WorldWideScience

Sample records for impacts hydrogen implantation

  1. Hydrogenation of stainless steels implanted with nitrogen

    International Nuclear Information System (INIS)

    Silva Ramos, L.E. da.

    1989-01-01

    In the present work the effects of both ion implantation and hydrogenation on the fatigue behaviour of an AISI-304 type unstable stainless steel was studied. The material was tested under the following microstructural conditions: annealed; annealed plus hydrogenated; annealed plus ion-implanted; annealed, ion-implanted and hydrogeneted. The hydrogen induced phase transformations were also studied during the outgassing of the samples. The ion implanted was observed to retard the kinetics of the hydrogen induced phase transformations. It was also observed that the nitrogen ion implantation followed by both natural (for about 4 months) and artificial (100 0 C for 6 hours) aging treatments was beneficial to the fatigue life of both non hydrogenated and severely hydrogenated samples. (author) [pt

  2. Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu

    2016-07-01

    It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in and silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.

  3. Study of hydrogen implanted in aluminium

    International Nuclear Information System (INIS)

    Bugeat, J.P.; Chami, A.C.; Danielou, R.; Ligeon, E.

    1976-01-01

    An aluminium sample was implanted with deuterium and hydrogen at 5keV and 10keV respectively. The 1 H( 11 B,α) 8 Be* and D( 3 He,p) 4 He reactions were used for the analysis of H and D respectively. The implanted deuterium was shown to be as a whole in a tetrahedral site as far as the implantation temperature is lower than 175K, beyond that temperature the deuterium is randomly located. When the implantation temperature increases from 33K up to 275K the tetrahedral siting remains during annealing. The migration temperatures of hydrogen (or temperature of transition from the tetrahedral siting to a random distribution) experimentally observed during annealing (300K) and for increased implantation temperatures, show that the tetrahedral site is associated with a monovacancy migrating at 300K, the diffusion temperature of hydrogen being lower than 180K [fr

  4. Configuration and mobility of hydrogen implanted in aluminium

    International Nuclear Information System (INIS)

    Bugeat, J.P.; Chami, A.C.; Ligeon, E.

    1976-01-01

    Localization methods through channeling and nuclear reaction analysis using low energy ion beam were applied to the study of deuterium and hydrogen implanted in aluminium single crystals. It was shown that implanted hydrogen occupies a tetrahedral site in the lattice as far as the implantation temperature is lower than 175K. This fact is interpreted by considering an interaction between hydrogen and monovacancies created during the implantation [fr

  5. Ion beam investigation of hydrogen implanted in magnesium

    International Nuclear Information System (INIS)

    Chami, A.-C.

    1977-01-01

    The diffusion mechanism for hydrogen implanted in magnesium was investigated by nuclear reaction analysis or channeling. The hydrogen introduced is then in the presence of radiation defects created by implantation. The H( 11 B,α) reaction used allowed the profiles of implanted hydrogen to be drawn. The Winterbon calculations derived from LSS theory (Lindhard, Scharff, Schiott) were used. LSS profiles folding and the excitation curve unfolding give very same results. An analysis of the profile of the defects and the evaluation of the total number of Frenkel pairs produced show that the defects are isolated when low energy light elements are implanted, and hydrogen interactions are effected through point defects. A channeling analysis shows that hydrogen occupies tetrahedral sites as far as the temperature remains lower that the migration temperature (about 100K). Beyonds this temperature, the hydrogen migrates and is trapped on motionless defects [fr

  6. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  7. Atomic scale simulations of hydrogen implantation defects in hydrogen implanted silicon - smart Cut technology

    International Nuclear Information System (INIS)

    Bilteanu, L.

