WorldWideScience

Sample records for impairs cell growth

  1. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    Science.gov (United States)

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  2. A SMYD3 Small-Molecule Inhibitor Impairing Cancer Cell Growth

    Science.gov (United States)

    Barbosa, Armenio Jorge; Di Virgilio, Valeria; Fittipaldi, Raffaella; Fabini, Edoardo; Bertucci, Carlo; Varchi, Greta; Moyer, Mary Pat; Caretti, Giuseppina; Del Rio, Alberto; Simone, Cristiano

    2016-01-01

    SMYD3 is a histone lysine methyltransferase that plays an important role in transcriptional activation as a member of an RNA polymerase complex, and its oncogenic role has been described in different cancer types. We studied the expression and activity of SMYD3 in a preclinical model of colorectal cancer (CRC) and found that it is strongly upregulated throughout tumorigenesis both at the mRNA and protein level. Our results also showed that RNAi-mediated SMYD3 ablation impairs CRC cell proliferation indicating that SMYD3 is required for proper cancer cell growth. These data, together with the importance of lysine methyltransferases as a target for drug discovery, prompted us to carry out a virtual screening to identify new SMYD3 inhibitors by testing several candidate small molecules. Here we report that one of these compounds (BCI-121) induces a significant reduction in SMYD3 activity both in vitro and in CRC cells, as suggested by the analysis of global H3K4me2/3 and H4K5me levels. Of note, the extent of cell growth inhibition by BCI-121 was similar to that observed upon SMYD3 genetic ablation. Most of the results described above were obtained in CRC; however, when we extended our observations to tumor cell lines of different origin, we found that SMYD3 inhibitors are also effective in other cancer types, such as lung, pancreatic, prostate, and ovarian. These results represent the proof of principle that SMYD3 is a druggable target and suggest that new compounds capable of inhibiting its activity may prove useful as novel therapeutic agents in cancer treatment. PMID:25728514

  3. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer

  4. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth

    Science.gov (United States)

    Hutzler, Marina; Abel, Simone; Alter, Christina; Stockmann, Christian; Kliche, Stefanie; Albert, Juliane; Sparwasser, Tim; Sakaguchi, Shimon; Westendorf, Astrid M.; Schadendorf, Dirk; Buer, Jan; Helfrich, Iris

    2012-01-01

    Infiltration of Foxp3+ regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3+ T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell–specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3+ T reg cells were significantly reduced accompanied by enhanced activation of CD8+ T cells within tumors of T cell–specific Nrp-1–deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1+ T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3+ T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression. PMID:23045606

  5. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells.

    Science.gov (United States)

    Chou, Guan-Ling; Peng, Shu-Fen; Liao, Ching-Lung; Ho, Heng-Chien; Lu, Kung-Wen; Lien, Jin-Cherng; Fan, Ming-Jen; La, Kuang-Chi; Chung, Jing-Gung

    2018-02-01

    Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca 2+ production, levels of ΔΨ m and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G 2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca 2+ productions, decreases the levels of ΔΨ m , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G 2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells. © 2017 Wiley Periodicals, Inc.

  6. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction.

    Science.gov (United States)

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia; Torrente, Yvan; Cetin, Irene

    2016-04-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. ©AlphaMed Press.

  7. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells.

    Science.gov (United States)

    Ambrosio, Maria Rosaria; D'Esposito, Vittoria; Costa, Valerio; Liguoro, Domenico; Collina, Francesca; Cantile, Monica; Prevete, Nella; Passaro, Carmela; Mosca, Giusy; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Ciccodicola, Alfredo; Formisano, Pietro

    2017-12-12

    Type 2 diabetes and obesity are negative prognostic factors in patients with breast cancer (BC). We found that sensitivity to tamoxifen was reduced by 2-fold by 25 mM glucose (High Glucose; HG) compared to 5.5 mM glucose (Low Glucose; LG) in MCF7 BC cells. Shifting from HG to LG ameliorated MCF7 cell responsiveness to tamoxifen. RNA-Sequencing of MCF7 BC cells revealed that cell cycle-related genes were mainly affected by glucose. Connective Tissue Growth Factor (CTGF) was identified as a glucose-induced modulator of cell sensitivity to tamoxifen. Co-culturing MCF7 cells with human adipocytes exposed to HG, enhanced CTGF mRNA levels and reduced tamoxifen responsiveness of BC cells. Inhibition of adipocyte-released IL8 reverted these effects. Interestingly, CTGF immuno-detection in bioptic specimens from women with estrogen receptor positive (ER + ) BC correlated with hormone therapy resistance, distant metastases, reduced overall and disease-free survival. Thus, glucose affects tamoxifen responsiveness directly modulating CTGF in BC cells, and indirectly promoting IL8 release by adipocytes.

  8. Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae.

    Science.gov (United States)

    Aon, Juan C; Sun, Jianxin; Leighton, Julie M; Appelbaum, Edward R

    2016-08-15

    In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10 L) to industrial scale (10,000 L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway. The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000 L compared to the 10 L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10 L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale. The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up.

  9. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Ushiro, Yuuki; Sekiyama, Kazunari; Yamaguchi, Osamu; Yoshioka, Kazuki; Mutoh, Ken-Ichiro; Hasegawa, Yoshihisa

    2006-01-01

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  10. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis

    International Nuclear Information System (INIS)

    Di Fulvio, Mauricio; Henkels, Karen M.; Gomez-Cambronero, Julian

    2007-01-01

    Grb2 is an SH2-SH3 protein adaptor responsible for linking growth factor receptors with intracellular signaling cascades. To study the role of Grb2 in cell growth, we have generated a new COS7 cell line (COS7 shGrb2 ), based on RNAi technology, as null mutations in mammalian Grb2 genes are lethal in early development. This novel cell line continuously expresses a short hairpin RNA that targets endogenous Grb2. Stable COS7 shGrb2 cells had the shGrb2 integrated into the genomic DNA and carried on SiL construct (made refractory to the shRNA-mediated interference), but not with an SH2-deficient mutant (R86K). Thus, a viable knock-down and rescue protocol has demonstrated that Grb2 is crucial for cell proliferation

  11. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Carreira

    2014-10-01

    Full Text Available Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO, which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSC, and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (LPS plus IFN-γ, using a culture system of subventricular zone (SVZ-derived NSC mixed with microglia cells obtained from wild-type mice (iNOS+/+ or from iNOS knockout mice (iNOS-/-. We found an impairment of NSC cell proliferation in iNOS+/+ mixed cultures, which was not observed in iNOS-/- mixed cultures. Furthermore, the increased release of NO by activated iNOS+/+ microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite, or using the peroxynitrite degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS+/+ mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 µM, for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the

  12. Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival

    International Nuclear Information System (INIS)

    Mi Jing; Zhang Xiuwu; Giangrande, Paloma H.; McNamara, James O.; Nimjee, Shahid M.; Sarraf-Yazdi, Shiva; Sullenger, Bruce A.; Clary, Bryan M.

    2005-01-01

    αvβ3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. αvβ3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of αvβ3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-αvβ3 that binds recombinant αvβ3 integrin, for its ability to bind endogenous αvβ3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-αvβ3 binds αvβ3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-αvβ3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-αvβ3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-αvβ3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation

  13. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2

    Directory of Open Access Journals (Sweden)

    Alberto eScoma

    2016-05-01

    Full Text Available Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea contaminated environments is negligible. Recent laboratory evidences highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs. In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain A. borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively, under atmospheric or increased HP (0.1 and 10MPa. Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1MPa in hyperosmosis-acclimated cells and at 10MPa under isosmotic conditions, supporting the hypothesis that ectoine synthesis may be primarily triggered by HP rather than osmotic stress. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-day incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in

  14. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus.

    Science.gov (United States)

    Deschamps, Thibaut; Kalamvoki, Maria

    2017-05-01

    Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets

  15. Impaired degradation followed by enhanced recycling of epidermal growth factor receptor caused by hypo-phosphorylation of tyrosine 1045 in RBE cells

    International Nuclear Information System (INIS)

    Gui, Anping; Kobayashi, Akira; Motoyama, Hiroaki; Kitazawa, Masato; Takeoka, Michiko; Miyagawa, Shinichi

    2012-01-01

    Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor (EGFR)-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their effect remains limited. The present study sought to understand the molecular genetic characteristics of cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling. We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell surface EGFR expression by fluorescence-activated cell sorting (FACS), and EGFR ubiquitination and protein binding by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines. Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling. Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045), were also observed in RBE cells. In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of cholangiocarcinoma

  16. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth

    NARCIS (Netherlands)

    Bull, C.; Boltje, T.J.; Wassink, M.; Graaf, A.M.A. de; Delft, F.L. van; Brok, M.H.M.G.M. den; Adema, G.J.

    2013-01-01

    Cancer cells decorate their surface with a dense layer of sialylated glycans by upregulating the expression of sialyltransferases and other glycogenes. Although sialic acids play a vital role in many biologic processes, hypersialylation in particular has been shown to contribute to cancer cell

  17. Persistent G. lamblia impairs growth in a murine malnutrition model.

    Science.gov (United States)

    Bartelt, Luther A; Roche, James; Kolling, Glynis; Bolick, David; Noronha, Francisco; Naylor, Caitlin; Hoffman, Paul; Warren, Cirle; Singer, Steven; Guerrant, Richard

    2013-06-01

    Giardia lamblia infections are nearly universal among children in low-income countries and are syndemic with the triumvirate of malnutrition, diarrhea, and developmental growth delays. Amidst the morass of early childhood enteropathogen exposures in these populations, G. lamblia–specific associations with persistent diarrhea, cognitive deficits, stunting, and nutrient deficiencies have demonstrated conflicting results, placing endemic pediatric giardiasis in a state of equipoise. Many infections in endemic settings appear to be asymptomatic/ subclinical, further contributing to uncertainty regarding a causal link between G. lamblia infection and developmental delay. We used G. lamblia H3 cyst infection in a weaned mouse model of malnutrition to demonstrate that persistent giardiasis leads to epithelial cell apoptosis and crypt hyperplasia. Infection was associated with a Th2-biased inflammatory response and impaired growth. Malnutrition accentuated the severity of these growth decrements. Faltering malnourished mice exhibited impaired compensatory responses following infection and demonstrated an absence of crypt hyperplasia and subsequently blunted villus architecture. Concomitantly, severe malnutrition prevented increases in B220+ cells in the lamina propria as well as mucosal Il4 and Il5 mRNA in response to infection. These findings add insight into the potential role of G. lamblia as a "stunting" pathogen and suggest that, similarly, malnourished children may be at increased risk of G. lamblia– potentiated growth decrements.

  18. Toward epigenetic and gene regulation models of specific language impairment: looking for links among growth, genes, and impairments

    Directory of Open Access Journals (Sweden)

    Rice Mabel L

    2012-11-01

    Full Text Available Abstract Children with specific language impairment (SLI are thought to have an inherited form of language impairment that spares other developmental domains. SLI shows strong heritability and recent linkage and association studies have replicated results for candidate genes. Regulatory regions of the genes may be involved. Behavioral growth models of language development of children with SLI reveal that the onset of language is delayed, and the growth trajectories of children with SLI parallel those of younger children without SLI. The rate of language acquisition decelerates in the pre-adolescent period, resulting in immature language levels for the children with SLI that persist into adolescence and beyond. Recent genetic and epigenetic discoveries and models relevant to language impairment are reviewed. T cell regulation of onset, acceleration, and deceleration signaling are described as potential conceptual parallels to the growth timing elements of language acquisition and impairment. A growth signaling disruption (GSD hypothesis is proposed for SLI, which posits that faulty timing mechanisms at the cellular level, intrinsic to neurocortical functioning essential for language onset and growth regulation, are at the core of the growth outcomes of SLI. The GSD highlights the need to document and account for growth patterns over childhood and suggests needed directions for future investigation.

  19. Growth impairment due to transient hypercortisolism.

    Science.gov (United States)

    Armour, K; Chalew, S; Kowarski, A A

    1986-01-01

    Cushing's syndrome in childhood is generally recognized by classical features such as truncal obesity, striae, easy bruising, moon facies, hypertension and growth retardation. Exceptionally, Cushing's syndrome has been reported to present as growth failure alone. We diagnosed transient hypercortisolism in 6 children who had poor growth as their only presenting abnormality. The 6 children all had integrated concentrations of cortisols (IC-F) (14.1 +/- 1.7 micrograms/dl; mean +/- 1 SD) which exceeded the IC-F in healthy children and adults (5.7 +/- 1.5 micrograms/dl; P less than 0.001). The IC-F of these 6 index cases overlapped the range of IC-F in patients with pathologically proven Cushing's syndrome (20.2 +/- 4.7 micrograms/dl). Four of the 6 patients were treated with human growth hormone for 8 months and showed a marked improvement in their growth rates. Four patients have entered puberty and are growing at normal rates. Three of the 6 children had normal repeat IC-Fs, subsequently, at a time they had normal growth rates. In 1-1/2 to 3 years of follow-up, none of the patients developed any other stigmata of Cushing's syndrome. We conclude that transient hypercortisolism, documented by the IC-F, may cause growth failure without other symptoms of Cushing's syndrome. Growth hormone therapy may improve the growth rate of these children at the time of their poor growth.

  20. NCI, NHLBI/PBMTC First International Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation: Endocrine Challenges--Thyroid Dysfunction, Growth Impairment, Bone Health, & Reproductive Risks

    Science.gov (United States)

    Dvorak, Christopher C.; Gracia, Clarisa R.; Sanders, Jean E.; Cheng, Edward Y.; Baker, K. Scott; Pulsipher, Michael A.; Petryk, Anna

    2011-01-01

    The endocrine system is highly susceptible to damage by high-dose chemotherapy and/or irradiation prior to hematopoietic cell transplantation (HCT) during childhood. The specific endocrine organs most affected by HCT include the thyroid gland, the pituitary, and the gonads. In addition, hormones that support development and stability of the skeletal system are also affected. Insufficiency of thyroid hormone is one of the most common late sequelae of HCT, and occurs more often in young children. Deficiency in the pituitary’s production of growth hormone is a problem of unique concern to the pediatric population. The reproductive risks of HCT depend on the patient’s gender and pubertal status at the time of HCT. Pubertal or gonadal failure frequently occurs, especially in females. Infertility risks for both genders remain high, while methods of fertility preservation are limited in all but post-pubertal males. Bone health post-HCT can be compromised by low bone mineral density as well as avascular necrosis, but the data on both problems in the pediatric HCT population are limited. In this paper, the current state of knowledge, gaps in that knowledge, and recommendations for future research are addressed in detail for each of these systems. PMID:22005649

  1. Cranial irradiation of young rats impairs later learning and growth

    International Nuclear Information System (INIS)

    Overmier, J.B.; Carroll, M.E.; Patten, R.; Krivit, W.; Kim, T.H.

    1979-01-01

    Young rats (26 days) were exposed to ionizing radiation of the head of 0, 1200, 2400 or 3000 rads total in 200 rads/day doses. The subsequent growth of irradiated rats was permanently impaired: such impairment was positively related to amount of irradiation. Beginning in adolescence, rats were trained on a horizontal/vertical visual discrimination in a runway task and although all four groups mastered the discrimination, they differed in their patterns of acquisition. These results indicated long term effects and are associated with a cranial irradiation regimen similar to that given to children suffering acute lymphocytic leukemia (ALL). (author)

  2. Impaired TGF-beta induced growth inhibition contributes to the increased proliferation rate of neural stem cells harboring mutant p53

    DEFF Research Database (Denmark)

    Kumar, Praveen; Naumann, Ulrike; Aigner, Ludwig

    2015-01-01

    Gliomas have been classified according to their histological properties. However, their respective cells of origin are still unknown. Neural progenitor cells (NPC) from the subventricular zone (SVZ) can initiate tumors in murine models of glioma and are likely cells of origin in the human disease...

  3. Impaired growth of denervated muscle contributes to contracture formation following neonatal brachial plexus injury.

    Science.gov (United States)

    Nikolaou, Sia; Peterson, Elizabeth; Kim, Annie; Wylie, Christopher; Cornwall, Roger

    2011-03-02

    The etiology of shoulder and elbow contractures following neonatal brachial plexus injury is incompletely understood. With use of a mouse model, the current study tests the novel hypothesis that reduced growth of denervated muscle contributes to contractures following neonatal brachial plexus injury. Unilateral brachial plexus injuries were created in neonatal mice by supraclavicular C5-C6 nerve root excision. Shoulder and elbow range of motion was measured four weeks after injury. Fibrosis, cross-sectional area, and functional length of the biceps, brachialis, and subscapularis muscles were measured over four weeks following injury. Muscle satellite cells were cultured from denervated and control biceps muscles to assess myogenic capability. In a comparison group, shoulder motion and subscapularis length were assessed following surgical excision of external rotator muscles. Shoulder internal rotation and elbow flexion contractures developed on the involved side within four weeks following brachial plexus injury. Excision of the biceps and brachialis muscles relieved the elbow flexion contractures. The biceps muscles were histologically fibrotic, whereas fatty infiltration predominated in the brachialis and rotator cuff muscles. The biceps and brachialis muscles displayed reduced cross-sectional and longitudinal growth compared with the contralateral muscles. The upper subscapularis muscle similarly displayed reduced longitudinal growth, with the subscapularis shortening correlating with internal rotation contracture. However, excision of the external rotators without brachial plexus injury caused no contractures or subscapularis shortening. Myogenically capable satellite cells were present in denervated biceps muscles despite impaired muscle growth in vivo. Injury of the upper trunk of the brachial plexus leads to impaired growth of the biceps and brachialis muscles, which are responsible for elbow flexion contractures, and impaired growth of the subscapularis

  4. Ammonium-induced impairment of axonal growth is prevented through glial creatine.

    OpenAIRE

    Braissant, O.; Henry, H.; Villard, A.M.; Zurich, M.G.; Loup, M.; Eilers, B.; Parlascino, G.; Matter, E.; Boulat, O.; Honegger, P.; Bachmann, C.

    2002-01-01

    Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cot...

  5. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    Science.gov (United States)

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Growth impairment after TBI of leukemia survivors children: a model- based investigation.

    Science.gov (United States)

    Galletto, Chiara; Gliozzi, Antonio; Nucera, Daniele; Bertorello, Nicoletta; Biasin, Eleonora; Corrias, Andrea; Chiabotto, Patrizia; Fagioli, Franca; Guiot, Caterina

    2014-10-13

    Children receiving Total Body Irradiation (TBI) in preparation for Hematopoietic Stem Cell Transplantation (HSCT) are at risk for Growth Hormone Deficiency (GHD), which sometimes severely compromises their Final Height (FH). To better represent the impact of such therapies on growth we apply a mathematical model, which accounts both for the gompertzian-like growth trend and the hormone-related 'spurts', and evaluate how the parameter values estimated on the children undergoing TBI differ from those of the matched normal population. 25 patients long-term childhood lymphoblastic and myeloid acute leukaemia survivors followed at Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital (Turin, Italy) were retrospectively analysed for assessing the influence of TBI on their longitudinal growth and for validating a new method to estimate the GH therapy effects. Six were treated with GH therapy after a GHD diagnosis. We show that when TBI was performed before puberty overall growth and pubertal duration were significantly impaired, but such growth limitations were completely reverted in the small sample (6 over 25) of children who underwent GH replacement therapies. Since in principle the model could account for any additional growth 'spurt' induced by therapy, it may become a useful 'simulation' tool for paediatricians for comparing the predicted therapy effectiveness depending on its timing and dosage.

  7. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  8. Fetal head circumference growth in children with specific language impairment.

    Science.gov (United States)

    Whitehouse, Andrew J O; Zubrick, Stephen R; Blair, Eve; Newnham, John P; Hickey, Martha

    2012-01-01

    To characterise fetal brain growth in children with specific language impairment (SLI). A nested case-control study. Perth, Western Australia. Thirty children meeting criteria for SLI at age 10 years were individually matched with a typically developing comparison child on sex, non-verbal ability, fetal gestational age, maternal age at conception, smoking and alcohol intake during pregnancy. Occipitofrontal head circumference (HC) was measured using ultrasonography at approximately 18 weeks gestation. Femur length provided a measure of fetal length. Occipitofrontal HC was measured at birth and at the 1-year postnatal follow-up using a precise paper tape measure, while crown-heel length acted as an index of body length at both time points. Raw data were transformed to z-scores using reference norms. The SLI group had a significantly smaller mean HC than the typically developing comparison children at birth, but there was no group difference at 18 weeks gestation or at the 1-year postnatal follow-up. Individual analyses found that 12 SLI children had an HC z-score less than -1 at birth, with three of these cases meeting criteria for microcephaly. There was no group difference in the indices of overall body size at any time point. Children with SLI are more likely to have a small HC at birth but not at 18 weeks gestation or infancy, suggesting growth asynchrony in brain development during the second half of pregnancy.

  9. Impaired Cerebellar Maturation, Growth Restriction, and Circulating Insulin-Like Growth Factor 1 in Preterm Rabbit Pups

    Science.gov (United States)

    Sveinsdóttir, Kristbjörg; Länsberg, John-Kalle; Sveinsdóttir, Snjólaug; Garwicz, Martin; Ohlsson, Lennart; Hellström, Ann; Smith, Lois; Gram, Magnus; Ley, David

    2018-01-01

    Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population. PMID:28972955

  10. Why is coronary collateral growth impaired in type II diabetes and the metabolic syndrome?

    Science.gov (United States)

    Rocic, Petra

    2012-01-01

    Type II diabetes and the metabolic syndrome are strong predictors of severity of occlusive coronary disease and poorer outcomes of coronary revascularization therapies. Coronary collateral growth can provide an alternative or accessory pathway of revascularization. However, collateral growth is impaired in type II diabetes and the metabolic syndrome. Although many factors necessary for collateral growth are known and many interventions have shown promising results in animal studies, not a single attempt to induce coronary collateral growth in human clinical trials has led to satisfactory results. Accordingly, the first part of this review outlines the known deleterious effects of diabetes and the metabolic syndrome on factors necessary for collateral growth, including pro-angiogenic growth factors, endothelial function, the redox state of the coronary circulation, intracellular signaling, leukocytes and bone marrow-derived progenitors cells. The second section highlights the gaps in our current knowledge of how these factors interact with the radically altered environment of the coronary circulation in diabetes and the metabolic syndrome. The interplay between these pathologies and inadequately explored areas related to the temporal regulation of collateral remodeling and the roles of the extracellular matrix, vascular cell phenotype and pro-inflammatory cytokines are emphasized with implications to development of efficient therapies. PMID:22342811

  11. Intrauterine Growth Restriction Impairs Small Intestinal Mucosal Immunity in Neonatal Piglets

    Science.gov (United States)

    Dong, Li; Zhong, Xiang; Ahmad, Hussain; Li, Wei; Wang, Yuanxiao; Zhang, Lili

    2014-01-01

    Intrauterine growth restriction (IUGR) is a very common problem in both piglet and human neonate populations. We hypothesized that IUGR neonates have impaired intestinal mucosal immunity from birth. Using neonatal piglets as IUGR models, immune organ weights, the weight and length of the small intestine (SI), intestinal morphology, intraepithelial immune cell numbers, levels of cytokines and immunoglobulins, and the relative gene expression of cytokines in the SI were investigated. IUGR neonatal piglets were observed to have lower absolute immune organ weight and SI length, decreased relative weights of the thymus, spleen, mesenteric lymph node, and thinner but longer SIs. Damaged and jagged villi, shorter microvilli, presence of autophagosomes, swelled mitochondria, and decreased villus surface areas were also found in the SIs of IUGR neonatal piglets. We also found a smaller number of epithelial goblet cells and lymphocytes in the SIs of IUGR neonates. In addition, we detected reduced levels of the cytokines TNF-α and IFN-γ and decreased gene expression of cytokines in IUGR neonates. In conclusion, IUGR was shown to impair the mucosal immunity of the SI in neonatal piglets, and the ileum was the major site of impairment. PMID:24710659

  12. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction.

    Science.gov (United States)

    Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Schwartzman, Michal Laniado; Rocic, Petra

    2017-03-01

    Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO ·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS. NEW & NOTEWORTHY

  13. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation.

    Directory of Open Access Journals (Sweden)

    Kim Cheng

    Full Text Available Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS. HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.

  14. Mental disorders, functional impairment, and nerve growth factor

    Directory of Open Access Journals (Sweden)

    Salles FHM

    2016-12-01

    Full Text Available Fanny Helena Martins Salles,1 Pedro San Martin Soares,1 Carolina David Wiener,1 Thaise Campos Mondin,1 Paula Moraes da Silva,1 Karen Jansen,1–3 Luciano Dias de Mattos Souza,1 Ricardo Azevedo da Silva,1 Jean Pierre Oses1–3 1Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; 2Translational Psychiatry Program, 3Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth Medical School, Houston, TX, USA Abstract: Nerve growth factor (NGF is an important member of the neurotrophin family and its alteration has been associated with psychiatric disorders. Functionality consists of the activities that an individual can perform, as well as their social participation, which is an important factor in analyzing the carrier living conditions of subjects with psychiatric suffering. Several studies have evaluated functionality in bipolar disorder; however, no studies have evaluated the functionality in other mental disorders. There are also few studies investigating the association between functionality and the biological bases of mental disorders. This study aimed to evaluate the serum NGF levels in psychiatric patients and to verify a possible association between the serum neurotrophic levels and functionality. This was a cross-sectional study with a convenient sample obtained from the Public Mental Health Service from the south of Brazil. The final sample was composed of 286 patients enrolled from July 2013 to October 2014. Data was collected using a sociodemographic questionnaire, and the diagnosis was confirmed using the Mini International Neuropsychiatric Interview (M.I.N.I and a Functioning Assessment Short Test. The serum NGF levels were determined using the enzyme-linked immunosorbent assay method. Statistical analyses were performed using IBM SPSS Statistic

  15. Coal fly ash impairs airway antimicrobial peptides and increases bacterial growth.

    Science.gov (United States)

    Borcherding, Jennifer A; Chen, Haihan; Caraballo, Juan C; Baltrusaitis, Jonas; Pezzulo, Alejandro A; Zabner, Joseph; Grassian, Vicki H; Comellas, Alejandro P

    2013-01-01

    Air pollution is a risk factor for respiratory infections, and one of its main components is particulate matter (PM), which is comprised of a number of particles that contain iron, such as coal fly ash (CFA). Since free iron concentrations are extremely low in airway surface liquid (ASL), we hypothesize that CFA impairs antimicrobial peptides (AMP) function and can be a source of iron to bacteria. We tested this hypothesis in vivo by instilling mice with Pseudomonas aeruginosa (PA01) and CFA and determine the percentage of bacterial clearance. In addition, we tested bacterial clearance in cell culture by exposing primary human airway epithelial cells to PA01 and CFA and determining the AMP activity and bacterial growth in vitro. We report that CFA is a bioavailable source of iron for bacteria. We show that CFA interferes with bacterial clearance in vivo and in primary human airway epithelial cultures. Also, we demonstrate that CFA inhibits AMP activity in vitro, which we propose as a mechanism of our cell culture and in vivo results. Furthermore, PA01 uses CFA as an iron source with a direct correlation between CFA iron dissolution and bacterial growth. CFA concentrations used are very relevant to human daily exposures, thus posing a potential public health risk for susceptible subjects. Although CFA provides a source of bioavailable iron for bacteria, not all CFA particles have the same biological effects, and their propensity for iron dissolution is an important factor. CFA impairs lung innate immune mechanisms of bacterial clearance, specifically AMP activity. We expect that identifying the PM mechanisms of respiratory infections will translate into public health policies aimed at controlling, not only concentration of PM exposure, but physicochemical characteristics that will potentially cause respiratory infections in susceptible individuals and populations.

  16. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance.

    Directory of Open Access Journals (Sweden)

    Birgitte Holst

    Full Text Available Secretory vesicles in endocrine cells store hormones such as growth hormone (GH and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs domain protein PICK1 (protein interacting with C kinase 1 as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of

  17. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  18. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M.

    2014-01-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  19. Constitutive stimulatory G protein activity in limb mesenchyme impairs bone growth.

    Science.gov (United States)

    Karaca, Anara; Malladi, Vijayram Reddy; Zhu, Yan; Tafaj, Olta; Paltrinieri, Elena; Wu, Joy Y; He, Qing; Bastepe, Murat

    2018-05-01

    GNAS mutations leading to constitutively active stimulatory G protein alpha-subunit (Gsα) cause different tumors, fibrous dysplasia of bone, and McCune-Albright syndrome, which are typically not associated with short stature. Enhanced signaling of the parathyroid hormone/parathyroid hormone-related peptide receptor, which couples to multiple G proteins including Gsα, leads to short bones with delayed endochondral ossification. It has remained unknown whether constitutive Gsα activity also impairs bone growth. Here we generated mice expressing a constitutively active Gsα mutant (Gsα-R201H) conditionally upon Cre recombinase (cGsα R201H mice). Gsα-R201H was expressed in cultured bone marrow stromal cells from cGsα R201H mice upon adenoviral-Cre transduction. When crossed with mice in which Cre is expressed in a tamoxifen-regulatable fashion (CAGGCre-ER™), tamoxifen injection resulted in mosaic expression of the transgene in double mutant offspring. We then crossed the cGsα R201H mice with Prx1-Cre mice, in which Cre is expressed in early limb-bud mesenchyme. The double mutant offspring displayed short limbs at birth, with narrow hypertrophic chondrocyte zones in growth plates and delayed formation of secondary ossification center. Consistent with enhanced Gsα signaling, bone marrow stromal cells from these mice demonstrated increased levels of c-fos mRNA. Our findings indicate that constitutive Gsα activity during limb development disrupts endochondral ossification and bone growth. Given that Gsα haploinsufficiency also leads to short bones, as in patients with Albright's hereditary osteodystrophy, these results suggest that a tight control of Gsα activity is essential for normal growth plate physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Does Growth Impairment Underlie the Adverse Effects of Dexamethasone on Development of Noradrenergic Systems?

    Science.gov (United States)

    Slotkin, Theodore A; Ko, Ashley; Seidler, Frederic J

    2018-06-20

    Glucocorticoids are given in preterm labor to prevent respiratory distress but these agents evoke neurobehavioral deficits in association with reduced brain region volumes. To determine whether the neurodevelopmental effects are distinct from growth impairment, we gave developing rats dexamethasone at doses below or within the therapeutic range (0.05, 0.2 or 0.8 mg/kg) at different stages: gestational days (GD) 17-19, postnatal days (PN) 1-3 or PN7-9. In adolescence and adulthood, we assessed the impact on noradrenergic systems in multiple brain regions, comparing the effects to those on somatic growth or on brain region growth. Somatic growth was reduced with exposure in all three stages, with greater sensitivity for the postnatal regimens; brain region growth was impaired to a lesser extent. Norepinephrine content and concentration were reduced depending on the treatment regimen, with a rank order of deficits of PN7-9 > PN1-3 > GD17-19. However, brain growth impairment did not parallel reduced norepinephrine content in magnitude, dose threshold, sex or regional selectivity, or temporal pattern, and even when corrected for reduced brain region weights (norepinephrine per g tissue), the dexamethasone-exposed animals showed subnormal values. Regression analysis showed that somatic growth impairment accounted for an insubstantial amount of the reduction in norepinephrine content, and brain growth impairment accounted for only 12%, whereas specific effects on norepinephrine accounted for most of the effect. The adverse effects of dexamethasone on noradrenergic system development are not simply related to impaired somatic or brain region growth, but rather include specific targeting of neurodifferentiation. Copyright © 2018. Published by Elsevier B.V.

  1. Exposure to Aflatoxin and Fumonisin in Children at Risk for Growth Impairment in Rural Tanzania

    Science.gov (United States)

    Background. Stunted growth is a major public health issue for children in Tanzania. We examined dietary exposures to aflatoxin and fumonisin and their potential roles in growth impairment in children under 36 months of age in Haydom, Tanzania. Methods. Plasma samples collected at 24 months of age ...

  2. Growth versus immunity--a redirection of the cell cycle?

    Science.gov (United States)

    Eichmann, Ruth; Schäfer, Patrick

    2015-08-01

    Diseases caused by plant pathogens significantly reduce growth and yield in agricultural crop production. Raising immunity in crops is therefore a major aim in breeding programs. However, efforts to enhance immunity are challenged by the occurrence of growth inhibition triggered by immunity that can be as detrimental as diseases. In this review, we will propose molecular models to explain the inhibitory growth-immunity crosstalk. We will briefly discuss why the resource reallocation model might not represent the driving force for the observed growth-immunity trade-offs. We suggest a model in which immunity redirects and initiates hormone signalling activities that can impair plant growth by antagonising cell cycle regulation and meristem activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Cognitive impairments and mood disturbances in growth hormone deficient men

    NARCIS (Netherlands)

    Deijen, J.B.; de Boer, H.; Blok, G.J.; van der Veen, E.A.

