov (United States)

    Doerner, Steffen; Schneider, Thomas; Hauptmann, Peter R.

    2007-10-01

    For decades impedance spectroscopy is used in technical laboratories and research departments to investigate effects or material characteristics that affect the impedance spectrum of the sensor. Establishing this analytical approach for process automation and stand-alone applications will deliver additional and valuable information beside traditional measurement techniques such as the measurement of temperature, flow rate, and conductivity, among others. As yet, most of the current impedance analysis methods are suited for laboratory applications only since they involve stand-alone network analyzers that are slow, expensive, large, or immobile. Furthermore, those systems offer a large range of functionality that is not being used in process control and other fields of application. We developed a sensor interface based on high speed direct digital signal processing offering wideband impedance spectrum analysis with high resolution for frequency adjustment, excellent noise rejection, very high measurement rate, and convenient data exchange to common interfaces. The electronics has been implemented on two small circuit boards and it is well suited for process control applications such as monitoring phase transitions, characterization of fluidal systems, and control of biological processes. The impedance spectrum analyzer can be customized easily for different measurement applications by adapting the appropriate sensor module. It has been tested for industrial applications, e.g., dielectric spectroscopy and high temperature gas analysis.

  13. Application of Vertical Electrodes in Microfluidic Channels for Impedance Analysis

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2016-05-01

    Full Text Available This paper presents a microfluidic device with electroplated vertical electrodes in the side walls for impedance measurement. Based on the proposed device, the impedance of NaCl solutions with different concentrations and polystyrene microspheres with different sizes was measured and analyzed. The electroplating and SU-8-PDMS (SU-8-poly(dimethylsiloxane bonding technologies were firstly integrated for the fabrication of the proposed microfluidic device, resulting in a tightly three-dimensional structure for practical application. The magnitude of impedance of the tested solutions in the frequency range of 1 Hz to 100 kHz was analyzed by the Zennium electrochemical workstation. The results show that the newly designed microfluidic device has potential for impedance analysis with the advantages of ease of fabrication and the integration of 3D electrodes in the side walls. The newly designed impedance sensor can distinguish different concentrations of polystyrene microspheres and may have potential for cell counting in biological areas. By integrating with other techniques such as dielectrophoresis (DEP and biological recognition technology, the proposed device may have potential for the assay to identify foodborne pathogen bacteria.

  14. APHiD: Hierarchical Task Placement to Enable a Tapered Fat Tree Topology for Lower Power and Cost in HPC Networks

    Energy Technology Data Exchange (ETDEWEB)

    Michelogiannakis, George; Ibrahim, Khaled Z.; Shalf, John; Wilke, Jeremiah J.; Knight, Samuel; Kenny, Joseph P.

    2017-05-14

    The power and procurement cost of bandwidth in system-wide networks has forced a steady drop in the byte/flop ratio. This trend of computation becoming faster relative to the network is expected to hold. In this paper, we explore how cost-oriented task placement enables reducing the cost of system-wide networks by enabling high performance even on tapered topologies where more bandwidth is provisioned at lower levels. We describe APHiD, an efficient hierarchical placement algorithm that uses new techniques to improve the quality of heuristic solutions and reduces the demand on high-level, expensive bandwidth in hierarchical topologies. We apply APHiD to a tapered fat-tree, demonstrating that APHiD maintains application scalability even for severely tapered network configurations. Using simulation, we show that for tapered networks APHiD improves performance by more than 50% over random placement and even 15% in some cases over costlier, state-of-the-art placement algorithms.

  15. Impedance-matched Marx generators

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2017-04-01

    Full Text Available We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs. The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with LC time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22-Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19-Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.

  16. Local transverse coupling impedance measurements in a synchrotron light source from turn-by-turn acquisitions

    Science.gov (United States)

    Carlà, Michele; Benedetti, Gabriele; Günzel, Thomas; Iriso, Ubaldo; Martí, Zeus

    2016-12-01

    Transverse beam coupling impedance is a source of beam instabilities that limits the machine performance in circular accelerators. Several beam based techniques have been used to measure the transverse impedance of an accelerator, usually based on the optics distortion produced by the impedance source itself. Beam position monitor turn-by-turn analysis for impedance characterization has been usually employed in large circumference machines, while synchrotron light sources have mainly used slow orbit based techniques. Instead, the work presented in this paper uses for the first time turn-by-turn data at ALBA to advance the measurement technique into the range of the typically small impedance values of modern light sources. We have measured local impedance contributions through the observation of phase advance versus bunch charge using the betatron oscillations excited with a fast dipole kicker. The ALBA beam position monitor system and the precision of the turn-by-turn analysis allowed to characterize the main sources of transverse impedance, in good agreement with the model values, including the impedance of an in-vacuum undulator.

  17. Local transverse coupling impedance measurements in a synchrotron light source from turn-by-turn acquisitions

    Directory of Open Access Journals (Sweden)

    Michele Carlà

    2016-12-01

    Full Text Available Transverse beam coupling impedance is a source of beam instabilities that limits the machine performance in circular accelerators. Several beam based techniques have been used to measure the transverse impedance of an accelerator, usually based on the optics distortion produced by the impedance source itself. Beam position monitor turn-by-turn analysis for impedance characterization has been usually employed in large circumference machines, while synchrotron light sources have mainly used slow orbit based techniques. Instead, the work presented in this paper uses for the first time turn-by-turn data at ALBA to advance the measurement technique into the range of the typically small impedance values of modern light sources. We have measured local impedance contributions through the observation of phase advance versus bunch charge using the betatron oscillations excited with a fast dipole kicker. The ALBA beam position monitor system and the precision of the turn-by-turn analysis allowed to characterize the main sources of transverse impedance, in good agreement with the model values, including the impedance of an in-vacuum undulator.

  18. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Guo, Zheng [Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang, Xing-Jiu [Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Wei, Yan, E-mail: yanwei_wnmc@hotmail.com [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China)

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (R{sub et}) for operating the impedance. A linear relation between the relative R{sub et} and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems. - Highlights: • A tunable gold nanogap device was used as to electrochemical impedance biosensor. • Linear range from 1 pM to 100 nM with LOD of 1 pM for streptavidin detection was obtained. • The nanogap devices exhibit a satisfactory precision, stability, and reproducibility. • The combination of electrochemical impedance technique and nanogap devices was achieved.

  19. Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Weirich, Johannes

    2008-01-01

    A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at X=1364nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed by in...... by increasing the temperature from 25°C to 100°C. The measurements are compared to a simulated spectrum obtained by means of a vectorial Beam Propagation Method model....

  20. Nonlinear effects generation in non-adiabatically tapered fibres

    Science.gov (United States)

    Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier

    2015-12-01

    Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.

  1. Soliton blue-shift in tapered photonic crystal fiber

    CERN Document Server

    Stark, S P; Russell, P St J

    2010-01-01

    We show that solitons undergo a strong blue shift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards shorter wavelength. This accompanied by strong emission of radiation into the UV and IR spectral region. The experimental results are confirmed by numerical simulation.

  2. Compound-taper feedhorn for the DSN 70-meter antennas

    Science.gov (United States)

    Manshadi, F.; Hartop, R.

    1987-08-01

    A novel X-band feedhorn was designed for the Deep Space Network (DSN) 70-meter antennas. The feedhorn is a compound-taper structure consisting of a corrugated flared section and a corrugated straight section. This feedhorn is designed to closely initiate the characteristics of the standard feedhorn, while providing the proper phase center location, without adding any significant loss to the system. The use of the existing feedhorn and the ease of manufacturing the corrugated straight section have resulted in major overall cost savings.

  3. Compound-taper feed horn for NASA 70-m antennas

    Science.gov (United States)

    Manshadi, Farzin; Hartop, Rob

    1988-09-01

    A novel X-band feedhorn was designed for the Deep Space Network (DSN) 70-meter antennas. The feedhorn is a compound-taper structure consisting of a corrugated flared section and a corrugated straight section. This feedhorn is designed to closely imitate the characteristics of the standard feedhorn, while providing the proper phase center location, without adding any significant loss to the system. The use of the existing feedhorn and the ease of manufacturing the corrugated straight section have resulted in major overall cost savings.