    2010-12-01

    The topic of this thesis is related to the implantation step of the SmartCut TM technology. This technology uses hydrogen in order to transfer silicon layers on insulating substrates. The transfer is performed through a fracture induced by the formation of bidimensional defects well known in literature as 'platelets'. More exactly, we have studied within this thesis work the defects appearing in the post implant state and the evolution of the implantation damage towards a state dominated by platelets. The study is organised into two parts: in the first part we present the results obtained by atomic scale simulations while in the second part we present an infrared spectroscopy study of the evolution of defects concentrations after annealing at different temperatures. The atomic scale simulations have been performed within the density functional theory and they allowed us to compute the formation energies and the migration and recombination barriers. The defects included in our study are: the atomic and diatomic interstitials, the hydrogenated vacancies and multi-vacancies and the several platelets models. The obtained energies allowed us to build a stability hierarchy for these types of defects. This scheme has been confronted with some infrared analysis on hydrogen implanted silicon samples (37 keV) in a sub-dose regime which does not allow usually the formation of platelets during the implantation step. The analysis of the infrared data allowed the detailed description of the defects concentration based on the behaviour of peaks corresponding to the respective defects during annealing. The comparison between these evolutions and the energy scheme obtained previously allowed the validation of an evolution scenario of defects towards the platelet state. (author)

  8. Growth of nanoparticles in hydrogen-implanted palladium subsurfaces

    International Nuclear Information System (INIS)

    Okuyama, F.

    2010-01-01

    Solid particles with nanometric dimensions are shown to grow in the opened subsurface of a polycrystalline palladium (Pd) hydrogen-implanted at around 500 C. The particles are Pd in main composition and densely grown on sloping walls of fissured grain boundaries or cracks. The average grain size increases from deeper to shallow regions, suggesting that a negative temperature gradient toward the surface existed along the crack walls. The nanoparticles are certain to arise from the condensation of Pd vapors on the walls, forcing us to assume that hydrogen atoms implanted in an overpopulation heated their implantation zone so strongly as to vaporize Pd. (orig.)

  9. Growth of nanoparticles in hydrogen-implanted palladium subsurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, F. [Nagoya Institute of Technology, Graduate School of Engineering, Nagoya (Japan)

    2010-07-15

    Solid particles with nanometric dimensions are shown to grow in the opened subsurface of a polycrystalline palladium (Pd) hydrogen-implanted at around 500 C. The particles are Pd in main composition and densely grown on sloping walls of fissured grain boundaries or cracks. The average grain size increases from deeper to shallow regions, suggesting that a negative temperature gradient toward the surface existed along the crack walls. The nanoparticles are certain to arise from the condensation of Pd vapors on the walls, forcing us to assume that hydrogen atoms implanted in an overpopulation heated their implantation zone so strongly as to vaporize Pd. (orig.)

  10. Extended defects and hydrogen interactions in ion implanted silicon

    Science.gov (United States)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (TED at low anneal temperatures (550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for

  11. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    Science.gov (United States)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  12. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  13. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  14. Silicon exfoliation by hydrogen implantation: Actual nature of precursor defects

    Energy Technology Data Exchange (ETDEWEB)

    Kuisseu, Pauline Sylvia Pokam, E-mail: pauline-sylvia.pokam-kuisseu@cnrs-orleans.fr [CEMHTI-CNRS, 3A, rue de la férollerie, 45071 Orléans (France); Pingault, Timothée; Ntsoenzok, Esidor [CEMHTI-CNRS, 3A, rue de la férollerie, 45071 Orléans (France); Regula, Gabrielle [IM2NP-CNRS-Université d’Aix-Marseille, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Mazen, Frédéric [CEA-Leti, MINATEC campus, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Sauldubois, Audrey [Université d’Orléans, rue de Chartres – Collegium ST, 45067 Orléans (France); Andreazza, Caroline [ICMN-CNRS-Université d’Orléans, 1b rue de la férollerie, 45071 Orléans (France)