    1996-01-01

    In order to establish whether reported psychological complaints in hypopituitary adults are related to growth hormone (GH) deficiency or other pituitary hormone deficiencies, emotional well-being and cognitive performance were evaluated in 31 men with multiple pituitary hormone deficiencies (MPHD)

  4. Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth.

    Science.gov (United States)

    Tajan, Mylène; Pernin-Grandjean, Julie; Beton, Nicolas; Gennero, Isabelle; Capilla, Florence; Neel, Benjamin G; Araki, Toshiyuki; Valet, Philippe; Tauber, Maithé; Salles, Jean-Pierre; Yart, Armelle; Edouard, Thomas

    2018-04-12

    Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins.In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.

  5. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  6. Impaired Perinatal Growth and Longevity: A Life History Perspective

    Directory of Open Access Journals (Sweden)

    Deborah M. Sloboda

    2009-01-01

    Full Text Available Life history theory proposes that early-life cues induce highly integrated responses in traits associated with energy partitioning, maturation, reproduction, and aging such that the individual phenotype is adaptively more appropriate to the anticipated environment. Thus, maternal and/or neonatally derived nutritional or endocrine cues suggesting a threatening environment may favour early growth and reproduction over investment in tissue reserve and repair capacity. These may directly affect longevity, as well as prioritise insulin resistance and capacity for fat storage, thereby increasing susceptibility to metabolic dysfunction and obesity. These shifts in developmental trajectory are associated with long-term expression changes in specific genes, some of which may be underpinned by epigenetic processes. This normative process of developmental plasticity may prove to be maladaptive in human environments in transition towards low extrinsic mortality and energy-dense nutrition, leading to the development of an inappropriate phenotype with decreased potential for longevity and/or increased susceptibility to metabolic disease.

  7. Impaired kidney growth in low-birth-weight children

    DEFF Research Database (Denmark)

    Schmidt, Ida M; Chellakooty, Marla; Boisen, Kirsten A

    2005-01-01

    BACKGROUND: Low birth weight is an important risk factor for hypertension and unfavorable prognoses of a number of renal diseases. It is also associated with reduced kidney size and nephron number. A differentiation between the effects of low birth weight versus being born premature or small...... for gestational age has, however, not been addressed. METHODS: The influence of weight for gestational age (percentage deviation from expected mean), gestational age, birth weight, and early diet on kidney growth was studied in 178 children born pre- or postmature and/or small or large for gestational age......, comparing them to 717 mature children, birth weight appropriate for gestational age. Kidney size was determined by bilateral ultrasonography measuring length, width and depth, using the equation of an ellipsoid for volume calculation. The examinations were performed at 0, 3, and 18 months of age together...

  8. Effect of single-dose radiation on cell survival and growth hormone secretion by rat anterior pituitary cells

    International Nuclear Information System (INIS)

    Hochberg, Z.; Kuten, A.; Hertz, P.; Tatcher, M.; Kedar, A.; Benderly, A.

    1983-01-01

    Cranial irradiation has been shown to impair growth hormone secretion in children. In this study a cell culture of dispersed rat anterior pituitary cells was exposed to single doses of radiation in the range of 100 to 1500 rad. Survival curves were obtained for the different anterior pituitary cell lines, and growth hormone secretion was measured in the tissue culture medium. Both survival and growth hormone secretion curves showed an initial shoulder in the range of 0 to 300 rad, followed by a decline between 300 to 750 rad. It is concluded that growth hormone secreting acidophilic pituicytes are sensitive to radiation at single doses greater than 300 rad

  9. Impairment of the transition from proliferative stage to prehypertrophic stage in chondrogenic differentiation of human induced pluripotent stem cells harboring the causative mutation of achondroplasia in fibroblast growth factor receptor 3

    Directory of Open Access Journals (Sweden)

    Naohiro Horie

    2017-06-01

    Conclusions: These results suggested that chondrocyte maturation was impaired between the proliferative stage and prehypertrophic stage in the chondrocytes of ACH. The development of chemical compounds which affect the specific maturation stage of chondrocytes is expected to contribute to the ACH treatment, and FGFR3 genome-edited hiPSCs will be a valuable tool in such research studies.

  10. Toward an adverse outcome pathway for impaired growth: Mitochondrial dysfunction impairs growth in early life stages of the fathead minnow (Pimephales promelas).

    Science.gov (United States)

    Bolser, Derek G; Dreier, David A; Li, Erchao; Kroll, Kevin J; Martyniuk, Christopher J; Denslow, Nancy D

    2018-07-01

    Chemical contaminants present in the environment can affect mitochondrial bioenergetics in aquatic organisms and can have substantial effects on individual fitness. As early life stages of fish are particularly vulnerable to environmental contaminants, they are ideal models for examining the relationship between impaired mitochondrial bioenergetics (ATP-dependent respiration, basal oxidative respiration) and apical endpoints such as growth. Here, early life stages of the fathead minnow (Pimephales promelas), an ecologically relevant North American species, were used to investigate the relationship between mitochondrial bioenergetics and growth following perturbation with model mitochondrial toxicants 2,4-dinitrophenol and octylamine. Fathead minnows were exposed to 2,4-dinitrophenol and octylamine at 3 concentrations for 24 h and endpoints related to mitochondrial bioenergetics were measured with the Agilent Seahorse XFe24 Bioanalyzer. In order to link changes in mitochondrial bioenergetics to growth, fathead minnows were exposed to the same chemical contaminants for 7-14 days and growth was measured by measuring total length on a weekly basis. There was a significant correlation between decrease in average length at 14 days and basal respiration (r = 0.997, p = 0.050, n = 3), as well as maximal respiration (r = 0.998, p-value = 0.043, n = 3) for embryos exposed to 2,4 dinitrophenol. For octylamine, ATP production was highly correlated with average length at 7 days (p-value = 0.1) and spare respiratory capacity and average length at 14 days were highly correlated (p-value = 0.1). These data improve understanding of how mitochondrial toxicants impair growth in fish larvae and may be useful for developing an adverse outcome pathway for growth. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  12. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging

    Science.gov (United States)

    Tang, Duozhuang; Tao, Si; Chen, Zhiyang; Koliesnik, Ievgen Oleksandrovich; Calmes, Philip Gerald; Hoerr, Verena; Han, Bing; Gebert, Nadja; Zörnig, Martin; Löffler, Bettina

    2016-01-01

    Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways. PMID:26951333

  13. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  14. Modification of cell growth rate by irradiation

    International Nuclear Information System (INIS)

    Itoh, Hisao; Takemasa, Kazuhiko; Nishiguchi, Iku; Ka, Wei-Jei; Kutsuki, Shoji; Hashimoto, Shozo

    1993-01-01

    The effect of irradiation on the proliferation kinetics of the monolayer cells has been studied. Two human cell lines with different doubling times (HeLa-P and RMUG) and two clones that have the same radiosensitivity but different doubling times (HeLa-R and HeLa-S) were irradiated with a daily dose of 2 Gy for 6 days. The number of the clonogenic cells/dish was calculated by multiplying the number of total cell/dish by the survival fraction. In the rapidly growing cells (HeLa-P, HeLa-R), the number of the clonogenic cells was not decreased by the first two fractionated irradiations, but decreased thereafter at a similar rate as by single-dose fractionation, whereas the clonogenic cell number decreased from the first fractionated irradiation in the slowly growing cells (RMUG, HeLa-S). When the proliferation of clonogenic cell number increased along with a similar growth rates that was seen in all other types of cells. Further, no correlation was seen between the growth rates of cells without irradiation and cells that received irradiation. This latter result suggests that the slow growth rate of non-irradiated cells may not be the predictive factor of the tumor cure and the interruption of radiotherapy may reduce the beneficial effect of this treatment even in slow growing tumors. (author)

  15. Cloned Hemoglobin Genes Enhance Growth Of Cells

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  16. The protective effect of platelet released growth factors and bone augmentation (Bio-Oss®) on ethanol impaired osteoblasts.

    Science.gov (United States)

    Sönmez, Tolga Taha; Bayer, Andreas; Cremer, Tillman; Hock, Jennifer Vanessa Phi; Lethaus, Bernd; Kweider, Nisreen; Wruck, Christoph Jan; Drescher, Wolf; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas; Tohidnezhad, Mersedeh

    2017-11-01

    Chronic alcohol consumption is a known limiting factor for bone healing. One promising strategy to improve bone augmentation techniques with Bio-Oss ® in oral and maxillofacial surgery might be the supportive application of platelet-concentrated biomaterials as platelet-released growth factor (PRGF). To address this matter, we performed an in vitro study investigating the protective effects of PRGF and Bio-Oss ® in ethanol (EtOH) treated osteoblasts. The SAOS-2 osteosarcoma cell line, with and without EtOH pretreatment was used. The cell viability, proliferation and alkali phosphatase activity (ALP) after application of 0%, 5% and 10% PRGF and Bio-Oss ® were assessed. The application of PRGF and Bio-Oss ® in EtOH impaired osteoblasts showed a significant beneficial influence increasing the viability of the osteoblasts in cell culture. The synergistic effect of Bio-Oss ® and 5% PRGF on the proliferation of osteoblasts was also demonstrated. Bio-Oss ® only in combination with PRGF increases the alkaline phosphatase (ALP) activity in EtOH pretreated cells. These results indicate that the simultaneous application of PRGF and Bio-Oss ® inhibits EtOH induced bone healing impairment. Furthermore, in the cells, PRGF induced a protective mechanism which might promote bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Workshop on programming beta cell development, impairment and regeneration

    DEFF Research Database (Denmark)

    Heller, Scott; Nielsen, Jens Høiriis

    2012-01-01

    Helsingør, the city of Hamlet in Denmark, provided the site for the workshop "Programming Beta Cell Development, Impairment and Regeneration" on October 23-26th, 2011. The same location has held two EASD Islet study group meetings, while the previous three workshops were held in Helsinki, Finland...... (2003), El Perello, Spain (2006) and Peebles, Scotland (2009). The meeting drew 190 attendees from 12 different countries. There were 37 main oral presentations, and 68 posters covered virtually all aspects of the pancreas and provided a dynamic snapshot of the most interesting areas of current...

  18. Impairment of myocardial perfusion in children with sickle cell disease

    International Nuclear Information System (INIS)

    Maunoury, C.; Acar, P.; Montalembert, M. de

    2003-01-01

    While brain, bone and spleen strokes are well documented in children with sickle cell disease (SCD), impairment of myocardial perfusion is an unknown complication. Non invasive techniques such as exercise testing and echocardiography have a low sensitivity to detect myocardial ischemia in patients with SCD. We have prospectively assessed myocardial perfusion with Tl-201 SPECT in 23 patients with SCD (10 female, 13 male, mean age 12 ± 5 years). Myocardial SPECT was performed after stress and 3 hours later after reinjection on a single head gamma camera equipped with a LEAP collimator (64 x 64 matrix size format, 30 projections over 180 deg C, 30 seconds per step). Left ventricular ejection fraction (LVEF) was assessed by equilibrium radionuclide angiography at rest on the same day. Myocardial perfusion was impaired in 14/23 patients: 9 reversible defects and 5 fixed defects. The left ventricular cavity was dilated in 14/23 patients. The mean LVEF was 63 ± 9%. There was no relationship between myocardial perfusion and left ventricular dilation or function. The frequent impairment of myocardial perfusion in children with SCD could lead to suggest a treatment with hydroxyurea, an improvement of perfusion can be noted with hydroxyurea. (author)

  19. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    Science.gov (United States)

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  20. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  1. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-01

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  2. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... and activation of the tyrosine kinase JAK2 and the transcription factors STAT1 and 3. The activation of the insulin gene however also requires the distal part of the receptor and activation of calcium uptake and STAT5. In order to identify putative autocrine growth factors or targets for growth factors we have...

  3. Histone h1 depletion impairs embryonic stem cell differentiation.

    Science.gov (United States)

    Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong

    2012-01-01

    Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.

  4. Growth retardation of paramecium and mouse cells by shielding them from background radiation

    International Nuclear Information System (INIS)

    Kawanishi, Masanobu; Okuyama, Katsuyuki; Shiraishi, Kazunori; Matsuda, Yatsuka; Taniguchi, Ryoichi; Shiomi, Nobuyuki; Yonezawa, Morio; Yagi, Takashi

    2012-01-01

    In the 1970s and 1980s, Planel et al. reported that the growth of paramecia was decreased by shielding them from background radiation. In the 1990s, Takizawa et al. found that mouse cells displayed a decreased growth rate under shielded conditions. The purpose of the present study was to confirm that growth is impaired in organisms that have been shielded from background radiation. Radioprotection was produced with a shielding chamber surrounded by a 15 cm thick iron wall and a 10 cm thick paraffin wall that reduced the γ ray and neutron levels in the chamber to 2% and 25% of the background levels, respectively. Although the growth of Paramecium tetraurelia was not impaired by short-term radioprotection (around 10 days), which disagreed with the findings of Planel et al., decreased growth was observed after long-term (40-50 days) radiation shielding. When mouse lymphoma L5178Y cells were incubated inside or outside of the shielding chamber for 7 days, the number of cells present on the 6th and 7th days under the shielding conditions was significantly lower than that present under the non-shielding conditions. These inhibitory effects on cell growth were abrogated by the addition of a 137 Cs γ-ray source disk to the chamber. Furthermore, no growth retardation was observed in XRCC4-deficient mouse M10 cells, which display impaired DNA double strand break repair. (author)

  5. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired

  6. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance

    DEFF Research Database (Denmark)

    Holst, Birgitte; Madsen, Kenneth L; Jansen, Anna M

    2013-01-01

    by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate...

  7. Angiopoietin-2 impairs collateral artery growth associated with the suppression of the infiltration of macrophages in mouse hindlimb ischaemia

    Directory of Open Access Journals (Sweden)

    Xiaoyong Tan

    2016-10-01

    Full Text Available Abstract Background Angiopoietin-2 (Ang-2, a ligand of the Tie-2 receptor, plays an important role in maintaining endothelial cells and in destabilizing blood vessels. Collateral artery growth (arteriogenesis is a key adaptive response to arterial occlusion. It is unknown whether the destabilization of blood vessels by Ang-2 can affect arteriogenesis and modulate mononuclear cell function. This study aimed to investigate the effects of Ang-2 on collateral artery growth. Methods Hindlimb ischaemia model was produced in C57BL/6 mice by femoral artery ligation. Blood flow perfusion was measured using a laser Doppler perfusion imager quantitative RT-PCR analysis was applied to identify the level of angiogenic factors. Results After the induction of hindlimb ischaemia, blood flow recovery was impaired in mice treated with recombinant Ang-2 protein; this was accompanied by a reduction of peri-collateral macrophage infiltration. In addition, quantitative RT-PCR analysis revealed that Ang-2 treatment decreased monocyte chemotactic protein-1 (MCP-1, platelet-derived growth factor-BB (PDGF-BB mRNA levels in ischaemic adductor muscles. Ang-2 can lead to macrophage M1/M2 polarization shift inhibition in the ischaemic muscles. Furthermore, Ang-2 reduced the in vitro inflammatory response in macrophages and vascular cells involved in arteriogenesis. Conclusions Our results demonstrate that Ang-2 is essential for efficient arteriogenesis, which controls macrophage infiltration.

  8. Adolescent inhalant abuse leads to other drug use and impaired growth; implications for diagnosis.

    Science.gov (United States)

    Crossin, Rose; Cairney, Sheree; Lawrence, Andrew J; Duncan, Jhodie R

    2017-02-01

    Abuse of inhalants containing the volatile solvent toluene is a significant public health issue, especially for adolescent and Indigenous communities. Adolescent inhalant abuse can lead to chronic health issues and may initiate a trajectory towards further drug use. Identification of at-risk individuals is difficult and diagnostic tools are limited primarily to measurement of serum toluene. Our objective was to identify the effects of adolescent inhalant abuse on subsequent drug use and growth parameters, and to test the predictive power of growth parameters as a diagnostic measure for inhalant abuse. We retrospectively analysed drug use and growth data from 118 Indigenous males; 86 chronically sniffed petrol as adolescents. Petrol sniffing was the earliest drug used (mean 13 years) and increased the likelihood and earlier use of other drugs. Petrol sniffing significantly impaired height and weight and was associated with meeting 'failure to thrive' criteria; growth diagnostically out-performed serum toluene. Adolescent inhalant abuse increases the risk for subsequent and earlier drug use. It also impairs growth such that individuals meet 'failure to thrive' criteria, representing an improved diagnostic model for inhalant abuse. Implications for Public Health: Improved diagnosis of adolescent inhalant abuse may lead to earlier detection and enhanced health outcomes. © 2016 The Authors.

  9. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment.

    Science.gov (United States)

    Celen, Cemre; Chuang, Jen-Chieh; Luo, Xin; Nijem, Nadine; Walker, Angela K; Chen, Fei; Zhang, Shuyuan; Chung, Andrew S; Nguyen, Liem H; Nassour, Ibrahim; Budhipramono, Albert; Sun, Xuxu; Bok, Levinus A; McEntagart, Meriel; Gevers, Evelien F; Birnbaum, Shari G; Eisch, Amelia J; Powell, Craig M; Ge, Woo-Ping; Santen, Gijs We; Chahrour, Maria; Zhu, Hao

    2017-07-11

    Sequencing studies have implicated haploinsufficiency of ARID1B , a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.

  10. Early growth and development impairments in patients with ganglioside GM3 synthase deficiency.

    Science.gov (United States)

    Wang, H; Wang, A; Wang, D; Bright, A; Sency, V; Zhou, A; Xin, B

    2016-05-01

    Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GSD) causes a complete absence of GM3 and all downstream biosynthetic derivatives. The individuals affected by this disorder manifest severe irritability, intractable seizures and profound intellectual disability. However, we have found that most newborns seem symptom-free for a period of time after birth. In order to further understand the onset of the disease, we investigated the early growth and development of patients with this condition through this study. We compared 37 affected individuals with their normal siblings and revealed that all children with GSD had relatively normal intrauterine growth and development, as their weight, length and head circumference were similar to their normal siblings at birth. However, the disease progresses quickly after birth and causes significant constitutional impairments of growth and development by 6 months of age. Neither breastfeeding nor gastrostomy tube placement made significant difference on growth and development as all groups of patients showed the similar pattern. We conclude that GSD causes significant postnatal growth and developmental impairments and the amount of gangliosides in breast milk and general nutritional intervention do not seem to alter these outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Tsukui, Tohru [Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Imazawa, Yukiko; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  12. Conditional expression of constitutively active estrogen receptor α in chondrocytes impairs longitudinal bone growth in mice

    International Nuclear Information System (INIS)

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-01-01

    Highlights: ► Conditional transgenic mice expressing constitutively active estrogen receptor α (caERα) in chondrocytes were developed. ► Expression of caERα in chondrocytes impaired longitudinal bone growth in mice. ► caERα affects chondrocyte proliferation and differentiation. ► This mouse model is useful for understanding the physiological role of ERαin vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caERα ColII , expressing constitutively active mutant estrogen receptor (ER) α in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caERα ColII mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caERα ColII mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caERα ColII mice. These results suggest that ERα is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  13. Nuclear SREBP-1a causes loss of pancreatic β-cells and impaired insulin secretion

    International Nuclear Information System (INIS)

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru; Ishikawa, Mayumi; Kato, Toyonori; Matsuzaka, Takashi; Nakagawa, Yoshimi; Yahagi, Naoya; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2009-01-01

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic β-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, ΒΕΤΑ2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of β-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous β-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts β-cell mass and function.

  14. Hydrocarbon fermentation: kinetics of microbial cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Goma, G [Institut National des Sciences Appliquees, Toulouse; Ribot, D

    1978-11-01

    Modeling of microbial growth using nonmiscible substrate is studied when kinetics of substrate dissolution is rate limiting. When the substrate concentration is low, the growth rate is described by an analytical relation that can be identified as a Contois relationship. If the substrate concentration is greater than a critical value S/sub crit/, the potentially useful hydrocarbon S* concentration is described by S* = S/sub crit//(1 + S/sub crit//S). A relationship was found between S/sub crit/ and the biomass concentration X. When X increased, S/sub crit/ decreased. The cell growth rate is related to a relation ..mu.. = ..mu../sub m/(A(X/S/sub crit/)(1 + S/sub crit//S) + 1)/sup -1/. This model describes the evolution of the growth rate when exponential or linear growth occurs, which is related to physico-chemical properties and hydrodynamic fermentation conditions. Experimental data to support the model are presented.

  15. The cell biology of bone growth.

    Science.gov (United States)

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from

  16. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  17. Growth hormone replacement normalizes impaired fibrinolysis: new insights into endothelial dysfunction in patients with hypopituitarism and growth hormone deficiency.

    Science.gov (United States)

    Miljic, D; Miljic, P; Doknic, M; Pekic, S; Stojanovic, M; Cvijovic, G; Micic, D; Popovic, V

    2013-12-01

    Cardiovascular morbidity in adult patients with growth hormone deficiency (GHD) and hypopituitarism is increased. Clustering of cardiovascular risk factors leading to endothelial dysfunction and impaired fibrinolysis has also been reported and may account for progression to overt vascular changes in these patients. However, effect of long lasting GH replacement therapy on fibrinolytic capacity in GH deficient patients has not been investigated so far. To investigate fibrinolysis before and after challenge with venous occlusion in GHD patients with hypopituitarism before and during one year of growth hormone replacement. Hospital based, interventional, prospective study. Twenty one patient with GHD and fourteen healthy control subjects matched for age, sex and body mass index (BMI). Anthropometric, metabolic and fibrinolytic parameters were measured at the start and after three, six and twelve months of treatment with human recombinant GH. At baseline GHD patients had significantly impaired fibrinolysis compared to healthy persons. During treatment with GH, significant changes were observed in insulin like growth factor 1(IGF-1) [from baseline 6.9(2.4-13.5) to 22.0(9.0-33.0) nmol/l after one month of treatment; p<0.01] and fibrinolysis. Improvement in fibrinolysis was mostly attributed to improvement of stimulated endothelial tissue plasminogen activator (t-PA) release in response to venous occlusion [from baseline 1.1(0.4-2.6) to 1.9(0.5-8.8) after one year of treatment; p<0.01]. Growth hormone replacement therapy has favorable effects on t-PA release from endothelium and net fibrinolytic capacity in GHD adults, which may contribute to decrease their risk of vascular complications. © 2013.

  18. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  19. Non-compliance with growth hormone treatment in children is common and impairs linear growth.

    Directory of Open Access Journals (Sweden)

    Wayne S Cutfield

    Full Text Available BACKGROUND: GH therapy requires daily injections over many years and compliance can be difficult to sustain. As growth hormone (GH is expensive, non-compliance is likely to lead to suboptimal growth, at considerable cost. Thus, we aimed to assess the compliance rate of children and adolescents with GH treatment in New Zealand. METHODS: This was a national survey of GH compliance, in which all children receiving government-funded GH for a four-month interval were included. Compliance was defined as ≥ 85% adherence (no more than one missed dose a week on average to prescribed treatment. Compliance was determined based on two parameters: either the number of GH vials requested (GHreq by the family or the number of empty GH vials returned (GHret. Data are presented as mean ± SEM. FINDINGS: 177 patients were receiving GH in the study period, aged 12.1 ± 0.6 years. The rate of returned vials, but not number of vials requested, was positively associated with HVSDS (p < 0.05, such that patients with good compliance had significantly greater linear growth over the study period (p<0.05. GHret was therefore used for subsequent analyses. 66% of patients were non-compliant, and this outcome was not affected by sex, age or clinical diagnosis. However, Maori ethnicity was associated with a lower rate of compliance. INTERPRETATION: An objective assessment of compliance such as returned vials is much more reliable than compliance based on parental or patient based information. Non-compliance with GH treatment is common, and associated with reduced linear growth. Non-compliance should be considered in all patients with apparently suboptimal response to GH treatment.

  20. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  1. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  2. Host-Polarized Cell Growth in Animal Symbionts.

    Science.gov (United States)

    Pende, Nika; Wang, Jinglan; Weber, Philipp M; Verheul, Jolanda; Kuru, Erkin; Rittmann, Simon K-M R; Leisch, Nikolaus; VanNieuwenhze, Michael S; Brun, Yves V; den Blaauwen, Tanneke; Bulgheresi, Silvia

    2018-04-02

    To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Science.gov (United States)

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  4. Periconception onset diabetes is associated with embryopathy and fetal growth retardation, reproductive tract hyperglycosylation and impaired immune adaptation to pregnancy.

    Science.gov (United States)

    Brown, Hannah M; Green, Ella S; Tan, Tiffany C Y; Gonzalez, Macarena B; Rumbold, Alice R; Hull, M Louise; Norman, Robert J; Packer, Nicolle H; Robertson, Sarah A; Thompson, Jeremy G

    2018-02-01

    Diabetes has been linked with impaired fertility but the underlying mechanisms are not well defined. Here we use a streptozotocin-induced diabetes mouse model to investigate the cellular and biochemical changes in conceptus and maternal tissues that accompany hyperglycaemia. We report that streptozotocin treatment before conception induces profound intra-cellular protein β-O-glycosylation (O-GlcNAc) in the oviduct and uterine epithelium, prominent in early pregnancy. Diabetic mice have impaired blastocyst development and reduced embryo implantation rates, and delayed mid-gestation growth and development. Peri-conception changes are accompanied by increased expression of pro-inflammatory cytokine Trail, and a trend towards increased Il1a, Tnf and Ifng in the uterus, and changes in local T-cell dynamics that skew the adaptive immune response to pregnancy, resulting in 60% fewer anti-inflammatory regulatory T-cells within the uterus-draining lymph nodes. Activation of the heat shock chaperones, a mechanism for stress deflection, was evident in the reproductive tract. Additionally, we show that the embryo exhibits elevated hyper-O-GlcNAcylation of both cytoplasmic and nuclear proteins, associated with activation of DNA damage (ɣH2AX) pathways. These results advance understanding of the impact of peri-conception diabetes, and provide a foundation for designing interventions to support healthy conception without propagation of disease legacy to offspring.

  5. Biomarkers of Environmental Enteropathy, Inflammation, Stunting, and Impaired Growth in Children in Northeast Brazil.

    Directory of Open Access Journals (Sweden)

    Richard L Guerrant

    Full Text Available Critical to the design and assessment of interventions for enteropathy and its developmental consequences in children living in impoverished conditions are non-invasive biomarkers that can detect intestinal damage and predict its effects on growth and development. We therefore assessed fecal, urinary and systemic biomarkers of enteropathy and growth predictors in 375 6-26 month-old children with varying degrees of malnutrition (stunting or wasting in Northeast Brazil. 301 of these children returned for followup anthropometry after 2-6m. Biomarkers that correlated with stunting included plasma IgA anti-LPS and anti-FliC, zonulin (if >12m old, and intestinal FABP (I-FABP, suggesting prior barrier disruption; and with citrulline, tryptophan and with lower serum amyloid A (SAA (suggesting impaired defenses. In contrast, subsequent growth was predicted in those with higher fecal MPO or A1AT and also by higher L/M, plasma LPS, I-FABP and SAA (showing intestinal barrier disruption and inflammation. Better growth was predicted in girls with higher plasma citrulline and in boys with higher plasma tryptophan. Interactions were also seen with fecal MPO and neopterin in predicting subsequent growth impairment. Biomarkers clustered into markers of 1 functional intestinal barrier disruption and translocation, 2 structural intestinal barrier disruption and inflammation and 3 systemic inflammation. Principle components pathway analyses also showed that L/M with %L, I-FABP and MPO associate with impaired growth, while also (like MPO associating with a systemic inflammation cluster of kynurenine, LBP, sCD14, SAA and K/T. Systemic evidence of LPS translocation associated with stunting, while markers of barrier disruption or repair (A1AT and Reg1 with low zonulin associated with fecal MPO and neopterin. We conclude that key noninvasive biomarkers of intestinal barrier disruption, LPS translocation and of intestinal and systemic inflammation can help elucidate how

  6. Fast growth may impair regeneration capacity in the branching coral Acropora muricata.

    Science.gov (United States)

    Denis, Vianney; Guillaume, Mireille M M; Goutx, Madeleine; de Palmas, Stéphane; Debreuil, Julien; Baker, Andrew C; Boonstra, Roxane K; Bruggemann, J Henrich

    2013-01-01

    Regeneration of artificially induced lesions was monitored in nubbins of the branching coral Acropora muricata at two reef-flat sites representing contrasting environments at Réunion Island (21°07'S, 55°32'E). Growth of these injured nubbins was examined in parallel, and compared to controls. Biochemical compositions of the holobiont and the zooxanthellae density were determined at the onset of the experiment, and the photosynthetic efficiency (Fv/Fm ) of zooxanthellae was monitored during the experiment. Acropora muricata rapidly regenerated small lesions, but regeneration rates significantly differed between sites. At the sheltered site characterized by high temperatures, temperature variations, and irradiance levels, regeneration took 192 days on average. At the exposed site, characterized by steadier temperatures and lower irradiation, nubbins demonstrated fast lesion repair (81 days), slower growth, lower zooxanthellae density, chlorophyll a concentration and lipid content than at the former site. A trade-off between growth and regeneration rates was evident here. High growth rates seem to impair regeneration capacity. We show that environmental conditions conducive to high zooxanthellae densities in corals are related to fast skeletal growth but also to reduced lesion regeneration rates. We hypothesize that a lowered regenerative capacity may be related to limited availability of energetic and cellular resources, consequences of coral holobionts operating at high levels of photosynthesis and associated growth.

  7. Fast growth may impair regeneration capacity in the branching coral Acropora muricata.

    Directory of Open Access Journals (Sweden)

    Vianney Denis

    Full Text Available Regeneration of artificially induced lesions was monitored in nubbins of the branching coral Acropora muricata at two reef-flat sites representing contrasting environments at Réunion Island (21°07'S, 55°32'E. Growth of these injured nubbins was examined in parallel, and compared to controls. Biochemical compositions of the holobiont and the zooxanthellae density were determined at the onset of the experiment, and the photosynthetic efficiency (Fv/Fm of zooxanthellae was monitored during the experiment. Acropora muricata rapidly regenerated small lesions, but regeneration rates significantly differed between sites. At the sheltered site characterized by high temperatures, temperature variations, and irradiance levels, regeneration took 192 days on average. At the exposed site, characterized by steadier temperatures and lower irradiation, nubbins demonstrated fast lesion repair (81 days, slower growth, lower zooxanthellae density, chlorophyll a concentration and lipid content than at the former site. A trade-off between growth and regeneration rates was evident here. High growth rates seem to impair regeneration capacity. We show that environmental conditions conducive to high zooxanthellae densities in corals are related to fast skeletal growth but also to reduced lesion regeneration rates. We hypothesize that a lowered regenerative capacity may be related to limited availability of energetic and cellular resources, consequences of coral holobionts operating at high levels of photosynthesis and associated growth.

  8. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  9. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  10. Mesenchymal Stem Cells from Patients with Rheumatoid Arthritis Display Impaired Function in Inhibiting Th17 Cells

    Directory of Open Access Journals (Sweden)

    Yue Sun

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs possess multipotent and immunomodulatory properties and are suggested to be involved in the pathogenesis of immune-related diseases. This study explored the function of bone marrow MSCs from rheumatoid arthritis (RA patients, focusing on immunomodulatory effects. RA MSCs showed decreased proliferative activity and aberrant migration capacity. No significant differences were observed in cytokine profiles between RA and control MSCs. The effects of RA MSCs on proliferation of peripheral blood mononuclear cells (PBMCs and distribution of specific CD4+ T cell subtypes (Th17, Treg, and Tfh cells were investigated. RA MSCs appeared to be indistinguishable from controls in suppressing PBMC proliferation, decreasing the proportion of Tfh cells, and inducing the polarization of Treg cells. However, the capacity to inhibit Th17 cell polarization was impaired in RA MSCs, which was related to the low expression of CCL2 in RA MSCs after coculture with CD4+ T cells. These findings indicated that RA MSCs display defects in several important biological activities, especially the capacity to inhibit Th17 cell polarization. These functionally impaired MSCs may contribute to the development of RA disease.