  4. X-Ray Propagation in Tapered Planar Waveguide

    Science.gov (United States)

    Dolocan, Andrei; van der Veen, J. Friso

    The present paper focuses on the tapered planar waveguide solution for an initial given wave form. The algorithm is constructed in distributions space such that the calculations can be actually computed by taking some hypothesis regarding the mode series which appear. The whole argument leads to the conclusion that the wave is compressed towards the waveguide in the direction of tilting, leading thereafter to a focusing phenomena. We present two alternative constructions in order to compute the convolution which gives the wave inside the waveguide. The hypothesis are providing results in good approximation with the real evolution of the field within the definition domain.

  5. 机用镍钛器械ProTaper Next和ProTaper Universal在模拟根管内成形的能力%Shaping ability of ProTaper Next and ProTaper Universal Ni-Ti rotary endodontic instruments in simulated root canals

    Institute of Scientific and Technical Information of China (English)

    刘文哲; 陈广盛

    2014-01-01

    背景:目前机用镍钛锉尚无国际统一标准,应用于临床的几种镍钛系统在横截面形态、锥度变化、组成数量、中心钢量及切割刃角度等方面均有独特设计,使其清理成形能力、安全性能、切割效率等方面存在差异。ProTaper Next是在ProTaper Universal基础上的改良及创新,其在组成数量、刃部横截面形态、与根管壁接触点及尖端锥度等方面均进行了改进。  目的:利用树脂模拟根管比较机用镍钛器械ProTaper Next和ProTaper Universal在弯曲根管内的成形能力。方法:使用机用镍钛器械ProTaper Next和ProTaper Universal采用冠向下法预备两组模拟树脂根管,预备过程中记录预备时间和器械变形及分离的发生,预备结束后使用Adobe Photoshop v7.0软件测量根管内外侧壁树脂去除量,并计算器械中心定位力。  结果与结论:两组器械形变方面差异无显著性意义;ProTaper Next预备时间较ProTaper Universal明显缩短(P composition number, central steel volume, and cutting edge angle, so there are some differences in cleanup capability, security, and cutting efficiency. ProTaper Next is developed based on the ProTaper Universal, and its composition number, blade cross-sectional shape, contact point with the root canal wal and the tip tapers are al improved. OBJECTIVE:To compare the shaping ability between ProTaper Next and ProTaper Universal Ni-Ti rotary endodontic instruments by preparing the simulated root canals. METHODS: Two groups of resin blocks were prepared by ProTaper Next and ProTaper Universal respectively. Preparation time and incidence of canal aberration and instruments failure were recorded. After preparation, the images taken before and after preparation were superimposed and analyzed by software Adobe Photoshop v7.0. We measured the amount of resin removed at the inner and outer canal wals. The centering ability was also assessed. RESULTS AND

  6. Algorithmic Error Correction of Impedance Measuring Sensors

    Science.gov (United States)

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  7. Algorithmic Error Correction of Impedance Measuring Sensors

    Directory of Open Access Journals (Sweden)

    Vira Tyrsa

    2009-12-01

    Full Text Available This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance.

  8. Quartz tuning fork based microwave impedance microscopy

    Science.gov (United States)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  9. Local transverse coupling impedance measurements in a synchrotron light source from turn-by-turn acquisitions

    National Research Council Canada - National Science Library

    Carlà, Michele; Benedetti, Gabriele; Günzel, Thomas; Iriso, Ubaldo; Martí, Zeus

    2016-01-01

    .... Beam position monitor turn-by-turn analysis for impedance characterization has been usually employed in large circumference machines, while synchrotron light sources have mainly used slow orbit based techniques...

  10. Using Impedance Measurements to Characterize Surface Modified with Gold Nanoparticles

    Science.gov (United States)

    MacKay, Scott; Abdelrasoul, Gaser N.; Tamura, Marcus; Yan, Zhimin

    2017-01-01

    With the increased practice of preventative healthcare to help reduce costs worldwide, sensor technology improvement is vital to patient care. Point-of-care (POC) diagnostics can reduce time and lower labor in testing, and can effectively avoid transporting costs because of portable designs. Label-free detection allows for greater versatility in the detection of biological molecules. Here, we describe the use of an impedance-based POC biosensor that can detect changes in the surface modification of a micro-fabricated chip using impedance spectroscopy. Gold nanoparticles (GNPs) have been employed to evaluate the sensing ability of our new chip using impedance measurements. Furthermore, we used impedance measurements to monitor surface functionalization progress on the sensor’s interdigitated electrodes (IDEs). Electrodes made from aluminum and gold were employed and the results were analyzed to compare the impact of electrode material. GNPs coated with mercaptoundecanoic acid were also used as a model of biomolecules to greatly enhance chemical affinity to the silicon substrate. The portable sensor can be used as an alternative technology to ELISA (enzyme-linked immunosorbent assays) and polymerase chain reaction (PCR)-based techniques. This system has advantages over PCR and ELISA both in the amount of time required for testing and the ease of use of our sensor. With other techniques, larger, expensive equipment must be utilized in a lab environment, and procedures have to be carried out by trained professionals. The simplicity of our sensor system can lead to an automated and portable sensing system.

  11. Organic electrochemical transistors for cell-based impedance sensing

    Energy Technology Data Exchange (ETDEWEB)

    Rivnay, Jonathan, E-mail: rivnay@emse.fr, E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M., E-mail: rivnay@emse.fr, E-mail: owens@emse.fr [Department of Bioelectronics, Ecole des Mines de St. Etienne, 13541 Gardanne (France); Leleux, Pierre [Department of Bioelectronics, Ecole des Mines de St. Etienne, 13541 Gardanne (France); Microvitae Technologies, Pole d' Activite Y. Morandat, 13120 Gardanne (France)

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  12. Organic electrochemical transistors for cell-based impedance sensing

    Science.gov (United States)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  13. Analysis of guided wave propagation in a tapered composite panel

    Science.gov (United States)

    Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw

    2015-03-01

    Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.

  14. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  15. Flow and acoustic features of a supersonic tapered nozzle

    Science.gov (United States)

    Gutmark, E.; Bowman, H. L.; Schadow, K. C.

    1992-05-01

    The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.

  16. Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors

    Directory of Open Access Journals (Sweden)

    Lanying Zhou

    2011-05-01

    Full Text Available A fiber inline Mach-Zehnder interferometer (MZI consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10 made by stretching. The proposed fabrication method is very low cost, 1/20–1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30–350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3–5 fold by fabricating an inline micro–trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N2 is tested by the MZI sensor coated with MFI–type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.

  17. Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors.

    Science.gov (United States)

    Li, Benye; Jiang, Lan; Wang, Sumei; Zhou, Lanying; Xiao, Hai; Tsai, Hai-Lung

    2011-01-01

    A fiber inline Mach-Zehnder interferometer (MZI) consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10) made by stretching. The proposed fabrication method is very low cost, 1/20-1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30-350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3-5 fold by fabricating an inline micro-trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N(2) is tested by the MZI sensor coated with MFI-type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.

  18. Generation of droplets via oscillations of a tapered capillary tube filled with low-viscosity liquids

    Science.gov (United States)

    Mao, Xinyu; Zhang, Lei; Zhao, Zhenhao; Lin, Feng

    2017-06-01

    Droplet formation via the oscillations of a tapered capillary tube is experimentally and numerically investigated using incompressible, low-viscosity Newtonian liquids. As in many other common methods of droplet generation, this technique features a transient flow that is directed out of a nozzle. However, due to the interactions of the oscillations, the tube, and the fluids, the flow rate upstream of the nozzle cannot be directly obtained. In this study, the motion of the tube is measured under the activation of a specific waveform, and the flow inside the tube and drop formation are further numerically studied using a non-inertial reference system in which the tube is stationary. The mechanism of ejection is quantitatively explained by analyzing the temporal variation in the velocity and pressure distributions inside the tube. The dynamics of drop formation, the drop velocity, and the drop radius are studied as functions of the dimensionless groups that govern the problem, including the Ohnesorge number Oh, the Weber number We, the gravitational Bond number G, and various length scale ratios. The results show that droplets are generated due to the inertia of the liquid and velocity amplification in the tapered section. By influencing the balance between the viscous effect and inertial effect of the liquid along the entire tube, the length scale ratios affect the evolution of the transient flow at the nozzle and eventually influence the drop radius and velocity. For liquids with viscosities close to that of pure water, the critical Reynolds number, at which a drop can be generated, linearly depends on the Z number (the reciprocal of Oh) at the nozzle.

