WorldWideScience

Sample records for impaired wound healing

  1. Impaired cutaneous wound healing in mice lacking tetranectin

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision....... However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....

  2. Wound Healing in Patients With Impaired Kidney Function.

    Maroz, Natallia; Simman, Richard

    2013-04-01

    Renal impairment has long been known to affect wound healing. However, information on differences in the spectrum of wound healing depending on the type of renal insufficiency is limited. Acute kidney injury (AKI) may be observed with different wound types. On one hand, it follows acute traumatic conditions such as crush injury, burns, and post-surgical wounds, and on the other hand, it arises as simultaneous targeting of skin and kidneys by autoimmune-mediated vasculitis. Chronic kidney disease (CKD) and end-stage renal disease (ESRD) often occur in older people, who have limited physical mobility and predisposition for developing pressure-related wounds. The common risk factors for poor wound healing, generally observed in patients with CKD and ESRD, include poorly controlled diabetes mellitus, neuropathy, peripheral vascular disease, chronic venous insufficiency, and aging. ESRD patients have a unique spectrum of wounds related to impaired calcium-phosphorus metabolism, including calciphylaxis, in addition to having the risk factors presented by CKD patients. Overall, there is a wide range of uremic toxins: they may affect local mechanisms of wound healing and also adversely affect the functioning of multiple systems. In the present literature review, we discuss the association between different types of renal impairments and their effects on wound healing and examine this association from different aspects related to the management of wounds in renal impairment patients.

  3. Effects on Glycemic Control in Impaired Wound Healing in Spontaneously Diabetic Torii (SDT) Fatty Rats.

    Katsuhiro, Miyajima; Hui Teoh, Soon; Yamashiro, Hideaki; Shinohara, Masami; Fatchiyah, Fatchiyah; Ohta, Takeshi; Yamada, Takahisa

    2018-02-01

    Impaired diabetic wound healing is an important issue in diabetic complications. The present study aims to evaluate the protective effect on glycemic control against impaired diabetic wound healing using a diabetic rat model. We investigated the wound healing process and effect on the impaired wound repair by glycemic control in the Spontaneously Diabetic Torii (SDT) fatty rat, which is a new animal model of obese type 2 diabetes and may be a good model for study impaired wound healing. Male SDT fatty rats at 15 weeks of age were administered orally with sodium glucose co-transporter (SGLT) 2 inhibitor for 3 weeks. Wounds were induced at 2 weeks after SGLT 2 inhibitor treatment, and the wound areas were periodically examined in morphological and histological analyses. The SDT fatty rats showed a delayed wound healing as compared with the normal rats, but a glycemic control improved the impaired wound healing. In histological analysis in the skin of SDT fatty rats showed severe infiltration of inflammatory cell, hemorrhage and many bacterial masses in the remaining and slight fibrosis of crust on skin tissue . Thought that this results skin performance to be a delay of crust formation and regeneration of epithelium; however, these findings were ameliorated in the SGLT 2 inhibitor treated group. Glycemic control is effective for treatment in diabetic wounds and the SDT fatty rat may be useful to investigate pathophysiological changes in impaired diabetic wound healing.

  4. Factors Affecting Wound Healing

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  5. Factors Affecting Wound Healing

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  6. Clinically relevant doses of lidocaine and bupivacaine do not impair cutaneous wound healing in mice.

    Waite, A; Gilliver, S C; Masterson, G R; Hardman, M J; Ashcroft, G S

    2010-06-01

    Lidocaine and bupivacaine are commonly infiltrated into surgical cutaneous wounds to provide local anaesthesia after surgical procedures. However, very little is known about their effects on cutaneous wound healing. If an inhibitory effect is demonstrated, then the balance between the benefits of postoperative local anaesthesia and the negatives of impaired cutaneous wound healing may affect the decision to use local anaesthesia or not. Furthermore, if a difference in the rate of healing of lidocaine- and bupivacaine-treated cutaneous wounds is revealed, or if an inhibitory effect is found to be dose-dependent, then this may well influence the choice of agent and its concentration for clinical use. Immediately before incisional wounding, we administered lidocaine and bupivacaine intradermally to adult female mice, some of which had been ovariectomized to act as a model of post-menopausal women (like post-menopausal women, ovariectomized mice heal wounds poorly, with increased proteolysis and inflammation). Day 3 wound tissue was analysed histologically and tested for expression of inflammatory and proteolytic factors. On day 3 post-wounding, wound areas and extent of re-epithelialization were comparable between the control and local anaesthetic-treated animals, in both intact and ovariectomized groups. Both tested drugs significantly increased wound activity of the degradative enzyme matrix metalloproteinase-2 relative to controls, while lidocaine also increased wound neutrophil numbers. Although lidocaine and bupivacaine influenced local inflammatory and proteolytic factors, they did not impair the rate of healing in either of two well-established models (mimicking normal human wound healing and impaired age-related healing).

  7. Tobacco toxins deposited on surfaces (third hand smoke) impair wound healing.

    Dhall, Sandeep; Alamat, Raquelle; Castro, Anthony; Sarker, Altaf H; Mao, Jian-Hua; Chan, Alex; Hang, Bo; Martins-Green, Manuela

    2016-07-01

    Third hand smoke (THS) is the accumulation of second hand smoke (SHS) toxins on surfaces in homes, cars, clothing and hair of smokers. It is known that 88M US nonsmokers ≥3 years old living in homes of smokers are exposed to THS toxicants and show blood cotinine levels of ≥0.05 ng/ml, indicating that the toxins are circulating in their circulatory systems. The goal of the present study is to investigate the mechanisms by which THS causes impaired wound healing. We show that mice living under conditions that mimic THS exposure in humans display delayed wound closure, impaired collagen deposition, altered inflammatory response, decreased angiogenesis, microvessels with fibrin cuffs and a highly proteolytic wound environment. Moreover, THS-exposed mouse wounds have high levels of oxidative stress and significantly lower levels of antioxidant activity leading to molecular damage, including protein nitration, lipid peroxidation and DNA damage that contribute to tissue dysfunction. Furthermore, we show that elastase is elevated, suggesting that elastin is degraded and the plasticity of the wound tissue is decreased. Taken together, our results lead us to conclude that THS toxicants delay and impair wound healing by disrupting the sequential processes that lead to normal healing. In addition, the lack of elastin results in loss of wound plasticity, which may be responsible for reopening of wounds. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. Wound Healing and Care

    ... Safe Videos for Educators Search English Español Wound Healing and Care KidsHealth / For Teens / Wound Healing and ... open to heal through natural scar formation. The Healing Process Before healing begins, the body gears up ...

  9. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights.

    Baltzis, Dimitrios; Eleftheriadou, Ioanna; Veves, Aristidis

    2014-08-01

    Diabetic foot ulcers (DFUs) are one of the most common and serious complications of diabetes mellitus, as wound healing is impaired in the diabetic foot. Wound healing is a dynamic and complex biological process that can be divided into four partly overlapping phases: hemostasis, inflammation, proliferative and remodeling. These phases involve a large number of cell types, extracellular components, growth factors and cytokines. Diabetes mellitus causes impaired wound healing by affecting one or more biological mechanisms of these processes. Most often, it is triggered by hyperglycemia, chronic inflammation, micro- and macro-circulatory dysfunction, hypoxia, autonomic and sensory neuropathy, and impaired neuropeptide signaling. Research focused on thoroughly understanding these mechanisms would allow for specifically targeted treatment of diabetic foot ulcers. The main principles for DFU treatment are wound debridement, pressure off-loading, revascularization and infection management. New treatment options such as bioengineered skin substitutes, extracellular matrix proteins, growth factors, and negative pressure wound therapy, have emerged as adjunctive therapies for ulcers. Future treatment strategies include stem cell-based therapies, delivery of gene encoding growth factors, application of angiotensin receptors analogs and neuropeptides like substance P, as well as inhibition of inflammatory cytokines. This review provides an outlook of the pathophysiology in diabetic wound healing and summarizes the established and adjunctive treatment strategies, as well as the future therapeutic options for the treatment of DFUs.

  10. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function.

    Fujiwara, Toshihiro; Duscher, Dominik; Rustad, Kristine C; Kosaraju, Revanth; Rodrigues, Melanie; Whittam, Alexander J; Januszyk, Michael; Maan, Zeshaan N; Gurtner, Geoffrey C

    2016-03-01

    Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Promotion of accelerated repair in a radiation impaired wound healing model in murine skin

    Walker, M.D.

    2000-02-01

    therapeutic modalities investigated were unable to counteract any radiation damage and promote acceleration of repair in this impaired wound healing model. (author)

  12. The reduction in inflammation and impairment in wound healing by using strontium chloride hexahydrate.

    Berksoy Hayta, Sibel; Durmuş, Kasim; Altuntaş, Emine Elif; Yildiz, Esin; Hisarciklıo, Mehmet; Akyol, Melih

    2018-03-01

    Numerous growth factors, cytokine, mitogen and chemotactic factors are involved in wound healing. Even though inflammation is important for the stimulation of proliferative phase, excessive inflammation also causes impairment in wound healing. Strontium salts suppress keratinocyte-induced TNF-alpha and interleukin-1 and interleukin-6 in in vitro cultures. This study was conducted to determine the effects of administration of topical strontium chloride hexahydrate on wound healing through TNF-alpha and TGF-beta in surgical wound healing model of in-vivo rat skin. Twenty-four rats were used in the study. After approximately 2 cm cutaneous-subcutaneous incision was horizontally carried out on the mid-neckline of the rats, the incision was again closed using 2.0 vicryl. The rats were assigned into three groups including eight rats in each group. Placebo emollient ointment and also the ointments, which were containing 5% and 10% strontium chloride hexahydrate and were prepared at the same base with placebo ointment, were administered to the groups by a blind executor twice a day for a week. At the end of seventh day, the rats were sacrificed and cutaneous and subcutaneous tissue of their wound site was resected for histopathological examination. Scoring of histopathological wound healing and scoring of tissue TNF-alpha and TGF-beta level with immunohistochemical staining were performed. The groups, to which both 5% and 10% strontium chloride hexahydrate was administered, had lower immunohistochemical TNF-alpha levels and histopathological wound scores compared to controls, which was statistically significant (p < 0.05). Strontium chloride hexahydrate can lead to impairment in wound healing by suppressing inflammation through TNF-alpha.

  13. OK-432 as a sclerosing agent to treat wound-healing impairment.

    Fasching, G; Sinzig, M

    2007-12-01

    We report on the application of OK-432 (picibanil) in a patient with prolonged wound healing impairment. A 13-year-old girl had suffered a polytrauma with a displaced fracture of the sacrum which required neurosurgical decompression of the sacral plexus. Postoperatively, a seroma with recurrent fistulation was seen. Excision of the wound, prolonged suction drainage and the instillation of hypertonic glucose solution did not have any effect over a period of four months postoperatively. Relying on our personal experience of the treatment of lymphangiomas using OK-432 we instilled OK-432 into the wound. Leakage stopped immediately, there was a regression of fluid accumulation and four weeks later the ultrasound examination was normal. The patient is still asymptomatic four years after treatment. OK-432 can be used effectively for the treatment of chronic wound healing impairment.

  14. Loss of the Desmosomal Component Perp Impairs Wound Healing In Vivo

    Veronica G. Beaudry

    2010-01-01

    Full Text Available Epithelial wound closure is a complex biological process that relies on the concerted action of activated keratinocytes and dermal fibroblasts to resurface and close the exposed wound. Modulation of cell-cell adhesion junctions is thought to facilitate cellular proliferation and migration of keratinocytes across the wound. In particular, desmosomes, adhesion complexes critical for maintaining epithelial integrity, are downregulated at the wound edge. It is unclear, however, how compromised desmosomal adhesion would affect wound reepithelialization, given the need for a delicate balance between downmodulating adhesive strength to permit changes in cellular morphology and maintaining adhesion to allow coordinated migration of keratinocyte sheets. Here, we explore the contribution of desmosomal adhesion to wound healing using mice deficient for the desmosomal component Perp. We find that Perp conditional knockout mice display delayed wound healing relative to controls. Furthermore, we determine that while loss of Perp compromises cell-cell adhesion, it does not impair keratinocyte proliferation and actually enhances keratinocyte migration in in vitro assays. Thus, Perp's role in promoting cell adhesion is essential for wound closure. Together, these studies suggest a role for desmosomal adhesion in efficient wound healing.

  15. Impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen metabolism

    Kirfel, Jutta; Pantelis, Dimitrios; Kabba, Mustapha; Kahl, Philip; Roeper, Anke; Kalff, Joerg C.; Buettner, Reinhard

    2008-01-01

    Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early wound healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target

  16. How wounds heal

    ... How puncture wounds heal; How burns heal; How pressure sores heal; How lacerations heal ... bleed. For example, burns, some puncture wounds, and pressure sores do not bleed. Once the scab forms, your ...

  17. Impairment of wound healing after operative treatment of mandibular fractures, and the influence of dexamethasone.

    Snäll, Johanna; Kormi, Eeva; Lindqvist, Christian; Suominen, Anna Liisa; Mesimäki, Karri; Törnwall, Jyrki; Thorén, Hanna

    2013-12-01

    Our aim was to clarify the incidence of impaired wound healing after open reduction and ostheosynthesis of mandibular fractures, and to find out whether the use of dexamethasone during the operation increased the risk. Patients were drawn from a larger group of healthy adult dentate patients who had participated in a single-blind, randomised study, the aim of which was to clarify the benefits of operative dexamethasone after treatment of facial fractures. The present analysis comprised 41 patients who had had open reduction and fixation of mandibular fractures with titanium miniplates and monocortical screws through one or 2 intraoral approaches. The outcome variable was impaired healing of the wound. The primary predictive variable was the perioperative use of dexamethasone; other potential predictive variables were age, sex, smoking habit, type of fracture, delay in treatment, and duration of operation. Wound healing was impaired in 13/41 patients (32%) (13/53 of all fractures). The incidence among patients who were given dexamethasone and those who were not did not differ significantly. Only age over 25 was significantly associated with delayed healing (p=0.02). The use of dexamethasone 30 mg perioperatively did not significantly increase the risk of impaired wound healing in healthy patients with clinically uninfected mandibular fractures fixed with titanium miniplates through an intraoral approach. Older age is a significant predictor of impaired healing, which emphasises the importance of thorough anti-infective care in these patients during and after the operation. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing

    Hoke, Glenn D.; Ramos, Corrine; Hoke, Nicholas N.; Crossland, Mary C.; Shawler, Lisa G.

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer. PMID:27840833

  19. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing.

    Hoke, Glenn D; Ramos, Corrine; Hoke, Nicholas N; Crossland, Mary C; Shawler, Lisa G; Boykin, Joseph V

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer.

  20. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker.

    Fadini, Gian Paolo; Albiero, Mattia; Millioni, Renato; Poncina, Nicol; Rigato, Mauro; Scotton, Rachele; Boscari, Federico; Brocco, Enrico; Arrigoni, Giorgio; Villano, Gianmarco; Turato, Cristian; Biasiolo, Alessandra; Pontisso, Patrizia; Avogaro, Angelo

    2014-09-01

    Chronic foot ulceration is a severe complication of diabetes, driving morbidity and mortality. The mechanisms underlying delaying wound healing in diabetes are incompletely understood and tools to identify such pathways are eagerly awaited. Wound biopsies were obtained from 75 patients with diabetic foot ulcers. Matched subgroups of rapidly healing (RH, n = 17) and non-healing (NH, n = 11) patients were selected. Proteomic analysis was performed by labelling with isobaric tag for relative and absolute quantification and mass spectrometry. Differentially expressed proteins were analysed in NH vs RH for identification of pathogenic pathways. Individual sample gene/protein validation and in vivo validation of candidate pathways in mouse models were carried out. Pathway analyses were conducted on 92/286 proteins that were differentially expressed in NH vs RH. The following pathways were enriched in NH vs RH patients: apoptosis, protease inhibitors, epithelial differentiation, serine endopeptidase activity, coagulation and regulation of defence response. SerpinB3 was strongly upregulated in RH vs NH wounds, validated as protein and mRNA in individual samples. To test the relevance of serpinB3 in vivo, we used a transgenic mouse model with α1-antitrypsin promoter-driven overexpression of human SERPINB3. In this model, wound healing was unaffected by SERPINB3 overexpression in non-diabetic or diabetic mice with or without hindlimb ischaemia. In an independent validation cohort of 47 patients, high serpinB3 protein content was confirmed as a biomarker of healing improvement. We provide a benchmark for the unbiased discovery of novel molecular targets and biomarkers of impaired diabetic wound healing. High serpinB3 protein content was found to be a biomarker of successful healing in diabetic patients.

  1. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.

    Demyanenko, Ilya A; Popova, Ekaterina N; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Romashchenko, Valeria P; Fedorov, Artem V; Manskikh, Vasily N; Skulachev, Maxim V; Zinovkin, Roman A; Pletjushkina, Olga Yu; Skulachev, Vladimir P; Chernyak, Boris V

    2015-07-01

    The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.

  2. Wound Healing in Older Adults.

    Gould, Lisa J; Fulton, Ana Tuya

    2016-02-01

    Impaired wound healing in the elderly represents a major clinical problem that is growing as our population ages. Wound healing is affected by age and by co-morbid conditions, particularly diabetes and obesity. This is particularly important in Rhode Island as the state has a very high percentage of vulnerable older adults. A multi- disciplinary approach that incorporates the skills of a comprehensive wound center with specialized nursing, geriatric medicine and palliative care will facilitate rapid wound healing, reduce costs and improve outcomes for our older adults that suffer from 'problem wounds'.

  3. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse

    Takashi Kitano

    2017-01-01

    Full Text Available Background. We investigated the effects of loss of inducible nitric oxide synthase (iNOS on the healing process of cutaneous excisional injury by using iNOS-null (KO mice. Population of granulation tissue-related cell types, that is, myofibroblasts and macrophages, growth factor expression, and reepithelialization were evaluated. Methods. KO and wild type (WT mice of C57BL/6 background were used. Under general anesthesia two round full-thickness excision wounds of 5.0 mm in diameter were produced in dorsal skin. After specific intervals of healing, macroscopic observation, histology, immunohistochemistry, and real-time reverse transcription-polymerase chain reaction (RT-PCR were employed to evaluate the healing process. Results. The loss of iNOS retards granulation tissue formation and reepithelialization in excision wound model in mice. Detailed analyses showed that myofibroblast appearance, macrophage infiltration, and mRNA expression of transforming growth factor b and of collagen 1α2 were all suppressed by lacking iNOS. Conclusions. iNOS is required in the process of cutaneous wound healing. Lacking iNOS retards macrophage invasion and its expression of fibrogenic components that might further impair fibrogenic behaviors of fibroblasts.

  4. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling.

    Qi, Weiwei; Yang, Chuan; Dai, Zhiyu; Che, Di; Feng, Juan; Mao, Yuling; Cheng, Rui; Wang, Zhongxiao; He, Xuemin; Zhou, Ti; Gu, Xiaoqiong; Yan, Li; Yang, Xia; Ma, Jian-Xing; Gao, Guoquan

    2015-04-01

    Diabetic foot ulcer (DFU) caused by impaired wound healing is a common vascular complication of diabetes. The current study revealed that plasma levels of pigment epithelium-derived factor (PEDF) were elevated in type 2 diabetic patients with DFU and in db/db mice. To test whether elevated PEDF levels contribute to skin wound-healing delay in diabetes, endogenous PEDF was neutralized with an anti-PEDF antibody in db/db mice. Our results showed that neutralization of PEDF accelerated wound healing, increased angiogenesis in the wound skin, and improved the functions and numbers of endothelial progenitor cells (EPCs) in the diabetic mice. Further, PEDF-deficient mice showed higher baseline blood flow in the skin, higher density of cutaneous microvessels, increased skin thickness, improved numbers and functions of circulating EPCs, and accelerated wound healing compared with wild-type mice. Overexpression of PEDF suppressed the Wnt signaling pathway in the wound skin. Lithium chloride-induced Wnt signaling activation downstream of the PEDF interaction site attenuated the inhibitory effect of PEDF on EPCs and rescued the wound-healing deficiency in diabetic mice. Taken together, these results suggest that elevated circulating PEDF levels contribute to impaired wound healing in the process of angiogenesis and vasculogenesis through the inhibition of Wnt/β-catenin signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Diabetes-impaired wound healing is improved by matrix therapy with heparan sulfate glycosaminoglycan mimetic OTR4120 in rats

    M. Tong (Miao); B. Tuk (Bastiaan); P. Shang (Peng); J.M. Hekking-Weijma (Ineke); E.M.G. Fijneman (Esther ); M. Guijt (Marnix); S.E.R. Hovius (Steven); J.W. van Neck (Han)

    2012-01-01

    textabstractWound healing in diabetes is frequently impaired, and its treatment remains a challenge. We tested a therapeutic strategy of potentiating intrinsic tissue regeneration by restoring the wound cellular environment using a heparan sulfate glycosaminoglycan mimetic, OTR4120. The effect of

  6. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells

    Rajnikumar Sangani

    2014-03-01

    Full Text Available Bone marrow stromal cell (BMSC adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38 and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  7. Human Platelet-Rich Plasma- and Extracellular Matrix-Derived Peptides Promote Impaired Cutaneous Wound Healing In Vivo

    Demidova-Rice, Tatiana N.; Wolf, Lindsey; Deckenback, Jeffry; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    Previous work in our laboratory has described several pro-angiogenic short peptides derived from endothelial extracellular matrices degraded by bacterial collagenase. Here we tested whether these peptides could stimulate wound healing in vivo. Our experiments demonstrated that a peptide created as combination of fragments of tenascin X and fibrillin 1 (comb1) applied into cranial dermal wounds created in mice treated with cyclophosphamide to impair wound healing, can improve the rate of wound closure. Furthermore, we identify and characterize a novel peptide (UN3) created and modified from two naturally-occurring peptides, which are present in human platelet-rich plasma. In vitro testing of UN3 demonstrates that it causes a 50% increase in endothelial proliferation, 250% increase in angiogenic response and a tripling of epithelial cell migration in response to injury. Results of in vivo experiments where comb1 and UN3 peptides were added together to cranial wounds in cyclophosphamide-treated mice leads to improvement of wound vascularization as shown by an increase of the number of blood vessels present in the wound beds. Application of the peptides markedly promotes cellular responses to injury and essentially restores wound healing dynamics to those of normal, acute wounds in the absence of cyclophosphamide impairment. Our current work is aimed at understanding the mechanisms underlying the stimulatory effects of these peptides as well as identification of the cellular receptors mediating these effects. PMID:22384158

  8. Reactive carbonyl compounds impair wound healing by vimentin collapse and loss of the primary cilium.

    Rodríguez-Ribera, Lara; Slattery, Craig; Mc Morrow, Tara; Marcos, Ricard; Pastor, Susana

    2017-10-01

    In renal pathologies tubulo-interstitial fibrosis results from an aberrant wound-healing ability where the normal epithelial tissue is substituted for scar tissue caused by accumulation of extracellular matrix proteins (ECM). During the wound-healing process, epithelial cells may undergo epithelial-mesenchymal transition (EMT) acquiring a mesenchymal-like phenotype that allows cells to migrate and re-epithelialize the wound site. It has been reported that chronic inflammation and uremic milieu are involved in wound-healing and enhanced kidney damage in chronic kidney disease (CKD) patients. In this study we evaluated reactive carbonyl compounds (RCC) effects on renal wound healing. The compounds resulting from carbonyl stress evaluated in this study were glyoxal (GO), methylglyoxal (MGO), malondialdehyde (MDA) and 4-hydroxy-hexenal (HHE). Wound repair ability was evaluated by the wound healing assay using HK-2 cells. EMT was evaluated by morphological, protein and transcriptional changes using microscopy, western blot, zymography and RT-qPCR. Changes in the vimentin network and primary cilia were assessed by immunofluorescence. Our data demonstrated that MDA and GO delay wound closure mediated by vimentin disruption, which caused collagen I mRNA decrease, and deciliation. In contrast, HHE treatment (and MGO to a minor degree) induced morphological changes and increased mesenchymal marker expression and gelatinase activity in HK-2 cells. In this study, we have demonstrated for the first time that exposure to RCC differentially affects wound healing in proximal tubular epithelia. A better comprehension of effects of uremic toxins on wound healing and fibrosis and migration is necessary to seek mechanisms to slow down renal fibrosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Saliva and wound healing.

    Brand, Henk S; Ligtenberg, Antoon J M; Veerman, Enno C I

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In addition, saliva contains several proteins which play a role in the different stages of wound healing. Saliva contains substantial amounts of tissue factor, which dramatically accelerates blood clotting. Subsequently, epidermal growth factor in saliva promotes the proliferation of epithelial cells. Secretory leucocyte protease inhibitor inhibits the tissue-degrading activity of enzymes like elastase and trypsin. Absence of this protease inhibitor delays oral wound healing. Salivary histatins in vitro promote wound closure by enhancing cell spreading and cell migration, but do not stimulate cell proliferation. A synthetic cyclic variant of histatin exhibits a 1,000-fold higher activity than linear histatin, which makes this cyclic variant a promising agent for the development of a new wound healing medication. Conclusively, recognition of the many roles salivary proteins play in wound healing makes saliva a promising source for the development of new drugs involved in tissue regeneration.

  10. Ascorbic acid deficiency impairs wound healing in surgical patients: Four case reports

    A. Bikker

    2016-01-01

    Conclusion: AA deficiency is not uncommon in the hospital population, especially in those at risk. Treating deficient patients with AA leads to swift improvement of the wound healing process post-surgery, thereby reducing the costs of extensive wound treatment and extended stay in hospital.

  11. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with PRP-containing fragmin/protamine microparticles (PRP&F/P MPs).

    Takikawa, Megumi; Ishihara, Masayuki; Takabayashi, Yuki; Sumi, Yuki; Takikawa, Makoto; Yoshida, Ryuichi; Nakamura, Shingo; Hattori, Hidemi; Yanagibayashi, Satoshi; Yamamoto, Naoto; Kiyosawa, Tomoharu

    2015-04-13

    The purpose of this study was to evaluate the accelerating effects of platelet-rich plasma-containing (PRP&) fragmin/protamine microparticles (F/P MPs) for repairing mitomycin C-treated healing-impaired wounds. Staining with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL-staining) showed that apoptosis of dermal fibroblast cells (DFCs) and epidermal keratinocyte cells (EKCs) were significantly induced in the skin of the mitomycin C-treated rats. Full-thickness skin defects were made on the back of rats and mitomycin C was applied on the wounds to prepare a healing-impaired wound. After washing out the mitomycin C, saline (control), F/P MPs alone, PRP alone, and PRP&F/P MPs were injected around the wounds. The rats were later euthanised and histological sections of the wounds were then prepared at indicated time periods after the treatment. These results indicated the numbers of large, medium, and small capillary lumens 7 days after injection of PRP&F/P MPs were significantly higher than those after injection of PRP or F/P MPs alone. Furthermore, epithelium and granulation tissue formations were significantly stimulated in the healing-impaired wounds treated with PRP&F/P MPs 3, 7 and 14 days after injection of PRP&F/P MPs.

  12. Transforming growth factor beta 1 dependent regulation of Tenascin-C in radiation impaired wound healing

    Wehrhan, Falk; Roedel, Franz; Grabenbauer, Gerhard G.; Amann, Kerstin; Brueckl, Wolfgang; Schultze-Mosgau, Stefan

    2004-01-01

    Background: Following preoperative radiotherapy prior to ablative surgery of squamous epithelial cell carcinomas of the head and neck region fibrocontractive wound healing disorders occur. Tenascin-C is significantly increased in fibrotic tissue conditions and can be stimulated by the transcription factor NFκB p65. Previous studies showed a reduction of irradiation induced fibrosis during the wound healing process by anti-TGFβ 1 -treatment. The aim of the study was to clarify the question whether Tenascin-C expression is elevated in radiation impaired wounds and whether anti-TGFβ 1 -treatment is capable to influence Tenascin-C and NFκB expression. Material and methods: Wistar rats (male, weight 300-500 g) underwent preoperative irradiation of the head and neck region with 40 Gy, fractionated four times 10 Gy (16 animals), whereas 8 non-irradiated animals served as a control. Four weeks after irradiation a free myocutaneous gracilis flap taken from the groin was transplanted to the neck. Eight animals additionally received 5 μg anti-TGFβ 1 into the graft bed by intradermal injection prior to each fraction of irradiation and on days 1-7 post-operation. On day 14 and 28 following surgery immunohistochemistry (ABC-POX method) was performed assessing the cytoplasmic NFκB and Tenascin-C staining in the transition area between transplant and graft bed. For quantitative considerations the labeling index (ratio: positive cells/total cells) was determined. Results: A significantly altered expression of Tenascin-C in the preirradiated tissue was observed following anti-TGFβ 1 -treatment. NFκB protein was upregulated in irradiated animals and was significantly reduced in the anti-TGFβ 1 treated group on day 28 after transplantation. Conclusions: Tenascin-C expression is prolonged in irradiated animals as compared to non-irradiated tissue. Tenascin-C seems to be regulated by TGFβ 1 as the application of TGFβ 1 -neutralizing antibodies reduces Tenascin-C expression

  13. Fibroblast-Specific Deletion of Hypoxia Inducible Factor-1 Critically Impairs Murine Cutaneous Neovascularization and Wound Healing.

    Duscher, Dominik; Maan, Zeshaan N; Whittam, Alexander J; Sorkin, Michael; Hu, Michael S; Walmsley, Graham G; Baker, Hutton; Fischer, Lauren H; Januszyk, Michael; Wong, Victor W; Gurtner, Geoffrey C

    2015-11-01

    Diabetes and aging are known risk factors for impaired neovascularization in response to ischemic insult, resulting in chronic wounds, and poor outcomes following myocardial infarction and cerebrovascular injury. Hypoxia-inducible factor (HIF)-1α, has been identified as a critical regulator of the response to ischemic injury and is dysfunctional in diabetic and elderly patients. To better understand the role of this master hypoxia regulator within cutaneous tissue, the authors generated and evaluated a fibroblast-specific HIF-1α knockout mouse model. The authors generated floxed HIF-1 mice (HIF-1) by introducing loxP sites around exon 1 of the HIF-1 allele in C57BL/6J mice. Fibroblast-restricted HIF-1α knockout (FbKO) mice were generated by breeding our HIF-1 with tamoxifen-inducible Col1a2-Cre mice (Col1a2-CreER). HIF-1α knockout was evaluated on a DNA, RNA, and protein level. Knockout and wild-type mice were subjected to ischemic flap and wound healing models, and CD31 immunohistochemistry was performed to assess vascularity of healed wounds. Quantitative real-time polymerase chain reaction of FbKO skin demonstrated significantly reduced Hif1 and Vegfa expression compared with wild-type. This finding was confirmed at the protein level (p wound closure and vascularity (p wound healing, reduced wound vascularity, and significant impairment in the ischemic neovascular response. These findings provide new insight into the importance of cell-specific responses to hypoxia during cutaneous neovascularization.

  14. Impaired wound healing after radiation therapy: A systematic review of pathogenesis and treatment

    Lia K. Jacobson

    2017-09-01

    Conclusion: Pathogenesis of delayed wound healing and fibrosis following radiotherapy is a complex, interdependent process involving cellular depletion, extracellular matrix changes, microvascular damage, and altered pro-inflammatory mediators. Current treatment is limited, and more Level I studies are needed to develop best-practice recommendations. Investigatory treatment options targeting specific mechanisms of injury may offer potential solutions to this significant clinical and surgical problem.

  15. The molecular biology in wound healing & non-healing wound.

    Qing, Chun

    2017-08-01

    The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  16. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care

    Demidova-Rice, Tatiana N.; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    This is the first installment of 2 articles that discuss the biology and pathophysiology of wound healing, review the role that growth factors play in this process, and describe current ways of growth factor delivery into the wound bed. Part 1 discusses the latest advances in clinicians’ understanding of the control points that regulate wound healing. Importantly, biological similarities and differences between acute and chronic wounds are considered, including the signaling pathways that initiate cellular and tissue responses after injury, which may be impeded during chronic wound healing. PMID:22713781

  17. Activation of the EPOR-β common receptor complex by cibinetide ameliorates impaired wound healing in mice with genetic diabetes.

    Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Mannino, Federica; Vaccaro, Mario; Arcoraci, Vincenzo; Aliquò, Federica; Minutoli, Letteria; Colonna, Michele R; Galeano, Maria Rosaria; Brines, Michael; De Ponte, Chiara; Collino, Massimo; Squadrito, Francesco; Altavilla, Domenica

    2018-02-01

    Diabetes is characterized by poor wound healing which currently lacks an efficacious treatment. The innate repair receptor (IRR) is a master regulator of tissue protection and repair which is expressed as a response injury or metabolic stress, including in diabetes. Activation of the IRR might provide benefit for diabetic wound healing. A specific IRR agonist cibinetide was administered in an incisional wound healing model performed mice with genetic diabetes (db + /db + ) and compared to the normal wild-type. Animals were treated daily with cibinetide (30μg/kg/s.c.) or vehicle and euthanized 3, 7, and 14days after the injury to quantitate vascular endothelial growth factor (VEGF), malondialdehyde (MAL), phospho-Akt (pAkt), phospho e-NOS (p-eNOS), and nitrite/nitrate content within the wound. Additional evaluations included quantification of skin histological change, angiogenesis, scar strength, and time to complete wound closure. Throughout the wound healing process diabetic animals treated with vehicle exhibited increased wound MAL with reduced VEGF, pAkt, peNOS and nitrite/nitrate, all associated with poor re-epitheliziation, angiogenesis, and wound breaking strength. Cibenitide administration significantly improved these abnormalities. The results suggest that cibinetide-mediated IRR activation may represent an interesting strategy to treat diabetes-associated wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Molecular pathology of wound healing.

    Kondo, Toshikazu; Ishida, Yuko

    2010-12-15

    Skin-wound healing is an orchestrated biological phenomena consisting of three sequential phases, inflammation, proliferation, and maturation. Many biological substances are involved in the process of wound repair, and this short and simplified overview of wound healing can be adopted to determine wound vitality or wound age in forensic medicine. With the development of genetically engineered animals, essential molecules for skin-wound healing have been identified. Especially, cytokines, and growth factors are useful candidates and markers for the determination of wound vitality or age. Moreover, bone marrow-derived progenitor cells would give significant information to wound age determination. In this review article, some interesting observations are presented, possibly contributing to the future practice of forensic pathologists. Copyright © 2010. Published by Elsevier Ireland Ltd.

  19. Mast Cells Regulate Wound Healing in Diabetes.

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Randomized comparison of polyglycolic acid and polyglyconate sutures for abdominal fascial closure after laparotomy in patients with suspected impaired wound healing

    Osther, P J; Gjøde, P; Mortensen, Sophie Berit Bondegaard

    1995-01-01

    A randomized study of abdominal fascial closure using interrupted polyglyconate and polyglycolic acid sutures after laparotomy was carried out in 204 consecutive patients with suspected impaired wound healing. There were no statistically significant differences between the two sutures with regard...... to the development of fascial disruption and incisional hernia. Wound infection demanding surgical intervention was found in 7 per cent of patients with polyglyconate sutures and in 16 per cent of those with polyglycolic acid sutures (P = 0.04). Monofilament polyglyconate suture does not reduce the incidence...... of fascial disruption and incisional hernia after laparotomy in patients with suspected impaired wound healing but the incidence of wound infection may be reduced compared with that of multifilament polyglycolic acid suture....

  1. Microbiome Composition and Function Drives Wound-Healing Impairment in the Female Genital Tract.

    Alexander S Zevin

    2016-09-01

    Full Text Available The mechanism(s by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity.

  2. Effect of aging on wound healing: current concepts.

    Pittman, Joyce

    2007-01-01

    The population is aging, and advanced age is commonly identified as a risk factor for delayed wound healing. Therefore, it is important for WOC nurses to be knowledgeable about how aging affects the wound healing and repair process, and strategies they can use to promote healing in the elderly population. Impaired wound healing in the aged is due partly to comorbidities common among the elderly, but evidence also suggests that inherent differences in cellular structure and function may impair tissue repair and regeneration as well. This article will address the effect of aging on wound healing, with a particular focus on processes of cellular senescence and related factors hypothesized to result in slowed or impaired wound healing in the elderly.

  3. Tissue transglutaminase in normal and abnormal wound healing: review article

    Verderio, EAM; Johnson, T; Griffin, M

    2004-01-01

    A complex series of events involving inflammation, cell migration and proliferation, ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the tissue response to injury. Wound healing involves the dynamic interactions of multiple cells types with components of the extracellular matrix (ECM) and growth factors. Impaired wound healing as a consequence of aging, injury or disease may lead to serious disabilities and poor quality of life. Abnormal wound healing may al...

  4. Androgen receptor–mediated inhibition of cutaneous wound healing

    Ashcroft, Gillian S.; Mills, Stuart J.

    2002-01-01

    Impaired wound healing states in the elderly lead to substantial morbidity, mortality, and a cost to the USHealth Services of over $9 billion per annum. In addition to intrinsic aging per se causing delayed healing, studies have suggested marked sex-differences in wound repair. We report that castration of male mice results in a striking acceleration of local cutaneous wound healing, and is associated with a reduced inflammatory response and increased hair growth. Using a hairless mouse model...

  5. Adenosine Receptors and Wound Healing

    Bruce N. Cronstein

    2004-01-01

    Full Text Available Recent studies have demonstrated that application of topical adenosine A2A receptor agonists promotes more rapid wound closure and clinical studies are currently underway to determine the utility of topical A2A adenosine receptor agonists in the therapy of diabetic foot ulcers. The effects of adenosine A2A receptors on the cells and tissues of healing wounds have only recently been explored. We review here the known effects of adenosine A2A receptor occupancy on the cells involved in wound healing.

  6. [Wound healing in the elderly].

    Eming, S A; Wlaschek, M; Scharffetter-Kochanek, K

    2016-02-01

    Restoration of tissue integrity is essential for host defense and protection of the organism. The efficacy and quality of skin repair varies significantly over a person's lifetime. Whereas prenatal wound healing is characterized by regeneration and scarless healing, scarring, fibrosis, and loss of function are features of postnatal repair. In fact, aging is the prominent risk factor for chronic wounds, skin fragility, infections, comorbidities, and decreased quality of life. Current strategies for restoration of tissue integrity and wound therapy are not sufficient and require further investigation of the underlying pathomechanisms and the development of causal-based concepts.

  7. [Specificities in children wound healing].

    Sanchez, J; Antonicelli, F; Tuton, D; Mazouz Dorval, S; François, C

    2016-10-01

    Children have specific characteristics of wound healing. The aim of this study was to describe the specific clinical characteristics of wounds healing in children and to present the current knowledge on the specific mechanisms with regard to infant age. The tissue insult or injury in fetus can heal without scar, mainly due to reduced granulation tissue associated to diminished or even no inflammatory phase, modified extracellular matrix such as the concentration of hyaluronic acid in amniotic liquid, expression and arrangement of collagen and tenascin. Thickness of children skin is a serious negative factor in case of trauma, whereas poor co-morbidities and efficient growth tissue mechanisms are beneficial to good evolution, even in cases of extensive damage and loss of tissue. The subsequent tissue mechanical forces, wound healing during childhood, spanning from the age of 2 until the end of puberty, is associated with more hypertrophic scars, both in duration and in intensity. Consequently, unnecessary surgery has to be avoided during this period when possible, and children with abnormal or pathologic wound healing should benefit from complementary treatments (hydration, massage, brace, silicone, hydrotherapy…), which represent efficient factors to minimize tissue scarring. After wound healing, the growth body rate can be responsible for specific complications, such as contractures, alopecia, and scar intussusceptions. Its evolutionary character implies the need of an attentive follow-up until adult age. Psychologic repercussions, as a consequence of pathologic scars, must be prevented and investigated by the surgeon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Progress in corneal wound healing

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  9. Modeling of anisotropic wound healing

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  10. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats.

    Kato, Jiro; Kamiya, Hideki; Himeno, Tatsuhito; Shibata, Taiga; Kondo, Masaki; Okawa, Tetsuji; Fujiya, Atsushi; Fukami, Ayako; Uenishi, Eita; Seino, Yusuke; Tsunekawa, Shin; Hamada, Yoji; Naruse, Keiko; Oiso, Yutaka; Nakamura, Jiro

    2014-01-01

    Although the initial healing stage involves a re-epithelialization in humans, diabetic foot ulceration (DFU) has been investigated using rodent models with wounds on the thigh skin, in which a wound contraction is initiated. In this study, we established a rodent model of DFU on the plantar skin and evaluated the therapeutic efficacy of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in this model. The wounds made on the hind paws or thighs of streptozotocin induced diabetic or control rats were treated with BM-MSCs. Expression levels of phosphorylated focal adhesion kinase (pFAK), matrix metaroprotease (MMP)-2, EGF, and IGF-1, were evaluated in human keratinocytes, which were cultured in conditioned media of BM-MSCs (MSC-CM) with high glucose levels. Re-epithelialization initiated the healing process on the plantar, but not on the thigh, skin. The therapy utilizing BM-MSCs ameliorated the delayed healing in diabetic rats. In the keratinocytes cultured with MSC-CM, the decreased pFAK levels in the high glucose condition were restored, and the MMP2, EGF, and IGF-1 levels increased. Our study established a novel rat DFU model. The impaired healing process in diabetic rats was ameliorated by transplantation of BM-MSCs. This amelioration might be accounted for by the modification of keratinocyte functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Chemokine Involvement in Fetal and Adult Wound Healing

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  12. Lumican as a multivalent effector in wound healing.

    Karamanou, Konstantina; Perrot, Gwenn; Maquart, Francois-Xavier; Brézillon, Stéphane

    2018-03-01

    Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing. Copyright © 2018. Published by Elsevier B.V.

  13. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 2: Role of Growth Factors in Normal and Pathological Wound Healing: Therapeutic Potential and Methods of Delivery

    Demidova-Rice, Tatiana N.; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed. PMID:22820962

  14. Molecular biology of wound healing

    Nalliappan Ganapathy

    2012-01-01

    Full Text Available Wound healing is a dynamic process that involves the integrated action of a number of cell types, the extra cellular matrix, and soluble mediators termed cytokines.In recent years considerable advances have been made in the research, knowledge, and understanding of growth factors. Growth factors are, in essence, proteins that communicate activities to cells. Their function is dependent on the receptor site they attach to. Growth factors were initially named for the type of response generated by them, but newer research has shown that many of these cells may accomplish many different types of response. A growth factor′s role in wound repair is a critical component of the successful resolution of a wound. Growth factors help regulate many of the activities involved in healing. The role and function of growth factor is an evolving area of science and offers the potential for treatment alternatives in the future.

  15. Hyperbaric oxygen and wound healing

    Sourabh Bhutani

    2012-01-01

    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  16. Role of adipose-derived stem cells in wound healing.

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  17. Myofibroblasts in palatal wound healing: prospects for the reduction of wound contraction after cleft palate repair.

    Beurden, H.E. van; Hoff, J.W. Von den; Torensma, R.; Maltha, J.C.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The surgical closure of orofacial clefts is considered to impair maxillary growth and dento-alveolar development. Wound contraction and subsequent scar tissue formation, during healing of these surgical wounds, contribute largely to these growth disturbances. The potential to minimize wound

  18. Laser photobiomodulation as an adjunct of the wound healing impairment of rats exposed to a cafeteria diet

    Uzeda, V.; Paraguassu, G. M.; Dos Santos, J. N.; Ramalho, M. J.; Rodriguez, T. T.; Ramalho, L. M. P.

    2014-02-01

    Obesity is associated to a delayed wound healing and prolonged inflammatory phase. Laser light has shown positive results in the photobiomodulation of tissue repair; however, its use associated with systemic disorders such as obesity is still little explored in the literature. The aim of this study was to validate an experimental system for studying weight gaining by consuming a high fat diet called "cafeteria diet" (CD) for the induction of obesity. Forty-eight rats were weaned, divided into two experimental groups: standard diet (SD) and Cafeteria Diet (CD). Free feeding was carried out during 20 weeks and the mass gaining was accompanied. After general anesthesia standardized surgical wounds were created (1cm2) in the dorsal midline region of each animal. Both groups (SD; CD) were divided into 2 subgroups of 12 animals, G1 and G3 (non-irradiated) and G2 and G4 (irradiated). The irradiation protocols (λ660 nm, 40 mW, CW; 24 J/cm2) started immediately after surgery and were repeated every other day during 14 days. The rats were killed at the 8th or 15th days after surgery. The abdominal fat was removed and weighed to verify the success of the induction technique. The specimens were taken and routinely processed histology (hematoxylin/eosin) was performed. It was concluded that the ingestion of fast-food increased abdominal fat in rats and modified the inflammatory pattern of the healing. Laser phototherapy in the parameters employed decreased inflammatory intensity quickening wound healing in obese rats.

  19. The external microenvironment of healing skin wounds

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...

  20. Alcohol acute intoxication before sepsis impairs the wound healing of intestinal anastomosis: rat model of the abdominal trauma patient

    Morais Pedro

    2012-08-01

    Full Text Available Abstract Introduction Most trauma patients are drunk at the time of injury. Up to 2% of traumatized patients develop sepsis, which considerably increases their mortality. Inadequate wound healing of the colonic repair can lead to postoperative complications such as leakage and sepsis. Objective To assess the effects of acute alcohol intoxication on colonic anastomosis wound healing in septic rats. Methods Thirty six Wistar rats were allocated into two groups: S (induction of sepsis and AS (alcohol intake before sepsis induction. A colonic anastomosis was performed in all groups. After 1, 3 or 7 days the animals were killed. Weight variations, mortality rate, histopathology and tensile breaking strength of the colonic anastomosis were evaluated. Results There was an overall mortality of 4 animals (11.1%, three in the group AS (16.6% and one in the S group (5.5%. Weight loss occurred in all groups. The colon anastomosis of the AS group didn’t gain strength from the first to the seventh postoperative day. On the histopathological analysis there were no differences in the deposition of collagen or fibroblasts between the groups AS and S. Conclusion Alcohol intake increased the mortality rate three times in septic animals. Acute alcohol intoxication delays the acquisition of tensile strength of colonic anastomosis in septic rats. Therefore, acute alcohol intoxication before sepsis leads to worse prognosis in animal models of the abdominal trauma patients.

  1. Increased expression of TLR9 associated with pro-inflammatory S100A8 and IL-8 in diabetic wounds could lead to unresolved inflammation in type 2 diabetes mellitus (T2DM) cases with impaired wound healing.