  11. Helicobacter pylori impairs murine dendritic cell responses to infection.

    Directory of Open Access Journals (Sweden)

    Ya-Hui Wang

    Full Text Available BACKGROUND: Helicobacter pylori, a human pathogen associated with chronic gastritis, peptic ulcer and gastric malignancies, is generally viewed as an extracellular microorganism. Here, we show that H. pylori replicates in murine bone marrow derived-dendritic cells (BMDCs within autophagosomes. METHODOLOGY/PRINCIPAL FINDINGS: A 10-fold increase of CFU is found between 2 h and 6 h p.i. in H. pylori-infected BMDCs. Autophagy is induced around the bacterium and participates at late time points of infection for the clearance of intracellular H. pylori. As a consequence of infection, LC3, LAMP1 and MHC class II molecules are retained within the H. pylori-containing vacuoles and export of MHC class II molecules to cell surface is blocked. However, formalin-fixed H. pylori still maintain this inhibitory activity in BMDC derived from wild type mice, but not in from either TLR4 or TLR2-deficient mice, suggesting the involvement of H. pylori-LPS in this process. TNF-alpha, IL-6 and IL-10 expression was also modulated upon infection showing a TLR2-specific dependent IL-10 secretion. No IL-12 was detected favoring the hypothesis of a down modulation of DC functions during H. pylori infection. Furthermore, antigen-specific T cells proliferation was also impaired upon infection. CONCLUSIONS/SIGNIFICANCE: H. pylori can infect and replicate in BMDCs and thereby affects DC-mediated immune responses. The implication of this new finding is discussed for the biological life cycle of H. pylori in the host.

  12. Behaviour of postnatally growth-impaired mice during malnutrition and after partial weight recovery

    DEFF Research Database (Denmark)

    Huber, Reinhard C.; Kolb, Andreas F.; Lillico, Simon

    2013-01-01

    Objectives: Early malnutrition is a highly prevalent condition in developing countries. Different rodent models of postnatal early malnutrition have been used to approach the subject experimentally, inducing early malnutrition by maternal malnutrition, temporal maternal separation, manipulation...... of litter size or the surgical nipple ligation to impair lactation. Studies on the behaviour of (previously) malnourished animals using animal models have produced sometimes contradictory results regarding the effects of early postnatal malnutrition and have been criticized for introducing potential...... confounding factors. The present paper is a first report on the behavioural effects of early malnutrition induced by an alternative approach: mice nursed by a-casein-deficient knockout dams showed a severe growth delay during early development and substantial catch-up growth after weaning when compared...

  13. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  14. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  15. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  16. Diet-Induced Obesity Is Associated with an Impaired NK Cell Function and an Increased Colon Cancer Incidence

    Directory of Open Access Journals (Sweden)

    Ina Bähr

    2017-01-01

    Full Text Available Obesity is associated with an increased colon cancer incidence, but underlying mechanisms remained unclear. Previous studies showed altered Natural killer (NK cell functions in obese individuals. Therefore, we studied the impact of an impaired NK cell functionality on the increased colon cancer risk in obesity. In vitro investigations demonstrated a decreased IFN-γ secretion and cytotoxicity of human NK cells against colon tumor cells after NK cell preincubation with the adipokine leptin. In addition, leptin incubation decreased the expression of activating NK cell receptors. In animal studies, colon cancer growth was induced by injection of azoxymethane (AOM in normal weight and diet-induced obese rats. Body weight and visceral fat mass were increased in obese animals compared to normal weight rats. AOM-treated obese rats showed an increased quantity, size, and weight of colon tumors compared to the normal weight tumor group. Immunohistochemical analyses demonstrated a decreased number of NK cells in spleen and liver in obesity. Additionally, the expression levels of activating NK cell receptors were lower in spleen and liver of obese rats. The results show for the first time that the decreased number and impaired NK cell function may be one cause for the higher colon cancer risk in obesity.

  17. Deletion of the calmodulin-binding domain of Grb7 impairs cell attachment to the extracellular matrix and migration

    Energy Technology Data Exchange (ETDEWEB)

    García-Palmero, Irene; Villalobo, Antonio, E-mail: antonio.villalobo@iib.uam.es

    2013-06-28

    Highlights: •Grb7 is a calmodulin (CaM)-binding protein. •Deleting the CaM-binding site impairs cell attachment and migration. •CaM antagonists inhibit Grb7-mediated cell migration. •We conclude that CaM controls Grb7-mediated cell migration. -- Abstract: The adaptor Grb7 is a calmodulin (CaM)-binding protein that participates in signaling pathways involved in cell migration, proliferation and the control of angiogenesis, and plays a significant role in tumor growth, its metastatic spread and tumor-associated neo-vasculature formation. In this report we show that deletion of the CaM-binding site of Grb7, located in the proximal region of its pleckstrin homology (PH) domain, impairs cell migration, cell attachment to the extracellular matrix, and the reorganization of the actin cytoskeleton occurring during this process. Moreover, we show that the cell-permeable CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide (W-13) both retard the migration of cells expressing wild type Grb7, but not the migration of cells expressing the mutant protein lacking the CaM-binding site (Grb7Δ), underscoring the proactive role of CaM binding to Grb7 during this process.

  18. Impaired Growth of Small Intestinal Epithelium by Adrenalectomy in Weaning Rats

    International Nuclear Information System (INIS)

    Miyata, Tohru; Minai, Yuji; Haga, Minoru

    2008-01-01

    Functional maturation of the small intestine occurs during the weaning period in rats. It is known that this development is facilitated by glucocorticoid. However, the effect of glucocorticoid on morphological development of small intestine has yet to be clarified. The present study evaluated the morphological development and cell proliferation of the small intestine in adrenalectomized (ADX) rat pups. To further understand the mechanism of glucocorticoid effects on intestinal development, we examined the localization of the glucocorticoid receptor in the small intestine. Microscopic analysis showed that growth of villi and crypts is age-dependent, and is significantly attenuated in ADX rats compared with sham-operated rats. BrdU-positive cells, i.e. proliferating cells, were primarily observed in crypt compartments and rapidly increased in number during the early weaning period. The increase in BrdU-positive cells could be attenuated by adrenalectomy. The morphological development of small intestine may be associated with increased proliferation of epithelial cells. On the other hand, glucocorticoid receptors were found in epithelial cells of the mid- and lower villi and not in crypts where BrdU-positive cells were localized. These results indicate that the growth of small intestine is attenuated by adrenalectomy, and that glucocorticoid indirectly acts on proliferation of epithelial cells during the weaning period

  19. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    Mouse fibroblasts cultured on 7-μm-long vertical nanowires are reported on page 4006 by C. N. Prinz and co-workers. Culturing cells on this kind of substrate interferes greatly with cell function, causing the cells to develop into widely different morphologies. The cells' division is impaired...

  20. Aging impairs recipient T cell intrinsic and extrinsic factors in response to transplantation.

    Directory of Open Access Journals (Sweden)

    Hua Shen

    Full Text Available As increasing numbers of older people are listed for solid organ transplantation, there is an urgent need to better understand how aging modifies alloimmune responses. Here, we investigated whether aging impairs the ability of donor dendritic cells or recipient immunity to prime alloimmune responses to organ transplantation.Using murine experimental models, we found that aging impaired the host environment to expand and activate antigen specific CD8(+ T cells. Additionally, aging impaired the ability of polyclonal T cells to induce acute allograft rejection. However, the alloimmune priming capability of donor dendritic cells was preserved with aging.Aging impairs recipient responses, both T cell intrinsic and extrinsic, in response to organ transplantation.

  1. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  2. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Wang, Feng; Yang, Yong

    2014-01-01

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  3. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...

  4. Predictors of growth or attrition of the first language in Latino children with specific language impairment

    Science.gov (United States)

    Simon-Cereijido, Gabriela; Gutiérrez-Clellen, Vera F.; Sweet, Monica

    2012-01-01

    We investigated the factors that may help understand the differential rates of language development in the home language (i.e., Spanish) of Latino preschoolers with specific language impairment (SLI). Children were randomly assigned to either bilingual or English-only small group interventions and followed from preschool to kindergarten. Predictors of Spanish growth included the language of intervention, the child’s level of language development or severity, the child’s socio-emotional skills, and the child’s level of English use. Spanish performance outcomes were assessed over time using a series of longitudinal models with baseline and post-treatment measures nested within child. Children demonstrated growth on Spanish outcomes over time. The language of instruction and the child’s level of vocabulary and socio-emotional development at baseline were significant predictors of differences in rates of growth in the home language. Clinicians may need to take into consideration these factors when making clinical recommendations. PMID:24489415

  5. Influence of radiosterilized cells on cells L1210 growth

    International Nuclear Information System (INIS)

    Malaise, E.P.; Decheva-Ninova, Z.; Tubiana, M.

    1975-01-01

    The effect of cells sterilized by acute X-irradiation is investigated on the growth of L 1210 cells. For this purpose young male mice DBA 2 are injected intraperitoneally or hypodermically with suspension of either live cells or live and sterile cells. The effect is considered according to survival time of treated animals and the number of leukemic cells examined in dynamics after their intraperitoneal incorporation or according to tumor size after their hypodermical incorporation. In both cases the incorporation of sterile cells has an inhibitory effect - life duration of treated mice is increased. This common effect disappears if animals are previously irradiated with 350 R. The sterile cells have also a local stimulating effect when incorporated hypodermically - time for their duplication is reduced from 15,8 to 13,7 hours. This stimulation is much more expressed when the recipients are previously irradiated - the time for tumor cells duplication being 12,2 hours. Direct stimulating effect of sterilized cells is not established when they are intraperitoneally incorporated. (author)

  6. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring.

    Science.gov (United States)

    Akitake, Yoshiharu; Katsuragi, Shinji; Hosokawa, Masato; Mishima, Kenichi; Ikeda, Tomoaki; Miyazato, Mikiya; Hosoda, Hiroshi

    2015-01-01

    Intrauterine growth retardation (IUGR) occurs in 3% to 7% of all pregnancies. Recent human studies have indicated that neurodevelopmental disabilities, learning disorders, memory impairment, and mood disturbance are common in IUGR offspring. However, the interactions between IUGR and neurodevelopmental disorders are unclear because of the wide range of causes of IUGR, such as maternal malnutrition, placental insufficiency, pregnancy toxemia, and fetal malformations. Meanwhile, many studies have shown that moderate food restriction enhances spatial learning and improves mood disturbance in adult humans and animals. To date, the effects of maternal moderate food restriction on fetal brain remain largely unknown. In this study, we hypothesized that IUGR would be caused by even moderate food restriction in pregnant females and that the offspring would have neurodevelopmental disabilities. Mid-pregnant mice received moderate food restriction through the early lactation period. The offspring were tested for aspects of physical development, behavior, and neurodevelopment. The results showed that moderate maternal food restriction induced IUGR. Offspring had low birth weight and delayed development of physical and coordinated movement. Moreover, IUGR offspring exhibited mental disabilities such as anxiety and poor cognitive function. In particular, male offspring exhibited significantly impaired cognitive function at 3 weeks of age. These results suggested that a restricted maternal diet could be a risk factor for developmental disability in IUGR offspring and that male offspring might be especially susceptible. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. NUMB does not impair growth and differentiation status of experimental gliomas

    International Nuclear Information System (INIS)

    Euskirchen, Philipp; Skaftnesmo, Kai-Ove; Huszthy, Peter C.; Brekkå, Narve; Bjerkvig, Rolf; Jacobs, Andreas H.; Miletic, Hrvoje

    2011-01-01

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.

  8. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    Science.gov (United States)

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  9. Cell Phones, Tablets, and Other Mobile Technology for Users with Visual Impairments

    Science.gov (United States)

    ... research. Share: Email Print Like (218 Likes) Cell Phones, Tablets, and Other Mobile Technology Touchscreen Smartphone Accessibility for People with Visual Impairments and Blindness The Benefits of Accessible Touchscreen Mobile Devices for People with ...

  10. β-Cell dedifferentiation, reduced duct cell plasticity, and impaired β-cell mass regeneration in middle-aged rats.

    Science.gov (United States)

    Téllez, Noèlia; Vilaseca, Marina; Martí, Yasmina; Pla, Arturo; Montanya, Eduard

    2016-09-01

    Limitations in β-cell regeneration potential in middle-aged animals could contribute to the increased risk to develop diabetes associated with aging. We investigated β-cell regeneration of middle-aged Wistar rats in response to two different regenerative stimuli: partial pancreatectomy (Px + V) and gastrin administration (Px + G). Pancreatic remnants were analyzed 3 and 14 days after surgery. β-Cell mass increased in young animals after Px and was further increased after gastrin treatment. In contrast, β-cell mass did not change after Px or after gastrin treatment in middle-aged rats. β-Cell replication and individual β-cell size were similarly increased after Px in young and middle-aged animals, and β-cell apoptosis was not modified. Nuclear immunolocalization of neurog3 or nkx6.1 in regenerative duct cells, markers of duct cell plasticity, was increased in young but not in middle-aged Px rats. The pancreatic progenitor-associated transcription factors neurog3 and sox9 were upregulated in islet β-cells of middle-aged rats and further increased after Px. The percentage of chromogranin A+/hormone islet cells was significantly increased in the pancreases of middle-aged Px rats. In summary, the potential for compensatory β-cell hyperplasia and hypertrophy was retained in middle-aged rats, but β-cell dedifferentiation and impaired duct cell plasticity limited β-cell regeneration. Copyright © 2016 the American Physiological Society.

  11. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases.

    Directory of Open Access Journals (Sweden)

    Luigi Portella

    Full Text Available The CXCR4/CXCL12 axis plays a role in cancer metastases, stem cell mobilization and chemosensitization. Proof of concept for efficient CXCR4 inhibition has been demonstrated in stem cell mobilization prior to autologous transplantation in hematological malignancies. Nevertheless CXCR4 inhibitors suitable for prolonged use as required for anticancer therapy are not available. To develop new CXCR4 antagonists a rational, ligand-based approach was taken, distinct from the more commonly used development strategy. A three amino acid motif (Ar-Ar-X in CXCL12, also found in the reverse orientation (X-Ar-Ar in the vMIP-II inhibitory chemokine formed the core of nineteen cyclic peptides evaluated for inhibition of CXCR4-dependent migration, binding, P-ERK1/2-induction and calcium efflux. Peptides R, S and I were chosen for evaluation in in vivo models of lung metastases (B16-CXCR4 and KTM2 murine osteosarcoma cells and growth of a renal cells xenograft. Peptides R, S, and T significantly reduced the association of the 12G5-CXCR4 antibody to the receptor and inhibited CXCL12-induced calcium efflux. The four peptides efficiently inhibited CXCL12-dependent migration at concentrations as low as 10 nM and delayed CXCL12-mediated wound healing in PES43 human melanoma cells. Intraperitoneal treatment with peptides R, I or S drastically reduced the number of B16-CXCR4-derived lung metastases in C57/BL mice. KTM2 osteosarcoma lung metastases were also reduced in Balb/C mice following CXCR4 inhibition. All three peptides significantly inhibited subcutaneous growth of SN12C-EGFP renal cancer cells. A novel class of CXCR4 inhibitory peptides was discovered. Three peptides, R, I and S inhibited lung metastases and primary tumor growth and will be evaluated as anticancer agents.

  12. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    Science.gov (United States)

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  13. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Science.gov (United States)

    Yates, D. T.; Macko, A. R.; Nearing, M.; Chen, X.; Rhoads, R. P.; Limesand, S. W.

    2012-01-01

    Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization. PMID:22900186

  14. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Directory of Open Access Journals (Sweden)

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  15. A Synthetic Thiourea-Based Tripodal Receptor that Impairs the Function of Human First Trimester Cytotrophoblast Cells

    Directory of Open Access Journals (Sweden)

    Darijana Horvat

    2014-07-01

    Full Text Available A synthetic tripodal-based thiourea receptor (PNTTU was used to explore the receptor/ligand binding affinity using CTB cells. The human extravillous CTB cells (Sw.71 used in this study were derived from first trimester chorionic villus tissue. The cell proliferation, migration and angiogenic factors were evaluated in PNTTU-treated CTB cells. The PNTTU inhibited the CTBs proliferation and migration. The soluble fms-like tyrosine kinase-1 (sFlt-1 secretion was increased while vascular endothelial growth factor (VEGF was decreased in the culture media of CTB cells treated with ≥1 nM PNTTU. The angiotensin II receptor type 2 (AT2 expression was significantly upregulated in ≥1 nM PNTTU-treated CTB cells in compared to basal; however, the angiotensin II receptor, type 1 (AT1 and vascular endothelial growth factor receptor 1 (VEGFR-1 expression was downregulated. The anti-proliferative and anti-angiogenic effect of this compound on CTB cells are similar to the effect of CTSs. The receptor/ligand affinity of PNTTU on CTBs provides us the clue to design a potent inhibitor to prevent the CTS-induced impairment of CTB cells.

  16. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.

    1990-01-01

    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  17. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  18. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    Science.gov (United States)

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells

    International Nuclear Information System (INIS)

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri; Park, Sang Chul

    2010-01-01

    Research highlights: → Decreased expression of Nup107 in aged cells and organs. → Depletion of Nup107 results in impaired nuclear translocation of p-ERK. → Depletion of Nup107 affects downstream effectors of ERK signaling. → Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts prevented the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.

  20. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-10-08

    Research highlights: {yields} Decreased expression of Nup107 in aged cells and organs. {yields} Depletion of Nup107 results in impaired nuclear translocation of p-ERK. {yields} Depletion of Nup107 affects downstream effectors of ERK signaling. {yields} Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts prevented the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.

  1. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.

    Science.gov (United States)

    Buren, Caodu; Parsons, Matthew P; Smith-Dijak, Amy; Raymond, Lynn A

    2016-03-01

    Huntington's disease (HD) is a genetically inherited neurodegenerative disease caused by a mutation in the gene encoding the huntingtin protein. This mutation results in progressive cell death that is particularly striking in the striatum. Recent evidence indicates that early HD is initially a disease of the synapse, in which subtle alterations in synaptic neurotransmission, particularly at the cortico-striatal (C-S) synapse, can be detected well in advance of cell death. Here, we used a cell culture model in which striatal neurons are co-cultured with cortical neurons, and monitored the development of C-S connectivity up to 21days in vitro (DIV) in cells cultured from either the YAC128 mouse model of HD or the background strain, FVB/N (wild-type; WT) mice. Our data demonstrate that while C-S connectivity in WT co-cultures develops rapidly and continuously from DIV 7 to 21, YAC128 C-S connectivity shows no significant growth from DIV 14 onward. Morphological and electrophysiological data suggest that a combination of pre- and postsynaptic mechanisms contribute to this effect, including a reduction in both the postsynaptic dendritic arborization and the size and replenishment rate of the presynaptic readily releasable pool of excitatory vesicles. Moreover, a chimeric culture strategy confirmed that the most robust impairment in C-S connectivity was only observed when mutant huntingtin was expressed both pre- and postsynaptically. In all, our data demonstrate a progressive HD synaptic phenotype in this co-culture system that may be exploited as a platform for identifying promising therapeutic strategies to prevent early HD-associated synaptopathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    Science.gov (United States)

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  3. Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging

    NARCIS (Netherlands)

    Kamminga, LM; Van Os, R; Ausema, A; Noach, EJK; Weersing, E; Dontje, B; Vellenga, E; De Haan, G

    Adult somatic stem cells possess extensive self-renewal capacity, as their primary role is to replenish aged and functionally impaired tissues. We have previously shown that the stem cell pool in short-lived DBA/2 (D2) mice is reduced during aging, in contrast to long-lived C57BL/6 (136) mice. This

  4. Dysregulation of Dicer1 in Beta Cells Impairs Islet Architecture and Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Amitai D. Mandelbaum

    2012-01-01

    Full Text Available microRNAs (miRNAs play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islets in complex compensatory dynamics. Because loss of Dicer1 is also associated with changes in the distribution of membranous E-cadherin, we hypothesized that E-cadherin activity may play a role in beta cell survival or islet architecture. However, genetic loss of E-cadherin function does not impair islet architecture, suggesting that miRNAs likely function through other or redundant effectors in the endocrine pancreas.

  5. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  6. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification

    International Nuclear Information System (INIS)

    Tsuji, Takehito; Kondo, Eri; Yasoda, Akihiro; Inamoto, Masataka; Kiyosu, Chiyo; Nakao, Kazuwa; Kunieda, Tetsuo

    2008-01-01

    Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to induce cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification

  7. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    International Nuclear Information System (INIS)

    Lu, Yi-Yu; Huang, Yu-Jie; Cheng, Kuo-Sheng; Huang, Ji-Jer

    2013-01-01

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization. (paper)

  8. NOV/CCN3 impairs muscle cell commitment and differentiation

    International Nuclear Information System (INIS)

    Calhabeu, Frederico; Lafont, Jerome; Le Dreau, Gwenvael; Laurent, Maryvonne; Kazazian, Chantal; Schaeffer, Laurent; Martinerie, Cecile; Dubois, Catherine

    2006-01-01

    NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10 -6 M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts

  9. Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds.

    Science.gov (United States)

    Grall, Romain; Girard, Hugues; Saad, Lina; Petit, Tristan; Gesset, Céline; Combis-Schlumberger, Mathilde; Paget, Vincent; Delic, Jozo; Arnault, Jean-Charles; Chevillard, Sylvie

    2015-08-01

    Hydrogenated nanodiamonds (H-NDs) exhibit a negative electron affinity that confers a high reactivity with oxygen species and a positive charge in aqueous solutions. It allows electron emission from H-NDs following irradiation by photons and in consequence may enhance the effects of radiation on cancer cells. By using three human radioresistant cancer cell lines, we showed a potentialization of cytotoxicity after a co-exposure to H-NDs and irradiation; an event occurring through the induction of DNA damage and reactive oxygen species. This occurred together with a decrease in cell impedance, the activation of G1/S, an unlocking of G2 cell cycle check-points and early low cell death rate. At later stage of exposure, persistent increases in heterochromatinization, large γ-H2AX foci and β-galactosidase activity were detected providing evidence of cells' entrance into senescence. Similar potentialization was observed with neocarzinostatin (NCS), a radiomimetic drug. This original finding underlines a wide clinical potential of H-NDs to intensify radiation effects on radio-resistant cancer cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    Science.gov (United States)

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  11. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  12. Contributions of muscle imbalance and impaired growth to postural and osseous shoulder deformity following brachial plexus birth palsy: a computational simulation analysis.

    Science.gov (United States)

    Cheng, Wei; Cornwall, Roger; Crouch, Dustin L; Li, Zhongyu; Saul, Katherine R

    2015-06-01

    Two potential mechanisms leading to postural and osseous shoulder deformity after brachial plexus birth palsy are muscle imbalance between functioning internal rotators and paralyzed external rotators and impaired longitudinal growth of paralyzed muscles. Our goal was to evaluate the combined and isolated effects of these 2 mechanisms on transverse plane shoulder forces using a computational model of C5-6 brachial plexus injury. We modeled a C5-6 injury using a computational musculoskeletal upper limb model. Muscles expected to be denervated by C5-6 injury were classified as affected, with the remaining shoulder muscles classified as unaffected. To model muscle imbalance, affected muscles were given no resting tone whereas unaffected muscles were given resting tone at 30% of maximal activation. To model impaired growth, affected muscles were reduced in length by 30% compared with normal whereas unaffected muscles remained normal in length. Four scenarios were simulated: normal, muscle imbalance only, impaired growth only, and both muscle imbalance and impaired growth. Passive shoulder rotation range of motion and glenohumeral joint reaction forces were evaluated to assess postural and osseous deformity. All impaired scenarios exhibited restricted range of motion and increased and posteriorly directed compressive glenohumeral joint forces. Individually, impaired muscle growth caused worse restriction in range of motion and higher and more posteriorly directed glenohumeral forces than did muscle imbalance. Combined muscle imbalance and impaired growth caused the most restricted joint range of motion and the highest joint reaction force of all scenarios. Both muscle imbalance and impaired longitudinal growth contributed to range of motion and force changes consistent with clinically observed deformity, although the most substantial effects resulted from impaired muscle growth. Simulations suggest that treatment strategies emphasizing treatment of impaired longitudinal

  13. Determinants of impaired growth among hospitalized children: a case-control study

    Directory of Open Access Journals (Sweden)

    Marilia de Carvalho Lima

    Full Text Available CONTEXT: Protein energy malnutrition constitutes a public health problem, especially in less affluent countries. The identification of amenable predictive risk factors is of major importance for policy makers to plan interventions to reduce infant malnutrition. OBJECTIVE: To identify risk factors for protein energy malnutrition among hospitalized low-income children aged 6 to 24 months. TYPE OF STUDY: Case-control study. SETTING: Two public hospitals in Recife, Brazil. PARTICIPANTS: The cases were 124 infants with length-for-age below the 10th percentile of the National Center for Health Statistics curve and the controls were 241 infants with length-for-age equal to or above the 10th percentile who were recruited in the same infirmary. METHODS: Cases and controls were compared in relation to a variety of sociodemographic, environmental and reproductive factors, and their healthcare, previous feeding practice and morbidity. Logistic regression analysis was used to investigate the net effect of risk factors on infant malnutrition, after adjusting for potential confounding variables. RESULTS: The mother's age, possession of a TV set, type of water supply, family size and location of the home were significantly associated with child malnutrition in the bivariate analysis. However, these associations lost their significance after adjusting for other explanatory variables in the hierarchical logistic regression analysis. This analysis showed that low birth weight contributed the largest risk for impaired growth. Increased risks of infant malnutrition were also significantly associated with households that had no toilet facilities or refrigerator, high parity for the mother, no breastfeeding of the infant, inadequate vaccination coverage and previous hospitalization for diarrhea and pneumonia. DISCUSSION: The literature shows that chronic malnutrition, as assessed by low length-for-age indexes, is often related to low income. However, this was not the

  14. Radiation cell survival and growth delay studies in multicellular spheroids of small-cell lung carcinoma

    International Nuclear Information System (INIS)

    Duchesne, G.M.; Peacock, J.H.

    1987-01-01

    The radiation sensitivity of two small-cell lung carcinoma cell lines growing as multicellular spheroids in static culture was determined using clonogenic cell survival and growth delay as endpoints. Growth delay determination suggested that clonogenic cell kill was less than was obtained by direct assay of cell survival. Recovery from potentially lethal damage was assayed in one line (HC12) but was not demonstrable, and clonogenic cell survival decreased with time in treated spheroids with diameters greater than 300 μm which contained a hypoxic cell population. Microscopic examination of the treated spheroids showed the emergence of an abnormal giant-cell population, and the progressive clonogenic cell loss that occurred after treatment was thought to be due to oxygen and nutrient deprivation of the remaining viable cells by this doomed cell population. Correction of the growth delay measurements for changes in cell size and clonogenic cell population allowed correlation of the growth delay and cell survival data. (author)

  15. Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo.

    Science.gov (United States)

    Murray, Jayne; Valli, Emanuele; Yu, Denise M T; Truong, Alan M; Gifford, Andrew J; Eden, Georgina L; Gamble, Laura D; Hanssen, Kimberley M; Flemming, Claudia L; Tan, Alvin; Tivnan, Amanda; Allan, Sophie; Saletta, Federica; Cheung, Leanna; Ruhle, Michelle; Schuetz, John D; Henderson, Michelle J; Byrne, Jennifer A; Norris, Murray D; Haber, Michelle; Fletcher, Jamie I

    2017-09-01

    The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  17. Impairment of lymphocyte adhesion to cultured fibroblasts and endothelial cells by γ-irradiation

    International Nuclear Information System (INIS)

    Piela-Smith, T.H.; Aneiro, L.; Nuveen, E.; Korn, J.H.; Aune, T.

    1992-01-01

    A critical component of immune responsiveness is the localization of effector cells at sites of inflammatory lesions. Adhesive molecules that may play a role in this process have been described on the surfaces of both lymphocytes and connective tissue cells. Adhesive interactions of T lymphocytes with fibroblasts or endothelial cells can be inhibited by preincubation of the fibroblasts or endothelial cells with antibody to intercellular adhesion molecule 1 (CD54) or by preincubation of the T cells with antibody to lymphocyte function-associated Ag 1 (CD11a/CD18), molecules shown to be important in several other cell-cell adhesion interactions. Here the authors show that γ-irradiation of human T lymphocytes impaired their ability to adhere to both fibroblasts and endothelial cells. This impairment was not associated with a loss of cell viability or of cell surface lymphocyte function-associated Ag 1 expression. γ-Irradiation of T cells is known to result in the activation of ADP-ribosyltransferase, an enzyme involved in DNA strand-break repair, causing subsequent depletion of cellular nicotinamide adenine dinucleotide (NAD) pools by increasing NAD consumption for poly(ADP-ribose) formation. Preincubation of T cells with either nicotinamide or 3-aminobenzamide, both known inhibitors of ADP-ribosyltransferase, completely reversed the suppressive effects of γ-irradiation on T cell adhesion. The maintenance of adhesion was accompanied by inhibition of irradiation-induced depletion of cellular NAD. These experiments suggest that the impairment of cellular immune function after irradiation in vivo may be caused, in part, by defective T cell emigration and localization at inflammatory sites. 44 refs., 5 figs., 3 tabs

  18. Patients with discordant responses to antiretroviral therapy have impaired killing of HIV-infected T cells.

    Directory of Open Access Journals (Sweden)

    Sekar Natesampillai

    2010-11-01

    Full Text Available In medicine, understanding the pathophysiologic basis of exceptional circumstances has led to an enhanced understanding of biology. We have studied the circumstance of HIV-infected patients in whom antiretroviral therapy results in immunologic benefit, despite virologic failure. In such patients, two protease mutations, I54V and V82A, occur more frequently. Expressing HIV protease containing these mutations resulted in less cell death, caspase activation, and nuclear fragmentation than wild type (WT HIV protease or HIV protease containing other mutations. The impaired induction of cell death was also associated with impaired cleavage of procaspase 8, a requisite event for HIV protease mediated cell death. Primary CD4 T cells expressing I54V or V82A protease underwent less cell death than with WT or other mutant proteases. Human T cells infected with HIV containing these mutations underwent less cell death and less Casp8p41 production than WT or HIV containing other protease mutations, despite similar degrees of viral replication. The reductions in cell death occurred both within infected cells, as well as in uninfected bystander cells. These data indicate that single point mutations within HIV protease which are selected in vivo can significantly impact the ability of HIV to kill CD4 T cells, while not impacting viral replication. Therefore, HIV protease regulates both HIV replication as well as HIV induced T cell depletion, the hallmark of HIV pathogenesis.

  19. Di (2-ethylhexyl Phthalate Exposure Impairs Growth of Antral Follicle in Mice.

    Directory of Open Access Journals (Sweden)

    Lan Li

    Full Text Available Di (2-ethylhexyl phthalate (DEHP is a widely used plastic additive. As an environmental endocrine disruptor, it has been shown to be harmful to the mammalian reproductive system. Previous studies indicated that DEHP inhibited the development of mouse ovarian follicles. However, the mechanisms by which DEHP affects ovarian antral follicle development during the pre-puberty stage are poorly understand. Thus, we investigated the effects of direct DEHP exposure on antral follicle growth in pre-pubescent mice by use of intraperitoneal injection. Our results demonstrated that the percentage of large antral follicles was significantly reduced when mice were exposed to 20 or 40 μg/kg DEHP every 5 days from postnatal day 0 (0 dpp to 15 dpp. In 20 dpp, we performed microarray of these ovaries. The microarray results indicated that mRNA levels of apoptosis related genes were increased. The mRNA levels of the apoptosis and cell proliferation (negative related genes Apoe, Agt, Glo1 and Grina were increased after DEHP exposure. DEHP induced the differential gene expression of Hsp90ab1, Rhoa, Grina and Xdh which may play an important role in this process. In addition, TUNEL staining and immunofluorescence showed that DEHP exposure significantly increased the number of TUNEL, Caspase3 and γH2AX positive ovarian somatic cells within the mouse ovaries. Flow cytometer analyses of redox-sensitive probes showed that DEHP caused the accumulation of reactive oxygen species. Moreover, the mRNA expression of ovarian somatic cell antioxidative enzymes was down-regulated both in vivo and in vitro. In conclusion, our data here demonstrated that DEHP exposure induced oxidative stress and ovarian somatic cell apoptosis, and thus may impact antral follicle enlargement during the pre-pubertal stage in mice.