  19. 机用镍钛器械ProTaper Next和ProTaper Universal在模拟根管内成形的能力

    Institute of Scientific and Technical Information of China (English)

    刘文哲; 陈广盛

    2014-01-01

    背景:目前机用镍钛锉尚无国际统一标准,应用于临床的几种镍钛系统在横截面形态、锥度变化、组成数量、中心钢量及切割刃角度等方面均有独特设计,使其清理成形能力、安全性能、切割效率等方面存在差异。ProTaper Next是在ProTaper Universal基础上的改良及创新,其在组成数量、刃部横截面形态、与根管壁接触点及尖端锥度等方面均进行了改进。目的:利用树脂模拟根管比较机用镍钛器械ProTaper Next和ProTaper Universal在弯曲根管内的成形能力。方法:使用机用镍钛器械ProTaper Next和ProTaper Universal采用冠向下法预备两组模拟树脂根管,预备过程中记录预备时间和器械变形及分离的发生,预备结束后使用Adobe Photoshop v7.0软件测量根管内外侧壁树脂去除量,并计算器械中心定位力。结果与结论:两组器械形变方面差异无显著性意义;ProTaper Next预备时间较ProTaper Universal明显缩短(P 〈0.05)。两组根管预备后中下段均有部分偏移。ProTaper Next X2在根管弯曲内侧在大多数测量点切割的树脂量少于ProTaper Universal F2(P 〈0.05)。ProTaper Next在大多数测量点的中心定位能力好于ProTaper Universal(P 〈0.05)。结果证实,两组镍钛器械ProTaper Next和ProTaper Universal均能较好地完成根管预备;在预备根管中下段时,都会造成一定程度上的偏移,但ProTaper Next的中心定位力总体上较ProTaper Universal好。

  20. Comparison of Spreader Penetration during Lateral Compaction of 0.04 and 0.02 Tapered Gutta-Percha Master Cones

    Directory of Open Access Journals (Sweden)

    M. Saatchi

    2006-09-01

    Full Text Available Statement of Problem: It has been established that successful root canal treatment depends on the quality of obturation. Deeper penetration of spreaders can improve the apical seal and the quality of the obturation.Purpose: The aim of this study was to compare the initial penetration depth of spreaders during lateral condensation of 0.04 and 0.02 tapered gutta-percha master cones.Materials and Methods: In this study, sixty two freshly extracted single canal teeth were selected. The crowns were removed and the canals were prepared using the stepback technique. Patency of the apical foramens was maintained. The teeth were divided into 2 experimental groups of 31 teeth each. 0.02 and 0.04 tapered gutta-percha were inserted in the root canals of the first and second groups, respectively. A spreader was then placed next to the master cone and a digital scale was used to measure the force that was applied during spreader placement. An apical force of 1.5kg was employed to place the spreaders. The penetration depth was measured, subtracted from the working length, and recorded. Statistical analysis was performed using t-test.Results: The mean spreader penetration depth, recorded as distance from working length, was 2.16 (1.03 mm when using 0.02 tapered master cones and 3.52 (1.88 mm following insertion of 0.04 tapered master cones. The difference between the two penetration depths was statistically significant (P<0.01.Conclusion: The results of this study showed that the spreader penetration using 0.02 tapered master cones was significantly larger than the 0.04 master cones.

  1. Effectiveness of the ProTaper Next and Reciproc Systems in Removing Root Canal Filling Material with Sonic or Ultrasonic Irrigation: A Micro-computed Tomographic Study.

    Science.gov (United States)

    Martins, Milena Perraro; Duarte, Marco Antonio Hungaro; Cavenago, Bruno Cavalini; Kato, Augusto Shoji; da Silveira Bueno, Carlos Eduardo

    2017-03-01

    The aim of this study was to evaluate the effectiveness of ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland) and Reciproc (VDW, Munich, Germany) systems in removing filling material from oval root canals using sonic or ultrasonic irrigation as additional cleaning methods. Thirty-two human extracted mandibular premolars with oval canals were prepared using the ProTaper Universal system (Dentsply Maillefer) up to instrument F4 (40/.06) and then filled by the single-cone technique using Endofill sealer (Dentsply Maillefer). The teeth were randomly divided into 4 groups (n = 8) according to the instrumentation system and the additional cleaning method as follows: Reciproc 40 with ultrasonic activation, Reciproc 40 with sonic agitation, ProTaper Next (X2, X3, and X4) with ultrasonic activation, and ProTaper Next (X2, X3, and X4) with sonic agitation. All specimens were analyzed using micro-computed tomographic imaging before and after removal of the filling material and also after applying the additional cleaning methods. The data, in mm(3) of remaining filling material, were analyzed by the Kruskal-Wallis, Dunn, and Mann-Whitney tests. None of the retreatment protocols completely removed the filling material from the root canals, and there was no significant difference between the instrumentation systems or between root thirds assessed in terms of the average volume of remaining filling material (P > .05). Likewise, no significant difference was observed between the additional cleaning methods in any of the root canal thirds assessed (P > .05). The ProTaper Next and Reciproc systems were equivalent with respect to effectiveness in removing filling material regardless of the additional cleaning method used. The additional cleaning methods were also equivalent and did not improve the removal of filling material significantly. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Ultra-low loss nano-taper coupler for Silicon-on-Insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler....

  3. Spectral beam combining of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Ostendorf, Ralf;

    2010-01-01

    We demonstrate spectral beam combining of a 980 nm tapered diode laser bar. The combined beam from 12 tapered emitters on the bar yielded an output power of 9.3 W at 30 A of operating current. An M2 value of 5.3 has been achieved along the slow axis. This value is close to that of a free running...

  4. Low insertion loss SOI microring resonator integrated with nano-taper couplers

    DEFF Research Database (Denmark)

    Pu, Minhao; Frandsen, Lars Hagedorn; Ou, Haiyan;

    2009-01-01

    We demonstrate a microring resonator working at TM mode integrated with nano-taper couplers with 3.6dB total insertion loss. The measured insertion loss of the nano-taper coupler was only 1.3dB for TM mode....

  5. Tapering off benzodiazepines in long-term users : an economic evaluation

    NARCIS (Netherlands)

    Oude Voshaar, Richard C; Krabbe, Paul F M; Gorgels, Wim J M J; Adang, Eddy M M; van Balkom, Anton J L M; van de Lisdonk, Eloy H; Zitman, Frans G

    2006-01-01

    BACKGROUND: Discontinuation of benzodiazepine usage has never been evaluated in economic terms. This study aimed to compare the relative costs and outcomes of tapering off long-term benzodiazepine use combined with group cognitive behavioural therapy (TO+CBT), tapering off alone (TOA) and usual care

  6. Tapering off benzodiazepines in long-term users: an economic evaluation.

    NARCIS (Netherlands)

    Oude Voshaar, R.C.; Krabbe, P.F.M.; Gorgels, W.J.M.J.; Adang, E.M.M.; Balkom, A.J.L.M. van; Lisdonk, E.H. van de; Zitman, F.G.

    2006-01-01

    BACKGROUND: Discontinuation of benzodiazepine usage has never been evaluated in economic terms. This study aimed to compare the relative costs and outcomes of tapering off long-term benzodiazepine use combined with group cognitive behavioural therapy (TO+CBT), tapering off alone (TOA) and usual care

  7. Impedance spectroscopy of food mycotoxins

    Science.gov (United States)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  8. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances.

  9. Efficacy of ProTaper Universal Rotary Retreatment system for gutta-percha removal from oval root canals: a micro-computed tomography study.