    2017-06-15

    MeV energy hydrogen implantation in silicon followed by a thermal annealing is a very smart way to produce high crystalline quality silicon substrates, much thinner than what can be obtained by diamond disk or wire sawing. Using this kerf-less approach, ultra-thin substrates with thicknesses between 15 µm and 100 µm, compatible with microelectronic and photovoltaic applications are reported. But, despite the benefits of this approach, there is still a lack of fundamental studies at this implantation energy range. However, if very few papers have addressed the MeV energy range, a lot of works have been carried out in the keV implantation energy range, which is the one used in the smart-cut® technology. In order to check if the nature and the growth mechanism of extended defects reported in the widely studied keV implantation energy range could be extrapolated in the MeV range, the thermal evolution of extended defects formed after MeV hydrogen implantation in (100) Si was investigated in this study. Samples were implanted at 1 MeV with different fluences ranging from 6 × 10{sup 16} H/cm{sup 2} to 2 × 10{sup 17} H/cm{sup 2} and annealed at temperatures up to 873 K. By cross-section transmission electron microscopy, we found that the nature of extended defects in the MeV range is quite different of what is observed in the keV range. In fact, in our implantation conditions, the generated extended defects are some kinds of planar clusters of gas-filled lenses, instead of platelets as commonly reported in the keV energy range. This result underlines that hydrogen behaves differently when it is introduced in silicon at high or low implantation energy. The activation energy of the growth of these extended defects is independent of the chosen fluence and is between (0.5–0.6) eV, which is very close to the activation energy reported for atomic hydrogen diffusion in a perfect silicon crystal.

  15. Origin of reverse annealing effect in hydrogen-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Di, Zengfeng [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  16. Microstructural study of hydrogen-implanted beryllium

    International Nuclear Information System (INIS)

    Vagin, S.P.; Chakrov, P.V.; Utkelbayev, B.D.

    1998-01-01

    Hot pressed beryllium (TGP-56) was implanted by 650 keV H + ions to a dose of 6.7 x 10 16 cm -2 at a temperature below 50 C. TEM examinations were performed both at as-irradiated specimens and after post-irradiation annealings at 400-600 C for 15 min. After irradiation, a high density of ''black dot'' defects with a size of about 5 nm is observed in the straggling zone, some of which are resolved as small dislocation loops. During post-irradiation annealing, growth of dislocation loops and oriented gas-filled bubbles are observed in the damaged zone. The bubbles are strongly elongated along the left angle 0001 right angle direction, and their sidelong facts lie along {1-100} planes. These facets have a regular ''toothed'' surface with ''tooth'' facets on {1-100} planes. The size of the ''teeth'' increases with annealing temperature, as well as the total volume of bubbles, with their length growing faster than their width. (orig.)

  17. [The impact of dental implants

    NARCIS (Netherlands)

    Meijer, G.J.

    2013-01-01

    The importance of the introduction of dental implants can only be understood when the historical context is clarified. In the past, the main treatment carried out by dentists consisted of filling or, in unfortunate cases, removal of painful teeth. Only since the introduction of dental implants did

  18. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  19. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  20. Effects of high-dose hydrogen implantation on defect formation and dopant diffusion in silver implanted ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaqoob, Faisal [Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States); Huang, Mengbing, E-mail: mhuang@sunypoly.edu [College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203 (United States)

    2016-07-28

    This work reports on the effects of a deep high-dose hydrogen ion implant on damage accumulation, defect retention, and silver diffusion in silver implanted ZnO crystals. Single-crystal ZnO samples were implanted with Ag ions in a region ∼150 nm within the surface, and some of these samples were additionally implanted with hydrogen ions to a dose of 2 × 10{sup 16 }cm{sup −2}, close to the depth ∼250 nm. Rutherford backscattering/ion channeling measurements show that crystal damage caused by Ag ion implantation and the amount of defects retained in the near surface region following post-implantation annealing were found to diminish in the case with the H implantation. On the other hand, the additional H ion implantation resulted in a reduction of substitutional Ag atoms upon post-implantation annealing. Furthermore, the presence of H also modified the diffusion properties of Ag atoms in ZnO. We discuss these findings in the context of the effects of nano-cavities on formation and annihilation of point defects as well as on impurity diffusion and trapping in ZnO crystals.