  20. Transforming growth factor beta 1 dependent regulation of Tenascin-C in radiation impaired wound healing

    International Nuclear Information System (INIS)

    Wehrhan, Falk; Roedel, Franz; Grabenbauer, Gerhard G.; Amann, Kerstin; Brueckl, Wolfgang; Schultze-Mosgau, Stefan

    2004-01-01

    Background: Following preoperative radiotherapy prior to ablative surgery of squamous epithelial cell carcinomas of the head and neck region fibrocontractive wound healing disorders occur. Tenascin-C is significantly increased in fibrotic tissue conditions and can be stimulated by the transcription factor NFκB p65. Previous studies showed a reduction of irradiation induced fibrosis during the wound healing process by anti-TGFβ 1 -treatment. The aim of the study was to clarify the question whether Tenascin-C expression is elevated in radiation impaired wounds and whether anti-TGFβ 1 -treatment is capable to influence Tenascin-C and NFκB expression. Material and methods: Wistar rats (male, weight 300-500 g) underwent preoperative irradiation of the head and neck region with 40 Gy, fractionated four times 10 Gy (16 animals), whereas 8 non-irradiated animals served as a control. Four weeks after irradiation a free myocutaneous gracilis flap taken from the groin was transplanted to the neck. Eight animals additionally received 5 μg anti-TGFβ 1 into the graft bed by intradermal injection prior to each fraction of irradiation and on days 1-7 post-operation. On day 14 and 28 following surgery immunohistochemistry (ABC-POX method) was performed assessing the cytoplasmic NFκB and Tenascin-C staining in the transition area between transplant and graft bed. For quantitative considerations the labeling index (ratio: positive cells/total cells) was determined. Results: A significantly altered expression of Tenascin-C in the preirradiated tissue was observed following anti-TGFβ 1 -treatment. NFκB protein was upregulated in irradiated animals and was significantly reduced in the anti-TGFβ 1 treated group on day 28 after transplantation. Conclusions: Tenascin-C expression is prolonged in irradiated animals as compared to non-irradiated tissue. Tenascin-C seems to be regulated by TGFβ 1 as the application of TGFβ 1 -neutralizing antibodies reduces Tenascin-C expression

  1. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells.

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-10-12

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.

  2. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  3. Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana

    International Nuclear Information System (INIS)

    Won, Eun-Ji; Lee, Jae-Seong

    2014-01-01

    Highlights: • Mortality was increased with a dose dependent manner in ovigerous females of Paracyclopina nana. • Developmental impairments were observed in gamma irradiated nauplii. • Ovigerous females exposed to more than 50 Gy could not have normal two bilateral egg sacs. • Oxidative levels increased with antioxidant enzyme activities in the gamma irradiated P. nana. • The molecular indices (antioxidant enzymes and heat shock protein) were also increased. - Abstract: Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 – 96 h = 172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction

  4. Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2014-05-01

    Highlights: • Mortality was increased with a dose dependent manner in ovigerous females of Paracyclopina nana. • Developmental impairments were observed in gamma irradiated nauplii. • Ovigerous females exposed to more than 50 Gy could not have normal two bilateral egg sacs. • Oxidative levels increased with antioxidant enzyme activities in the gamma irradiated P. nana. • The molecular indices (antioxidant enzymes and heat shock protein) were also increased. - Abstract: Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 – 96 h = 172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction.

  5. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates.

    Directory of Open Access Journals (Sweden)

    Jumpei F Yamagishi

    2016-10-01

    Full Text Available As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of

  6. A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis.

    Science.gov (United States)

    Chatre, Laurent; Verdonk, Franck; Rocheteau, Pierre; Crochemore, Clément; Chrétien, Fabrice; Ricchetti, Miria

    2017-10-01

    Sepsis is an acute systemic inflammatory response of the body to microbial infection and a life threatening condition associated with multiple organ failure. Survivors may display long-term disability with muscle weakness that remains poorly understood. Recent data suggest that long-term myopathy in sepsis survivors is due to failure of skeletal muscle stem cells (satellite cells) to regenerate the muscle. Satellite cells impairment in the acute phase of sepsis is linked to unusual mitochondrial dysfunctions, characterized by a dramatic reduction of the mitochondrial mass and hyperactivity of residual organelles. Survivors maintain the impairment of satellite cells, including alterations of the mitochondrial DNA (mtDNA), in the long-term. This condition can be rescued by treatment with mesenchymal stem cells (MSCs) that restore mtDNA alterations and mitochondrial function in satellite cells, and in fine their regenerative potential. Injection of MSCs in turn increases the force of isolated muscle fibers and of the whole animal, and improves the survival rate. These effects occur in the context of reduced inflammation markers that also raised during sepsis. Targeting muscle stem cells mitochondria, in a context of reduced inflammation, may represent a valuable strategy to reduce morbidity and long-term impairment of the muscle upon sepsis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K

    1994-01-01

    MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...

  8. Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics’ Impaired Healing

    Directory of Open Access Journals (Sweden)

    Jorge Berlanga-Acosta

    2013-01-01

    Full Text Available Type 2 diabetes mellitus is a metabolic noncommunicable disease with an expanding pandemic magnitude. Diabetes predisposes to lower extremities ulceration and impairs the healing process leading to wound chronification. Diabetes also dismantles innate immunity favoring wound infection. Amputation is therefore acknowledged as one of the disease’s complications. Hyperglycemia is the proximal detonator of systemic and local toxic effectors including proinflammation, acute-phase proteins elevation, and spillover of reactive oxygen and nitrogen species. Insulin axis deficiency weakens wounds’ anabolism and predisposes to inflammation. The systemic accumulation of advanced glycation end-products irreversibly impairs the entire physiology from cells-to-organs. These factors in concert hamper fibroblasts and endothelial cells proliferation, migration, homing, secretion, and organization of a productive granulation tissue. Diabetic wound bed may turn chronically inflammed, procatabolic, and an additional source of circulating pro-inflammatory cytokines, establishing a self-perpetuating loop. Diabetic fibroblasts and endothelial cells may bear mitochondrial damages becoming prone to apoptosis, which impairs granulation tissue cellularity and perfusion. Endothelial progenitor cells recruitment and tubulogenesis are also impaired. Failure of wound reepithelialization remains a clinical challenge while it appears to be biologically multifactorial. Ulcer prevention by primary care surveillance, education, and attention programs is of outmost importance to reduce worldwide amputation figures.

  9. Cerebrovascular reserve capacity is impaired in patients with sickle cell disease

    NARCIS (Netherlands)

    Nur, Erfan; Kim, Yu-Sok; Truijen, Jasper; van Beers, Eduard J.; Davis, Shyrin C. A. T.; Brandjes, Dees P.; Biemond, Bart J.; van Lieshout, Johannes J.

    2009-01-01

    Sickle cell disease (SCD) is associated with a high incidence of ischemic stroke. SCD is characterized by hemolytic anemia, resulting in reduced nitric oxide-bioavailability, and by impaired cerebrovascular hemodynamics. Cerebrovascular CO2 responsiveness is nitric oxide dependent and has been

  10. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity.

    Science.gov (United States)

    Doherty, Leo F; Taylor, Hugh S

    2015-03-01

    To determine whether transforming growth factor (TGF)-β3 is a paracrine signal secreted by leiomyoma that inhibits bone morphogenetic protein (BMP)-mediated endometrial receptivity and decidualization. Experimental. Laboratory. Women with symptomatic leiomyomas. Endometrial stromal cells (ESCs) and leiomyoma cells were isolated from surgical specimens. Leiomyoma-conditioned media (LCM) was applied to cultured ESC. The TGF-β was blocked by two approaches: TGF-β pan-specific antibody or transfection with a mutant TGF-β receptor type II. Cells were then treated with recombinant human BMP-2 to assess BMP responsiveness. Expression of BMP receptor types 1A, 1B, 2, as well as endometrial receptivity mediators HOXA10 and leukemia inhibitory factor (LIF). Enzyme-linked immunosorbent assay showed elevated TGF-β levels in LCM. LCM treatment of ESC reduced expression of BMP receptor types 1B and 2 to approximately 60% of pretreatment levels. Preincubation of LCM with TGF-β neutralizing antibody or mutant TGF receptor, but not respective controls, prevented repression of BMP receptors. HOXA10 and LIF expression was repressed in recombinant human BMP-2 treated, LCM exposed ESC. Pretreatment of LCM with TGF-β antibody or transfection with mutant TGF receptor prevented HOXA10 and LIF repression. Leiomyoma-derived TGF-β was necessary and sufficient to alter endometrial BMP-2 responsiveness. Blockade of TGF-β prevents repression of BMP-2 receptors and restores BMP-2-stimulated expression of HOXA10 and LIF. Blockade of TGF signaling is a potential strategy to improve infertility and pregnancy loss associated with uterine leiomyoma. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  12. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  13. Impaired B cell development in the absence of Krüppel-like factor 3.

    Science.gov (United States)

    Vu, Thi Thanh; Gatto, Dominique; Turner, Vivian; Funnell, Alister P W; Mak, Ka Sin; Norton, Laura J; Kaplan, Warren; Cowley, Mark J; Agenès, Fabien; Kirberg, Jörg; Brink, Robert; Pearson, Richard C M; Crossley, Merlin

    2011-11-15

    Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klfs are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells.

  14. Aromatase inhibitor (anastrozole) affects growth of endometrioma cells in culture.

    Science.gov (United States)

    Badawy, Shawky Z A; Brown, Shereene; Kaufman, Lydia; Wojtowycz, Martha A

    2015-05-01

    To study the effects of aromatase inhibitor (anastrozole) on the growth and estradiol secretion of endometrioma cells in culture. Endometrioma cells are grown in vitro until maximum growth before used in this study. This was done in the research laboratory for tissue culture, in an academic hospital. Testosterone at a concentration of 10 μg/mL was added as a substrate for the intracellular aromatase. In addition, aromatase inhibitor was added at a concentration of 200 and 300 μg/mL. The effect on cell growth and estradiol secretion is evaluated using Student's t-test. The use of testosterone increased estradiol secretion by endometrioma cells in culture. The use of aromatase inhibitor significantly inhibited the growth of endometrioma cells, and estradiol secretion. Aromatase inhibitor (anastrozole) may be an effective treatment for endometriosis due to inhibition of cellular aromatase. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of several physiochemical factors on cell growth and gallic ...

    African Journals Online (AJOL)

    The production of gallic acid in cell suspension culture of Acer ginnala Maxim was studied. Some physiochemical factors and chemical substances effect on the cell growth and the production of gallic acid were investigated. Cells harvested from plant tissue culture were extracted and applied to high performance liquid ...

  16. Glutathione metabolism in Bangladeshi children with increased small bowel permeability and impaired growth

    International Nuclear Information System (INIS)

    Kumar Roy, Swapan; Tomkins, A.; Johnson, A.

    2000-01-01

    Objectives: To determine whether intestinal permeability during diarrhoea is associated with increased requirement of Sulphur Containing Amino Acid (SCAA); Changes in SCAA metabolism are associated with decreased urinary sulphate and increased excretion of proline from collagen; Rates of turnover SCAA would change as intestinal permeability improves during different dietary levels of SCAA in nutritional regimes. Hypothesis: Supplementation of a standard diet with sulphur containing amino acids is necessary to meet requirements for sulphur under conditions of growth faltering, diarrhoea and increased intestinal permeability. Subjects: Children with persistent diarrhoea aged between 4 months to 18 months and height for age less than 95%. Study site: International Centre for Diarrhoeal Disease Research Bangladesh. Methods: At the baseline, children will be classified into low and normal ISE (Inorganic Sulphar excretion) then each group will be divided into two subgroups. A total of 40 children will be studied (20 in each group). One group will receive a dietary supplement of SCAA and another group will receive an isonitrogenous standard diet for six weeks. Children will be assessed for intestinal permeability at baseline and after two weeks of admission. Before and at six weeks of admission the children will receive a regular drink containing 15 N Glyceine at the rate of 2ml/kg/hr. Blood and urine samples will be collected at baseline and at the end of the supplementation i.e. at 6 weeks. Incorporation of 15 N Glyceine, plasma and red cell glutathione will be assessed by isotope rationing. Urine will be assessed for 15 N enrichment of urea and ammonia, which will used as an assessment of body protein turnover Folate status of these patients will be determined before and after supplementation with SCAA. Benefit of the study: The results of the study will provide specific information on the requirement of Sulphur containing amino acid during malnutrition and persistent

  17. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Mariem Ben-Abdallah

    Full Text Available Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB, a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of

  18. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Science.gov (United States)

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  19. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment.Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed.In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro.EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  20. Normal sweat secretion despite impaired growth hormone-insulin-like growth factor-I axis in obese subjects

    DEFF Research Database (Denmark)

    Rasmussen, Michael Højby; Juul, Anders; Main, Katharina M

    2011-01-01

    Adults with GH deficiency are known to exhibit reduced sweating. Whether sweating capacity is impacted in obese subjects with impaired GH secretion have not previously been investigated. The main objective was to investigate sweat secretion rate and the GH-IGF-I axis in obese subjects before...... and after weight loss. Sixteen severely obese women (BMI, 40.6 ± 1.1 kg/m(2)) were investigated before and after a diet-induced weight loss. Sixteen age-matched nonobese women served as controls. The obese subjects presented the characteristic decreased GH release, hyperinsulinaemia, increased FFA levels......, and impaired insulin sensitivity, which all were normalised after diet-induced weight loss of 30 ± 5 kg. Sweat secretion rates were similar comparing obese and nonobese subjects (78 ± 10 versus 82 ± 9 mg/30 minutes) and sweat secretion did not change after a diet-induced weight loss in obese subjects. We...

  1. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin.

    Directory of Open Access Journals (Sweden)

    Sidhartha M Chafekar

    Full Text Available The molecular mechanisms by which polyglutamine (polyQ-expanded huntingtin (Htt causes neurodegeneration in Huntington's disease (HD remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1 are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis.

  2. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    Science.gov (United States)

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  3. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses.

    Science.gov (United States)

    Mahanty, Siddhartha; Hutchinson, Karen; Agarwal, Sudhanshu; McRae, Michael; Rollin, Pierre E; Pulendran, Bali

    2003-03-15

    Acute infection of humans with Ebola and Lassa viruses, two principal etiologic agents of hemorrhagic fevers, often results in a paradoxical pattern of immune responses: early infection, characterized by an outpouring of inflammatory mediators such as TNF-alpha, IL-1 beta, and IL-6, vs late stage infections, which are associated with poor immune responses. The mechanisms underlying these diverse outcomes are poorly understood. In particular, the role played by cells of the innate immune system, such as dendritic cells (DC), is not known. In this study, we show that Ebola and Lassa viruses infect human monocyte-derived DC and impair their function. Monocyte-derived DC exposed to either virus fail to secrete proinflammatory cytokines, do not up-regulate costimulatory molecules, and are poor stimulators of T cells. These data represent the first evidence for a mechanism by which Ebola and Lassa viruses target DC to impair adaptive immunity.

  4. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Angiogenesis is not impaired in connective tissue growth factor (CTGF) knock-out mice

    NARCIS (Netherlands)

    Kuiper, Esther J.; Roestenberg, Peggy; Ehlken, Christoph; Lambert, Vincent; van Treslong-de Groot, Henny Bloys; Lyons, Karen M.; Agostini, Hans-Jürgen T.; Rakic, Jean-Marie; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Goldschmeding, Roel; Schlingemann, Reinier O.

    2007-01-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of growth factors. CTGF is important in scarring, wound healing, and fibrosis. It has also been implicated to play a role in angiogenesis, in addition to vascular endothelial growth factor (VEGF). In the eye, angiogenesis and

  6. Microtubule and Cell Contact Dependency of ER-bound PTP1B Localization in Growth Cones

    Science.gov (United States)

    Fuentes, Federico

    2009-01-01

    PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity. PMID:19158394

  7. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  8. Mevastatin-induced inhibition of cell growth in avocado suspension ...

    African Journals Online (AJOL)

    Research Centre for Plant Growth and Development, School of Agricultural Sciences and Agribusiness, University of .... source of regulatory molecules that modulate cell division .... nucellar tissue from embryo callus derived from seed of.

  9. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  10. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, TB

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling

  11. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, Th B.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  12. Diabetic Hyperglycemia: Link to Impaired Glucose Transport in Pancreatic β Cells

    Science.gov (United States)

    Unger, Roger H.

    1991-03-01

    Glucose uptake into pancreatic β cells by means of the glucose transporter GLUT-2, which has a high Michaelis constant, is essential for the normal insulin secretory response to hyperglycemia. In both autoimmune and nonautoimmune diabetes, this glucose transport is reduced as a consequence of down-regulation of the normal β-cell transporter. In autoimmune diabetes, circulating immunoglobulins can further impair this glucose transport by inhibiting functionally intact transporters. Insights into mechanisms of the unresponsiveness of β cells to hyperglycemia may improve the management and prevention of diabetes.

  13. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N

    1989-01-01

    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...

  14. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  15. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  16. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  17. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Richard Brad Jones

    2014-08-01

    Full Text Available Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis, such as suberanilohydroxamic acid (SAHA, romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL. Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.

  18. Contributions of cell growth and biochemical reactions to nongenetic variability of cells.

    NARCIS (Netherlands)

    Schwabe, A.; Bruggeman, F.J.

    2014-01-01

    Cell-to-cell variability in the molecular composition of isogenic, steady-state growing cells arises spontaneously from the inherent stochasticity of intracellular biochemical reactions and cell growth. Here, we present a general decomposition of the total variance in the copy number per cell of a

  19. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Nahyun Choi

    2018-02-01

    Full Text Available Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs. We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif ligand 1 (CXCL1, platelet-derived endothelial cell growth factor (PD-ECGF, and platelet-derived growth factor-C (PDGF-C. Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2 phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  20. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  1. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children

    Science.gov (United States)

    Undernourished children exhibit impaired development of their gut microbiota. Transplanting microbiota from 6- and 18-month-old healthy or undernourished Malawian donors into young germ-free mice that were fed a Malawian diet revealed that immature microbiota from undernourished infants and children...

  2. Predictors of Growth or Attrition of the First Language in Latino Children with Specific Language Impairment

    Science.gov (United States)

    Simon-Cereijido, Gabriela; Gutierrez-Clellen, Vera F.; Sweet, Monica

    2013-01-01

    We investigated the factors that may help understand the differential rates of language development in the home language (i.e., Spanish) of Latino preschoolers with specific language impairment. Children were randomly assigned to either bilingual or English-only small group interventions and followed from preschool to kindergarten. Predictors of…

  3. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  4. Longitudinal bone growth is impaired by direct involvement of caffeine with chondrocyte differentiation in the growth plate.

    Science.gov (United States)

    Choi, Hyeonhae; Choi, Yuri; Kim, Jisook; Bae, Jaeman; Roh, Jaesook

    2017-01-01

    We showed previously that caffeine adversely affects longitudinal bone growth and disrupts the histomorphometry of the growth plate during the pubertal growth spurt. However, little attention has been paid to the direct effects of caffeine on chondrocytes. Here, we investigated the direct effects of caffeine on chondrocytes of the growth plate in vivo and in vitro using a rapidly growing young rat model, and determined whether they were related to the adenosine receptor signaling pathway. A total of 15 male rats (21 days old) were divided randomly into three groups: a control group and two groups fed caffeine via gavage with 120 and 180 mg kg -1  day -1 for 4 weeks. After sacrifice, the tibia processed for the analysis of the long bone growth and proliferation of chondrocytes using tetracycline and BrdU incorporation, respectively. Caffeine-fed animals showed decreases in matrix mineralization and proliferation rate of growth plate chondrocytes compared with the control. To evaluate whether caffeine directly affects chondrocyte proliferation and chondrogenic differentiation, primary rat chondrocytes were isolated from the growth plates and cultured in either the presence or absence of caffeine at concentrations of 0.1-1 mm, followed by determination of the cellular proliferation or expression profiles of cellular differentiation markers. Caffeine caused significant decreases in extracellular matrix production, mineralization, and alkaline phosphatase activity, accompanied with decreases in gene expression of the cartilage-specific matrix proteins such as aggrecan, type II collagen and type X. Our results clearly demonstrate that caffeine is capable of interfering with cartilage induction by directly inhibiting the synthetic activity and orderly expression of marker genes relevant to chondrocyte maturation. In addition, we found that the adenosine type 1 receptor signaling pathway may be partly involved in the detrimental effects of caffeine on chondrogenic

  5. Impaired T-lymphocyte colony formation by cord blood mononuclear cells

    International Nuclear Information System (INIS)

    Herrod, H.G.; Valenski, W.R.

    1982-01-01

    When compared to adult mononuclear cells, cord blood mononuclear cells demonstrated significantly decreased T-lymphocyte colony formation (1351 +/- 643 vs 592 +/- 862, P less than 0.01). This diminished colony-forming activity did not appear to be associated with impaired responsiveness to the stimulant phytohemagglutinin or with excessive suppressor-cell activity. Irradiation reduced the colony-forming capacity of cord blood mononuclear cells more than it did that of adult mononuclear cells. Depletion of adherent cells reduced cord blood mononuclear-cell colony-forming capacity by 40%, while similar treatment reduced adult colony formation by 10%. Lymphocyte proliferation in liquid culture of cord and adult cells was minimally affected by these procedures. The colony-forming capacity of cord blood could be enhanced by the addition of irradiated adult cells (284 +/- 72 vs 752 +/- 78, P less than 0.01). This enhancement was demonstrated to be due to a soluble factor produced by a population of irradiated adult cells depleted of the OKT8+ subpopulation of lymphocytes. These results indicate that the progenitor cells of T-lymphocyte colonies in cord blood have distinct biologic characteristics when compared to colony progenitors present in adult blood. This assay may prove to be useful in our efforts to understand the differentiation of T-cell function in man

  6. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    Science.gov (United States)

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

    Science.gov (United States)

    Hatazawa, Yukino; Ono, Yusuke; Hirose, Yuma; Kanai, Sayaka; Fujii, Nobuharu L; Machida, Shuichi; Nishino, Ichizo; Shimizu, Takahiko; Okano, Masaki; Kamei, Yasutomi; Ogawa, Yoshihiro

    2018-03-01

    DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

  8. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  9. Nerve Growth Factor in Cancer Cell Death and Survival

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M., E-mail: adrienne.gorman@nuigalway.ie [Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway (Ireland)

    2011-02-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75{sup NTR}, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75{sup NTR}. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75{sup NTR}. This latter signaling through p75{sup NTR} promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75{sup NTR} mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer.

  10. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M.

    2011-01-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75 NTR , a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75 NTR . For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75 NTR . This latter signaling through p75 NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75 NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  11. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential.

    Science.gov (United States)

    Efimenko, Anastasia; Dzhoyashvili, Nina; Kalinina, Natalia; Kochegura, Tatiana; Akchurin, Renat; Tkachuk, Vsevolod; Parfyonova, Yelena

    2014-01-01

    Tissue regeneration is impaired in aged individuals. Adipose-derived mesenchymal stromal cells (ADSCs), a promising source for cell therapy, were shown to secrete various angiogenic factors and improve vascularization of ischemic tissues. We analyzed how patient age affected the angiogenic properties of ADSCs. ADSCs were isolated from subcutaneous fat tissue of patients with coronary artery disease (CAD; n = 64, 43-77 years old) and without CAD (n = 31, 2-82 years old). ADSC phenotype characterized by flow cytometry was CD90(+)/CD73(+)/CD105(+)/CD45(-)/CD31(-) for all samples, and these cells were capable of adipogenic and osteogenic differentiation. ADSCs from aged patients had shorter telomeres (quantitative reverse transcription polymerase chain reaction) and a tendency to attenuated telomerase activity. ADSC-conditioned media (ADSC-CM) stimulated capillary-like tube formation by endothelial cells (EA.hy926), and this effect significantly decreased with the age of patients both with and without CAD. Angiogenic factors (vascular endothelial growth factor, placental growth factor, hepatocyte growth factor, angiopoetin-1, and angiogenin) in ADSC-CM measured by enzyme-linked immunosorbent assay significantly decreased with patient age, whereas levels of antiangiogenic factors thrombospondin-1 and endostatin did not. Expression of angiogenic factors in ADSCs did not change with patient age (real-time polymerase chain reaction); however, gene expression of factors related to extracellular proteolysis (urokinase and its receptor, plasminogen activator inhibitor-1) and urokinase-type plasminogen activator receptor surface expression increased in ADSCs from aged patients with CAD. ADSCs from aged patients both with and without CAD acquire aging characteristics, and their angiogenic potential declines because of decreasing proangiogenic factor secretion. This could restrict the effectiveness of autologous cell therapy with ADSCs in aged patients.

  12. Liberal red blood cell transfusions impair quality of life after cardiac surgery.

    Science.gov (United States)

    González-Pérez, A; Al-Sibai, J Z; Álvarez-Fernández, P; Martínez-Camblor, P; Argüello-Junquera, M; García-Gala, J M; Martínez-Revuelta, E; Silva, J; Morís, C; Albaiceta, G M

    2018-03-12

    The optimal blood management after cardiac surgery remains controversial. Moreover, blood transfusions may have an impact on long-term outcomes. The aim of this study is to characterize the impact of liberal red blood cell transfusions on Health-Related Quality of life (HRQoL) after cardiac surgery. We studied a cohort of 205 consecutive patients after ICU discharge. Baseline characteristics and clinical data were recorded, and HRQoL was assessed using the EuroQoL-5D instrument, applied 6 months after ICU discharge. A specific question regarding the improvement in the quality of life after the surgical intervention was added to the HRQoL questionnaire. Risk factors related to impaired quality of life were identified using univariate comparisons and multivariate regression techniques. The median (interquartile range, IQR) of transfused red blood cells was 3 (1-4). Among 205 patients, 178 were studied 6 months after discharge. Impairment in at least one dimension of the EuroQoL-5D questionnaire was observed in 120 patients, with an overall score of 0.8 (IQR 0.61-1). The number of red blood cell transfusions was related to an impaired HRQoL (OR 1.17 per additional unit, 95% confidence interval 1.03-1.36, p=0.03), a trend to lower visual analog scale score (coefficient -0.75 per additional unit, 95% confidence interval -1.61 to 0.1, p=0.09) and an absence of improvement in HRQoL after surgery compared to the previous status (OR 1.13, 95% confidence interval 1.03-1.25, p=0.01). Liberal red blood cell transfusions increase the risk of impaired HRQoL after cardiac surgery. Copyright © 2018 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  13. Role of growth factors in the growth of normal and transformed cells

    International Nuclear Information System (INIS)

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both 125 I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product

  14. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Jianyun Liu

    2018-01-01

    Full Text Available Neurofibromin 1 (NF1 is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.

  15. SHIP-1 Deficiency in AID+ B Cells Leads to the Impaired Function of B10 Cells with Spontaneous Autoimmunity.

    Science.gov (United States)

    Chen, Yingjia; Hu, Fanlei; Dong, Xuejiao; Zhao, Meng; Wang, Jing; Sun, Xiaolin; Kim, Tae Jin; Li, Zhanguo; Liu, Wanli

    2017-11-01

    Unlike conventional B cells, regulatory B cells exhibit immunosuppressive functions to downregulate inflammation via IL-10 production. However, the molecular mechanism regulating the production of IL-10 is not fully understood. In this study, we report the finding that activation-induced cytidine deaminase (AID) is highly upregulated in the IL-10-competent B cell (B10) cell from Innp5d fl/fl Aicda Cre/+ mice, whereas the 5' inositol phosphatase SHIP-1 is downregulated. Notably, SHIP-1 deficiency in AID + B cells leads to a reduction in cell count and impaired IL-10 production by B10 cells. Furthermore, the Innp5d fl/fl Aicda Cre/+ mouse model shows B cell-dependent autoimmune lupus-like phenotypes, such as elevated IgG serum Abs, formation of spontaneous germinal centers, production of anti-dsDNA and anti-nuclear Abs, and the obvious deposition of IgG immune complexes in the kidney with age. We observe that these lupus-like phenotypes can be reversed by the adoptive transfer of B10 cells from control Innp5d fl/fl mice, but not from the Innp5d fl/fl Aicda Cre/+ mice. This finding highlights the importance of defective B10 cells in Innp5d fl/fl Aicda Cre/+ mice. Whereas p-Akt is significantly upregulated, MAPK and AP-1 activation is impaired in B10 cells from Innp5d fl/fl Aicda Cre/+ mice, resulting in the reduced production of IL-10. These results show that SHIP-1 is required for the maintenance of B10 cells and production of IL-10, and collectively suggests that SHIP-1 could be a new potential therapeutic target for the treatment of autoimmune diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice.

    Science.gov (United States)

    Nakajima, Sanae; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Makoto; Mikami, Toshio

    2010-08-25

    Chronic stress impairs cognitive function and hippocampal neurogenesis. This impairment is attributed to increases in oxidative stress, which result in the accumulation of lipid peroxide. On the other hand, voluntary exercise enhances cognitive function, hippocampal neurogenesis, and antioxidant capacity in normal animals. However, the effects of voluntary exercise on cognitive function, neurogenesis, and antioxidants in stressed mice are unclear. This study was designed to investigate whether voluntary exercise cures stress-induced impairment of cognitive function accompanied by improvement of hippocampal neurogenesis and increases in antioxidant capacity. Stressed mice were exposed to chronic restraint stress (CRS), which consisted of 12h immobilization daily and feeding in a small cage, for 8 weeks. Exercised mice were allowed free access to a running wheel during their exposure to CRS. At the 6th week, cognitive function was examined using the Morris water maze (MWM) test. Daily voluntary exercise restored stress-induced impairment of cognitive function and the hippocampal cell proliferation of newborn cells but not cell survival. Voluntary exercise increased insulin-like growth factor 1 (IGF-1) protein and mRNA expression in the cerebral cortex and liver, respectively. In addition, CRS resulted in a significant increase in the number of 4-hydrosynonenal (4-HNE)-positive cells in the hippocampal dentate gyrus; whereas, voluntary exercise inhibited it and enhanced glutathione s-transferases (GST) activity in the brain. These findings suggest that voluntary exercise attenuated the stress-induced impairment of cognitive function accompanied by improvement of cell proliferation in the dentate gyrus. This exercise-induced improvement was attributed to exercise-induced enhancement of IGF-1 protein and GST activity in the brain. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1

    Directory of Open Access Journals (Sweden)

    Guihua Qiu

    2017-05-01

    Full Text Available Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1 leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.

  18. Impairment of T-regulatory cells in cord blood of atopic mothers.

    Science.gov (United States)

    Schaub, Bianca; Liu, Jing; Höppler, Sabine; Haug, Severine; Sattler, Christine; Lluis, Anna; Illi, Sabina; von Mutius, Erika

    2008-06-01

    Maternal atopy is a strong predictor for the development of childhood allergic diseases. The underlying mechanisms are ill defined, yet regulatory T (Treg) and T(H)17 cells may play a key role potentially shaping the early immune system toward a proallergic or antiallergic immune regulation. We examined T(H)1/T(H)2, Treg, and T(H)17 cell responses to innate (lipid A/peptidoglycan) and mitogen/adaptive (phytohemagglutinin/Dermatophagoides pteronyssinus 1) immune stimulation in cord blood from offspring of atopic/nonatopic mothers. Cord blood mononuclear cells from 161 healthy neonates (59% nonatopic, 41% atopic mothers) were investigated regarding Treg and T(H)17 cells (mRNA/surface markers), suppressive function, and proliferation/cytokine secretion. Cord blood from offspring of atopic mothers showed fewer innate-induced Treg cells (CD4(+)CD25(+)high), lower mRNA expression of associated markers (glucocorticoid-induced tumor necrosis factor receptor-related protein/lymphocyte activation gene 3; P cell function was impaired in mitogen-induced suppression of T effector cells in cord blood of offspring from atopic mothers (P = .03). Furthermore, IL-10 and IFN-gamma secretion were decreased in innate-stimulated cord blood of offspring from atopic mothers (P = .04/.05). Innate-induced IL-17 was independent of maternal atopy and highly correlated with IL-13 secretion. In offspring of atopic mothers, Treg cell numbers, expression, and function were impaired at birth. T(H)17 cells were correlated with T(H)2 cells, independently of maternal atopy.

  19. Radiomimetic effect of cisplatin on cucumber root development: the relationship between cell division and cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovsky, J. G. [Division of Experimental Biology, Center for Biological Research (CIB), PO Box 128, La Paz, BCS 23000 (Mexico)

    1993-07-01

    Cisplatin [DDP, cis-dichlorodiammine platinum (II)], a strong cytostatic and antineoplastic agent, was tested on seedlings of cucumber Cucumis sativus L. for its general effect on root development and its particular effects on root cell division and cell growth. DDP was characterized as a radiomimetic compound since both DDP (1·3 × 10{sup -5} M) and γ-irradiation (2·5-10 kGy) drastically and irreversibly stopped development of embryonic lateral root primordia (LRPs) in the radicle by inhibiting both mitotic activity and cell growth. In 20% of the LRPs of DDP-treated roots, cells did not divide at all. Dividing cells completed no more than two cell cycles. These effects were specific because when DDP was available to the roots only at the onset of cell division, cell proliferation and cell growth were similar to that produced by constant incubation. Neither DDP nor γ-irradiation affected non-meristematic cell elongation. It was concluded that cell growth of meristematic cells is closely related to cell division. However, non-meristematic cell growth is independent of DNA damage. This suggests DDP as a tool to reveal these autonomous processes in plants development and to detect tissue compartments in mature plant embryos which contain potentially non-meristematic cells. (author)

  20. Using an integrated approach to link biomarker responses and physiological stress to growth impairment of cadmium-exposed larval topsmelt

    International Nuclear Information System (INIS)

    Rose, Wendy L.; Nisbet, Roger M.; Green, Peter G.; Norris, Sarah; Fan, Teresa; Smith, Edmund H.; Cherr, Gary N.; Anderson, Susan L.