    Science.gov (United States)

    Ma, Jingzhi; Al-Ashaw, Ahmed Jawad; Shen, Ya; Gao, Yuan; Yang, Yan; Zhang, Chengfei; Haapasalo, Markus

    2012-11-01

    The aim of this study was to use micro-computed tomography to evaluate the amount of remaining root filling material in oval canals filled by using 2 obturation techniques after retreatment with the ProTaper Universal Retreatment with or without solvent. Forty mandibular incisor teeth with oval canals were prepared to the ProTaper Universal F3 and filled with gutta-percha and iRoot SP sealer by using continuous wave of condensation or cold lateral condensation techniques. The root fillings were removed with the ProTaper Universal Retreatment system, and the canals were prepared further with ProTaper F4. The operating time was measured. Preoperative and postoperative micro-computed tomography imaging was used to assess the percentage of volume of residual filling material in the canals. Remaining filling material was observed in all specimens. The mean volume of remaining material was higher in the continuous wave of condensation groups than in the cold lateral condensation groups, especially in the apical portions of the root canals (P removal and root canal refinement than in the solvent groups (P remove all gutta-percha/sealer from the oval canals. More root filling material was left in the root canals filled by using the continuous wave condensation technique than those filled by using the cold lateral condensation technique after retreatment. In the nonsolvent groups, less time was needed to achieve satisfactory gutta-percha removal and root canal refinement than in the solvent groups. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. A Report of Successful Procedural, Clinical, and Angiographic Outcomes with a Tapered Stent of a Patient in Naturally Tapered Coronary Vessel

    Science.gov (United States)

    Kumar, Yerra Shiv

    2017-01-01

    In cases involving stenosis or occlusions in major parts of a long vessel, natural tapering of coronary vessels may create dilemma in deciding the optimal stent size during percutaneous coronary intervention. In this regard, tapered stents have been developed recently. Herein, we present a case of 67-year-old male patient with triple vessel disease including two tandem lesions in naturally tapered Left Anterior Descending (LAD) artery. The patient received a 3.0–2.5x60 mm Sirolimus-eluting BioMime Morph stent (Meril life Sciences, Gujarat, India) in the mid-distal LAD lesion along with conventional stent implantations in other two lesions. The procedure was successful and good coronary flow was obtained after revascularization. The patient remained asymptomatic thereafter. At one year, angiographic follow-up revealed good flow and no restenosis in the LAD vessel. We are of opinion that using tapered stents with decremented diameter may offer the advantages of excellent adaptation to vessel size, vessel tapering, and good apposition in patients with long coronary lesions in tapered vessels.

  11. Journal bearing impedance descriptions for rotordynamic applications

    Science.gov (United States)

    Childs, D.; Moes, H.; Van Leeuwen, H.

    1976-01-01

    The paper deals with the development of analytic descriptions for plain circumferentially-symmetric fluid journal bearings, which are suitable for use in rotor dynamic analysis. The bearing impedance vector is introduced, which defines the bearing reaction force components as a function of the bearing motion. Impedances are derived directly for the Ocvirk (short) and Sommerfeld (long) bearings, and the relationships between the impedance vector and the more familiar mobility vector are developed and used to derive analytic impedance for finite-length bearings. The static correctness of the finite-length cavitating impedance is verified. Analytic stiffness and damping coefficient definitions are derived in terms of an impedance vector for small motion around an equilibrium position and demonstrated for the finite-length cavitating impedance. Nonlinear transient rotordynamic simulations are presented for the short pi and 2-pi impedances and the finite-length cavitating impedance. It is shown that finite-length impedance yields more accurate results for substantially less computer time than the short-bearing numerical-pressure-integration approach.

  12. Hormonal responses to training and its tapering off in competitive swimmers: relationships with performance.

    Science.gov (United States)

    Mujika, I; Chatard, J C; Padilla, S; Guezennec, C Y; Geyssant, A

    1996-01-01

    During a winter training season, the effects of 12 weeks of intense training and 4 weeks of tapering off (taper) on plasma hormone concentrations and competition performance were investigated in a group of highly trained swimmers (n = 8). Blood samples were collected and the swimmers performed their speciality in competition at weeks 10 (mid-season), 22 (pre-taper) and 26 (post-taper). No statistically significant changes were observed in the concentrations of total testosterone (TT), non-sex hormone binding globulin-bound-testosterone (NSBT), cortisol (C), luteinising hormone, thyroid stimulating hormone, triiodothyronine, thyroxine plasma catecholamines, creatine kinase and ammonia during training and taper. Mid-season NSBT: C ratio and the amount of training were statistically related (r = 0.82, P swimmers' performance capacities throughout the training season.

  13. Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements

    Science.gov (United States)

    Ross, Richard W.; Hinton, Yolanda L.

    2008-01-01

    Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.

  14. Asymmetric Draw-Tower Tapers for Supercontinuum Generation and Verification of the Novel Concept of Group-Acceleration Matching

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe; Moselund, P. M.

    2012-01-01

    We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum.......We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum....

  15. Group-Acceleration Matching in Tapered Optical Fibers for Maximising the Power in the Blue-Edge of a Supercontinuum

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Judge, Alex; Thomsen, Carsten L.;

    2011-01-01

    We show that the gradient of a tapered fiber has a major impact on the power actually available in the blueedge of a supercontinuum. We ascribe this to a groupacceleration mismatch induced by the taper.......We show that the gradient of a tapered fiber has a major impact on the power actually available in the blueedge of a supercontinuum. We ascribe this to a groupacceleration mismatch induced by the taper....

  16. Asymmetric Draw-Tower Tapers for Supercontinuum Generation and Verification of the Novel Concept of Group-Acceleration Matching

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe; Moselund, P. M.;

    2012-01-01

    We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum.......We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum....

  17. Spheromak Impedance and Current Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  18. Comparison of the fracture resistance of dental implants with different abutment taper angles.

    Science.gov (United States)

    Wang, Kun; Geng, Jianping; Jones, David; Xu, Wei

    2016-06-01

    To investigate the effects of abutment taper angles on the fracture strength of dental implants with TIS (taper integrated screwed-in) connection. Thirty prototype cylindrical titanium alloy 5.0mm-diameter dental implants with different TIS-connection designs were divided into six groups and tested for their fracture strength, using a universal testing machine. These groups consisted of combinations of 3.5 and 4.0 mm abutment diameter, each with taper angles of 6°, 8° or 10°. 3-Dimensional finite element analysis (FEA) was also used to analyze stress states at implant-abutment connection areas. In general, the mechanical tests found an increasing trend of implant fracture forces as the taper angle enlarged. When the abutment diameter was 3.5 mm, the mean fracture forces for 8° and 10° taper groups were 1638.9 N ± 20.3 and 1577.1 N ± 103.2, respectively, both larger than that for the 6° taper group of 1475.0 N ± 24.4, with the largest increasing rate of 11.1%. Furthermore, the difference between 8° and 6° taper groups was significant, based on Tamhane's multiple comparison test (Pimplants with different abutment taper angles and supported the findings of the static tests. In conclusion, increases of the abutment taper angle could significantly increase implant fracture resistance in most cases established in the study, which is due to the increased implant wall thickness in the connection part resulting from the taper angle enlargement. The increasing effects were notable when a thin implant wall was present to accommodate wide abutments.