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Sinha, Pratima; Singh, Kiran

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia which causes a chain of abrupt biochemical and physiological changes. Immune dys-regulation is the hallmark of T2DM that could contribute to prolonged inflammation causing transformation of wounds into non-healing chronic ulcers. Toll like receptor -9 (TLR9) is a major receptor involved in innate immune regulation. TLR9 activation induces release of pro-inflammatory molecules like S100A8 and interleukin-8 (IL-8) by myeloid cells causing migration of myeloid cells to the site of inflammation. We hypothesized that pro-inflammatory S100A8 and IL-8 proteins could cause persistent inflammation in chronic wounds like diabetic foot ulcer (DFU) and may contribute to impaired wound healing in T2DM patients. Expression of TLR9 and its downstream effector molecules S100A8, and IL-8 were analyzed in chronic diabetic wound and non-diabetic control wound tissue samples by semiquantitative reverse transcriptase - polymerase chain reaction (RT-PCR), quantitative RT-PCR, western blot and immunofluorescence. CD11b(+)CD33(+) myeloid cells were analyzed by flow cytometry. TLR9 message and protein were higher in diabetic wounds compared to control wounds (p=0.03, t=2.21 for TLR9 mRNA; p=diabetic wounds (p=0.003, t=3.1 for S100A8 mRNA; p=0.04, t=2.04 for IL-8). CD11b(+) CD33(+) myeloid cells were decreased in T2DM as compared to non-diabetic controls (p=0.001, t=3.6). DFU subjects had higher levels of CD11b(+) CD33(+) myeloid cells as compared to non-DFU T2DM control (p=0.003, t=2.8). Infection in the wound microenvironment could be the cause of increase in CD11b(+)CD33(+) myeloid cells in DFU (p=0.03, t=2.5). The up-regulation of myeloid cell-derived pro-inflammatory molecules S100A8 and IL-8 in combination with lower levels of CD11b(+) CD33(+) myeloid cells may cause the impairment of wound healing in T2DM subjects leading to chronic ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Wound healing in animal models: review article

    Fariba Jaffary

    2017-10-01

    Full Text Available Wound healing and reduction of its recovery time is one of the most important issues in medicine. Wound is defined as disruption of anatomy and function of normal skin. This injury could be the result of physical elements such as  surgical incision, hit or pressure cut of the skin and gunshot wound. Chemical or caustic burn is another category of wound causes that can be induced by acid or base contact irritation. Healing is a process of cellular and extracellular matrix interactions that occur in the damaged tissue. Wound healing consists of several stages including hemostasis, inflammatory phase, proliferative phase and new tissue formation which reconstructs by new collagen formation. Wounds are divided into acute and chronic types based on their healing time. Acute wounds have sudden onset and in normal individuals usually have healing process of less than 4 weeks without any residual side effects. In contrast, chronic wounds have gradual onset. Their inflammatory phase is prolonged and the healing process is stopped due to some background factors like diabetes, ischemia or local pressure. If the healing process lasts more than 4 weeks it will be classified as chronic wound. Despite major advances in the treatment of wounds, still finding effective modalities for healing wounds in the shortest possible time with the fewest side effects is a current challenge. In this review different phases of wound healing and clinical types of wound such as venous leg ulcer, diabetic foot ulcer and pressure ulcer are discussed. Also acute wound models (i.e burn wounds or incisional wound and chronic wound models (such as venous leg ulcers, diabetic foot ulcer, pressure ulcers or bedsore in laboratory animals are presented. This summary can be considered as a preliminary step to facilitate designing of more targeted and applied research in this area.

  3. Bioimpedance measurement based evaluation of wound healing.

    Kekonen, Atte; Bergelin, Mikael; Eriksson, Jan-Erik; Vaalasti, Annikki; Ylänen, Heimo; Viik, Jari

    2017-06-22

    Our group has developed a bipolar bioimpedance measurement-based method for determining the state of wound healing. The objective of this study was to assess the capability of the method. To assess the performance of the method, we arranged a follow-up study of four acute wounds. The wounds were measured using the method and photographed throughout the healing process. Initially the bioimpedance of the wounds was significantly lower than the impedance of the undamaged skin, used as a baseline. Gradually, as healing progressed, the wound impedance increased and finally reached the impedance of the undamaged skin. The clinical appearance of the wounds examined in this study corresponded well with the parameters derived from the bioimpedance data. Hard-to-heal wounds are a significant and growing socioeconomic burden, especially in the developed countries, due to aging populations and to the increasing prevalence of various lifestyle related diseases. The assessment and the monitoring of chronic wounds are mainly based on visual inspection by medical professionals. The dressings covering the wound must be removed before assessment; this may disturb the wound healing process and significantly increases the work effort of the medical staff. There is a need for an objective and quantitative method for determining the status of a wound without removing the wound dressings. This study provided evidence of the capability of the bioimpedance based method for assessing the wound status. In the future measurements with the method should be extended to concern hard-to-heal wounds.

  4. Hypoperfusion and Wound Healing: Another Dimension of Wound Assessment.

    Smollock, Wendy; Montenegro, Paul; Czenis, Amy; He, Yuan

    2018-02-01

    To examine the correlation between mean arterial pressure (MAP) and wound healing indices and describe an analytical process that can be used accurately and prospectively when evaluating all types of skin ulcerations. A correlational study in a long-term-care facility.Participants (N = 230) were adults residing in a long-term-care facility with an average age of 77.8 years (range, 35-105). Assessment through both an index of wound healing and wound surface area. Signs of wound healing included a reduction of surface area and surface necrosis and increased granulation or epithelialization. Aggregate analyses for all wound locations revealed a positive correlation between the MAP and index of wound healing (r = 0.86, n = 501, P wound healing was noted for all wound locations in this data set when MAP values were 80 mm Hg or less (r = 0.95, n = 141, P wounds and MAP of less than 80 mm Hg yielded a very strong positive correlation. The data indicated that as perfusion decreased, wounds within the sample population declined (r = 0.93, n = 102, P wound healing or worsened wounds. A predictability of wounds stalling or declining related to the MAP was observed, regardless of topical treatment or standard-of-care interventions. Therefore, the data also suggest that remediating states of low perfusion should take precedence in making treatment decisions.

  5. Three-dimensional wound measurements for monitoring wound healing

    Bisgaard Jørgensen, Line; Møller Jeppesen, Sune; Halekoh, Ulrich

    Telemedicine is increasingly used for monitoring wound healing. Three-dimensional (3D) measurement methods enable clinicians to assess wound healing with respect to all dimensions. However, the currently available methods are inaccurate, costly or complicated to use. To address these issues, a 3D......-WAM camera was developed. This camera is able to measure wound size (2D area, 3D area, perimeter and volume) and to assess wound characteristics....

  6. Aging influences wound healing in patients with chronic lower extremity wounds treated in a specialized Wound Care Center.

    Wicke, Corinna; Bachinger, Andreas; Coerper, Stephan; Beckert, Stefan; Witte, Maria B; Königsrainer, Alfred

    2009-01-01

    With the dramatic increase in the aging population, the study and care of wounds in the elderly have become priority topics for both researchers and clinicians. The effects of aging on wound healing in humans have remained controversial. The study was a 5-year epidemiological evaluation of standardized data collected regularly during patients' visits at a specialized Wound Care Center with the aim to determine the key factors influencing the healing of chronic lower extremity wounds. In this analysis of 1,158 chronic wounds, the frequency of wound closure was statistically significantly lower in older patients compared with younger patients. The share of closed wounds decreased by nearly 25% in the elderly patients (>or=70 years). The relationship between the patient's age and the proportion of wound closure was nonlinear. The effect of aging on the frequency of wound closure of chronic wounds became clinically apparent after age 60. The chronicity of the wounds was illustrated by their recurrent nature, their long duration, the presence of multiple wounds, and the frequency of concurrent infection. Comorbidity was documented by the coprevalence of up to three underlying diseases related to impaired wound healing. The present study clearly showed that aging affects chronic wound healing negatively.

  7. Current management of wound healing

    Gottrup, F; Karlsmark, T

    2009-01-01

    in the next decade. It is the hope that increasing parts of the new knowledge from basic wound healing research will be implemented in daily clinical practice. The development of new treatment products will also continue, and especially new technologies with combined types of dressing materials or dressing......While the understanding of wound pathophysiology has progressed considerably over the past decades the improvements in clinical treatment has occurred to a minor degree. During the last years, however, new trends and initiatives have been launched, and we will continue to attain new information...... containing active substances will be accentuated. Further developments in the management structure and education will also continue and consensus of treatment guidelines, recommendations and organization models will hopefully be achieved....

  8. Effect of astaxanthin on cutaneous wound healing

    Meephansan J

    2017-07-01

    Full Text Available Jitlada Meephansan,1 Atiya Rungjang,1 Werayut Yingmema,2 Raksawan Deenonpoe,3 Saranyoo Ponnikorn3 1Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; 2Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand; 3Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand Abstract: Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing. Keywords: astaxanthin, wound healing, reactive oxygen species, antioxidant 

  9. Conducted healing to treat large skin wounds.

    Salgado, M I; Petroianu, A; Alberti, L R; Burgarelli, G L; Barbosa, A J A

    2013-01-01

    Improvement of the healing process to provide better aesthetical and functional results continues to be a surgical challenge. This study compared the treatment of skin wounds by means of conducted healing (an original method of treatment by secondary healing) and by the use of autogenous skin grafts. Two skin segments, one on each side of the dorsum,were removed from 17 rabbits. The side that served as a graft donor site was left open as to undergo conducted healing (A)and was submitted only to debridement and local care with dressings. The skin removed from the side mentioned above was implanted as a graft (B) to cover the wound on the other side. Thus, each animal received the two types of treatment on its dorsum (A and B). The rabbits were divided into two groups according to the size of the wounds: Group 1 - A and B (4 cm2)and Group 2 - A and B (25 cm2). The healing time was 19 days for Group 1 and 35 days for Group 2. The final macro- and microscopic aspects of the healing process were analysed comparatively among all subgroups. The presence of inflammatory cells, epidermal cysts and of giant cells was evaluated. No macro- or microscopic differences were observed while comparing the wounds that underwent conducted healing and those in which grafting was employed, although the wounds submitted to conducted healing healed more rapidly. Conducted wound healing was effective for the treatment of skin wounds. Celsius.

  10. miRNA delivery for skin wound healing.

    Meng, Zhao; Zhou, Dezhong; Gao, Yongsheng; Zeng, Ming; Wang, Wenxin

    2017-12-19

    The wound healing has remained a worldwide challenge as one of significant public health problems. Pathological scars and chronic wounds caused by injury, aging or diabetes lead to impaired tissue repair and regeneration. Due to the unique biological wound environment, the wound healing is a highly complicated process, efficient and targeted treatments are still lacking. Hence, research-driven to discover more efficient therapeutics is a highly urgent demand. Recently, the research results have revealed that microRNA (miRNA) is a promising tool in therapeutic and diagnostic fields because miRNA is an essential regulator in cellular physiology and pathology. Therefore, new technologies for wound healing based on miRNA have been developed and miRNA delivery has become a significant research topic in the field of gene delivery. Copyright © 2017. Published by Elsevier B.V.

  11. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  12. Wound healing and infection in surgery

    Sørensen, Lars Tue

    2012-01-01

    : The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved.......: The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved....

  13. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C

    2010-12-01

    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  14. News in wound healing and management

    Gottrup, Finn; Jørgensen, Bo; Karlsmark, Tonny

    2009-01-01

    -TNFalpha) and Lactobacillus plantarum cultures have also been successfully used in hard to heal, atypical wounds. Knowledge on influencing factors as smoking and biofilm on the healing process has also been improved. Smoking results in delayed healing and increased risk of postoperative infection, whereas the role of biofilm...... is still at an exploratory level. Organizing models for optimal wound management are constantly being developed and refined. SUMMARY: Recent knowledge on the importance of new dressing materials containing active substances, new treatments for atypical wounds, influencing factors on the healing process...

  15. Fibroblast implantation enhances wound healing as indicated by breaking strength determinations

    Krueger, W W; Goepfert, H; Romsdahl, M; Hersen, J; Withers, R H; Jesse, R H

    1978-09-01

    Irradiation of normal tissues at the dose/time factor employed in the treatment of solid tumors impairs the subsequent healing of surgical wounds made in those tissues. Irreversible radiation damage to regional fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts, harvested from tissue culture when injected into irradiated guinea pig skin at the time of wound closure, could improve wound healing. Breaking strength determinations indicate that irradiated wounds demonstrate enhanced wound healing if implanted with fibroblasts.

  16. Wound healing properties of Artocarpus heterophyllus Lam.

    Gupta, Nilesh; Jain, U K; Pathak, A K

    2009-04-01

    The studies on excision wound healing model reveals significant wound healing activity of the methanolic leaf extract (simple ointment 5%) of "Artocarpus heterophyllus" ham which is comparable with standard (Betadine). In the excision model, the period of epithelization, of the extract treated group was found to be higher than the controlgroup and slightly lesser than standard treated group of animals on the up to 16(th) post wounding day.

  17. Wound healing properties of Artocarpus heterophyllus Lam

    Gupta, Nilesh; Jain, U.K.; Pathak, A.K.

    2009-01-01

    The studies on excision wound healing model reveals significant wound healing activity of the methanolic leaf extract (simple ointment 5%) of “Artocarpus heterophyllus” ham which is comparable with standard (Betadine). In the excision model, the period of epithelization, of the extract treated group was found to be higher than the controlgroup and slightly lesser than standard treated group of animals on the up to 16th post wounding day. PMID:22557331

  18. Effect of astaxanthin on cutaneous wound healing.

    Meephansan, Jitlada; Rungjang, Atiya; Yingmema, Werayut; Deenonpoe, Raksawan; Ponnikorn, Saranyoo

    2017-01-01

    Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing.

  19. The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats

    Kruse, Carla R; Singh, Mansher; Sørensen, Jens A

    2016-01-01

    BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts and keratin......BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts...

  20. Sex hormones and mucosal wound healing.

    Engeland, Christopher G; Sabzehei, Bahareh; Marucha, Phillip T

    2009-07-01

    Wound healing studies, which have chiefly examined dermal tissues, have reported a female advantage in healing rates. In contrast, our laboratory recently demonstrated women heal mucosal wounds more slowly than men. We hypothesized sex hormones influence wound healing rates, possibly through their modulating effects on inflammation. This study involved 329 younger subjects aged 18-43 (165 women, 164 men) and 93 older subjects aged 50-88 (60 women, 33 men). A 3.5mm diameter wound was created on the hard oral palate and videographed daily to assess wound closure. Blood collected at the time of wounding was used to assess circulating testosterone, progesterone and estradiol levels, and in vitro cytokine production in response to LPS. No strong associations were observed between healing times and estradiol or progesterone levels. However, in younger subjects, lower testosterone levels related to faster wound closure. Conversely, in older women higher testosterone levels related to (1) lower inflammatory responses; and (2) faster healing times. No such relationships were seen in older men, or in women taking oral contraceptives or hormone replacement therapy [HRT]. Older women (50-54 years) not yet experiencing menopause healed similarly to younger women and dissimilarly from age-matched post-menopausal women. This suggests that the deleterious effects of aging on wound healing occur secondary to the effects of menopause. Supporting this, there was evidence in post-menopausal women that HRT augmented wound closure. Overall, this study suggests that human mucosal healing rates are modulated by testosterone levels. Based upon when between-group differences were observed, testosterone may impact upon the proliferative phase of healing which involves immune processes such as re-epithelialization and angiogenesis.

  1. Low level diode laser accelerates wound healing.

    Dawood, Munqith S; Salman, Saif Dawood

    2013-05-01

    The effect of wound illumination time by pulsed diode laser on the wound healing process was studied in this paper. For this purpose, the original electronic drive circuit of a 650-nm wavelength CW diode laser was reconstructed to give pulsed output laser of 50 % duty cycle and 1 MHz pulse repetition frequency. Twenty male mice, 3 months old were used to follow up the laser photobiostimulation effect on the wound healing progress. They were subdivided into two groups and then the wounds were made on the bilateral back sides of each mouse. Two sessions of pulsed laser therapy were carried along 15 days. Each mice group wounds were illuminated by this pulsed laser for 12 or 18 min per session during these 12 days. The results of this study were compared with the results of our previous wound healing therapy study by using the same type of laser. The mice wounds in that study received only 5 min of illumination time therapy in the first and second days of healing process. In this study, we found that the wounds, which were illuminated for 12 min/session healed in about 3 days earlier than those which were illuminated for 18 min/session. Both of them were healed earlier in about 10-11 days than the control group did.

  2. The effect of OTR4120, a heparan sulfate glycosaminoglycan memetic on improving acute and impaired wound healing in rats

    M. Tong (Miao)

    2012-01-01

    markdownabstract__Abstract__ Dating back to the prehistoric times, wounds have been common with mankind. The treatment of wounds is an art as old as humanity. Today, wounds are of increasing concern in our society in terms of their prevalence and costs. In the developed countries, patients

  3. General concept of wound healing, revisited

    Theddeus O.H. Prasetyono

    2009-09-01

    Full Text Available Wound healing is a transition of processes which is also recognized as one of the most complex processes in human physiology. Complex series of reactions and interactions among cells and mediators take place in the healing process of wound involving cellular and molecular events. The inflammatory phase is naturally intended to remove devitalized tissue and prevent invasive infection. The proliferative phase is characterized by the formation of granulation tissue within the wound bed, composed of new capillary network, fibroblast, and macrophages in a loose arrangement of supporting structure. This second phase lasts from day 8 to 21 after the injury is also the phase for epithelialisation. The natural period of proliferative phase is a reflection for us in treating wound to reach the goal which ultimately defines as closed wound. The final maturation phase is also characterized by the balancing between deposition of collagen and its degradation. There are at least three prerequisites which are ideal local conditions for the nature of wound to go on a normal process of healing i.e. 1 all tissue involved in the wound and surrounding should be vital, 2 no foreign bodies in the wound, and 3 free from excessive contamination/infection. The author formulated a step ladder of thinking in regards of healing intentions covering all acute and chronic wounds. Regarding the “hierarchy” of healing intention, the fi rst and ideal choice to heal wounds is by primary intention followed by tertiary intention and lastly the secondary intention. (Med J Indones 2009;18:206-14Key words: inflammatory mediator, epithelialisation, growth factor, wound healing

  4. The effects of cancer and cancer therapies on wound healing

    McCaw, D.L.

    1989-01-01

    Based on experimental evidence in rodents, most of the antineoplastic agents will affect wound healing. With most of the agents, this impairment is not sufficient to produce increased morbidity based on the clinical reports in humans. Radiation therapy appears to inhibit healing in both experimental animals and during clinical trials. In spite of this, it is reported that wounds in animals will heal when they are receiving radiation therapy after surgery. Based on the information presented here and experience at the University of Missouri, the decision to use adjuvant therapy should depend on the surgery performed. With a single incision that had no increased tension, there should be no hesitation to use adjuvant therapy. If removal of the tumor required reconstructive surgery, no radiation or chemotherapy should be used until the wound has healed. 30 references

  5. Leptin promotes wound healing in the skin.

    Susumu Tadokoro

    Full Text Available Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.

  6. Zmpste24-/- mouse model for senescent wound healing research.

    Butala, Parag; Szpalski, Caroline; Soares, Marc; Davidson, Edward H; Knobel, Denis; Warren, Stephen M

    2012-12-01

    The graying of our population has motivated the authors to better understand age-related impairments in wound healing. To increase research throughput, the authors hypothesized that the Hutchinson-Gilford progeria syndrome Zmpste24-deficient (Zmpste24(-/-)) mouse could serve as a model of senescent wound healing. Using a stented excisional wound closure model, the authors tested this hypothesis on 8-week-old male Zmpste24(-/-) mice (n = 25) and age-matched male C57BL/6J wild-type mice (n = 25). Wounds were measured photogrammetrically and harvested for immunohistochemistry, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction, and circulating vasculogenic progenitor cells were measured by flow cytometry. Zmpste24(-/-) mice had a significant delay in wound closure compared with wild-type mice during the proliferative/vasculogenic phase. Zmpste24(-/-) wounds had decreased proliferation, increased 8-hydroxy-2'-deoxyguanosine levels, increased proapoptotic signaling (i.e., p53, PUMA, BAX), decreased antiapoptotic signaling (i.e., Bcl-2), and increased DNA fragmentation. These changes correlated with decreased local vasculogenic growth factor expression, decreased mobilization of bone marrow-derived vasculogenic progenitor cells, and decreased new blood vessel formation. Age-related impairments in wound closure are multifactorial. The authors' data suggest that the Hutchinson-Gilford progeria syndrome Zmpste24(-/-) progeroid syndrome shares mechanistic overlap with normal aging and therefore might provide a uniquely informative model with which to study age-associated impairments in wound closure.

  7. Age-related aspects of cutaneous wound healing: a mini-review.

    Sgonc, Roswitha; Gruber, Johann

    2013-01-01

    As the aging population in developed countries is growing in both numbers and percentage, the medical, social, and economic burdens posed by nonhealing wounds are increasing. Hence, it is all the more important to understand the mechanisms underlying age-related impairments in wound healing. The purpose of this article is to give a concise overview of (1) normal wound healing, (2) alterations in aging skin that have an impact on wound repair, (3) alterations in the repair process of aged skin, and (4) general factors associated with old age that might impair wound healing, with a focus on the literature of the last 10 years. Copyright © 2012 S. Karger AG, Basel.

  8. Do Preexisting Abdominal Scars Threaten Wound Healing in Abdominoplasty?

    Shermak, Michele A.; Mallalieu, Jessie; Chang, David

    2010-01-01

    Purpose: Abdominal scars may impair healing after abdominoplasty. We aimed to determine whether right subcostal or upper midline scars led to increased wound healing problems. Methods and Materials: Review of all patients who had abdominoplasty from March 1998 to February 2008 was performed. Variables studied included age, gender, body mass index (BMI), medical history, and postoperative complications. Statistical analysis was performed in Stata SE, version 10. Results: Of 420 abdominoplasty ...

  9. Nanotoxicity in Systemic Circulation and Wound Healing.

    Bakshi, Mandeep Singh

    2017-06-19

    Nanotoxicity of nanomaterials is an important issue in view of their potential applications in systemic circulation and wound healing dressing. This account specifically deals with several characteristic features of different nanomaterials which induce hemolysis and how to make them hemocompatible. The shape, size, and surface functionalities of naked metallic as well as nonmetallic nanoparticles surfaces are responsible for the hemolysis. An appropriate coating of biocompatible molecules dramatically reduces hemolysis and promotes their ability as safe drug delivery vehicles. The use of coated nanomaterials in wound healing dressing opens several new strategies for rapid wound healing processes. Properly designed nanomaterials should be selected to minimize the nanotoxicity in the wound healing process. Future directions need new synthetic methods for engineered nanomaterials for their best use in nanomedicine and nanobiotechnology.

  10. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  11. Use of Oxygen Therapies in Wound Healing

    Gottrup, Finn; Dissemond, Joachim; Baines, Carol

    2017-01-01

    Among other things wound healing requires restoration of macro-And microcirculation as essential conditions for healing.1,2 One of the most 'immediate' requirements is oxygen, which is critically important for reconstruction of new vessels and connective tissue and to enable competent resistance...

  12. Honey: an immunomodulator in wound healing.

    Majtan, Juraj

    2014-01-01

    Honey is a popular natural product that is used in the treatment of burns and a broad spectrum of injuries, in particular chronic wounds. The antibacterial potential of honey has been considered the exclusive criterion for its wound healing properties. The antibacterial activity of honey has recently been fully characterized in medical-grade honeys. Recently, the multifunctional immunomodulatory properties of honey have attracted much attention. The aim of this review is to provide closer insight into the potential immunomodulatory effects of honey in wound healing. Honey and its components are able to either stimulate or inhibit the release of certain cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) from human monocytes and macrophages, depending on wound condition. Similarly, honey seems to either reduce or activate the production of reactive oxygen species from neutrophils, also depending on the wound microenvironment. The honey-induced activation of both types of immune cells could promote debridement of a wound and speed up the repair process. Similarly, human keratinocytes, fibroblasts, and endothelial cell responses (e.g., cell migration and proliferation, collagen matrix production, chemotaxis) are positively affected in the presence of honey; thus, honey may accelerate reepithelization and wound closure. The immunomodulatory activity of honey is highly complex because of the involvement of multiple quantitatively variable compounds among honeys of different origins. The identification of these individual compounds and their contributions to wound healing is crucial for a better understanding of the mechanisms behind honey-mediated healing of chronic wounds. © 2014 by the Wound Healing Society.

  13. Mechanoregulation of Wound Healing and Skin Homeostasis

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  14. Stem Cells for Cutaneous Wound Healing.

    Kirby, Giles T S; Mills, Stuart J; Cowin, Allison J; Smith, Louise E

    2015-01-01

    Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.

  15. Stem Cells for Cutaneous Wound Healing

    Giles T. S. Kirby

    2015-01-01

    Full Text Available Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.

  16. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions

    Dong Joo Yang

    2016-07-01

    Full Text Available Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK, c-Jun N-terminal kinases (JNK, and extracellular signal-regulated kinases (Erk, underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  17. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats.

    Peilang Yang

    Full Text Available Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8 weeks high fat diet (HFD feeding regimen followed by multiple injections of streptozotocin (STZ at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.

  18. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation.

    Zhao, Huichen; Lu, Shengxia; Chai, Jiachao; Zhang, Yuchao; Ma, Xiaoli; Chen, Jicui; Guan, Qingbo; Wan, Meiyan; Liu, Yuantao

    2017-09-01

    The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H 2 S) has been reported to have multiple biological activities. We aim to investigate the role of H 2 S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H 2 S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. CSE expression, and H 2 S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H 2 S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Regularity of wound healing in rats irradiated locally with different doses of soft X-rays

    Liu Jianzhong; Zhou Yuanguo; Cheng Tianmin; Zhou Ping; Liu Xia; Li Ping

    2002-01-01

    Objective: To study the regular patter of wound healing in rats irradiated locally with different doses of soft X-rays. Methods: Rats were locally irradiated, and wounded immediately thereafter. Gross observation, histopathology and immunohistochemistry examinations, and image analysis were used to study the wound healing process. Results: The authors found that the delayed time of wound healing induced by soft X-ray irradiation of 0.50, 1.01, 1.96, 3,26, 4.00, 5.21 Gy was 1.6, 4.2, 5.4, 6.6, 8.2 and 9.4 days, respectively. Irradiation with 7.0 and 10.0 Gy caused failure of wound healing (up to 40 days). Compared to the non-irradiated wounds, the healing rates of irradiation-impaired wounds were lower during the whole healing process. From day 3 to day 9 after irradiation, the healing rates decreased along with increasing of the radiation dose, indicating the key phase of wound healing was delayed. After irradiation, the collagen synthesis was decreased, its arrangement was disordered, and the structure of granulation tissue was irregular. Conclusion: Soft X-rays irradiation may cause a delay of wound healing in a dose-dependent manner, and irradiation with 7.0 and 10.0 Gy cause failure of wound healing

  20. Wound healing properties of ointment formulations of Ocimum ...

    present work evaluated the phyto-constituents and wound healing properties of ointments formulated with the n-hexane crude bark extract of a plant used folklorically in wound healing, Ocimum gratissimum. The excision wound model was employed in the wound healing studies. The air-dried, size-reduced barks were ...

  1. The occurrence of biofilm in an equine experimental wound model of healing by secondary intention

    Jørgensen, Elin Lisby Kastbjerg; Bay, Lene; Bjarnsholt, Thomas

    2017-01-01

    impaired healing. Presence of biofilm in tissue biopsies was assessed by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) and confocal laser scanning microscopy (CLSM). Bandaged limb wounds developed EGT and displayed delayed healing, while shoulder and un-bandaged limb wounds healed.......009). The finding that biofilm was most prevalent in bandaged limb wounds with EGT formation suggests that biofilm may be linked to delayed wound healing in horses, as has been observed in humans. The inability to clear bacteria could be related to hypoxia and low-grade inflammation in the EGT, but the interaction......In humans, biofilm is a well-known cause of delayed healing and low-grade inflammation of chronic wounds. In horses, biofilm formation in wounds has been studied to a very limited degree. The objective of this study was thus to investigate the occurrence of biofilm in equine experimental wounds...

  2. Trends in Surgical Wound Healing

    Gottrup, F.

    2008-01-01

    The understanding of acute and chronic wound pathophysiology has progressed considerably over the past decades. Unfortunately, improvement in clinical practice has not followed suit, although new trends and developments have improved the outcome of wound treatment in many ways. This review focuse...

  3. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition.

    Kunkemoeller, Britta; Kyriakides, Themis R

    2017-10-20

    Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.

  4. [Delayed wound healing post molar extraction].

    Schepers, R H; De Visscher, J G A M

    2009-02-01

    One month post extraction of the second left maxillary molar the alveolar extraction site showed no signs of healing and was painful. The patient had been using an oral bisphosphonate during 3 years. Therefore, the lesion was diagnosed as bisphosphonate-induced maxillary osteonecrosis. Treatment was conservative. Since one month later the pain had increased and the wound healing had decreased, a biopsy was carried out. Histopathologic examination revealed a non-Hodgkin lymphoma.

  5. Cutaneous wound healing: Current concepts and advances in wound care

    Kenneth C Klein

    2014-01-01

    Full Text Available A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care. [1] It is a snapshot of a patient′s total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors. [2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT, as used at our institution (CAMC, and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society may vary widely from country to country and payment system. [3] In the USA, CMS (Centers for Medicare and Medicaid Services approved indications for HBOT vary from that of the UHMS for logistical reasons. [1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise.

  6. Cutaneous wound healing: Current concepts and advances in wound care

    Klein, Kenneth C; Guha, Somes Chandra

    2014-01-01

    A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care.[1] It is a snapshot of a patient's total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors.[2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT), as used at our institution (CAMC), and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society) may vary widely from country to country and payment system.[3] In the USA, CMS (Centers for Medicare and Medicaid Services) approved indications for HBOT vary from that of the UHMS for logistical reasons.[1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise. PMID:25593414

  7. Exercise, Obesity, and Cutaneous Wound Healing: Evidence from Rodent and Human Studies.

    Pence, Brandt D; Woods, Jeffrey A

    2014-01-01

    Significance: Impaired cutaneous wound healing is a major health concern. Obesity has been shown in a number of studies to impair wound healing, and chronic nonhealing wounds in obesity and diabetes are a major cause of limb amputations in the United States. Recent Advances: Recent evidence indicates that aberrant wound site inflammation may be an underlying cause for delayed healing. Obesity, diabetes, and other conditions such as stress and aging can result in a chronic low-level inflammatory state, thereby potentially affecting wound healing negatively. Critical Issues: Interventions which can speed the healing rate in individuals with slowly healing or nonhealing wounds are of critical importance. Recently, physical exercise training has been shown to speed healing in both aged and obese mice and in older adults. Exercise is a relatively low-cost intervention strategy which may be able to be used clinically to prevent or treat impairments in the wound-healing process. Future Directions: Little is known about the mechanisms by which exercise speeds healing. Future translational studies should address potential mechanisms for these exercise effects. Additionally, clinical studies in obese humans are necessary to determine if findings in obese rodent models translate to the human population.

  8. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Sandra Matabi Ayuk

    2016-01-01

    Full Text Available The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI or photobiomodulation (PBM is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  9. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation.

    Ayuk, Sandra Matabi; Abrahamse, Heidi; Houreld, Nicolette Nadene

    2016-01-01

    The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  10. Metformin Induces Cell Cycle Arrest, Reduced Proliferation, Wound Healing Impairment In Vivo and Is Associated to Clinical Outcomes in Diabetic Foot Ulcer Patients.

    Ochoa-Gonzalez, Fatima; Cervantes-Villagrana, Alberto R; Fernandez-Ruiz, Julio C; Nava-Ramirez, Hilda S; Hernandez-Correa, Adriana C; Enciso-Moreno, Jose A; Castañeda-Delgado, Julio E

    2016-01-01

    Several epidemiological studies in diabetic patients have demonstrated a protective effect of metformin to the development of several types of cancer. The underlying mechanisms of such phenomenon is related to the effect of metformin on cell proliferation among which, mTOR, AMPK and other targets have been identified. However, little is known about the role that metformin treatment have on other cell types such as keratinocytes and whether exposure to metformin of these cells might have serious repercussions in wound healing delay and in the development of complications in diabetic patients with foot ulcers or in their exacerbation. HaCaT Cells were exposed to various concentrations of metformin and cell viability was evaluated by a Resazurin assay; Proliferation was also evaluated with a colony formation assay and with CFSE dilution assay by flow cytometry. Cell cycle was also evaluated by flow cytometry by PI staining. An animal model of wound healing was used to evaluate the effect of metformin in wound closure. Also, an analysis of patients receiving metformin treatment was performed to determine the effect of metformin treatment on the outcome and wound area. Statistical analysis was performed on SPSS v. 18 and GraphPad software v.5. Metformin treatment significantly reduces cell proliferation; colony formation and alterations of the cell cycle are observed also in the metformin treated cells, particularly in the S phase. There is a significant increase in the area of the wound of the metformin treated animals at different time points (Pdiabetic foot ulcers at the time of hospitalization. A protective effect of metformin was observed for amputation, probably associated with the anti inflammatory effects reported of metformin. Metformin treatment reduces cell proliferation and reduces wound healing in an animal model and affects clinical outcomes in diabetic foot ulcer patients. Chronic use of this drug should be further investigated to provide evidence of

  11. Drug delivery systems and materials for wound healing applications.

    Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik; Kashaf, Sara Saheb; Sharifi, Fatemeh; Jalilian, Elmira; Nuutila, Kristo; Giatsidis, Giorgio; Mostafalu, Pooria; Derakhshandeh, Hossein; Yue, Kan; Swieszkowski, Wojciech; Memic, Adnan; Tamayol, Ali; Khademhosseini, Ali

    2018-04-05

    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Biology and Biomarkers for Wound Healing

    Lindley, Linsey E.; Stojadinovic, Olivera; Pastar, Irena; Tomic-Canic, Marjana

    2016-01-01

    Background As the population grows older, the incidence and prevalence of conditions which lead to a predisposition for poor wound healing also increases. Ultimately, this increase in non-healing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has, and will continue to be the leading pathway to the discovery of therapeutic targets as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of non-healing patients for whom biomarker-guided approaches may aid in healing. Methods A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. Results Currently, biomarkers are being identified using biomaterials sourced locally, from human wounds and/or systemically using systematic high-throughput “omics” modalities (genomic, proteomic, lipidomic, metabolomic analysis). In this review we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum including those measured in tissue specimens e.g. β-catenin and c-myc, wound fluid e.g. MMP’s and interleukins, swabs e.g. wound microbiota and serum e.g. procalcitonin and MMP’s. Conclusions Identification of numerous potential biomarkers utilizing different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity, and consistent implementation of these biomarkers as well as an emphasis on efficacious follow-up therapeutics is necessary for transition of this technology to clinically feasible point-of-care applications. PMID:27556760

  13. Shedding Light on a New Treatment for Diabetic Wound Healing: A Review on Phototherapy

    Nicolette N. Houreld

    2014-01-01

    Full Text Available Impaired wound healing is a common complication associated with diabetes with complex pathophysiological underlying mechanisms and often necessitates amputation. With the advancement in laser technology, irradiation of these wounds with low-intensity laser irradiation (LILI or phototherapy, has shown a vast improvement in wound healing. At the correct laser parameters, LILI has shown to increase migration, viability, and proliferation of diabetic cells in vitro; there is a stimulatory effect on the mitochondria with a resulting increase in adenosine triphosphate (ATP. In addition, LILI also has an anti-inflammatory and protective effect on these cells. In light of the ever present threat of diabetic foot ulcers, infection, and amputation, new improved therapies and the fortification of wound healing research deserves better prioritization. In this review we look at the complications associated with diabetic wound healing and the effect of laser irradiation both in vitro and in vivo in diabetic wound healing.

  14. Heat enhances radiation inhibition of wound healing

    Twomey, P.; Hill, S.; Joiner, M.; Hobson, B.; Denekamp, J.

    1987-01-01

    To study the effect of hyperthermia on the inhibition of healing by radiation, the authors used 2 models of wound tensile strength in mice. In one, tensile strength of 1 cm strips of wounded skin was measured. In the other, strength was measured on 2 by 1 by .3 cm surgical prosthetic sponges of polyvinyl alcohol which has been cut, resutured, and implanted subcutaneously. Granulation tissue grows into the pores of the sponges which gradually fill with collagen. Tensile strength in both models was measured on day 14 using a constant strain extensiometer. The wounds were given graduated doses of ortho-voltage radiation with or without hyperthermia. Maximum radiation sensitivity occurred during the period of rapid neovascularization in the first 5 days after wounding, when a loss of 80% in wound strength occurred with doses less than 20 gray. For single radiation doses given 48 hours after wounding, the authors found a steep dose-response curve with half maximum reduction in strength occurring in both models at approximately 10 gray. Hyperthermia was produced in two ways. Skin wounds were heated in a circulating water bath. In the sponge model, more uniform heating occurs with an RF generator scaled to the mouse. At a dose of 43 C for 30 minutes, no inhibition of healing by heat alone was found. However the combination of heat and radiation produced definite enhancement of radiation damage, with thermal enhancement ratios of up to 1.9 being observed

  15. Expression of Neuropeptides and Cytokines in a Rabbit Model of Diabetic Neuroischemic Wound-Healing

    Nabzdyk, Leena Pradhan; Kuchibhotla, Sarada; Guthrie, Patrick; Chun, Maggie; Auster, Michael E; Nabzdyk, Christoph; Deso, Steven; Andersen, Nicholas; LoGerfo, Frank W.; Veves, Aristidis

    2013-01-01

    Objective The present study is designed to understand the contribution of peripheral vascular disease and peripheral neuropathy to the wound-healing impairment associated with diabetes. Using a rabbit model of diabetic neuroischemic wound-healing we investigated rate of healing, leukocyte infiltration and expression of cytokines, Interleukin (IL)-8 and IL-6, and, neuropeptides, Substance P (SP) and Neuropeptide Y (NPY). Design of study Diabetes was induced in White New Zealand rabbits by administering alloxan while control rabbits received saline. Ten days later animals in both groups underwent surgery. One ear served as a sham and the other was made ischemic (ligation of central+rostral arteries), or neuroischemic (ischemia+ resection of central+rostral nerves). Four, 6mm punch biopsy wounds were created in both ears and wound-healing was followed for ten days using computerized planimetry. Results Non-diabetic sham and ischemic wounds healed significantly more rapidly than diabetic sham and ischemic wounds. Healing was slowest in neuroischemic wounds, irrespective of diabetic status. A high M1/M2 macrophage ratio and a high pro-inflammatory cytokine expression, both indicators of chronic-proinflammatory state, and low neuropeptide expression were seen in pre-injury diabetic skin. Post-injury, in diabetic wounds M1/M2 ratio remained high, the reactive increase in cytokine expression was low and neuropeptide expression was further decreased in neuroischemic wounds. Conclusion This rabbit model illustrates how a combination of a high M1/M2 ratio, a failure to mount post-injury cytokine response as well as a diminished neuropeptide expression contribute to wound-healing impairment in diabetes. The addition of neuropathy to ischemia leads to equivalently severe impaired wound-healing irrespective of diabetes status, suggesting that in the presence of ischemia, loss of neuropeptide function contributes to the impaired healing associated with diabetes. PMID:23755976

  16. Dendritic cells modulate burn wound healing by enhancing early proliferation.

    Vinish, Monika; Cui, Weihua; Stafford, Eboni; Bae, Leon; Hawkins, Hal; Cox, Robert; Toliver-Kinsky, Tracy

    2016-01-01

    Adequate wound healing is vital for burn patients to reduce the risk of infections and prolonged hospitalization. Dendritic cells (DCs) are antigen presenting cells that release cytokines and are central for the activation of innate and acquired immune responses. Studies have showed their presence in human burn wounds; however, their role in burn wound healing remains to be determined. This study investigated the role of DCs in modulating healing responses within the burn wound. A murine model of full-thickness contact burns was used to study wound healing in the absence of DCs (CD11c promoter-driven diphtheria toxin receptor transgenic mice) and in a DC-rich environment (using fms-like tyrosine kinase-3 ligand, FL- a DC growth factor). Wound closure was significantly delayed in DC-deficient mice and was associated with significant suppression of early cellular proliferation, granulation tissue formation, wound levels of TGFβ1 and formation of CD31+ vessels in healing wounds. In contrast, DC enhancement significantly accelerated early wound closure, associated with increased and accelerated cellular proliferation, granulation tissue formation, and increased TGFβ1 levels and CD31+ vessels in healing wounds. We conclude that DCs play an important role in the acceleration of early wound healing events, likely by secreting factors that trigger the proliferation of cells that mediate wound healing. Therefore, pharmacological enhancement of DCs may provide a therapeutic intervention to facilitate healing of burn wounds. © 2016 by the Wound Healing Society.

  17. Targeting connexin 43 in diabetic wound healing: Future perspectives

    Bajpai S

    2009-01-01

    Full Text Available The unknown mechanisms of impaired tissue repair in diabetes mellitus are making this disease a serious clinical problem for the physicians worldwide. The lacuna in the knowledge of the etiology of diabetic wounds necessitates more focused research in order to develop new targeting tools with higher efficacy for their effective management. Gap-junction proteins, connexins, have shown some promising results in the process of diabetic wound healing. Till now the role of connexins has been implicated in peripheral neuropathy, deafness, skin disorders, cataract, germ cell development and treatment of cancer. Recent findings have revealed that gap junctions play a key role in normal as well as diabetic wound healing. The purpose of this review is to provide the information related to etiology, epidemiology, clinical presentation of diabetic wounds and to analyze the role of connexin 43 (Cx43 in the diabetic wound healing process. The current control strategies and the future research challenges have also been discussed briefly in this review.

  18. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we ...

  19. Dynamic protein expression patterns during intraoral wound healing in the rat.

    van Beurden, Hugo E; Snoek, Patricia A M; Von den Hoff, Johannes W; Torensma, Ruurd; Maltha, Jaap C; Kuijpers-Jagtman, Anne M

    2005-04-01

    Wound healing after cleft palate surgery is often associated with impairment of maxillary growth and dento-alveolar development. Wound contraction and scar tissue formation contribute strongly to these effects. In vitro studies have revealed that fibroblasts isolated during different phases of palatal wound healing show phenotypical differences. They change from a quiescent to an activated state and then partly back to a quiescent state. In this study, we evaluated the existence of fibroblast phenotypes at several time-points during palatal wound healing in the rat. Based on cytoskeletal changes (alpha-sma, vimentin, vinculin), integrin expression (alpha1, alpha2, alpha(v) and beta1) and changes in cellularity, we conclude that phenotypically different fibroblast populations are also present during in vivo wound healing. Alpha-sma and the integrin subunits alpha1 and alpha(v) were significantly up-regulated, and vinculin was significantly down-regulated, at early time-points compared to late time-points in wound healing. These changes point to an activated fibroblast state early in wound healing. Later in wound healing, these activated fibroblasts return only partially to the unwounded situation. These results strongly support the idea that different fibroblast populations with specific phenotypes occur in the course of palatal wound healing.

  20. Comparative Analysis of Angiogenic Gene Expression in Normal and Impaired Wound Healing in Diabetic Mice: Effects of Extracorporeal Shock Wave Therapy

    2010-01-01

    an impaired wound was able to tum-on and/or augment for a prolonged period a number of key proangiogenic genes which were previously silent , and...Lania G, Zhang Z, Huynh T et al (2009) Early thyroid devel- opment requires a Tbxl-Fgf8 pathway. Dev Bioi 328(1):109-117 58. Terasaki K, Kanzaki T

  1. Elements affecting wound healing time: An evidence based analysis.

    Khalil, Hanan; Cullen, Marianne; Chambers, Helen; Carroll, Matthew; Walker, Judi

    2015-01-01

    The purpose of this study was to identify the predominant client factors and comorbidities that affected the time taken for wounds to heal. A prospective study design used the Mobile Wound Care (MWC) database to capture and collate detailed medical histories, comorbidities, healing times and consumable costs for clients with wounds in Gippsland, Victoria. There were 3,726 wounds documented from 2,350 clients, so an average of 1.6 wounds per client. Half (49.6%) of all clients were females, indicating that there were no gender differences in terms of wound prevalence. The clients were primarily older people, with an average age of 64.3 years (ranging between 0.7 and 102.9 years). The majority of the wounds (56%) were acute and described as surgical, crush and trauma. The MWC database categorized the elements that influenced wound healing into 3 groups--factors affecting healing (FAH), comorbidities, and medications known to affect wound healing. While there were a multitude of significant associations, multiple linear regression identified the following key elements: age over 65 years, obesity, nonadherence to treatment plan, peripheral vascular disease, specific wounds associated with pressure/friction/shear, confirmed infection, and cerebrovascular accident (stroke). Wound healing is a complex process that requires a thorough understanding of influencing elements to improve healing times.© 2015 by the Wound Healing Society. © 2015 by the Wound Healing Society.

  2. Local injection of high-molecular hyaluronan promotes wound healing in old rats by increasing angiogenesis.

    Huang, Luying; Wang, Yi; Liu, Hua; Huang, Jianhua

    2018-02-02

    Impaired angiogenesis contributes to delayed wound healing in aging. Hyaluronan (HA) has a close relationship with angiogenesis and wound healing. However, HA content decreases with age. In this study, we used high molecular weight HA (HMW-HA) (1650 kDa), and investigated its effects on wound healing in old rats by local injection. We found that HMW-HA significantly increases proliferation, migration and tube formation in endothelial cells, and protects endothelial cells against apoptosis. Local injection of HMW-HA promotes wound healing by increasing angiogenesis in old rats. HMW-HA increases the phosphorylation of Src, ERK and AKT, leading to increased angiogenesis, suggesting that local injection of HMW-HA promotes wound healing in elderly patients.

  3. Identification of a transcriptional signature for the wound healing continuum.

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

  4. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Das, Subhamoy; Baker, Aaron B.

    2016-01-01

    Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895

  5. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Subhamoy Das

    2016-10-01

    Full Text Available Wound healing is an intricate process that requires complex coordination between many cells and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care; the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds including excessive inflammation, ischemia, scarring and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or currently used in clinical practice.

  6. Identification of a transcriptional signature for the wound healing continuum

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Mi...