  1. Martensitic transformations in 304 stainless steel after implantation with helium, hydrogen and deuterium

    International Nuclear Information System (INIS)

    Johnson, E.; Grabaek, L.; Johansen, A.; Sarholt-Kristensen, L.; Hayashi, N.; Sakamoto, I.

    1988-01-01

    Using conversion electron Moessbauer spectroscopy (CEMS) and glancing angle X-ray diffraction, martensitic transformations have been studied in type 304 austenitic stainless steels implanted with 8 keV helium, hydrogen and deuterium. Furthermore, using CEMS in the energy selective mode (DCEMS), the distribution of martensite in the implantation zone has been analysed as a function of depth. Transformation of the implanted layer occurs after implantation with 10 21 m -2 He + ions while 100 times higher fluence is required for the implanted layer to transform after hydrogen or deuterium implantations. This difference is due to the ability of helium to form high pressure gas bubbles, while implanted hydrogen is continuously lost by back diffusion to the surface. The helium bubbles, which are confined under pressures as high as 60 GPa, will induce extremely high stress levels in the implanted layer, by which the martensitic transformation is directly induced. The fact that a much higher fluence of hydrogen or deuterium is required to induce the transformation, shows that radiation damage plays only a minor role. In this case, the martensitic transformation first occurs when the implanted layer resembles the state of a cathodically charged surface. (orig.)

  2. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  3. Global environmental impacts of the hydrogen economy

    International Nuclear Information System (INIS)

    Derwent, R.; Simmonds, P.; O'Doherty, S.; Manning, A.; Collins, W.; Stevenson, D.

    2006-01-01

    Hydrogen-based energy systems appear to be an attractive proposition in providing a future replacement for the current fossil-fuel based energy systems. Hydrogen is an important, though little studied, trace component of the atmosphere. It is present at the mixing ratio of about 510 ppb currently and has important man-made and natural sources. Because hydrogen reacts with tropospheric hydroxyl radicals, emissions of hydrogen to the atmosphere perturb the distributions of methane and ozone, the second and third most important greenhouse gases after carbon dioxide. Hydrogen is therefore an indirect greenhouse gas with a global warming potential GWP of 5.8 over a 100-year time horizon. A future hydrogen economy would therefore have greenhouse consequences and would not be free from climate perturbations. If a global hydrogen economy replaced the current fossil fuel-based energy system and exhibited a leakage rate of 1%, then it would produce a climate impact of 0.6% of the current fossil fuel based system. Careful attention must be given to reduce to a minimum the leakage of hydrogen from the synthesis, storage and use of hydrogen in a future global hydrogen economy if the full climate benefits are to be realised. (author)

  4. Study of low energy hydrogen ion implantation effects in silicon: electric properties

    International Nuclear Information System (INIS)

    Barhdadi, A.

    1985-07-01

    Several analysis methods have been developed: hydrogen distribution analysis by nuclear reaction, crystal disorder evaluation by R.B.S., chemical impurities identification by SIMS, optical measurements, electrical characterization of surface barriers, deep level spectroscopy DLTS, ... All these analyses have been made after implantation then after thermal annealing. A model explaining the effect of implantation then after thermal annealing. A model explaining the effect of implanted hydrogen is proposed, the implantation creates an important quantity of defects in a thin layer near the surface; a chemical attack removes them. In Schottky devices, this layer has a basic role on carrier transport phenomena. Other results are given, some of them allow to give an account of the passivation by hydrogen implantation [fr

  5. Distribution of implanted hydrogen in amorphous silicon dioxide a-SiO2

    International Nuclear Information System (INIS)

    Mokrushin, A.D.; Agafonov, Yu.A.; Zinenko, V.I.; Pustovit, A.N.