  19. Tapered Six-Dimensional Cooling Channel for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Fernow, R.C.

    2011-03-28

    A high-luminosity muon collider requires a reduction of the six-dimensional emittance of the captured muon beam by a factor of {approx} 10{sup 6}. Most of this cooling takes place in a dispersive channel that simultaneously reduces all six phase space dimensions. We describe a tapered 6D cooling channel that should meet the requirements of a muon collider. The parameters of the channel are given and preliminary simulations are shown of the expected performance. A complete scheme for cooling a muon beam sufficiently for use in a muon collider has been previously described. This scheme uses separate 6D ionization cooling channels for the two signs of the particle charge. In each, a channel first reduces the emittance of a train of muon bunches until they can be injected into a bunch-merging system. The single muon bunches, one of each sign, are then sent through a second tapered 6D cooling channel where the transverse emittance is reduced as much as possible and the longitudinal emittance is cooled to a value below that needed for the collider. The beam can then be recombined and sent through a final cooling channel using high-field solenoids that cools the transverse emittance to the required values for the collider while allowing the longitudinal emittance to grow. This paper mainly describes the design of the 6D cooling channel before bunch merging. Cooling efficiency is conveniently measured using a parameter Q, which is defined as the rate of change of 6D emittance divided by the rate of change of the number of muons in the beam. In a given lattice Q starts off small due to losses from initial matching, then rises to a large value (Q {approx} 15 is typical for the channels discussed here), and finally falls as the emittance of the beam approaches its equilibrium value. The idea for the 6D cooling channel described here originated with the RFOFO cooling ring. This design evolved into a helical channel referred to as a 'Guggenheim' in order to avoid

  20. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    Science.gov (United States)

    Duris, Joseph Patrick

    Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used

  1. RF impedance measurements of DC atmospheric micro-discharges

    CERN Document Server

    Overzet, Lawrence J; Mandra, Monali; Goeckner, Matthew; Dufour, Thierry; Dussart, Remi; Lefaucheux, Philippe

    2016-01-01

    The available diagnostics for atmospheric micro-plasmas remain limited and relatively complex to implement; so we present a radio-frequency technique for diagnosing a key parameter here. The technique allows one to estimate the dependencies of the electron density by measuring the RF-impedance of the micro-plasma and analyzing it with an appropriate equivalent circuit. This technique is inexpensive, can be used in real time and gives reasonable results for argon and helium DC micro-plasmas in holes over a wide pressure range. The electron density increases linearly with current in the expected range consistent with normal glow discharge behavior.

  2. Rapid Impedance Spectrum Measurements for Onboard State-of-Health Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; John L. Morrison; Chinh D. Ho

    2012-06-01

    Rapid impedance measurements can provide a useful online tool for improved state-of-health estimation. A validation study has been initiated at the Idaho National Laboratory for a rapid impedance technique known as Harmonic Compensated Synchronous Detection. This technique enables capturing the impedance spectra over a broad frequency range within about ten seconds. Commercially available lithium-ion cells are being calendar-life aged at 50°C with reference performance tests at 30°C every 32.5 days to gauge degradation The cells have completed the first set of reference performance tests and preliminary results are presented. The spectra change as a function of temperature and depth-of-discharge condition, as expected. The data indicate that the rapid impedance measurement technique is a benign measurement tool that can be successfully used to gauge changes in the corresponding pulse resistance.

  3. The Role of Electrochemical Impedance Spectroscopy in the Characterization of Electrodes and Devices for Energy Conversion and Storage

    Directory of Open Access Journals (Sweden)

    Magdić, K.

    2013-03-01

    Full Text Available This article describes the basic principles of the Electrochemical Impedance Spectroscopy, EIS, technique and its application in the characterization of electrode materials and electrochemical devices for energy conversion and storage. The concept of impedance and the necessary steps of impedance spectra analysis are explained. Basic relations for impedance of particular electro- chemical processes occurring in the system(s are derived. Electrical equivalent circuits as impedance analogues for single-cell units of electrochemical (supercapacitors, galvanic cells (batteries and fuel cells, as well as separate impedance components and parameters describing the system(s are presented and discussed. The advantages and problems in application of the EIS technique for evaluation of operating states and possible failures of these electrochemical devices are described.

  4. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  5. 焉耆盆地宝浪油田宝中区块波阻抗反演储层预测%Hydrocarbon reservoir prediction of the Baozhong block, Baolang oil field, Yanqi Basin, Xinjiang using the inversion technique of wave impedance

    Institute of Scientific and Technical Information of China (English)

    隋少强; 孙尚如

    2001-01-01

    The inversion technique of wave impedance has successfully been employed in the prediction of eight reservoir sandstone beds within the Baozhong block, Baolang oil field, Yanqi Basin, Xinjiang. The technique is mainly developed on the basis of well logs, especially the constraints on the well logs. Therefore the results of inversion obtained have higher resolution and reliability. The distribution of sandstone bodies may well be delineated with the aid of this method, and thus the risks on exploration and exploitation may be decreased to the least degree.%笔者采用波阻抗反演技术,对新疆焉耆盆地宝浪油田宝中区块8个小层的砂体厚度进行了横向预测。该方法的关键在于对测井资料的应用,也就是测井资料的约束条件,使得反演结果具有较高分辨率和可靠性。通过预测,认清了该区块砂体从上至下的分布规律,克服了“一孔之见”的缺陷,增强了预见性,减少了风险性,为编制开发方案奠定了基础。

  6. Numerical Calculation of Beam Coupling Impedances in the Frequency Domain using FIT

    CERN Document Server

    Niedermayer, U

    2012-01-01

    The transverse impedance of kicker magnets is considered to be one of the main beam instability sources in the projected SIS-100 at FAIR and also in the SPS at CERN. The longitudinal impedance can contribute to the heat load, which is especially a concern in the cold sections of SIS-100 and LHC. In the high frequency range, commercially available time domain codes like CST Particle Studio serve to calculate the impedance but they are inapplicable at medium and low frequencies which become more important for larger size synchrotrons. We present the ongoing work of developing a Finite Integration Technique (FIT) solver in frequency domain which is based on the Parallel and Extensible Toolkit for Scientific computing (PETSc) framework in C++. Proper beam adapted boundary conditions are important to validate the concept. The code is applied to an inductive insert used to compensate the longitudinal space charge impedance in low energy machines. Another application focuses on the impedance contribution of a ferrit...

  7. Effect of probe location on changes in vaginal electrical impedance during the porcine estrous cycle.

    Science.gov (United States)

    Rezác, Petr; Pöschl, Michael; Krivánek, Ivo

    2003-03-01

    The impedance technique is one of many methods that can be used for noninvasive monitoring of reproductive events occurring in cyclic animals. The influence of the depth of probe insertion on changes in vaginal impedance in sows during the estrous cycle was examined. Sows were checked twice a day for estrus via exposure to a sexually mature boar. The criterion for confirmation of ovulation was an increase in plasma progesterone levels above 4.0 ng/ml 8 and 12 days after the beginning of estrus. The impedance measurements were carried out using a four-terminal method at a distance of 8, 10, 12, 14, 16 and 18 cm from the vulva. In all six locations of the vagina the mean impedance values decreased gradually after weaning (Pfour-terminal method. The study suggests that the causes of impedance fluctuation are not only technical but also include a number of poorly understood biological causes.

  8. EM Simulations in Beam Coupling Impedance Studies: Some Examples of Application

    CERN Document Server

    Zannini, C

    2012-01-01

    In the frame of the SPS upgrade an accurate impedance model is needed in order to predict the instability threshold and if necessary to start a campaign of impedance reduction. Analytical models, 3-D simulations and bench measurements are used to estimate the impedance contribution of the different devices along the machine. Special attention is devoted to the estimation of the impedance contribution of the kicker magnets that are suspected to be the most important impedance source in SPS. In particular a numerical study is carried out to analyze the effect of the serigraphy in the SPS extraction kicker. An important part of the devices simulations are the ferrite model. For this reason a numerical based method to measure the electromagnetic properties of the material has been developed to measure the ferrite properties. A simulation technique, in order to account for external cable is developed. The simulation results were benchmarked with analytical models and observations with beam. A numerical study was a...

  9. Impedance matching and emission properties of nanoantennas in an optical nanocircuit.

    Science.gov (United States)

    Huang, Jer-Shing; Feichtner, Thorsten; Biagioni, Paolo; Hecht, Bert

    2009-05-01

    An experimentally realizable prototype optical nanocircuit consisting of a receiving and an emitting nanoantenna connected by a two-wire optical transmission line is studied using finite-difference time- and frequency-domain simulations. To optimize the coupling between optical nanocircuit elements we apply impedance matching concepts in analogy to radio frequency technology. We show that the degree of impedance matching, and in particular the impedance of the emitting nanoantenna, can be inferred from the experimentally accessible standing wave pattern on the transmission line. We demonstrate the possibility of matching the nanoantenna impedance to the transmission line by variations of the antenna length and width realizable by modern microfabrication techniques. The radiation efficiency of the emitting antenna also depends on its geometry but is independent of the degree of impedance matching. The case study presented here provides the basis for experimental realizations of general optical nanocircuits based on readily available gold nanostructures and a large variety of derived novel devices.