  7. NETosis Delays Diabetic Wound Healing in Mice and Humans.

    Fadini, Gian Paolo; Menegazzo, Lisa; Rigato, Mauro; Scattolini, Valentina; Poncina, Nicol; Bruttocao, Andrea; Ciciliot, Stefano; Mammano, Fabio; Ciubotaru, Catalin Dacian; Brocco, Enrico; Marescotti, Maria Cristina; Cappellari, Roberta; Arrigoni, Giorgio; Millioni, Renato; Vigili de Kreutzenberg, Saula; Albiero, Mattia; Avogaro, Angelo

    2016-04-01

    Upon activation, neutrophils undergo histone citrullination by protein arginine deiminase (PAD)4, exocytosis of chromatin and enzymes as neutrophil extracellular traps (NETs), and death. In diabetes, neutrophils are primed to release NETs and die by NETosis. Although this process is a defense against infection, NETosis can damage tissue. Therefore, we examined the effect of NETosis on the healing of diabetic foot ulcers (DFUs). Using proteomics, we found that NET components were enriched in nonhealing human DFUs. In an independent validation cohort, a high concentration of neutrophil elastase in the wound was associated with infection and a subsequent worsening of the ulcer. NET components (elastase, histones, neutrophil gelatinase-associated lipocalin, and proteinase-3) were elevated in the blood of patients with DFUs. Circulating elastase and proteinase-3 were associated with infection, and serum elastase predicted delayed healing. Neutrophils isolated from the blood of DFU patients showed an increased spontaneous NETosis but an impaired inducible NETosis. In mice, skin PAD4 activity was increased by diabetes, and FACS detection of histone citrullination, together with intravital microscopy, showed that NETosis occurred in the bed of excisional wounds. PAD4 inhibition by Cl-amidine reduced NETting neutrophils and rescued wound healing in diabetic mice. Cumulatively, these data suggest that NETosis delays DFU healing. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  9. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.

    Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis

    2015-06-01

    Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Effect of astaxanthin on cutaneous wound healing

    Meephansan J; Rungjang A; Yingmema W; Deenonpoe R; Ponnikorn S

    2017-01-01

    Jitlada Meephansan,1 Atiya Rungjang,1 Werayut Yingmema,2 Raksawan Deenonpoe,3 Saranyoo Ponnikorn3 1Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; 2Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand; 3Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand Abstract: Wound healing consists of a complex series of convoluted processes which involve renewal of the skin afte...

  11. Influence of phytochemicals in piper betle linn leaf extract on wound healing.

    Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh

    2015-01-01

    Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.

  12. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study

    Ubbink, Dirk T.; Lindeboom, Robert; Eskes, Anne M.; Brull, Huub; Legemate, Dink A.; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We

  13. Predicting complex acute wound healing in patients from a wound expertise centre registry : a prognostic study

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We

  14. Impact of diabetes on gingival wound healing via oxidative stress.

    Daisuke Kido

    Full Text Available The aim of this study is to investigate the mechanisms linking high glucose to gingival wound healing. Bilateral wounds were created in the palatal gingiva adjacent to maxillary molars of control rats and rats with streptozotocin-induced diabetes. After evaluating postsurgical wound closure by digital imaging, the maxillae including wounds were resected for histological examinations. mRNA expressions of angiogenesis, inflammation, and oxidative stress markers in the surgical sites were quantified by real-time polymerase chain reaction. Primary fibroblast culture from the gingiva of both rats was performed in high glucose and normal medium. In vitro wound healing and cell proliferation assays were performed. Oxidative stress marker mRNA expressions and reactive oxygen species production were measured. Insulin resistance was evaluated via PI3K/Akt and MAPK/Erk signaling following insulin stimulation using Western blotting. To clarify oxidative stress involvement in high glucose culture and cells of diabetic rats, cells underwent N-acetyl-L-cysteine treatment; subsequent Akt activity was measured. Wound healing in diabetic rats was significantly delayed compared with that in control rats. Nox1, Nox2, Nox4, p-47, and tumor necrosis factor-α mRNA levels were significantly higher at baseline in diabetic rats than in control rats. In vitro study showed that cell proliferation and migration significantly decreased in diabetic and high glucose culture groups compared with control groups. Nox1, Nox2, Nox4, and p47 expressions and reactive oxygen species production were significantly higher in diabetic and high glucose culture groups than in control groups. Akt phosphorylation decreased in the high glucose groups compared with the control groups. Erk1/2 phosphorylation increased in the high glucose groups, with or without insulin treatment, compared with the control groups. Impaired Akt phosphorylation partially normalized after antioxidant N

  15. Dynamic protein expression patterns during intraoral wound healing in the rat.

    Beurden, H.E. van; Snoek, P.A.; Hoff, J.W. Von den; Torensma, R.; Maltha, J.C.; Kuijpers-Jagtman, A.M.

    2005-01-01

    Wound healing after cleft palate surgery is often associated with impairment of maxillary growth and dento-alveolar development. Wound contraction and scar tissue formation contribute strongly to these effects. In vitro studies have revealed that fibroblasts isolated during different phases of

  16. In vitro migration and adhesion of fibroblasts from different phases of palatal wound healing.

    Beurden, H.E. van; Snoek, P.A.; Hoff, J.W. Von den; Torensma, R.; Maltha, J.C.; Kuijpers-Jagtman, A.M.

    2006-01-01

    Cleft palate patients often show mid-facial growth impairment after surgical closure of the defect. This is a consequence of palatal wound healing, and more specifically of wound contraction and scar tissue formation. Cells of the fibroblast lineage are responsible for these processes and they

  17. Effects of genistein on early-stage cutaneous wound healing

    Park, Eunkyo [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Seung Min [Research Institute of Health Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Jung, In-Kyung [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lim, Yunsook [Department of Foods and Nutrition, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jung-Hyun, E-mail: jjhkim@cau.ac.kr [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  18. Clinical experience with Leptospermum honey use for treatment of hard to heal neonatal wounds: case series.

    Boyar, V; Handa, D; Clemens, K; Shimborske, D

    2014-02-01

    Preterm, critically ill neonates represent a challenge in wound healing. Many factors predispose infants to skin injuries, including decreased epidermal-dermal cohesion, deficient stratum corneum, relatively alkaline pH of skin surface, impaired nutrition and presence of multiple devices on the skin. We present a case series describing the use of medical-grade honey-Leptospermum honey (Medihoney), for successful treatment of slowly healing neonatal wounds, specifically stage 3 pressure ulcer, dehiscent and infected sternal wound, and full-thickness wound from an extravasation injury.

  19. Complements and the Wound Healing Cascade: An Updated Review

    Hani Sinno

    2013-01-01

    Full Text Available Wound healing is a complex pathway of regulated reactions and cellular infiltrates. The mechanisms at play have been thoroughly studied but there is much still to learn. The health care system in the USA alone spends on average 9 billion dollars annually on treating of wounds. To help reduce patient morbidity and mortality related to abnormal or prolonged skin healing, an updated review and understanding of wound healing is essential. Recent works have helped shape the multistep process in wound healing and introduced various growth factors that can augment this process. The complement cascade has been shown to have a role in inflammation and has only recently been shown to augment wound healing. In this review, we have outlined the biology of wound healing and discussed the use of growth factors and the role of complements in this intricate pathway.

  20. Wound healing delays in α-Klotho-deficient mice that have skin appearance similar to that in aged humans - Study of delayed wound healing mechanism.

    Yamauchi, Makoto; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Matsumoto, Yoshitaka; Yamashita, Ken; Kayama, Musashi; Sato, Noriyuki; Yotsuyanagi, Takatoshi

    2016-05-13

    Skin atrophy and delayed wound healing are observed in aged humans; however, the molecular mechanism are still elusive. The aim of this study was to analyze the molecular mechanisms of delayed wound healing by aging using α-Klotho-deficient (kl/kl) mice, which have phenotypes similar to those of aged humans. The kl/kl mice showed delayed wound healing and impaired granulation formation compared with those in wild-type (WT) mice. The skin graft experiments revealed that delayed wound healing depends on humoral factors, but not on kl/kl skin tissue. The mRNA expression levels of cytokines related to acute inflammation including IL-1β, IL-6 and TNF-α were higher in wound lesions of kl/kl mice compared with the levels in WT mice by RT-PCR analysis. LPS-induced TNF-α production model using spleen cells revealed that TNF-α production was significantly increased in the presence of FGF23. Thus, higher levels of FGF23 in kl/kl mouse may have a role to increase TNF-α production in would lesion independently of α-Klotho protein, and impair granulation formation and delay wound healing. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing

    Biraja C. Dash

    2018-03-01

    Full Text Available The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little success in the clinic. Current research has been focused on using polymeric biomaterial systems that can act as a niche for these stem cells to improve their survival and paracrine activity that would eventually promote wound healing. Furthermore, different modification strategies have been developed to improve stem cell survival and differentiation, ultimately promoting regenerative wound healing. This review focuses on advanced polymeric scaffolds that have been used to deliver stem cells and have been tested for their efficiency in preclinical animal models of wounds.

  2. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing.

    Dash, Biraja C; Xu, Zhenzhen; Lin, Lawrence; Koo, Andrew; Ndon, Sifon; Berthiaume, Francois; Dardik, Alan; Hsia, Henry

    2018-03-09

    The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little success in the clinic. Current research has been focused on using polymeric biomaterial systems that can act as a niche for these stem cells to improve their survival and paracrine activity that would eventually promote wound healing. Furthermore, different modification strategies have been developed to improve stem cell survival and differentiation, ultimately promoting regenerative wound healing. This review focuses on advanced polymeric scaffolds that have been used to deliver stem cells and have been tested for their efficiency in preclinical animal models of wounds.

  3. The Extract of Lycium depressum Stocks Enhances Wound Healing in Streptozotocin-Induced Diabetic Rats.

    Naji, Siamak; Zarei, Leila; Pourjabali, Masoumeh; Mohammadi, Rahim

    2017-06-01

    In diabetes, impaired wound healing and other tissue abnormalities are considered major concerns. The aim of the present study was to assess the wound-healing activity of methanolic extracts of the extract of Lycium depressum leaves. A total of 60 healthy male Wistar diabetic rats weighing approximately 160 to 180 g and 7 weeks of age were randomized into 10 groups for incision and excision wound models: sham surgery group (SHAM), including creation of wounds and no treatment; base formulation group (FG) with creation of wounds and application of base formulation ointment; treatment group 1 (TG1) with 1 g of powder extract of the plant material in ointment; treatment group 2 (TG2) with 2 g; and treatment group 4 (TG3) with 4 g of powder extract of the plant material in ointment. A wound was induced by an excision- and incision-based wound model in male rats. The mature green leaves of L depressum were collected and authenticated. Extractions of dried leaves were carried out. For wound-healing activity, the extracts were applied topically in the form of ointment and compared with control groups. The healing of the wound was assessed based on excision, incision, hydroxyproline estimation, and biomechanical and biochemical studies. The extract of L depressum leaves enhanced wound contraction, decreased epithelialization time, increased hydroxyproline content, and improved mechanical indices and histological characteristics in treatment groups compared with SHAM and FG ( P healing in a diabetes induced model.

  4. Identification of a transcriptional signature for the wound healing continuum

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339

  5. Wound healing and all-cause mortality in 958 wound patients treated in home care

    Zarchi, Kian; Martinussen, Torben; Jemec, Gregor B. E.

    2015-01-01

    to investigate wound healing and all-cause mortality associated with different types of skin wounds. Consecutive skin wound patients who received wound care by home-care nurses from January 2010 to December 2011 in a district in Eastern Denmark were included in this study. Patients were followed until wound...... healing, death, or the end of follow-up on December 2012. In total, 958 consecutive patients received wound care by home-care nurses, corresponding to a 1-year prevalence of 1.2% of the total population in the district. During the study, wound healing was achieved in 511 (53.3%), whereas 90 (9.4%) died...

  6. Evaluation of the wound healing potential of Protea madiensis Oliv ...

    Ijeoma

    2012-11-08

    Nov 8, 2012 ... In medical practice, the treat- ment of full ... wounds, burns and ulcers by indigenous West Africans ... wound healing activity, no scientific study has been car- ..... that the leaf extract of P. madiensis accelerated fibroblast.

  7. Effects of isoniazid and niacin on experimental wound-healing

    Weinreich, Jürgen; Ågren, Sven Per Magnus; Bilali, Erol

    2010-01-01

    There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues.......There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues....

  8. Cutaneous wound healing in aging small mammals: a systematic review.

    Kim, Dong Joo; Mustoe, Thomas; Clark, Richard A F

    2015-01-01

    As the elderly population grows, so do the clinical and socioeconomic burdens of nonhealing cutaneous wounds, the majority of which are seen among persons over 60 years of age. Human studies on how aging effects wound healing will always be the gold standard, but studies have ethical and practical hurdles. Choosing an animal model is dictated by costs and animal lifespan that preclude large animal use. Here, we review the current literature on how aging effects cutaneous wound healing in small animal models and, when possible, compare healing across studies. Using a literature search of MEDLINE/PubMed databases, studies were limited to those that utilized full-thickness wounds and compared the wound-healing parameters of wound closure, reepithelialization, granulation tissue fill, and tensile strength between young and aged cohorts. Overall, wound closure, reepithelialization, and granulation tissue fill were delayed or decreased with aging across different strains of mice and rats. Aging in mice was associated with lower tensile strength early in the wound healing process, but greater tensile strength later in the wound healing process. Similarly, aging in rats was associated with lower tensile strength early in the wound healing process, but no significant tensile strength difference between young and old rats later in healing wounds. From studies in New Zealand White rabbits, we found that reepithelialization and granulation tissue fill were delayed or decreased overall with aging. While similarities and differences in key wound healing parameters were noted between different strains and species, the comparability across the studies was highly questionable, highlighted by wide variability in experimental design and reporting. In future studies, standardized experimental design and reporting would help to establish comparable study groups, and advance the overall knowledge base, facilitating the translatability of animal data to the human clinical condition.

  9. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (phealing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (pdiabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. © 2013.

  10. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds.

    Emmerson, Elaine

    2017-03-01

    Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  11. Age-associated intracellular superoxide dismutase deficiency potentiates dermal fibroblast dysfunction during wound healing.

    Fujiwara, Toshihiro; Dohi, Teruyuki; Maan, Zeshaan N; Rustad, Kristine C; Kwon, Sun Hyung; Padmanabhan, Jagannath; Whittam, Alexander J; Suga, Hirotaka; Duscher, Dominik; Rodrigues, Melanie; Gurtner, Geoffrey C

    2017-07-04

    Reactive oxygen species (ROS) impair wound healing through destructive oxidation of intracellular proteins, lipids and nucleic acids. Intracellular superoxide dismutase (SOD1) regulates ROS levels and plays a critical role in tissue homoeostasis. Recent evidence suggests that age-associated wound healing impairments may partially result from decreased SOD1 expression. We investigated the mechanistic basis by which increased oxidative stress links to age-associated impaired wound healing. Fibroblasts were isolated from unwounded skin of young and aged mice, and myofibroblast differentiation was assessed by measuring α-smooth muscle actin and collagen gel contraction. Excisional wounds were created on young and aged mice to study the healing rate, ROS levels and SOD1 expression. A mechanistic link between oxidative stress and fibroblast function was explored by assessing the TGF-β1 signalling pathway components in young and aged mice. Age-related wounds displayed reduced myofibroblast differentiation and delayed wound healing, consistent with a decrease in the in vitro capacity for fibroblast-myofibroblast transition following oxidative stress. Young fibroblasts with normal SOD1 expression exhibited increased phosphorylation of ERK in response to elevated ROS. In contrast, aged fibroblasts with reduced SOD1 expression displayed a reduced capacity to modulate intracellular ROS. Collectively, age-associated wound healing impairments are associated with fibroblast dysfunction that is likely the result of decreased SOD1 expression and subsequent dysregulation of intracellular ROS. Strategies targeting these mechanisms may suggest a new therapeutic approach in the treatment of chronic non-healing wounds in the aged population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management

    Deborah Chicharro-Alcántara

    2018-01-01

    Full Text Available The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process.

  13. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management

    Chicharro-Alcántara, Deborah; Damiá-Giménez, Elena; Carrillo-Poveda, José M.; Peláez-Gorrea, Pau

    2018-01-01

    The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP) is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process. PMID:29346333

  14. Traditional Therapies for Skin Wound Healing.

    Pereira, Rúben F; Bártolo, Paulo J

    2016-05-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  15. SDF-1 alpha expression during wound healing in the aged is HIF dependent.

    Loh, Shang A; Chang, Edward I; Galvez, Michael G; Thangarajah, Hariharan; El-ftesi, Samyra; Vial, Ivan N; Lin, Darius A; Gurtner, Geoffrey C

    2009-02-01

    Age-related impairments in wound healing are associated with decreased neovascularization, a process that is regulated by hypoxia-responsive cytokines, including stromal cell-derived factor (SDF)-1 alpha. Interleukin-1 beta is an important inflammatory cytokine involved in wound healing and is believed to regulate SDF-1 alpha expression independent of hypoxia signaling. Thus, the authors examined the relative importance of interleukin (IL)-1 beta and hypoxia-inducible factor (HIF)-1 alpha on SDF-1 alpha expression in aged wound healing. Young and aged mice (n = 4 per group) were examined for wound healing using a murine excisional wound model. Wounds were harvested at days 0, 1, 3, 5, and 7 for histologic analysis, immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot. An engineered wild-type and mutated SDF luciferase reporter construct were used to determine HIF transactivation. Aged mice demonstrated significantly impaired wound healing, reduced granulation tissue, and increased epithelial gap compared with young controls. Real-time polymerase chain reaction demonstrated reduced SDF-1 alpha levels in aged wounds that correlated with reduced CD31+ neovessels. Western blots revealed decreased HIF-1 alpha protein in aged wounds. However, both IL-1 beta and macrophage infiltrate were unchanged between young and aged animals. Using the wild-type and mutated SDF luciferase reporter construct in which the hypoxia response element was deleted, only young fibroblasts were able to respond to IL-1 beta stimulation, and this response was abrogated by mutating the HIF-binding sites. This suggests that HIF binding is essential for SDF-1 transactivation in response to both inflammatory and hypoxic stimuli. SDF-1 alpha deficiency observed during aged wound healing is attributable predominantly to decreased HIF-1 alpha levels rather than impaired IL-1 beta expression.

  16. Muscle wound healing in rainbow trout (Oncorhynchus mykiss)

    Schmidt, Jacob Günther; Andersen, Elisabeth Wreford; Ersbøll, Bjarne Kjær

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addit......We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post......-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3......, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least...

  17. Healing incisional surgical wounds using Rose Hip oil in rats

    Lainy Carollyne da Costa Cavalcante

    2017-03-01

    Full Text Available Purpose: To evaluate incisional surgical wound healing in rats by using Rose Hip (Rosa rubiginosa L. oil. Methods: Twenty-one days after the oophorectomy procedure, twenty-seven female, adult, Wistar rats were distributed into three groups: Control group (wound treatment with distilled water; Collagenase group (treatment with collagenase ointment; and Rose Hip group (wound treatment with Rose Hip oil. Each group was distributed according to the date of euthanasia: 7, 14 and 21 days. The wound was evaluated considering the macroscopic and microscopic parameters. Results: The results indicated differences in the healing of incisional wounds between treatments when compared to control group. Accelerated wound healing was observed in the group treated with Rose Hip oil in comparison to the control and collagenase, especially after the 14th day. Morphometric data confirmed the structural findings. Conclusion: There was significant effect in topical application of Rose Hip oil on incisional surgical wound healing.

  18. A small peptide with potential ability to promote wound healing.

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  19. Excisional wound healing is delayed in a murine model of chronic kidney disease.

    Akhil K Seth

    Full Text Available BACKGROUND: Approximately 15% of the United States population suffers from chronic kidney disease (CKD, often demonstrating an associated impairment in wound healing. This study outlines the development of a surgical murine model of CKD in order to investigate the mechanisms underlying this impairment. METHODS: CKD was induced in mice by partial cauterization of one kidney cortex and contralateral nephrectomy, modifying a previously published technique. After a minimum of 6-weeks, splinted, dorsal excisional wounds were created to permit assessment of wound healing parameters. Wounds were harvested on postoperative days (POD 0, 3, 7, and 14 for histological, immunofluorescent, and quantitative PCR (qPCR. RESULTS: CKD mice exhibited deranged blood chemistry and hematology profiles, including profound uremia and anemia. Significant decreases in re-epithelialization and granulation tissue deposition rates were found in uremic mice wounds relative to controls. On immunofluorescent analysis, uremic mice demonstrated significant reductions in cellular proliferation (BrdU and angiogenesis (CD31, with a concurrent increase in inflammation (CD45 as compared to controls. CKD mice also displayed differential expression of wound healing-related genes (VEGF, IL-1β, eNOS, iNOS on qPCR. CONCLUSIONS: These findings represent the first reported investigation of cutaneous healing in a CKD animal model. Ongoing studies of this significantly delayed wound healing phenotype include the establishment of renal failure model in diabetic strains to study the combined effects of CKD and diabetes.

  20. Injury-activated glial cells promote wound healing of the adult skin in mice.

    Parfejevs, Vadims; Debbache, Julien; Shakhova, Olga; Schaefer, Simon M; Glausch, Mareen; Wegner, Michael; Suter, Ueli; Riekstina, Una; Werner, Sabine; Sommer, Lukas

    2018-01-16

    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.

  1. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  2. Wound healing activity of Curcuma zedoaroides

    Pattreeya Tungcharoen

    2016-12-01

    Full Text Available Curcuma zedoaroides rhizomes have been used in Thai folk medicine as antidote and wound care for king cobra bite wound. The inhibitory effect of C. zedoaroides extract and its fractions on inflammation were detected by reduction of nitric oxide release using RAW264.7 cells. The improvement capabilities on wound healing were determined on fibroblast L929 cells proliferation and migration assays. The results showed that crude EtOH extract, CHCl3 and hexane fractions inhibited NO release with IC50 values of 14.0, 12.4 and 14.6 μg/ml, respectively. The CHCl3 and EtOAc fractions significantly increased L929 cells proliferation, enhanced fibroblast cells migration (100% on day 3 and scavenged DPPH with IC50 of 40.9 and 7.2 μg/ml, respectively. Only the CHCl3 fraction showed marked effect against carrageenan-induced rat paw edema (IC50 = 272.4 mg/kg. From the present study, both in vitro and in vivo models support the traditional use of C. zedoaroides

  3. Potato tuber wounding induces responses associated with various healing processes

    Wounding induces an avalanche of biological responses involved in the healing and protection of internal tuber tissues exposed by mechanical damage and seed cutting. Collectively, our studies have framed a portrait of the mechanisms and regulation of potato tuber wound-healing, but much more is req...

  4. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study.

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-10-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we determined which patient- and wound-related characteristics best predict time to complete wound healing and derived a prediction formula to estimate how long this may take. We selected 563 patients with acute wounds, documented in the WEC registry between 2007 and 2012. Wounds had existed for a median of 19 days (range 6-46 days). The majority of these were located on the leg (52%). Five significant independent predictors of prolonged wound healing were identified: wound location on the trunk [hazard ratio (HR) 0·565, 95% confidence interval (CI) 0·405-0·788; P = 0·001], wound infection (HR 0·728, 95% CI 0·534-0·991; P = 0·044), wound size (HR 0·993, 95% CI 0·988-0·997; P = 0·001), wound duration (HR 0·998, 95% CI 0·996-0·999; P = 0·005) and patient's age (HR 1·009, 95% CI 1·001-1·018; P = 0·020), but not diabetes. Awareness of the five factors predicting the healing of complex acute wounds, particularly wound infection and location on the trunk, may help caregivers to predict wound healing time and to detect, refer and focus on patients who need additional attention. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  5. Delayed cutaneous wound healing in aged rats compared to younger ones.

    Soybir, Onur C; Gürdal, Sibel Ö; Oran, Ebru Ş; Tülübaş, Feti; Yüksel, Meral; Akyıldız, Ayşenur İ; Bilir, Ayhan; Soybir, Gürsel R

    2012-10-01

    Delayed wound healing in elderly males is a complex process in which the factors responsible are not fully understood. This study investigated the hormonal, oxidative and angiogenic factors affecting wound healing in aged rats. Two groups consisting of eight healthy male Wistar Albino rats [young (30 ± 7 days) and aged (360 ± 30 days)], and a cutaneous incision wound healing model were used. Scar tissue samples from wounds on the 7th, 14th and 21st days of healing were evaluated for hydroxyproline and vascular endothelial growth factor content. Macrophage, lymphocyte, fibroblast and polymorphonuclear cell infiltration; collagen formation and vascularization were assessed by light and electron microscopy. The free oxygen radical content of the wounds was measured by a chemiluminescence method. Blood sample analysis showed that the hydroxyproline and total testosterone levels were significantly higher, and the oxygen radical content was significantly lower in young rats. Histopathological, immunohistochemical and ultrastructural evaluations revealed higher amounts of fibroblasts and collagen fibers, and more vascularization in young rats. These results are indicative of the delayed wound healing in aged rats. A combination of multiple factors including hormonal regulation, free oxygen radicals and impaired angiogenesis appears to be the cause of delayed cutaneous healing. © 2011 The Authors. International Wound Journal © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  6. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing.

    Goldufsky, Josef; Wood, Stephen J; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A; Shafikhani, Sasha H

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. © 2015 by the Wound Healing Society.

  7. Development of a wound healing index for patients with chronic wounds.

    Horn, Susan D; Fife, Caroline E; Smout, Randall J; Barrett, Ryan S; Thomson, Brett

    2013-01-01

    Randomized controlled trials in wound care generalize poorly because they exclude patients with significant comorbid conditions. Research using real-world wound care patients is hindered by lack of validated methods to stratify patients according to severity of underlying illnesses. We developed a comprehensive stratification system for patients with wounds that predicts healing likelihood. Complete medical record data on 50,967 wounds from the United States Wound Registry were assigned a clear outcome (healed, amputated, etc.). Factors known to be associated with healing were evaluated using logistic regression models. Significant variables (p healing for each wound type. Some variables predicted significantly in nearly all models: wound size, wound age, number of wounds, evidence of bioburden, tissue type exposed (Wagner grade or stage), being nonambulatory, and requiring hospitalization during the course of care. Variables significant in some models included renal failure, renal transplant, malnutrition, autoimmune disease, and cardiovascular disease. All models validated well when applied to the holdout sample. The "Wound Healing Index" can validly predict likelihood of wound healing among real-world patients and can facilitate comparative effectiveness research to identify patients needing advanced therapeutics. © 2013 by the Wound Healing Society.

  8. Evaluation of Cynodon dactylon for wound healing activity.

    Biswas, Tuhin Kanti; Pandit, Srikanta; Chakrabarti, Shrabana; Banerjee, Saheli; Poyra, Nandini; Seal, Tapan

    2017-02-02

    Research in the field of wound healing is very recent. The concept of wound healing is changing from day to day. Ayurveda is the richest source of plant drugs for management of wounds and Cynodon dactylon L. is one such. The plant is used as hemostatic and wound healing agent from ethnopharmacological point of view. Aim of the present study is scientific validation of the plant for wound healing activity in detail. Aqueous extract of the plant was prepared and phytochemical constituents were detected by HPLC analysis. Acute and dermatological toxicity study of the extract was performed. Pharmacological testing of 15% ointment (w/w) of the extract with respect to placebo control and standard comparator framycetin were done on full thickness punch wound in Wister rats and effects were evaluated based on parameters like wound contraction size (mm 2 ), tensile strength (g); tissue DNA, RNA, protein, hydroxyproline and histological examination. The ointment was applied on selected clinical cases of chronic and complicated wounds and efficacy was evaluated on basis of scoring on granulation, epithelialization, vascularity as well as routine hematological investigations. Significant results (pCynodon dactylon explores its potential wound healing activity in animal model and subsequent feasibility in human subjects. Phenolic acids and flavonoids present in c. dactylon supports its wound healing property for its anti-oxidative activity that are responsible for collagenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  10. Skin Wound Healing: An Update on the Current Knowledge and Concepts.

    Sorg, Heiko; Tilkorn, Daniel J; Hager, Stephan; Hauser, Jörg; Mirastschijski, Ursula

    2017-01-01

    The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. Although wound healing mechanisms and specific cell functions in wound

  11. Exercise accelerates wound healing among healthy older adults: a preliminary investigation.

    Emery, Charles F; Kiecolt-Glaser, Janice K; Glaser, Ronald; Malarkey, William B; Frid, David J

    2005-11-01

    Older adults are likely to experience delayed rates of wound healing, impaired neuroendocrine responsiveness, and increased daily stress. Exercise activity has been shown to have a positive effect on physiological functioning and psychological functioning among older adults. This study evaluated the effect of a 3-month exercise program on wound healing, neuroendocrine function, and perceived stress among healthy older adults. Twenty-eight healthy older adults (mean age 61.0 +/- 5.5 years) were assigned randomly to an exercise activity group (n = 13) or to a nonexercise control group (n = 15). One month following baseline randomization, after exercise participants had acclimated to the exercise routine, all participants underwent an experimental wound procedure. Wounds were measured 3 times per week until healed to calculate rate of wound healing. All participants completed assessments of exercise endurance, salivary cortisol, and self-reported stress prior to randomization and at the conclusion of the intervention. Exercise participants achieved significant improvements in cardiorespiratory fitness, as reflected by increased oxygen consumption (VO(2)max) and exercise duration. Wound healing occurred at a significantly faster rate in the exercise group [mean = 29.2 (9.0) days] than in the nonexercise group [38.9 (7.4) days; p =.012]. Exercise participants also experienced increased cortisol secretion during stress testing following the intervention. Group differences in wound healing and neuroendocrine responsiveness were found despite low levels of self-reported stress. A relatively short-term exercise intervention is associated with enhanced rates of wound healing among healthy older adults. Thus, exercise activity may be an important component of health care to promote wound healing.

  12. Wound Healing Activity of a New Formulation from Platelet Lysate

    Akram Jamshidzadeh

    2016-03-01

    Full Text Available Platelet-rich plasma (PRP is an attractive preparation in regenerative medicine due to its potential role in the healing process in different experimental models. This study was designed to investigate the wound healing activity of a new formulation of PRP. Different gel-based formulations of PRP were prepared. Open excision wounds were made on the back of male Sprague-Dawley rats, and PRP gel was administered topically once daily until the wounds healed completely (12 days. The results revealed that the tested PRP formulation significantly accelerated the wound healing process by increasing the wound contraction, tissue granulization, vascularization, and collagen regeneration. Interestingly, this study showed that there were no significant differences between the PRP and its gel-based formulation in all the above mentioned parameters. Although this investigation showed that PRP formulation had significant wound healing effects, the PRP gel-based formulation also had significant wound healing properties. This might indicate the wound healing properties of the PRP gel ingredients in the current investigation.

  13. Differential Apoptosis in Mucosal and Dermal Wound Healing

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; phealing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  14. Potential dermal wound healing agent in Blechnum orientale Linn

    Lim Yau

    2011-08-01

    Full Text Available Abstract Background Blechnum orientale Linn. (Blechnaceae is used ethnomedicinally to treat wounds, boils, blisters or abscesses and sores, stomach pain and urinary bladder complaints. The aim of the study was to validate the ethnotherapeutic claim and to evaluate the effects of B. orientale water extract on wound healing activity. Methods Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control and 10% povidone-iodine (positive control respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test. Results Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group. Conclusions The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process.

  15. Wound healing potential of adipose tissue stem cell extract.

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-03-25

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Monitoring combat wound healing by IR hyperspectral imaging

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  17. Up-regulation of Hsp72 and keratin16 mediates wound healing in streptozotocin diabetic rats

    Rasha R. Ahmed

    2015-01-01

    Full Text Available BACKGROUND: Impaired wound healing is a complication of diabetes and a serious problem in clinical practice. We previously found that whey protein (WP was able to regulate wound healing normally in streptozotocin (STZ-dia-betic models. This subsequent study was designed to assess the effect of WP on heat shock protein-72 (Hsp72 and keratin16 (Krt16 expression during wound healing in diabetic rats. METHODS: WP at a dosage of 100 mg/kg of body weight was orally administered daily to wounded normal and STZ-diabetic rats for 8 days. RESULTS: At day 4, the WP-treated diabetic wound was significantly reduced compared to that in the corresponding control. Diabetic wounded rats developed severe inflammatory infiltration and moderate capillary dilatation and regeneration. Treated rats had mild necrotic formation, moderate infiltration, moderate to severe capillary dilatation and regeneration, in addition to moderate epidermal formation. Hsp72 and Krt16 densities showed low and dense activity in diabetic wounded and diabetic wounded treated groups, respectively. At day 8, WP-treatment of diabetic wounded animals revealed great amelioration with complete recovery and closure of the wound. Reactivity of Hsp72 and Krt16 was reversed, showing dense and low, or medium and low, activity in the diabetic wounded and diabetic wounded treated groups, respectively. Hsp72 expression in the pancreas was found to show dense reactivity with WP-treated diabetic wound rats. CONCLUSION: This data provides evidence for the potential impact of WP in the up-regulation of Hsp72 and Krt16 in T1D, resulting in an improved wound healing process in diabetic models.

  18. Applications of biomaterials in corneal wound healing

    I-Lun Tsai

    2015-04-01

    Full Text Available Disease affecting the cornea is a common cause of blindness worldwide. To date, the amniotic membrane (AM is the most widely used clinical method for cornea regeneration. However, donor-dependent differences in the AM may result in variable clinical outcomes. To overcome this issue, biomaterials are currently under investigation for corneal regeneration in vitro and in vivo. In this article, we highlight the recent advances in hydrogels, bioengineered prosthetic devices, contact lenses, and drug delivery systems for corneal regeneration. In clinical studies, the therapeutic effects of biomaterials, including fibrin and collagen-based hydrogels and silicone contact lenses, have been demonstrated in damaged cornea. The combination of cells and biomaterials may provide potential treatment in corneal wound healing in the future.

  19. Publicly Reported Wound Healing Rates: The Fantasy and the Reality

    Fife, Caroline E.; Eckert, Kristen A.; Carter, Marissa J.

    2018-01-01

    Significance: We compare real-world data from the U.S. Wound Registry (USWR) with randomized controlled trials and publicly reported wound outcomes and develop criteria for honest reporting of wound outcomes, a requirement of the new Quality Payment Program (QPP). Recent Advances: Because no method has existed by which wounds could be stratified according to their likelihood of healing among real-world patients, practitioners have reported fantastically high healing rates. The USWR has developed several risk-stratified wound healing quality measures for diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) as part of its Qualified Clinical Data Registry (QCDR). This allows practitioners to report DFU and VLU healing rates in comparison to the likelihood of whether the wound would have healed. Critical Issues: Under the new QPP, practitioners must report at least one practice-relevant outcome measure, and it must be risk adjusted so that clinicians caring for the sickest patients do not appear to have worse outcomes than their peers. The Wound Healing Index is a validated risk-stratification method that can predict whether a DFU or VLU will heal, leveling the playing field for outcome reporting and removing the need to artificially inflate healing rates. Wound care practitioners can report the USWR DFU and VLU risk-stratified outcome measure to satisfy the quality reporting requirements of the QPP. Future Directions: Per the requirements of the QPP, the USWR will begin publicly reporting of risk-stratified healing rates once quality measure data have met the reporting standards of the Centers for Medicare and Medicaid Services. Some basic rules for data censoring are proposed for public reporting of healing rates, and others are needed, which should be decided by consensus among the wound care community. PMID:29644145

  20. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity.

    Sarhan, Wessam A; Azzazy, Hassan Me

    2017-09-01

    Develop green wound dressings which exhibit enhanced wound-healing ability and potent antibacterial effects. Honey, polyvinyl alcohol, chitosan nanofibers were electrospun and loaded with bee venom, propolis and/or bacteriophage against the multidrug-resistant Pseudomonas aeruginosa and examined for their antibacterial, wound-healing ability and cytotoxicity. Among different formulations of nanofibers, honey, polyvinyl alcohol, chitosan-bee venom/bacteriophage exhibited the most potent antibacterial activity against all tested bacterial strains (Gram-positive and -negative strains) and achieved nearly complete killing of multidrug-resistant P. aeruginosa. In vivo testing revealed enhanced wound-healing results and cytotoxicity testing proved improved biocompatibility. The developed biocompatible nanofibers represent competitive wound-healing dressings with potent antibacterial and wound-healing activity.

  1. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing.

    Kaisang, Lin; Siyu, Wang; Lijun, Fan; Daoyan, Pan; Xian, Cory J; Jie, Shen

    2017-09-01

    Chronic nonhealing wound is a multifactorial complication of diabetes that results specifically as a consequence of impaired angiogenesis and currently lacks in effective treatments. Although a stem cell-based therapy may provide a novel treatment to augment diabetic wound healing, inferior cell survival at the diabetic skin wound is one of the key causes that are responsible for the low efficacy of the stem cell therapy. In this work, we used an injectable, biocompatible, and thermosensitive hydrogel Pluronic F-127 to encapsulate allogeneic nondiabetic adipose-derived stem cells (ADSCs) and topically applied the cells to a full-thickness cutaneous wound in the streptozotocin-induced diabetic model in rats. The cells seeded in the hydrogel enhanced angiogenesis (CD31 marker) and promoted the cell proliferation (Ki67 marker) at the wound site and significantly accelerated wound closure, which was accompanied by facilitated regeneration of granulation tissue. Consistently, levels of the messenger RNA expression of key angiogenesis growth factor, vascular endothelial growth factor, and key wound healing growth factor, transforming growth factor beta 1, were also upregulated in the cell-treated wounds when compared with untreated wounds. The results indicated that the transplantation of allogeneic ADSCs via the hydrogel improves the efficiency of cell delivery and optimizes the performance of ADSCs for augmenting diabetic wound healing. In conclusion, this ADSC-based therapy may provide a novel therapeutic strategy for the treatment of nonhealing diabetic foot ulcers. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Wound healing potential of adipose tissue stem cell extract

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-01-01

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.

  3. Multidisciplinary approaches to stimulate wound healing.

    Businaro, Rita; Corsi, Mariangela; Di Raimo, Tania; Marasco, Sergio; Laskin, Debra L; Salvati, Bruno; Capoano, Raffaele; Ricci, Serafino; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2016-08-01

    New civil wars and waves of terrorism are causing crucial social changes, with consequences in all fields, including health care. In particular, skin injuries are evolving as an epidemic issue. From a physiological standpoint, although wound repair takes place more rapidly in the skin than in other tissues, it is still a complex organ to reconstruct. Genetic and clinical variables, such as diabetes, smoking, and inflammatory/immunological pathologies, are also important risk factors limiting the regenerative potential of many therapeutic applications. Therefore, optimization of current clinical strategies is critical. Here, we summarize the current state of the field by focusing on stem cell therapy applications in wound healing, with an emphasis on current clinical approaches being developed. These involve protocols for the ex vivo expansion of adipose tissue-derived mesenchymal stem cells by means of a patented Good Manufacturing Practice-compliant platelet lysate. Combinations of multiple strategies, including genetic modifications and stem cells, biomimetic scaffolds, and novel vehicles, such as nanoparticles, are also discussed as future approaches. © 2016 New York Academy of Sciences.

  4. Removal of the basement membrane enhances corneal wound healing.

    Pal-Ghosh, Sonali; Pajoohesh-Ganji, Ahdeah; Tadvalkar, Gauri; Stepp, Mary Ann

    2011-12-01

    Recurrent corneal erosions are painful and put patients' vision at risk. Treatment typically begins with debridement of the area around the erosion site followed by more aggressive treatments. An in vivo mouse model has been developed that reproducibly induces recurrent epithelial erosions in wild-type mice spontaneously within two weeks after a single 1.5 mm corneal debridement wound created using a dulled-blade. This study was conducted to determine whether 1) inhibiting MMP9 function during healing after dulled-blade wounding impacts erosion development and 2) wounds made with a rotating-burr heal without erosions. Oral or topical inhibition of MMPs after dulled-blade wounding does not improve healing. Wounds made by rotating-burr heal with significantly fewer erosions than dulled-blade wounds. The localization of MMP9, β4 integrin and basement membrane proteins (LN332 and type VII collagen), immune cell influx, and reinnervation of the corneal nerves were compared after both wound types. Rotating-burr wounds remove the anterior basement membrane centrally but not at the periphery near the wound margin, induce more apoptosis of corneal stromal cells, and damage more stromal nerve fibers. Despite the fact that rotating-burr wounds do more damage to the cornea, fewer immune cells are recruited and significantly more wounds resolve completely. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria.

    Vågesjö, Evelina; Öhnstedt, Emelie; Mortier, Anneleen; Lofton, Hava; Huss, Fredrik; Proost, Paul; Roos, Stefan; Phillipson, Mia

    2018-02-20

    Impaired wound closure is a growing medical problem associated with metabolic diseases and aging. Immune cells play important roles in wound healing by following instructions from the microenvironment. Here, we developed a technology to bioengineer the wound microenvironment and enhance healing abilities of the immune cells. This resulted in strongly accelerated wound healing and was achieved by transforming Lactobacilli with a plasmid encoding CXCL12. CXCL12-delivering bacteria administrated topically to wounds in mice efficiently enhanced wound closure by increasing proliferation of dermal cells and macrophages, and led to increased TGF-β expression in macrophages. Bacteria-produced lactic acid reduced the local pH, which inhibited the peptidase CD26 and consequently enhanced the availability of bioactive CXCL12. Importantly, treatment with CXCL12-delivering Lactobacilli also improved wound closure in mice with hyperglycemia or peripheral ischemia, conditions associated with chronic wounds, and in a human skin wound model. Further, initial safety studies demonstrated that the topically applied transformed bacteria exerted effects restricted to the wound, as neither bacteria nor the chemokine produced could be detected in systemic circulation. Development of drugs accelerating wound healing is limited by the proteolytic nature of wounds. Our technology overcomes this by on-site chemokine production and reduced degradation, which together ensure prolonged chemokine bioavailability that instructed local immune cells and enhanced wound healing. Copyright © 2018 the Author(s). Published by PNAS.

  6. Collective cell migration: Implications for wound healing and cancer invasion

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  7. Can thermal lasers promote skin wound healing?

    Capon, Alexandre; Mordon, Serge

    2003-01-01

    Lasers are now widely used for treating numerous cutaneous lesions, for scar revision (hypertrophic and keloid scars), for tissue welding, and for skin resurfacing and remodeling (wrinkle removal). In these procedures lasers are used to generate heat. The modulation of the effect (volatilization, coagulation, hyperthermia) of the laser is obtained by using different wavelengths and laser parameters. The heat source obtained by conversion of light into heat can be very superficial, yet intense, if the laser light is well absorbed (far-infrared:CO(2) or Erbium:Yttrium Aluminum Garnet [Er:YAG] lasers), or it can be much deeper and less intense if the laser light is less absorbed by the skin (visible or near-infrared). Lasers transfer energy, in the form of heat, to surrounding tissues and, regardless of the laser used, a 45-50 degrees C temperature gradient will be obtained in the surrounding skin. If a wound healing process exists, it is a result of live cells reacting to this low temperature increase. The generated supraphysiologic level of heat is able to induce a heat shock response (HSR), which can be defined as the temporary changes in cellular metabolism. These changes are rapid and transient, and are characterized by the production of a small family of proteins termed the heat shock proteins (HSP). Recent experimental studies have clearly demonstrated that HSP 70, which is over-expressed following laser irradiation, could play a role with a coordinated expression of other growth factors such as transforming growth factor (TGF)-beta. TGF-beta is known to be a key element in the inflammatory response and the fibrogenic process. In this process, the fibroblasts are the key cells since they produce collagen and extracellular matrix. In conclusion, the analysis of the literature, and the fundamental considerations concerning the healing process when using thermal lasers, are in favor of a modification of the growth factors synthesis after laser irradiation, induced

  8. Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings.

    Uccioli, Luigi; Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Ruotolo, Valeria; Giurato, Laura

    2015-04-01

    Medical knowledge about wound management has improved as recent studies have investigated the healing process and its biochemical background. Despite this, foot ulcers remain an important clinical problem, often resulting in costly, prolonged treatment. A non-healing ulcer is also a strong risk factor for major amputation. Many factors can interfere with wound healing, including the patient's general health status (i.e., nutritional condition indicated by albumin levels) or drugs such as steroids that can interfere with normal healing. Diabetic complications (i.e., renal insufficiency) may delay healing and account for higher amputation rates observed in diabetic patients under dialysis treatment. Wound environment (e.g., presence of neuropathy, ischaemia, and infection) may significantly influence healing by interfering with the physiological healing cascade and adding local release of factors that may worsen the wound. The timely and well-orchestrated release of factors regulating the healing process, observed in acute wounds, is impaired in non-healing wounds that are blocked in a chronic inflammatory phase without progressing to healing. This chronic phase is characterised by elevated protease activity (EPA) of metalloproteinases (MMPs) and serine proteases (e.g., human neutrophil elastase) that interfere with collagen synthesis, as well as growth factor release and action. EPA (mainly MMP 9, MMP-8 and elastase) and inflammatory factors present in the wound bed (such as IL-1, IL-6, and TNFa) account for the catabolic state of non-healing ulcers. The availability of wound dressings that modulate EPA has added new therapeutic options for treating non-healing ulcers. The literature confirms advantages obtained by reducing protease activity in the wound bed, with better outcomes achieved by using these dressings compared with traditional ones. New technologies also allow a physician to know the status of the wound bed environment, particularly EPA, in a clinical

  9. Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis.

    Chong, Diana C; Yu, Zhixian; Brighton, Hailey E; Bear, James E; Bautch, Victoria L

    2017-10-01

    Wound healing is accompanied by neoangiogenesis, and new vessels are thought to originate primarily from the microcirculation; however, how these vessels form and resolve during wound healing is poorly understood. Here, we investigated properties of the smallest capillaries during wound healing to determine their spatial organization and the kinetics of formation and resolution. We used intravital imaging and high-resolution microscopy to identify a new type of vessel in wounds, called tortuous microvessels. Longitudinal studies showed that tortuous microvessels increased in frequency after injury, normalized as the wound healed, and were closely associated with the wound site. Tortuous microvessels had aberrant cell shapes, increased permeability, and distinct interactions with circulating microspheres, suggesting altered flow dynamics. Moreover, tortuous microvessels disproportionately contributed to wound angiogenesis by sprouting exuberantly and significantly more frequently than nearby normal capillaries. A new type of transient wound vessel, tortuous microvessels, sprout dynamically and disproportionately contribute to wound-healing neoangiogenesis, likely as a result of altered properties downstream of flow disturbances. These new findings suggest entry points for therapeutic intervention. © 2017 The Authors.

  10. Leptin promotes wound healing in the oral mucosa.

    Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito

    2014-01-01

    Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the oral mucosa.