    2004-01-01

    Hydrogen SIMS distributions are measured in quartz glasses implanted by different doses of H 2 + ions with energy 40 keV. There are two features in distributions: the availability of intensive peak close to the surface and near-constant dependence at large depth up to ions range. These peculiarities are perhaps attributable to the radiation induced diffusion of hydrogen atoms back to the surface via which ions are implanted [ru

  6. Slow positron beam study of hydrogen ion implanted ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-01-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×10 15 and 1×10 16 ions cm −2 . Zn vacancy and OH bonding (V Zn +OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process. - Highlights: • Hydrogen introduced by ion implantation can form hydrogen-related defect complex. • V Zn +OH defect complex is identified by positron annihilation and IR spectroscopy. • Irradiation defects suppress the luminescence process

  7. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos, E-mail: ludmilapedroso@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia; Garcia, Robson Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Medicina Oral; Leles, Jose Luiz Rodrigues [Universidade Paulista (UNIP), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Cirurgia; Leles, Claudio Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Prevencao e Reabilitacao Oral

    2013-11-15

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p < 0.05). The final sample comprised 95 implants in 27 patients, distributed over the maxilla and mandible. Agreement in implant length was 50.5% between initial and final planning, and correct prediction of the actual implant length was 40.0% and 69.5%, using PAN and CBCT exams, respectively. Agreement in implant width assessment ranged from 69.5% to 73.7%. A paired comparison of the frequency of changes between initial or final planning and implant placement (McNemmar test) showed greater frequency of changes in initial planning for implant length (p < 0.001), but not for implant width (p = 0.850). The frequency of changes was not influenced by implant location at any stage of implant planning (chi-square test, p > 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  8. Study of the bistable hydrogen donors properties in silicon implanted by the protons

    International Nuclear Information System (INIS)

    Abdullin, Kh.A.; Gorelkinskij, Yu.V.; Serikkanov, A.S.

    2003-01-01

    The proton implantation in silicon with doses 10 16 -10 17 cm -2 leads to formation of the hydrogen supersaturated solid solution in the Si. At the room temperature the hydrogen mobility on radiation defects limited by the H atom capture is inappreciably low. Thermal annealing at 400-500 Deg. C results in the decay and rebuilding of hydrogen-containing radiation defects and precipitants, that leads to reduction of the free energy of the system. Precipitation occurring in the form of nano-cluster defects formation, containing the hydrogen atoms. Thermal annealing of the silicon implanted by hydrogen at ∼450 Deg. C during 20 min. causing the hydrogen precipitation process and defects agglomeration leads to donor centers formation registering by the Hall effect

  9. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  10. The annealing behavior of hydrogen implanted into Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Masahiko; Yamaji, Norisuke; Imai, Makoto; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    We have studied effects of not only defects but also an added elements on trap-sites of hydrogen in metals. For the purpose, we observed depth profiles and thermal behaviors of hydrogen implanted into Al-1.5at.%Si alloy samples in an implantation-temperature range of liquid nitrogen temperature (LNT) to 373K at different doses. The results were compared with those for pure aluminum samples. It was found that hydrogen is trapped as molecules in grain boundaries of Al/Si. (author)

  11. 3D microscopy of hydrogen and magnetic force on proton implanted microstructures in graphite

    International Nuclear Information System (INIS)

    Reichart, P.; Cluitmans, J.F.J.; Pakes, C.; Orbons, S.; Jamieson, D.N.

    2005-01-01

    We investigated the depth dependence of magnetic signals in proton irradiated graphite using a tilted microspot implantation followed by combined AFM/MFM analysis. This study is motivated by the not yet independently reproduced discovery of ferromagnetism in carbon materials created by proton irradiation. We present results of 3D hydrogen analysis of pristine and irradiated highly oriented pyrolytic graphite (HOPG). These results, previously presented in collaboration with universities in Leipzig and Munich, are summarized here and reveal a hydrogen level in pristine HOPG less than 0.3 at-ppm and that 2.25 MeV implanted hydrogen is located within a peak confined to the end of range with no evidence of diffusion broadening. For implanted microspots, up to 40 at-% of the implanted hydrogen is not detected, providing support for lateral hydrogen diffusion. Up to 10 16 H-atoms/cm 2 are detected in the near-surface region on all samples, which has not yet been considered in possible mechanisms for creation of ferromagnetism. As theoretical models propose that hydrogen could play a major role in carbon ferromagnetism, this result raises the hypothesis for an effect restricted to the surface. Our preliminary data on magnetic force microscopy of tilted implants show a strong magnetic phase shift localized on the beam entrance point only. (author). 14 refs., 5 figs

  12. Influence of nitrogen ion implantation on hydrogen permeation in an extra mild steel

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.; Pivin, J.C.