  10. Kicker impedance measurements for the future multiturn extraction of the CERN Proton Synchrotron

    CERN Document Server

    Métral, Elias; Giovannozzi, Massimo; Grudiev, Alexei; Kroyer, Tom; Sermeus, Luc

    2006-01-01

    In the context of the novel multi-turn extraction, where charged particles are trapped into stable islands in transverse phase space, the ejection of five beamlets will be performed by means of a set of three new kickers. Before installing them into the machine, a measurement campaign has been launched to evaluate the impedance of such devices. Two measurement techniques were used to try to disentangle the driving and detuning impedances. The first consists in measuring the longitudinal impedance for different transverse offsets using a single displaced wire. The sum of the transverse driving and detuning impedances is then deduced applying Panofsky- Wenzel theorem. The second uses two wires excited in opposite phase and yields the driving transverse impedance only. Finally, the consequences on the beam dynamics are also analyzed.

  11. Tapered whiskers are required for active tactile sensation

    Science.gov (United States)

    Hires, Samuel Andrew; Pammer, Lorenz; Svoboda, Karel; Golomb, David

    2013-01-01

    Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001 PMID:24252879

  12. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection

    Directory of Open Access Journals (Sweden)

    Dong Luo

    2016-12-01

    Full Text Available In this study, tapered polymer fiber sensors (TPFSs have been employed to detect the vibration of a reinforced concrete beam (RC beam. The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM system in civil engineering.

  13. The avian tectorial membrane: Why is it tapered?

    CERN Document Server

    Iwasa, Kuni H

    2015-01-01

    While the mammalian- and the avian inner ears have well defined tonotopic organizations as well as hair cells specialized for motile and sensing roles, the structural organization of the avian ear is different from its mammalian cochlear counterpart. Presumably this difference stems from the difference in the way motile hair cells function. Short hair cells, whose role is considered analogous to mammalian outer hair cells, presumably depends on their hair bundles, and not motility of their cell body, in providing the motile elements of the cochlear amplifier. This report focuses on the role of the avian tectorial membrane, specifically by addressing the question, "Why is the avian tectorial membrane tapered from the neural to the abneural direction?"

  14. Analysis of the Tem Mode Linearly Tapered Slot Antenna

    Science.gov (United States)

    Janaswamy, R.; Schaubert, D. H.; Pozar, D. M.

    1985-01-01

    The theoretical analysis of the radiation characteristics of the TEM mode Linearly Tapered Slot Antenna (LTSA) is presented. The theory presented is valid for antennas with air dielectric and forms the basis for analysis of the more popular dielectric-supported antennas. The method of analysis involves two steps. In the first step, the aperture distribution in the flared slot is determined. In the second step, the equivalent magnetic current in the slot is treated as radiating in the presence of a conducting half-plane and the far-field components are obtained. Detailed comparison with experiment is made and excellent agreement is obtained. Design curves for the variation of the 3 dB and 10 dB beamwidths as a function of the antenna length, with the flare angle as a parameter, are presented.

  15. Analysis of the transverse electromagnetic mode linearly tapered slot antenna

    Science.gov (United States)

    Janaswamy, R.; Schaubert, D. H.; Pozar, D. M.

    1986-01-01

    A theoretical analysis of the radiation characteristics of the transverse electromagnetic mode linearly tapered slot antenna is presented. The theory presented is valid for antennas with air dielectric and forms the basis for analysis of the more popular dielectric-supported antennas. The method of analysis involves two steps. In the first step, the aperture distribution in the flared slot is determined. In the second step, the equivalent magnetic current in the slot is treated as radiating in the presence of a conducting half-plane, and the far-field components are obtained. Design curves for the variation of the 3-dB and 10-dB beamwidths as a function of the antenna length, with the flare angle as a parameter, are presented.

  16. Cold neutron microprobe for materials analysis using tapered capillary optics

    Science.gov (United States)

    Sharov, V. A.; Xiao, Q.-F.; Ponomarev, I. Yu.; Mildner, D. F. R.; Chen-Mayer, H. H.

    2000-09-01

    A prototype monolithic capillary lens for focusing neutrons produced by thermally drawing straight multicapillary bundles has been characterized with cold neutrons, and gives an intensity gain of a factor of 25 at a focal distance of 8 mm, over the focal spot area of width 87 μm. This is over an order of magnitude smaller in area than for the multifiber capillary lens. The spatial resolution available with the lens has been tested with prompt gamma measurements on slivers of dysprosium. Background problems that can affect the spatial resolution of measurements taken at the focal position of the lens are addressed. The boron glass of the tapered monolithic lens provides good shielding from unfocused neutrons in the vicinity of the lens focus.

  17. Subwavelength focusing of light by a tapered microtube

    CERN Document Server

    Fu, Jian; Fang, Wei

    2010-01-01

    We propose a mechanism for subwavelength focusing at optical frequencies based on the use of a tapered microtube fabricated from a glass capillary tube. Using coherent illumination at 671nm and a near-field scanning optical microscope probe which was mounted on a 3-axis piezo nanopositioning stage, a sequence of 2-D intensity profiles were obtained. Our experimental results reveal the smallest focal spot with a near diffraction-limited full width at half-maximum of ~435nm(0.65{\\lambda})at a distance of ~1.47{\\mu}m (2.2{\\lambda}) from the output endface of microtube. The experimental results are in excellent agreement with our numerical simulation.

  18. Growth strategies to control tapering in Ge nanowires

    Directory of Open Access Journals (Sweden)

    P. Periwal

    2014-04-01

    Full Text Available We report the effect of PH3 on the morphology of Au catalyzed Ge nanowires (NWs. Ge NWs were grown on Si (111 substrate at 400 °C in the presence of PH3, using vapor-liquid-solid method by chemical vapor deposition. We show that high PH3/GeH4 ratio causes passivation at NW surface. At high PH3 concentration phosphorous atoms attach itself on NW surface and form a self-protection coating that prevents conformal growth and leads to taper free nanostructures. However, in case of low PH3 flux the combination of axial and radial growth mechanism occurs resulting in conical structure. We have also investigated axial PH3-intrinsic junctions in Ge NWs. The unusual NW shape is attributed to a combination of catalyzed, uncatalyzed and diffusion induced growth.

  19. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    Science.gov (United States)

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  20. Thin-ribbon tapered coupler for dielectric waveguides

    Science.gov (United States)

    Yeh, C.; Otoshi, T. Y.; Shimabukuro, F. I.

    1994-05-01

    A recent discovery shows that a high-dielectric constant, low-loss, solid material can be made into a ribbon-like waveguide structure to yield an attenuation constant of less than 0.02 dB/m for single-mode guidance of millimeter/submillimeter waves. One of the crucial components that must be invented in order to guarantee the low-loss utilization of this dielectric-waveguide guiding system is the excitation coupler. The traditional tapered-to-a-point coupler for a dielectric rod waveguide fails when the dielectric constant of the dielectric waveguide is large. This article presents a new way to design a low-loss coupler for a high- or low-dielectric constant dielectric waveguide for millimeter or submillimeter waves.

  1. Development and Demonstration of Measurement-Time Efficient Methods for Impedance Spectroscopy of Electrode and Sensor Arrays

    OpenAIRE

    Derek Johnson; Matthew Smith; Kevin R. Cooper

    2008-01-01

    The development of impedance-based array devices is hindered by a lack of robust platforms and methods upon which to evaluate and interrogate sensors. One aspect to be addressed is the development of measurement-time efficient techniques for broadband impedance spectroscopy of large electrode arrays. The objective of this work was to substantially increase the low frequency impedance measurement throughput capability of a large channel count array analyzer by developing true parallel measurem...

  2. Cartesian impedance control of dexterous robot hand

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; LIU Hong; CAI He-gao

    2005-01-01

    Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as mechanical impedance in constrained space. In the position based impedance control strategy, any switching mode in contact transition phase is not needed. The impedance parameters can be adjusted in a certain range according to various tasks. In this paper, the analysis of the finger's kinematics and dynamics is given. Experimental results have shown the effectiveness of this control strategy.

  3. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing.

    Science.gov (United States)

    Lu, Yong; Guo, Zheng; Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei; Huang, Xing-Jiu; Wei, Yan

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems.