    2006-01-01

    In this study, we used an integrated approach to determine whether key biochemical, cellular, and physiological responses were related to growth impairment of cadmium (Cd)-exposed larval topsmelt (Atherinops affinis). Food intake (Artemia franciscana nauplii), oxygen consumption rates, apoptotic DNA fragmentation (TUNEL assay), and metallothionein (MT)-like protein levels, were separately measured in relation to growth of larval topsmelt aqueously exposed to sublethal doses of Cd for 14 days. Cadmium accumulation and concentrations of abundant metals were also evaluated in a subset of fish. Fish in the highest Cd treatments (50 and 100 ppb Cd) were smaller in final mean weight and length, and consumed fewer A. franciscana nauplii than control fish. Food intake was positively correlated with final weight of larval topsmelt in Cd and control treatments; food intake increased as final weight of the fish increased. Oxygen consumption rates were positively correlated with Cd concentration and mean oxygen consumption rates were inversely correlated with final mean weight of topsmelt; the smallest fish were found in the highest Cd treatment and were respiring at higher rates than control fish. Apoptotic DNA fragmentation was concentration-dependent and was associated with diminished growth. Apoptotic DNA fragmentation was elevated in the gill of fish exposed to 50 ppb Cd, and in the gut, gill, and liver of fish exposed to 100 ppb Cd. Metallothionein (MT)-like protein levels in fish from 100 ppb Cd treatments were significantly higher than those in other treatments. Oxygen consumption rates may have increased as a compensatory response to Cd exposure. However, it is likely that the energy produced was allocated to an increased metabolic demand due to apoptosis, MT synthesis, and changes in ion regulation. This diversion of energy expenditures could contribute to growth impairment of Cd-exposed fish

  1. Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome.

    Directory of Open Access Journals (Sweden)

    Ingrid van der Pluijm

    2007-01-01

    Full Text Available Cockayne syndrome (CS is a photosensitive, DNA repair disorder associated with progeria that is caused by a defect in the transcription-coupled repair subpathway of nucleotide excision repair (NER. Here, complete inactivation of NER in Csb(m/m/Xpa(-/- mutants causes a phenotype that reliably mimics the human progeroid CS syndrome. Newborn Csb(m/m/Xpa(-/- mice display attenuated growth, progressive neurological dysfunction, retinal degeneration, cachexia, kyphosis, and die before weaning. Mouse liver transcriptome analysis and several physiological endpoints revealed systemic suppression of the growth hormone/insulin-like growth factor 1 (GH/IGF1 somatotroph axis and oxidative metabolism, increased antioxidant responses, and hypoglycemia together with hepatic glycogen and fat accumulation. Broad genome-wide parallels between Csb(m/m/Xpa(-/- and naturally aged mouse liver transcriptomes suggested that these changes are intrinsic to natural ageing and the DNA repair-deficient mice. Importantly, wild-type mice exposed to a low dose of chronic genotoxic stress recapitulated this response, thereby pointing to a novel link between genome instability and the age-related decline of the somatotroph axis.

  2. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    Science.gov (United States)

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import

    International Nuclear Information System (INIS)

    Rousselet, Estelle; Richaud, Pierre; Douki, Thierry; Chantegrel, Jocelyne Garcia; Favier, Alain; Bouron, Alexandre; Moulis, Jean-Marc

    2008-01-01

    A human epithelial cell line (HZR) growing with high zinc concentrations has been analyzed for its ability to sustain high cadmium concentrations. Exposure to up to 200 μM of cadmium acetate for 24 h hardly impacted viability, whereas most of parental HeLa cells were killed by less than 10 μM of cadmium. Upon challenge by 35 fold higher cadmium concentrations than HeLa cells, HZR cells did not display increased DNA damage, increased protein oxidation, or changed intracellular cadmium localization. Rather, the main cause of resistance against cadmium was by avoiding cadmium entry into cells, which differs from that against zinc as the latter accumulates inside cells. The zinc-resistant phenotype of these cells was shown to also impair extracellular manganese uptake. Manganese and cadmium competed for entry into HeLa cells. Probing formerly identified cadmium or manganese transport systems in different animal cells did not evidence any significant change between HeLa and HZR cells. These results reveal zinc adaptation influences manganese and cadmium cellular traffic and they highlight previously unknown connections among homeostasis of divalent metals

  4. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  5. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    Science.gov (United States)

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  6. 1Protein Energy Malnutrition Impairs Homeostatic Proliferation of Memory CD8 T cells

    Science.gov (United States)

    Iyer, Smita S.; Chatraw, Janel Hart; Tan, Wendy G.; Wherry, E. John; Becker, Todd C.; Ahmed, Rafi; Kapasi, Zoher F.

    2011-01-01

    Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. Here we show that protein energy malnutrition (PEM) induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate-protein (AP) fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV) immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that PEM caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. While antigen-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less-responsive to poly(I:C)-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13 resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals. PMID:22116826

  7. Protein energy malnutrition impairs homeostatic proliferation of memory CD8 T cells.

    Science.gov (United States)

    Iyer, Smita S; Chatraw, Janel Hart; Tan, Wendy G; Wherry, E John; Becker, Todd C; Ahmed, Rafi; Kapasi, Zoher F

    2012-01-01

    Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. In this study, we show that protein-energy malnutrition induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate protein (AP)-fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV)-immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that protein-energy malnutrition caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. Whereas Ag-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less responsive to polyinosinic-polycytidylic acid-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13, resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals.

  8. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Garcia-Sanchez, Lourdes; Ruy, Deborah Clea; Fernandez-Bermejo, Miguel; Salido, Gines M; Gonzalez, Antonio

    2014-09-17

    Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4

    NARCIS (Netherlands)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B.; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-01-01

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The

  10. No Weight Catch-Up Growth of SGA Infants Is Associated with Impaired Insulin Sensitivity during the Early Postnatal Period

    Directory of Open Access Journals (Sweden)

    Tong-yan Han

    2010-01-01

    Full Text Available Objective. To investigate the relationship between weight catch-up growth and insulin sensitivity in small for gestational age (SGA infants. Methods. Forty-four singleton SGA subjects met the inclusion criteria and finished-3-month followup. Body weight, length, fasting glucose, and fasting insulin (FI levels were measured at 3 days and 3 months. Insulin sensitivity was evaluated by FI and homeostasis model assessment (HOMA. Results. According to the change of weight Z-score, forty-four subjects were divided into two groups: noncatch-up growth (NCUG and catch-up growth (CUG. By 3 months of age, the body weight, body length and BMI of NCUG group were significantly lower than those of CUG group. The FI and HOMA were significantly higher in NCUG group. The change of weight Z-score during 3 months was inversely related to the HOMA at 3 months. Conclusion. Our data exemplified that no weight catch-up growth during the first 3 months was associated with impaired insulin sensitivity in SGA infants.

  11. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    Directory of Open Access Journals (Sweden)

    Jean-Claude Mollet

    2013-03-01

    Full Text Available The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.

  12. The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jelena Markovic

    2009-07-01

    Full Text Available Glutathione is considered essential for survival in mammalian cells and yeast but not in prokaryotic cells. The presence of a nuclear pool of glutathione has been demonstrated but its role in cellular proliferation and differentiation is still a matter of debate.We have studied proliferation of 3T3 fibroblasts for a period of 5 days. Cells were treated with two well known depleting agents, diethyl maleate (DEM and buthionine sulfoximine (BSO, and the cellular and nuclear glutathione levels were assessed by analytical and confocal microscopic techniques, respectively. Both agents decreased total cellular glutathione although depletion by BSO was more sustained. However, the nuclear glutathione pool resisted depletion by BSO but not with DEM. Interestingly, cell proliferation was impaired by DEM, but not by BSO. Treating the cells simultaneously with DEM and with glutathione ethyl ester to restore intracellular GSH levels completely prevented the effects of DEM on cell proliferation.Our results demonstrate the importance of nuclear glutathione in the control of cell proliferation in 3T3 fibroblasts and suggest that a reduced nuclear environment is necessary for cells to progress in the cell cycle.

  13. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases......., the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  14. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  15. BRE enhances in vivo growth of tumor cells

    International Nuclear Information System (INIS)

    Chan, Ben Chung-Lap; Li Qing; Chow, Stephanie Ka-Yee; Ching, Arthur Kar-Keung; Liew, Choong Tsek; Lim, Pak-Leong; Lee, Kenneth Ka-Ho; Chan, John Yeuk-Hon; Chui, Y.-L.

    2005-01-01

    Human BRE, a death receptor-associating intracellular protein, attenuates apoptotic response of human and mouse tumor cell lines to death receptor stimuli in vitro. In this report, we addressed whether the in vitro antiapoptotic effect of BRE could impact on tumor growth in vivo. We have shown that the mouse Lewis lung carcinoma D122 stable transfectants of human BRE expression vector developed into local tumor significantly faster than the stable transfectants of empty vector and parental D122, in both the syngeneic C57BL/6 host and nude mice. In vitro growth of the BRE stable transfectants was, however, not accelerated. No significant difference in metastasis between the transfectants and the parental D122 was detected. Thus, overexpression of BRE promotes local tumor growth but not metastasis. We conclude that the enhanced tumor growth is more likely due to the antiapoptotic activity of BRE than any direct effect of the protein on cell proliferation

  16. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4

    OpenAIRE

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Espindola Camacho, Carolina; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A.L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.

    2016-01-01

    Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but ...

  17. Sodium arsenite impairs insulin secretion and transcription in pancreatic β-cells

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia

    2006-01-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic β-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic β-cells. Cells were treated with 0.5, 1, 2, 5 and 10 μM sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 μM) decreased β-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 μM sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 μM treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 μM sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 μM sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic β-cell functions, particularly insulin synthesis and secretion

  18. Cognitive Impairment in Temporal Lobe Epilepsy: Role of Online and Offline Processing of Single Cell Information

    Science.gov (United States)

    Titiz, A. S.; Mahoney, J. M.; Testorf, M. E.; Holmes, G. L.; Scott, R. C.

    2014-01-01

    Cognitive impairment is a common comorbidity in temporal lobe epilepsy (TLE) and is often considered more detrimental to quality of life than seizures. While it has been previously shown that the encoding of memory during behavior is impaired in the pilocarpine model of TLE in rats, how this information is consolidated during the subsequent sleep period remains unknown. In this study, we first report marked deficits in spatial memory performance and severe cell loss in the CA1 layer of the hippocampus lower spatial coherence of firing in TLE rats. We then present the first evidence that the reactivation of behavior-driven patterns of activity of CA1 place cells in the hippocampus is intact in TLE rats. Using a template-matching method, we discovered that real-time (3–5 s) reactivation structure was intact in TLE rats. Furthermore, we estimated the entropy rate of short time scale (~250 ms) bursting activity using block entropies and found that significant, extended temporal correlations exist in both TLE and Control rats. Fitting a first order Markov Chain model to these bursting time series, we found that long sequences derived from behavior were significantly enriched in the Markov model over corresponding models fit on randomized data confirming the presence of replay in shorter time scales. We propose that the persistent consolidation of poor spatial information in both real-time and during bursting activity may contribute to memory impairments in TLE rats. PMID:24799359

  19. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  20. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    LENUS (Irish Health Repository)

    O'Shea, Donal

    2012-02-01

    BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg\\/m(2)) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +\\/- 13% vs 42% +\\/-12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). CONCLUSIONS\\/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  1. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    LENUS (Irish Health Repository)

    O'Shea, Donal

    2010-01-01

    BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg\\/m(2)) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +\\/- 13% vs 42% +\\/-12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). CONCLUSIONS\\/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  2. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    Directory of Open Access Journals (Sweden)

    Donal O'Shea

    Full Text Available BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg/m(2 and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008. NK function was also significantly compromised in obese patients (30% +/- 13% vs 42% +/-12%, p = 0.04. Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001. NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01. Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002 and lean controls (p = 0.01. CONCLUSIONS/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  3. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells.

    Science.gov (United States)

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-03-28

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies.

  4. Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Pengtao [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049 (China); Huang, Zhen [Department of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021 (China); Zhao, Hong, E-mail: zhaohong9@sina.com [Department of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021 (China); Wei, Taotao, E-mail: weitt@moon.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2013-04-19

    Highlights: •Free fatty acids exposure induces elevated autophagy. •H{sub 2}O{sub 2} inhibits autophagic flux through impairing the fusion between autophagosomes and lysosomes. •Inhibition of autophagy potentiates H{sub 2}O{sub 2}-induced cell death. -- Abstract: Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, but the pathogenesis of NAFLD is not fully clear. The aim of this study was to determine whether autophagy plays a role in the pathogenesis of NAFLD. We found that the levels of autophagy were elevated in hepatoma cells upon exposure to free fatty acids, as confirmed by the increase in the number of autophagosomes. However, exposure of hepatoma cells to H{sub 2}O{sub 2} and TNF-α, two typical “second hit” factors, increased the initiation of autophagy but inhibited the autophagic flux. The inhibition of autophagy sensitized cells to pro-apoptotic stimuli. Taken together, our results suggest that autophagy acts as a protective mechanism in the pathogenesis of NAFLD and that impairment of autophagy might induce more severe lesions of the liver. These findings will be a benefit to the understanding of the pathogenesis of NAFLD and might suggest a strategy for the prevention and cure of NAFLD.

  5. Lithium Impairs Kidney Development and Inhibits Glycogen Synthase Kinase-3β in Collecting Duct Principal Cells

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    level significantly whereas total GSK-3β abundance was unaltered. Li+ treatment increased α-Smooth Muscle Actin (α-SMA) protein level significantly whereas E-cadherin expression was unaltered. In summary, Li+ treatment impairs postnatal development of the kidney cortex and outer medulla and increases pGSK......The postnatal rat kidney is highly susceptible to Lithium (Li+), which leads to significant tissue injury. We hypothesized that Li+ impairs development of the kidney through entry into epithelial cells of the distal nephron, inhibition of Glycogen Synthase Kinase-3β (GSK-3β) through phosphorylation...... on serine9 (pGSK-3β)and subsequent epithelial to mesenchymal dedifferentiation (EMT). GSK-3β immunoreactive protein was associated with collecting ducts in developing and adult human and rat kidney. Total GSK-3β protein abundance was stable in medulla while it decreased in cortex in the postnatal period...

  6. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action

    DEFF Research Database (Denmark)

    Faerch, K; Vaag, A; Holst, Jens Juul

    2008-01-01

    .892) compared with NGT. Hepatic insulin sensitivity was normal in i-IFG and i-IGT individuals (p > or = 0.179). Individuals with i-IGT had peripheral insulin resistance (p = 0.003 vs NGT), and consequently the disposition index (DI; insulin secretion x insulin sensitivity) during IVGTT (DI(IVGTT))) was reduced......AIMS/HYPOTHESIS: The impact of strategies for prevention of type 2 diabetes in isolated impaired fasting glycaemia (i-IFG) vs isolated impaired glucose tolerance (i-IGT) may differ depending on the underlying pathophysiology. We examined insulin secretion during OGTTs and IVGTTs, hepatic...

  7. Growth mechanics of bacterial cell wall and morphology of bacteria

    Science.gov (United States)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  8. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  9. Cell longevity and sustained primary growth in palm stems.

    Science.gov (United States)

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  10. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    Science.gov (United States)

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  11. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.

    Science.gov (United States)

    Horobin, Jarod T; Sabapathy, Surendran; Simmonds, Michael J

    2017-11-01

    The supra-physiological shear stress that blood is exposed to while traversing mechanical circulatory assist devices affects the physical properties of red blood cells (RBCs), impairs RBC deformability, and may induce hemolysis. Previous studies exploring RBC damage following exposure to supra-physiological shear stress have employed durations exceeding clinical instrumentation, thus we explored changes in RBC deformability following exposure to shear stress below the reported "hemolytic threshold" using shear exposure durations per minute (i.e., duty-cycles) reflective of that employed by circulatory assist devices. Blood collected from 20 male donors, aged 18-38 years, was suspended in a viscous medium and exposed to an intermittent shear stress protocol of 1 s at 100 Pa, every 60 s for 60 duty-cycles. During the remaining 59 s/min, the cells were left at stasis until the subsequent duty-cycle commenced. At discrete time points (15/30/45/60 duty-cycles), an ektacytometer measured RBC deformability immediately after shear exposure at 100 Pa. Plasma-free hemoglobin, a measurement of hemolysis, was quantified via spectrophotometry. Supra-physiological shear stress impaired RBC properties, as indicated by: (1) decreased maximal elongation of RBCs at infinite shear stress following 15 duty-cycles (P supra-physiological shear stress protocol (100 Pa) following exposure to 1 duty-cycle (F (1.891, 32.15) = 12.21, P = 0.0001); and (3) increased plasma-free hemoglobin following 60 duty-cycles (P supra-physiological shear stress, impairs RBC deformability, with the extent of impairment exacerbated with each duty-cycle, and ultimately precipitates hemolysis. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Doxycycline Impairs Mitochondrial Function and Protects Human Glioma Cells from Hypoxia-Induced Cell Death: Implications of Using Tet-Inducible Systems.

    Science.gov (United States)

    Luger, Anna-Luisa; Sauer, Benedikt; Lorenz, Nadja I; Engel, Anna L; Braun, Yannick; Voss, Martin; Harter, Patrick N; Steinbach, Joachim P; Ronellenfitsch, Michael W

    2018-05-17

    Inducible gene expression is an important tool in molecular biology research to study protein function. Most frequently, the antibiotic doxycycline is used for regulation of so-called tetracycline (Tet)-inducible systems. In contrast to stable gene overexpression, these systems allow investigation of acute and reversible effects of cellular protein induction. Recent reports have already called for caution when using Tet-inducible systems as the employed antibiotics can disturb mitochondrial function and alter cellular metabolism by interfering with mitochondrial translation. Reprogramming of energy metabolism has lately been recognized as an important emerging hallmark of cancer and is a central focus of cancer research. Therefore, the scope of this study was to systematically analyze dose-dependent metabolic effects of doxycycline on a panel of glioma cell lines with concomitant monitoring of gene expression from Tet-inducible systems. We report that doxycycline doses commonly used with inducible expression systems (0.01⁻1 µg/mL) substantially alter cellular metabolism: Mitochondrial protein synthesis was inhibited accompanied by reduced oxygen and increased glucose consumption. Furthermore, doxycycline protected human glioma cells from hypoxia-induced cell death. An impairment of cell growth was only detectable with higher doxycycline doses (10 µg/mL). Our findings describe settings where doxycycline exerts effects on eukaryotic cellular metabolism, limiting the employment of Tet-inducible systems.

  13. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  14. Impaired growth in the polychaete Armandia brevis exposed to tributyltin in sediment.

    Science.gov (United States)

    Meador, J P; Rice, C A

    2001-03-01

    Juveniles of the opheliid polychaete, Armandia brevis, were exposed to sediment-associated tributyltin (TBT) for 42 days to evaluate toxicity and bioaccumulation. Growth in this species was inhibited in a dose-response fashion by increasing concentrations of TBT. Even though the biota-sediment accumulation factor (BSAF) for TBT declined for the higher sediment concentrations, the total butyltins in tissue increased over all sediment concentrations. At the highest sediment concentrations, polychaetes bioaccumulated less TBT than expected, which was most likely due to reduced uptake and continued metabolism of the parent compound. The less than expected BSAF values exhibited by animals at the exposure concentrations causing severe effects are an important finding for assessing responses in the field. It appears that severe biological effects can occur in long-term experiments without the expected high tissue concentrations; an observation likely explained by altered toxicokinetics. Analysis of variance determined the lowest observed effect concentration for growth to be 191 ng/g sediment dry wt. for 21 days of exposure and 101 ng/g sediment dry wt. at day 42, indicating that 21 days was insufficient for delineating the steady-state toxicity response. When based on regression analysis, the sediment concentration causing a 25% inhibition in growth at 42 days exposure was 93 ng/g dry wt. (total organic carbon = 0.58%). A dose-response association was also determined for polychaete net weight and TBT in tissue. The tissue residue associated with a 25% reduction in growth was 2834 ng/g dry wt. at day 42. A comparison of these results with previous work indicates that juveniles are approximately three times more sensitive than adults to TBT exposure. The sediment concentrations affecting growth in this species are commonly found in urban waterways indicating potentially severe impacts for this and other sensitive species.

  15. Interdependence of cell growth and gene expression: origins and consequences.

    Science.gov (United States)

    Scott, Matthew; Gunderson, Carl W; Mateescu, Eduard M; Zhang, Zhongge; Hwa, Terence

    2010-11-19

    In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.

  16. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.

    Science.gov (United States)

    Jiang, Guosong; Huang, Chao; Li, Jingxia; Huang, Haishan; Wang, Jingjing; Li, Yawei; Xie, Fei; Jin, Honglei; Zhu, Junlan; Huang, Chuanshu

    2018-03-08

    There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.

  17. Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation

    Science.gov (United States)

    Jinde, Seiichiro; Zsiros, Veronika; Jiang, Zhihong; Nakao, Kazuhito; Pickel, James; Kohno, Kenji; Belforte, Juan E.; Nakazawa, Kazu

    2012-01-01

    Summary Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity’s net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5–6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation. PMID:23259953

  18. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Osna, Natalia A., E-mail: nosna@UNMC.edu [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); White, Ronda L.; Donohue, Terrence M. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); Beard, Michael R. [Department of Molecular Biosciences, University of Adelaide (Australia); Tuma, Dean J.; Kharbanda, Kusum K. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States)

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  19. Impaired replication stress response in cells from immunodeficiency patients carrying Cernunnos/XLF mutations.

    Directory of Open Access Journals (Sweden)

    Michal Schwartz

    Full Text Available Non-Homologous End Joining (NHEJ is one of the two major pathways of DNA Double Strand Breaks (DSBs repair. Mutations in human NHEJ genes can lead to immunodeficiency due to its role in V(DJ recombination in the immune system. In addition, most patients carrying mutations in NHEJ genes display developmental anomalies which are likely the result of a general defect in repair of endogenously induced DSBs such as those arising during normal DNA replication. Cernunnos/XLF is a recently identified NHEJ gene which is mutated in immunodeficiency with microcephaly patients. Here we aimed to investigate whether Cernunnos/XLF mutations disrupt the ability of patient cells to respond to replication stress conditions. Our results demonstrate that Cernunnos/XLF mutated cells and cells downregulated for Cernunnos/XLF have increased sensitivity to conditions which perturb DNA replication. In addition, under replication stress, these cells exhibit impaired DSB repair and increased accumulation of cells in G2/M. Moreover Cernunnos/XLF mutated and down regulated cells display greater chromosomal instability, particularly at fragile sites, under replication stress conditions. These results provide evidence for the role of Cernunnos/XLF in repair of DSBs and maintenance of genomic stability under replication stress conditions. This is the first study of a NHEJ syndrome showing association with impaired cellular response to replication stress conditions. These findings may be related to the clinical features in these patients which are not due to the V(DJ recombination defect. Additionally, in light of the emerging important role of replication stress in the early stages of cancer development, our findings may provide a mechanism for the role of NHEJ in preventing tumorigenesis.

  20. Knockdown of E2f1 by RNA interference impairs proliferation of rat cells in vitro

    Directory of Open Access Journals (Sweden)

    Luciana dos Reis Vasques

    2010-01-01

    Full Text Available E2F1 plays a key role in cell-cycle regulation in mammals, since its transcription factor activity controls genes required for DNA synthesis and apoptosis. E2F1 deregulation is a common feature among different tumor types and can be a major cause of cell proliferation. Thus, blocking E2F1 expression by RNA interference represents a promising therapeutic approach. In this study, the introduction of specific short hairpin RNAs (shRNAs reduced E2f1 expression by up to 77%, and impaired rat glioma cell proliferation by approximately 70%, as compared to control cells. Furthermore, we investigated the expression of E2f1 target genes, Cyclin A and Cyclin E. Cyclin A was found to be down-regulated, whereas Cyclin E had similar expression to control cells, indicating that gene(s other than E2f1 control its transcription. Other E2f family members, E2f2 and E2f3, which have been classified in the same subgroup of transcriptional activators, were also analyzed. Expression of both E2f2 and E2f3 was similar to control cells, showing no cross-inactivation or up-regulation to compensate for the absence of E2f1. Nevertheless, their expression was insufficient to maintain the initial proliferation potential. Taken together, our results suggest that shE2f1 is a promising therapy to control tumor cell proliferation.

  1. Inhibition of Cell Division and DNA Replication Impair Mouse-Naïve Pluripotency Exit.

    Science.gov (United States)

    Waisman, Ariel; Vazquez Echegaray, Camila; Solari, Claudia; Cosentino, María Soledad; Martyn, Iain; Deglincerti, Alessia; Ozair, Mohammad Zeeshan; Ruzo, Albert; Barañao, Lino; Miriuka, Santiago; Brivanlou, Ali; Guberman, Alejandra

    2017-09-01

    The cell cycle has gained attention as a key determinant for cell fate decisions, but the contribution of DNA replication and mitosis in stem cell differentiation has not been extensively studied. To understand if these processes act as "windows of opportunity" for changes in cell identity, we established synchronized cultures of mouse embryonic stem cells as they exit the ground state of pluripotency. We show that initial transcriptional changes in this transition do not require passage through mitosis and that conversion to primed pluripotency is linked to lineage priming in the G1 phase. Importantly, we demonstrate that impairment of DNA replication severely blocks transcriptional switch to primed pluripotency, even in the absence of p53 activity induced by the DNA damage response. Our data suggest an important role for DNA replication during mouse embryonic stem cell differentiation, which could shed light on why pluripotent cells are only receptive to differentiation signals during G1, that is, before the S phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    Science.gov (United States)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  3. Augmented internalisation of ferroportin to late endosomes impairs iron uptake by enterocyte-like IEC-6 cells.

    Science.gov (United States)

    Oates, Phillip S; Thomas, Carla

    2005-08-01

    Absorption of iron occurs by duodenal enterocytes, involving uptake by the divalent metal transporter-1 (DMT1) and release by ferroportin. Ferroportin responds to the hepatocyte-produced 25-amino-acid-peptide hepcidin-25 by undergoing internalisation to late endosomes that impair iron release. Ferroportin is also expressed on the apical membrane of polarised Caco-2 cells, rat intestinal cells and in IEC-6 cells (an intestinal epithelial cell line). A blocking antibody to ferroportin also impairs the uptake, but not the release, of iron. In this study IEC-6 cells were used to study the mechanism of impairment or recovery from impairment produced by the blocking antibody and the fate of DMT1 and ferroportin. Uptake of 1 muM Fe(II) was studied by adding the antibody from time 0 and after adding or removing the antibody once a steady state had been reached. Surface binding, maximum iron transport rate V(max) and transporter affinity (K(m)) were measured after impairment of iron uptake. Ferroportin and DMT1 distribution were assessed by immunofluorescence microscopy. Antibody-mediated impairment, or recovery from impairment, of Fe(II) uptake occurred within minutes. Impairment was lost when the antibody was combined with the immunizing peptide. DMT1 and ferroportin undergo internalisation to late endosomes and, in the presence of the antibody, augmented internalisation of DMT1 and ferroportin caused swelling of late endosomes. Surface binding of Fe(II) and iron transport V(max) were reduced by 50%, indicating that the antibody removed membrane-bound DMT1. The ferroportin antibody induced rapid turnover of membrane ferroportin and DMT1 and its internalisation to late endosomes, resulting in impaired Fe(II) uptake.

  4. Adipose-derived stem cells were impaired in restricting CD4+T cell proliferation and polarization in type 2 diabetic ApoE-/- mouse.

    Science.gov (United States)

    Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming

    2017-07-01

    Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-01-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  6. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance.

    Directory of Open Access Journals (Sweden)

    Angela Pizzolla

    Full Text Available The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a 'western' diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND. Respiratory tolerance was induced by repeated intranasal (i.n. administration of ovalbumin (OVA, prior to induction of allergic airway inflammation (AAI by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation.

  7. Characterization of substances that restore impaired cell division of UV-irradiated E. coli B

    International Nuclear Information System (INIS)

    Yoshiyama, Y.; Shimoii, H.; Tamura, G.

    1981-01-01

    Substances which restore impaired cell division in UV-irradiated E. coli B were surveyed among various bacteria. The active substance was found only in several genera of Gram-negative bacteria, i.e., Escherichia, Enterobacter, Salmonella and some species of Pseudomonas. The activity in the dialyzed cell extract of E. coli B/r was observed in the presence of β-NAD and was enhanced by Mg 2+ and Mn 2+ . The active substance was very labile, but the activity was protected by 1 mM dithiothreitol in the process of purification. The activity of a fraction recovered through DEAE-cellulose column chromatography was stimulated by the presence of membrane fraction. Upon treatment with lipid-degrading enzymes and proteases, the division-stimulating activity was lost or reduced. It appears that the inactivation by lipase and phospholipase A2 was due to the formation of lysophospholipids and that a proteinous substance participated in the recovery of impaired cell division of UV-irradiated E. coli B

  8. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    Science.gov (United States)

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  9. NF-κB activation impairs somatic cell reprogramming in ageing.

    Science.gov (United States)

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  10. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  11. STAMP alters the growth of transformed and ovarian cancer cells

    International Nuclear Information System (INIS)

    He, Yuanzheng; Blackford, John A Jr; Kohn, Elise C; Simons, S Stoney Jr

    2010-01-01

    Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC 50 ) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This

  12. Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread growth impairment.

    Directory of Open Access Journals (Sweden)

    Alexander S Bradley

    Full Text Available Hopanoids are sterol-like membrane lipids widely used as geochemical proxies for bacteria. Currently, the physiological role of hopanoids is not well understood, and this represents one of the major limitations in interpreting the significance of their presence in ancient or contemporary sediments. Previous analyses of mutants lacking hopanoids in a range of bacteria have revealed a range of phenotypes under normal growth conditions, but with most having at least an increased sensitivity to toxins and osmotic stress. We employed hopanoid-free strains of Methylobacterium extorquens DM4, uncovering severe growth defects relative to the wild-type under many tested conditions, including normal growth conditions without additional stressors. Mutants overproduce carotenoids-the other major isoprenoid product of this strain-and show an altered fatty acid profile, pronounced flocculation in liquid media, and lower growth yields than for the wild-type strain. The flocculation phenotype can be mitigated by addition of cellulase to the medium, suggesting a link between the function of hopanoids and the secretion of cellulose in M. extorquens DM4. On solid media, colonies of the hopanoid-free mutant strain were smaller than wild-type, and were more sensitive to osmotic or pH stress, as well as to a variety of toxins. The results for M. extorquens DM4 are consistent with the hypothesis that hopanoids are important for membrane fluidity and lipid packing, but also indicate that the specific physiological processes that require hopanoids vary across bacterial lineages. Our work provides further support to emerging observations that the role of hopanoids in membrane robustness and barrier function may be important across lineages, possibly mediated through an interaction with lipid A in the outer membrane.

  13. Glutathione metabolism in Bangladeshi children with increased small bowel permeability and impaired growth

    International Nuclear Information System (INIS)

    Roy, S.K.; Tomkins, A.; Johson, A.

    1994-01-01

    In addition to requiring an increased concentration of protein, dietary treatments for children during convalescence from malnutrition may require additions of selected amino acids to meet increased requirements. However, relatively little is known about the quantities of amino acids to use in the supplements. This project will test the hypothesis that requirements for sulphur-containing amino acids (SCAA) are increased during malnutrition and diarrhea. The primary mechanism by which requirements for SCAA might be increased under these conditions are that SCAA may be restricted at the growth plates in bones through shunting of the available sulphur to other biological processes with higher physiological priority. In this study, evidence of the SCAA being diverted to other uses will be increased rates of turnover of glutathione (GSH), a sulphur-containing tripeptide with functions including stimulation of lymphocyte production and immune function. Further evidence of the diversion of SCAA to GSH and away from the larger metabolic pool will be decreased urinary inorganic sulphate excretion (ISE), and increased urinary concentrations of proline peptides which arise from collagen breakdown. It is expected that appropriate supplementation of a standard recovery diet will meet the requirement for GSH synthesis, thereby freeing the SCAA for growth plates, increasing the incorporation of proline into collage, and will have the overall effect of stimulating growth. (author). 29 refs, 3 tabs

  14. Glutathione metabolism in Bangladeshi children with increased small bowel permeability and impaired growth

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S K [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDRB) (India); Tomkins, A; Johson, A [Centre for International Child Health (CICH), London (United Kingdom)

    1994-12-31

    In addition to requiring an increased concentration of protein, dietary treatments for children during convalescence from malnutrition may require additions of selected amino acids to meet increased requirements. However, relatively little is known about the quantities of amino acids to use in the supplements. This project will test the hypothesis that requirements for sulphur-containing amino acids (SCAA) are increased during malnutrition and diarrhea. The primary mechanism by which requirements for SCAA might be increased under these conditions are that SCAA may be restricted at the growth plates in bones through shunting of the available sulphur to other biological processes with higher physiological priority. In this study, evidence of the SCAA being diverted to other uses will be increased rates of turnover of glutathione (GSH), a sulphur-containing tripeptide with functions including stimulation of lymphocyte production and immune function. Further evidence of the diversion of SCAA to GSH and away from the larger metabolic pool will be decreased urinary inorganic sulphate excretion (ISE), and increased urinary concentrations of proline peptides which arise from collagen breakdown. It is expected that appropriate supplementation of a standard recovery diet will meet the requirement for GSH synthesis, thereby freeing the SCAA for growth plates, increasing the incorporation of proline into collage, and will have the overall effect of stimulating growth. (author). 29 refs, 3 tabs.