  11. Wounding the cornea to learn how it heals.

    Stepp, Mary Ann; Zieske, James D; Trinkaus-Randall, Vickery; Kyne, Briana M; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Pajoohesh-Ganji, Ahdeah

    2014-04-01

    Corneal wound healing studies have a long history and rich literature that describes the data obtained over the past 70 years using many different species of animals and methods of injury. These studies have lead to reduced suffering and provided clues to treatments that are now helping patients live more productive lives. In spite of the progress made, further research is required since blindness and reduced quality of life due to corneal scarring still happens. The purpose of this review is to summarize what is known about different types of wound and animal models used to study corneal wound healing. The subject of corneal wound healing is broad and includes chemical and mechanical wound models. This review focuses on mechanical injury models involving debridement and keratectomy wounds to reflect the authors' expertise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms.

    Athanasopoulos, Athanasios N; Economopoulou, Matina; Orlova, Valeria V; Sobke, Astrid; Schneider, Darius; Weber, Holger; Augustin, Hellmut G; Eming, Sabine A; Schubert, Uwe; Linn, Thomas; Nawroth, Peter P; Hussain, Muzaffar; Hammes, Hans-Peter; Herrmann, Mathias; Preissner, Klaus T; Chavakis, Triantafyllos

    2006-04-01

    Staphylococcus aureus is a major human pathogen interfering with host-cell functions. Impaired wound healing is often observed in S aureus-infected wounds, yet, the underlying mechanisms are poorly defined. Here, we identify the extracellular adherence protein (Eap) of S aureus to be responsible for impaired wound healing. In a mouse wound-healing model wound closure was inhibited in the presence of wild-type S aureus and this effect was reversible when the wounds were incubated with an isogenic Eap-deficient strain. Isolated Eap also delayed wound closure. In the presence of Eap, recruitment of inflammatory cells to the wound site as well as neovascularization of the wound were prevented. In vitro, Eap significantly reduced intercellular adhesion molecule 1 (ICAM-1)-dependent leukocyte-endothelial interactions and diminished the consequent activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB) in leukocytes associated with a decrease in expression of tissue factor. Moreover, Eap blocked alphav-integrin-mediated endothelial-cell migration and capillary tube formation, and neovascularization in matrigels in vivo. Collectively, the potent anti-inflammatory and antiangiogenic properties of Eap provide an underlying mechanism that may explain the impaired wound healing in S aureus-infected wounds. Eap may also serve as a lead compound for new anti-inflammatory and antiangiogenic therapies in several pathologies.

  13. Gene expression profiling of cutaneous wound healing

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  14. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity.

    Goh, Jorming; Ladiges, Warren C

    2014-07-01

    Physical activity, which can include regular and repetitive exercise training, has been shown to decrease the incidence of age-related diseases. Aging is characterized by aberrant immune responses, including impaired wound healing and increased cancer risk. The behavior and polarized phenotype of tissue macrophages are distinct between young and old organisms. The balance of M1 and M2 macrophages is altered in the aged tissue microenvironment, with a tilt towards an M2-dominant macrophage population, as well as its associated signaling pathways. These M2-type responses may result in unresolved inflammation and create an environment that impairs wound healing and is favorable for cancer growth. We discuss the concept that exercise training can improve the regulation of macrophage polarization and normalize the inflammatory process, and thereby exert anticancer effects and enhance wound healing in older humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Evaluation of Borrago topical effects on wound healing of cutting wounds in mice

    Hossein kaboli

    2017-07-01

    Conclusion: The results show the positive effect of Borrago Officinalis extract on wound healing. In comparison, this effect is less than the phenytoin and more than iodine. More studies are needed on different doses of this plant and its comparative effect with other common treatments for wound healing.

  16. Effect of systemic insulin treatment on diabetic wound healing.

    Vatankhah, Nasibeh; Jahangiri, Younes; Landry, Gregory J; Moneta, Gregory L; Azarbal, Amir F

    2017-04-01

    This study investigates if different diabetic treatment regimens affect diabetic foot ulcer healing. From January 2013 to December 2014, 107 diabetic foot ulcers in 85 patients were followed until wound healing, amputation or development of a nonhealing ulcer at the last follow-up visit. Demographic data, diabetic treatment regimens, presence of peripheral vascular disease, wound characteristics, and outcome were collected. Nonhealing wound was defined as major or minor amputation or those who did not have complete healing until the last observation. Median age was 60.0 years (range: 31.1-90.1 years) and 58 cases (68.2%) were males. Twenty-four cases reached a complete healing (healing rate: 22.4%). The median follow-up period in subjects with classified as having chronic wounds was 6.0 months (range: 0.7-21.8 months). Insulin treatment was a part of diabetes management in 52 (61.2%) cases. Insulin therapy significantly increased the wound healing rate (30.3% [20/66 ulcers] vs. 9.8% [4/41 ulcers]) (p = 0.013). In multivariate random-effect logistic regression model, adjusting for age, gender, smoking status, type of diabetes, hypertension, chronic kidney disease, peripheral arterial disease, oral hypoglycemic use, wound infection, involved side, presence of Charcot's deformity, gangrene, osteomyelitis on x-ray, and serum hemoglobin A1C levels, insulin treatment was associated with a higher chance of complete healing (beta ± SE: 15.2 ± 6.1, p = 0.013). Systemic insulin treatment can improve wound healing in diabetic ulcers after adjusting for multiple confounding covariates. © 2017 by the Wound Healing Society.

  17. Wound healing activity of Sida cordifolia Linn. in rats.

    Pawar, Rajesh S; Chaurasiya, Pradeep K; Rajak, Harish; Singour, Pradeep K; Toppo, Fedelic Ashish; Jain, Ankit

    2013-01-01

    The present study provides a scientific evaluation for the wound healing potential of ethanolic (EtOH) extract of Sida cordifolia Linn. (SCL) plant. Excision, incision and burn wounds were inflicted upon three groups of six rats each. Group I was assigned as control (ointment base). Group II was treated with 10% EtOH extract ointment. Group III was treated with standard silver sulfadiazine (0.01%) cream. The parameters observed were percentage of wound contraction, epithelialization period, hydroxyproline content, tensile strength including histopathological studies. It was noted that the effect produced by the ethanolic extract of SCL ointment showed significant (P < 0.01) healing in all wound models when compared with the control group. All parameters such as wound contraction, epithelialization period, hydroxyproline content, tensile strength and histopathological studies showed significant (P < 0.01) changes when compared with the control. The ethanolic extract ointment of SCL effectively stimulates wound contraction; increases tensile strength of excision, incision and burn wounds.

  18. Healing of corneal epithelial wounds in marine and freshwater fish.

    Ubels, J L; Edelhauser, H F

    The corneal epithelium of a fish is in direct contact with the aquatic environment and is a barrier to movement of ions and water into and through the cornea. This tissue layer is thus important in maintenance of corneal transparency. When the epithelium is wounded, its protective function is lost and corneal transparency remains compromised until the epithelial barrier is re-established. This study was undertaken to investigate the healing response of the fish cornea to epithelial abrasion. Wounds were stained with fluorescein and photographed during healing. Wound areas were measured by planimetry. The cornea of the sculpin, a marine teleost, becomes edematous after wounding and heals at 2.54 to 3.42 mm2/hr. Nonswelling corneas of the elasmobranchs--dogfish shark and skate--heal at 1.29 mm2/hr, respectively. The wounded eye of the rainbow trout, a freshwater teleost, is stressed by the low osmolality of the environment. Severe corneal edema and cataracts develop following epithelial wounding, and the cornea heals at 0.64 mm2/hr. Although the healing rates in teleosts differ from those in mammals, histology shows that the corneal healing mechanism is essentially the same in fish and mammals.

  19. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells.

    Kato, Toshiki; Khanh, Vuong Cat; Sato, Kazutoshi; Takeuchi, Kosuke; Carolina, Erica; Yamashita, Toshiharu; Sugaya, Hisashi; Yoshioka, Tomokazu; Mishima, Hajime; Ohneda, Osamu

    2017-11-18

    Glucocorticoids cause the delayed wound healing by suppressing inflammation that is required for wound healing process. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) play an important role for wound healing by their cytokine productions including stromal derived factor 1 (SDF-1). However, it has not been clear how glucocorticoids affect the wound healing ability of AT-MSCs. In this study, we found that glucocorticoid downregulated SDF-1 expression in AT-MSCs. In addition, glucocorticoid-treated AT-MSCs induced less migration of inflammatory cells and impaired wound healing capacity compared with glucocorticoid-untreated AT-MSCs. Of note, prostaglandin E2 (PGE2) synthesis-related gene expression was downregulated by glucocorticoid and PGE2 treatment rescued not only SDF-1 expression in the presence of glucocorticoid but also their wound healing capacity in vivo. Furthermore, we found SDF-1-overexpressed AT-MSCs restored wound healing capacity even after treatment of glucocorticoid. Consistent with the results obtained from glucocorticoid-treated AT-MSCs, we found that AT-MSCs isolated from steroidal osteonecrosis donors (sAT-MSCs) who received chronic glucocorticoid therapy showed less SDF-1 expression and impaired wound healing capacity compared with traumatic osteonecrosis donor-derived AT-MSCs (nAT-MSCs). Moreover, the SDF-1 level was also reduced in plasma derived from steroidal osteonecrosis donors compared with traumatic osteonecrosis donors. These results provide the evidence that concomitant application of AT-MSCs with glucocorticoid shows impaired biological modulatory effects that induce impaired wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of tretinoin on wound healing in aged skin.

    de Campos Peseto, Danielle; Carmona, Erica Vilaça; Silva, Kellyn Cristina da; Guedes, Flavia Roberta Valente; Hummel Filho, Fernando; Martinez, Natalia Peres; Pereira, José Aires; Rocha, Thalita; Priolli, Denise Gonçalves

    2016-03-01

    Aged and adult populations have differences in the structural, biological, and healing properties of skin. Comparative studies of healing under the influence of retinoids in both these populations are very important and, to the best of our knowledge, have not been performed to date. The purpose of this study was to compare the activities of topical tretinoin in aged and adult animal models of wound healing by secondary intention. Male aged rats (24 months old, n = 7) and adult rats (6 months old, n = 8) were used. The rats were assigned to the following groups according to the dates on which wound samples were excised (day 14 or 21 after model creation): treated group, control group, and naive group. Topical application of tretinoin cream was used only on the proximal wound and was applied daily for 7 days. Wound healing areas were measured using metal calipers, and morphological analysis was performed. Slides were stained with Hematoxylin and Eosin, Masson's trichrome, and periodic acid-Schiff stains. Statistical analysis adopted a 5% coefficient for rejection of the null hypothesis. Although aged animals showed skin repair, complete reepithelialization was found on day 21 in some animals of both groups (treated and control). In aged rats, the wound area was significantly smaller in treated wounds than in untreated wounds, resulting in a larger scar area compared with the adult group. When treated wounds were compared, no differences were found between the wound areas in adult and aged rats. As expected, the collagen concentration was higher in normal skin from adult rats than in normal skin from aged animals, but there was no difference when aged skin was treated with tretinoin. These results indicate that tretinoin increases collagen synthesis in aged skin and returns the healing process to a normal state of skin healing. © 2016 by the Wound Healing Society.

  1. Wound Healing Properties of Selected Plants Used in Ethnoveterinary Medicine

    Amos Marume

    2017-09-01

    Full Text Available Plants have arrays of phytoconstituents that have wide ranging biological effects like antioxidant, anti-inflammatory and antimicrobial properties key in wound management. In vivo wound healing properties of ointments made of crude methanolic extracts (10% extract w/w in white soft paraffin of three plant species, Cissus quadrangularis L. (whole aerial plant parts, Adenium multiflorum Klotzsch (whole aerial plant parts and Erythrina abyssinica Lam. Ex DC. (leaves and bark used in ethnoveterinary medicine were evaluated on BALB/c female mice based on wound area changes, regular observations, healing skin's percentage crude protein content and histological examinations. White soft paraffin and 3% oxytetracycline ointment were used as negative and positive controls, respectively. Wound area changes over a 15 day period for mice treated with C. quadrangularis and A. multiflorum extract ointments were comparable to those of the positive control (oxytetracycline ointment. Wounds managed with the same extract ointments exhibited high crude protein contents, similar to what was observed on animals treated with the positive control. Histological evaluations revealed that C. quadrangularis had superior wound healing properties with the wound area completely returning to normal skin structure by day 15 of the experiment. E. abyssinica leaf and bark extract ointments exhibited lower wound healing properties though the leaf extract exhibited some modest healing properties.

  2. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  3. Naturally Occurring Wound Healing Agents: An Evidence-Based Review.

    Karapanagioti, E G; Assimopoulou, A N

    2016-01-01

    Nature constitutes a pool of medicines for thousands of years. Nowadays, trust in nature is increasingly growing, as many effective medicines are naturally derived. Over the last decades, the potential of plants as wound healing agents is being investigated. Wounds and ulcers affect the patients' life quality and often lead to amputations. Approximately 43,000,000 patients suffer from diabetic foot ulcers worldwide. Annually, $25 billion are expended for the treatment of chronic wounds, with the number growing due to aging population and increased incidents of diabetes and obesity. Therefore a timely, orderly and effective wound management and treatment is crucial. This paper aims to systematically review natural products, mainly plants, with scientifically well documented wound healing activity, focusing on articles based on animal and clinical studies performed worldwide and approved medicinal products. Moreover, a brief description of the wound healing mechanism is presented, to provide a better understanding. Although a plethora of natural products are in vitro and in vivo evaluated for wound healing activity, only a few go through clinical trials and even fewer launch the market as approved medicines. Most of them rely on traditional medicine, indicating that ethnopharmacology is a successful strategy for drug development. Since only 6% of plants have been systematically investigated pharmacologically, more intensified efforts and emerging advancements are needed to exploit the potentials of nature for the development of novel medicines. This paper aims to provide a reliable database and matrix for thorough further investigation towards the discovery of wound healing agents.

  4. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  5. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application

    Hilal Ahmad Rather

    2018-06-01

    Full Text Available Skin wound healing involves a coordinated cellular response to achieve complete reepithelialisation. Elevated levels of reactive oxygen species (ROS in the wound environment often pose a hindrance in wound healing resulting in impaired wound healing process. Cerium oxide nanoparticles (CeNPs have the ability to protect the cells from oxidative damage by actively scavenging the ROS. Furthermore, matrices like nanofibers have also been explored for enhancing wound healing. In the current study CeNP functionalised polycaprolactone (PCL-gelatin nanofiber (PGNPNF mesh was fabricated by electrospinning and evaluated for its antioxidative potential. Wide angle XRD analysis of randomly oriented nanofibers revealed ∼2.6 times reduced crystallinity than pristine PCL which aided in rapid degradation of nanofibers and release of CeNP. However, bioactive composite made between nanoparticles and PCL-gelatin maintained the fibrous morphology of PGNPNF upto 14 days. The PGNPNF mesh exhibited a superoxide dismutase (SOD mimetic activity due to the incorporated CeNPs. The PGNPNF mesh enhanced proliferation of 3T3-L1 cells by ∼48% as confirmed by alamar blue assay and SEM micrographs of cells grown on the nanofibrous mesh. Furthermore, the PGNPNF mesh scavenged ROS, which was measured by relative DCF intensity and fluorescence microscopy; and subsequently increased the viability and proliferation of cells by three folds as it alleviated the oxidative stress. Overall, the results of this study suggest the potential of CeNP functionalised PCL-gelatin nanofibrous mesh for wound healing applications.

  6. Appraisal on the wound healing activity of different extracts obtained ...

    2015-12-02

    Dec 2, 2015 ... and required quantity of methyl paraben and propyl paraben were dissolved by heating on ... chloride (PVC) tube. Selected animals were randomly ... collagen synthesis it supports the wound healing activity of AM and MP.

  7. Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain.

    Zhu, Qi; Mangukiya, Hitesh Bhagavanbhai; Mashausi, Dhahiri Saidi; Guo, Hao; Negi, Hema; Merugu, Siva Bharath; Wu, Zhenghua; Li, Dawei

    2017-09-01

    Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds. © 2017 Federation of European Biochemical Societies.

  8. Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse.

    Galeano, Mariarosaria; Bitto, Alessandra; Altavilla, Domenica; Minutoli, Letteria; Polito, Francesca; Calò, Margherita; Lo Cascio, Patrizia; Stagno d'Alcontres, Francesco; Squadrito, Francesco

    2008-01-01

    Healing of diabetic wounds still remains a critical medical problem. Polydeoxyribonucleotide (PDRN), a compound having a mixture of deoxyribonucleotide polymers, stimulates the A2 purinergic receptor with no toxic or adverse effect. We studied the effects of PDRN in diabetes-related healing defect using an incisional skin-wound model produced on the back of female diabetic mice (db+/db+) and their normal littermates (db+/+m). Animals were treated daily for 12 days with PDRN (8 mg/kg/ip) or its vehicle (100 muL 0.9%NaCl). Mice were killed 3, 6, and 12 days after skin injury to measure vascular endothelial growth factor (VEGF) mRNA expression and protein synthesis, to assay angiogenesis and tissue remodeling through histological evaluation, and to study CD31, Angiopoietin-1 and Transglutaminase-II. Furthermore, we measured wound breaking strength at day 12. PDRN injection in diabetic mice resulted in an increased VEGF message (vehicle=1.0+/-0.2 n-fold vs. beta-actin; PDRN=1.5+/-0.09 n-fold vs. beta-actin) and protein wound content on day 6 (vehicle=0.3+/-0.07 pg/wound; PDRN=0.9+/-0.1 pg/wound). PDRN injection improved the impaired wound healing and increased the wound-breaking strength in diabetic mice. PDRN also caused a marked increase in CD31 immunostaining and induced Transglutaminase-II and Angiopoietin-1 expression. Furthermore, the concomitant administration of 3,7-dimethyl-1-propargilxanthine, a selective adenosine A2A receptor antagonist, abolished PDRN positive effects on healing. However, 3,7-dimethyl-1-propargilxanthine alone did not affect wound healing in both diabetic mice and normal littermates. These results suggest that PDRN might be useful in wound disorders associated with diabetes.

  9. Histomorphological evaluation of wound healing - Comparison ...

    Wound size was measured using a digital camera (Canon Powershot 5.0MP, Canon, Tokyo, Japan) and Adobe photoshop CS5 software. Wound tissues were removed on days 3, 5, 7 and 10 post wounding for histomorphological examinations. Average time for complete wound closure in honey (11.00 ± 0.00 days) and ...

  10. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing.

  11. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.

    Dominik Bettenworth

    Full Text Available Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing.

  12. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes

    Krzyszczyk, Paulina; Schloss, Rene; Palmer, Andre; Berthiaume, François

    2018-01-01

    Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes) to anti-inflammatory (M2-like phenotypes). Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1) expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds. PMID:29765329

  13. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes

    Paulina Krzyszczyk

    2018-05-01

    Full Text Available Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes to anti-inflammatory (M2-like phenotypes. Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1 expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds.

  14. Stem Cell Therapy to Improve Burn Wound Healing

    2017-03-01

    Award Number: W81XWH-13-2-0024 TITLE: Stem Cell Therapy to Improve Burn Wound Healing PRINCIPAL INVESTIGATOR: Carl Schulman, MD, PhD, MSPH...NUMBER Stem Cell Therapy to Improve Burn Wound Healing 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Carl Schulman, MD, PhD, MSPH...treatments, steroid injections, and compression garments. Mesenchymal stem cells (MSC’s) have been used in a variety of clinical applications to repair

  15. Wound healing activity and chemical standardization of Eugenia pruniformis Cambess

    Ricardo Diego Duarte Galhardo de Albuquerque; Jamila Alessandra Perini; Daniel Escorsim Machado; Thaís Angeli-Gamba; Ricardo dos Santos Esteves; Marcelo Guerra Santos; Adriana Passos Oliveira; Leandro Rocha

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups o...

  16. Mast cells and angiogenesis in wound healing.

    Gaber, Mohamed A; Seliet, Iman A; Ehsan, Nermin A; Megahed, Mohamed A

    2014-02-01

    To investigate the role of mast cells and vascular endothelial growth factor (VEGF) as a mediator of angiogenesis to promote wound healing in surgical and pathological scars. The study was carried out on 40 patients who presented with active scar lesions. They were subdivided into 4 groups. They included granulation tissue (10 cases), surgical scar (10 cases), hypertrophic scar (10 cases), and keloid scar (10 cases). Also 10 healthy volunteers of the same age and sex were selected as a control group. Skin biopsies were taken from the patients and the control group. Skin biopsies from clinically assessed studied groups were processed for routine histology and embedded in paraffin. Four sections were prepared from each paraffin block. The first section was stained with hematoxylin and eosin for histological evaluation. The second and third sections were processed for immunostaining of mast cells that contain chymase (MCCs) and mast cells that contain tryptase (MCTs). The fourth section was processed for immunostaining of VEGF. MCCs exhibited mild expression in normal tissue, granulation tissue, and surgical, hypertrophic and keloid scars. MCTs exhibited mild expression in normal tissue, granulation tissue and keloid, whereas moderate expression was exhibited in hypertrophic and surgical scars. VEGF expression was absent in normal tissue, mild in keloid, surgical and hypertrophic scars, and moderate in keloids and granulation tissue. Mast cell expression variation among different scar types signals the pathological evolution of the lesion, and hence may guide the need for therapeutic intervention.

  17. Plasminogen activator inhibitor-I-related regulation of procollagen I (α1 and α2) by antitransforming growth factor-β1 treatment during radiation-impaired wound healing

    Schultze-Mosgau, Stefan; Kopp, Juergen; Thorwarth, Michael; Roedel, Franz; Melnychenko, Ivan; Grabenbauer, Gerhard G.; Amann, Kerstin; Wehrhan, Falk

    2006-01-01

    Purpose: Plasminogen activator inhibitor (PAI)-1 mediates transforming growth factor-β 1 (TGF-β 1 )-related signaling by stimulating collagen Type I synthesis in radiation-impaired wound healing. The regulation of α(I)-procollagen is contradictory in fibroblasts of different fibrotic lesions. It is not known whether anti-TGF-β 1 treatment specifically inhibits α(I)-procollagen synthesis. We used an experimental wound healing study to address anti-TGF-β 1 -associated influence on α(I)-procollagen synthesis. Methods and Materials: A free flap was transplanted into the preirradiated (40 Gy) or nonirradiated neck region of Wistar rats: Group 1 (n = 8) surgery alone; Group 2 (n = 14) irradiation and surgery; Group 3 (n = 8) irradiation and surgery and anti-TGF-β 1 treatment. On the 14th postoperative day, skin samples were processed for fibroblast culture, in situ hybridization for TGF-β 1 , immunohistochemistry, and immunoblotting for PAI-1, α 1 /α 2 (I)-procollagen. Results: Anti-TGF-β 1 significantly reduced TGF-β 1 mRNA (p 1 treatment in vivo significantly reduced α 1 (I)-procollagen protein (p 2 (I)-procollagen expression. Conclusion: These results emphasize anti-TGF-β 1 treatment to reduce radiation-induced fibrosis by decreasing α 1 (I)-procollagen synthesis in vivo. α 1 (I)-procollagen and α 2 (I)-procollagen might be differentially regulated by anti-TGF-β 1 treatment. Increased TGF-β signaling in irradiated skin fibroblasts seemed to be reversible, as shown by a reduction in PAI-1 expression after anti-TGF-β 1 treatment

  18. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats

    FAROOQUI, Mariya; ERICSON, Marna E; GUPTA, Kalpna

    2016-01-01

    Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing. PMID:25266258

  19. Inflammation and wound healing: The role of the macrophage

    Koh, Timothy J.; DiPietro, Luisa Ann

    2013-01-01

    The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds. PMID:21740602

  20. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin.

    Theofilos Poutahidis

    Full Text Available Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.

  1. Influence of hypoandrogenism in skin wound healing resistance in rats

    Denny Fabrício Magalhães Veloso

    2009-03-01

    Full Text Available Objective: The objective of the present study is to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and postoperative times. Methods: Forty-four Wistar male rats were divided into four groups: Group 1y (n = 11 – young control, sham-operated rats (30 days-old; Group 1A (n = 10 – adult control, sham-operated rats (three to four months old; Group 2Y (n = 10 – young rats after bilateral orchiectomy; and Group 2A (n = 11 – adult rats after bilateral orchiectomy. After six months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment with a tensiometer, on the 7th and 21st postoperative days. Rresults: The wound healing resistance was higher in Group 1Y than in Group 2Y after seven days (p < 0.05. Wound healing resistance at 21 days was higher than at seven days in all groups (p < 0.05. Late wound healing resistance was not different between young and adult rats. Cconclusions: Bilateral orchiectomy decreased the wound healing resistance only in young animals at the seventh postoperative day.

  2. Hypoandrogenism related to early skin wound healing resistance in rats.

    Petroianu, A; Veloso, D F M; Alberti, L R; Figueiredo, J A; Rodrigues, F H O Carmo; Carneiro, B G M Carvalho E

    2010-04-01

    The purpose of this study was to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and post-operative periods. Forty-four Wistar male rats were divided into four groups: Group 1Y (n = 11) - young control, sham-operated rats (30-day old); Group 1A (n = 10) - adult control, sham-operated rats (3 to 4-month old); Group 2Y (n = 10) - young rats after bilateral orchiectomy; and Group 2A (n = 11) - adult rats after bilateral orchiectomy. After 6 months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment using a tensiometer, on the 7th and 21st post-operative days. The wound healing resistance was higher in Group 1Y than in Group 2Y after 7 days (P Wound healing resistance at 21 days was higher than at 7 days in all groups (P wound healing resistance was not different between young and adult rats. It is concluded that bilateral orchiectomy diminished the wound healing resistance only in young animals at the 7th post-operative day.

  3. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  4. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.

    Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin

    2018-03-07

    Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.

  5. Multifunctional activities of KSLW synthetic antimicrobial decapeptide: Implications for wound healing

    Williams, Richard Leroy

    Wound healing is a complex process leading to the maintenance of skin integrity. Stress is known to increase susceptibility to bacterial infection, alter proinflammatory cytokine expression, and delay wound closure. Recently, antimicrobial peptides have generated interest due to their prokaryotic selectivity, decreased microbial resistance and multifunctional roles in wound healing, including fibroblast stimulation, keratinocyte migration and leukocyte migration. The objective of this dissertation project was to evaluate the effect of a synthetic antimicrobial decapeptide (KSLW) on bacterial clearance inflammation, and wound closure during stress-impaired healing. SKH-1 mice were randomly assigned to either control or restraint-stressed (RST) groups. Punch biopsy wounds (3.5 mm in diameter) were created bilaterally on the dorsal skin. Wounds were injected with 50 microL of empty carriers or KSLW prepared in Pluronic-F68, phospholipid micelles, or saline. Bacterial assays of harvested wounds were conducted on BHI agar. Wound closure was determined by photoplanimetry. Cytokine and growth factor mRNA expression was assessed with real-time RT-PCR. Human neutrophil migration assays and checkerboard analyses were performed using Transweli plates, and counting on hemacytometer. Oxidative burst activity was measured by spectrophotometric analysis of 2,7-dichlorofluorescein oxidation. KSLW-treatment resulted in significant reductions in bacterial load among RST mice, with no difference from control after 24h. The effect was sustained 5 days post-wounding, in RST mice treated with KSLW-F68. Temporal analysis of gene induction revealed reversals of stress-induced altered expression of growth factors, proinflammatory cytokines, and chemokines essential for favorable wound healing, at various time points. KSLW-treatment in RST mice demonstrated faster wound closure throughout the stress period. KSLW, at micromolar concentrations, demonstrated a significant effect on neutrophil

  6. The Mechanisms of Centalla asiatica's Wound Healing Molecule ...

    Asiaticoside is a triterpene obtained from Centella asiatica and demonstrated to have healing potential against various wound models. Wounds are inflicted for constructive reasons even though more often they are results of accidents. This work aims at identifying molecular targets which account for the therapeutic results ...

  7. Medicinal Plants for Healing Sores and Wounds among the ...

    Medicinal Plants for Healing Sores and Wounds among the Communities Surrounding Ungoye Forest, Kwazulu-Natal, South Africa. ... The focus was on the medicinal plants that grow in the Ungoye forest and around the homesteads. The survey ... Keywords: Traditional medicine, documentation, Ethno-survey, wounds.

  8. Evaluation of wound healing properties of Arrabidaea chica Verlot extract.

    Jorge, Michelle Pedroza; Madjarof, Cristiana; Gois Ruiz, Ana Lúcia Tasca; Fernandes, Alik Teixeira; Ferreira Rodrigues, Rodney Alexandre; de Oliveira Sousa, Ilza Maria; Foglio, Mary Ann; de Carvalho, João Ernesto

    2008-08-13

    Arrabidaea chica Verlot. (Bignoniaceae), popularly known as Crajiru, has been traditionally used as wound healing agent. Investigate in vitro and in vivo healing properties of Arrabidaea chica leaves extract (AC). AC was evaluated in vitro in fibroblast growth stimulation (0.25-250 microg/mL) and collagen production stimulation (250 microg/mL) assays. Allantoin (0.25-250 microg/mL) and vitamin C (25 microg/mL) were used as controls respectively. DPPH and Folin-Ciocalteau assays were used for antioxidant evaluation, using trolox (0.25-250 microg/mL) as reference antioxidant. To study wound healing properties in rats, AC (100mg/mL, 200 microL/wound/day) was topically administered during 10 days and wound area was evaluated every day. Allantoin (100mg/mL, 200 microL/wound/day) was used as standard drug. After treatment, wound sites were removed for histopathological analysis and total collagen determination. AC stimulated fibroblast growth in a concentration dependent way (EC50=30 microg/mL), increased in vitro collagen production and demonstrated moderate antioxidant capacity. In vivo, AC reduced wound size in 96%, whereas saline group showed only 36% wound healing. AC efficiency seems to involve fibroblast growing stimulus and collagen synthesis both in vitro and in vivo, beyond moderate scavenging activity, corroborating Crajiru folk use.

  9. Evaluation of Healing Intervals of Incisional Skin Wounds of Goats ...

    The aim of this study was to compare the healing intervals among simple interrupted (SI), ford interlocking (FI) and subcuticular (SC) suture patterns in goats. We hypothesized that these common suture patterns used for closure of incisional skin wounds may have effect on the healing interval. To test this hypothesis, two ...

  10. Copaiba oil in experimental wound healing in horses

    Flavia de Almeida Lucas

    Full Text Available ABSTRACT: The aim of this study was to evaluate the effects of 10% copaiba oil in experimentally induced wounds in horses. Four wounds were made in the lumbar and metacarpal regions of eight adult horses. In the treatment group, the wounds received 10% copaiba oil and in the control group 0.9% sodium chloride, in the daily dressing for 21 days. The wounds were evaluated three, 7, 14, and 21 days postoperatively. No significant differences were observed between the groups. The mean lumbar wound contraction rates were 80.54% and 69.64%, for the control and treated groups, respectively. For the wounds in the metacarpal region, these averages were 44.15% and 52.48%, respectively. Under the experimental conditions of the present study, it is concluded that 10% copaiba oil has beneficial in wound healing in the equine species and suggest that copaiba oil can be used as a therapeutic possibility in equine wound therapy.

  11. Healing incisional surgical wounds using Rose Hip oil in rats

    Lainy Carollyne da Costa Cavalcante; Thyago Cezar Prado Pessôa; Rubens Fernando Gonçalves Ribeiro Júnior; Edson Yuzur Yasojima; Rosa Helena de Figueiredo Chaves Soares; Marcus Vinicius Henriques Brito; Eduardo Henrique Herbster Gouveia; Lucas Nascimento Galvão; Suzana Rodrigues Ramos; Adan Kristian Almeida Carneiro; Yuri Aarão Amaral Serruya; Mateus Malta de Moraes

    2017-01-01

    Purpose: To evaluate incisional surgical wound healing in rats by using Rose Hip (Rosa rubiginosa L.) oil. Methods: Twenty-one days after the oophorectomy procedure, twenty-seven female, adult, Wistar rats were distributed into three groups: Control group (wound treatment with distilled water); Collagenase group (treatment with collagenase ointment); and Rose Hip group (wound treatment with Rose Hip oil). Each group was distributed according to the date of euthanasia: 7, 14 and 21 days. ...

  12. Healing of severe polystructural limb wounds using vacuum therapy

    Naumenko, Leonid; Horehliad, Olexii; Mametyev, Andriy; Kostrytsya, Konstantyn; Domansky, Andriy

    2017-01-01

    Vacuum-assisted wound closure has been known for the last two decades as an economically viable and effective treatment method, but the variety of patient injuries caused by severe polystructural (including combat) injuries requires further re­search into the effect of negative pressure on wound healing.Objective: to study the possibilities of vacuum-assisted wound closure therapy for the early management of patients with se­vere open polystructural injuries of limbs with fragmentation or gun...

  13. Axolotl cells and tissues enhances cutaneous wound healing in mice

    DEMIRCAN, Turan; KESKIN, Ilknur; GUNAL, Yalcin; ILHAN, Ayse Elif; KOLBASI, Bircan; OZTURK, Gurkan

    2017-01-01

    Adult mammalian skin wound repair is defective due to loss of the regulation in balancing the complete epithelial regeneration and excessive connective tissue production, and this repair process commonly results in scar tissue formation. However, unlike mammals, adult salamanders repair the wounds by regeneration compared to scarring. To elucidate the healing capability of a salamander, Axolotl, in a different species, here we addressed this question by treating the wounds in mice with Axolot...

  14. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Radiotherapy and wound healing: principles, management and prospects (review).

    Gieringer, Matthias; Gosepath, Jan; Naim, Ramin

    2011-08-01

    Radiation therapy is a major therapeutic modality in the management of cancer patients. Over 60% of these patients receive radiotherapy at some point during their course of treatment and over 90% will develop skin reactions after therapy. Problematic wound healing in radiation-damaged tissue constitutes a major surgical difficulty and despite all efforts, irradiated skin remains a therapeutic challenge. This review provides an overview of the fundamental principles of radiation therapy with regards to the wound healing in normal and irradiated skin. Furthermore, it presents techniques that describe how to prevent and manage skin side effects as well as prospects that may improve cutaneous wound repair in general and in irradiated skin.

  16. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    Sarah Chadwick

    2012-01-01

    Full Text Available Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options.

  17. Neurolaena lobata L. promotes wound healing in Sprague Dawley rats

    Nayak, Bijoor Shivananda; Ramlogan, Surrin; Chalapathi Rao, AV; Maharaj, Sandeep

    2014-01-01

    Background: The leaves of the Neurolaena lobata (Asteraceae) plant are used to control diabetes and heal wounds and infections. Aim: The ethanolic extract of N. lobata leaf was evaluated for its ability to heal inflicted wounds in rats using the excision wound model. Materials and Methods: Animals were divided into three groups of six each. Test group animals were treated topically with an ethanolic extract of N. lobata (1:1 with petroleum jelly, 100 mg/kg/day). Standard and control group ani...

  18. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice ...

  19. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio).

    Seo, Seung Beom; Dananjaya, S H S; Nikapitiya, Chamilani; Park, Bae Keun; Gooneratne, Ravi; Kim, Tae-Yoon; Lee, Jehee; Kim, Cheol-Hee; De Zoysa, Mahanama

    2017-09-01

    Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    Ayesha Bhatia

    2016-01-01

    Full Text Available Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  1. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  2. Wound Healing Potential of Formulated Extract from Hibiscus Sabdariffa Calyx

    Builders, P. F.; Kabele-Toge, B.; Builders, M.; Chindo, B. A.; Anwunobi, Patricia A.; Isimi, Yetunde C.

    2013-01-01

    Wound healing agents support the natural healing process, reduce trauma and likelihood of secondary infections and hasten wound closure. The wound healing activities of water in oil cream of the methanol extract of Hibiscus sabdariffa L. (Malvaceae) was evaluated in rats with superficial skin excision wounds. Antibacterial activities against Pseudomonas aeroginosa, Staphylococcus aureus and Echerichia coli were determined. The total flavonoid content, antioxidant properties and thin layer chromatographic fingerprints of the extract were also evaluated. The extract demonstrated antioxidant properties with a total flavonoid content of 12.30±0.09 mg/g. Six reproducible spots were obtained using methanol:water (95:5) as the mobile phase. The extract showed no antimicrobial activity on the selected microorganisms, which are known to infect and retard wound healing. Creams containing H. sabdariffa extract showed significant (Psabdariffa extract. This study, thus, provides evidence of the wound healing potentials of the formulated extract of the calyces of H. sabdariffa and synergism when co-formulated with gentamicin. PMID:23901160

  3. Skin-resident stem cells and wound healing.

    Iwata, Yohei; Akamatsu, Hirohiko; Hasebe, Yuichi; Hasegawa, Seiji; Sugiura, Kazumitsu

    2017-01-01

    CD271 is common stem cell marker for the epidermis and dermis. We assessed a kinetic movement of epidermal and dermal CD271 + cells in the wound healing process to elucidate the possible involvement with chronic skin ulcers. Epidermal CD271 + cells were proliferated and migrated from 3 days after wounding. Purified epidermal CD271 + cells expressed higher TGFβ2 and VEGFα transcripts than CD271 - cells. Delayed wound healing was observed in the aged mice compared with young mice. During the wound healing process, the peak of dermal CD271 + cell accumulation was delayed in aged mice compared with young mice. The expression levels of collagen-1, -3, -5, F4-80, EGF, FGF2, TGFβ1, and IL-1α were significantly increased in young mice compared with aged mice. Furthermore, purified dermal CD271 + cells expressed higher FGF2, EGF, PDGFB, and TGFβ1 gene transcripts than CD271 - cells. These results suggested that epidermal and dermal CD271 + cells were closely associated with wound healing process by producing various growth factors. Epidermal and dermal CD271 + cells in chronic skin ulcer patients were significantly reduced compared with healthy controls. Thus, both epidermal and dermal stem cells can play an important role in wound healing process.

  4. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing

    Liu, Xiangyu; Niu, Yuqing [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Nanshan District Key lab for Biopolymers and Safety Evaluation, Shenzhen 518060 (China); Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen 518060 (China); Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060 (China); Chen, Kevin C. [Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063 (China); Chen, Shiguo, E-mail: csg@szu.edu.cn [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Nanshan District Key lab for Biopolymers and Safety Evaluation, Shenzhen 518060 (China); Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen 518060 (China); Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060 (China)

    2017-02-01

    A novel rapid hemostatic and mild polyurethane-urea foam (PUUF) wound dressing was prepared by the particle leaching method and vacuum freeze-drying method using 4, 4-Methylenebis(cyclohexyl isocyanate), 4,4-diaminodicyclohexylmethane and poly (ethylene glycol) as raw materials. And X-ray diffraction (XRD), tensile test, differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to its crystallinity, stress and strain behavior, and thermal properties, respectively. Platelet adhesion, fibrinogen adhesion and blood clotting were performed to evaluate its hemostatic effect. And H&E staining and Masson Trichrome staining were used to its wound healing efficacy. The results revealed the pore size of PUUF is 50–130 μm, and its porosity is 71.01%. Porous PUUF exhibited good water uptake that was benefit to adsorb abundant wound exudates to build a regional moist environment beneficial for wound healing. The PUUF wound dressing exhibit better blood coagulation effect than commercial polyurethane dressing (CaduMedi). Though both PUUF and CaduMedi facilitated wound healing generating full re-epithelialization within 13 days, PUUF was milder and lead to more slight inflammatory response than CaduMedi. In addition, PUUF wound dressing exhibited lower cytotoxicity than CaduMedi against NIH3T3 cells. Overall, porous PUUF represents a novel mild wound dressing with excellent water uptake, hemostatic effect and low toxicity, and it can promote wound healing and enhance re-epithelialization. - Highlights: • Rapid hemostatic and mild PUUF wound dressing was fabricated. • Low-toxic PUUF exhibited good water uptake that could build a regional moist environment beneficial for wound healing. • PUUF could promote wound healing and enhance re-epithelialization.

  5. Scientific production on the applicability of phenytoin in wound healing

    Flávia Firmino

    2014-02-01

    Full Text Available Phenytoin is an anticonvulsant that has been used in wound healing. The objectives of this study were to describe how the scientific production presents the use ofphenytoinas a healing agent and to discuss its applicability in wounds. A literature review and hierarchy analysis of evidence-based practices was performed. Eighteen articles were analyzed that tested the intervention in wounds such as leprosy ulcers, leg ulcers, diabetic foot ulcers, pressure ulcers, trophic ulcers, war wounds, burns, preparation of recipient graft area, radiodermatitis and post-extraction of melanocytic nevi. Systemic use ofphenytoinin the treatment of fistulas and the hypothesis of topical use in the treatment of vitiligo were found. In conclusion, topical use ofphenytoinis scientifically evidenced. However robust research is needed that supports a protocol for the use ofphenytoinas another option of a healing agent in clinical practice.

  6. Neurolaena lobata L. promotes wound healing in Sprague Dawley rats.

    Nayak, Bijoor Shivananda; Ramlogan, Surrin; Chalapathi Rao, Av; Maharaj, Sandeep

    2014-07-01

    The leaves of the Neurolaena lobata (Asteraceae) plant are used to control diabetes and heal wounds and infections. The ethanolic extract of N. lobata leaf was evaluated for its ability to heal inflicted wounds in rats using the excision wound model. Animals were divided into three groups of six each. Test group animals were treated topically with an ethanolic extract of N. lobata (1:1 with petroleum jelly, 100 mg/kg/day). Standard and control group animals were treated with mupirocin and petroleum jelly, respectively. Treatment was given for 13 days and the wound area was measured on alternate days. Parameters of healing assessed were the rate of wound contraction, period of epithelialization and hydroxyproline content. Antimicrobial activity of the extract was observed against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Phytochemical analysis of the extract showed the presence of saponins, tannins, alkaloids and flavanoids. Extract-treated animals exhibited 87% reduction in the wound area over 13 days when compared with the control (78%) and standard (83%) groups (P lobata as a pharmacotherapy for wound healing.

  7. Wound healing stimulation in mice by low-level light

    Demidova, Tatiana N.; Herman, Ira M.; Salomatina, Elena V.; Yaroslavsky, Anna N.; Hamblin, Michael R.

    2006-02-01

    It has been known for many years that low levels of laser or non-coherent light (LLLT) accelerate some phases of wound healing. LLLT can stimulate fibroblast and keratinocyte proliferation and migration. It is thought to work via light absorption by mitochondrial chromophores leading to an increase in ATP, reactive oxygen species and consequent gene transcription. However, despite many reports about the positive effects of LLLT on wound healing, its use remains controversial. Our laboratory has developed a model of a full thickness excisional wound in mice that allows quantitative and reproducible light dose healing response curves to be generated. We have found a biphasic dose response curve with a maximum positive effect at 2 J/cm2 of 635-nm light and successively lower beneficial effects from 3-25 J/cm2, the effect is diminished at doses below 2J/cm2 and gradually reaches control healing levels. At light doses above 25 J/cm2 healing is actually worse than controls. The two most effective wavelengths of light were found to be 635 and 820-nm. We found no difference between filtered 635+/-15-nm light from a lamp and 633-nm light from a HeNe laser. The strain and age of the mouse affected the magnitude of the effect. Light treated wounds start to contract after illumination while control wounds initially expand for the first 24 hours. Our hypothesis is that a single brief light exposure soon after wounding affects fibroblast cells in the margins of the wound. Cells may be induced to proliferate, migrate and assume a myofibroblast phenotype. Our future work will be focused on understanding the mechanisms underlying effects of light on wound healing processes.

  8. Innate defense regulator peptide 1018 in wound healing and wound infection.

    Lars Steinstraesser

    Full Text Available Innate defense regulators (IDRs are synthetic immunomodulatory versions of natural host defense peptides (HDP. IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.

  9. Roles of secretory leukocyte protease inhibitor amniotic membrane in oral wound healing

    Elly Munadziroh

    2006-12-01

    Full Text Available Secretory Leukocyte Protease Inhibitor (SLPI is serine protease inhibitor. Secretory Leukocyte Protease Inhibitor is a protein found in secretions such as whole saliva, seminal fluid, cervical mucus, synovial fluid, breast milk, tears, and cerebral spinal fluid, as in secretions from the nose and bronchi, amniotic fluid and amniotic membrane etc. These findings demonstrate that SLPI function as a potent anti protease, anti inflammatory, bactericidal, antifungal, tissue repair, extra cellular synthesis. Impaired healing states are characterized by excessive proteolysis and often bacterial infection, leading to the hypothesis that SLPI may have a role in the process. The objectives of this article are to investigate the role of SLPI in oral inflammation and how it contributes to tissue repair in oral mucosa. The oral wound healing responses are impaired in the SLPI sufficient mice and matrix synthesis and collagen deposition are delayed. This study indicated that SLPI is a povital factor necessary for optimal wound healing.

  10. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review.

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.

  11. Simulation of lung alveolar epithelial wound healing in vitro.

    Kim, Sean H J; Matthay, Michael A; Mostov, Keith; Hunt, C Anthony

    2010-08-06

    The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing 'cells' a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated 'cell' migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration.

  12. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling.

    Arno, Anna I; Amini-Nik, Saeid; Blit, Patrick H; Al-Shehab, Mohammed; Belo, Cassandra; Herer, Elaine; Tien, Col Homer; Jeschke, Marc G

    2014-02-24

    The prevalence of nonhealing wounds is predicted to increase due to the growing aging population. Despite the use of novel skin substitutes and wound dressings, poorly vascularized wound niches impair wound repair. Mesenchymal stem cells (MSCs) have been reported to provide paracrine signals to promote wound healing, but the effect of human Wharton's jelly-derived MSCs (WJ-MSCs) has not yet been described in human normal skin. Human WJ-MSCs and normal skin fibroblasts were isolated from donated umbilical cords and normal adult human skin. Fibroblasts were treated with WJ-MSC-conditioned medium (WJ-MSC-CM) or nonconditioned medium. Expression of genes involved in re-epithelialization (transforming growth factor-β2), neovascularization (hypoxia-inducible factor-1α) and fibroproliferation (plasminogen activator inhibitor-1) was upregulated in WJ-MSC-CM-treated fibroblasts (P≤0.05). WJ-MSC-CM enhanced normal skin fibroblast proliferation (P≤0.001) and migration (P≤0.05), and promoted wound healing in an excisional full-thickness skin murine model. Under our experimental conditions, WJ-MSCs enhanced skin wound healing in an in vivo mouse model.