  4. Modified sparse regularization for electrical impedance tomography.

    Science.gov (United States)

    Fan, Wenru; Wang, Huaxiang; Xue, Qian; Cui, Ziqiang; Sun, Benyuan; Wang, Qi

    2016-03-01

    Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L1 norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts.

  5. A Two-Dimensional Fem Code for Impedance Calculation in High Frequency Domain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lanfa; /SLAC; Lee, Lie-Quan; /SLAC; Stupakov, Gennady; /SLAC

    2010-08-25

    A new method, using the parabolic equation (PE), for the calculation of both high-frequency impedances of small-angle taper (or collimator) is developed in [1]. One of the most important advantages of the PE approach is that it eliminates the spatial scale of the small wavelength from the problem. As a result, only coarser spatial meshes are needed in calculating the numerical solution of the PE. We developed a new code based on Finite Element Method (FEM) which can handle arbitrary profile of a transition and speed up the calculation by orders of magnitude. As a first step, we completed and benchmarked a two-dimensional code. It can be upgraded to three-dimensional geometry.

  6. NEW BIOTESTING METHOD WITH THE APPLICATION OF MODERN IMPEDANCE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Sibirtsev V.S.

    2015-03-01

    Full Text Available The paper deals with new concepts of biotesting method updating. Modern conductometric technologies and the analysis of microbial «growth curves» are used. The registration occurs in a real time mode for the set of parallel samples. Results are shown for comparison of the proposed impedance biotesting technique with standard cultural determination method for total amount of microorganismes in the tested samples. Results are presented for practical application of the proposed impedance biotesting technique to the analysis as inhibitory action of clorhexidine disinfectant on the vital activity of Escherichia coli, as milk ripening process at the presence of various microorganisms species and protein preparations. The impedance biotesting method, proposed in the present work, provides high level of its own data convergence with the data, being received as a result of application of standard cultural biotesting techniques. Thus, the proposed method has such advantages, as: an opportunity of the detailed information reception about dynamics change of magnitude of population and intensity of test microorganisms metabolism, significant reduction of the culture media amount used, as well as researcher's temporary and labor efforts while the analyses realization, and the growth of analysis objectivity.

  7. Impedance Spectroscopy of Human Blood

    Science.gov (United States)

    Mesa, Francisco; Bernal, José J.; Sosa, Modesto A.; Villagómez, Julio C.; Palomares, Pascual

    2004-09-01

    The blood is one of the corporal fluids more used with analytical purposes. When the blood is extracted, immediately it is affected by agents that act on it, producing transformations in its elements. Among the effects of these transformations the hemolysis phenomenon stands out, which consists of the membrane rupture and possible death of the red blood cells. The main purpose of this investigation was the quantification of this phenomenon. A Solartron SI-1260 Impedance Spectrometer was used, which covers a frequency range of work from 1 μHz to 10 MHz, and its accuracy has been tested in the accomplishment of several applications. Measurements were performed on 3 mL human blood samples, from healthy donors. Reactive strips for sugar test of 2 μL, from Bayer, were used as electrodes, which allow gathering a portion of the sample, to be analyzed by the spectrometer. Preliminary results of these measurements are presented.

  8. Lorentz Force Electrical Impedance Tomography

    CERN Document Server

    Grasland-Mongrain, Pol; Chapelon, Jean-Yves; Lafon, Cyril

    2014-01-01

    This article describes a method called Lorentz Force Electrical Impedance Tomography. The electrical conductivity of biological tissues can be measured through their sonication in a magnetic field: the vibration of the tissues inside the field induces an electrical current by Lorentz force. This current, detected by electrodes placed around the sample, is proportional to the ultrasonic pressure, to the strength of the magnetic field and to the electrical conductivity gradient along the acoustic axis. By focusing at different places inside the sample, a map of the electrical conductivity gradient can be established. In this study experiments were conducted on a gelatin phantom and on a beef sample, successively placed in a 300 mT magnetic field and sonicated with an ultrasonic transducer focused at 21 cm emitting 500 kHz bursts. Although all interfaces are not visible, in this exploratory study a good correlation is observed between the electrical conductivity image and the ultrasonic image. This method offers...

  9. Electrical impedance tomography of electrolysis.

    Science.gov (United States)

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

  10. Electrical impedance tomography of electrolysis.

    Directory of Open Access Journals (Sweden)

    Arie Meir

    Full Text Available The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT. The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

  11. Input impedance matching of acoustic transducers operating at off-resonant frequencies.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2010-12-01

    The input impedance matching technique of acoustic transducers at off-resonant frequencies is reported. It uses an inherent impedance property of transducers and thus does not need an external electric matching circuit or extra acoustic matching section. The input electrical equivalent circuit includes a radiation component and a dielectric capacitor. The radiation component consists of a radiation resistance and a radiation reactance. The total reactance is the sum of the radiation reactance and the dielectric capacitive reactance. This reactance becomes zero at two frequencies where the impedance is real. The transducer size can be properly chosen so that the impedance at one of the zero-crossing frequencies is close to 50 Ω, the output impedance of signal generators. At this off-resonant operating frequency, the reflection coefficient of the transducer is minimized without using any matching circuit. Other than the size, the impedance can also be fine tuned by adjusting the thickness of material that bonds the transducer plate to the substrates. The acoustic impedance of the substrate and that of the bonding material can also be used as design elements in the transducer structure to achieve better transducer matching. Lead titanate piezoelectric plates were bonded on Lucite, liquid crystal polymer (LCP), and bismuth (Bi) substrates to produce various transducer structures. Their input impedance was simulated using a transducer model and compared with measured values to illustrate the matching principle.

  12. Evaluation of apical deviation in root canals instrumented with K3 and ProTaper systems Avaliação do desvio apical em canais instrumentados pelos sistemas K3 e ProTaper

    Directory of Open Access Journals (Sweden)

    Mariana Diniz Bisi dos Santos

    2006-12-01

    Full Text Available OBJECTIVES: this study evaluated the apical deviation of curved root canals instrumented with K3 and ProTaper systems. MATERIAL AND METHODS: twenty root canals of human maxillary and mandibular first molars were employed, which were divided into 2 groups: group A (10 teeth was instrumented with the K3 system, and group B (10 teeth with the ProTaper system. Evaluation of deviation was performed by double radiographic exposure. Radiographs were achieved before and after instrumentation, with 0.3-second, thus allowing superimposition of images. Three-dimensional computerized tomograph was performed in 3 specimens in each group, as an additional means to evaluate the apical deviation. RESULTS: were evaluated by the parametric test Student-Newman-Keuls at 5%, which did not reveal significance between groups concerning the apical deviation. The results of computerized tomograph images demonstrated that the larger deviation of the root canal occurred at the distolingual area for both systems. CONCLUSIONS: both techniques produced a mild apical deviation. Computerized microtomography was shown to be accurate for experimental endodontics studies.OBJETIVOS: avaliar o desvio apical de canais radiculares curvos instrumentados pelos sistemas K3 e ProTaper. MATERIAIS E MÉTODOS: foram utilizados 20 canais radiculares de primeiros molares superiores e inferiores humanos, os quais foram divididos em 2 grupos, o grupo A (10 dentes foi instrumentado pelo sistema K3 e o grupo B (10 dentes com o sistema ProTaper, a forma de avaliação do desvio foi a dupla exposição radiográfica. As tomadas radiográficas foram feitas antes e após a instrumentação, com um tempo de 0,3 segundos em cada exposição, ocorrendo assim, sobreposição das imagens. Em 3 espécimes, de cada grupo, foi realizada a tomografia computadorizada tridimensional, como forma adicional de avaliar o desvio apical . Os resultados obtidos foram avaliados pelo teste paramétrico Student

  13. Comparison of vertical forces during root canal filling with three different obturation techniques.

    Science.gov (United States)

    Katalinić, Ivan; Baraba, Anja; Glavicić, Snjezana; Segović, Sanja; Anić, Ivica; Miletić, Ivana

    2013-09-01

    The aim of this study was to examine and compare vertical forces exerted during root canal obturation with the cold lateral condensation technique, Thermafil technique and ProTaper guttapercha. Fourty-five single-rooted permanent teeth were used in the study. All specimens were instrumented using the ProTaper rotating technique and were randomly divided into three experimental groups (n = 15 per group). In the first group, root canals were obturated using the cold lateral condensation technique. In the second group, the Thermafil technique was used to obturate root canals. In the last group, a ProTaper gutta-percha of the same taper as the instrumented root canals was used for root canal obturation. Vertical forces were measured using the device developed for simulation of endodontic treatment. The results showed a statistically significant difference (p = 0.0001) for vertical forces when cold lateral condensation obturation technique was used in comparison to other techniques. No statistically significant difference was found for vertical forces during obturation with Thermafil and ProTaper gutta-percha (p = 0.16). The cold lateral condensation technique exerted higher vertical forces in comparison to the Thermafil and ProTaper obturation techniques.