  15. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Viren Kumar Govindaraju

    Full Text Available Age related macular degeneration (AMD is one of the leading causes of blindness. Genetics, environmental insult, and age-related factors all play a key role in altering proteostasis, the homeostatic process regulating protein synthesis, degradation and processing. These factors also play a role in the pathogenesis of AMD and it has been well established that cigarette smoking (CS initiates AMD pathogenic mechanisms. The primary goal of this study is to elucidate whether CS can induce proteostasis/autophagy-impairment in retinal pigment epithelial (RPE cells. In our preliminary analysis, it was found that cigarette smoke extract (CSE induces accumulation of ubiquitinated proteins in the insoluble protein fraction (p < 0.01, which was subsequently mitigated through cysteamine (p < 0.01 or fisetin (p < 0.05 treatment. Further, it was verified that these CSE induced ubiquitinated proteins accumulated in the peri-nuclear spaces (p<0.05 that were cleared- off with cysteamine (p < 0.05 or fisetin (p < 0.05. Moreover, CSE-induced aggresome-formation (LC3B-GFP and Ub-RFP co-localization and autophagy-flux impairment was significantly (p<0.01 mitigated by cysteamine (p<0.05 or fisetin (p<0.05 treatment, indicating the restoration of CSE-mediated autophagy-impairment. CSE treatment was also found to induce intracellular reactive oxygen species (ROS, p < 0.001 while impacting cell viability (p < 0.001, which was quantified using CMH2DCFDA-dye (ROS and MTS (proliferation or propodium iodide staining (cell viability assays, respectively. Moreover, cysteamine and fisetin treatment ameliorated CS-mediated ROS production (p < 0.05 and diminished cell viability (p < 0.05. Lastly, CSE was found to induce cellular senescence (p < 0.001, which was significantly ameliorated by cysteamine (p < 0.001 or fisetin (p < 0.001. In conclusion, our study indicates that CS induced proteostasis/autophagy-impairment regulates mechanisms associated with AMD pathogenesis. Moreover

  16. Fluoxetine regulates cell growth inhibition of interferon-α.

    Science.gov (United States)

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  17. the response of muscle cells during compensatory growth in rats

    African Journals Online (AJOL)

    selle het teen die hoogste tempo vermenigvuldig, maar die toename in spierselgroolte was laag. ... Today much is known of the interplay of the factors which determine rate and degree of recovery from under- nutrition. Again, a ~alth of information is available on ... fluence of nutrition on muscle cell growth in rats and dis·.

  18. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    anticancer drugs as well as new chemotherapy adjuvants that enhance efficacy and diminish side effects of chemotherapeutic agent. In this study, bergenin showed significant inhibitory effect on the growth of HCT116 cells. Bergenin induced ROS-mediated DNA damage, which resulted in G1 phase arrest and inhibited the.

  19. Lymphoma and the control of B cell growth and differentiation.

    Science.gov (United States)

    Rui, Lixin; Goodnow, Christopher C

    2006-05-01

    It is now widely accepted that lymphomagenesis is a multistep transformation process. A number of genetic changes and environmental and infectious factors contributing to the development and malignant progression of B-cell lymphoproliferative disorders are well documented. Reciprocal chromosomal translocations involving the immunoglobulin loci are a hallmark of most mature B cell lymphomas and lead to dysregulated expression of proto-oncogenes (c-myc) important for cell proliferation or genes involved in cell cycle progression (cyclin D1), differentiation block (bcl-6, PAX5) and cell survival (bcl-2, NF-kappaB). In addition, genetic alterations that inactivate tumor suppressor genes (p53, p16) have been frequently detected in some lymphoma tissues. Many of these genes are normally regulated by signals from the B cell antigen receptor. The high prevalence of bacterial and viral infection in lymphoma patients supports the hypothesis that infectious agents may play a contributory role in the development and evolution of B cell lymphoproliferative disorders by either directly inducing polyclonal B cell hyperactivation (EBV, HCV), or providing a chronic antigenic stimulus (EBV, HCV, HBV, H. pylori), or mimicking B cell antigen receptor signaling (EBV, HCV, HHV8), although whether these are causative factors or they are secondary to genetic changes in lymphomagenesis remains to be defined. Stimulatory signals from reactive T cells, local cytokines and growth factors can also contribute, to some extent, to the progression of transformation. Modulation of B cell antigen receptor signaling therefore emerges as a potentially powerful strategy for controlling the growth of certain B cell lymphomas.

  20. Imprint lithography provides topographical nanocues to guide cell growth in primary cortical cell culture

    NARCIS (Netherlands)

    Xie, S.; Luttge, R.

    2014-01-01

    In this paper, we describe a technology platform to study the effect of nanocues on the cell growth direction in primary cortical cell culture. Topographical cues to cells are provided using nanoscale features created by Jet and Flash Imprint Lithography, coated with polyethylenimine. We

  1. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Sun, Hong; Cartularo, Laura A. [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2016-02-15

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  2. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A.; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  3. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either...... and temporal control of epithelial proliferation....

  4. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs

  6. Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells

    International Nuclear Information System (INIS)

    Harris, Peter S; Foreman, Nicholas K; Vibhakar, Rajeev; Venkataraman, Sujatha; Alimova, Irina; Birks, Diane K; Donson, Andrew M; Knipstein, Jeffrey; Dubuc, Adrian; Taylor, Michael D; Handler, Michael H

    2012-01-01

    Medulloblastoma is the most common malignant brain tumor in children and remains a therapeutic challenge due to its significant therapy-related morbidity. Polo-like kinase 1 (PLK1) is highly expressed in many cancers and regulates critical steps in mitotic progression. Recent studies suggest that targeting PLK1 with small molecule inhibitors is a promising approach to tumor therapy. We examined the expression of PLK1 mRNA in medulloblastoma tumor samples using microarray analysis. The impact of PLK1 on cell proliferation was evaluated by depleting expression with RNA interference (RNAi) or by inhibiting function with the small molecule inhibitor BI 2536. Colony formation studies were performed to examine the impact of BI 2536 on medulloblastoma cell radiosensitivity. In addition, the impact of depleting PLK1 mRNA on tumor-initiating cells was evaluated using tumor sphere assays. Analysis of gene expression in two independent cohorts revealed that PLK1 mRNA is overexpressed in some, but not all, medulloblastoma patient samples when compared to normal cerebellum. Inhibition of PLK1 by RNAi significantly decreased medulloblastoma cell proliferation and clonogenic potential and increased cell apoptosis. Similarly, a low nanomolar concentration of BI 2536, a small molecule inhibitor of PLK1, potently inhibited cell growth, strongly suppressed the colony-forming ability, and increased cellular apoptosis of medulloblastoma cells. Furthermore, BI 2536 pretreatment sensitized medulloblastoma cells to ionizing radiation. Inhibition of PLK1 impaired tumor sphere formation of medulloblastoma cells and decreased the expression of SRY (sex determining region Y)-box 2 (SOX2) mRNA in tumor spheres indicating a possible role in targeting tumor inititiating cells. Our data suggest that targeting PLK1 with small molecule inhibitors, in combination with radiation therapy, is a novel strategy in the treatment of medulloblastoma that warrants further investigation

  7. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W

    2007-01-01

    Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients....... The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant...... T cells enhance proliferation of the malignant cells in an SE- and MHC class II-dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4(+) T-cell lines also enhance proliferation of the malignant cells. The growth...

  8. Impaired Expression of Focal Adhesion Kinase in Mesenchymal Stromal Cells from Low-Risk Myelodysplastic Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Yuenv Wu

    2017-08-01

    Full Text Available The pathogenic role of mesenchymal stromal cells (MSCs in myelodysplastic syndromes (MDS development and progression has been investigated by numerous studies, yet, it remains controversial in some aspects (1, 2. In the present study, we found distinct features of MSCs from low-risk (LR-MDS stromal microenvironment as compared to those from healthy subjects. At the molecular level, focal adhesion kinase, a key tyrosine kinase in control of cell proliferation, survival, and adhesion process, was found profoundly suppressed in expression and activation in LR-MDS MSC. At a functional level, LR-MDS MSCs showed impaired growth and clonogenic capacity, which were independent of cellular senescence and apoptosis. The pro-adipogenic differentiation and attenuated osteogenic capacity along with reduced SDF-1 expression could be involved in creating an unfavorable microenvironment for hematopoiesis. In conclusion, our experiments support the theory that the stromal microenvironment is fundamentally altered in LR-MDS, and these preliminary data offer a new perspective on LR-MDS pathophysiology.

  9. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  10. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  11. Signs of impaired immunoregulation and enhanced effector T-cell responses in the primary antiphospholipid syndrome.

    Science.gov (United States)

    Jakiela, B; Iwaniec, T; Plutecka, H; Celinska-Lowenhoff, M; Dziedzina, S; Musial, J

    2016-04-01

    We investigated whether primary antiphospholipid syndrome (PAPS) is characterized by a deficiency in immunoregulatory pathways, a phenomenon recently implicated in the pathogenesis of autoimmune diseases. Serum levels of immunoregulatory (e.g., IL-10 and TGF-β1) and proinflammatory (e.g., IL-17A) cytokines were measured in PAPS, systemic lupus erythematosus (SLE) with secondary APS (SAPS), or without APS, and in healthy controls (n = 40 in each group). In a subgroup of PAPS patients we also compared phenotype and function (flow cytometry) of regulatory T-cells (Treg) and cytokine production by effector T-cells. Our major finding was decreased levels of TGF-β1 in PAPS and SAPS as compared to SLE without APS and controls. TGF-β1 was the lowest in PAPS patients showing high levels of aPL IgG with significant negative correlation with the titer. SLE patients were characterized by lower serum levels of IL-2 and increased IL-17A, as compared to the other groups. The numbers of circulating Treg cells and their phenotype (e.g., FoxP3 isoforms) were not disturbed in PAPS. However, surface expression of latency associated peptide (binds TGF-β) in activated FoxP3 + cells and in vitro production of TGF-β1 were decreased in PAPS patients with high titers of aPL IgG. Moreover, frequencies of cytokine producing effector T-helper cells (including Th17) were significantly elevated in this group. PAPS patients with high titers of aPL IgG antibodies were characterized by decreased systemic levels of TGF-β1 and its impaired production in vitro, suggesting impaired immunoregulation and enhanced adaptive autoimmune responses leading to the production of aPL antibodies. © The Author(s) 2015.

  12. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  13. Growth and development after hematopoietic cell transplant in children.

    Science.gov (United States)

    Sanders, J E

    2008-01-01

    Hematopoietic cell transplantation (HCT) following high-dose chemotherapy or chemoradiotherapy for children with malignant or nonmalignant hematologic disorders has resulted in an increasing number of long-term disease-free survivors. The preparative regimens include high doses of alkylating agents, such as CY with or without BU, and may include TBI. These agents impact the neuroendocrine system in growing children and their subsequent growth and development. Children receiving high-dose CY or BUCY have normal thyroid function, but those who receive TBI-containing regimens may develop thyroid function abnormalities. Growth is not impacted by chemotherapy-only preparative regimens, but TBI is likely to result in growth hormone deficiency and decreased growth rates that need to be treated with synthetic growth hormone therapy. Children who receive high-dose CY-only have normal development through puberty, whereas those who receive BUCY have a high incidence of delayed pubertal development. Following fractionated TBI preparative regimens, approximately half of the patients have normal pubertal development. These data demonstrate that the growth and development problems after HCT are dependent upon the preparative regimen received. All children should be followed for years after HCT for detection of growth and development abnormalities that are treatable with appropriate hormone therapy.

  14. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation

    DEFF Research Database (Denmark)

    Chhabra, Y.; Wong, H. Y.; Nikolajsen, Louise Fletcher

    2018-01-01

    Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lu......-mesenchymal transition and metastases (TWIST1, SNAI2, EGFR, MYC and CCND1) at 2 h after a GH pulse. This is consistent with prolonged GH signalling acting to promote cancer progression in lung cancer.Oncogene advance online publication, 2 October 2017; doi:10.1038/onc.2017.352....

  15. Automated inference procedure for the determination of cell growth parameters

    Science.gov (United States)

    Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.

    2016-01-01

    The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.

  16. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    2010-09-01

    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  17. Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype

    Science.gov (United States)

    Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas

    2010-01-01

    Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123

  18. TOR and paradigm change: cell growth is controlled.

    Science.gov (United States)

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients. © 2016 Hall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Changes in gene expression following growth stimulation of cultured cells

    International Nuclear Information System (INIS)

    Nathans, D.; Lau, L.F.; Lee, S.J.; Linzer, D.I.H.

    1986-01-01

    To identify genes that may be part of a genetic program for the growth of mammalian cells. The authors are characterizing cDNA clones derived from mRNAs that appear at various times after stimulation of resting BALB/c 3T3 cells with serum or growth factors. cDNA libraries were prepared from polyA/sup +/ RNA from cells stimulated with serum for various periods of time, and the libraries were differentially screened with /sup 32/P-cDNA probes made from stimulated or resting cell mRNA. One cDNA library was prepared from cells that were stimulated with serum for 3 hrs in the presence of cycloheximide. The authors purpose in inhibiting protein synthesis was to limit new mRNAs to those that do not require de novo protein synthesis for their accumulation and to amplify mRNAs that are superinduced by serum in the absence of protein synthesis. Of approximately 50,000 recombinant phage plaques screened, 357 clones hybridized to probes derived from stimulated-cell RNA but not to probes from resting-cell RNA. Cross hybridization analysis showed that 4 RNA sequence families accounted for over 95% of the clones; other sequences were found only once

  20. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  1. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  2. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    Science.gov (United States)

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  3. Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism

    International Nuclear Information System (INIS)

    Baba, Miyako; Inoue, Masahiro; Itoh, Kazuyuki; Nishizawa, Yasuko

    2008-01-01

    CD147 is a multifunctional transmembrane protein and promotes cancer progression. We found that the anti-human CD147 mouse monoclonal antibody MEM-M6/1 strongly induces necrosis-like cell death in LoVo, HT-29, WiDr, and SW620 colon cancer cells and A2058 melanoma cells, but not in WI-38 and TIG-113 normal fibroblasts. Silencing or overexpression of CD147 in LoVo cells enhanced or decreased the MEM-M6/1 induced cell death, respectively. CD147 is known to form complex with proton-linked monocarboxylate transporters (MCTs), which is critical for lactate transport and intracellular pH (pHi) homeostasis. In LoVo cells, CD147 and MCT-1 co-localized on the cell surface, and MEM-M6/1 inhibited the association of these molecules. MEM-M6/1 inhibited lactate uptake, lactate release, and reduced pHi. Further, the induction of acidification was parallel to the decrease of the glycolytic flux and intracellular ATP levels. These effects were not found in the normal fibroblasts. As cancer cells depend on glycolysis for their energy production, CD147 inhibition might induce cell death specific to cancer cells

  4. Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation.

    Science.gov (United States)

    Tsuji-Tamura, Kiyomi; Ogawa, Minetaro

    2018-02-26

    Elongation of endothelial cells is an important process in vascular formation and is expected to be a therapeutic target for inhibiting tumor angiogenesis. We have previously demonstrated that inhibition of mTORC1 and mTORC2 impaired endothelial cell elongation, although the mechanism has not been well defined. In this study, we analyzed the effects of the mTORC1-specific inhibitor everolimus and the mTORC1/mTORC2 dual inhibitor KU0063794 on the cytoskeletal organization and morphology of endothelial cell lines. While both inhibitors equally inhibited cell proliferation, KU0063794 specifically caused abnormal accumulation of F-actin and disordered distribution of microtubules, thereby markedly impairing endothelial cell elongation and tube formation. The effects of KU0063794 were phenocopied by paclitaxel treatment, suggesting that KU0063794 might impair endothelial cell morphology through over-stabilization of microtubules. Although mTORC1 is a key signaling molecule in cell proliferation and has been considered a target for preventing angiogenesis, mTORC1 inhibitors have not been sufficient to suppress angiogenesis. Our results suggest that mTORC1/mTORC2 dual inhibition is more effective for anti-angiogenic therapy, as it impairs not only endothelial cell proliferation, but also endothelial cell elongation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  6. Ocean acidification and global warming impair shark hunting behaviour and growth.

    Science.gov (United States)

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D

    2015-11-12

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs.

  7. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes.

    Science.gov (United States)

    Wang, Pei; Yang, Xi; Zhang, Zheng; Song, Jie; Guan, Yun-Feng; Zou, Da-Jin; Miao, Chao-Yu

    2016-06-01

    The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood

  8. ITE inhibits growth of human pulmonary artery endothelial cells.

    Science.gov (United States)

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  9. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.

    Science.gov (United States)

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi

    2016-10-01

    Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of

  10. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  11. High Fibroblast Growth Factor 23 concentrations in experimental renal failure impair calcium handling in cardiomyocytes.

    Science.gov (United States)

    Verkaik, Melissa; Oranje, Maarten; Abdurrachim, Desiree; Goebel, Max; Gam, Zeineb; Prompers, Jeanine J; Helmes, Michiel; Ter Wee, Pieter M; van der Velden, Jolanda; Kuster, Diederik W; Vervloet, Marc G; Eringa, Etto C

    2018-04-01

    The overwhelming majority of patients with chronic kidney disease (CKD) die prematurely before reaching end-stage renal disease, mainly due to cardiovascular causes, of which heart failure is the predominant clinical presentation. We hypothesized that CKD-induced increases of plasma FGF23 impair cardiac diastolic and systolic function. To test this, mice were subjected to 5/6 nephrectomy (5/6Nx) or were injected with FGF23 for seven consecutive days. Six weeks after surgery, plasma FGF23 was higher in 5/6Nx mice compared to sham mice (720 ± 31 vs. 256 ± 3 pg/mL, respectively, P = 0.034). In cardiomyocytes isolated from both 5/6Nx and FGF23 injected animals the rise of cytosolic calcium during systole was slowed (-13% and -19%, respectively) as was the decay of cytosolic calcium during diastole (-15% and -21%, respectively) compared to controls. Furthermore, both groups had similarly decreased peak cytosolic calcium content during systole. Despite lower cytosolic calcium contents in CKD or FGF23 pretreated animals, no changes were observed in contractile parameters of cardiomyocytes between the groups. Expression of calcium handling proteins and cardiac troponin I phosphorylation were similar between groups. Blood pressure, the heart weight:tibia length ratio, α-MHC/β-MHC ratio and ANF mRNA expression, and systolic and diastolic function as measured by MRI did not differ between groups. In conclusion, the rapid, CKD-induced rise in plasma FGF23 and the similar decrease in cardiomyocyte calcium transients in modeled kidney disease and following 1-week treatment with FGF23 indicate that FGF23 partly mediates cardiomyocyte dysfunction in CKD. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  13. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2.

    Science.gov (United States)

    Niu, Yuchun; Ma, Feng; Huang, Weimei; Fang, Shun; Li, Man; Wei, Ting; Guo, Linlang

    2017-01-09

    Taurine upregulated gene1 (TUG1) as a 7.1-kb lncRNA, has been shown to play an oncogenic role in various cancers. However, the biological functions of lncRNA TUG1 in small cell lung cancer (SCLC) remain unknown. The aim of this study is to explore the roles of TUG1 in cell growth and chemoresistance of SCLC and its possible molecular mechanism. The expression of TUG1 in thirty-three cases of SCLC tissues and SCLC cell line were examined by quantitative RT-PCR (qRT-PCR). The functional roles of TUG1 in SCLC were demonstrated by CCK8 assay, colony formation assay, wound healing assay and transwell assay, flow cytometry analysis and in vivo study through siRNA or shRNA mediated knockdown. Western blot assays were used to evaluate gene and protein expression in cell lines. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular mechanism of TUG1 involved in cell growth and chemoresistance of small cell lung cancer. We found that TUG1 was overexpressed in SCLC tissues, and its expression was correlated with the clinical stage and the shorter survival time of SCLC patients. Moreover, downregulation of TUG1 expression could impair cell proliferation and increased cell sensitivity to anticancer drugs both in vitro and in vivo. We also discovered that TUG1 knockdown significantly promoted cell apoptosis and cell cycle arrest, and inhibited cell migration and invasion in vitro . We further demonstrated that TUG1 can regulate the expression of LIMK2b (a splice variant of LIM-kinase 2) via binding with enhancer of zeste homolog 2 (EZH2), and then promoted cell growth and chemoresistance of SCLC. Together, these results suggested that TUG1 mediates cell growth and chemoresistance of SCLC by regulating LIMK2b via EZH2.

  14. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  15. Targeted BMI1 inhibition impairs tumor growth in lung adenocarcinomas with low CEBP alpha expression

    Czech Academy of Sciences Publication Activity Database

    Yong, K.J.; Basseres, D.S.; Welner, R.S.; Zhang, W.C.; Yang, H.; Yan, B.; Alberich-Jorda, Meritxell; Zhang, J.; de Figueiredo-Pontes, L.L.; Battelli, C.; Hetherington, C.J.; Ye, M.; Zhang, H.; Maroni, G.; O'Brien, K.; Magli, M.C.; Borczuk, A.C.; Varticovski, L.; Kocher, O.; Zhang, P.; Moon, Y.C.; Sydorenko, N.; Cao, L.; Davis, T.W.; Thakkar, B.M.; Soo, R.A.; Iwama, A.; Lim, B.; Halmos, B.; Neuberg, D.; Tenen, D.G.; Levantini, E.

    2016-01-01

    Roč. 8, č. 350 (2016), č. článku 350ra104. ISSN 1946-6234 R&D Projects: GA MŠk LK21307 Institutional support: RVO:68378050 Keywords : ccaat/enhancer-binding-protein * acute myeloid-leukemia * factor-c/ebp-alpha * posttranscriptional control * adjuvant chemotherapy * cell-proliferation * down-regulation * drug discovery * gene signature * self-renewal Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 16.796, year: 2016

  16. Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia

    NARCIS (Netherlands)

    Siska, Peter J.; van der Windt, Gerritje J. W.; Kishton, Rigel J.; Cohen, Sivan; Eisner, William; MacIver, Nancie J.; Kater, Arnon P.; Weinberg, J. Brice; Rathmell, Jeffrey C.

    2016-01-01

    Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may

  17. Disruption of a -35kb enhancer impairs CTCF binding and MLH1 expression in colorectal cells.

    Science.gov (United States)

    Liu, Qing; Thoms, Julie A; Nunez, Andrea C; Huang, Yizhou; Knezevic, Kathy; Packham, Deborah; Poulos, Rebecca C; Williams, Rachel; Beck, Dominik; Hawkins, Nicholas J; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Sloane, Mathew A; Pimanda, John

    2018-06-13

    MLH1 is a major tumour suppressor gene involved in the pathogenesis of Lynch syndrome and various sporadic cancers. Despite their potential pathogenic importance, genomic regions capable of regulating MLH1 expression over long distances have yet to be identified. Here we use chromosome conformation capture (3C) to screen a 650-kb region flanking the MLH1 locus to identify interactions between the MLH1 promoter and distal regions in MLH1 expressing and non-expressing cells. Putative enhancers were functionally validated using luciferase reporter assays, chromatin immunoprecipitation and CRISPR-Cas9 mediated deletion of endogenous regions. To evaluate whether germline variants in the enhancer might contribute to impaired MLH1 expression in patients with suspected Lynch syndrome, we also screened germline DNA from a cohort of 74 patients with no known coding mutations or epimutations at the MLH1 promoter. A 1.8kb DNA fragment, 35kb upstream of the MLH1 transcription start site enhances MLH1 gene expression in colorectal cells. The enhancer was bound by CTCF and CRISPR-Cas9 mediated deletion of a core binding region impairs endogenous MLH1 expression. 5.4% of suspected Lynch syndrome patients have a rare single nucleotide variant (G>A; rs143969848; 2.5% in gnomAD European, non-Finnish) within a highly conserved CTCF binding motif, which disrupts enhancer activity in SW620 colorectal carcinoma cells. A CTCF bound region within the MLH1 -35 enhancer regulates MLH1 expression in colorectal cells and is worthy of scrutiny in future genetic screening strategies for suspected Lynch syndrome associated with loss of MLH1 expression. Copyright ©2018, American Association for Cancer Research.

  18. Disturbances in dental development and craniofacial growth in children treated with hematopoietic stem cell transplantation.

    Science.gov (United States)

    Vesterbacka, M; Ringdén, O; Remberger, M; Huggare, J; Dahllöf, G

    2012-02-01

    To investigate the correlation between age, degree of disturbances in dental development, and vertical growth of the face in children treated with hematopoietic stem cell transplantation (HSCT). 39 long-term survivors of HSCT performed in childhood and transplanted before the age of 12, at a mean age of 6.8±3.3 years. Panoramic and cephalometric radiographs were taken at a mean age of 16.2 years. For each patient two age- and sex-matched healthy controls were included. The area of three mandibular teeth was measured and a cephalometric analysis was performed. The mean area of the mandibular central incisor, first and second molar was significantly smaller in the HSCT group, and the vertical growth of the face was significantly reduced, especially in the lower third, compared to healthy controls. A statistically significant correlation between age at HSCT, degree of disturbances in dental development, and vertical growth of the face was found. Children subjected to pre-HSCT chemotherapy protocols had significantly more growth reduction in vertical craniofacial variables compared to children without pre-HSCT chemotherapy. Conditioning regimens including busulfan or total body irradiation had similar deleterious effects on tooth area reduction and craniofacial parameters. The younger the child is at HSCT, the greater the impairment in dental and vertical facial development. This supports the suggestion that the reduction in lower facial height found in SCT children mainly is a result of impaired dental development and that young age is a risk factor for more severe disturbances. © 2012 John Wiley & Sons A/S.

  19. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.

    Science.gov (United States)

    Allende, Maria L; Cook, Emily K; Larman, Bridget C; Nugent, Adrienne; Brady, Jacqueline M; Golebiowski, Diane; Sena-Esteves, Miguel; Tifft, Cynthia J; Proia, Richard L

    2018-03-01

    Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB -corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB -corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB -corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.

  20. Severe Malaria Infections Impair Germinal Center Responses by Inhibiting T Follicular Helper Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Victoria Ryg-Cornejo

    2016-01-01

    Full Text Available Naturally acquired immunity to malaria develops only after years of repeated exposure to Plasmodium parasites. Despite the key role antibodies play in protection, the cellular processes underlying the slow acquisition of immunity remain unknown. Using mouse models, we show that severe malaria infection inhibits the establishment of germinal centers (GCs in the spleen. We demonstrate that infection induces high frequencies of T follicular helper (Tfh cell precursors but results in impaired Tfh cell differentiation. Despite high expression of Bcl-6 and IL-21, precursor Tfh cells induced during infection displayed low levels of PD-1 and CXCR5 and co-expressed Th1-associated molecules such as T-bet and CXCR3. Blockade of the inflammatory cytokines TNF and IFN-γ or T-bet deletion restored Tfh cell differentiation and GC responses to infection. Thus, this study demonstrates that the same pro-inflammatory mediators that drive severe malaria pathology have detrimental effects on the induction of protective B cell responses.

  1. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    Science.gov (United States)

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  2. Video Bioinformatics Analysis of Human Embryonic Stem Cell Colony Growth

    Science.gov (United States)

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-01-01

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion. PMID:20495527

  3. Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis.

    Science.gov (United States)

    Deshpande, Sagar S; Gallagher, Kathleen K; Donneys, Alexis; Nelson, Noah S; Guys, Nicholas P; Felice, Peter A; Page, Erin E; Sun, Hongli; Krebsbach, Paul H; Buchman, Steven R

    2015-03-01

    Radiotherapy is known to be detrimental to bone and soft-tissue repair. Bone marrow stromal cells have been shown to enhance bone regeneration during distraction osteogenesis following radiation therapy. The authors posit that transplanted bone marrow stromal cells will significantly augment the mandibular vascularity devastated by radiation therapy. Nineteen male Lewis rats were split randomly into three groups: distraction osteogenesis only (n = 5), radiation therapy plus distraction osteogenesis (n = 7), and radiation therapy plus distraction osteogenesis with intraoperative placement of 2 million bone marrow stromal cells (n = 7). A mandibular osteotomy was performed, and an external fixator device was installed. From postoperative days 4 through 12, rats underwent a gradual 5.1-mm distraction followed by a 28-day consolidation period. On postoperative day 40, Microfil was perfused into the vasculature and imaging commenced. Vascular radiomorphometric values were calculated for regions of interest. An analysis of variance with post hoc Tukey or Games-Howell tests was used, dependent on data homogeneity. Stereologic analysis indicated significant remediation in vasculature in the bone marrow stromal cell group compared with the radiation therapy/distraction osteogenesis group. Each of five metrics idicated significant improvements from radiation therapy/distraction osteogenesis to the bone marrow stromal cell group, with no difference between the bone marrow stromal cell group and the distraction osteogenesis group. Bone marrow stromal cells used together with distraction osteogenesis can rejuvenate radiation-impaired vasculogenesis in the mandible, reversing radiation therapy-induced isotropy and creating a robust vascular network. Bone marrow stromal cells may offer clinicians an alternative reconstructive modality that could improve the lifestyle of patients with hypovascular bone.

  4. Inhibition of Wnt Signaling Pathways Impairs Chlamydia trachomatis Infection in Endometrial Epithelial Cells.

    Science.gov (United States)

    Kintner, Jennifer; Moore, Cheryl G; Whittimore, Judy D; Butler, Megan; Hall, Jennifer V

    2017-01-01

    Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/β-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia. In cervical epithelial cells chlamydiae sequester β-catenin within the inclusion. These data indicate that chlamydiae interact with the Wnt signaling pathway in both the upper and lower female genital tract (FGT). However, hormonal activation of canonical and non-canonical Wnt signaling pathways is an essential component of cyclic remodeling in another prominent area of the FGT, the endometrium. Given this information, we hypothesized that Wnt signaling would impact chlamydial infection in endometrial epithelial cells. To investigate this hypothesis, we analyzed the effect of Wnt inhibition on chlamydial inclusion development and elementary body (EB) production in two endometrial cell lines, Ishikawa (IK) and Hec-1B, in nonpolarized cell culture and in a polarized endometrial epithelial (IK)/stromal (SHT-290) cell co-culture model. Inhibition of Wnt by the small molecule inhibitor (IWP2) significantly decreased inclusion size in IK and IK/SHT-290 cultures ( p Wnt inhibition caused chlamydiae to become aberrant in morphology. EB formation was also impaired in IK, Hec-1B and IK/SHT-290 cultures regardless of whether Wnt inhibition occurred throughout, in the middle (24 hpi) or late (36 hpi) during the development cycle. Overall, these data lead us to conclude that Wnt signaling in the endometrium is a key host pathway for the proper development of C. trachomatis .

  5. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  6. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  7. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  8. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth

    Science.gov (United States)

    Ono, Masanori; Yin, Ping; Navarro, Antonia; Moravek, Molly B.; Coon, John S.; Druschitz, Stacy A.; Gottardi, Cara J.; Bulun, Serdar E.