    1989-01-01

    This paper presents the first results on the effect of nitrogen implantation on hydrogen permeation in steels. Nitrogen can modify superficially the steel's chemistry and/or microstructure depending on the fluence and thereby affect the processes of hydrogen diffusion and trapping. The implantations were performed on low carbon steel specimens with different nominal doses (1% to 10% and 33% nitrogen in a superficial layer of approximately 100 to 120 nm). The corresponding microstructures were characterized and permeation tests were conducted at room temperature in a double electrolytic cell. The nitrogen implanted layers on iron affects the electrochemical behaviour of the surface and the permeation in the material. This effect depends on the nitrogen concentration in the layer and on the corresponding microstructure. A continuous Fe 2 N layer acts as an efficient barrier to hydrogen entry and permeation when the layer is located on the entry face of the permeation membrane. This effect is stronger when the implanted layer is on the downstream face of the membrane. The low permeability values are mainly attributed to a lower hydrogen solubility in the implanted layer, whereas hydrogen trapping on defects and nitride precipitates delay hydrogen penetration. (author)

  13. Comparison of irradiated and hydrogen implanted German RPV steels using PAS technique

    Energy Technology Data Exchange (ETDEWEB)

    Pecko, Stanislav, E-mail: stanislav.pecko@stuba.sk; Sojak, Stanislav; Slugeň, Vladimír

    2015-12-15

    Highlights: • German RPV steels were originally studied by positron annihilation spectroscopy. • Neutron irradiated and hydrogen ion implanted specimens were studied. • Both irradiation ways caused to increase of defect size. • We determined that the defect size was higher in implanted specimens. - Abstract: Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This spectroscopic method is a really effective tool for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to irradiation. German commercial reactor pressure vessel steels, originally from CARISMA program, were used in our study. The German experimental reactor VAK was selected as the proper irradiation facility in the 1980s. A specimen in as-received state and 2 different irradiated cuts from the same material were measured by PALS and size of defects with their intensity was indentified. Afterwards there was prepared an experiment with concern in simulation of neutron irradiation by hydrogen ion implantation on a linear accelerator with energy of 100 keV. Results are concerning on comparison between defects caused by neutron irradiation and hydrogen implantation. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to hydrogen ions implantation.

  14. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  15. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  16. Time dependence of silica optical properties during the implantation of fast hydrogen ions: Theory

    CERN Document Server

    Barannik, E; Zhurenko, V; Kononenko, S; Kononenko, O

    2015-01-01

    Formation, excitation and passivation of defects by absorbed hydrogen have been extensively reported in the literature. Here we present a basic luminescence-diffusion model to simulate creation and chemical annealing behavior of non-bridging oxygen hole centers in silica by their treatment under a long-time hydrogen implantation. The model is in a good agreement with experimental data and explains the uncommon nonmonotonic time dependence of the non-bridging oxygen hole centers luminescence during the hydrogen implantation. The proposed model establishes the quantitative relation between the intensity dependence of luminescence on its intrinsic diffusivity, hydrogen concentration, defect concentration and cross-section of their creation. Possibilities to estimate these parameters based on the experimental data for the efficiency of silica luminescence are also discussed.

  17. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    International Nuclear Information System (INIS)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos; Garcia, Robson Rodrigues; Leles, Jose Luiz Rodrigues; Leles, Claudio Rodrigues

    2013-01-01

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  18. Impact of implant design on primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter

    2008-01-01

    Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.

  19. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    Science.gov (United States)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along directions.