  14. In vitro evaluation of ProTaper Niti rotary instruments during root canal retreatment%ProTaper镍钛系统去除根管内充填物的效果评价

    Institute of Scientific and Technical Information of China (English)

    童方丽; 谢成婕; 刘溦; 曾雄群

    2012-01-01

    The canals of 30 extracted mandibular second premolars were prepared with ProTaper Universal rotary instruments to F3 and then divided into two groups. The canals in group A were filled lateral compaction technique and those in group B by warm vertical compaction technique respectively. In each group,ProTaper Universal rotary retreatment systems( Dl ,D2,D3) and ProTaper Universal systems (F2,F3, F4 ) were used to remove the filling material. The percentage of residual filling material was measured and the operating time was recorded. In group B, the percentage of residual filling material was significantly lower than that in group A, but the operating time was longer. The residual filling material in both group mainly lied in apical third of root canal. The cleaning efficacy of ProTaper Ni-ti instruments in group B was higher than in group A.%比较ProTaper镍钛系统去除不同充填方法的根管内充填物的效果.A组:侧方加压法充填;B组:热牙胶垂直加压法充填.2组均采用ProTaper Universal再治疗器械(D1,D2,D3)+ProTaper Universal(F2,F3,F4)去牙胶及根管再预备,测量镍钛器械操作时间及根管内充填物的残留量.B组根管壁充填物残留量低于A组,镍钛器械所需时间高于A组.2组中牙胶残留物均主要位于根尖三分之一区域.ProTaper镍钛系统去除垂直加压法充填的牙胶管壁清洁度较高.

  15. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance.

    Science.gov (United States)

    Guermandi, Marco; Cardu, Roberto; Franchi Scarselli, Eleonora; Guerrieri, Roberto

    2015-02-01

    The IC presented integrates the front-end for EEG and Electrical Impedance Tomography (EIT) acquisition on the electrode, together with electrode-skin contact impedance monitoring and EIT current generation, so as to improve signal quality and integration of the two techniques for brain imaging applications. The electrode size is less than 2 cm(2) and only 4 wires connect the electrode to the back-end. The readout circuit is based on a Differential Difference Amplifier and performs single-ended amplification and frequency division multiplexing of the three signals that are sent to the back-end on a single wire which also provides power supply. Since the system's CMRR is a function of each electrode's gain accuracy, an analysis is performed on how this is influenced by mismatches in passive and active components. The circuit is fabricated in 0.35 μm CMOS process and occupies 4 mm(2), the readout circuit consumes 360 μW, the input referred noise for bipolar EEG signal acquisition is 0.56 μVRMS between 0.5 and 100 Hz and almost halves if only EEG signal is acquired.

  16. Apical transportation of manual NiTi instruments and a hybrid technique in severely curved simulated canals

    OpenAIRE

    Aurenaila Nascimento Gonçalves; Matheus Franco da Frota; Emilio Carlos Sponchiado Júnior; Fredson Marcio Acris de Carvalho; Lucas da Fonseca Roberti Garcia; André Augusto Franco Marques

    2015-01-01

    Aim: To evaluate the apical transportation induced by two instrumentation techniques in severely curved simulated canals. Materials and Methods: Forty simulated canals were divided into two groups (n = 20), according to the following instrumentation techniques: ProTaper Universal Manual System and a hybrid technique. The simulated canals in the ProTaper group were prepared following the technique recommended by the manufacturer: SX files in the cervical third of the root canal and S1, S2,...

  17. Reduction Rate of Dragload and Downdrag of Piles by Taper Angles

    Institute of Scientific and Technical Information of China (English)

    孔纲强; 周立朵; 彭怀风; 顾红伟

    2016-01-01

    Taper angle is one of the effective methods to reduce the dragload and downdrag of piles under the surcharge load. The model tests on the tapered pile and uniform cross-section pile embedded in sand were carried out under the surcharge load. The values of dragload and downdrag of piles versus the surcharge loads were meas-ured. Based on the concentric cylinder shearing theory, a simplified theoretical model for calculating the dragload and downdrag of tapered piles with small taper angles under the surcharge load was proposed considering the angle effect. The correctness of the developed theoretical model was validated through comparing with the model test results obtained in this study and previous literature. Then the parametric studies of the taper angle, surcharge, strength and modulus of soil were discussed. It is shown that the tapered pile with the taper angle of 3° can reduce approximately 65% of the maximum dragload value and 30% of the downdrag value compared with a uniform cross-section pile. The value of downdrag can be decreased by approximately 50% compared with a uniform cross-section pile in the same average pile diameter.

  18. Simple method for manufacturing and optical characterization of tapered optical fibres

    Science.gov (United States)

    Zakrzewski, A.; Pięta, A.; Patela, S.

    2016-12-01

    Photonic devices often use light delivered by a single-mode telecommunication fibre. However, as the diameter of the core of the optical fibre is of 10 microns, and the transverse dimensions of the photonic waveguides are usually micrometer or less, there is an issue of incompatibility. The problem may be solved by application of tapered optical fibres. For efficient light coupling, the taper should be prepared so as to create a beam of long focal length and small spot diameter in the focus. The article describes the design, fabrication and characterization of tapered optical fibres prepared with a fibre-optic fusion splicer. We modelled the tapers with FDTD method, for estimation of the influence of the tapered length and angle on the spot diameter and the focal length of an outgoing beam. We fabricated tapers from a standard single mode fibre by the Ericsson 995 PMfi- bre-optic fusion splicer. We planned the splicing technology so as to get the needed features of the beam. We planned a multistep fusion process, with optimized fusion current and fusion time. The experimental measurements of best tapered optical fibres were carried out by the knife-edge method.

  19. Salivary hormones, IgA, and performance during intense training and tapering in judo athletes.

    Science.gov (United States)

    Papacosta, Elena; Gleeson, Michael; Nassis, George P

    2013-09-01

    The aims of this study were to identify the time course of change of salivary testosterone (sT), cortisol (sC), and IgA (SIgA); mood state; and performance capacity during a 2-week taper in judo athletes and to examine the diurnal variation in these salivary markers. Eleven male judo athletes completed 5 weeks of training: 1 week of normal training (NORM), 2 weeks of intensified training (INT), and 2 weeks of exponential tapering (TAPER). Once per week subjects completed vertical and horizontal countermovement jump tests, a grip strength test, a Special Judo Fitness Test, a multistage aerobic fitness test, a 3 × 300-m run test, and anthropometric measurement. Subjects also completed questionnaires to assess mood state and muscle soreness. Two daily saliva samples (at 0700 and 1900) were collected at the end of each week during NORM and INT and every day during TAPER. Increased morning sT, decreased evening sC, lower muscle soreness, and enhanced mood state (p TAPER. A significant 7.0% improvement in 3 × 300-m performance time, a 6.9% improvement in the vertical jump (p TAPER. The higher values of salivary variables were observed in the morning. This study indicates that salivary hormones display diurnal variation. Furthermore, changes in hormonal responses, mood state, and muscle soreness precede enhancements in performance and mucosal immunity, suggesting that judo athletes taper for at least a week before competition.

  20. Tapered joint design for power transmission of MW-grade wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jong Hun; Bae, Jun Woo; Oh, Han Yong [Dept. of Mechatronics, Jungwon University, Geosan (Korea, Republic of); Kwon, Yong Chul [Kyeongnam Technopark, Changwon (Korea, Republic of)

    2015-11-15

    This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.