    2014-01-01

    Objective Dysregulation of WNT signaling plays a central role in tumor cell growth and progression. Our goal was to assess the effect of three WNT/β-catenin pathway inhibitors, Inhibitor of β-Catenin And TCF4 (ICAT), niclosamide, and XAV939 on the proliferation of primary cultures of human uterine leiomyoma cells. Design Prospective study of human leiomyoma cells obtained from myomectomy or hysterectomy. Setting University research laboratory. Patient(s) Women (n=38) aged 27–53 years undergoing surgery. Intervention(s) Adenoviral ICAT overexpression or treatment with varying concentrations of niclosamide or XAV939. Main Outcome Measure(s) Cell proliferation, cell death, WNT/β-catenin target gene expression or reporter gene regulation, β-catenin levels and cellular localization. Result(s) ICAT, niclosamide, or XAV939 inhibit WNT/β-catenin pathway activation and exert anti-proliferative effects in primary cultures of human leiomyoma cells. Conclusion(s) Three WNT/β-catenin pathway inhibitors specifically block human leiomyoma growth and proliferation, suggesting that the canonical WNT pathway may be a potential therapeutic target for the treatment of uterine leiomyoma. Our findings provide rationale for further preclinical and clinical evaluation of ICAT, niclosamide, and XAV939 as candidate anti-tumor agents for uterine leiomyoma. PMID:24534281

  9. Changes in Cell Wall Polysaccharides Associated With Growth 1

    Science.gov (United States)

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1968-01-01

    Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated. PMID:16656862

  10. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  11. Language and Social Factors in the Use of Cell Phone Technology by Adolescents with and without Specific Language Impairment (SLI)

    Science.gov (United States)

    Conti-Ramsden, Gina; Durkin, Kevin; Simkin, Zoe

    2010-01-01

    Purpose: This study aimed to compare cell phone use (both oral and text-based) by adolescents with and without specific language impairment (SLI) and examine the extent to which language and social factors affect frequency of use. Method: Both interview and diary methods were used to compare oral and text-based communication using cell phones by…

  12. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    International Nuclear Information System (INIS)

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella

    2005-01-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-Jκ-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV

  13. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus.

    Science.gov (United States)

    Siedlecka, Anna; Wiklund, Susanne; Péronne, Marie-Amélie; Micheli, Fabienne; Lesniewska, Joanna; Sethson, Ingmar; Edlund, Ulf; Richard, Luc; Sundberg, Björn; Mellerowicz, Ewa J

    2008-02-01

    Wood cells, unlike most other cells in plants, grow by a unique combination of intrusive and symplastic growth. Fibers grow in diameter by diffuse symplastic growth, but they elongate solely by intrusive apical growth penetrating the pectin-rich middle lamella that cements neighboring cells together. In contrast, vessel elements grow in diameter by a combination of intrusive and symplastic growth. We demonstrate that an abundant pectin methyl esterase (PME; EC 3.1.1.11) from wood-forming tissues of hybrid aspen (Populus tremula x tremuloides) acts as a negative regulator of both symplastic and intrusive growth of developing wood cells. When PttPME1 expression was up- and down-regulated in transgenic aspen trees, the PME activity in wood-forming tissues was correspondingly altered. PME removes methyl ester groups from homogalacturonan (HG) and transgenic trees had modified HG methylesterification patterns, as demonstrated by two-dimensional nuclear magnetic resonance and immunostaining using PAM1 and LM7 antibodies. In situ distributions of PAM1 and LM7 epitopes revealed changes in pectin methylesterification in transgenic trees that were specifically localized in expanding wood cells. The results show that en block deesterification of HG by PttPME1 inhibits both symplastic growth and intrusive growth. PttPME1 is therefore involved in mechanisms determining fiber width and length in the wood of aspen trees.

  14. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    Science.gov (United States)

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  15. Computed tomography of renal cell carcinoma in patients with terminal renal impairment

    International Nuclear Information System (INIS)

    Ferda, Jiri; Hora, Milan; Hes, Ondrej; Reischig, Tomas; Kreuzberg, Boris; Mirka, Hynek; Ferdova, Eva; Ohlidalova, Kristyna; Baxa, Jan; Urge, Tomas

    2007-01-01

    Purpose: An increased incidence of renal tumors has been observed in patients with end-stage-renal-disease (ESRD). The very strong association with acquired renal cystic disease (ACRD) and increased incidence of the renal tumors (conventional renal cell carcinoma (CRCC), papillary renal cell carcinoma (PRCC) or papillary renal cell adenoma (PRCA)) was reported. This study discusses the role of computed tomography (CT) in detecting renal tumors in patients with renal impairment: pre-dialysis, those receiving dialysis or with renal allograft transplants. Materials and methods: Ten patients (nine male, one female) with renal cell tumors were enrolled into a retrospective study; two were new dialysis patients, three on long-term dialysis, and five were renal transplant recipients with history of dialysis. All patients underwent helical CT, a total of 11 procedures were performed. Sixteen-row detector system was used five times, and a 64-row detector system for the six examinations. All patients underwent nephrectomy of kidney with suspected tumor, 15 nephrectomies were performed, and 1 kidney was assessed during autopsy. CT findings were compared with macroscopic and microscopic assessments of the kidney specimen in 16 cases. Results: Very advanced renal parenchyma atrophy with small cysts corresponding to ESRD was found in nine patients, chronic pyelonephritis in remained one. A spontaneously ruptured tumor was detected incidentally in one case, patient died 2 years later. In the present study, 6.25% (1/16) were multiple PRCA, 12.5% (2/16) were solitary PRCC, 12.5% tumors (2/16) were solitary conventional renal cell carcinomas (CRCC's), 12.5% tumors (2/16) were multiple conventional renal cell carcinomas (CRCC's), 25% (4/16) were CRCC's combined with multiple papillary renal cell carcinomas with adenomas (PRCC's and PRCA's), and 25% (4/16) of the tumors were multiple PRCC's combined with PRCA's without coexisting CRCC's. Bilateral renal tumors were found in our study

  16. Inadequate feeding practices and impaired growth among children from subsistence farming households in Sidama, Southern Ethiopia.

    Science.gov (United States)

    Gibson, Rosalind S; Abebe, Yewelsew; Hambidge, K Michael; Arbide, Isabel; Teshome, Aklilu; Stoecker, Barbara J

    2009-07-01

    Whether current child feeding practices and behaviours among rural households in Sidama, Southern Ethiopia conform to the World Health Organization (WHO) guiding principles for complementary feeding is uncertain. We assessed socio-demographic status, anthropometry, breastfeeding, complementary feeding practices and behaviours, and motor development milestones in a convenience sample of 97 breastfed children aged 6-23 months from three rural Sidama communities. Energy and nutrient intakes from complementary foods were also calculated from 1-day in-home weighed records. Prevalence of stunting ranged from 25% for infants aged 6-8 months to 52% for children aged 12-23 months, whereas for wasting, the corresponding prevalence was 10% and 14%, respectively. Very few children were exclusively breastfed up to 6 months of age (n = 2), or received solids/semi-solids for the recommended minimum number of times containing the recommended number of food groups. Responsive feeding was not practised and no cellular animal products were consumed. Median intakes of energy, and intakes and densities of micronutrients from complementary foods (but not protein) were below WHO recommendations, assuming average breast milk intakes; greatest shortfalls were for retinol, vitamin C and calcium densities. Mothers of stunted children were shorter and lighter, and from households of lower socio-economic status than non-stunted children (P feeding practices and behaviours, as well as prenatal influences on growth, are urgently required in this setting.

  17. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  18. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  19. Engineering CHO cells with an oncogenic KIT improves cells growth, resilience to stress, and productivity.

    Science.gov (United States)

    Mahameed, Mohamed; Tirosh, Boaz

    2017-11-01

    An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Blue light inhibits the growth of B16 melanoma cells

    International Nuclear Information System (INIS)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu

    2002-01-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm 2 ) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  1. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  2. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  3. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Rajnikumar Sangani

    2014-03-01

    Full Text Available Bone marrow stromal cell (BMSC adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38 and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  4. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  5. Inferring time derivatives including cell growth rates using Gaussian processes

    Science.gov (United States)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  6. radiochemical studies on the growth of myeloma cells

    International Nuclear Information System (INIS)

    Elshershaby, H.M.M.

    2008-01-01

    cancer is a disease of unregulated cell growth. humans of all ages develop cancer, and a wide variety of organs are affected. multiple myeloma is a cancer in which antibody-producing plasma cells grow in an uncontrolled and invasive (malignant) manner. melphalan (DNA cross-linker), is one of the most widely used and effective drugs in the treatment of multiple myeloma. thalidomide as an immunomodulatory agent is clinically useful in a number of cancers. antitumor activity may be related to a number of known properties, including antitumor necrosis factor (TNF)-α and T-cell costimulatory and antiangiogenic effect. however, it may also involve direct antitumor effects. radiotherapy is an important modality in the treatment of cancer. the aim of radiotherapy is to deliver radiation doses and schedules that kill cancer cells, while preserving normal tissue function. the aim of these studies was to evaluate the therapeutic effects of some chemical substances (chemotherapy)such as melphalan and thalidomide and γ-radiation (radiotherapy)on the growth of myeloma cells. also some confirmatory tests such as β2-microglobulin, caspases enzymes 8 and 9 and flow cytometric analyses were performed for the obtained optimum doses.

  7. Changes in the insulin-like growth factor-system may contribute to in vitro age-related impaired osteoblast functions

    DEFF Research Database (Denmark)

    Kveiborg, M.; Rattan, Suresh; Clark, B.F.C.

    2000-01-01

    Age-related bone loss is thought to be due to impaired osteoblast functions. Insulin-like growth factors (IGFs) have been shown to be important stimulators of bone formation and osteoblast activities in vitro and in vivo. We tested the hypothesis that in vitro osteoblast senescence is associated ...

  8. Can mesenchymal stem cells reverse chronic stress-induced impairment of lung healing following traumatic injury?

    Science.gov (United States)

    Gore, Amy V; Bible, Letitia E; Livingston, David H; Mohr, Alicia M; Sifri, Ziad C

    2015-04-01

    One week following unilateral lung contusion (LC), rat lungs demonstrate full histologic recovery. When animals undergo LC plus the addition of chronic restraint stress (CS), wound healing is significantly delayed. Mesenchymal stem cells (MSCs) are pluripotent cells capable of immunomodulation, which have been the focus of much research in wound healing and tissue regeneration. We hypothesize that the addition of MSCs will improve wound healing in the setting of CS. Male Sprague-Dawley rats (n = 6-7 per group) were subjected to LC/CS with or without the injection of MSCs. MSCs were given as a single intravenous dose of 5 × 10 cells in 1 mL Iscove's Modified Dulbecco's Medium at the time of LC. Rats were subjected to 2 hours of restraint stress on Days 1 to 6 following LC. Seven days following injury, rats were sacrificed, and the lungs were examined for histologic evidence of wound healing using a well-established histologic lung injury score (LIS) to grade injury. LIS examines inflammatory cells/high-power field (HPF) averaged over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity, with scores ranging from 0 (normal) to 11 (highly damaged). Peripheral blood was analyzed by flow cytometry for the presence of T-regulatory (C4CD25FoxP3) cells. Data were analyzed by analysis of variance followed by Tukey's multiple comparison test, expressed as mean (SD). As previously shown, 7 days following isolated LC, LIS has returned to 0.83 (0.41), with a subscore of zero for inflammatory cells/HPF. The addition of CS results in an LIS of 4.4 (2.2), with a subscore of 1.9 (0.7) for inflammatory cells/HPF. Addition of MSC to LC/CS decreased LIS to 1.7 (0.8), with a subscore of zero for inflammatory cells/HPF. Furthermore, treatment of animals undergoing LC/CS with MSCs increased the %T-regulatory cells by 70% in animals undergoing LC/CS alone (12.9% [2.4]% vs. 6.2% [1.3%]). Stress-induced impairment of wound healing is reversed by the addition of MSCs given

  9. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  10. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.

    Science.gov (United States)

    Blenis, John

    2017-09-21

    Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Stochastic modeling of cell growth with symmetric or asymmetric division

    Science.gov (United States)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.

  12. Cigarette Smoking Impairs Adipose Stromal Cell Vasculogenic Activity and Abrogates Potency to Ameliorate Ischemia.

    Science.gov (United States)

    Barwinska, Daria; Traktuev, Dmitry O; Merfeld-Clauss, Stephanie; Cook, Todd G; Lu, Hongyan; Petrache, Irina; March, Keith L

    2018-06-01

    Cigarette smoking (CS) adversely affects the physiologic function of endothelial progenitor, hematopoietic stem and progenitor cells. However, the effect of CS on the ability of adipose stem/stromal cells (ASC) to promote vasculogenesis and rescue perfusion in the context of ischemia is unknown. To evaluate this, ASC from nonsmokers (nCS-ASC) and smokers (CS-ASC), and their activity to promote perfusion in hindlimb ischemia models, as well as endothelial cell (EC) survival and vascular morphogenesis in vitro were assessed. While nCS-ASC improved perfusion in ischemic limbs, CS-ASC completely lost this therapeutic effect. In vitro vasculogenesis assays revealed that human CS-ASC and ASC from CS-exposed mice showed compromised support of EC morphogenesis into vascular tubes, and the CS-ASC secretome was less potent in supporting EC survival/proliferation. Comparative secretome analysis revealed that CS-ASC produced lower amounts of hepatocyte growth factor (HGF) and stromal cell-derived growth factor 1 (SDF-1). Conversely, CS-ASC secreted the angiostatic/pro-inflammatory factor Activin A, which was not detected in nCS-ASC conditioned media (CM). Furthermore, higher Activin A levels were measured in EC/CS-ASC cocultures than in EC/nCS-ASC cocultures. CS-ASC also responded to inflammatory cytokines with 5.2-fold increase in Activin A secretion, whereas nCS-ASC showed minimal Activin A induction. Supplementation of EC/CS-ASC cocultures with nCS-ASC CM or with recombinant vascular endothelial growth factor, HGF, or SDF-1 did not rescue vasculogenesis, whereas inhibition of Activin A expression or activity improved network formation up to the level found in EC/nCS-ASC cocultures. In conclusion, ASC of CS individuals manifest compromised in vitro vasculogenic activity as well as in vivo therapeutic activity. Stem Cells 2018;36:856-867. © 2018 AlphaMed Press.

  13. Crosstalk between Helicobacter pylori and gastric epithelial cells is impaired by docosahexaenoic acid.

    Directory of Open Access Journals (Sweden)

    Marta Correia

    Full Text Available H. pylori colonizes half of the world's population leading to gastritis, ulcers and gastric cancer. H. pylori strains resistant to antibiotics are increasing which raises the need for alternative therapeutic approaches. Docosahexaenoic acid (DHA has been shown to decrease H. pylori growth and its associated-inflammation through mechanisms poorly characterized. We aimed to explore DHA action on H. pylori-mediated inflammation and adhesion to gastric epithelial cells (AGS and also to identify bacterial structures affected by DHA. H. pylori growth and metabolism was assessed in liquid cultures. Bacterial adhesion to AGS cells was visualized by transmission electron microscopy and quantified by an Enzyme Linked Immunosorbent Assay. Inflammatory proteins were assessed by immunoblotting in infected AGS cells, previously treated with DHA. Bacterial total and outer membrane protein composition was analyzed by 2-dimensional gel electrophoresis. Concentrations of 100 µM of DHA decreased H. pylori growth, whereas concentrations higher than 250 µM irreversibly inhibited bacteria survival. DHA reduced ATP production and adhesion to AGS cells. AGS cells infected with DHA pre-treated H. pylori showed a 3-fold reduction in Interleukin-8 (IL-8 production and a decrease of COX2 and iNOS. 2D electrophoresis analysis revealed that DHA changed the expression of H. pylori outer membrane proteins associated with stress response and metabolism and modified bacterial lipopolysaccharide phenotype. As conclusions our results show that DHA anti-H. pylori effects are associated with changes of bacteria morphology and metabolism, and with alteration of outer membrane proteins composition, that ultimately reduce the adhesion of bacteria and the burden of H. pylori-related inflammation.

  14. Diclofenac and triamcinolone acetonide impair tenocytic differentiation and promote adipocytic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Fredriksson, Maritha; Li, Yan; Stålman, Anders; Haldosén, Lars-Arne; Felländer-Tsai, Li

    2013-09-02

    Tendinopathies are often empirically treated with oral/topical nonsteroidal anti-inflammatory medications and corticosteroid injections despite their unclear effects on tendon regeneration. Recent studies indicate that tendon progenitors exhibit stem cell-like properties, i.e., differentiation to osteoblasts, adipocytes, and chondrocytes, in addition to tenocytes. Our present study aims at understanding the effects of triamcinolone acetonide and diclofenac on tenocytic differentiation of mesenchymal stem cells. The murine fibroblast C3H10T1/2 cell line was induced to tenocytic differentiation by growth differentiation factor-7. Cell proliferation and differentiation with the exposure of different concentrations of triamcinolone acetonide and diclofenac were measured by WST-1 assay and real-time polymerase chain reaction analysis, respectively. Cell proliferation was decreased in a concentration-dependent manner when exposed to triamcinolone acetonide and diclofenac. In addition to tenocytic differentiation, adipocyte formation was observed, both at gene expression and microscopic level, when the cells were exposed to triamcinolone acetonide or high concentrations of diclofenac. Our results indicate that triamcinolone acetonide and diclofenac might alter mesenchymal stem cell differentiation in a nonfavorable way regarding tendon regeneration; therefore, these medications should be used with more caution clinically.

  15. Bone impairment in phenylketonuria is characterized by circulating osteoclast precursors and activated T cell increase.

    Directory of Open Access Journals (Sweden)

    Ilaria Roato

    Full Text Available BACKGROUND: Phenylketonuria (PKU is a rare inborn error of metabolism often complicated by a progressive bone impairment of uncertain etiology, as documented by both ionizing and non- ionizing techniques. METHODOLOGY: Peripheral blood mononuclear cell (PBMC cultures were performed to study osteoclastogenesis, in the presence or absence of recombinant human monocyte-colony stimulating factor (M-CSF and receptor activator of NFκB ligand (RANKL. Flow cytometry was utilized to analyze osteoclast precursors (OCPs and T cell phenotype. Tumour necrosis factor α (TNF-α, RANKL and osteoprotegerin (OPG were quantified in cell culture supernatants by ELISA. The effects of RANKFc and anti-TNF-α antibodies were also investigated to determine their ability to inhibit osteoclastogenesis. In addition, bone conditions and phenylalanine levels in PKU patients were clinically evaluated. PRINCIPAL FINDINGS: Several in vitro studies in PKU patients' cells identified a potential mechanism of bone formation inhibition commonly associated with this disorder. First, PKU patients disclosed an increased osteoclastogenesis compared to healthy controls, both in unstimulated and M-CSF/RANKL stimulated PBMC cultures. OCPs and the measured RANKL/OPG ratio were higher in PKU patients compared to healthy controls. The addition of specific antagonist RANKFc caused osteoclastogenesis inhibition, whereas anti-TNF-α failed to have this effect. Among PBMCs isolated from PKU patients, activated T cells, expressing CD69, CD25 and RANKL were identified. Confirmatory in vivo studies support this proposed model. These in vivo studies included the analysis of osteoclastogenesis in PKU patients, which demonstrated an inverse relation to bone condition assessed by phalangeal Quantitative Ultrasound (QUS. This was also directly related to non-compliance to therapeutic diet reflected by hyperphenylalaninemia. CONCLUSIONS: Our results indicate that PKU spontaneous osteoclastogenesis

  16. Critical role of CCDC6 in the neoplastic growth of testicular germ cell tumors

    International Nuclear Information System (INIS)

    Staibano, Stefania; Fusco, Alfredo; Chieffi, Paolo; Celetti, Angela; Ilardi, Gennaro; Leone, Vincenza; Luise, Chiara; Merolla, Francesco; Esposito, Francesco; Morra, Francesco; Siano, Maria; Franco, Renato

    2013-01-01

    DNA damage response has been clearly described as an anti-cancer barrier in early human tumorigenesis. Moreover, interestingly, testicular germ cell tumors (TGCTs) have been reported to lack the DNA Damage Response (DDR) pathway activation. CCDC6 is a pro-apoptotic phosphoprotein substrate of the kinase ataxia telangectasia mutated (ATM) able to sustain DNA damage checkpoint in response to genotoxic stress and is commonly rearranged in malignancies upon fusion with different partners. In our study we sought to determine whether CCDC6 could have a role in the patho-genesis of testicular germ cell tumors. To achieve this aim, analysis for CCDC6 expression has been evaluated on serial sections of the mouse testis by immunohistochemistry and on separate populations of murine testicular cells by western blot. Next, the resistance to DNA damage-induced apoptosis and the production of reactive oxygen species has been investigated in GC1 cells, derived from immortalized type B murine germ cells, following CCDC6 silencing. Finally, the CCDC6 expression in normal human testicular cells, in Intratubular Germ Cell Neoplasia Unclassified (IGCNU), in a large series of male germ cell tumours and in the unique human seminoma TCam2 cell line has been evaluated by immunohistochemistry and by Western Blot analyses. The analysis of the CCDC6 expression revealed its presence in Sertoli cells and in spermatogonial cells. CCDC6 loss was the most consistent feature among the primary tumours and TCam2 cells. Interestingly, following treatment with low doses of H 2 O 2 , the silencing of CCDC6 in GC1 cells caused a decrease in the oxidized form of cytochrome c and low detection of Bad, PARP-1 and Caspase 3 proteins. Moreover, in the silenced cells, upon oxidative damage, the cell viability was protected, the γH2AX activation was impaired and the Reactive Oxygen Species (ROS) release was decreased. Therefore, our results suggest that the loss of CCDC6 could aid the spermatogonial cells to

  17. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    International Nuclear Information System (INIS)

    L'Hote, Corine G.M.; Knowles, Margaret A.

    2005-01-01

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer

  18. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  19. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  20. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  1. Endothelial progenitor cells dysfunction and impaired tissue reparation: The missed link in diabetes mellitus development.

    Science.gov (United States)

    Berezin, Alexander E

    Diabetes mellitus (DM) is considered a leading cause of premature cardiovascular (CV) mortality and morbidity in general population and in individuals with known CV disease. Recent animal and clinical studies have shown that reduced number and weak function of endothelial progenitor cells (EPCs) may not only indicate to higher CV risk, but contribute to the impaired heart and vessels reparation in patients with DM. Moreover, EPCs having a protective impact on the vasculature may mediate the functioning of other organs and systems. Therefore, EPCs dysfunction is probably promising target for DM treatment strategy, while the role of restoring of EPCs number and functionality in CV risk diminish and reduce of DM-related complications is not fully clear. The aim of the review is summary of knowledge regarding EPCs dysfunction in DM patients. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  2. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  3. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-01-01

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  4. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs. Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM, which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential.We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers.These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.

  5. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration.

    Science.gov (United States)

    Attia, Mohamed; Maurer, Marie; Robinet, Marieke; Le Grand, Fabien; Fadel, Elie; Le Panse, Rozen; Butler-Browne, Gillian; Berrih-Aknin, Sonia

    2017-12-01

    Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.

  6. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.

    Directory of Open Access Journals (Sweden)

    Michelle Lane

    Full Text Available Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2, which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.

  7. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.

    Science.gov (United States)

    Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo

    2017-01-31

    Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.

  8. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis.

    Science.gov (United States)

    Casas, Bárbara S; Vitória, Gabriela; do Costa, Marcelo N; Madeiro da Costa, Rodrigo; Trindade, Pablo; Maciel, Renata; Navarrete, Nelson; Rehen, Stevens K; Palma, Verónica

    2018-02-22

    Schizophrenia is a neurodevelopmental disease characterized by cerebral connectivity impairment and loss of gray matter. It was described in adult schizophrenia patients (SZP) that concentration of VEGFA, a master angiogenic factor, is decreased. Recent evidence suggests cerebral hypoperfusion related to a dysfunctional Blood Brain Barrier (BBB) in SZP. Since neurogenesis and blood-vessel formation occur in a coincident and coordinated fashion, a defect in neurovascular development could result in increased vascular permeability and, therefore, in poor functionality of the SZP's neurons. Here, we characterized the conditioned media (CM) of human induced Pluripotent Stem Cells (hiPSC)-derived Neural Stem Cells of SZP (SZP NSC) versus healthy subjects (Ctrl NSC), and its impact on angiogenesis. Our results reveal that SZP NSC have an imbalance in the secretion and expression of several angiogenic factors, among them non-canonical neuro-angiogenic guidance factors. SZP NSC migrated less and their CM was less effective in inducing migration and angiogenesis both in vitro and in vivo. Since SZP originates during embryonic brain development, our findings suggest a defective crosstalk between NSC and endothelial cells (EC) during the formation of the neuro-angiogenic niche.

  9. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    Science.gov (United States)

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  10. Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stefania Parlato

    Full Text Available Individuals exposed to Mycobacterium tuberculosis (Mtb may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI or develop active tuberculosis (TB. Among the multiple factors governing the outcome of the infection, dendritic cells (DCs play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs from patients with active TB, subjects with LTBI and healthy donors (HD. The proportion of circulating myeloid BDCA3+ DCs (mDC2 and plasmacytoid CD123+ DCs (pDCs declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.

  11. Impaired pubertal development and testicular hormone function in males with sickle cell anemia.

    Science.gov (United States)

    Martins, Paulo Roberto Juliano; Kerbauy, José; Moraes-Souza, Helio; Pereira, Gilberto de Araújo; Figueiredo, Maria Stella; Verreschi, Ieda Therezinha

    2015-01-01

    Changes in weight/height ratio, delayed sexual maturation, hypogonadism and impaired fertility have been demonstrated in sickle cell disease (SCD). This study aimed to evaluate the clinical and laboratory views of the Leydig cells function after stimulation with hCG in adults with sickle cell disease. We studied 15 patients with SCD (18 to 40 years; median=27 years old), fourteen homozygous S, and one with SC disease. The control group, composed by adult males, was divided into two groups: I - 10 relatives (18-39 years, median=26 years) with the same socioeconomic level of the patients, and II - 9 normal individuals (23-28, median=31 years) randomly chosen. Clinically it was observed a slight degree of malnutrition, important puberty delay, rarefaction of chest, underarm and pubic hair, and important reduction of the testis and penis size, featuring a mild hypogonadism in patients with SCD. The hormonal level assessment of testosterone at baseline and at 24, 48 and 72 h after hCG stimulation showed no significant differences between the groups studied. We can presume that adult men with SCD showed clinical hypoandrogenism with normal testicular hormonal function, a fact inconsistent with the hypothesis of primary hypogonadism. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging.

    Science.gov (United States)

    Fattoretti, P; Bertoni-Freddari, C; Caselli, U; Paoloni, R; Meier-Ruge, W

    1998-03-16

    The perikaryal Purkinje cell mitochondria positive to the copper ferrocyanide histochemical reaction for succinic dehydrogenase (SDH) have been investigated by means of semiautomatic morphometric methods in rats of 3, 12 and 24 months of age. The number of organelles/microm3 of Purkinje cell cytoplasm (Numeric density: Nv), the average mitochondrial volume (V) and the mitochondrial volume fraction (Volume density: Vv) were the ultrastructural parameters taken into account. Nv was significantly higher at 12 than at 3 and 24 months of age. V was significantly decreased at 12 and 24 months of age, but no difference was envisaged between adult and old rats. Vv was significantly decreased in old animals vs. the other age groups. In young and old rats, the percentage of organelles larger than 0.32 microm3 was 13.5 and 11%, respectively, while these enlarged mitochondria accounted for less than 1% in the adult group. Since SDH activity is of critical importance when energy demand is high, the marked decrease of Vv supports an impaired capacity of the old Purkinje cells to match actual energy supply at sustained transmission of the nervous impulse. However, the high percentage of enlarged organelles found in old rats may witness a morphofunctional compensatory response.

  13. Resignifying the sickle cell gene: Narratives of genetic risk, impairment and repair.

    Science.gov (United States)

    Berghs, Maria; Dyson, Simon M; Atkin, Karl

    2017-03-01

    Connecting theoretical discussion with empirical qualitative work, this article examines how sickle cell became a site of public health intervention in terms of 'racialised' risks. Historically, sickle cell became socio-politically allied to ideas of repair, in terms of the state improving the health of a neglected ethnic minority population. Yet, we elucidate how partial improvements in care and education arose alongside preventative public health screening efforts. Using qualitative research based in the United Kingdom, we show how a focus on collective efforts of repair can lie in tension with how services and individuals understand and negotiate antenatal screening. We illustrate how screening for sickle cell disorder calls into question narrative identity, undoing paradigms in which ethnicity, disablement and genetic impairment become framed. Research participants noted that rather than 'choices', it is 'risks' and their negotiation that are a part of discourses of modernity and the new genetics. Furthermore, while biomedical paradigms are rationally and ethically (de)constructed by participants, this was never fully engaged with by professionals, contributing to overall perception of antenatal screening as disempowering and leading to disengagement.

  14. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer

    Directory of Open Access Journals (Sweden)

    Yang F

    2017-09-01

    Full Text Available Fei Yang,1,* Jun-Yi Gao,2,* Hua Chen,1 Zhen-Hua Du,1 Xue-Qun Zhang,3 Wei Gao4 1Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 2Department of Clinical Medicine, Weifang Medical College, Weifang, 3Graduate School, Taishan Medical University, Xintai, 4Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Background: Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. Methods: In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim were also detected. Results: We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 µM and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Conclusion: Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer. Keywords: human colon cancer, PI3K/Akt/mTOR pathway, BEZ235, PI3KCA knockdown

  15. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4.

    Science.gov (United States)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-10-11

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The CD133(+) cells grow in vitro as undifferentiated tumor spheroids, and they are both necessary and sufficient to initiate tumor growth in immunodeficient mice. Xenografts resemble the original human tumor maintaining the rare subpopulation of tumorigenic CD133(+) cells. Further analysis revealed that the CD133(+) cells produce and utilize IL-4 to protect themselves from apoptosis. Consistently, treatment with IL-4Ralpha antagonist or anti-IL-4 neutralizing antibody strongly enhances the antitumor efficacy of standard chemotherapeutic drugs through selective sensitization of CD133(+) cells. Our data suggest that colon tumor growth is dictated by stem-like cells that are treatment resistant due to the autocrine production of IL-4.

  16. Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells.

    Science.gov (United States)

    Daniele, Giulia; Simonetti, Giorgia; Fusilli, Caterina; Iacobucci, Ilaria; Lonoce, Angelo; Palazzo, Antonio; Lomiento, Mariana; Mammoli, Fabiana; Marsano, Renè Massimiliano; Marasco, Elena; Mantovani, Vilma; Quentmeier, Hilmar; Drexler, Hans G; Ding, Jie; Palumbo, Orazio; Carella, Massimo; Nadarajah, Niroshan; Perricone, Margherita; Ottaviani, Emanuela; Baldazzi, Carmen; Testoni, Nicoletta; Papayannidis, Cristina; Ferrari, Sergio; Mazza, Tommaso; Martinelli, Giovanni; Storlazzi, Clelia Tiziana

    2017-07-01

    We here describe a leukemogenic role of the homeobox gene UNCX , activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX -positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1 , was revealed. Similar results were obtained in UNCX -transduced CD34 + cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1 We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX , associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML. Copyright© 2017 Ferrata Storti Foundation.

  17. Cardiac Ablation of Rheb1 Induces Impaired Heart Growth, Endoplasmic Reticulum-Associated Apoptosis and Heart Failure in Infant Mice

    Science.gov (United States)

    Cao, Yunshan; Tao, Lichan; Shen, Shutong; Xiao, Junjie; Wu, Hang; Li, Beibei; Wu, Xiangqi; Luo, Wen; Xiao, Qi; Hu, Xiaoshan; Liu, Hailang; Nie, Junwei; Lu, Shuangshuang; Yuan, Baiyin; Han, Zhonglin; Xiao, Bo; Yang, Zhongzhou; Li, Xinli

    2013-01-01

    Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure. PMID:24351823

  18. Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function.

    Directory of Open Access Journals (Sweden)

    Cheryl Hemingway

    Full Text Available The WHO estimates around a million children contract tuberculosis (TB annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM. Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB, and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68% of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16 and PTB patients (r2 = 0.71 p = 2x10-16 when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11 and T-cell receptor signalling (p = 6.56E-07. Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003. Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies.

  19. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  20. Cell Wall Structure of Coccoid Green Algae as an Important Trade-Off Between Biotic Interference Mechanisms and Multidimensional Cell Growth.

    Science.gov (United States)

    Dunker, Susanne; Wilhelm, Christian

    2018-01-01

    Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.

  1. The Potential Mechanism of ZFX Involvement in the Cell Growth

    Directory of Open Access Journals (Sweden)

    Mahboube Ganji arjenaki

    2016-04-01

    Full Text Available Background:The zinc-finger X linked (ZFX gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. Materials and Methods: The PIPs output includes three interacting proteins with ZFX: eukaryotic translation initiation factor 3 subunit I(EIF3I, eukaryotic translation initiation factor 3 subunit G(EIF3G and protein nuclear pore and COPII coat complex component homolog isoform 3 (SEC13L1. Results: As a cargo and transmembrane protein interacting with Sec13,eIF3I and eIF3G, ZFX mediates cargo sorting in COPII vesicles at ER exit sites. While traveling to cis-Golgi, eIF3I is phosphorylated by the mechanistic target of rapamycin (mTOR. Proteins transport by COPI vesicles to the nucleusouter site layer containing SEC13 via the contribution of microtubules. EIF3G and eIF3I interact with coatomer protein complex subunit beta 2 (COPB2 that helps to enclose ZFX in COPI vesicle. ZFX and eIF3G enter nucleolus where activation of transcription from pre rDNA genes occurs. Conclusion:We proposed a model in which ZFX is involved in cell growth by promoting the transcription of rDNA genes.