  13. Psoriasis and wound healing outcomes: A retrospective cohort study examining wound complications and antibiotic use.

    Young, Paulina M; Parsi, Kory K; Schupp, Clayton W; Armstrong, April W

    2017-11-15

    Little is known about wound healing in psoriasis. We performed a cohort study examining differences in wound healing complications between patients with and without psoriasis. Psoriasis patients with traumatic wounds were matched 1:3 to non-psoriasis patients with traumatic wounds based on age, gender, and body mass index (BMI). We examined theincidence of wound complications including infection, necrosis, and hematoma as well as incident antibiotic use within three months following diagnosis of a traumatic wound. The study included 164 patients with traumatic wounds, comprised of 41 patients with psoriasis matched to 123 patients without psoriasis. No statistically significant differences were detected in the incidence of overall wound complications between wound patients with psoriasis and wound patients without psoriasis (14.6% versus. 13.0%, HR 1.18, CI 0.39-3.56). After adjustment for diabetes, peripheral vascular disease, and smoking, no statistically significant differences were detected in the incidence of overall wound complications between patients with and without psoriasis (HR 1.11, CI 0.34-3.58). Specifically, the adjusted rates of antibiotic use were not significantly different between those with and without psoriasis (HR 0.65, CI 0.29-1.46). The incidence of wound complications following traumatic wounds of the skin was found to be similar between patients with and without psoriasis.

  14. Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing.

    Duscher, Dominik; Januszyk, Michael; Maan, Zeshaan N; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Dong, Yixiao; Khong, Sacha M; Longaker, Michael T; Gurtner, Geoffrey C

    2017-03-01

    A hallmark of diabetes mellitus is the breakdown of almost every reparative process in the human body, leading to critical impairments of wound healing. Stabilization and activity of the transcription factor hypoxia-inducible factor (HIF)-1α is impaired in diabetes, leading to deficits in new blood vessel formation in response to injury. In this article, the authors compare the effectiveness of two promising small-molecule therapeutics, the hydroxylase inhibitor dimethyloxalylglycine and the iron chelator deferoxamine, for attenuating diabetes-associated deficits in cutaneous wound healing by enhancing HIF-1α activation. HIF-1α stabilization, phosphorylation, and transactivation were measured in murine fibroblasts cultured under normoxic or hypoxic and low-glucose or high-glucose conditions following treatment with deferoxamine or dimethyloxalylglycine. In addition, diabetic wound healing and neovascularization were evaluated in db/db mice treated with topical solutions of either deferoxamine or dimethyloxalylglycine, and the efficacy of these molecules was also compared in aged mice. The authors show that deferoxamine stabilizes HIF-1α expression and improves HIF-1α transactivity in hypoxic and hyperglycemic states in vitro, whereas the effects of dimethyloxalylglycine are significantly blunted under hyperglycemic hypoxic conditions. In vivo, both dimethyloxalylglycine and deferoxamine enhance wound healing and vascularity in aged mice, but only deferoxamine universally augmented wound healing and neovascularization in the setting of both advanced age and diabetes. This first direct comparison of deferoxamine and dimethyloxalylglycine in the treatment of impaired wound healing suggests significant therapeutic potential for topical deferoxamine treatment in ischemic and diabetic disease.

  15. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats

    Deepak Dwivedi

    2017-01-01

    Conclusion: Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata. Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.

  16. Wound healing complications in brain tumor patients on Bevacizumab.

    Ladha, Harshad; Pawar, Tushar; Gilbert, Mark R; Mandel, Jacob; O-Brien, Barbara; Conrad, Charles; Fields, Margaret; Hanna, Teresa; Loch, Carolyn; Armstrong, Terri S

    2015-09-01

    Bevacizumab (BEV) is commonly used for treating recurrent glioblastoma (GBM), and wound healing is a well-established adverse event. Retrospective analysis of GBM patients with and without wound healing complications while on BEV treatment is reported. 287 patients identified, majority were males (60 %) with median age of 52.5 years. 14 cases identified with wound healing problems, related to either craniotomy (n = 8) or other soft tissue wounds (n = 6). Median duration of BEV treatment to complication was 62 days (range 6-559). Majority received 10 mg/kg (n = 11) and nine (64.3 %) were on corticosteroids, with median daily dose of 6 mg (range 1-16 mg) for median of 473 days before starting BEV. For dehisced craniotomy wounds, median time for starting BEV from last surgery was 29 days (range 27-345). Median time from starting BEV to developing wound complication was 47 days (range 16-173). Seven (87.5 %) had infected wounds requiring antibiotics, hospitalization. Four (50 %) required plastic surgery. BEV stopped and safely resumed in 6 (75 %) patients; median delay was 70 days (range 34-346). Soft tissue wounds included decubitus ulcer, dehisced striae, herpes simplex, trauma to hand and back, and abscess. Median time from starting BEV to wound issues was 72 days (range 6-559). Five (83.3 %) were infected, requiring antibiotics. While three (50 %) required hospitalization, none required plastic surgery. Treatment stopped in five (83.3 %) and restarted in two (median delay 48 days, range 26-69). Wound healing complications are uncommon but associated with significant morbidity. Identifying those at risk and contributing factors warrants further investigation.

  17. Tissue-Engineered Skin Substitute Enhances Wound Healing after Radiation Therapy.

    Busra, Mohd Fauzi bin Mh; Chowdhury, Shiplu Roy; bin Ismail, Fuad; bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2016-03-01

    When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. These results indicate that BTESS is the preferred treatment for

  18. Wound healing in a fetal, adult, and scar tissue model: a comparative study

    Coolen, N.A.; Schouten, K.C.; Boekema, B.K.; Middelkoop, E.; Ulrich, M.

    2010-01-01

    Early gestation fetal wounds heal without scar formation. Understanding the mechanism of this scarless healing may lead to new therapeutic strategies for improving adult wound healing. The aims of this study were to develop a human fetal wound model in which fetal healing can be studied and to

  19. Wound healing activity of Ipomoea batatas tubers (sweet potato

    Madhav Sonkamble

    2011-10-01

    Full Text Available Background: Ipomoea batatas (L. Lam. from the family Convolvulaceae is the world’s sixth largest food crop. The tubers of Ipomoea batatas commonly known as sweet potato are consumed as a vegetable globally. The tubers contain high levels of polyphenols such as anthocyanins and phenolic acids and vitamins A, B and C, which impart a potent antioxidant activity that can translate well to show wound healing effects. To check their effects on wound healing, the peels and peel bandage were tested on various injury models in rats in the present study.Methods: The methanolic extracts of the peels and peel bandage of Ipomoea batatas tubers (sweet potato were screened for wound healing by excision and incision wound models on Wistar rats. Three types of gel formulations were prepared, viz., gel containing 3.0% (w/w peel extract, gel containing 6.0% (w/w peel extract and gel containing 10% (w/w peel extract. Betadine (5% w/w povidone iodine cream was used as a reference standard. In the incision wound model, Tensile strength of the skin was measured. Epithelization time, wound contraction, hydroxyproline content of the scab, and ascorbic acid and malondialdehyde content of the plasma were determined in the excision wound model.Results: In the incision wound model, high tensile strength of the wounded skin was observed in animals treated with the peel extract gels and the peel bandage when compared with wounded control animals. The increase in tensile strength indicates the promotion of collagen fibers and that the disrupted wound surfaces are being firmly knit by collagen. In the excision wound model, significant wound closure was observed on the 4th day in rats treated with all three gel formulations when compared with the wounded control rats. A significant increase inFunctional Foods in Health and Disease 2011; 10:403-415hydroxyproline and ascorbic acid content in the gel-treated animals and a significant decrease in malondialdehyde content in the

  20. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice.

    Savita Khanna

    2010-03-01

    Full Text Available Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site, efficient dead cell clearance (efferocytosis is a pre-requisite for the timely resolution of inflammation and successful healing.Macrophages isolated from wounds of diabetic mice showed significant impairment in efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients. Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from pro-inflammatory to an anti-inflammatory mode.Taken together, this study presents first evidence demonstrating that diabetic wounds suffer from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in turn, prolongs the inflammatory phase and complicates wound healing.

  1. The Role of Iron in the Skin & Cutaneous Wound Healing

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  2. Aging-dependent reduction in glyoxalase 1 delays wound healing.

    Fleming, Thomas H; Theilen, Till-Martin; Masania, Jinit; Wunderle, Marius; Karimi, Jamshid; Vittas, Spiros; Bernauer, Rainer; Bierhaus, Angelika; Rabbani, Naila; Thornalley, Paul J; Kroll, Jens; Tyedmers, Jens; Nawrotzki, Ralph; Herzig, Stephan; Brownlee, Michael; Nawroth, Peter P

    2013-01-01

    Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice. Copyright © 2013 S. Karger AG, Basel.

  3. Application of Three - dimensional Wound Analyzer in the Small Wound Area Measurement during the Process of Wound Healing.

    Sheng, Jiajun; Li, Haihang; Jin, Jian; Liu, Tong; Ma, Bing; Liu, Gongcheng; Zhu, Shihui

    2018-02-20

    The objective of this study was to determinate the reliability of 3-dimensional wound analyzer (3-DWMD) in the wound area measurement for animal small area in the process of wound healing. Seven Sprague-Dawley rats were used to establish the skin defect model. And the wound area and time consumption were measured on days 0, 5, 10, 15 using 3-DWMD, investigators, and planimetry method. The measurement results using 3-DWMD and investigators were analyzed comparative with that using planimetry method separately. A total 46 wounds, including 32 irregular wounds and regular 14 wounds, were measured. No matter calculating the irregular wounds or the regular wounds, there was no significant difference between 3-DWMD group and planimetry group in measuring wound area (P > 0.05). However, a statistically significant difference was found in time-consuming for measuring wound area between 3-DWMD group and planimetry group (P area, and its measurement results were consistent with planimetry method. Therefore, such measuring equipment has clinical reference value for measuring precision area of the wound in the process of wound healing.

  4. Profiling wound healing with wound effluent: Raman spectroscopic indicators of infection

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    The care of modern traumatic war wounds remains a significant challenge for clinicians. Many of the extremity wounds inflicted during Operation Enduring Freedom and Operation Iraqi Freedom are colonized or infected with multi-drug resistant organisms, particularly Acinetobacter baumannii. Biofilm formation and resistance to current treatments can significantly confound the wound healing process. Accurate strain identification and targeted drug administration for the treatment of wound bioburden has become a priority for combat casualty care. In this study, we use vibrational spectroscopy to examine wound exudates for bacterial load. Inherent chemical differences in different bacterial species and strains make possible the high specificity of vibrational spectroscopy.

  5. Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro.

    Bussche, Leen; Harman, Rebecca M; Syracuse, Bethany A; Plante, Eric L; Lu, Yen-Chun; Curtis, Theresa M; Ma, Minglin; Van de Walle, Gerlinde R

    2015-04-11

    The prevalence of impaired cutaneous wound healing is high and treatment is difficult and often ineffective, leading to negative social and economic impacts for our society. Innovative treatments to improve cutaneous wound healing by promoting complete tissue regeneration are therefore urgently needed. Mesenchymal stromal cells (MSCs) have been reported to provide paracrine signals that promote wound healing, but (i) how they exert their effects on target cells is unclear and (ii) a suitable delivery system to supply these MSC-derived secreted factors in a controlled and safe way is unavailable. The present study was designed to provide answers to these questions by using the horse as a translational model. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC-derived conditioned medium (CM), containing all factors secreted by MSCs, on equine dermal fibroblasts, a cell type critical for successful wound healing, and (ii) explore the potential of microencapsulated equine MSCs to deliver CM to wounded cells in vitro. MSCs were isolated from the peripheral blood of healthy horses. Equine dermal fibroblasts from the NBL-6 (horse dermal fibroblast cell) line were wounded in vitro, and cell migration and expression levels of genes involved in wound healing were evaluated after treatment with MSC-CM or NBL-6-CM. These assays were repeated by using the CM collected from MSCs encapsulated in core-shell hydrogel microcapsules. Our salient findings were that equine MSC-derived CM stimulated the migration of equine dermal fibroblasts and increased their expression level of genes that positively contribute to wound healing. In addition, we found that equine MSCs packaged in core-shell hydrogel microcapsules had similar effects on equine dermal fibroblast migration and gene expression, indicating that microencapsulation of MSCs does not interfere with the release of bioactive factors. Our results demonstrate that the use of CM from MSCs might be a promising

  6. Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute.

    Gupta, Sonam; Raghuwanshi, Navdeep; Varshney, Ritu; Banat, I M; Srivastava, Amit Kumar; Pruthi, Parul A; Pruthi, Vikas

    2017-10-01

    A potent biosurfactant (BS) producing Bacillus licheniformis SV1 (NCBI GenBank Accession No. KX130852) was isolated from oil contaminated soil sample. Physicochemical investigations (TLC, HPLC, FTIR, GC-MS and NMR) revealed it to be glycolipid in nature. Fibroblast culture assay showed cytocompatibility and increased cell proliferation of 3T3/NIH fibroblast cells treated with this biosurfactant when checked using MTT assay and DAPI fluorescent staining. To evaluate the wound healing potential, BS ointment was formulated and checked for its spreadability and viscosity consistency. In vivo wound healing examination of full thickness skin excision wound rat model demonstrated the prompt re-epithelialization and fibroblast cell proliferation in the early phase while quicker collagen deposition in later phases of wound healing when BS ointment was used. These results validated the potential usage of BS ointment as a transdermal substitute for faster healing of impaired skin wound. Biochemical evaluation also substantiated the highest concentration of hydroxyproline (32.18±0.46, ptreated animal tissue samples compared to the control. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining validated the presence of increased amount of collagen fibers and blood vessels in the test animals treated with BS ointment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection

    Steinstraesser, Lars; Hirsch, Tobias; Schulte, Matthias

    2012-01-01

    -37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However...

  8. Gender affects skin wound healing in plasminogen deficient mice

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  9. Wound Healing and Infection in Surgery

    Sørensen, Lars Tue

    2012-01-01

    To clarify the evidence on smoking and postoperative healing complications across surgical specialties and to determine the impact of perioperative smoking cessation intervention.......To clarify the evidence on smoking and postoperative healing complications across surgical specialties and to determine the impact of perioperative smoking cessation intervention....

  10. Topical application of ex vivo expanded endothelial progenitor cells promotes vascularisation and wound healing in diabetic mice.

    Asai, Jun; Takenaka, Hideya; Ii, Masaaki; Asahi, Michio; Kishimoto, Saburo; Katoh, Norito; Losordo, Douglas W

    2013-10-01

    Impaired wound healing leading to skin ulceration is a serious complication of diabetes and may be caused by defective angiogenesis. Endothelial progenitor cells (EPCs) can augment neovascularisation in the ischaemic tissue. Experiments were performed to test the hypothesis that locally administered EPCs can promote wound healing in diabetes. Full-thickness skin wounds were created on the dorsum of diabetic mice. EPCs were obtained from bone marrow mononuclear cells (BMMNCs) and applied topically to the wound immediately after surgery. Vehicle and non-selective BMMNCs were used as controls. Wound size was measured on days 5, 10 and 14 after treatment, followed by resection, histological analysis and quantification of vascularity. Topical application of EPCs significantly promoted wound healing, as assessed by closure rate and wound vascularity. Immunostaining revealed that transplanted EPCs induced increased expression of vascular endothelial growth factor and basic fibroblast growth factor. Few EPCs were observed in the neovasculature based on in vivo staining of the functional vasculature. Ex vivo expanded EPCs promote wound healing in diabetic mice via mechanisms involving increased local cytokine expression and enhanced neovascularisation of the wound. This strategy exploiting the therapeutic capacity of autologously derived EPCs may be a novel approach to skin repair in diabetes. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  11. Curcumin and its topical formulations for wound healing applications.

    Mohanty, Chandana; Sahoo, Sanjeeb K

    2017-10-01

    Oxidative damage and inflammation have been identified, through clinical and preclinical studies, as the main causes of nonhealing chronic wounds. Reduction of persistent chronic inflammation by application of antioxidant and anti-inflammatory agents such as curcumin has been well studied. However, low aqueous solubility, poor tissue absorption, rapid metabolism and short plasma half-life have made curcumin unsuitable for systemic administration for better wound healing. Recently, various topical formulations of curcumin such as films, fibers, emulsion, hydrogels and different nanoformulations have been developed for targeted delivery of curcumin at wounded sites. In this review, we summarize and discuss different topical formulations of curcumin with emphasis on their wound-healing properties in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Essential oil-loaded lipid nanoparticles for wound healing.

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  13. Effects of topical topiramate in wound healing in mice.

    Jara, Carlos Poblete; Bóbbo, Vanessa Cristina Dias; Carraro, Rodrigo Scarpari; de Araujo, Thiago Matos Ferreira; Lima, Maria H M; Velloso, Licio A; Araújo, Eliana P

    2018-02-23

    Recent studies have indicated that systemic topiramate can induce an improvement on the aesthetic appearance of skin scars. Here, we evaluated topical topiramate as an agent to improve wound healing in C57/BL6 mice. Mice were inflicted with a 6.0 mm punch to create two wounds in the skin of the dorsal region. Thereafter, mice were randomly assigned to either vehicle or topical topiramate (20 µl of 2% cream) once a day for 14 days, beginning on the same day as wound generation. We analyzed the wound samples over real-time PCR, Western blotting, and microscopy. There was no effect of the topiramate treatment on the time for complete reepithelization of the wound. However, on microscopic analysis, topiramate treatment resulted in increased granulation tissue, thicker epidermal repair, and improved deposition of type I collagen fibers. During wound healing, there were increased expressions of anti-inflammatory markers, such as IL-10, TGF-β1, and reduced expression of the active form of JNK. In addition, topiramate treatment increased the expression of active forms of two intermediaries in the insulin-signaling pathway, IRS-1 and Akt. Finally, at the end of the wound-healing process, topiramate treatment resulted in increased expression of SOX-2, a transcription factor that is essential to maintain cell self-renewal of undifferentiated embryonic stem cells. We conclude that topical topiramate can improve the overall quality of wound healing in the healthy skin of mice. This improvement is accompanied by reduced expression of markers involved in inflammation and increased expression of proteins of the insulin-signaling pathway.

  14. Ascorbic acid for the healing of skin wounds in rats

    CC. Lima

    Full Text Available BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 ± 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12 - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12 - skin wound cleaned daily and treated with ascorbic acid cream (10%. Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.

  15. Antioxidant and wound healing activity of Lavandula aspic L. ointment.

    Ben Djemaa, Ferdaous Ghrab; Bellassoued, Khaled; Zouari, Sami; El Feki, Abdelfatteh; Ammar, Emna

    2016-11-01

    Lavandula aspic L. is a strongly aromatic shrub plant of the Lamiaceae family and traditionally used in herbal medicine for the treatment of several skin disorders, including wounds, burns, and ulcers. The present study aimed to investigate the composition and in vitro antioxidant activity of lavender essential oil. In addition, it aimed to evaluate the excision wound healing activity and antioxidant property of a Lavandula aspic L. essential oil formulated in ointment using a rat model. The rats were divided into five groups of six animals each. The test groups were topically treated with the vehicle, lavender ointment (4%) and a reference drug, while the control group was left untreated. Wound healing efficiency was determined by monitoring morphological and biochemical parameters and skin histological analysis. Wound contraction and protein synthesis were also determined. Antioxidant activity was assessed by the determination of MDA rates and antioxidant enzymes (GPx, catalase and superoxide dismutase). The treatment with lavender ointment was noted to significantly enhance wound contraction rate (98%) and protein synthesis. Overall, the results provided strong support for the effective wound healing activity of lavender ointment, making it a promising candidate for future application as a therapeutic agent in tissue repairing processes associated with skin injuries. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  16. Wound Healing: Concepts and Updates in Herbal Medicine

    Meria M Dan

    2018-01-01

    Full Text Available Wound is a common injury due to internal and or external factors, which are subsequently associated with many immunological events, including necrosis, inflammation, etc. Significant amounts of tissue damage and infection are two silent features of wound along with other co-morbidities. Wound healing is a complex process where immunohistochemistry, tissue regeneration, and remodeling are predominant events. Since early human life, there are many traditional procedures are in use to treat wounds of various kind. However, the modern medical practices are rapidly growing in wound healing, traditional herbal medicine and use of medicinal plant products are showing equal ability and drawing the attention of medical practitioners. Herbal/traditional medicine is one of the oldest procedures in countries like India and China. In recent days, it has become reliable option in developed nations such as USA, UK, and other European nations for treatment of many deadly diseases including cancer. India is one of the biggest biodiversity reservoirs in the world with vast range of plant species and high access to the ancient medical practices. According to the WHO data and available sources, there more than 80% world population depends on herbal medical products. This indicates that despite the lack of clinical and scientific evidences, the herbal or traditional market is growing at rapid pace. In this literature review, we presented the role of herbal medicine in wound healing, some of the common medicinal plants, the quality, safety, and efficacy concerns of herbal medical products.

  17. Wound Healing in Mac-1 Deficient Mice

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  18. ROLE OF VACUUM ASSISTED CLOSURE (VAC - IN WOUND HEALING

    L. Lokanadha Rao

    2016-09-01

    Full Text Available BACKGROUND Large, complicated wounds pose a significant surgical problem. Negative pressure wound therapy is one of several methods enabling to obtain better treatment results in case of open infected wounds.1,2 The use of negative pressure therapy enables to obtain a reduction in the number of bacteria which significantly reduces the number of complications.3,4,5 AIMS AND OBJECTIVES: To review the Role of VAC in wound healing in Orthopaedics. MATERIALS AND METHODS The cases presented in this study are those who were admitted in King George Hospital in the time period from January 2014 to August 2015. This is a prospective interventional study. In this study, 15 patients were assigned to the study group (Negative Pressure Wound Therapy- NPWT based on their willingness for undergoing treatment. OBSERVATIONS AND RESULTS 12 males and 3 females are involved in the study. There is decrease in the mean wound area from 64 cm2 to 38 cm2 . There is decrease in the duration of hospital stay. Finally, wound is closed by SSG or secondary suturing. DISCUSSION NPWT is known to reduce bacterial counts, although they remain colonised with organisms. Wounds covered with NPW dressing are completely isolated from the environment, thereby reduces cross infection. In our series, we had 73.3% (11 cases excellent results and 26.7% (4 cases good results and no poor results. As interpretation with results, VAC therapy is effective mode of adjuvant therapy for the management of infected wounds. CONCLUSION VAC has been proven to be a reliable method of treating a variety of infected wounds. It greatly increases the rate of granulation tissue formation and lowers bacterial counts to accelerate wound healing. It can be used as a temporary dressing to prepare wounds optimally prior to closure or as a definitive treatment for nonsurgical and surgical wounds. VAC is now being used in a multitude of clinical settings, including the treatment of surgical wounds, infected wounds

  19. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.

    Felder, Marcel; Sallin, Pauline; Barbe, Laurent; Haenni, Beat; Gazdhar, Amiq; Geiser, Thomas; Guenat, Olivier

    2012-02-07

    We present a microfluidic epithelial wound-healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow-focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system, a technique that is reported here for the first time. We demonstrate that alveolar epithelial cells cultured in a microfluidic environment preserve their phenotype before and after wounding. In addition, we report a wound-healing benefit induced by addition of HGF to the cell culture medium (19.2 vs. 13.5 μm h(-1) healing rate).

  20. Clinical evaluation of post-extraction site wound healing.

    Adeyemo, Wasiu Lanre; Ladeinde, Akinola Ladipo; Ogunlewe, Mobolanle Olugbemiga

    2006-07-01

    The aim of this prospective study was to evaluate the clinical pattern of post-extraction wound healing with a view to identify the types, incidence, and pattern of healing complications following non-surgical tooth extraction. A total of 311 patients, who were referred for non-surgical (intra-alveolar) extractions, were included in the study. The relevant pre-operative information recorded for each patient included age and gender of the patient, indications for extraction, and tooth/teeth removed. Extractions were performed under local anesthesia with dental forceps, elevators, or both. Patients were evaluated on the third and seventh postoperative days for alveolus healing assessment. Data recorded were: biodata, day of presentation for alveolus healing assessment, day of onset of any symptoms, body temperature (degrees C) in cases of alveolus infection, and presence or absence of pain. Two hundred eighty-two patients (282) with 318 extraction sites were evaluated for alveolus healing. Healing was uneventful in 283 alveoli (89%), while 35 alveoli (11%) developed healing complications. These complications were: localized osteitis 26 (8.2%); acutely infected alveolus 5 (1.6%); and an acutely inflamed alveolus 4 (1.2%). Females developed more complications than males (p=0.003). Most complications were found in molars (60%) and premolars (37.1%). Localized osteitis caused severe pain in all cases, while infected and inflamed alveolus caused mild or no pain. Thirty patients (12%) among those without healing complications experienced mild pain. Most of the post-extraction alveoli healed uneventfully. Apart from alveolar osteitis (AO), post-extraction alveolus healing was also complicated by acutely infected alveoli and acutely inflamed alveoli. This study also demonstrated a painful alveolus is not necessarily a disturbance of post-extraction site wound healing; a thorough clinical examination must, therefore, be made to exclude any of the complications.

  1. PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.

    Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T

    2018-01-01

    Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p cells (p cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.

  2. Evaluation of dermal wound healing activity of synthetic peptide SVVYGLR.

    Uchinaka, Ayako; Kawaguchi, Naomasa; Ban, Tsuyoshi; Hamada, Yoshinosuke; Mori, Seiji; Maeno, Yoshitaka; Sawa, Yoshiki; Nagata, Kohzo; Yamamoto, Hirofumi

    2017-09-23

    SVVYGLR peptide (SV peptide) is a 7-amino-acid sequence with angiogenic properties that is derived from osteopontin in the extracellular matrix and promotes differentiation of fibroblasts to myofibroblast-like cells and the production of collagen type Ⅲ by cardiac fibroblasts. However, the effects of SV peptide on dermal cells and tissue are unknown. In this study, we evaluated the effects of this peptide in a rat model of dermal wound healing. The synthetic SV peptide was added to dermal fibroblasts or keratinocytes, and their cellular motility was evaluated. In an in vivo wound healing exeriment, male rats aged 8 weeks were randomly assigned to the SV peptide treatment, non-treated control, or phosphate-buffered saline (PBS) groups. Wound healing was assessed by its repair rate and histological features. Scratch assay and cell migration assays using the Chemotaxicell method showed that SV peptide significantly promoted the cell migration in both fibroblasts and keratinocytes. In contrast the proliferation potency of these cells was not affected by SV peptide. In the rat model, wound healing progressed faster in the SV peptide-treated group than in the control and PBS groups. The histopathological analyses showed that the SV peptide treatment stimulated the migration of fibroblasts to the wound area and increased the number of myofibroblasts. Immunohistochemical staining showed a marked increase of von Willebland factor-positive neomicrovessels in the SV peptide-treated group. In conclusion, SV peptide has a beneficial function to promote wound healing by stimulating granulation via stimulating angiogenesis, cell migration, and the myofibroblastic differentiation of fibroblasts. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Skin wound healing in different aged Xenopus laevis.

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation. Copyright © 2013 Wiley Periodicals, Inc.

  4. Gender affects skin wound healing in plasminogen deficient mice.

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  5. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application.

    Zhao, Pan; Sui, Bing-Dong; Liu, Nu; Lv, Ya-Jie; Zheng, Chen-Xi; Lu, Yong-Bo; Huang, Wen-Tao; Zhou, Cui-Hong; Chen, Ji; Pang, Dan-Lin; Fei, Dong-Dong; Xuan, Kun; Hu, Cheng-Hu; Jin, Yan

    2017-10-01

    Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate-activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age-related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti-aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR-based anti-aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. A Clinicoepidemiological Profile of Chronic Wounds in Wound Healing Department in Shanghai.

    Sun, Xiaofang; Ni, Pengwen; Wu, Minjie; Huang, Yao; Ye, Junna; Xie, Ting

    2017-03-01

    The aim of the study was to update the clinical database of chronic wounds in order to derive an evidence based understanding of the condition and hence to guide future clinical management in China. A total of 241 patients from January 1, 2011 to April 30, 2016 with chronic wounds of more than 2 weeks' duration were studied in wound healing department in Shanghai. Results revealed that among all the patients the mean age was 52.5 ± 20.2 years (range 2-92 years). The mean initial area of wounds was 30.3 ± 63.0 cm 2 (range 0.25-468 cm 2 ). The mean duration of wounds was 68.5 ± 175.2 months (range 0.5-840 months). The previously reported causes of chronic wounds were traumatic or surgical wounds (n = 82, 34.0%), followed by pressure ulcers (n = 59, 24.5%). To study the effects of age, patients were divided into 2 groups: less than 60 years (wounds etiology between the 2 age groups was analyzed, and there was significant statistical difference ( P wounds, chi-square test was used. There were significant differences in the factor of wound infection. ( P = .035, 95% CI = 0.031-0.038) Regarding therapies, 72.6% (n = 175) of the patients were treated with negative pressure wound therapy. Among all the patients, 29.9% (n = 72) of them were completely healed when discharged while 62.7% (n = 150) of them improved. The mean treatment cost was 12055.4 ± 9206.3 Chinese Yuan (range 891-63626 Chinese Yuan). In conclusion, traumatic or surgical wounds have recently become the leading cause of chronic wounds in Shanghai, China. Etiology of the 2 age groups was different. Infection could significantly influence the wound outcome.

  7. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing.

    Jin, Yi; Tymen, Stéphanie D; Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3'-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling.

  8. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  9. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe; Grigoras, Constantin

    2011-01-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  10. Evaluation of effectiveness in a novel wound healing ointment ...

    Evaluation of effectiveness in a novel wound healing ointment-crocodile oil burn ointment. Hua-Liang Li, Yi-Tao Deng, Zi-Ran Zhang, Qi-Rui Fu, Ya-Hui Zheng, Xing-Mei Cao, Jing Nie, Li-Wen Fu, Li-Ping Chen, You-Xiong Xiong, Dong-Yan Shen, Qing-Xi Chen ...

  11. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    2014-03-01

    healing process. We selected fibrin and hydrogel as delivery vehicles for our test. The rationale is that fibrin, which is a natural biopolymer of blood...E.U. Alt, IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin- chitosan scaffold enhance wound repair in a murine soft

  12. Soft tissue wound healing around teeth and dental implants.

    Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D

    2014-04-01

    To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Studies on wound healing activity of some Euphorbia species on ...

    Background: Plants of Euphorbiaceae are used in folkloric medicines in variety of ailments and well known for chemical diversity of their isoprenoid constituents. This study was carried out to explore the preliminary wound healing potential of four Euphorbia species (E. consorbina 1, E. consorbina 2, E. inarticulata, ...

  14. Defective Wound-healing in Aging Gingival Tissue.

    Cáceres, M; Oyarzun, A; Smith, P C

    2014-07-01

    Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process. © International & American Associations for Dental Research.

  15. Gingival wound healing: an essential response disturbed by aging?

    Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J

    2015-03-01

    Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications. © International & American Associations for Dental Research 2014.

  16. The heme-heme oxygenase system in wound healing; implications for scar formation.

    Wagener, F.A.D.T.G.; Scharstuhl, A.; Tyrrell, R.M.; Hoff, J.W. Von den; Jozkowicz, A.; Dulak, J.; Russel, F.G.M.; Kuijpers-Jagtman, A.M.

    2010-01-01

    Wound healing is an intricate process requiring the concerted action of keratinocytes, fibroblasts, endothelial cells, and macrophages. Here, we review the literature on normal wound healing and the pathological forms of wound healing, such as hypertrophic or excessive scar formation, with special

  17. Aloe Gel Enhances Angiogenesis in Healing of Diabetic Wound

    Djanggan Sargowo

    2011-12-01

    Full Text Available BACKGROUND: Diabetic micro and macroangiophathy lead to the incident of diabetic foot ulcers characterized by an increased number of circulating endothelial cells (CECs and decreased function of endothelial progenitor cells (EPCs. This fact is correlated with ischemia and diabetic wound healing failure. Aloe vera gel is known to be able to stimulate vascular endothelial growth factor (VEGF expression and activity by enhancing nitric oxide (NO production as a result of nitric oxide synthase (NOS enzyme activity. Aloe vera is a potential target to enhancing angiogenesis in wound healing. OBJECTIVE: The objective of this study was to explore the major role of Aloe vera gel in wound healing of diabetic ulcers by increasing the level of EPCs, VEGF, and endothelial nitric oxide synthase (eNOS, as well as by reducing the level of CECs involved in angiogenesis process of diabetic ulcers healing. METHODS: The experimental groups was divided into five subgroups consisting of non diabetic wistar rats, diabetic rats without oral administration of aloe gel, and treatment subgroup (diabetic rats with 30, 60 and 120 mg/day of aloe gel doses for 14 days. All subgroups were wounded and daily observation was done on the wounds areas. Measurement of the number of EPCs (CD34, and CECs (CD45 and CD146 was done by flow cytometry, followed by measurement of VEGF and eNOS expression on dermal tissue by immunohistochemical method on day 0 and day 14 after treatment. The quantitative data were analyzed by One-Way ANOVA and Linear Regression, with a confidence interval 5% and significance level (p<0.05 using SPSS 16 software to compare the difference and correlation between wound diameters, number of EPCs and CECs as well as the levels of VEGF and eNOS. RESULTS: The results of this study showed that aloe gel oral treatment in diabetic wistar rats was able to accelerate the wound healing process. It was shown by significant reduction of wound diameter (0.27±0.02; the

  18. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A rat uterine horn model of genital tract wound healing.

    Schlaff, W D; Cooley, B C; Shen, W; Gittlesohn, A M; Rock, J A

    1987-11-01

    A rat uterine horn model of genital tract wound healing is described. Healing was reflected by acquisition of strength and elasticity, measured by burst strength (BS) and extensibility (EX), respectively. A tensiometer (Instron Corp., Canton, MA) was used to assess these characteristics in castrated and estrogen-supplemented or nonsupplemented animals. While the horn weights (HW), BS, and EX of contralateral horns were not significantly different, the intra-animal variation of HW was 7.2%, BS was 17.7% and EX was 38.2%. In a second experiment, one uterine horn was divided and anastomosed, and the animal given estrogen supplementation or a placebo pellet. Estrogen administration was found to increase BS and EX of anastomosed horns prior to 14 days, but had no beneficial effect at 21 or 42 days. The data suggest that estrogen may be required for optimal early healing of genital tract wounds.

  1. Wound healing: time to look for intelligent, 'natural' immunological approaches?

    Garraud, Olivier; Hozzein, Wael N; Badr, Gamal

    2017-06-21

    There is now good evidence that cytokines and growth factors are key factors in tissue repair and often exert anti-infective activities. However, engineering such factors for global use, even in the most remote places, is not realistic. Instead, we propose to examine how such factors work and to evaluate the reparative tools generously provided by 'nature.' We used two approaches to address these objectives. The first approach was to reappraise the internal capacity of the factors contributing the most to healing in the body, i.e., blood platelets. The second was to revisit natural agents such as whey proteins, (honey) bee venom and propolis. The platelet approach elucidates the inflammation spectrum from physiology to pathology, whereas milk and honey derivatives accelerate diabetic wound healing. Thus, this review aims at offering a fresh view of how wound healing can be addressed by natural means.

  2. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing. © 2014 The International Society of Dermatology.

  3. Dressings and topical agents for surgical wounds healing by secondary intention

    Vermeulen, H.; Ubbink, D.; Goossens, A.; de Vos, R.; Legemate, D.

    2004-01-01

    BACKGROUND: Many different wound dressings and topical applications are used to cover surgical wounds healing by secondary intention. It is not known whether these dressings heal wounds at different rates. OBJECTIVES: To assess the effectiveness of dressings and topical agents on surgical wounds

  4. The use of wound healing assessment methods in psychological studies: a review and recommendations.

    Koschwanez, Heidi E; Broadbent, Elizabeth

    2011-02-01

    To provide a critical review of methods used to assess human wound healing in psychological research and related disciplines, in order to guide future research into psychological influences on wound healing. Acute wound models (skin blister, tape stripping, skin biopsy, oral palate biopsy, expanded polytetrafluoroethylene tubing), surgical wound healing assessment methods (wound drains, wound scoring), and chronic wound assessment techniques (surface area, volumetric measurements, wound composition, and assessment tools/scoring systems) are summarized, including merits, limitations, and recommendations. Several dermal and mucosal tissue acute wound models have been established to assess the effects of psychological stress on the inflammatory, proliferative, and repair phases of wound healing in humans, including material-based models developed to evaluate factors influencing post-surgical recovery. There is a paucity of research published on psychological factors influencing chronic wound healing. There are many assessment techniques available to study the progression of chronic wound healing but many difficulties inherent to long-term clinical studies. Researchers need to consider several design-related issues when conducting studies into the effects of psychological stress on wound healing, including the study aims, type of wound, tissue type, setting, sample characteristics and accessibility, costs, timeframe, and facilities available. Researchers should consider combining multiple wound assessment methods to increase the reliability and validity of results and to further understand mechanisms that link stress and wound healing. ©2010 The British Psychological Society.

  5. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  6. Stem cells and chronic wound healing: state of the art

    Leavitt T

    2016-03-01

    Full Text Available Tripp Leavitt, Michael S Hu, Clement D Marshall, Leandra A Barnes, Michael T Longaker, H Peter Lorenz Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA Abstract: Currently available treatments for chronic wounds are inadequate. A clearly effective therapy does not exist, and treatment is often supportive. This is largely because the cellular and molecular processes underlying failure of wound repair are still poorly understood. With an increase in comorbidities, such as diabetes and vascular disease, as well as an aging population, the incidence of these intractable wounds is expected to rise. As such, chronic wounds, which are already costly, are rapidly growing as a tremendous burden to the health-care system. Stem cells have garnered much interest as a therapy for chronic wounds due to their inherent ability to differentiate into multiple lineages and promote regeneration. Herein, we discuss the types of stem cells used for chronic wound therapy, as well as the proposed means by which they do so. In particular, we highlight mesenchymal stem cells (including adipose-derived stem cells, endothelial progenitor cells, and induced pluripotent stem cells. We include the results of recent in vitro and in vivo studies in both animal models and human clinical trials. Finally, we discuss the current studies to improve stem cell therapies and the limitations of stem cell-based therapeutics. Stem cells promise improved therapies for healing chronic wounds, but further studies that are well-designed with standardized protocols are necessary for fruition. Keywords: stem cells, chronic wounds, cell therapy, wound healing

  7. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.

    Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z

    2017-07-17

    Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.

  8. Effects of aflibercept on primary RPE cells: toxicity, wound healing, uptake and phagocytosis.

    Klettner, Alexa; Tahmaz, Nihat; Dithmer, Michaela; Richert, Elisabeth; Roider, Johann

    2014-10-01

    Anti-VEGF treatment is the therapy of choice in age-related macular degeneration, and is also applied in diabetic macular oedema or retinal vein occlusion. Recently, the fusion protein, aflibercept, has been approved for therapeutic use. In this study, we investigate the effects of aflibercept on primary RPE cells. Primary RPE cells were prepared from freshly slaughtered pigs' eyes. The impact of aflibercept on cell viability was investigated with MTT and trypan blue exclusion assay. The influence of aflibercept on wound healing was assessed with a scratch assay. Intracellular uptake of aflibercept was investigated in immunohistochemistry and its influence on phagocytosis with a phagocytosis assay using opsonised latex beads. Aflibercept displays no cytotoxicity on RPE cells but impairs its wound healing ability. It is taken up into RPE cells and can be intracellularly detected for at least 7 days. Intracellular aflibercept impairs the phagocytic capacity of RPE cells. Aflibercept interferes with the physiology of RPE cells, as it is taken up into RPE cells, which is accompanied by a reduction of the phagocytic ability. Additionally, it impairs the wound healing capacity of RPE cells. These effects on the physiology of RPE cells may indicate possible side effects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an...

  10. Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius.

    Peacock, Hanna M; Gilbert, Emily A B; Vickaryous, Matthew K

    2015-11-01

    Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing. © 2015 Anatomical Society.

  11. Effect of topically applied Saccharomyces boulardii on the healing of acute porcine wounds: a preliminary study.

    Partlow, Jessica; Blikslager, Anthony; Matthews, Charles; Law, Mac; Daniels, Joshua; Baker, Rose; Labens, Raphael

    2016-04-11

    Normal wound healing progresses through a series of interdependent physiological events: inflammation, angiogenesis, re-epithelialization, granulation tissue formation and extracellular matrix remodeling. Alterations in this process as well as the bacterial type and load on a wound may alter the wound healing rate. The purpose of this study was to evaluate the effect of topical Saccharomyces boulardii on the healing of acute cutaneous wounds, using a prospective, controlled, experimental study, with six purpose bred landrace pigs. All wounds healed without apparent complications. Comparison of the mean 3D and 2D wound surface area measurements showed no significant difference between treatment groups as wounds decreased similarly in size over the duration of the study. A significant reduction in wound surface area was identified sooner using 3D assessments (by day 9) compared to 2D assessments (by day 12) (P Saccharomyces boulardii does not hasten wound healing or change the wounds' microbiome under the conditions reported in this study.

  12. Bioprinting of skin constructs for wound healing

    He, Peng; Zhao, Junning; Zhang, Jiumeng; Li, Bo; Gou, Zhiyuan; Gou, Maling; Li, Xiaolu

    2018-01-01

    Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivale...

  13. Wound Healing Effects of Rose Placenta in a Mouse Model of Full-Thickness Wounds

    Yang Woo Kim

    2015-11-01

    Full Text Available BackgroundRosa damascena, a type of herb, has been used for wound healing in Eastern folk medicine. The goal of this study was to evaluate the effectiveness of rose placenta from R. damascena in a full-thickness wound model in mice.MethodsSixty six-week-old C57BL/6N mice were used. Full-thickness wounds were made with an 8-mm diameter punch. Two wounds were made on each side of the back, and wounds were assigned randomly to the control and experimental groups. Rose placenta (250 µg was injected in the experimental group, and normal saline was injected in the control group. Wound sizes were measured with digital photography, and specimens were harvested. Immunohistochemical staining was performed to assess the expression of epidermal growth factor (EGF, vascular endothelial growth factor (VEGF, transforming growth factor-β1 (TGF-β1, and CD31. Vessel density was measured. Quantitative analysis using an enzyme-linked immunosorbent assay (ELISA for EGF was performed. All evaluations were performed on postoperative days 0, 2, 4, 7, and 10. Statistical analyses were performed using the paired t-test.Results On days 4, 7, and 10, the wounds treated with rose placenta were significantly smaller. On day 2, VEGF and EGF expression increased in the experimental group. On days 7 and 10, TGF-β1 expression decreased in the experimental group. On day 10, vessel density increased in the experimental group. The increase in EGF on day 2 was confirmed with ELISA.ConclusionsRose placenta was found to be associated with improved wound healing in a mouse full-thickness wound model via increased EGF release. Rose placenta may potentially be a novel drug candidate for enhancing wound healing.

  14. Development of honey hydrogel dressing for enhanced wound healing

    Yusof, Norimah; Ainul Hafiza, A.H.; Zohdi, Rozaini M.; Bakar, Md Zuki A.

    2007-01-01

    Radiation at 25 and 50 kGy showed no effect on the acidic pH of the local honey, Gelam, and its antimicrobial property against Staphylococcus aureus but significantly reduced the viscosity. Honey stored up to 2 years at room temperature retained all the properties studied. Radiation sterilized Gelam honey significantly stimulated the rate of burn wound healing in Sprague-Dawley rats as demonstrated by the increased rate of wound contraction and gross appearance. Gelam honey attenuates wound inflammation; and re-epithelialization was well advanced compared to the treatment using silver sulphadiazine (SSD) cream. To enhance further the use of honey in wound treatment and for easy handling, Gelam honey was incorporated into our hydrogel dressing formulation, which was then cross-linked and sterilized using electron beam at 25 kGy. Hydrogel with 6% of honey was selected based on the physical appearance

  15. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  16. Validation of a laser-assisted wound measurement device in a wound healing model.

    Constantine, Ryan S; Bills, Jessica D; Lavery, Lawrence A; Davis, Kathryn E

    2016-10-01

    In the treatment and monitoring of a diabetic or chronic wound, accurate and repeatable measurement of the wound provides indispensable data for the patient's medical record. This study aims to measure the accuracy of the laser-assisted wound measurement (LAWM) device against traditional methods in the measurement of area, depth and volume. We measured four 'healing' wounds in a Play-Doh(®) -based model over five subsequent states of wound healing progression in which the model was irregularly filled in to replicate the healing process. We evaluated the LAWM device against traditional methods including digital photograph assessment with National Institutes of Health ImageJ software, measurements of depth with a ruler and weight-to-volume assessment with dental paste. Statistical analyses included analysis of variance (ANOVA) and paired t-tests. We demonstrate that there are significantly different and nearly statistically significant differences between traditional ruler depth measurement and LAWM device measurement, but there are no statistically significant differences in area measurement. Volume measurements were found to be significantly different in two of the wounds. Rate of percentage change was analysed for volume and depth in the wound healing model, and the LAWM device was not significantly different than the traditional measurement technique. While occasionally inaccurate in its absolute measurement, the LAWM device is a useful tool in the clinician's arsenal as it reliably measures rate of percentage change in depth and volume and offers a potentially aseptic alternative to traditional measurement techniques. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  17. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.

    Felder Marcel; Sallin Pauline; Barbe Laurent; Haenni Beat; Gazdhar Amiq; Geiser Thomas; Guenat Olivier

    2012-01-01

    We present a microfluidic epithelial wound healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system a technique that is reported here ...

  18. [Pathophysiological aspects of wound healing in normal and diabetic foot].

    Maksimova, N V; Lyundup, A V; Lubimov, R O; Melnichenko, G A; Nikolenko, V N

    2014-01-01

    The main cause of long-term healing of ulcers in patients with diabetic foot is considered to be direct mechanical damage when walking due to reduced sensitivity to due to neuropathy, hyperglycemia, infection and peripheral artery disease. These factors determine the standard approaches to the treatment of diabeticfoot, which include: offloading, glycemic control, debridement of ulcers, antibiotic therapy and revascularization. Recently, however, disturbances in the healing process of the skin in diabetes recognized an additional factor affecting the timing of healing patients with diabetic foot. Improved understanding and correction of cellular, molecular and biochemical abnormalities in chronic wound in combination with standard of care for affords new ground for solving the problem of ulcer healing in diabetes.

  19. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

    Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.

    2016-01-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428

  20. Impaired Fracture Healing after Hemorrhagic Shock

    Philipp Lichte

    2015-01-01

    Full Text Available Impaired fracture healing can occur in severely injured patients with hemorrhagic shock due to decreased soft tissue perfusion after trauma. We investigated the effects of fracture healing in a standardized pressure controlled hemorrhagic shock model in mice, to test the hypothesis that bleeding is relevant in the bone healing response. Male C57/BL6 mice were subjected to a closed femoral shaft fracture stabilized by intramedullary nailing. One group was additionally subjected to pressure controlled hemorrhagic shock (HS, mean arterial pressure (MAP of 35 mmHg for 90 minutes. Serum cytokines (IL-6, KC, MCP-1, and TNF-α were analyzed 6 hours after shock. Fracture healing was assessed 21 days after fracture. Hemorrhagic shock is associated with a significant increase in serum inflammatory cytokines in the early phase. Histologic analysis demonstrated a significantly decreased number of osteoclasts, a decrease in bone quality, and more cartilage islands after hemorrhagic shock. μCT analysis showed a trend towards decreased bone tissue mineral density in the HS group. Mechanical testing revealed no difference in tensile failure. Our results suggest a delay in fracture healing after hemorrhagic shock. This may be due to significantly diminished osteoclast recruitment. The exact mechanisms should be studied further, particularly during earlier stages of fracture healing.

  1. The effects of chronic ketorolac tromethamine (toradol) on wound healing.

    Haws, M J; Kucan, J O; Roth, A C; Suchy, H; Brown, R E

    1996-08-01

    Intramuscular ketorolac is a commonly used nonsteroidal anti-inflammatory (NSAI) agent for analgesia in surgical patients. Increasing numbers of surgical patients are chronically taking some form of an NSAI drug. We examined the effects of "chronic" intramuscular ketorolac on the healing of a closed linear surgical wound in the rat. Wistar rats were pretreated with 4 mg per kilogram per day ketorolac intramuscularly prior to receiving dorsal incisional wounds. The ketorolac treatment was continued and after 2 weeks the wounds were excised and separated with a tensiometer to measure mechanical properties. Breaking strength was directly measured, tensile strength was calculated, and collagen concentrations at the wound site were determined. A significant decrease in the mean breaking strength was seen in the ketorolac-treated animals when compared to controls. The ketorolac-treated animals had a mean tensile strength less than the controls, although this difference did not reach statistical significance. The mean collagen concentration of the ketorolac-treated wounds was significantly less than the untreated wounds. Use of ketorolac for just 1 week prior to surgery in rats produced a significant decrease in the breaking strength of their wounds. With the increasing use of ketorolac in surgical patients as well as the increasing use of oral NSAI drugs, more study of this effect is warranted.

  2. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  3. Preclinical Evaluation of Tegaderm™ Supported Nanofibrous Wound Matrix Dressing on Porcine Wound Healing Model.

    Ong, Chee Tian; Zhang, Yanzhong; Lim, Raymond; Samsonraj, Rebekah; Masilamani, Jeyakumar; Phan, Tran Hong Ha; Ramakrishna, Seeram; Lim, Ivor; Kee, Irene; Fahamy, Mohammad; Templonuevo, Vilma; Lim, Chwee Teck; Phan, Toan Thang

    2015-02-01

    Objective: Nanofibers for tissue scaffolding and wound dressings hold great potential in realizing enhanced healing of wounds in comparison with conventional counterparts. Previously, we demonstrated good fibroblast adherence and growth on a newly developed scaffold, Tegaderm™-Nanofiber (TG-NF), made from poly ɛ-caprolactone (PCL)/gelatin nanofibers electrospun onto Tegaderm (TG). The purpose of this study is to evaluate the performance and safety of TG-NF dressings in partial-thickness wound in a pig healing model. Approach: To evaluate the rate of reepithelialization, control TG, human dermal fibroblast-seeded TG-NF(+) and -unseeded TG-NF(-) were randomly dressed onto 80 partial-thickness burns created on four female and four male pigs. Wound inspections and dressings were done after burns on day 7, 14, 21, and 28. On day 28, full-thickness biopsies were taken for histopathological evaluation by Masson-Trichrome staining for collagen and hematoxylin-eosin staining for cell counting. Results: No infection and severe inflammation were recorded. Wounds treated with TG-NF(+) reepithelialized significantly faster than TG-NF(-) and control. Wound site inflammatory responses to study groups were similar as total cell counts on granulation tissues show no significant differences. Most of the wounds completely reepithelialized by day 28, except for two wounds in control and TG-NF(-). A higher collagen coverage was also recorded in the granulation tissues treated with TG-NF(+). Innovation and Conclusion: With better reepithelialization achieved by TG-NF(+) and similar rates of wound closure by TG-NF(-) and control, and the absence of elevated inflammatory responses to TG-NF constructs, TG-NF constructs are safe and demonstrated good healing potentials that are comparable to Tegaderm.

  4. Halloysite and chitosan oligosaccharide nanocomposite for wound healing.

    Sandri, Giuseppina; Aguzzi, Carola; Rossi, Silvia; Bonferoni, Maria Cristina; Bruni, Giovanna; Boselli, Cinzia; Cornaglia, Antonia Icaro; Riva, Federica; Viseras, Cesar; Caramella, Carla; Ferrari, Franca

    2017-07-15

    Halloysite is a natural nanotubular clay mineral (HNTs, Halloysite Nano Tubes) chemically identical to kaolinite and, due to its good biocompatibility, is an attractive nanomaterial for a vast range of biological applications. Chitosan oligosaccharides are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine, that accelerate wound healing by enhancing the functions of inflammatory and repairing cells. The aim of the work was the development of a nanocomposite based on HNTs and chitosan oligosaccharides, to be used as pour powder to enhance healing in the treatment of chronic wounds. A 1:0.05 wt ratio HTNs/chitosan oligosaccharide nanocomposite was obtained by simply stirring the HTNs powder in a 1% w/w aqueous chitosan oligosaccharide solution and was formed by spontaneous ionic interaction resulting in 98.6% w/w HTNs and 1.4% w/w chitosan oligosaccharide composition. Advanced electron microscopy techniques were considered to confirm the structure of the hybrid nanotubes. Both HTNs and HTNs/chitosan oligosaccharide nanocomposite showed good in vitro biocompatibility with normal human dermal fibroblasts up to 300μg/ml concentration and enhanced in vitro fibroblast motility, promoting both proliferation and migration. The HTNs/chitosan oligosaccharide nanocomposite and the two components separately were tested for healing capacity in a murine (rat) model. HTNs/chitosan oligosaccharide allowed better skin reepithelization and reorganization than HNTs or chitosan oligosaccharide separately. The results suggest to develop the nanocomposite as a medical device for wound healing. The present work is focused on the development of halloysite and chitosan oligosaccharide nanocomposite for wound healing. It considers a therapeutic option for difficult to heal skin lesions and burns. The significance of the research considers two fundamental aspects: the first one is related to the development of a self-assembled nanocomposite, formed by spontaneous ionic

  5. Relationship between Post-kidney Transplantation Antithymocyte Globulin Therapy and Wound Healing Complications

    Pourmand, G. R.; Dehghani, S.; Saraji, A.; Khaki, S.; Mortazavi, S. H.; Mehrsai, A.; Sajadi, H.

    2012-01-01

    Background: Wound healing disorders are probably the most common post-transplantation surgical complications. It is thought that wound healing disturbance occurs due to antiproliferative effects of immunosuppressive drugs. On the other hand, success of transplantation is dependent on immunosuppressive therapies. Antihuman thymocyte globulin (ATG) has been widely used as induction therapy but the impact of this treatment on wound healing is not fully understood. Objective: To investigate wound...

  6. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  7. Effect of γ irradiation on rate of wound healing in a scored confluent monolayer of cells and the repair-promoting role of W11-a12

    Shu Chongxiang; Lou Shufen; Cheng Tianmin; Li Shunan; Ran Xinze

    2002-01-01

    Objective: To investigate the effects of ionizing radiation on healing rate of experimental wound in a scored confluent monolayer of fibroblasts and vascular endothelial cells and the repair-promoting effect of W 11 -a 12 . Methods: The healing rates of the experimental wound in a scored confluent monolayer of 3T3 cells or ECV304 cells irradiated with 6 Gy 60 Co gamma rays were assayed by measuring the width of the wound. Results: After irradiation, the closure of scored wounds both in a confluent monolayer of 3T3 cells and in that of ECV304 cells was significantly delayed. The scored wound in a confluent monolayer of 3T3 cells was completely closed in the sham irradiation group, but it was only 77% in the irradiation group at the tenth hour post wounding. The healing rate of the scored wound in a confluent monolayer of irradiated ECV304 cells was 83.6% of that in the sham irradiation group W 11 -a 12 had good promoting action on the closure of wounds in scored confluent monolayers of these two kinds of cells. Conclusion: The direct inhibitory effects of irradiation on the proliferating and migrating capacity of both fibroblasts and vascular endothelial cells might be one of the important reasons for the delay of healing in irradiation-impaired wounds and W 11 -a 12 could promote healing of irradiation-impaired wound by means of enhancing cell migration and proliferation directly

  8. Corneal wound healing is compromised by immunoproteasome deficiency.

    Deborah A Ferrington

    Full Text Available Recent studies have revealed roles for immunoproteasome in regulating cell processes essential for maintaining homeostasis and in responding to stress and injury. The current study investigates how the absence of immunoproteasome affects the corneal epithelium under normal and stressed conditions by comparing corneas from wildtype (WT mice and those deficient in two immunoproteasome catalytic subunits (lmp7(-/-/mecl-1(-/-, L7M1. Immunoproteasome expression was confirmed in WT epithelial cells and in cells of the immune system that were present in the cornea. More apoptotic cells were found in both corneal explant cultures and uninjured corneas of L7M1 compared to WT mice. Following mechanical debridement, L7M1 corneas displayed delayed wound healing, including delayed re-epithelialization and re-establishment of the epithelial barrier, as well as altered inflammatory cytokine production compared to WT mice. These results suggest that immunoproteasome plays an important role in corneal homeostasis and wound healing.

  9. Treatment of Wound Healing Disorders of Radial Forearm Free Flap Donor Sites Using Cold Atmospheric Plasma: A Proof of Concept.

    Hartwig, Stefan; Doll, Christian; Voss, Jan Oliver; Hertel, Moritz; Preissner, Saskia; Raguse, Jan Dirk

    2017-02-01

    The treatment of wound healing disturbances of the radial forearm free flap donor site after reconstructive surgery is typically long and burdensome and often requires additional surgery. Cold atmospheric plasma is a promising approach to overcome these impairments. The aim of this proof of concept study was to evaluate the clinical outcome of plasma irradiation in patients with wound healing disorders with exposed brachial tendons of the radial forearm. Four patients (mean age 64.2 years, range 44 to 80) who had undergone radial forearm free flap procedures and developed wound healing disturbance leading to exposed flexor tendons were included in the present prospective case series. In addition to routine wound care, all sites were irradiated with cold atmospheric plasma. The primary outcome variable was complete wound closure. In all patients, complete wound repair in terms of the absence of tendon exposure was observed within a mean treatment time of 10.1 weeks (range 4.9 to 16). No undesirable side effects were observed, and no inflammation or infection occurred. Cold atmospheric plasma could offer a reliable conservative treatment option for complicated wound healing disturbances. This was exemplarily shown in the case of radial forearm free flap donor site morbidity with exposed flexor tendons in the present study. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties

    Abdel-Mohsen, A. M.; Jancar, J.; Massoud, D.; Fohlerová, Z.; Elhadidy, Hassan; Spotz, Z.; Hebeish, A.

    2016-01-01

    Roč. 510, č. 1 (2016), s. 86-99 ISSN 0378-5173 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Chitin/chitosan-glucan complex * Nonwoven mat * Surgical wound healing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.649, year: 2016

  11. Wound healing activity of Ullucus tuberosus, an Andean tuber crop

    Nathalie Heil; Karent Bravo; Andrés Montoya; Sara Robledo; Edison Osorio

    2017-01-01

    Objective: This study was designed to investigate the wound healing activity of aqueous extracts of Ullucus tuberosus (U. tuberosus) using in vitro models. Methods: Lyophilized pulp and acetone extracts of U. tuberosus were produced using ultrasound extraction. The capacity for collagenase activation was evaluated using fluorescence detection of the enzymatic activity. Then, the influence of U. tuberosus extracts on cell proliferation, cell migration and synthesis of the extracellular matr...

  12. Curcumin: a novel therapeutic for burn pain and wound healing

    2013-08-01

    given as an adjuvant with the nonsteroidal antiinflammatory drug (NSAID) diclofenac, reduces spontaneous pain behaviors in a formalin-induced orofacial ...R, Hota D, Chakrabarti A. Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytother Res 2009;23:507-12...bioavailability 5. Curcumin delivery vehicles 6. Conclusion 7. Expert opinion Review Curcumin: a novel therapeutic for burn pain and wound healing Bopaiah

  13. Partial-thickness burn wounds healing by topical treatment

    Saeidinia, Amin; Keihanian, Faeze; Lashkari, Ardalan Pasdaran; Lahiji, Hossein Ghavvami; Mobayyen, Mohammadreza; Heidarzade, Abtin; Golchai, Javad

    2017-01-01

    Abstract Background: Burns are common event and associated with a high incidence of death, disability, and high costs. Centella asiatica (L.) is a medicinal herb, commonly growing in humid areas in several tropical countries that improve wound healing. On the basis of previous studies, we compared the efficacy of Centiderm versus silver sulfadiazine (SSD) in partial thickness burning patients. Methods: Study population comprised burn victims referred to Velayat Burning Hospital at Rasht, Iran...

  14. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    Datta, Hema Sharma; Mitra, Shankar Kumar; Patwardhan, Bhushan

    2011-01-01

    The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary e...

  15. Evaluation of wound healing property of Caesalpinia mimosoides Lam.

    Bhat, Pradeep Bhaskar; Hegde, Shruti; Upadhya, Vinayak; Hegde, Ganesh R; Habbu, Prasanna V; Mulgund, Gangadhar S

    2016-12-04

    Caesalpinia mimosoides Lam. is one of the important traditional folk medicinal plants in the treatment of skin diseases and wounds used by healers of Uttara Kannada district of Karnataka state (India). However scientific validation of documented traditional knowledge related to medicinal plants is an important path in current scenario to fulfill the increasing demand of herbal medicine. The study was carried out to evaluate the claimed uses of Caesalpinia mimosoides using antimicrobial, wound healing and antioxidant activities followed by detection of possible active bio-constituents. Extracts prepared by hot percolation method were subjected to preliminary phytochemical analysis followed by antimicrobial activity using MIC assay. In vivo wound healing activity was evaluated by circular excision and linear incision wound models. The extract with significant antimicrobial and wound healing activity was investigated for antioxidant capacity using DPPH, nitric oxide, antilipid peroxidation and total antioxidant activity methods. Total phenolic and flavonoid contents were also determined by Folin-Ciocalteu, Swain and Hillis methods. Possible bio-active constituents were identified by GC-MS technique. RP-UFLC-DAD analysis was carried out to quantify ethyl gallate and gallic acid in the plant extract. Preliminary phytochemical analysis showed positive results for ethanol and aqueous extracts for all the chemical constituents. The ethanol extract proved potent antimicrobial activity against both bacterial and fungal skin pathogens compared to other extracts. The efficacy of topical application of potent ethanol extract and traditionally used aqueous extracts was evidenced by the complete re-epithelization of the epidermal layer with increased percentage of wound contraction in a shorter period. However, aqueous extract failed to perform a consistent effect in the histopathological assessment. Ethanol extract showed effective scavenging activity against DPPH and nitric

  16. Hydrogen sulfide accelerates wound healing in diabetic rats.

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF).

  17. Studies on Wound Healing Activity of Heliotropium indicum Linn. Leaves on Rats

    Dash, G. K.; Murthy, P. N.

    2011-01-01

    The petroleum ether, chloroform, methanol, and aqueous extracts of Heliotropium indicum Linn. (Family: Boraginaceae) were separately evaluated for their wound healing activity in rats using excision (normal and infected), incision, and dead space wound models. The effects of test samples on the rate of wound healing were assessed by the rate of wound closure, period of epithelialisation, wound breaking strength, weights of the granulation tissue, determination of hydroxyproline, super oxide d...

  18. Wound healing in pre-tibial injuries--an observation study.

    McClelland, Heather M; Stephenson, John; Ousey, Karen J; Gillibrand, Warren P; Underwood, Paul

    2012-06-01

    Pre-tibial lacerations are complex wounds affecting a primarily aged population, with poor healing and a potentially significant impact on social well-being. Management of these wounds has changed little in 20 years, despite significant advances in wound care. A retrospective observational study was undertaken to observe current wound care practice and to assess the effect of various medical factors on wound healing time on 24 elderly patients throughout their wound journey. Wound length was found to be substantively and significantly associated with wound healing time, with a reduction in instantaneous healing rate of about 30% for every increase of 1 cm in wound length. Hence, longer wounds are associated with longer wound healing times. Prescription of several categories of drugs, including those for ischaemic heart disease (IHD), hypertension, respiratory disease or asthma; and the age of the patient were not significantly associated with wound healing times, although substantive significance could be inferred in the case of prescription for IHD and asthma. Despite the small sample size, this study identified a clear association between healing and length of wound. Neither the comorbidities nor prescriptions explored showed any significant association although some seem to be more prevalent in this patient group. The study also highlighted other issues that require further exploration including the social and economic impact of these wounds. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  19. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  20. Partial-thickness burn wounds healing by topical treatment

    Saeidinia, Amin; Keihanian, Faeze; Lashkari, Ardalan Pasdaran; Lahiji, Hossein Ghavvami; Mobayyen, Mohammadreza; Heidarzade, Abtin; Golchai, Javad

    2017-01-01

    Abstract Background: Burns are common event and associated with a high incidence of death, disability, and high costs. Centella asiatica (L.) is a medicinal herb, commonly growing in humid areas in several tropical countries that improve wound healing. On the basis of previous studies, we compared the efficacy of Centiderm versus silver sulfadiazine (SSD) in partial thickness burning patients. Methods: Study population comprised burn victims referred to Velayat Burning Hospital at Rasht, Iran. The intervention group received Centiderm and control group SSD cream. Burn wounds were treated once daily at home. All of the wounds were evaluated till complete healing occurred and at the admission, days 3, 7, 14 objective signs; visual acuity score (VAS) and subjective signs were recorded. Re-epithelialization time and complete healing days were recorded. We used random fixed block for randomization. The randomization sequence was created using the computer. Patients and burning specialist physician were blinded. Results: Seventy-five patients randomized into 2 groups; (40 patients: Centiderm group; 35 patients: SSD group). The mean age of them was 30.67 ± 9.91 years and 19 of them were male (31.7%). Thirty patients in Centiderm and 30 patients in SSD group were analyzed. All of objective and subjective signs and mean of re-epithelialization and complete healing were significantly better in Centiderm group rather than SSD group (P < 0.05). There was no infection in Centiderm group. Conclusions: We showed that use of Centiderm ointment not only improved the objective and subjective signs in less than 3 days, but also the re-epithelialization and complete healing rather than SSD without any infection in the subjects. PMID:28248871

  1. Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse.

    Galeano, Mariarosaria; Altavilla, Domenica; Cucinotta, Domenico; Russo, Giuseppina T; Calò, Margherita; Bitto, Alessandra; Marini, Herbert; Marini, Rolando; Adamo, Elena B; Seminara, Paolo; Minutoli, Letteria; Torre, Valerio; Squadrito, Francesco

    2004-09-01

    The effects of recombinant human erythropoietin (rHuEPO) in diabetes-related healing defects were investigated by using an incisional skin-wound model produced on the back of female diabetic C57BL/KsJ-m(+/+)Lept(db) mice (db(+)/db(+)) and their normoglycemic littermates (db(+/+)m). Animals were treated with rHuEPO (400 units/kg in 100 microl s.c.) or its vehicle alone (100 microl). Mice were killed on different days (3, 6, and 12 days after skin injury) for measurement of vascular endothelial growth factor (VEGF) mRNA expression and protein synthesis, for monitoring angiogenesis by CD31 expression, and for evaluating histological changes. Furthermore, we evaluated wound-breaking strength at day 12. At day 6, rHuEPO injection in diabetic mice resulted in an increase in VEGF mRNA expression (vehicle = 0.33 +/- 0.1 relative amount of mRNA; rHuEPO = 0.9 +/- 0.09 relative amount of mRNA; P < 0.05) and protein wound content (vehicle = 23 +/- 5 pg/wound; rHuEPO = 92 +/- 12 pg/wound; P < 0.05) and caused a marked increase in CD31 gene expression (vehicle = 0.18 +/- 0.05 relative amount of mRNA; rHuEPO = 0.98 +/- 0.21 relative amount of mRNA; P < 0.05) and protein synthesis. Furthermore, rHuEPO injection improved the impaired wound healing and, at day 12, increased the wound-breaking strength in diabetic mice (vehicle = 12 +/- 2 g/mm; rHuEPO 21 +/- 5 g/mm; P < 0.05). Erythropoietin may have a potential application in diabetes-related wound disorders.

  2. Bioinspired porous membranes containing polymer nanoparticles for wound healing.

    Ferreira, Ana M; Mattu, Clara; Ranzato, Elia; Ciardelli, Gianluca

    2014-12-01

    Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(L-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. © 2014 Wiley Periodicals, Inc.

  3. Cell-cycle regulatory proteins in human wound healing

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1......) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas...

  4. Monitoring wound healing by multiphoton tomography/endoscopy

    König, Karsten; Weinigel, Martin; Bückle, Rainer; Kaatz, Martin; Hipler, Christina; Zens, Katharina; Schneider, Stefan W.; Huck, Volker

    2015-02-01

    Certified clinical multiphoton tomographs are employed to perform rapid label-free high-resolution in vivo histology. Novel tomographs include a flexible 360° scan head attached to a mechano-optical arm for autofluorescence and SHG imaging as well as rigid two-photon GRIN microendoscope. Mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged with submicron resolution in human skin. The system was employed to study the healing of chronic wounds (venous leg ulcer) and acute wounds (curettage of actinic or seborrheic keratosis) on a subcellular level. Furthermore, a flexible sterile foil as interface between wound and focusing optic was tested.

  5. Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats.

    Reddy, J Suresh; Rao, P Rajeswara; Reddy, Mada S

    2002-02-01

    The ethanolic extracts of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica were evaluated for their wound healing activity in rats. Wound healing activity was studied using excision and incision wound models in rats following topical application. Animals were divided into four groups with six in each group. Ten percent w/v extract of each plant was prepared in saline for topical application. H. indicum possesses better wound healing activity than P. zeylanicum and A. indica. Tensile strength results indicate better activity of H. indicum on remodeling phase of wound healing.

  6. Heterotopic epithelialization presenting as a non-healing scalp wound after surgery

    Askaner, Gustav; Rasmussen, Rune; Schmidt, Grethe

    2017-01-01

    Patients undergoing cerebral revascularization surgery have a relatively high incidence of wound complications. We report a case of heterotopic epithelialization of the dura presenting as a non-healing scalp wound after an extracranial-intracranial (EC-IC) arterial bypass. The scalp wound...... was revised twice without healing. During the third revision, epithelial tissue was found growing on the dura and was removed. After the epithelial tissue was removed, the wound healed without further complications. This case illustrates the importance of thoroughly examining a non-healing wound to find...

  7. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoids content was determined by spectrophotometric method. The antioxidant activity was determined by oxygen radical absorbing capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazylhydrate radical photometric (DPPH) assays. Results: The treated group with the ethyl acetate extract showed collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Quercetin, kaempferol and hyperoside were identified as main compounds and flavonoids content value was 43% (w/w). The ORAC value of the ethyl acetate extract was 0.81± 0.05 mmol TE/g whereas the concentration to produce 50% reduction of the DPPH was 7.05± 0.09 μg/mL. Conclusion: The data indicate a wound healing and antioxidant activities of E. pruniformis. This study is the first report of flavonoids and wound healing activity of E. pruniformis. KEY MESSAGES Eugenia pruniformis extract accelerates wound healing in skin rat model, probably due to its involvement with the collagen deposition increase, higher levels of hidroxyproline, dermal remodelling and potent antioxidant activity

  8. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    Hema Sharma Datta

    2011-01-01

    Full Text Available The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary efficacy evaluation of the anti-aging activity we chose excision and incision wound healing animal models and studied the parameters including wound contraction, collagen content and skin breaking strength which in turn is indicative of the tissue cell regeneration capacity, collagenation capacity and mechanical strength of skin. The group treated with the formulations containing Yashada bhasma along with Shorea robusta resin and flax seed oil showed significantly better wound contraction (P < .01, higher collagen content (P < .05 and better skin breaking strength (P < .01 as compared to control group; thus proposing them to be effective prospective anti-aging formulations.

  9. Effects of Andiroba oil (Carapa guianensis on wound healing in alloxan-diabetic rats

    Bruna Angelina Alves de Souza

    2017-10-01

    Full Text Available Purpose: To evaluate wound healing in diabetic rats by using topic Andiroba oil (Carapa guianensis. Methods: Six male, adult, Wistar rats were distributed into three groups: Sham group (wound treatment with distilled water; Collagenase group (treatment with collagenase ointment; and Andiroba group (wound treatment with Andiroba oil. The wound was evaluated considering the macroscopic and microscopic parameters. Results: The results indicated differences in the healing of incisional wounds between treatments when compared to control group. Accelerated wound healing was observed in the group treated with Andiroba oil and Collagenase in comparison to control group, especially after the 14th day. Morphometric data confirmed the structural findings. Conclusion: There was significant effect in topical application of Andiroba oil on wound healing in rats with induced diabetes.   Keywords: Medicinal plants. Diabetes Mellitus. Wound healing. Rats.

  10. Matrix- and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine.

    Sheets, Anthony R; Massey, Conner J; Cronk, Stephen M; Iafrati, Mark D; Herman, Ira M

    2016-07-02

    Non-healing wounds are a major global health concern and account for the majority of non-traumatic limb amputations worldwide. However, compared to standard care practices, few advanced therapeutics effectively resolve these injuries stemming from cardiovascular disease, aging, and diabetes-related vasculopathies. While matrix turnover is disrupted in these injuries, debriding enzymes may promote healing by releasing matrix fragments that induce cell migration, proliferation, and morphogenesis, and plasma products may also stimulate these processes. Thus, we created matrix- and plasma-derived peptides, Comb1 and UN3, which induce cellular injury responses in vitro, and accelerate healing in rodent models of non-healing wounds. However, the effects of these peptides in non-healing wounds in diabetes are not known. Here, we interrogated whether these peptides stimulate healing in a diabetic porcine model highly reminiscent of human healing impairments in type 1 and type 2-diabetes. After 3-6 weeks of streptozotocin-induced diabetes, full-thickness wounds were surgically created on the backs of adult female Yorkshire swine under general anesthesia. Comb1 and UN3 peptides or sterile saline (negative control) were administered to wounds daily for 3-7 days. Following sacrifice, wound tissues were harvested, and quantitative histological and immunohistochemical analyses were performed for wound closure, angiogenesis and granulation tissue deposition, along with quantitative molecular analyses of factors critical for angiogenesis, epithelialization, and dermal matrix remodeling. Comb1 and UN3 significantly increase re-epithelialization and angiogenesis in diabetic porcine wounds, compared to saline-treated controls. Additionally, fluorescein-conjugated Comb1 labels keratinocytes, fibroblasts, and vascular endothelial cells in porcine wounds, and Far western blotting reveals these cell populations express multiple fluorescein-Comb1-interacting proteins in vitro. Further

  11. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients.

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2015-01-01

    Heat shock proteins (HSPs) are inducible stress proteins expressed in cells exposed to stress. HSPs promote wound healing by recruitment of dermal fibroblasts to the site of injury and bring about protein homeostasis. Diabetic wounds are hard to heal and inadequate HSPs may be important contributors in the etiology of diabetic foot ulcers (DFU). To analyze the differential expression of HSPs and their downstream molecules in human diabetic wounds compared to control wounds. Expressional levels of HSP27, HSP47 and HSP70 and their downstream molecules like TLR4, p38-MAPK were seen in biopsies from 101 human diabetic wounds compared to 8 control subjects without diabetes using RT-PCR, western blot and immunohistochemistry. Our study suggested a significant down regulation of HSP70, HSP47 and HSP27 (p value=diabetic wounds. Our study demonstrates that the down regulation of HSPs in diabetic wounds is associated with wound healing impairment in T2DM subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds.

    Galeano, Mariarosaria; Altavilla, Domenica; Bitto, Alessandra; Minutoli, Letteria; Calò, Margherita; Lo Cascio, Patrizia; Polito, Francesca; Giugliano, Giovanni; Squadrito, Giovanni; Mioni, Chiara; Giuliani, Daniela; Venuti, Francesco S; Squadrito, Francesco

    2006-04-01

    Erythropoietin interacts with vascular endothelial growth factor (VEGF) and stimulates endothelial cell mitosis and motility; thus it may be of importance in the complex phenomenon of wound healing. The purpose of this study was to investigate the effect of recombinant human erythropoietin (rHuEPO) on experimental burn wounds. Randomized experiment. Research laboratory. C57BL/6 male mice weighing 25-30 g. Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second degree burn. Animals were randomized to receive either rHuEPO (400 units/kg/day for 14 days in 100 microL subcutaneously) or its vehicle alone (100 microl/day distilled water for 14 days subcutaneously). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of neoangiogenesis by immunohistochemistry, and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, measurement of VEGF wound content (enzyme-linked immunosorbent assay), expression (Western blot) of endothelial and inducible nitric oxide synthases, and determination of wound nitric oxide (NO) products. rHuEPO increased burn wound reepithelialization and reduced the time to final wound closure. These effects were completely abated by a passive immunization with specific antibodies against erythropoietin. rHuEPO improved healing of burn wound through increased epithelial proliferation, maturation of the extracellular matrix, and angiogenesis. The hematopoietic factor augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31. Furthermore, rHuEPO enhanced the wound content of VEGF caused a marked expression of endothelial and inducible nitric oxide synthases and increased wound content of nitric oxide products. Our study suggests that rHuEPO may be an effective therapeutic approach to improve clinical outcomes after thermal injury.

  13. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing.

    Boekema, Bouke K H L; Vlig, Marcel; Olde Damink, Leon; Middelkoop, Esther; Eummelen, Lizette; Bühren, Anne V; Ulrich, Magda M W

    2014-02-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were tested in porcine full-thickness wounds in combination with autologous split skin mesh grafts (SSG). Effect on wound healing was evaluated both macro- and microscopically. CE scaffolds with a pore size of 80 or 100 μm resulted in good wound healing after one-stage grafting. Application of scaffolds with a larger average pore size (120 μm) resulted in more myofibroblasts and more foreign body giant cells (FBGC). Moderate crosslinking impaired wound healing as it resulted in more wound contraction, more FBGC and increased epidermal thickness compared to no cross-linking. In addition, take rate and redness were negatively affected compared to SSG only. Vascularization and the number of myofibroblasts were not affected by cross-linking. Surprisingly, stability of cross-linked scaffolds was not increased in the wound environment, in contrast to in vitro results. Cross-linking reduced the proliferation of fibroblasts in vitro, which might explain the reduced clinical outcome. The non-cross-linked CE substitute with unidirectional pores allowed one-stage grafting of SSG, resulting in good wound healing. In addition, only a very mild foreign body reaction was observed. Cross-linking of CE scaffolds negatively affected wound healing on several important parameters. The optimal non-cross-linked CE substitute is a promising candidate for future clinical evaluation.

  14. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Low Intensity Laser Therapy Applied in the Healing of Wounds

    Kahn, Fred; Matthews, Jeffrey

    2009-06-01

    Objective: The aim of this study was to determine the outcomes of Low Intensity Laser Therapy (LILT) on wound healing for patients presenting with pain, compromised neurological and physical function and tissue damage associated with vascular/diabetic ulcerations of the lower extremity. Methods: A retrospective case review of six patients treated with LILT (GaAlAs SLD, 660 nm, 750 mW, 3.6 J/cm2; GaAlAs SLD, 840 nm, 1,500 mW, 6.48 J/cm2; GaAlAs laser, 830 nm, 75 mW, 270 J/cm2) was conducted of clinical features including pain, measured by visual analogue scale (VAS), motor function, measured by range of motion (ROM) and visual outcome, measured by wound dimensions for six patients (n = 6; 5 males, 1 female; age = 67.83 years). Results: Significant progress with regard to alleviation of pain (ΔVAS = -5), improvements in motor function (ΔROM = +40%), epithelialization (wound closure rate = 3%/week) and complete wound closure was achieved. No recurrence of pathology at least one month post cessation of therapy was evident (x¯% reduction in wound area = 100%). Conclusions: LILT achieved consistent, effective and clear endpoints, was cost effective, created no adverse effects and ultimately led to the salvage of extremities.

  16. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing.

    Wang, Chenggui; Wang, Qingqing; Gao, Wendong; Zhang, Zengjie; Lou, Yiting; Jin, Haiming; Chen, Xiaofeng; Lei, Bo; Xu, Huazi; Mao, Cong

    2018-03-15

    Wound therapy with a rapid healing performance remains a critical clinical challenge. Cellular delivery is considered to be a promising approach to improve the efficiency of healing, yet problems such as compromised cell viability and functionality arise due to the inefficient delivery. Here, we report the efficient delivery of endothelial progenitor cells (EPCs) with a bioactive nanofibrous scaffold (composed of collagen and polycaprolactone and bioactive glass nanoparticles, CPB) for enhancing wound healing. Under the stimulation of CPB nanofibrous system, the viability and angiogenic ability of EPCs were significantly enhanced through the activation of Hif-1α/VEGF/SDF-1α signaling. In vivo, CPB/EPC constructs significantly enhanced the formation of high-density blood vessels by greatly upregulating the expressions of Hif-1α, VEGF, and SDF-1α. Moreover, owing to the increased local delivery of cells and fast neovascularization within the wound site, cell proliferative activity, granulation tissue formation, and collagen synthesis and deposition were greatly promoted by CPB/EPC constructs resulting in rapid re-epithelialization and regeneration of skin appendages. As a result, the synergistic enhancement of wound healing was observed from CPB/EPC constructs, which suggests the highly efficient delivery of EPCs. CPB/EPC constructs may become highly competitive cell-based therapeutic products for efficient impaired wound healing application. This study may also provide a novel strategy to develop bioactive cell therapy constructs for angiogenesis-related regenerative medicine. This paper reported a highly efficient local delivery of EPCs using bioactive glass-based CPB nanofibrous scaffold for enhancing angiogenesis and wound regeneration. In vitro study showed that CPB can promote the proliferation, migration, and tube formation of EPCs through upregulation of the Hif-1α/VEGF/SDF-1α signaling pathway, indicating that the bioactivity and angiogenic ability of

  17. Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product.

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2016-12-01

    Application of natural materials in wound healing is an interest topic due to effective treatment with no side effects. In this paper, Aloe Vera extract was encapsulated into Tragacanth Gum through a sonochemical microemulsion process to prepare a wound healing product. FESEM/EDX and FT-IR proved the successfully formation of the nanocapsules with spherical shape by cross-linking aluminum ions with Tragacanth Gum. The therapeutic characteristics of the prepared wound healing product were investigated using antimicrobial, cytotoxicity and wound healing assays. Relative high antimicrobial activities with the microbial reduction of 84, 91 and 80% against E. coli, S. aureus and C. albicans, a cell viability of 98% against human fibroblast cells and a good wound healing activity with considerable migration rate of fibroblast cells are the important advantages of the new formed wound healing product. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sympathetic nerves: How do they affect angiogenesis, particularly during wound healing of soft tissues?

    Pan, Liangli; Tang, Jianbing; Liu, Hongwei; Cheng, Biao

    2016-01-01

    Angiogenesis is essential for wound healing, and angiogenesis impairment can result in chronic ulcers. Studies have shown that the sympathetic nervous system has an important role in angiogenesis. In recent years, researchers have focused on the roles of sympathetic nerves in tumor angiogenesis. In fact, sympathetic nerves can affect angiogenesis in the wound healing of soft tissues, and may have a similar mechanism of action as that seen in tumorigenesis. Sympathetic nerves act primarily through interactions between the neurotransmitters released from nerve endings and receptors present in target organs. Among this, activation or inhibition of adrenergic receptors (mainly β-adrenergic receptors) influence formation of new blood vessels considerably. As sympathetic nerves locate near pericytes in microvessel, go along the capillaries and there are adrenergic receptors present in endothelial cells and pericytes, sympathetic nerves may participate in angiogenesis by influencing the endothelial cells and pericytes of new capillaries. Studying the roles of sympathetic nerves on the angiogenesis of wound healing can contribute to understanding the mechanisms of tissue repair, tissue regeneration, and tumorigenesis, thereby providing new therapeutic perspectives.

  19. Effects of topical negative pressure therapy on tissue oxygenation and wound healing in vascular foot wounds.

    Chiang, Nathaniel; Rodda, Odette A; Sleigh, Jamie; Vasudevan, Thodur

    2017-08-01

    Topical negative pressure (TNP) therapy is widely used in the treatment of acute wounds in vascular patients on the basis of proposed multifactorial benefits. However, numerous recent systematic reviews have concluded that there is inadequate evidence to support its benefits at a scientific level. This study evaluated the changes in wound volume, surface area, depth, collagen deposition, and tissue oxygenation when using TNP therapy compared with traditional dressings in patients with acute high-risk foot wounds. This study was performed with hospitalized vascular patients. Forty-eight patients were selected with an acute lower extremity wound after surgical débridement or minor amputation that had an adequate blood supply without requiring further surgical revascularization and were deemed suitable for TNP therapy. The 22 patients who completed the study were randomly allocated to a treatment group receiving TNP or to a control group receiving regular topical dressings. Wound volume and wound oxygenation were analyzed using a modern stereophotographic wound measurement system and a hyperspectral transcutaneous oxygenation measurement system, respectively. Laboratory analysis was conducted on wound biopsy samples to determine hydroxyproline levels, a surrogate marker to collagen. Differences in clinical or demographic characteristics or in the location of the foot wounds were not significant between the two groups. All patients, with the exception of two, had diabetes. The two patients who did not have diabetes had end-stage renal failure. There was no significance in the primary outcome of wound volume reduction between TNP and control patients on day 14 (44.2% and 20.9%, respectively; P = .15). Analyses of secondary outcomes showed a significant result of better healing rates in the TNP group by demonstrating a reduction in maximum wound depth at day 14 (36.0% TNP vs 17.6% control; P = .03). No significant findings were found for the other outcomes of changes

  20. Low levels of glutathione are sufficient for survival of keratinocytes after UV irradiation and for healing of mouse skin wounds.

    Telorack, Michèle; Abplanalp, Jeannette; Werner, Sabine

    2016-08-01

    Reduced levels of the cellular antioxidant glutathione are associated with premature skin aging, cancer and impaired wound healing, but the in vivo functions of glutathione in the skin remain largely unknown. Therefore, we analyzed mice lacking the modifier subunit of the glutamate cysteine ligase (Gclm), the enzyme that catalyzes the rate-limiting step of glutathione biosynthesis. Glutathione levels in the skin of these mice were reduced by 70 %. However, neither skin development and homeostasis, nor UVA- or UVB-induced apoptosis in the epidermis were affected. Histomorphometric analysis of excisional wounds did not reveal wound healing abnormalities in young Gclm-deficient mice, while the area of hyperproliferative epithelium as well as keratinocyte proliferation were affected in aged mice. These findings suggest that low levels of glutathione are sufficient for wound repair in young mice, but become rate-limiting upon aging.

  1. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model.

    Suzuki, Ryoichi; Takakuda, Kazuo

    2016-11-01

    This study aimed to elucidate the optimum usage parameters of low reactive-level laser therapy (LLLT) in a rat incisional wound model. In Sprague-Dawley rats, surgical wounds of 15-mm length were made in the dorsal thoracic region. They were divided into groups to receive 660-nm diode laser irradiation 24 h after surgery at an energy density of 0 (control), 1, 5, or 10 J/cm 2 . Tissue sections collected on postoperative day 3 were stained with hematoxylin-eosin and an antibody for ED1 to determine the number of macrophages around the wound. Samples collected on day 7 were stained with hematoxylin-eosin and observed via polarized light microscopy to measure the area occupied by collagen fibers around the wound; day 7 skin specimens were also subjected to mechanical testing to evaluate tensile strength. On postoperative day 3, the numbers of macrophages around the wound were significantly lower in the groups receiving 1 and 5 J/cm 2 irradiation, compared to the control and 10 J/cm 2 irradiation groups (p diode laser with energy density of 1 and 5 J/cm 2 enhanced wound healing in a rat incisional wound model. However, a higher radiation energy density yielded no significant enhancement.

  2. [Relationship between FoxO1 Expression and Wound Age during Skin Incised Wound Healing].

    Chen, Y; Ji, X Y; Fan, Y Y; Yu, L S

    2018-02-01

    To investigate FoxO1 expression and its time-dependent changes during the skin incised wound healing. After the establishment of the skin incised wound model in mice, the FoxO1 expression of skin in different time periods was detected by immunohistochemistry and Western blotting. Immunohistochemistry staining showed that FoxO1 was weakly expressed in a few fibroblasts of epidermis, hair follicles, sebaceous glands, vessel endothelium and dermis in the control group. The FoxO1 expression was enhanced in the epidermis and skin appendages around the wound during 6-12 h after injury, which could be detected in the infiltrating neutrophils and a small number of monocytes. FoxO1 was mainly expressed in monocytes during 1-3 d after injury, and in neovascular endothelial cells and fibroblasts during 5-10 d. On the 14th day after injury, the FoxO1 expression still could be detected in a few fibroblasts. The Western blotting results showed that the FoxO1 expression quantity of the tissue samples in injury group was higher than in control group. The FoxO1 expression peaked at 12 h and 7 d after injury. FoxO1 is time-dependently expressed in skin wound healing, which can be a useful marker for wound age determination. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  3. Effects of low-level laser therapy on wound healing

    Fabiana do Socorro da Silva Dias Andrade

    Full Text Available OBJECTIVE: To gather and clarify the actual effects of low-level laser therapy on wound healing and its most effective ways of application in human and veterinary medicine.METHODS: We searched original articles published in journals between the years 2000 and 2011, in Spanish, English, French and Portuguese languages, belonging to the following databases: Lilacs, Medline, PubMed and Bireme; Tey should contain the methodological description of the experimental design and parameters used.RESULTS: doses ranging from 3 to 6 J/cm2 appear to be more effective and doses 10 above J/cm2 are associated with deleterious effects. The wavelengths ranging from 632.8 to 1000 nm remain as those that provide more satisfactory results in the wound healing process.CONCLUSION: Low-level laser can be safely applied to accelerate the resolution of cutaneous wounds, although this fact is closely related to the election of parameters such as dose, time of exposure and wavelength.

  4. Otostegia persica extraction on healing process of burn wounds

    Amin Ganjali

    2013-06-01

    Full Text Available PURPOSE: To investigate if the methanolic extract of the Otostegia persica can accelerating healing process of burn wound because of its anti-inflammatory and antioxidant effects. METHODS:Forty eight male Wistar rats were randomized into three study groups of 16 rats each. Burn wounds were created on dorsal part of shaved rats using a metal rod. In group I the burn wound was left without any treatment. Group was treated with topical silver sulfadiazine pomade. In group III, ointment containing the OP extract was administered. Skin biopsies were harvested from burn area on the 3rd, 5th, 14th and 21st days after burn and examined histologically. RESULTS: Re-epithelialization in the control group and in group II was lower than in group III. Re-epithelialization in groups II and III was significantly different from that in the control group. On the 5th day of the experiment, we assessed lower inflammation in the burn area compared to control group. This means that the inflammation was suppressed by methanolic extract of OP. From day 5 to 14; the fibroblast proliferation peaked and was associated with increased collagen accumulation. It was obvious that angiogenesis improved more in the groups II and III, which facilitated re-epithelialisation. CONCLUSION:Methanolic extract of Otostegia persica exhibited significant healing activity when topically applied on rats. OP is an effective treatment for saving the burn site.

  5. Biological studies on Brazilian plants used in wound healing.

    Schmidt, C; Fronza, M; Goettert, M; Geller, F; Luik, S; Flores, E M M; Bittencourt, C F; Zanetti, G D; Heinzmann, B M; Laufer, S; Merfort, I

    2009-04-21

    n-Hexanic and ethanolic extracts from twelve plants (Brugmansia suaveolens Brecht. et Presl., Eupatorium laevigatum Lam., Galinsoga parviflora Cav., Iresine herbstii Hook., Kalanchöe tubiflora Hamet-Ahti, Petiveria alliacea L., Pluchea sagittalis (Lam.) Cabrera, Piper regnellii DC., Schinus molle L., Sedum dendroideum Moç et Sessé ex DC., Waltheria douradinha St. Hill., Xanthium cavanillesii Schouw.) used in traditional South Brazilian medicine as wound healing agents were investigated in various biological assays, targeting different aspects in this complex process. The extracts were investigated on NF-kappaB DNA binding, p38alpha MAPK, TNF-alpha release, direct elastase inhibition and its release as well as on caspase-3. Fibroblasts migration to and proliferation into the wounded monolayers were evaluated in the scratch assay, the agar diffusion test for antibacterial and the MTT assay for cytotoxic effects. The hydrophilic extracts from Galinsoga parviflora, Petiveria alliacea, Schinus molle, Waltheria douradinha and Xanthium cavanillesii as well as the lipophilic extract of Waltheria douradinha turned out to be the most active ones. These results increase our knowledge on the wound healing effects of the investigated medicinal plants. Further studies are necessary to find out the effective secondary metabolites responsible for the observed effects.

  6. Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing.

    Pawar, Harshavardhan V; Boateng, Joshua S; Ayensu, Isaac; Tetteh, John

    2014-06-01

    Wafers combining weight ratios of Polyox with carrageenan (75/25) or sodium alginate (50/50) containing streptomycin and diclofenac were prepared to improve chronic wound healing. Gels were freeze-dried using a lyophilisation cycle incorporating an annealing step. Wafers were characterised for morphology, mechanical and in vitro functional (swelling, adhesion, drug release in the presence of simulated wound fluid) characteristics. Both blank (BLK) and drug-loaded (DL) wafers were soft, flexible, elegant in appearance and non-brittle in nature. Annealing helped to improve porous nature of wafers but was affected by the addition of drugs. Mechanical characterisation demonstrated that the wafers were strong enough to withstand normal stresses but also flexible to prevent damage to newly formed skin tissue. Differences in swelling, adhesion and drug release characteristics could be attributed to differences in pore size and sodium sulphate formed because of the salt forms of the two drugs. BLK wafers showed relatively higher swelling and adhesion than DL wafers with the latter showing controlled release of streptomycin and diclofenac. The optimised dressing has the potential to reduce bacterial infection and can also help to reduce swelling and pain associated with injury due to the anti-inflammatory action of diclofenac and help to achieve more rapid wound healing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Repairing effects of Iran flora on wound healing

    Mohammad Afshar

    2015-04-01

    Full Text Available The skin is the largest and the heaviest organ in the human body which, in addition to its important roles in the protection, waste removal, and contribution to vitamin D synthesis. As an important sensory organ, it can play a major role in the maintenance of homeostasis in the body. Total loss of of the skin integrity can cause harms and diseases that lead to physical disability and even death. Therefore, one of the main problem faced by medical science so far, is the question of .wound healing in the shortest possible time and with minimal side effects. Increasing the wound healing rate leads to positive financial and health results. Thus, several studies on new therapeutic techniques such as use of chemical drugs, herbal medication and homeopathy have been done. Moreover, physical methods such as laser therapy and other treatmentshave been constantly improving. In recent decades, the use of herbal medicine, as an effective method, has been progressing in most countries including Iran. In the traditional medicine of Iran various methods of using plants for the treatment of diseases are common. This is actually justifiable due to the geographic diversity of the flora in Iran. In the present paper the effectivity of the cut healing properties of some medicinal herbs in Iran is discussed.