  2. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  3. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    Science.gov (United States)

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-α and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7Rα(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. Copyright © 2015. Published by Elsevier GmbH.

  4. Complications impaired endothelial progenitor cell function in Type 2 diabetic patients with or without critical leg ischaemia: implication for impaired neovascularization in diabetes.

    Science.gov (United States)

    Chen, M-C; Sheu, J-J; Wang, P-W; Chen, C-Y; Kuo, M-C; Hsieh, C-J; Chen, J-F; Chang, H-W

    2009-02-01

    This study tested the hypothesis that migratory function of endothelial progenitor cells (EPCs) is impaired in Type 2 diabetic patients with or without critical leg ischaemia. Seventy-four patients were classified into four groups: Type 2 diabetic (n = 21) and non-diabetic patients (n = 10) with critical leg ischaemia and Type 2 diabetic patients without lower extremity vascular disease (n = 30) and healthy subjects (n = 13). The number and functional activity of circulating and cultured EPCs were determined. The migratory function of cultured EPCs was significantly impaired in diabetic patients without (median, 48, interquartile range, 46, 49 count/view/well) and with (median, 51, interquartile range, 46, 60 count/view/well) critical leg ischaemia and non-diabetic patients with critical leg ischaemia (median, 49, interquartile range, 47, 55 count/view/well) compared with healthy subjects (median, 63, interquartile range, 57, 65 count/view/well) (P interquartile range, 1600, 6600/10(6) cytometric events) than Type 2 diabetic patients with critical leg ischaemia (median, 5300, interquartile range, 2400, 11,100/10(6) cytometric events), non-diabetic patients with critical leg ischaemia (median, 5550, interquartile range, 2000, 32,100/10(6) cytometric events) and healthy subjects (median, 5400, interquartile range, 2700, 8700/10(6) cytometric events) (P = 0.413). The migratory function of EPCs is impaired in patients with Type 2 diabetes, even in those without critical leg ischaemia. These findings present an important new insight into the pathogenesis of impaired neovascularization and critical limb ischaemia in diabetic patients and provide avenues of future clinical study.

  5. Programmed death-1 (PD-1)-dependent functional impairment of CD4(+) T cells in recurrent genital papilloma.

    Science.gov (United States)

    Chang, Dong-Yeop; Song, Sang Hoon; You, Sooseong; Lee, Jino; Kim, Jihye; Racanelli, Vito; Son, Hwancheol; Shin, Eui-Cheol

    2014-08-01

    Genital papilloma is caused by human papilloma virus (HPV) infection and recurs frequently. Although T cells are known to play a critical role in the control of HPV infection and papilloma development, the function and phenotype of these cells in the lesion remain to be elucidated. In the present study, we examined the function and phenotype of CD4(+) T cells isolated from the lesions of primary (n = 9) and recurrent (n = 11) genital papillomas. In recurrent papillomas, the frequency of proliferating (Ki-67(+)) CD4(+) T cells was significantly reduced compared with primary papillomas. Cytokine production was evaluated by intracellular cytokine staining in anti-CD3/anti-CD28-stimulated CD4(+) T cells. CD4(+) T cells from recurrent lesions showed impaired production of IL-2, IFN-γ, and TNF-α. Of interest, the frequency of cytokine-producing CD4(+) T cells significantly correlated with the frequency of Ki-67(+)CD4(+) T cells. We also studied expression of programmed death-1 (PD-1), a T-cell exhaustion marker. The frequency of PD-1(+)CD4(+) T cells was significantly increased in recurrent lesions and inversely correlated with the frequency of cytokine-producing CD4(+) T cells. The functional significance of PD-1 expression was determined in blocking assays with anti-PD-L1, which restored cytokine production of CD4(+) T cells from recurrent lesions. Taken together, in recurrent genital papilloma lesions, proliferation, and cytokine production by CD4(+) T cells are impaired and the PD-1/PD-L1 interaction is responsible for the functional impairment of CD4(+) T cells.

  6. All-trans retinoic acid inhibits craniopharyngioma cell growth: study on an explant cell model.

    Science.gov (United States)

    Li, Qiang; You, Chao; Zhou, Liangxue; Sima, Xiutian; Liu, Zhiyong; Liu, Hao; Xu, Jianguo

    2013-05-01

    The ratio between FABP5 and CRABPII determines cellular response to physiological level of retinoic acid; tumor cells undergo proliferation with high level of FABP5 and apoptosis with high level of CRABPII. We intended to study FABP5 and CRABPII expression in craniopharyngiomas, to establish craniopharyngioma cell model using explants method, and to study the effect of pharmacological dose of retinoic acid on craniopharyngioma cells. Expression of FABP5 and CRABPII in craniopharyngioma tissue from 20 patients was studied using immunohistochemistry. Primary craniopharyngioma cell cultures were established using tissue explants method. Craniopharyngioma cells were treated using various concentrations of all-trans retinoic acid, and cell growth curve, apoptosis, expression of FABP5, CRABPII and NF-κB were assayed in different groups. FABP5/CRABPII ratio was significantly higher in adamatinomatous group than that in papillary group. Cell cultures were established in 19 cases (95 %). Pharmacological level retinoic acid inhibited cell growth and induced cellular apoptosis in dose dependent manner, and apoptosis rate cells treated with 30 μM retinoic acid for 24 h was 43 %. Also, retinoic acid increased CRABPII, and decreased FABP5 and NF-κB expression in craniopharyngioma cells. High FABP5/CRABPII ratio is observed in adamatinomatous craniopharyngioma. Retinoic acid at pharmacological level induced craniopharyngioma cell apoptosis via increasing FABP5/CRABPII ratio and inhibiting NF-κB signaling pathway. Our study demonstrated that all-trans retinoic acid might be a candidate for craniopharyngioma adjuvant chemotherapy in future.

  7. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  8. Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling.

    Science.gov (United States)

    Fuchs, Claudia; Trazzi, Stefania; Torricella, Roberta; Viggiano, Rocchina; De Franceschi, Marianna; Amendola, Elena; Gross, Cornelius; Calzà, Laura; Bartesaghi, Renata; Ciani, Elisabetta

    2014-10-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a neurodevelopmental disorder characterized by early-onset intractable seizures, severe developmental delay, intellectual disability, and Rett's syndrome-like features. Since the physiological functions of CDKL5 still need to be elucidated, in the current study we took advantage of a new Cdkl5 knockout (KO) mouse model in order to shed light on the role of this gene in brain development. We mainly focused on the hippocampal dentate gyrus, a region that largely develops postnatally and plays a key role in learning and memory. Looking at the process of neurogenesis, we found a higher proliferation rate of neural precursors in Cdkl5 KO mice in comparison with wild type mice. However, there was an increase in apoptotic cell death of postmitotic granule neuron precursors, with a reduction in total number of granule cells. Looking at dendritic development, we found that in Cdkl5 KO mice the newly-generated granule cells exhibited a severe dendritic hypotrophy. In parallel, these neurodevelopmental defects were associated with impairment of hippocampus-dependent memory. Looking at the mechanisms whereby CDKL5 exerts its functions, we identified a central role of the AKT/GSK-3β signaling pathway. Overall our findings highlight a critical role of CDKL5 in the fundamental processes of brain development, namely neuronal precursor proliferation, survival and maturation. This evidence lays the basis for a better understanding of the neurological phenotype in patients carrying mutations in the CDKL5 gene. Copyright © 2014. Published by Elsevier Inc.

  9. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.

    Science.gov (United States)

    Ungvari, Zoltan; Tucsek, Zsuzsanna; Sosnowska, Danuta; Toth, Peter; Gautam, Tripti; Podlutsky, Andrej; Csiszar, Agnes; Losonczy, Gyorgy; Valcarcel-Ares, M Noa; Sonntag, William E; Csiszar, Anna

    2013-08-01

    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.

  10. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  11. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2017-07-01

    Full Text Available Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment.

  12. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss.

    Science.gov (United States)

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2016-04-01

    Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.

  13. Ca2+ signalling in endothelial progenitor cells: a novel means to improve cell-based therapy and impair tumour vascularisation.

    Science.gov (United States)

    Moccia, Francesco; Lodola, Francesco; Dragoni, Silvia; Bonetti, Elisa; Bottino, Cinzia; Guerra, Germano; Laforenza, Umberto; Rosti, Vittorio; Tanzi, Franco

    2014-01-01

    Endothelial progenitor cells (EPCs) have recently been employed in cell-based therapy (CBT) to promote regeneration of ischemic organs, such as heart and limbs. Furthermore, EPCs may sustain tumour vascularisation and provide an additional target for anticancer therapies. CBT is limited by the paucity of cells harvested from peripheral blood and suffers from several pitfalls, including the low rate of engrafted EPCs, whereas classic antiangiogenic treatments manifest a number of side effects and may induce resistance into the patients. CBT will benefit of a better understanding of the signal transduction pathway(s) which drive(s) EPC proliferation, trafficking, and incorporation into injured tissues. At the same time, this information might outline alternative molecular targets to impair tumor neovascularisation and improve the therapeutic outcome of antiangiogenic strategies. An increase in intracellular Ca(2+) concentration is the key signal in the regulation of cellular replication, migration, and differentiation. In particular, Ca(2+) signalling may regulate cellcycle progression, due to the Ca(2+)-sensitivity of a number of cycline-dependent kinases, and gene expression, owing to the Ca(2+)-dependence of several transcription factors. Recent work has outlined the role of the so-called store-operated Ca(2+) entry in driving EPC proliferation and migration. Unravelling the mechanisms guiding EPC engraftment into neovessels might supply the biological bases required to improve CBT and anticancer treatments. For example, genetic manipulation of the Ca(2+) signalling machinery could provide a novel approach to increase the extent of limb regeneration or preventing tumour vascularisation by EPCs.

  14. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.

    Science.gov (United States)

    Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota

    2018-02-01

    In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.

  15. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications

    Directory of Open Access Journals (Sweden)

    Briones Teresita L

    2011-12-01

    Full Text Available Abstract Background In this study, we examined the effects of cyclophosphamide, methothrexate, and 5-Fluorouracil (CMF drug combination on various aspects of learning and memory. We also examined the effects of CMF on cell proliferation and chromatin remodeling as possible underlying mechanisms to explain chemotherapy-associated cognitive dysfunction. Twenty-four adult female Wistar rats were included in the study and had minimitter implantation for continuous activity monitoring two weeks before the chemotherapy regimen was started. Once baseline activity data were collected, rats were randomly assigned to receive either CMF or saline injections given intraperitoneally. Treatments were given once a week for a total of 4 weeks. Two weeks after the last injection, rats were tested in the water maze for spatial learning and memory ability as well as discrimination learning. Bromodeoxyuridine (BrdU injection was given at 100 mg/Kg intraperitoneally 4 hours prior to euthanasia to determine hippocampal cell proliferation while histone acetylation and histone deacetylase activity was measured to determine CMF effects on chromatin remodeling. Results Our data showed learning and memory impairment following CMF administration independent of the drug effects on physical activity. In addition, CMF-treated rats showed decreased hippocampal cell proliferation, associated with increased histone acetylation and decreased histone deacetylase activity. Conclusions These results suggest the negative consequences of chemotherapy on brain function and that anti-cancer drugs can adversely affect the self-renewal potential of neural progenitor cells and also chromatin remodeling in the hippocampus. The significance of our findings lie on the possible usefulness of animal models in addressing the clinical phenomenon of 'chemobrain.'

  16. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  17. Crystal growth within a phase change memory cell.

    Science.gov (United States)

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  18. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1.

    Science.gov (United States)

    Mah, Amanda T; Van Landeghem, Laurianne; Gavin, Hannah E; Magness, Scott T; Lund, P Kay

    2014-09-01

    Nutrient intake regulates intestinal epithelial mass and crypt proliferation. Recent findings in model organisms and rodents indicate nutrient restriction impacts intestinal stem cells (ISC). Little is known about the impact of diet-induced obesity (DIO), a model of excess nutrient intake on ISC. We used a Sox9-EGFP reporter mouse to test the hypothesis that an adaptive response to DIO or associated hyperinsulinemia involves expansion and hyperproliferation of ISC. The Sox9-EGFP reporter mouse allows study and isolation of ISC, progenitors, and differentiated lineages based on different Sox9-EGFP expression levels. Sox9-EGFP mice were fed a high-fat diet for 20 weeks to induce DIO and compared with littermates fed low-fat rodent chow. Histology, fluorescence activated cell sorting, and mRNA analyses measured impact of DIO on jejunal crypt-villus morphometry, numbers, and proliferation of different Sox9-EGFP cell populations and gene expression. An in vitro culture assay directly assessed functional capacity of isolated ISC. DIO mice exhibited significant increases in body weight, plasma glucose, insulin, and insulin-like growth factor 1 (IGF1) levels and intestinal Igf1 mRNA. DIO mice had increased villus height and crypt density but decreased intestinal length and decreased numbers of Paneth and goblet cells. In vivo, DIO resulted in a selective expansion of Sox9-EGFP(Low) ISC and percentage of ISC in S-phase. ISC expansion significantly correlated with plasma insulin levels. In vitro, isolated ISC from DIO mice formed fewer enteroids in standard 3D Matrigel culture compared to controls, indicating impaired ISC function. This decreased enteroid formation in isolated ISC from DIO mice was rescued by exogenous insulin, IGF1, or both. We conclude that DIO induces specific increases in ISC and ISC hyperproliferation in vivo. However, isolated ISC from DIO mice have impaired intrinsic survival and growth in vitro that can be rescued by exogenous insulin or IGF1.

  19. Influence of Cell-Cell Interactions on the Population Growth Rate in a Tumor

    Science.gov (United States)

    Chen, Yong

    2017-12-01

    The understanding of the macroscopic phenomenological models of the population growth at a microscopic level is important to predict the population behaviors emerged from the interactions between the individuals. In this work, we consider the influence of the population growth rate R on the cell-cell interaction in a tumor system and show that, in most cases especially small proliferative probabilities, the regulative role of the interaction will be strengthened with the decline of the intrinsic proliferative probabilities. For the high replication rates of an individual and the cooperative interactions, the proliferative probability almost has no effect. We compute the dependences of R on the interactions between the cells under the approximation of the nearest neighbor in the rim of an avascular tumor. Our results are helpful to qualitatively understand the influence of the interactions between the individuals on the growth rate in population systems. Supported by the National Natural Science Foundation of China under Grant Nos. 11675008 and 21434001

  20. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  1. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  2. High level of reactive oxygen species impaired mesenchymal stem cell migration via overpolymerization of F-actin cytoskeleton in systemic lupus erythematosus.

    Science.gov (United States)

    Shi, D; Li, X; Chen, H; Che, N; Zhou, S; Lu, Z; Shi, S; Sun, L

    2014-12-01

    Some lines of evidence have demonstrated abnormalities of bone marrow mesenchymal stem cells (MSCs) in systemic lupus erythematosus (SLE) patients, characterized by defective phenotype of MSCs and slower growth with enhanced apoptosis and senescence. However, whether SLE MSCs demonstrate aberrant migration capacity or abnormalities in cytoskeleton are issues that remain poorly understood. In this study, we found that MSCs from SLE patients did show impairment in migration capacity as well as abnormalities in F-actin cytoskeleton, accompanied by a high level of intracellular reactive oxygen species (ROS). When normal MSCs were treated in vitro with H2O2, which increases intracellular ROS level as an oxidant, both reorganization of F-actin cytoskeleton and impairment of migration capability were observed. On the other hand, treatment with N-acetylcysteine (NAC), as an exogenous antioxidant, made F-actin more orderly and increased migration ratio in SLE MSCs. In addition, oral administration of NAC markedly reduced serum autoantibody levels and ameliorated lupus nephritis (LN) in MRL/lpr mice, partially reversing the abnormalities of MSCs. These results indicate that overpolymerization of F-actin cytoskeleton, which may be associated with high levels of ROS, causes impairment in the migration capacity of SLE MSCs and that oral administration of NAC may have potential therapeutic effects on MRL/lpr mice. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Growth of primary embryo cells in a microculture system.

    Science.gov (United States)

    Villa, Max; Pope, Sara; Conover, Joanne; Fan, Tai-Hsi

    2010-04-01

    We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 microm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.

  4. Hemorrhagic shock impairs myocardial cell volume regulation and membrane integrity in dogs

    International Nuclear Information System (INIS)

    Horton, J.W.

    1987-01-01

    An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h or hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace [ 14 C]inulin, values (ml H 2 O/g dry wt) for control nonshocked myocardial slices were 4.03 /plus minus/ 0.11 (SE) for total water, 2.16 /plus minus/ 0.07 for inulin impermeable space, and 1.76 /plus minus/ 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation. After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo

  5. MicroRNA-22 impairs anti-tumor ability of dendritic cells by targeting p38.

    Directory of Open Access Journals (Sweden)

    Xue Liang

    Full Text Available Dendritic cells (DCs play a critical role in triggering anti-tumor immune responses. Their intracellular p38 signaling is of great importance in controlling DC activity. In this study, we identified microRNA-22 (miR-22 as a microRNA inhibiting p38 protein expression by directly binding to the 3' untranslated region (3'UTR of its mRNA. The p38 down-regulation further interfered with the synthesis of DC-derived IL-6 and the differentiation of DC-driven Th17 cells. Moreover, overexpression of miR-22 in DCs impaired their tumor-suppressing ability while miR-22 inhibitor could reverse this phenomenon and improve the curative effect of DC-based immunotherapy. Thus, our results highlight a suppressive role for miR-22 in the process of DC-invoked anti-tumor immunity and that blocking this microRNA provides a new strategy for generating potent DC vaccines for patients with cancer.

  6. Mutant LRP6 Impairs Endothelial Cell Functions Associated with Familial Normolipidemic Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2016-07-01

    Full Text Available Mutations in the genes low-density lipoprotein (LDL receptor-related protein-6 (LRP6 and myocyte enhancer factor 2A (MEF2A were reported in families with coronary artery disease (CAD. We intend to determine the mutational spectrum of these genes among hyperlipidemic and normolipidemic CAD families. Forty probands with early-onset CAD were recruited from 19 hyperlipidemic and 21 normolipidemic Chinese families. We sequenced all exons and intron-exon boundaries of LRP6 and MEF2A, and found a novel heterozygous variant in LRP6 from a proband with normolipidemic CAD. This variant led to a substitution of histidine to tyrosine (Y418H in an evolutionarily conserved domain YWTD in exon 6 and was not found in 1025 unrelated healthy individuals. Co-segregated with CAD in the affected family, LRP6Y418H significantly debilitated the Wnt3a-associated signaling pathway, suppressed endothelial cell proliferation and migration, and decreased anti-apoptotic ability. However, it exhibited no influences on low-density lipoprotein cholesterol uptake. Thus, mutation Y418H in LRP6 likely contributes to normolipidemic familial CAD via impairing endothelial cell functions and weakening the Wnt3a signaling pathway.

  7. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  8. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    Science.gov (United States)

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American

  9. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available Fusobacterium nucleatum (F. nucleatum plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α and reactive oxygen species (ROS in Caco-2 colorectal adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1 or RNA interference in essential autophagy genes (ATG5 or ATG12 in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells.

  10. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  11. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  12. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  13. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    International Nuclear Information System (INIS)

    Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.; Winfield, Leyte L.

    2014-01-01

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  14. C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance

    Directory of Open Access Journals (Sweden)

    Rachel V. Jimenez

    2018-03-01

    Full Text Available C-reactive protein (CRP is the prototypical acute phase reactant, increasing in blood concentration rapidly and several-fold in response to inflammation. Recent evidence indicates that CRP has an important physiological role even at low, baseline levels, or in the absence of overt inflammation. For example, we have shown that human CRP inhibits the progression of experimental autoimmune encephalomyelitis (EAE in CRP transgenic mice by shifting CD4+ T cells away from the TH1 and toward the TH2 subset. Notably, this action required the inhibitory Fcγ receptor IIB (FcγRIIB, but did not require high levels of human CRP. Herein, we sought to determine if CRP’s influence in EAE might be explained by CRP acting on dendritic cells (DC; antigen presenting cells known to express FcγRIIB. We found that CRP (50 µg/ml reduced the yield of CD11c+ bone marrow-derived DCs (BMDCs and CRP (≥5 μg/ml prevented their full expression of major histocompatibility complex class II and the co-stimulatory molecules CD86 and CD40. CRP also decreased the ability of BMDCs to stimulate antigen-driven proliferation of T cells in vitro. Importantly, if the BMDCs were genetically deficient in mouse FcγRIIB then (i the ability of CRP to alter BMDC surface phenotype and impair T cell proliferation was ablated and (ii CD11c-driven expression of a human FCGR2B transgene rescued the CRP effect. Lastly, the protective influence of CRP in EAE was fully restored in mice with CD11c-driven human FcγRIIB expression. These findings add to the growing evidence that CRP has important biological effects even in the absence of an acute phase response, i.e., CRP acts as a tonic suppressor of the adaptive immune system. The ability of CRP to suppress development, maturation, and function of DCs implicates CRP in the maintenance of peripheral T cell tolerance.

  15. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  16. Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Miglietta, Esteban A; Villarreal, Alejandro; Ramos, Alberto J; Kotler, Mónica L

    2013-10-25

    Manganese (Mn) is an essential trace element due to its participation in many physiological processes. However, overexposure to this metal leads to a neurological disorder known as Manganism whose clinical manifestations and molecular mechanisms resemble Parkinson's disease. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity being the mitochondria the most affected organelles. The aim of this study was to investigate the possible mitochondrial dynamics alterations in Mn-exposed human astrocytes. Therefore, we employed Gli36 cells which express the astrocytic markers GFAP and S100B. We demonstrated that Mn triggers the mitochondrial apoptotic pathway revealed by increased Bax/Bcl-2 ratio, by the loss of mitochondrial membrane potential and by caspase-9 activation. This apoptotic program may be in turn responsible of caspase-3/7 activation, PARP-1 cleavage, chromatin condensation and fragmentation. In addition, we determined that Mn induces deregulation in mitochondria-shaping proteins (Opa-1, Mfn-2 and Drp-1) expression levels in parallel with the disruption of the mitochondrial network toward to an exacerbated fragmentation. Since mitochondrial dynamics is altered in several neurodegenerative diseases, these proteins could become future targets to be considered in Manganism treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  18. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  19. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan

    2008-01-01

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  20. EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Li, B; Yu, F; Wu, F; Hui, T; A, P; Liao, X; Yin, B; Wang, C; Ye, L

    2018-05-01

    The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of PRC2 (polycomb repressor complex 2). It mediates gene silencing via methyltransferase activity and is involved in the determination of cell lineage. However, the function of EZH2 and the underlying mechanisms by which it affects the differentiation of human dental pulp cell (hDPC) have remained underexplored. In this research, we found that EZH2 expression decreased during the mineralization of hDPCs, with attenuated H3K27me3 (trimethylation on lysine 27 in histone H3). Overexpression of EZH2 impaired the odontogenic differentiation of hDPCs, while EZH2 without methyltransferase activity mutation (mutation of suppressed variegation of 3 to 9, enhancer of zeste and trithorax domain, EZH2ΔSET) did not display this phenotype. In addition, siRNA knockdown studies showed that EZH2 negatively modulated hDPC differentiation in vitro and inhibited mineralized nodule formation in transplanted β-tricalcium phosphate / hDPC composites. To further investigate the underlying mechanisms, we explored the Wnt/β-catenin signaling pathway in view of the fact that previous research had documented the essential role that it plays during hDPC mineralization, as well as its links to EZH2 in other cells. We demonstrated for the first time that EZH2 depletion activated the Wnt/β-catenin signaling pathway and enhanced the accumulation of β-catenin in hDPCs. Chromatin immunoprecipitation analysis suggested that these effects are attributable to the level of the EZH2-regulated H3K27me3 on the β-catenin promoter. We conclude that EZH2 plays a negative role during the odontogenic differentiation of hDPCs. Suppression of EZH2 could promote hDPC mineralization by epigenetically regulating the expression of β-catenin and activating the Wnt canonical signaling pathway.

  1. [Perinatal outcome and cardiac dysfunction in preterm growth-restricted neonates in relation to placental impairment severity].

    Science.gov (United States)

    Candel Pau, Júlia; Castillo Salinas, Félix; Perapoch López, Josep; Carrascosa Lezcano, Antonio; Sánchez García, Olga; Llurba Olivé, Elisa

    2016-10-01

    Intrauterine growth restriction (IUGR) and prematurity have been associated with increased perinatal morbidity and mortality and also with cardiovascular foetal programming. However, there are few studies on the impact of placenta-related IUGR on perinatal outcomes and cardiovascular biomarkers in pre-term infants. To determine differences in neonatal morbidity, mortality and cord blood biomarkers of cardiovascular dysfunction between pre-term placenta-related IUGR and non-IUGR new-borns, and to analyse their relationship with the severity of IUGR according to foetal Doppler evaluation. Prospective cohort study: pre-term infants with placenta-related IUGR and matched pre-term infants without IUGR. A Doppler scan was performed, and placenta-IUGR was classified according to severity. Comparative analysis of perinatal outcomes, neonatal morbidity and mortality, and cord blood levels of biomarkers of cardiovascular dysfunction was performed. IUGR new-borns present lower weight, length, head circumference, and Apgar score at birth, as well as increased neonatal and cardiovascular dysfunction biomarker levels, compared with pre-term new-borns without IUGR. These differences increase with the severity of IUGR determined by prenatal umbilical artery Doppler scan. Placenta-related-IUGR pre-term infants, irrespective of gestational age, present increased neonatal morbidity and mortality that is significantly proportional to the severity of IUGR. Placental impairment and severity also determine levels of cardiovascular dysfunction biomarkers at birth. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    Science.gov (United States)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  3. An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth

    Science.gov (United States)

    Kim, Eunhee; Kim, Jin-Young; Choi, Hongsoo

    2017-12-01

    Microprobes are used to repair neuronal injury by recording electrical signals from neuronal cells around the surface of the device. Following implantation into the brain, the immune response results in formation of scar tissue around the microprobe. However, neurons must be in close proximity to the microprobe to enable signal recording. A common reason for failure of microprobes is impaired signal recording due to scar tissue, which is not related to the microprobe itself. Therefore, the device-cell interface must be improved to increase the number of neurons in contact with the surface. In this study, we developed nanostructured SU-8 microprobes to support neuronal growth. Nanostructures of 200 nm diameter and depth were applied to the surface of microprobes, and the attachment and neurite outgrowth of PC12 cells on the microprobes were evaluated. Neuronal attachment and neurite outgrowth on the nanostructured microprobes were significantly greater than those on non-nanostructured microprobes. The enhanced neuronal attachment and neurite outgrowth on the nanostructured microprobes occurred in the absence of an adhesive coating, such as poly- l-lysine, and so may be useful for implantable devices for long-term use. Therefore, nanostructured microprobes can be implanted without adhesive coating, which can cause problems in vivo over the long term.

  4. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4

    Science.gov (United States)

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Camacho, Carolina Espindola; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A. L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.; Dubinett, Steven M.; Critchlow, Susan E.; Kurdistani, Siavash K.; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G.; Christofk, Heather R.

    2016-01-01

    SUMMARY Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export, which when inhibited enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors further supporting their use as anti-cancer therapeutics. PMID:26876179

  5. Zoledronate inhibits ischemia-induced neovascularization by impairing the mobilization and function of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Shih-Hung Tsai

    Full Text Available BACKGROUND: Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg. Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control. Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1(+/Flk-1(+ after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. CONCLUSIONS/SIGNIFICANCE: Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions

  6. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  7. Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation.

    Science.gov (United States)

    Vuppalapati, Karuna K; Bouderlique, Thibault; Newton, Phillip T; Kaminskyy, Vitaliy O; Wehtje, Henrik; Ohlsson, Claes; Zhivotovsky, Boris; Chagin, Andrei S

    2015-12-01

    Longitudinal bone growth takes place in epiphyseal growth plates located in the ends of long bones. The growth plate consists of chondrocytes traversing from the undifferentiated (resting zone) to the terminally differentiated (hypertrophic zone) stage. Autophagy is an intracellular catabolic process of lysosome-dependent recycling of intracellular organelles and protein complexes. Autophagy is activated during nutritionally depleted or hypoxic conditions in order to facilitate cell survival. Chondrocytes in the middle of the growth plate are hypoxic and nutritionally depleted owing to the avascular nature of the growth plate. Accordingly, autophagy may facilitate their survival. To explore the role of autophagy in chondrocyte survival and constitutional bone growth, we generated mice with cartilage-specific ablation of either Atg5 (Atg5cKO) or Atg7 (Atg7cKO) by crossing Atg5 or Atg7 floxed mice with cartilage-specific collagen type 2 promoter-driven Cre. Both Atg5cKO and Atg7cKO mice showed growth retardation associated with enhanced chondrocyte cell death and decreased cell proliferation. Similarly, inhibition of autophagy by Bafilomycin A1 (Baf) or 3-methyladenine (3MA) promoted cell death in cultured slices of human growth plate tissue. To delineate the underlying mechanisms we employed ex vivo cultures of mouse metatarsal bones and RCJ3.IC5.18 rat chondrogenic cell line. Baf or 3MA impaired metatarsal bone growth associated with processing of caspase-3 and massive cell death. Similarly, treatment of RCJ3.IC5.18 chondrogenic cells by Baf also showed massive cell death and caspase-3 cleavage. This was associated with activation of caspase-9 and cytochrome C release. Altogether, our data suggest that autophagy is important for chondrocyte survival, and inhibition of this process leads to stunted growth and caspase-dependent death of chondrocytes. © 2015 American Society for Bone and Mineral Research.

  8. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  9. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    Science.gov (United States)

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  10. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  11. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Suspension cultures of Datura innoxia Mill, were successfully grown on a modified Murashige and Skoog medium with 2,4–D, NAA or BAP as growth substances, provided the micronutrient levels were reduced to 1/10. Normal amounts of micronutrients were toxic. Attempts to identify the toxic elements did...... not succeed. Cultures grew exponentially on a shaker at 27°C in the light. Their doubling times varied from 1.1 days on 2,4–D (10–6M) or NAA (10−5M)+ 1 g/1 casein hydrolysate to 2.7 days on BAP (3 × 10−7M) and 5.1 days on supraoptimal levels of 2,4-D (10−5M). Cultures grew on NH4+-N alone (from ammonium...... malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  12. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  13. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells.

    Science.gov (United States)

    Rici, Rose Eli Grassi; Alcântara, Dayane; Fratini, Paula; Wenceslau, Cristiane Valverde; Ambrósio, Carlos Eduardo; Miglino, Maria Angelica; Maria, Durvanei Augusto

    2012-02-22

    The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. We propose that rhBMP-2 has great

  14. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2014-08-01

    Full Text Available Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1 prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE and granular prefrontal cortex (gPFC; Brodmann’s area 12 grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the use it or lose it notion of synaptic reinforcement may speak to only part of the story, use it but you still might lose it may be just as prevalent in the cerebral cortex.

  15. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  16. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  17. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  18. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  19. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    International Nuclear Information System (INIS)

    Bonon, Anna; Mangolini, Alessandra; Pinton, Paolo; Senno, Laura del; Aguiari, Gianluca

    2013-01-01

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G 0 /G 1 phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new opportunities

  20. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  1. Granule cell dispersion is associated with memory impairment in right mesial temporal lobe epilepsy.

    Science.gov (United States)

    Neves, Rafael Scarpa da Costa; de Souza Silva Tudesco, Ivanda; Jardim, Anaclara Prada; Caboclo, Luís Otávio Sales Ferreira; Lancellotti, Carmen; Ferrari-Marinho, Taíssa; Hamad, Ana Paula; Marinho, Murilo; Centeno, Ricardo Silva; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2012-11-01

    We analyzed the association of granule cell dispersion (GCD) with memory performance, clinical data and surgical outcome in a series of patients with mesial temporal lobe epilepsy (MTLE) and mesial temporal sclerosis (MTS). Hippocampal specimens from 54 patients with MTLE (27 patients with right MTLE and 27 with left MTLE) and unilateral MTS, who were separated into GCD and no-GCD groups and thirteen controls were studied. Quantitative neuropathological evaluation was performed using hippocampal sections stained with NeuN. Patients' neuropsychological measures, clinical data, type of MTS and surgical outcome were reviewed. GCD occurred in 28 (51.9%) patients. No correlation between GCD and MTS pattern, clinical data or surgical outcome was found. The presence of GCD was correlated with worse visuospatial memory performance in right MTLE, but not with memory performance in left MTLE. GCD may be related to memory impairment in right MTLE-MTS patients. However, the role of GCD in memory function is not precisely defined. Copyright © 2012 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  2. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    Science.gov (United States)

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes cir