  8. Transmittance and scattering during wound healing after refractive surgery

    Mar, Santiago; Martinez-Garcia, C.; Blanco, J. T.; Torres, R. M.; Gonzalez, V. R.; Najera, S.; Rodriguez, G.; Merayo, J. M.

    2004-10-01

    Photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) are frequent techniques performed to correct ametropia. Both methods have been compared in their way of healing but there is not comparison about transmittance and light scattering during this process. Scattering in corneal wound healing is due to three parameters: cellular size and density, and the size of scar. Increase in the scattering angular width implies a decrease the contrast sensitivity. During wound healing keratocytes activation is induced and these cells become into fibroblasts and myofibroblasts. Hens were operated using PRK and LASIK techniques. Animals used in this experiment were euthanized, and immediately their corneas were removed and placed carefully into a cornea camera support. All optical measurements have been done with a scatterometer constructed in our laboratory. Scattering measurements are correlated with the transmittance -- the smaller transmittance is the bigger scattering is. The aim of this work is to provide experimental data of the corneal transparency and scattering, in order to supply data that they allow generate a more complete model of the corneal transparency.

  9. Ovariectomy delays alveolar wound healing after molar extractions in rats.

    Pereira, Michele Conceição; Zecchin, Karina Gottardello; Campagnoli, Eduardo Bauml; Jorge, Jacks

    2007-11-01

    This study was conducted to investigate the morphological effects of the absence of estrogen on alveolar wound healing of young female rats after tooth extraction. A total of 60 4- to 6-week-old female rats underwent bilateral ovariectomy (OVX) or sham operations. Three weeks later, the first mandibular molars were extracted. Subsequently, the animals were killed by cervical dislocation 3, 5, 7, 14, 21, or 28 days after tooth extraction. The mandibles were removed, and serial transversal sections of mesial alveolus of the first mandibular molars were obtained for histometric analysis. OVX sockets showed significant increases in fibroblasts and collagen content 3 and 5 days after the extractions, followed by significant decreases in these parameters in the subsequent periods. In accordance with the decreased collagen content in the latest period of healing, new bone formation was significantly reduced in the OVX animals. These findings suggest that the initial molecular changes observed in the absence of estrogen lead to delayed alveolar wound healing.

  10. PRFM enhance wound healing process in skin graft.

    Reksodiputro, Mirta; Widodo, Dini; Bashiruddin, Jenny; Siregar, Nurjati; Malik, Safarina

    2014-12-01

    Facial plastic and reconstructive surgery often used skin graft on defects that cannot be covered primarily by a local flap. However, wound healing using skin graft is slow, most of the time the graft is contractured and the take of graft is not optimal. Platelet rich fibrin matrix (PRFM) is a new generation of concentrated platelets that produce natural fibrin and reported to speed up the healing process. Application of PRFM in the skin graft implants is expected to increase the survival of the graft. We used porcine as animal models to elucidate the effect of autologous PRFM on wound healing in full-thickness (FTSG) and split-thickness (STSG) skin grafts. Survival level of the skin graft was determined by using ImageJ software based on the formation of collagen type 1 and graft take. We observed that the use of PRFM in FTSG and STSG increased type 1 collagen formation. We also found that PRFM addition in STSG gave the best skin graft take. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Tissue repair genes: the TiRe database and its implication for skin wound healing

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.

    2016-01-01

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that ...

  12. Wound repair and factors influencing healing in veterinary clinical medicine I.

    Kudrnová, Adéla

    2010-01-01

    Wound healing in both human and veterinary medicine is essential physological process important for the survival of any species. Not only the internal (nutritional status, age, tissue hypoxia, etc.) and external (infections, medication, physical - chemical external influences, etc.) factors affect each stage of wound healing and its success, but also the overall treatment and choice of covering material. Wound healing is a natural process and sometimes takes place without any problems, themse...

  13. Caveolin-1 as a Novel Indicator of Wound-Healing Capacity in Aged Human Corneal Epithelium

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1–dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged a...

  14. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.

    1987-06-01

    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  15. [Healing of a deep skin wound using a collagen sponge as dressing in the animal experiment].

    Sedlarik, K M; Schoots, C; Oosterbaan, J A; Klopper, J P

    1992-10-01

    The high number of available wound dressing materials as well as the scientific reports about the topic indicates that the problem of an ideal wound dressing is not jet solved. In the last thirty years lot of scientific reports about collagen as wound covering has been published. The positive effect of collagen by his application on a wound ist well known. We investigated the effect of a collagen sponge on healing of full thickness skin wound in guinea pig. The animals were divided in two control groups and two experimental groups. In the control group there were air exposed wounds and another wounds covered with paraffin gauze. In the experimental groups were such wounds covered with natural reconstituted collagen sponge as well as wounds covered with chemically prepared collagen sponge with hexamethyldiisocyanat. The results were compared. The air exposed wounds healed in 50 days, the wounds covered with paraffin gauze healed in 48 days. By covering the wounds with collagen sponge the healing was shortened in 24 or 27 days respectively. Not only the healing time was shortened but also the quality of the wound repair by dressing the wounds with collagen sponge was enhanced.

  16. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A.

    2016-01-01

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper io...

  17. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice.

    Choi, Seong Mi; Lee, Kyoung-Mi; Kim, Hyun Jung; Park, Ik Kyu; Kang, Hwi Ju; Shin, Hang-Cheol; Baek, Dawoon; Choi, Yoorim; Park, Kwang Hwan; Lee, Jin Woo

    2018-01-15

    Diabetes mellitus comprises a multiple metabolic disorder that affects millions of people worldwide and consequentially poses challenges for clinical treatment. Among the various complications, diabetic ulcer constitutes the most prevalent associated disorder and leads to delayed wound healing. To enhance wound healing capacity, we developed structurally stabilized epidermal growth factor (ST-EGF) and basic fibroblast growth factor (ST-bFGF) to overcome limitations of commercially available EGF (CA-EGF) and bFGF (CA-bFGF), such as short half-life and loss of activity after loading onto a matrix. Neither ST-EGF nor ST-bFGF was toxic, and both were more stable at higher temperatures than CA-EGF and CA-bFGF. We loaded ST-EGF and ST-bFGF onto a hyaluronate-collagen dressing (HCD) matrix, a biocompatible carrier, and tested the effectiveness of this system in promoting wound healing in a mouse model of diabetes. Wounds treated with HCD matrix loaded with 0.3 μg/cm 2 ST-EGF or 1 μg/cm 2 ST-bFGF showed a more rapid rate of tissue repair as compared to the control in type I and II diabetes models. Our results indicate that an HDC matrix loaded with 0.3 μg/cm 2 ST-EGF or 1 μg/cm 2 ST-bFGF can promote wound healing in diabetic ulcers and are suitable for use in wound dressings owing to their stability for long periods at room temperature. Various types of dressing materials loaded with growth factors, such as VEGF, EGF, and bFGF, are widely used to effect wound repair. However, such growth factor-loaded materials have several limitations for use as therapeutic agents in healing-impaired diabetic wounds. To overcome these limitations, we have developed new materials containing structurally stabilized EGF (ST-EGF) and bFGF (ST-bFGF). To confirm the wound healing capacity of newly developed materials (ST-EGF and ST-bFGF-loaded hyaluronate-collagen dressing [HCD] matrix), we applied these matrices in type I and type II diabetic wounds. Notably, these matrices were

  18. Chitosan-based films composites for wound healing purposes

    Alves, Natali de O.; Silva, Gabriela T. da; Schulz, Gracelie A.S.; Fajardo, Andre R.

    2015-01-01

    Chitosan has been extensively applied in the developing of biomaterials due to its desirable good physico-chemical and biological properties. According to this, here films composite of chitosan, poly(vinyl alcohol) and bovine bone powder were prepared by casting willing to be applied in wound healing purposes. Moreover, the first step was the developing of a suitable method to obtain bovine bone powder, which was utilized here as filler. All the materials and films were fully characterized by FTIR, DRX and thermal analysis. Water uptake capacity was measured by swelling assays. (author)

  19. Effects of Minoxidil Gel on Burn Wound Healing in Rats

    Khazaeli, Payam; Karamouzian, Mohammad; Rohani, Shohreh; Sadeghirad, Behnam; Ghalekhani, Nima

    2014-01-01

    Minoxidil has been reported to inhibit in-vitro fibroblast proliferation and lysyl hydroxylase activity, a key enzyme in collagen biosynthesis. These in-vitro effects proposed minoxidil to be a potential antifibrotic agent. The present study aimed to investigate the effects of minoxidil gel on wound healing procedure in a second-degree burn model in rats. Wistar rats were anesthetized and a second-degree burn was induced on the back of Wistar rats using a heated 2 cm diameter metal plate. Exp...

  20. The effects of psychological interventions on wound healing: A systematic review of randomized trials.

    Robinson, Hayley; Norton, Sam; Jarrett, Paul; Broadbent, Elizabeth

    2017-11-01

    Psychological stress has been shown to delay wound healing. Several trials have investigated whether psychological interventions can improve wound healing, but to date, this evidence base has not been systematically synthesized. The objective was to conduct a systematic review of randomized controlled trials in humans investigating whether psychological interventions can enhance wound healing. A systematic review was performed using PsychINFO, CINAHL, Web of Science, and MEDLINE. The searches included all papers published in English up until September 2016. The reference lists of relevant papers were screened manually to identify further review articles or relevant studies. Nineteen studies met inclusion criteria and were included in the review. Fifteen of nineteen studies were of high methodological quality. Six studies were conducted with acute experimentally created wounds, five studies with surgical patients, two studies with burn wounds, two studies with fracture wounds, and four studies were conducted with ulcer wounds. Post-intervention standardized mean differences (SMD) between groups across all intervention types ranged from 0.13 to 3.21, favouring improved healing, particularly for surgical patients and for relaxation interventions. However, there was some evidence for publication bias suggesting negative studies may not have been reported. Due to the heterogeneity of wound types, population types, and intervention types, it is difficult to pool effect sizes across studies. Current evidence suggests that psychological interventions may aid wound healing. Although promising, more research is needed to assess the efficacy of each intervention on different wound types. Statement of contribution What is already known on this subject? Psychological stress negatively affects wound healing. A number of studies have investigated whether psychological interventions can improve healing. However, no systematic reviews have been conducted. What does this study add

  1. Longitudinal Evaluation of Wound Healing after Penetrating Corneal Injury: Anterior Segment Optical Coherence Tomography Study.

    Zheng, Kang Keng; Cai, Jianhao; Rong, Shi Song; Peng, Kun; Xia, Honghe; Jin, Chuan; Lu, Xuehui; Liu, Xinyu; Chen, Haoyu; Jhanji, Vishal

    2017-07-01

    Ocular imaging can enhance our understanding of wound healing. We report anterior segment optical coherence tomography (ASOCT) findings in penetrating corneal injury. Serial ASOCT was performed after repair of penetrating corneal injury. Internal aberrations of wound edges were labeled as "steps" or "gaps" on ASOCT images. The wound type was characterized as: type 1: continuous inner wound edge or step height ≤ 80 µm; type 2: step height > 80 µm; type 3: gap between wound edges; and type 4: intraocular tissue adherent to wound. Surgical outcomes of different wound types were compared. 50 consecutive patients were included (6 females, 44 males; mean age 33 ± 12 years). The average size of wound was 4.2 ± 2.6 mm (type 1, 8 eyes; type 2, 27 eyes; type 3, 12 eyes; type 4, 3 eyes). At the end of 3 months, 70% (n = 35) of the wounds were type 1. At the end of 6 months, all type 1 wounds had healed completely, whereas about half of type 2 (48.1%) and type 3 (50%) wounds had recovered to type 1 configuration. The wound type at baseline affected the height of step (p = 0.047) and corneal thickness at 6 months (p = 0.035). ASOCT is a useful tool for monitoring wound healing in cases with penetrating corneal injury. Majority of the wound edges appose between 3 and 6 months after trauma. In our study, baseline wound configuration affected the healing pattern.

  2. Healing of excisional wound in alloxan induced diabetic sheep: A planimetric and histopathologic study

    Farshid Sarrafzadeh-Rezaei

    2013-09-01

    Full Text Available Healing of skin wound is a multi-factorial and complex process. Proper treatment of diabetic wounds is still a major clinical challenge. Although diabetes mellitus can occur in ruminants, healing of wounds in diabetic ruminants has not yet been investigated. The aim of this study was to evaluate healing of ovine excisional diabetic wound model. Eight 4-month-old Iranian Makoui wethers were equally divided to diabetic and nondiabetic groups. Alloxan monohydrate (60 mg kg-1, IV was used for diabetes induction. In each wether, an excisional wound was created on the dorsum of the animal. Photographs were taken in distinct times for planimetric evaluation. Wound samples were taken on day 21 post-wounding for histopathologic evaluations of epidermal thickness, number of fibroblasts and number of new blood vessels. The planimetric study showed slightly delay in wound closure of diabetic animals, however, it was not significantly different from nondiabetic wounds (p ≥ 0.05. Furthermore, epidermal thickness, number of fibroblasts and number of blood vessels were significantly lower in diabetic group (p < 0.05. We concluded that healing of excisional diabetic wounds in sheep may be compromised, as seen in other species. However, contraction rate of these wounds may not be delayed due to metabolic features of ruminants and these animals might go under surgeries without any serious concern. However, healing quality of these wounds may be lower than normal wounds.

  3. Impaired healing of extraperitoneal intestinal anastomoses.

    Pierie, J P; de Graaf, P W; Vroonhoven, T J; Renooij, W; Obertop, H

    1999-05-01

    The extra-anatomical position of a cervical oesophagogastrostomy might be a reason for impaired anastomotic healing. This hypothesis was tested in a rat model. Jejunal resection with an end-to-end jejunojejunostomy was placed intra-abdominally in group 1 (n = 24) and subcutaneously in group 2 (n = 30). Jejunum without anastomosis was placed subcutaneously in group 3 (n = 12). After 3, 7 or 14 days the rats were killed; the bursting pressure of the anastomosis or jejunum was measured and the hydroxyproline level was determined. Two of 24 rats in group 1 and eight of 30 in group 2 died following anastomotic leakage (P not significant) and were excluded from other measurements. Bursting pressure was decreased after 3 days in group 1 (mean(s.e.) 62(10) mmHg) and group 2 (57(10) mmHg) compared with that in group 3 (204(17) mmHg) (P < 0.001). After 7 days, it was in the normal range in group 1 (200(14) mmHg), but lower in group 2 (104(15) mmHg) compared with that in group 3 (230(8) mmHg) (P < 0.001). Differences in hydroxyproline levels were not statistically significant between the groups after 3, 7 and 14 days. Healing of jejunojejunostomies is impaired in an extraperitoneal position compared with an intra-abdominal position.

  4. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Enhance wound healing monitoring through a thermal imaging based smartphone app

    Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh

    2018-03-01

    In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.

  6. Multigenerational epigenetic adaptation of the hepatic wound-healing response.

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K; Mathers, John C; Fox, Christopher R; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L; Anstee, Quentin M; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M; Mann, Derek A; Mann, Jelena

    2012-09-01

    We investigated whether ancestral liver damage leads to heritable reprogramming of hepatic wound healing in male rats. We found that a history of liver damage corresponds with transmission of an epigenetic suppressive adaptation of the fibrogenic component of wound healing to the male F1 and F2 generations. Underlying this adaptation was less generation of liver myofibroblasts, higher hepatic expression of the antifibrogenic factor peroxisome proliferator-activated receptor γ (PPAR-γ) and lower expression of the profibrogenic factor transforming growth factor β1 (TGF-β1) compared to rats without this adaptation. Remodeling of DNA methylation and histone acetylation underpinned these alterations in gene expression. Sperm from rats with liver fibrosis were enriched for the histone variant H2A.Z and trimethylation of histone H3 at Lys27 (H3K27me3) at PPAR-γ chromatin. These modifications to the sperm chromatin were transmittable by adaptive serum transfer from fibrotic rats to naive rats and similar modifications were induced in mesenchymal stem cells exposed to conditioned media from cultured rat or human myofibroblasts. Thus, it is probable that a myofibroblast-secreted soluble factor stimulates heritable epigenetic signatures in sperm so that the resulting offspring better adapt to future fibrogenic hepatic insults. Adding possible relevance to humans, we found that people with mild liver fibrosis have hypomethylation of the PPARG promoter compared to others with severe fibrosis.

  7. The genomics of oral cancer and wound healing.

    Aswini, Y B

    2009-01-01

    Oral cancer is the most common malignancy in India, where it is epidemiologically linked to the chewing of betel quid and other carcinogens. But various point mutations were detectable in the p53 and p15 genes. Hence, this review was conducted with the aim to find out genetic risks as well as markers for oral cancers and wound healing. Tobacco-related cancers are associated with polymorphisms of the CYP1A1 and GSTM1 genes in terms of genotype frequencies and cigarette smoking dose. Expression of E6/E7 were also found in tumors, most of which were derived from the oropharynx. Presence of homozygous arginine at codon 72 renders p53 about seven times more susceptible to E6-mediated proteolytic degradation. Erythropoietin, vascular permeability factor (VPF, also known as vascular endothelial growth factor or VEGF), and PDGF has been implicated as one of the principal mitogens involved in cutaneous wound healing. Activation of NF-kB is associated with enhanced cell survival. Human papilloma virus status is a significantly favorable prognostic factor in tonsilar cancer and may be used as a marker in order to optimize the treatment of patients with this type of cancer.

  8. The genomics of oral cancer and wound healing

    Aswini Y

    2009-03-01

    Full Text Available Oral cancer is the most common malignancy in India, where it is epidemiologically linked to the chewing of betel quid and other carcinogens. But various point mutations were detectable in the p53 and p15 genes. Hence, this review was conducted with the aim to find out genetic risks as well as markers for oral cancers and wound healing. Tobacco-related cancers are associated with polymorphisms of the CYP1A1 and GSTM1 genes in terms of genotype frequencies and cigarette smoking dose. Expression of E6/E7 were also found in tumors, most of which were derived from the oropharynx. Presence of homozygous arginine at codon 72 renders p53 about seven times more susceptible to E6-mediated proteolytic degradation. Erythropoietin, vascular permeability factor (VPF, also known as vascular endothelial growth factor or VEGF, and PDGF has been implicated as one of the principal mitogens involved in cutaneous wound healing. Activation of NF-kB is associated with enhanced cell survival. Human papilloma virus status is a significantly favorable prognostic factor in tonsilar cancer and may be used as a marker in order to optimize the treatment of patients with this type of cancer.

  9. Tight glycaemic control is a key factor in wound healing enhancement strategies in an experimental diabetes mellitus model.

    O'Sullivan, J B

    2012-02-01

    BACKGROUND: Diabetes mellitus is a leading cause of impaired wound healing. The aim of this study was to establish a glucose-controlled diabetic wound healing model. METHOD: Sprague-Dawley rats were divided into three groups: Control group (C), Diabetic Non-glucose Controlled group (DNC) and Diabetic glucose Controlled group (DC). RESULTS: Glucose control was achieved using Insulman Rapid (average daily glucose level <10 mmol\\/L). 18 Sprague-Dawley rats underwent a dorsal skin wound incision and 10 days later were killed. Fresh and fixed wound tensile strength, hydroxyproline and transforming growth factor beta-1 levels were improved in the DC group when compared to the DNC group. The quantity of fibroblasts present was similar in each group. CONCLUSION: This study demonstrates the impact that diabetes has on acute wound healing and suggests that wound modulating agents must be tested in both the tightly glucose-controlled as well as the poorly glucose-controlled diabetic animal models prior to proceeding with translational clinical studies.

  10. Clinical Evaluation of Wound Healing in Split-Skin Graft Donor Sites Using Microscopic Quantification of Reepithelialization.

    Wehrens, Kim Marlou Emiele; Arnoldussen, Carsten W K P; Booi, Darren Ivar; van der Hulst, Rene R W J

    2016-06-01

    Impaired or delayed wound healing is a common health problem. However, it remains challenging to predict whether wounds in patients will heal without complication or will have a prolonged healing time. In this study, the authors developed an objective screening tool to assess wound healing using microscopic quantification of reepithelialization in a split-thickness skin graft wound model and used this tool to identify risk factors for defective wound healing. Thirty patients (16 male and 14 female) were included in this prospective study. Anterior thigh skin biopsies from the donor site region of partial-thickness skin grafts were dressed with moisture-retentive dressings, and biopsies were examined on days 0, 2, 5, and 10 postoperatively by microscopy. Images were then transferred to a computer for image analysis and epithelial measurements (epithelial thickness and total reepithelialized surface). The effects of gender, age, body mass index, and smoking behavior on these wound healing parameters were determined. The authors found comparable results for the computer and traditional measure methods. However, the time required to perform the measurements using the semiautomated computer method was less than half the time of the traditional method. Image capturing, enhancing, and analysis with the new method required approximately 2 minutes 30 seconds, whereas the traditional methods took up to 7 minutes per image. The total size of the reepithelialized surface (P = .047) and percentage of the biopsy resurfaced with epithelia (P = .011) at day 10 were both significantly higher in male patients compared with female patients. In patients younger than 55 years, reepithelialized areas were significantly thicker than in patients older than 55 years (P = .008), whereas the size of the reepithelialized surface showed no differences. No significant differences in reepithelialization parameters were found concerning body mass index and smoking behavior. Both male gender and

  11. Acceleration of wound healing with stem cell-derived growth factors.

    Tamari, Masayuki; Nishino, Yudai; Yamamoto, Noriyuki; Ueda, Minoru

    2013-01-01

    Recently, it has been revealed that bone marrow-derived mesenchymal stem cells (MSCs) accelerate the healing of skin wounds. Although the proliferative capacity of MSCs decreases with age, MSCs secrete many growth factors. The present study examined the effect of mesenchymal stem cell-conditioned medium (MSC-CM) on wound healing. The wound-healing process was observed macroscopically and histologically using an excisional wound-splinting mouse model, and the expression level of hyaluronic acid related to the wound healing process was observed to evaluate the wound-healing effects of MSC, MSC-CM, and control (phosphate-buffered saline). The MSC and MSC-CM treatments accelerated wound healing versus the control group. At 7 days after administration, epithelialization was accelerated, thick connective tissue had formed in the skin defect area, and the wound area was reduced in the MSC and MSC-CM groups versus the control group. At 14 days, infiltration of inflammatory cells was decreased versus 7 days, and the wounds were closed in the MSC and MSC-CM groups, while a portion of epithelium was observed in the control group. At 7 and 14 days, the MSC and MSC-CM groups expressed significantly higher levels of hyaluronic acid versus the control group (P wound healing versus the control group to a similar degree. Accordingly, it is suggested that the MSC-CM contains growth factor derived from stem cells, is able to accelerate wound healing as well as stem cell transplantation, and may become a new therapeutic method for wound healing in the future.

  12. Clinical evaluation of ethanolic extract of curcumin (Curcuma longa on wound healing in Black Bengal goats

    Md Abu Haris Miah

    2017-06-01

    Conclusion: Ethanol treated turmeric enhances wound healing process in goats. This result could help the veterinarian and the researchers to consider herbal product especially ethanolic extract of turmeric for the treatment and better healing of surgical wounds with minimal complications. [J Adv Vet Anim Res 2017; 4(2.000: 181-186

  13. Phototherapy — a treatment modality for wound healing and pain relief

    Phototherapy — a treatment modality for wound healing and pain relief. D Hawkins, H Abrahamse. Abstract. When applied properly, phototherapy or Low Level Laser Therapy (LLLT) has proved to be very efficient in relieving pain and improving wound healing. However, until recently there has been a lack of scientific

  14. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epi...

  15. The impact of virulence factors of Porphyromonas gingivalis on wound healing in vitro

    Laheij, A.M.G.A.; van Loveren, C.; Deng, D.; de Soet, J.J.

    2015-01-01

    Background: Porphyromonas gingivalis inhibits oral epithelial wound healing in vitro more strongly than other oral bacteria, but it is unknown why P. gingivalis is such a potent inhibitor of wound healing. Objective: Therefore, the aim of this study was to investigate the influence of major

  16. Knee disarticulation : Survival, wound healing and ambulation. A historic cohort study

    Ten Duis, K.; Bosmans, J. C.; Voesten, H. G. J.; Geertzen, J. H. B.; Dijkstra, P. U.

    2009-01-01

    The aim of this study was to analyze survival, wound healing and ambulation after knee disarticulation (KD). A historic cohort study using medical records and nursing home records was performed. Data included demographics, reason for amputation, concomitant diseases, survival, wound healing,

  17. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  18. Microvascular Remodeling and Wound Healing: A Role for Pericytes

    Dulmovits, Brian M.; Herman, Ira M.

    2012-01-01

    Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing “pericyte-like” characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed. PMID:22750474

  19. Effect of animal products and extracts on wound healing promotion in topical applications: a review.

    Napavichayanun, Supamas; Aramwit, Pornanong

    2017-06-01

    Wound healing is a natural process of body reaction to repair itself after injury. Nonetheless, many internal and external factors such as aging, comorbidity, stress, smoking, alcohol drinking, infections, malnutrition, or wound environment significantly affect the quality and speed of wound healing. The unsuitable conditions may delay wound healing process and cause chronic wound or scar formation. Therefore, many researches have attempted to search for agents that can accelerate wound healing with safety and biocompatibility to human body. Widely studied wound healing agents are those derived from either natural sources including plants and animals or chemical synthesis. The natural products seem to be safer and more biocompatible to human tissue. This review paper demonstrated various kinds of the animal-derived products including chitosan, collagen, honey, anabolic steroids, silk sericin, peptides, and proteoglycan in term of mechanisms of action, advantages, and disadvantages when applied as wound healing accelerator. The benefits of these animal-derived products are wound healing promotion, anti-inflammatory, antimicrobial activity, moisturizing effect, biocompatibility, and safety. However, the drawbacks such as allergy, low stability, batch-to-batch variability, and high extraction and purification costs could not be avoided in some products.

  20. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications

    Gizaw, Mulugeta; Thompson, Jeffrey; Faglie, Addison; Lee, Shih-Yu; Neuenschwander, Pierre; Chou, Shih-Feng

    2018-01-01

    Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds. PMID:29382065

  1. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate

    Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in

  2. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review.

    Duscher, Dominik; Barrera, Janos; Wong, Victor W; Maan, Zeshaan N; Whittam, Alexander J; Januszyk, Michael; Gurtner, Geoffrey C

    2016-01-01

    The increased risk of disease and decreased capacity to respond to tissue insult in the setting of aging results from complex changes in homeostatic mechanisms, including the regulation of oxidative stress and cellular heterogeneity. In aged skin, the healing capacity is markedly diminished resulting in a high risk for chronic wounds. Stem cell-based therapies have the potential to enhance cutaneous regeneration, largely through trophic and paracrine activity. Candidate cell populations for therapeutic application include adult mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells. Autologous cell-based approaches are ideal to minimize immune rejection but may be limited by the declining cellular function associated with aging. One strategy to overcome age-related impairments in various stem cell populations is to identify and enrich with functionally superior stem cell subsets via single cell transcriptomics. Another approach is to optimize cell delivery to the harsh environment of aged wounds via scaffold-based cell applications to enhance engraftment and paracrine activity of therapeutic stem cells. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for wound healing and discuss limitations for their clinical adoption. © 2015 S. Karger AG, Basel.

  3. Vibrational spectroscopy: a tool being developed for the noninvasive monitoring of wound healing

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    Wound care and management accounted for over 1.8 million hospital discharges in 2009. The complex nature of wound physiology involves hundreds of overlapping processes that we have only begun to understand over the past three decades. The management of wounds remains a significant challenge for inexperienced clinicians. The ensuing inflammatory response ultimately dictates the pace of wound healing and tissue regeneration. Consequently, the eventual timing of wound closure or definitive coverage is often subjective. Some wounds fail to close, or dehisce, despite the use and application of novel wound-specific treatment modalities. An understanding of the molecular environment of acute and chronic wounds throughout the wound-healing process can provide valuable insight into the mechanisms associated with the patient's outcome. Pathologic alterations of wounds are accompanied by fundamental changes in the molecular environment that can be analyzed by vibrational spectroscopy. Vibrational spectroscopy, specifically Raman and Fourier transform infrared spectroscopy, offers the capability to accurately detect and identify the various molecules that compose the extracellular matrix during wound healing in their native state. The identified changes might provide the objective markers of wound healing, which can then be integrated with clinical characteristics to guide the management of wounds.

  4. Personalized prediction of chronic wound healing: an exponential mixed effects model using stereophotogrammetric measurement.

    Xu, Yifan; Sun, Jiayang; Carter, Rebecca R; Bogie, Kath M

    2014-05-01

    Stereophotogrammetric digital imaging enables rapid and accurate detailed 3D wound monitoring. This rich data source was used to develop a statistically validated model to provide personalized predictive healing information for chronic wounds. 147 valid wound images were obtained from a sample of 13 category III/IV pressure ulcers from 10 individuals with spinal cord injury. Statistical comparison of several models indicated the best fit for the clinical data was a personalized mixed-effects exponential model (pMEE), with initial wound size and time as predictors and observed wound size as the response variable. Random effects capture personalized differences. Other models are only valid when wound size constantly decreases. This is often not achieved for clinical wounds. Our model accommodates this reality. Two criteria to determine effective healing time outcomes are proposed: r-fold wound size reduction time, t(r-fold), is defined as the time when wound size reduces to 1/r of initial size. t(δ) is defined as the time when the rate of the wound healing/size change reduces to a predetermined threshold δ current model improves with each additional evaluation. Routine assessment of wounds using detailed stereophotogrammetric imaging can provide personalized predictions of wound healing time. Application of a valid model will help the clinical team to determine wound management care pathways. Published by Elsevier Ltd.

  5. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  6. Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats.

    Agarwal, P K; Singh, A; Gaurav, K; Goel, Shalini; Khanna, H D; Goel, R K

    2009-01-01

    Plantain banana (M. sapientum var. paradisiaca, MS) has been shown to possess ulcer healing activity. The present work with plantain banana was undertaken with the premise that the drug promoting ulcer healing could have effect on wound healing also. Wound healing activity of MS was studied in terms of (i) percent wound contraction, epithelization period and scar area; (ii) wound breaking strength and (iii) on granulation tissue antioxidant status [estimation of superoxide dismutase (SOD) and reduced glutathione (GSH), free radical (lipid peroxidation, an indicator of tissue damage) and connective tissue formation and maturation (hexuronic acid, hydroxyproline and hexosamine levels)] in excision, incision and dead space wound models respectively. The rats were given graded doses (50-200 mg/kg/day) of aqueous (MSW) and methanolic (MSE) extracts of MS orally for a period of 10-21 days depending upon the type of study. Both extracts (100 mg/kg) when studied for incision and dead space wounds parameters, increased wound breaking strength and levels of hydroxyproline, hexuronic acid, hexosamine, superoxide dismutase, reduced glutathione in the granulation tissue and decreased percentage of wound area, scar area and lipid peroxidation when compared with the control group. Both the extracts showed good safety profile. Plantain banana thus, favoured wound healing which could be due to its antioxidant effect and on various wound healing biochemical parameters.

  7. Chronic wound repair and healing in older adults: current status and future research.

    Gould, Lisa; Abadir, Peter; Brem, Harold; Carter, Marissa; Conner-Kerr, Teresa; Davidson, Jeff; DiPietro, Luisa; Falanga, Vincent; Fife, Caroline; Gardner, Sue; Grice, Elizabeth; Harmon, John; Hazzard, William R; High, Kevin P; Houghton, Pamela; Jacobson, Nasreen; Kirsner, Robert S; Kovacs, Elizabeth J; Margolis, David; McFarland Horne, Frances; Reed, May J; Sullivan, Dennis H; Thom, Stephen; Tomic-Canic, Marjana; Walston, Jeremy; Whitney, Jo Anne; Williams, John; Zieman, Susan; Schmader, Kenneth

    2015-03-01

    Older adults are more likely to have chronic wounds than younger people, and the effect of chronic wounds on quality of life is particularly profound in this population. Wound healing slows with age, but the basic biology underlying chronic wounds and the influence of age-associated changes on wound healing are poorly understood. Most studies have used in vitro approaches and various animal models, but observed changes translate poorly to human healing conditions. The effect of age and accompanying multimorbidity on the effectiveness of existing and emerging treatment approaches for chronic wounds is also unknown, and older adults tend to be excluded from randomized clinical trials. Poorly defined outcomes and variables; lack of standardization in data collection; and variations in the definition, measurement, and treatment of wounds also hamper clinical studies. The Association of Specialty Professors, in conjunction with the National Institute on Aging and the Wound Healing Society, held a workshop, summarized in this article, to explore the current state of knowledge and research challenges, engage investigators across disciplines, and identify research questions to guide future study of age-associated changes in chronic wound healing. © 2015 by the American Geriatrics Society and the Wound Healing Society.

  8. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  9. The phagocytic fitness of leucopatches may impact the healing of chronic wounds

    Thomsen, K; Trøstrup, H; Christophersen, L.

    2016-01-01

    Chronic non-healing wounds are significantly bothersome to patients and can result in severe complications. In addition, they are increasing in numbers, and a challenging problem to the health-care system. Handling of chronic, non-healing wounds can be discouraging due to lack of improvement......, and a recent explanation can be the involvement of biofilm infections in the pathogenesis of non-healing wounds. Therefore, new treatment alternatives to improve outcome are continuously sought-after. Autologous leucopatches are such a new, adjunctive treatment option, showing promising clinical effects...... wounds by leucopatches is attributed to the activity of the PMNs in the leucopatch....

  10. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  11. [ROLE OF microRNA IN SKIN DEVELOPMENT AND WOUND HEALING].

    Song, Zhifang; Liu, Dewu

    2014-07-01

    To review the role of microRNA (miRNA) in skin development and wound healing. The recent literature about miRNA in skin development and wound healing was reviewed and analyzed. miRNA extensively involved in the development of the skin, including epidermal cell proliferation, differentiation, aging and hair follicle development; miR-203 known as the "skin-specific miRNA" can directly inhibit the expression of p63 and promote the differentiation of the epidermis. Meanwhile, miRNA also involved in various stages of skin regeneration and wound healing. Abnormal expression of miRNA is closely related with abnormal wound healing. miRNA play an important role in maintaining normal skin physiology and skin regeneration. To explore their roles in the healing of skin wounds and their regulatory mechanism can provide a new target for the treatment, which has a potential value and broad prospects.

  12. Effects of Foeniculum vulgare essential oil compounds, fenchone and limonene, on experimental wound healing.

    Keskin, I; Gunal, Y; Ayla, S; Kolbasi, B; Sakul, A; Kilic, U; Gok, O; Koroglu, K; Ozbek, H

    2017-01-01

    We investigated the wound healing efficacy of the Foeniculum vulgare compounds, fenchone and limonene, using an excisional cutaneous wound model in rats. An excision wound was made on the back of the rat and fenchone and limonene were applied topically to the wounds once daily, separately or together, for 10 days. Tissue sections from the wounds were evaluated for histopathology. The healing potential was assessed by comparison to an untreated control group and an olive oil treated sham group. We scored wound healing based on epidermal regeneration, granulation tissue thickness and angiogenesis. After day 6, wound contraction with limonene was significantly better than for the control group. Ten days after treatment, a significant increase was observed in wound contraction and re-epithelialization in both fenchone and limonene oil treated groups compared to the sham group. Groups treated with fenchone and with fenchone + limonene scored significantly higher than the control group, but the difference was not statistically significant compared to the olive oil treated group. Our findings support the beneficial effects of fenchone and limonene for augmenting wound healing. The anti-inflammatory and antimicrobial activities of fenchone and limonene oil increased collagen synthesis and decreased the number of inflammatory cells during wound healing and may be useful for treating skin wounds.

  13. Hevin plays a pivotal role in corneal wound healing.

    Shyam S Chaurasia

    Full Text Available BACKGROUND: Hevin is a matricellular protein involved in tissue repair and remodeling via interaction with the surrounding extracellular matrix (ECM proteins. In this study, we examined the functional role of hevin using a corneal stromal wound healing model achieved by an excimer laser-induced irregular phototherapeutic keratectomy (IrrPTK in hevin-null (hevin(-/- mice. We also investigated the effects of exogenous supplementation of recombinant human hevin (rhHevin to rescue the stromal cellular components damaged by the excimer laser. METHODOLOGY/PRINCIPAL FINDINGS: Wild type (WT and hevin (-/- mice were divided into three groups at 4 time points- 1, 2, 3 and 4 weeks. Group I served as naïve without any treatment. Group II received epithelial debridement and underwent IrrPTK using excimer laser. Group III received topical application of rhHevin after IrrPTK surgery for 3 days. Eyes were analyzed for corneal haze and matrix remodeling components using slit lamp biomicroscopy, in vivo confocal microscopy, light microscopy (LM, transmission electron microscopy (TEM, immunohistochemistry (IHC and western blotting (WB. IHC showed upregulation of hevin in IrrPTK-injured WT mice. Hevin (-/- mice developed corneal haze as early as 1-2 weeks post IrrPTK-treatment compared to the WT group, which peaked at 3-4 weeks. They also exhibited accumulation of inflammatory cells, fibrotic components of ECM proteins and vascularized corneas as seen by IHC and WB. LM and TEM showed activated keratocytes (myofibroblasts, inflammatory debris and vascular tissues in the stroma. Exogenous application of rhHevin for 3 days reinstated inflammatory index of the corneal stroma similar to WT mice. CONCLUSIONS/SIGNIFICANCE: Hevin is transiently expressed in the IrrPTK-injured corneas and loss of hevin predisposes them to aberrant wound healing. Hevin (-/- mice develop early corneal haze characterized by severe chronic inflammation and stromal fibrosis that can be rescued

  14. Far infrared promotes wound healing through activation of Notch1 signaling.

    Hsu, Yung-Ho; Lin, Yuan-Feng; Chen, Cheng-Hsien; Chiu, Yu-Jhe; Chiu, Hui-Wen

    2017-11-01

    The Notch signaling pathway is critically involved in cell proliferation, differentiation, development, and homeostasis. Far infrared (FIR) has an effect that promotes wound healing. However, the underlying molecular mechanisms are unclear. In the present study, we employed in vivo and HaCaT (a human skin keratinocyte cell line) models to elucidate the role of Notch1 signaling in FIR-promoted wound healing. We found that FIR enhanced keratinocyte migration and proliferation. FIR induced the Notch1 signaling pathway in HaCaT cells and in a microarray dataset from the Gene Expression Omnibus database. We next determined the mRNA levels of NOTCH1 in paired normal and wound skin tissues derived from clinical patients using the microarray dataset and Ingenuity Pathway Analysis software. The result indicated that the Notch1/Twist1 axis plays important roles in wound healing and tissue repair. In addition, inhibiting Notch1 signaling decreased the FIR-enhanced proliferation and migration. In a full-thickness wound model in rats, the wounds healed more rapidly and the scar size was smaller in the FIR group than in the light group. Moreover, FIR could increase Notch1 and Delta1 in skin tissues. The activation of Notch1 signaling may be considered as a possible mechanism for the promoting effect of FIR on wound healing. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model.

  15. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice

    Salonurmi, T.; Parikka, M.; Kontusaari, S.; Pirila, E.; Munaut, Carine; Salo, T.; Tryggvason, K.

    2004-01-01

    We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymograph...

  16. Neutrophil depletion in the early inflammatory phase delayed cutaneous wound healing in older rats: improvements due to the use of un-denatured camel whey protein.

    Ebaid, Hossam

    2014-03-04

    While it is known that advanced age alters the recruitment of neutrophils during wound healing, thereby delaying the wound healing process, little is known about prolonged wound healing in advanced ages. Thus, we investigated the correlation of neutrophil recruitment with healing events, and the impact of whey protein (WP) on neutrophil activation. The animals were allocated into wounded young group, wounded older group and wounded older rats with daily treatment of WP at a dose of 100 mg/kg of body weight. Our results pointed to a marked deficiency in the number of neutrophils in the wounds of older rats, which was accompanied with impairment of the healing process. In the group of older rats, phagocytic activity, as tested by fluorescence microscopy, declined throughout the first 24 hours after wounding. Both the neutrophil number and the phagocytic activity recovered in older rats which received WP supplementation. Interestingly, WP was found to significantly up-regulate the MIP-1α and CINC-1 mRNA expression in old rats. On the other hand, the wound size in older rats was significantly higher than that in younger ones. Blood angiogenesis was also significantly delayed in the older group as opposed to the young rats. WP, however, was found to return these indices to normal levels in the older rats. Proliferation and epidermal migration of the keratinocytes and the collagen deposition were also returned to the normal rates. This data confirms the critical role of neutrophil recruitment in the early inflammatory phase of wound healing in older rats. In addition, WP protein was used to improve neutrophil function in older rats, healing events returned to a more normal profile. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2100966986117779.

  17. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    Bellotti, Mariela I.; Giana, Fabián E.; Bonetto, Fabián J.

    2015-08-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities.

  18. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    Bellotti, Mariela I; Giana, Fabián E; Bonetto, Fabián J

    2015-01-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities. (paper)

  19. Hyper-hydration: a new perspective on wound cleansing, debridement and healing.

    2016-06-01

    In a recent symposium organised by Hartmann, the involvement of moisture and hydration in healing was re-evaluated and the use of hyper-hydration in promoting healing was examined. The distinction between hyperhydration and maceration was also discussed. Clinical studies were presented to give an overview of the clinical evidence to how Hydro-Responsive Wound Dressings can aid in healing via cleansing, debridement and desloughing of several wound types.

  20. Combination of HIF-1α gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice.

    Du, J; Liu, L; Lay, F; Wang, Q; Dou, C; Zhang, X; Hosseini, S M; Simon, A; Rees, D J; Ahmed, A K; Sebastian, R; Sarkar, K; Milner, S; Marti, G P; Semenza, G L; Harmon, J W

    2013-11-01

    Impaired burn wound healing in the elderly represents a major clinical problem. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator that orchestrates the cellular response to hypoxia. Its actions in dermal wounds promote angiogenesis and improve healing. In a murine burn wound model, aged mice had impaired wound healing associated with reduced levels of HIF-1. When gene therapy with HIF-1 alone did not correct these deficits, we explored the potential benefit of HIF-1 gene therapy combined with the intravenous infusion of bone marrow-derived angiogenic cells (BMDACs) cultured with dimethyloxalylglycine (DMOG). DMOG is known to reduce oxidative degradation of HIF-1. The mice treated with a plasmid DNA construct expressing a stabilized mutant form of HIF-1α (CA5-HIF-1α)+BMDACs had more rapid wound closure. By day 17, there were more mice with completely closed wounds in the treated group (χ(2), P=0.05). The dermal blood flow measured by laser Doppler showed significantly increased wound perfusion on day 11. Homing of BMDACs to the burn wound was dramatically enhanced by CA5-HIF-1α gene therapy. HIF-1α mRNA expression in the burn wound was increased after transfection with CA5-HIF-1α plasmid. Our findings offer insight into the pathophysiology of burns in the elderly and point to potential targets for developing new therapeutic strategies.

  1. Curcumin-Loaded Chitosan/Gelatin Composite Sponge for Wound Healing Application

    Van Cuong Nguyen

    2013-01-01

    Full Text Available Three composite sponges were made with 10% of curcumin and by using polymers, namely, chitosan and gelatin with various ratios. The chemical structure and morphology were evaluated by FTIR and SEM. These sponges were evaluated for water absorption capacity, antibacterial activity, in vitro drug release, and in vivo wound healing studies by excision wound model using rabbits. The in vivo study presented a greater wound closure in wounds treated with curcumin-composite sponge than those with composite sponge without curcumin and untreated group. These obtained results showed that combination of curcumin, chitosan and gelatin could improve the wound healing activity in comparison to chitosan, and gelatin without curcumin.

  2. Beta-Glucan induced immune modulation of wound healing in common carp (Cyprinus carpio)

    Jiménez, Natalia Ivonne Vera

    by hydrogen peroxide. To determine the effect of hydrogen peroxide release in fibroblast proliferation during wound healing, scratch-wounded CCB fibroblasts were stimulated with different doses of hydrogen peroxide and the wound closure was followed by image analysis. Fibroblast stimulation with low doses...... suitable for tissue regeneration or oxidative stress. To conclude, β-glucan treatment enhanced wound closure in carp, probably due to the enhancement of a localized inflammatory response. The wound healing modulatory effect of β-glucan seems to be orchestrated by the immune system, since no direct effect...

  3. Electrospun polymeric dressings functionalized with antimicrobial peptides and collagen type I for enhanced wound healing

    Felgueiras, H. P.; Amorim, M. T. P.

    2017-10-01

    Modern wound dressings combine medical textiles with active compounds that stimulate wound healing while protecting against infection. Electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The unique diverse function and architecture of antimicrobial peptides (AMPs) has attracted considerable attention as a tool for the design of new anti-infective drugs. Functionalizing electrospun wound dressings with these AMPs is nowadays being researched. In the present work, we explore these new systems by highlighting the most important characteristics of electropsun wound dressings, revealing the importance of AMPs to wound healing, and the methods available to functionalize the electrospun mats with these molecules. The combined therapeutic potential of collagen type I and these AMP functionalized dressings will be highlighted as well; the significance of these new strategies for the future of wound healing will be clarified.

  4. Antimicrobials and Non-Healing Wounds. Evidence, controversies and suggestions-key messages

    Gottrup, Finn; Apelqvist, Jan; Bjarnsholt, Thomas

    2014-01-01

    This article constitutes an extraction of key messages originally presented in the Document: Antimicrobials and Non-Healing Wounds. Evidence, controversies and suggestions written by the European Wound Management Association (EWMA), and originally published by the Journal of Wound Care in 2013. All...

  5. Wound healing angiogenesis: The clinical implications of a simple mathematical model

    Flegg, Jennifer A.; Byrne, Helen M.; Flegg, Mark B.; Sean McElwain, D.L.

    2012-01-01

    Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we

  6. Evaluation of wound healing activity of Ammannia baccifera and Blepharis maderaspatensis leaf extracts on rats

    Aiyalu Rajasekaran

    2012-04-01

    Full Text Available Wound healing activity of the leaf extracts of Ammannia baccifera L., Lythraceae, and Blepharis maderaspatensis (L. B.Heyne ex Roth., Acanthaceae, was investigated by excision and incision wound healing models in rats. A phytochemical screening was done to determine the major constituents of the chloroform, ethyl acetate and ethanolic fractions of ethanolic leaf extracts. The excision and incision models were used to assess the effect of the plant extracts on wound healing in rats. Phytochemical screening reveals the presence of tannins, saponins, steroids, terpenoids, and flavonoids in the extract. The wound healing effect was comparatively evaluated with a standard drug Framycetin cream. Significant wound healing activity was observed for the creams prepared with 5% ethanol fraction of B. maderaspatensis and 5% chloroform fraction of A. baccifera ethanolic leaf extracts. The results of histopathological evaluation supported the outcome of both incision and excision wound models. Ethanolic fraction of B. maderaspatensis and chloroform fraction of A. baccifera exhibited marked wound healing activity. B. maderaspatensis extract displayed a remarkable wound healing activity compared to A. baccifera.

  7. [Wound healing is still a game of " blind men and an elephant"].

    Han, C M

    2016-10-20

    The wound healing includes non-healing and overhealing of the wounds. The results of wound healing are well known by people such as non-healing of the diabetic ulcer or hypertrophic scar after deep burn. In this issue, three papers involve in wound healing, one about autologous adipose-derived mesenchymal stem cells injected into wound or scar of rabbit ear, one about severe hypoxia and hypoalbuminemia inducing human hypertrophic scar derived fibroblast apoptosis in vitro, and another about the dysfunction of protein kinase B/mammalian target of rapamycin signaling pathway contributing to the pathophysiological characteristics of diabetic skin and non-healing wound. The basic problem of hypertrophic scar study is lacking an ideal animal model. Although rabbit ear model or red Duroc pig model has been used widely for study on hypertrophic scar, they can not fully represent human dermal fibrosis after deep trauma on the skin. I recommend A novel nude mouse model of hypertrophic scarring using scratched full thickness human skin grafts recently published in Advances in Wound Care to the readers. The author emphasizes that the wound healing study is still in the situation like the game of " blind men and an elephant" .

  8. Effect of calorie restriction and refeeding on skin wound healing in the rat.

    Hunt, Nicole D; Li, Garrick D; Zhu, Min; Miller, Marshall; Levette, Andrew; Chachich, Mark E; Spangler, Edward L; Allard, Joanne S; Hyun, Dong-Hoon; Ingram, Donald K; de Cabo, Rafael

    2012-12-01

    Calorie restriction (CR) is a reliable anti-aging intervention that attenuates the onset of a number of age-related diseases, reduces oxidative damage, and maintains function during aging. In the current study, we assessed the effects of CR and other feeding regimens on wound healing in 7-month-old Fischer-344 rats from a larger cohort of rats that had been fed either ad libitum (AL) or 40% calorie restricted based on AL consumption. Rats were assigned to one of three diet groups that received three skin punch wounds along the dorsal interscapular region (12-mm diameter near the front limbs) of the back as follows: (1) CR (n = 8) were wounded and maintained on CR until they healed, (2) AL (n = 5) were wounded and maintained on AL until wound closure was completed, and (3) CR rats were refed (RF, n = 9) AL for 48 h prior to wounding and maintained on AL until they healed. We observed that young rats on CR healed more slowly while CR rats refed for 48 h prior to wounding healed as fast as AL fed rats, similar to a study reported in aged CR and RF mice (Reed et al. 1996). Our data suggest that CR subjects, regardless of age, fail to heal well and that provision of increased nutrition to CR subjects prior to wounding enhances the healing process.

  9. The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression.

    Doersch, Karen M; Newell-Rogers, M Karen

    2017-08-01

    Overly fibrotic wound healing can lead to excess scar formation, causing functional impairment and undesirable cosmetic results. However, there are few successful treatments available to prevent or remediate scars. This study sought to explore the molecular mechanisms by which quercetin, a naturally-occurring antifibrotic agent, diminishes scar formation. Using both mice and fibroblast cells, we examined quercetin's impact on fibrosis and the wound healing rate, and potential molecular mechanisms underlying the quercetin-mediated reduction of fibrosis. While cultured fibroblasts demonstrated normal growth in response to quercetin, quercetin increased surface αV integrin and decreased β1 integrin. These changes in surface integrin expression may impact factors that contribute to fibrosis including cell migration, proliferation, and extracellular matrix production. In both quercetin-treated and control mice, wounds healed in about 14 days. Masson's trichrome stain revealed diminished fibrosis at the wound site in quercetin-treated animals despite the normal healing rate, indicating the potential for better cosmetic results without delaying healing. An in vitro scratch wound model using cells plated on an artificial extracellular matrix demonstrated delayed closure following quercetin treatment. The extracellular matrix also ameliorated quercetin's effect on αV integrin. Thus, αV integrin recruitment in response to quercetin treatment may promote the quercetin-mediated decrease extracellular matrix because cells require less extracellular matrix to migrate into a wound. With added extracellular matrix, β1 integrin remained diminished in response to quercetin, indicating that quercetin's effect on β1 integrin expression is independent of extracellular matrix -mediated signaling and is likely driven by inhibition of the intracellular mechanisms driving β1 expression. These findings suggest that quercetin could alter the cells' interactions with the extracellular

  10. Application of laser scan microscopy in vivo for wound healing characterization

    Czaika, V; Koch, S; Alborova, A; Sterry, W; Lademann, J

    2010-01-01

    Considering the advancing age of the population, wound healing disturbances are becoming increasingly important in clinical routine. The development of wound healing creams and lotions as well as therapy control require an objective evaluation of the wound healing process, which represents the destruction of the barrier. Therefore, transepidermal water loss measurements are often carried out. These measurements have the disadvantage that they are disturbed by the interstitial fluid, which is located on the surface of chronic wounds and also by water components of the creams and lotions. Additionally, the TEWL measurements are very sensitive to temperature changes and to the anxiety of the volunteers. In the present study, in vivo laser scanning microscopy was used to analyze the reepithelialization and barrier recovery of standardized wounds produced by the suction blister technique. It was demonstrated that this non-invasive, on-line spectroscopic method allows the evaluation of the wound healing process, without any disturbances. It was found that the wound healing starts not only from the edges of the wound, but also out of the hair follicles. The in vivo laser scanning microscopy is well suited to evaluate the efficacy of wound healing creams and for therapy control

  11. Application of laser scan microscopy in vivo for wound healing characterization

    Czaika, V.; Alborova, A.; Sterry, W.; Lademann, J.; Koch, S.

    2010-09-01

    Considering the advancing age of the population, wound healing disturbances are becoming increasingly important in clinical routine. The development of wound healing creams and lotions as well as therapy control require an objective evaluation of the wound healing process, which represents the destruction of the barrier. Therefore, transepidermal water loss measurements are often carried out. These measurements have the disadvantage that they are disturbed by the interstitial fluid, which is located on the surface of chronic wounds and also by water components of the creams and lotions. Additionally, the TEWL measurements are very sensitive to temperature changes and to the anxiety of the volunteers. In the present study, in vivo laser scanning microscopy was used to analyze the reepithelialization and barrier recovery of standardized wounds produced by the suction blister technique. It was demonstrated that this non-invasive, on-line spectroscopic method allows the evaluation of the wound healing process, without any disturbances. It was found that the wound healing starts not only from the edges of the wound, but also out of the hair follicles. The in vivo laser scanning microscopy is well suited to evaluate the efficacy of wound healing creams and for therapy control.

  12. Hyperbaric oxygen therapy for wound healing in diabetic rats: Varying efficacy after a clinically-based protocol.

    Johan W van Neck

    Full Text Available Hyperbaric oxygen therapy (HBOT is a clinical treatment in which a patient breathes pure oxygen for a limited period of time at an increased pressure. Although this therapy has been used for decades to assist wound healing, its efficacy for many conditions is unproven and its mechanism of action is not yet fully clarified. This study investigated the effects of HBOT on wound healing using a diabetes-impaired pressure ulcer rat model. Seven weeks after streptozotocin-induced diabetes in rats (n = 55, a pressure ulcer was created on dorsal skin. Subsequently, animals received HBOT during 6 weeks following a standard clinical protocol (HBOT group with varying endpoints up to 42 days post-wounding versus controls without HBOT. Capillary venous oxygen saturation (SO2 showed a significant increase in the HBOT group on day 24; however, this increase was significant at this time point only. The quantity of hemoglobin in the micro-blood vessels (rHB showed a significant decrease in the HBOT group on days 21 and 42, and showed a trend to decrease on day 31. Blood flow in the microcirculation showed a significant increase on days 17, 21 and 31 but a significant decrease on days 24 and 28. Inflammation scoring showed significantly decreased CD68 counts in the HBOT group on day 42, but not in the early stages of wound healing. Animals in the HBOT group showed a trend for an increase in mean wound breaking strength on day 42.

  13. Bioactive thermoresponsive polyblend nanofiber formulations for wound healing

    Pawar, Mahesh D. [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); MAEER' s Maharashtra Institute of Pharmacy S. No. 124, MIT Campus Paud Road, Kothrud, Pune 411 038 (India); Rathna, G.V.N., E-mail: rv.gundloori@ncl.res.in [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); Agrawal, Shubhang [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); Kuchekar, Bhanudas S. [MAEER' s Maharashtra Institute of Pharmacy S. No. 124, MIT Campus Paud Road, Kothrud, Pune 411 038 (India)

    2015-03-01

    The rationale of this work is to develop new bioactive thermoresponsive polyblend nanofiber formulations for wound healing (topical). Various polymer compositions of thermoresponsive, poly(N-isopropylacrylamide), egg albumen and poly(ε-caprolactone) blend solutions with and without a drug [gatifloxacin hydrochloride, Gati] were prepared. Non-woven nanofibers of various compositions were fabricated using an electrospinning technique. The morphology of the nanofibers was analyzed by an environmental scanning electron microscope. The morphology was influenced by the concentration of polymer, drug, and polymer blend composition. Fourier transform infrared spectroscopy analysis showed the shift in bands due to hydrogen ion interactions between polymers and drug. Thermogram of PNIPAM/PCL/EA with Gati recorded a shift in lower critical solution temperature (LCST) and glass transition temperature (T{sub g}) of PNIPAM. Similarly T{sub g} and melting temperature (T{sub m}) of PCL were shifted. X-ray diffraction patterns recorded a decrease in the crystalline state of PCL nanofibers and transformed crystalline drug to an amorphous state. In vitro release study of nanofibers with Gati showed initial rapid release up to 10 h, followed by slow and controlled release for 696 h (29 days). Nanofiber mats with Gati exhibited antibacterial properties to Staphylococcus aureus, supported suitable controlled drug release with in vitro cell viability and in vivo wound healing. - Highlights: • Thermoresponsive and bioactive nanofiber blends of PNIPAM/EA/PCL were fabricated. • Nanofiber blends favored initial rapid release, followed by controlled release. • In vitro cell viability of pure polymers and nanofiber blends was least toxic. • In vivo studies of drug loaded nanofiber mats recorded faster tissue regeneration.

  14. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.

    Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris

    2015-06-01

    Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Using leptospermum honey to manage wounds impaired by radiotherapy: a case series.

    Robson, Val; Cooper, Rose

    2009-01-01

    Radiation-induced tissue injury and wounds with radiation-impaired healing are traumatic for patients and challenging for their caregivers. Standardized management approaches do not exist. The effect of Leptospermum honey as a primary dressing for managing these wounds was assessed in four patients (age range 63 to 93 years) who had previously undergone radiotherapy that left them with fragile friable areas of damaged skin that did not respond to conventional treatment. Compromised areas involved the neck, cheek, groin/perineum, and chest. In patients 1 and 2, after topical application of honey via hydrofiber rope and nonadhesive foam, respectively, improvements in the size and condition of wound/periwound area and a reduction in pain were noted before death or loss to follow-up. After including honey in the treatment regimen of patients 3 and 4, complete healing was noted in 2.5 weeks (with honey and paraffin) and 6 weeks (with honey-soaked hydrofiber rope), respectively. No adverse events were reported. Honey as an adjunct to conventional wound/skin care post radiation therapy shows promise for less painful healing in these chronic wounds. Prospective, randomized, controlled clinical studies are needed to confirm these observations.

  16. Wound healing in plastic surgery: does age matter? An American College of Surgeons National Surgical Quality Improvement Program study.

    Karamanos, Efstathios; Osgood, Geoff; Siddiqui, Aamir; Rubinfeld, Ilan

    2015-03-01

    Increasing age has traditionally been associated with impairment in wound healing after operative interventions. This is based mostly on hearsay and anecdotal information. This idea fits with the authors’ understanding of biology in older organisms. This dictum has not been rigorously tested in clinical practice. The American College of Surgeons National Surgical Quality Improvement Program database was retrospectively queried for all patients undergoing plastic surgery from 2005 to 2010. Variables extracted included basic demographics, comorbidities, previous steroid and tobacco use, wound classification at the end of the surgery, and development of postoperative surgical-site infections. Multivariate analyses were used to investigate the impact of aging in wound dehiscence. A total of 25,967 patients were identified. Overall, the incidence of wound dehiscence was 0.75 percent (n = 196). When patients younger than 30 years were compared to older patient groups, no difference in the probability of developing wound dehiscence was noted. Specifically, the groups of patients aged 61 to 70 years and older than 70 years did not have statistically significant wound healing deficiencies [adjusted OR, 0.63 (95 percent CI, 0.11 to 3.63), adjusted p = 0.609; 2.79 (0.55 to 14.18), adjusted p = 0.217, for 61 to 70 years and older than 70 years, respectively]. Factors independently associated with wound dehiscence included postoperative abscess development, paraplegia, quadriplegia, steroid and tobacco use, deep surgical-site infection development, increasing body mass index, and wound classification at the end of surgery. In patients undergoing plastic surgery, wound dehiscence is a rare complication (0.75 percent). Aging is not associated with an increased incidence of wound dehiscence. Risk, III.

  17. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing.

    Nuccitelli, Richard; Nuccitelli, Pamela; Li, Changyi; Narsing, Suman; Pariser, David M; Lui, Kaying

    2011-01-01

    Due to the transepidermal potential of 15-50 mV, inside positive, an injury current is driven out of all human skin wounds. The flow of this current generates a lateral electric field within the epidermis that is more negative at the wound edge than at regions more lateral from the wound edge. Electric fields in this region could be as large as 40 mV/mm, and electric fields of this magnitude have been shown to stimulate human keratinocyte migration toward the wounded region. After flowing out of the wound, the current returns through the space between the epidermis and stratum corneum, generating a lateral field above the epidermis in the opposite direction. Here, we report the results from the first clinical trial designed to measure this lateral electric field adjacent to human skin wounds noninvasively. Using a new instrument, the Dermacorder®, we found that the mean lateral electric field in the space between the epidermis and stratum corneum adjacent to a lancet wound in 18-25-year-olds is 107-148 mV/mm, 48% larger on average than that in 65-80-year-olds. We also conducted extensive measurements of the lateral electric field adjacent to mouse wounds as they healed and compared this field with histological sections through the wound to determine the correlation between the electric field and the rate of epithelial wound closure. Immediately after wounding, the average lateral electric field was 122 ± 9 mV/mm. When the wound is filled in with a thick, disorganized epidermal layer, the mean field falls to 79 ± 4 mV/mm. Once this epidermis forms a compact structure with only three cell layers, the mean field is 59 ± 5 mV/mm. Thus, the peak-to-peak spatial variation in surface potential is largest in fresh wounds and slowly declines as the wound closes. The rate of wound healing is slightly greater when wounds are kept moist as expected, but we could find no correlation between the amplitude of the electric field and the rate of wound

  18. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice.

    Lee, Hyunji; Hong, Youngeun; Kwon, So Hee; Park, Jongsun; Park, Jisoo

    2016-01-01

    Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair. Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo. PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student's unpaired t-test; *Pwound-healing effects in mice. This study demonstrated the anti-aging and wound-healing effects of PPF extract. Therefore, PPF extract represents a promising new therapeutic agent for anti-aging and wound-healing treatments.

  19. Wound healing and protease inhibition activity of Bacoside-A, isolated from Bacopa monnieri wettest.

    Sharath, R; Harish, B G; Krishna, V; Sathyanarayana, B N; Swamy, H M Kumara

    2010-08-01

    Bacopa monnieri (L.) Wettest. (Scrophulariaceae) is a well-known medicinal herb. In the Indian system of medicine it is known as Brahmi (Sanskrit) and Indian water hyssop. Methanolic extract of Bacopa monnieri and its isolated constituent Bacoside-A were screened for wound healing activity. Bacoside-A was screened for wound healing activity by excision, incision and dead space wound on Swiss albino rats. Significant wound healing activity was observed in both extract and the Bacoside-A treated groups. The SDS-PAGE caseinolytic zymogram analysis of inhibition of matrix metalloproteases (MMPs) enzyme from the excision wound by Bacoside-A, an isolated constituent, was done with the concentrations 100 and 200 micromg/ml. In Bacoside-A treated groups, epithelialization of the excision wound was faster with a high rate (18.30 +/- 0.01 days) of wound contraction. The tensile strength of the incision wound was increased (538.47 +/- 0.14 g) in the Bacoside-A treated group. In the dead space wound model, the weight of the granuloma was also increased (89.15 +/- 0.08 g). The histological examination of the granuloma tissue of the Bacoside-A treated group showed increased cross-linking of collagen fibers and absence of monocytes. The wound healing activity of Bacoside-A was more effective in various wound models compared to the standard skin ointment Nitrofurazone.

  20. Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound.

    M C Chung, Ezra; Dean, Scott N; Propst, Crystal N; Bishop, Barney M; van Hoek, Monique L

    2017-01-01

    Cationic antimicrobial peptides are multifunctional molecules that have a high potential as therapeutic agents. We have identified a histone H1-derived peptide from the Komodo dragon ( Varanus komodoensis) , called VK25. Using this peptide as inspiration, we designed a synthetic peptide called DRGN-1. We evaluated the antimicrobial and anti-biofilm activity of both peptides against Pseudomonas aeruginosa and Staphylococcus aureus . DRGN-1, more than VK25, exhibited potent antimicrobial and anti-biofilm activity, and permeabilized bacterial membranes. Wound healing was significantly enhanced by DRGN-1 in both uninfected and mixed biofilm ( Pseudomonas aeruginosa and Staphylococcus aureus )-infected murine wounds. In a scratch wound closure assay used to elucidate the wound healing mechanism, the peptide promoted the migration of HEKa keratinocyte cells, which was inhibited by mitomycin C (proliferation inhibitor) and AG1478 (epidermal growth factor receptor inhibitor). DRGN-1 also activated the EGFR-STAT1/3 pathway. Thus, DRGN-1 is a candidate for use as a topical wound treatment. Wound infections are a major concern; made increasingly complicated by the emerging, rapid spread of bacterial resistance. The novel synthetic peptide DRGN-1 (inspired by a peptide identified from Komodo dragon) exhibits pathogen-directed and host-directed activities in promoting the clearance and healing of polymicrobial ( Pseudomonas aeruginosa & Staphylococcus aureus ) biofilm infected wounds. The effectiveness of this peptide cannot be attributed solely to its ability to act upon the bacteria and disrupt the biofilm, but also reflects the peptide's ability to promsote keratinocyte migration. When applied in a murine model, infected wounds treated with DRGN-1 healed significantly faster than did untreated wounds, or wounds treated with other peptides. The host-directed mechanism of action was determined to be via the EGFR-STAT1/3 pathway. The pathogen-directed mechanism of action was

  1. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries

    Ana Gomes

    2017-10-01

    Full Text Available As the incidence of diabetes continues to increase in the western world, the prevalence of chronic wounds related to this condition continues to be a major focus of wound care research. Additionally, over 50% of chronic wounds exhibit signs and symptoms that are consistent with localized bacterial biofilms underlying severe infections that contribute to tissue destruction, delayed wound-healing and other serious complications. Most current biomedical approaches for advanced wound care aim at providing antimicrobial protection to the open wound together with a matrix scaffold (often collagen-based to boost reestablishment of the skin tissue. Therefore, the present review is focused on the efforts that have been made over the past years to find peptides possessing wound-healing properties, towards the development of new and effective wound care treatments for diabetic foot ulcers and other skin and soft tissue infections.

  2. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries.

    Gomes, Ana; Teixeira, Cátia; Ferraz, Ricardo; Prudêncio, Cristina; Gomes, Paula

    2017-10-18

    As the incidence of diabetes continues to increase in the western world, the prevalence of chronic wounds related to this condition continues to be a major focus of wound care research. Additionally, over 50% of chronic wounds exhibit signs and symptoms that are consistent with localized bacterial biofilms underlying severe infections that contribute to tissue destruction, delayed wound-healing and other serious complications. Most current biomedical approaches for advanced wound care aim at providing antimicrobial protection to the open wound together with a matrix scaffold (often collagen-based) to boost reestablishment of the skin tissue. Therefore, the present review is focused on the efforts that have been made over the past years to find peptides possessing wound-healing properties, towards the development of new and effective wound care treatments for diabetic foot ulcers and other skin and soft tissue infections.

  3. Comparison of the effect of topical versus systemic L-arginine on wound healing in acute incisional diabetic rat model

    Alireza Zandifar

    2015-01-01

    Full Text Available Background: Diabetes is associated with endothelial dysfunction and impaired wound healing. The amino acid L-arginine is the only substrate for nitric oxide (NO synthesis. The purpose of this study was to compare the topical versus systemic L-arginine treatment on total nitrite (NO x and vascular endothelial growth factor (VEGF concentrations in wound fluid and rate of wound healing in an acute incisional diabetic wound model. Materials and Methods: A total of 56 Sprague-Dawley rats were used of which 32 were rendered diabetic. Animals underwent a dorsal skin incision. Dm-sys-arg group (N = 8, diabetic and Norm-sys-arg group (N = 8, normoglycemic were gavaged with L-arginine. Dm-sys-control group (N = 8, diabetic and Norm-sys-control group (N = 8, normoglycemic were gavaged with water. Dm-top-arg group (N = 8, diabetic and norm-top-arg group (N = 8, normoglycemic received topical L-arginine gel. Dm-top-control group (N = 8, diabetic received gel vehicle. On the day 5 the amount of NO x in wound fluid was measured by Griess reaction. VEGF/total protein in wound fluids was also measured on day 5 using enzyme-linked immunosorbent assay. All wound tissue specimens were fixed and stained to be evaluated for rate of healing. Data were analyzed using SPSS software (version 18.0, Chicago, IL, USA through One-way analysis of variance test and Tukey′s post-hoc. Results: In dm-sys-arg group, the level of NO x on day 5 was significantly more than dm-top-arg group (P < 0.05. VEGF content in L-arginine treated groups were significantly more than controls (P < 0.05. Rate of diabetic wound healing in dm-sys-arg group was significantly more than dm-top-arg group. Conclusion: Systemic L-arginine is more efficient than topical L-arginine in wound healing. This process is mediated at least in part, by increasing VEGF and NO in the wound fluid.

  4. Relationship between maceration and wound healing on diabetic foot ulcers in Indonesia: a prospective study.

    Haryanto, Haryanto; Arisandi, Defa; Suriadi, Suriadi; Imran, Imran; Ogai, Kazuhiro; Sanada, Hiromi; Okuwa, Mayumi; Sugama, Junko

    2017-06-01

    The aim of this study was to clarify the relationship between maceration and wound healing. A prospective longitudinal design was used in this study. The wound condition determined the type of dressings used and the dressing change frequency. A total of 62 participants with diabetic foot ulcers (70 wounds) were divided into two groups: non-macerated (n = 52) and macerated wounds (n = 18). Each group was evaluated weekly using the Bates-Jensen Wound Assessment Tool, with follow-ups until week 4. The Mann-Whitney U test showed that the changes in the wound area in week 1 were faster in the non-macerated group than the macerated group (P = 0·02). The Pearson correlation analysis showed a moderate correlation between maceration and wound healing from enrolment until week 4 (P = 0·002). After week 4, the Kaplan-Meier analysis showed that the non-macerated wounds healed significantly faster than the macerated wounds (log-rank test = 19·378, P = 0·000). The Cox regression analysis confirmed that maceration was a significant and independent predictor of wound healing in this study (adjusted hazard ratio, 0·324; 95% CI, 0·131-0·799; P = 0·014). The results of this study demonstrated that there is a relationship between maceration and wound healing. Changes in the wound area can help predict the healing of wounds with maceration in clinical settings. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  5. Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing

    Henshaw, F. R.; Boughton, P.; Lo, L.; McLennan, S. V.; Twigg, S. M.

    2015-01-01

    Aims/Hypothesis. Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Methods. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1??g?rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulati...

  6. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing.

    Mahmoudian-Sani, Mohammad-Reza; Rafeei, Fatemeh; Amini, Razieh; Saidijam, Massoud

    2018-03-04

    Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential of proliferation, high self-renewal, and the potential of multilineage differentiation. The differentiation potential of the MSCs in vivo and in vitro has caused these cells to be regarded as potentially appropriate tools for wound healing. After the burn, trauma or removal of the tumor of wide wounds is developed. Although standard treatment for skin wounds is primary healing or skin grafting, they are not always practical mainly because of limited autologous skin grafting. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science have been searched. For clinical use of the MSCs in wound healing, two key issues should be taken into account: First, engineering biocompatible scaffolds clinical use of which leads to the least amount of side effects without any immunologic response and secondly, use of stem cells secretions with the least amount of clinical complications despite their high capability of healing damage. In light of the MSCs' high capability of proliferation and multilineage differentiation as well as their significant role in modulating immunity, these cells can be used in combination with tissue engineering techniques. Moreover, the MSCs' secretions can be used in cell therapy to heal many types of wounds. The combination of MSCs and PRP aids wound healing which could potentially be used to promote wound healing. © 2018 Wiley Periodicals, Inc.

  7. Wound healing of critical limb ischemia with tissue loss in patients on hemodialysis.

    Honda, Yohsuke; Hirano, Keisuke; Yamawaki, Masahiro; Mori, Shinsuke; Shirai, Shigemitsu; Makino, Kenji; Tokuda, Takahiro; Takama, Takuro; Tsutumi, Masakazu; Sakamoto, Yasunari; Takimura, Hideyuki; Kobayashi, Norihiro; Araki, Motoharu; Ito, Yoshiaki

    2017-06-01

    We assessed wound healing in patients on hemodialysis (HD) with critical limb ischemia (CLI). This study enrolled 267 patients (including 120 patients on HD and 147 patients not on HD) who underwent endovascular therapy (EVT) for CLI. The primary endpoint was wound-healing rate at two years. Secondary endpoints were time to wound healing, wound recurrence rate, and limb salvage at two years. The percentage of male and young patients was higher in the HD patients ( p healing rate was significantly lower in HD patients (79.5% vs. 92.4%, p healing was significantly longer in HD patients (median 132 days vs. 82 days, p = 0.005). Wound recurrence was observed more frequently in HD patients (25.0% vs. 10.2%, p = 0.007). Limb salvage (72.8% vs. 86.4%, p = 0.002) was significantly lower in HD patients. In a cox proportional hazard model, HD was an independent predictor of wound healing (risk ratio (RR), 0.46; 95% confidence interval (CI), 0.33-0.62; p healing, and wound recurrence.

  8. Atrial Natriuretic Peptide Accelerates Human Endothelial Progenitor Cell-Stimulated Cutaneous Wound Healing and Angiogenesis.

    Lee, Tae Wook; Kwon, Yang Woo; Park, Gyu Tae; Do, Eun Kyoung; Yoon, Jung Won; Kim, Seung-Chul; Ko, Hyun-Chang; Kim, Moon-Bum; Kim, Jae Ho

    2018-05-26

    Atrial natriuretic peptide (ANP) is a powerful vasodilating peptide secreted by cardiac muscle cells, and endothelial progenitor cells (EPCs) have been reported to stimulate cutaneous wound healing by mediating angiogenesis. To determine whether ANP can promote the EPC-mediated repair of injured tissues, we examined the effects of ANP on the angiogenic properties of EPCs and on cutaneous wound healing. In vitro, ANP treatment enhanced the migration, proliferation, and endothelial tube-forming abilities of EPCs. Furthermore, small interfering RNA-mediated silencing of natriuretic peptide receptor-1, which is a receptor for ANP, abrogated ANP-induced migration, tube formation, and proliferation of EPCs. In a murine cutaneous wound model, administration of either ANP or EPCs had no significant effect on cutaneous wound healing or angiogenesis in vivo, whereas the co-administration of ANP and EPCs synergistically potentiated wound healing and angiogenesis. In addition, ANP promoted the survival and incorporation of transplanted EPCs into newly formed blood vessels in wounds. These results suggest ANP accelerates EPC-mediated cutaneous wound healing by promoting the angiogenic properties and survival of transplanted EPCs. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  9. Wound-healing activity of the skin of the common grape (Vitis Vinifera) variant, Cabernet Sauvignon.

    Nayak, B Shivananda; Ramdath, D Dan; Marshall, Julien R; Isitor, Godwin N; Eversley, Mathew; Xue, Sophia; Shi, John

    2010-08-01

    The common Grape L. (Vitaceae) is regarded as an important medicinal plant. European healers have suggested the use of grapevine sap, juice, and whole grape in the treatment of pain, allergic reactions, inflammation, and to promote wound healing. We evaluated grape-skin powder for its wound-healing activity using an excision wound model in rats. Animals were randomly divided into three groups of six (n = 6) each. The test group animals were treated topically with the grape-skin powder (100 mg/kg/day). The controls and standard group animals were treated with petroleum jelly and mupirocin ointment respectively. Healing was assessed by the rate of wound contraction, period of epithelialization, and hydroxyproline content. On day 13, treatment of the wounds with grape-skin powder enhanced significantly the rate of wound contraction (100 %). Treated animals showed significant decrease in the epithelialization period (p < 0.000) and increase in the hydroxyproline content (p < 0.05) when compared to control and the standard. Histological analysis was also consistent with the proposal that grape-skin powder exhibits significant wound-healing potential. Increased rate of wound contraction, hydroxyproline content, and decrease in epithelialization time in the treated animals support the use of grape-skin powder in the management of wound healing. Copyright (c) 2010 John Wiley & Sons, Ltd.

  10. Studies on Wound Healing Activity of Heliotropium indicum Linn. Leaves on Rats.

    Dash, G K; Murthy, P N

    2011-01-01

    The petroleum ether, chloroform, methanol, and aqueous extracts of Heliotropium indicum Linn. (Family: Boraginaceae) were separately evaluated for their wound healing activity in rats using excision (normal and infected), incision, and dead space wound models. The effects of test samples on the rate of wound healing were assessed by the rate of wound closure, period of epithelialisation, wound breaking strength, weights of the granulation tissue, determination of hydroxyproline, super oxide dismutase (SOD), catalase, and histopathology of the granulation tissues. Nitrofurazone (0.2% w/w) in simple ointment I. P. was used as reference standard for the activity comparison. The results revealed significant promotion of wound healing with both methanol and aqueous extracts with more promising activity with the methanol extract compared to other extracts under study. In the wound infection model (with S. aureus and P. aeruginosa), the methanol extract showed significant healing activity similar to the reference standard nitrofurazone. Significant increase in the granulation tissue weight, increased hydroxyproline content, and increased activity of SOD and catalase level with the animals treated with methanol extract in dead space wound model further augmented the wound healing potential of H. indicum. The present work substantiates its validity of the folklore use.

  11. Antioxidant Sol-Gel Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

    Lee, Yen-Hsien; Chang, Jung-Jhih; Chien, Chiang-Ting; Yang, Ming-Chien; Chien, Hsiung-Fei

    2012-01-01

    We examined the effects of vitamin C in Pluronic F127 on diabetic wound healing. Full-thickness excision skin wounds were made in normal and diabetic Wistar rats to evaluate the effect of saline, saline plus vitamin C (antioxidant sol), Pluronic F127, or Pluronic F127 plus vitamin C (antioxidant sol-gel). The rate of wound contraction, the levels of epidermal and dermal maturation, collagen synthesis, and apoptosis production in the wound tissue were determined. In vitro data showed that after 6 hours of air exposure, the order of the scavenging abilities for HOCl, H2O2, and O2  − was antioxidant sol-gel > antioxidant saline > Pluronic F127 = saline. After 7 and 14 days of wound injury, the antioxidant sol-gel improved wound healing significantly by accelerated epidermal and dermal maturation, an increase in collagen content, and a decrease in apoptosis formation. However, the wounds of all treatments healed mostly at 3 weeks. Vitamin C in Pluronic F127 hastened cutaneous wound healing by its antioxidant and antiapoptotic mechanisms through a good drug delivery system. This study showed that Pluronic F127 plus vitamin C could potentially be employed as a novel wound-healing enhancer. PMID:22919368

  12. Chronic Wound Repair and Healing in Older Adults: Current Status and Future Research

    Gould, Lisa; Abadir, Peter; Brem, Harold; Carter, Marissa; Conner-Kerr, Teresa; Davidson, Jeff; DiPietro, Luisa; Falanga, Vincent; Fife, Caroline; Gardner, Sue; Grice, Elizabeth; Harmon, John; Hazzard, William R.; High, Kevin P.; Houghton, Pamela; Jacobson, Nasreen; Kirsner, Robert S.; Kovacs, Elizabeth J.; Margolis, David; Horne, Frances McFarland; Reed, May J.; Sullivan, Dennis H.; Thom, Stephen; Tomic-Canic, Marjana; Walston, Jeremy; Whitney, Jo Anne; Williams, John; Zieman, Susan; Schmader, Kenneth

    2015-01-01

    Older adults are more likely to have chronic wounds than younger people, and the effect of chronic wounds on quality of life is particularly profound in this population. Wound healing slows with age, but the basic biology underlying chronic wounds and the influence of age-associated changes on wound healing are poorly understood. Most studies have used in vitro approaches and various animal models, but observed changes translate poorly to human healing conditions. The effect of age and accompanying multimorbidity on the effectiveness of existing and emerging treatment approaches for chronic wounds is also unknown, and older adults tend to be excluded from randomized clinical trials. Poorly defined outcomes and variables; lack of standardization in data collection; and variations in the definition, measurement, and treatment of wounds also hamper clinical studies. The Association of Specialty Professors, in conjunction with the National Institute on Aging and the Wound Healing Society, held a workshop, summarized in this article, to explore the current state of knowledge and research challenges, engage investigators across disciplines, and identify research questions to guide future study of age-associated changes in chronic wound healing. PMID:25753048

  13. Kinetic and Reaction Pathway Analysis in the Application of Botulinum Toxin A for Wound Healing

    Frank J. Lebeda

    2012-01-01

    Full Text Available A relatively new approach in the treatment of specific wounds in animal models and in patients with type A botulinum toxin is the focus of this paper. The indications or conditions include traumatic wounds (experimental and clinical, surgical (incision wounds, and wounds such as fissures and ulcers that are signs/symptoms of disease or other processes. An objective was to conduct systematic literature searches and take note of the reactions involved in the healing process and identify corresponding pharmacokinetic data. From several case reports, we developed a qualitative model of how botulinum toxin disrupts the vicious cycle of muscle spasm, pain, inflammation, decreased blood flow, and ischemia. We transformed this model into a minimal kinetic scheme for healing chronic wounds. The model helped us to estimate the rate of decline of this toxin's therapeutic effect by calculating the rate of recurrence of clinical symptoms after a wound-healing treatment with this neurotoxin.

  14. Expert advice provided through telemedicine improves healing of chronic wounds: prospective cluster controlled study.

    Zarchi, Kian; Haugaard, Vibeke B; Dufour, Deirdre N; Jemec, Gregor B E

    2015-03-01

    Telemedicine is widely considered as an efficient approach to manage the growing problem of chronic wounds. However, to date, there is no convincing evidence to support the clinical efficacy of telemedicine in wound management. In this prospective cluster controlled study, we tested the hypothesis that advice on wound management provided by a team of wound-care specialists through telemedicine would significantly improve the likelihood of wound healing compared with the best available conventional practice. A total of 90 chronic wound patients in home care met all study criteria and were included: 50 in the telemedicine group and 40 in the conventional group. Patients with pressure ulcers, surgical wounds, and cancer wounds were excluded. During the 1-year follow-up, complete wound healing was achieved in 35 patients (70%) in the telemedicine group compared with 18 patients (45%) in the conventional group. After adjusting for important covariates, offering advice on wound management through telemedicine was associated with significantly increased healing compared with the best available conventional practice (telemedicine vs. conventional practice: adjusted hazard ratio 2.19; 95% confidence interval: 1.15-4.17; P=0.017). This study strongly supports the use of telemedicine to connect home-care nurses to a team of wound experts in order to improve the management of chronic wounds.

  15. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF)

    Serrano, Isabel; Diez-Marques, Maria L.; Rodriguez-Puyol, Manuel [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Herrero-Fresneda, Inmaculada [Nephrology Unit, IDIBELL, Hospital de Bellvitge, Barcelona (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Garcia del Moral, Raimundo [Department of Pathology, University of Granada (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Dedhar, Shoukat [Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC (Canada); Ruiz-Torres, Maria P., E-mail: mpiedad.ruiz@uah.es [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Rodriguez-Puyol, Diego [Nephrology Unit, Hospital Universitario Principe de Asturias, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain)

    2012-11-15

    Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing. -- Highlights: Black-Right-Pointing-Pointer ILK deletion results in decreased HGF expression and delayed scratch wound repair. Black-Right-Pointing-Pointer PI3K/ILK/AKT pathway signals through HGF to regulate wound healing. Black-Right-Pointing-Pointer An ILK-dependent increase in HGF expression is responsible for wound healing in vivo. Black-Right-Pointing-Pointer ILK-KO mice are used to confirm the requirement for ILK function in wound healing. Black-Right-Pointing-Pointer Human HGF treatment restores delayed wound closure in vitro and in vivo.

  16. Measurement of pH, exudate composition and temperature in wound healing: a systematic review.

    Power, G; Moore, Z; O'Connor, T

    2017-07-02

    To assess the potential of measurements of pH, exudate composition and temperature in wounds to predict healing outcomes and to identify the methods that are employed to measure them. A systematic review based on the outcomes of a search strategy of quantitative primary research published in the English language was conducted. Inclusion criteria limited studies to those involving in vivo and human participants with an existing or intentionally provoked wound, defined as 'a break in the epithelial integrity of the skin', and excluded in vitro and animal studies. Data synthesis and analysis was performed using structured narrative summaries of each included study arranged by concept, pH, exudate composition and temperature. The Evidence Based Literature (EBL) Critical Appraisal Checklist was implemented to appraise the quality of the included studies. A total of 23 studies, three for pH (mean quality score 54.48%), 12 for exudate composition (mean quality score 46.54%) and eight for temperature (mean quality score 36.66%), were assessed as eligible for inclusion in this review. Findings suggest that reduced pH levels in wounds, from alkaline towards acidic, are associated with improvements in wound condition. Metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase (TIMP), neutrophil elastase (NE) and albumin, in descending order, were the most frequently measured analytes in wounds. MMP-9 emerged as the analyte which offers the most potential as a biomarker of wound healing, with elevated levels observed in acute or non-healing wounds and decreasing levels in wounds progressing in healing. Combined measures of different exudate components, such as MMP/TIMP ratios, also appeared to offer substantial potential to indicate wound healing. Finally, temperature measurements are highest in non-healing, worsening or acute wounds and decrease as wounds progress towards healing. Methods used to measure pH, exudate composition and

  17. Effect of Omegaven on mast cell concentration in diabetic wound healing.

    Babaei, Saeid; Ansarihadipour, Hadi; Nakhaei, Mahmoodreza; Darabi, Mohammadreza; Bayat, Parvindokht; Sakhaei, Mohammadhassan; Baazm, Maryam; Mohammadhoseiny, Atefe

    2017-05-01

    Diabetic wound healing is a complicated process. In all over the world 15% of 200 million diabetic people suffer from diabetic foot problems. Mast cells are known to participate in three phases of wound healing: the inflammatory reaction, angiogenesis and extracellular-matrix reabsorption. The inflammatory reaction is mediated by released histamine and arachidonic acid metabolites. Omega-3 fatty acids alter proinflammatory cytokine production during wound healing which affects the presence of inflammatory cells in wound area as well, but how this events specifically influences the presence of mast cells in wound healing is not clearly understood. This study is conducted to determine the effect of Omegaven, eicosapentaenoic (EPA) and docosahexaenoic (DHA) on pattern of presence of mast cells in diabetic wound area. Diabetic male wistar rats were euthanized at 1, 3, 5, 7 and 15 days after the excision was made. To estimate the number of mast cells histological sections were provided from wound area and stained with toluidine blue. In this relation wound area (8400 microscopic field, 45.69 mm 2 ) were examined by stereological methods by light microscope. We found that comparing experimental and control group, omega-3 fatty acids significantly decreased wound area in day 7 and also the number of grade three mast cells in day 3 and 5. We also found that wound strength has significantly increased in experimental group at day 15. Copyright © 2016. Published by Elsevier Ltd.

  18. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression.

    Hussan, F; Teoh, S Lin; Muhamad, N; Mazlan, M; Latiff, A A

    2014-08-01

    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract. Fifty-six male Sprague-Dawley rats were divided into a normal control group and five diabetic groups of ten rats each. Intravenous streptozotocin (50mg/kg) was given to induce diabetes in the diabetic groups. Full thickness excision wounds were created on the thoracodorsal region of the animals, and these wounds were then treated with vehicle, MC powder, MC ointment and povidone ointment or ointment base for ten days. Wound healing was determined by the rate of wound closure, total protein content and TGF-β expression in the wounds, and histological observation. Diabetic groups showed delayed wound closure rates compared to the control group. The wound closure rate in the MC ointment group was significantly faster than that of the untreated diabetic group (p<0.05). The MC ointment group also showed intense TGF-β expression and a high level of total protein content. MC ointment has a promising potential for use as an alternative topical medication for diabetic wounds. This work has shown that it accelerates wound healing in diabetic rats, and it is suggested here that this occurs by enhancing TGF-β expression. Further work is recommended to explore this effect.

  19. Association of Hemoglobin A1c and Wound Healing in Diabetic Foot Ulcers.

    Fesseha, Betiel K; Abularrage, Christopher J; Hines, Kathryn F; Sherman, Ronald; Frost, Priscilla; Langan, Susan; Canner, Joseph; Likes, Kendall C; Hosseini, Sayed M; Jack, Gwendolyne; Hicks, Caitlin W; Yalamanchi, Swaytha; Mathioudakis, Nestoras

    2018-04-16

    This study evaluated the association between hemoglobin A 1c (A1C) and wound outcomes in patients with diabetic foot ulcers (DFUs). We conducted a retrospective analysis of an ongoing prospective, clinic-based study of patients with DFUs treated at an academic institution during a 4.7-year period. Data from 270 participants and 584 wounds were included in the analysis. Cox proportional hazards regression was used to assess the incidence of wound healing at any follow-up time in relation to categories of baseline A1C and the incidence of long-term (≥90 days) wound healing in relation to tertiles of nadir A1C change and mean A1C change from baseline, adjusted for potential confounders. Baseline A1C was not associated with wound healing in univariate or fully adjusted models. Compared with a nadir A1C change from baseline of -0.29 to 0.0 (tertile 2), a nadir A1C change of 0.09 to 2.4 (tertile 3) was positively associated with long-term wound healing in the subset of participants with baseline A1C healing was seen with the mean A1C change from baseline in this group. Neither nadir A1C change nor mean A1C change were associated with long-term wound healing in participants with baseline A1C ≥7.5%. There does not appear to be a clinically meaningful association between baseline or prospective A1C and wound healing in patients with DFUs. The paradoxical finding of accelerated wound healing and increase in A1C in participants with better baseline glycemic control requires confirmation in further studies. © 2018 by the American Diabetes Association.

  20. Modulation of Wound Healing and Scar Formation by MG53 Protein-mediated Cell Membrane Repair*

    Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M.; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie

    2015-01-01

    Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53−/− mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. PMID:26306047

  1. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.

  2. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing.

    Piperigkou, Zoi; Götte, Martin; Theocharis, Achilleas D; Karamanos, Nikos K

    2017-10-24

    Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Corneal wound healing promoted by 3 blood derivatives: an in vitro and in vivo comparative study.

    Freire, Vanesa; Andollo, Noelia; Etxebarria, Jaime; Hernáez-Moya, Raquel; Durán, Juan A; Morales, María-Celia

    2014-06-01

    The aim of this study was to compare the effect on corneal wound healing of 3 differently manufactured blood derivatives [autologous serum (AS), platelet-rich plasma, and serum derived from plasma rich in growth factors (s-PRGF)]. Scratch wound-healing assays were performed on rabbit primary corneal epithelial cultures and human corneal epithelial cells. Additionally, mechanical debridement of rabbit corneal epithelium was performed. Wound-healing progression was assessed by measuring the denuded areas remaining over time after treatment with each of the 3 blood derivatives or a control treatment. In vitro data show statistically significant differences in the healing process with all the derivatives compared with the control, but 2 of them (AS and s-PRGF) induced markedly faster wound healing. In contrast, although the mean time required to complete in vivo reepithelization was similar to that of AS and s-PRGF treatment, only wounds treated with s-PRGF were significantly smaller in size from 2.5 days onward with respect to the control treatment. All 3 blood derivatives studied are promoters of corneal reepithelization. However, the corneal wound-healing progresses differently with each derivative, being faster in vitro under AS and s-PRGF treatment and producing in vivo the greatest decrease in wound size under s-PRGF treatment. These findings highlight that the manufacturing process of the blood derivatives may modulate the efficacy of the final product.

  4. Effects of low level laser therapy and high voltage stimulation on diabetic wound healing

    María Cristina Sandoval Ortíz

    2014-08-01

    Full Text Available Background: a review of the literature found no clinical studies in which low level laser therapy (LLLT and high voltage pulsed current (HVPC were compared to evaluate their effectiveness in promoting wound healing. Objective: The purpose of this study was compare the effects of LLLT, HVPC and standard wound care (SWC on the healing of diabetic foot ulcers. Methods: randomized controlled clinical trial where diabetic patients were divided in control group (CG treated with SWC; HVPC group received HVPC plus SWC; LLLTgroup, treated with LLLT plus SWC. HVPC was applied 45min, 100pps and 100μs. LLLTparameters were 685nm, 30mW,2J/cm² applied to the wound edges and 1,5J/cm² in the wound bed. All subjects were treated 16 weeks or until the wound closed. The variables were healing, healing proportion, ulcers's characteristics, protective sensation, nerve conduction studies (NCS and quality life. ANCOVA analysis and a Fisher's exact test were