  20. Accumulation and release of implanted hydrogen from blisters in Si during the thermal treatment

    International Nuclear Information System (INIS)

    Aleksandrov, P.A.; Baranova, E.K.; Baranova, I.V.; Budaragin, V.V.; Litvinov, V.L.

    2004-01-01

    The processes of accumulation of ion implanted hydrogen in blisters in silicon and its release during the thermal treatment at 350-1020 deg C have been studied by optical techniques. It is established that accumulation of gaseous hydrogen inside blisters takes place at temperatures lower than ∼ 450-500 deg C and is accompanied by the growth of blisters thickness and deformation of their caps. At higher temperatures hydrogen leaves cavities and dissolves in silicon. Due to internal pressure dropping the elasticity deformed top layer partially relaxes, and the blister thickness decreases. Etching of the surface layer reveals the agglomerations of small voids ( [ru

  1. On depth profiling of hydrogen and helium isotopes and its application to ion-implantation studies

    International Nuclear Information System (INIS)

    Boettiger, J.

    1979-01-01

    The thesis is divided into two parts, the first being a general review of the experimental methods for depth profiling of light isotopes, where ion beams are used. In the second part, studies of ion implantation of hydrogen and helium isotopes, applying the techniques discussed in the first part, are described. The paper summarizes recent experimental results and discusses recent developments. (Auth.)

  2. Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test

    Directory of Open Access Journals (Sweden)

    Gopa Chakraborty

    2016-12-01

    Full Text Available DMR-249A is an indigenously developed high strength low alloy steel for Indian ship building industry for making ship-hull and is extensively used in the construction of war ships and submarines. Welding electrodes conforming to SFA 5.5 AWS E8018 C1 has been indigenously developed for welding of this steel using shielded metal arc welding process. In the present study, susceptibility to hydrogen assisted cracking of DMR-249A steel welds made using this electrode has been assessed using implant test. Implant tests were conducted using this electrode at two different levels of diffusible hydrogen, measured using gas chromatography technique. It is observed that both the steel and the welding consumable are not susceptible to hydrogen assisted cracking even with a high diffusible hydrogen level of 9 mL/100g of weld metal. In implant tests, specimen did not fracture even after loading to stress levels higher than the yield strength of the base metal. The good resistance of this steel and the welding consumable, even with high levels of diffusible hydrogen, is attributed to absence of a susceptible microstructure in both the weld metal and heat affected zone. Hence, this study shows that, in the absence of a susceptible microstructure, hydrogen assisted cracking is unlikely to occur even if hydrogen level is high. It also confirms that in welding of DMR-249A with indigenously developed E8018 C1 electrode, hydrogen assisted cracking is not a concern and no preheating is required to avoid it during welding.

  3. Investigation of low-resistivity from hydrogenated lightly B-doped diamond by ion implantation

    Directory of Open Access Journals (Sweden)

    Cui Xia Yan et al

    2008-01-01

    Full Text Available We have implanted boron (B ions (dosage: 5×1014 cm-2 into diamond and then hydrogenated the sample by implantating hydrogen ions at room temperature. A p-type diamond material with a low resistivity of 7.37 mΩ cm has been obtained in our experiment, which suggests that the hydrogenation of B-doped diamond results in a low-resistivity p-type material. Interestingly, inverse annealing, in which carrier concentration decreased with increasing annealing temperature, was observed at annealing temperatures above 600 °C. In addition, the formation mechanism of a low-resistivity material has been studied by density functional theory calculation using a plane wave method.

  4. Investigation of hydrogen micro-kinetics in metals with ion beam implantation and analysis

    International Nuclear Information System (INIS)

    Wang, T.S.; Peng, H.B.; Lv, H.Y.; Han, Y.C.; Grambole, D.; Herrmann, F.

    2007-01-01

    One of the most important subjects in the fusion material research is to study the hydrogen and helium concentration, diffusion and evolution in the structure material of fusion reactor, since the hydrogen and helium can be continuously produced by the large dose fast neutron irradiation on material. Various analysis Methods can be used, but the ion beam analysis method has some advantages for studying the hydrogen behaviors in nano- or micrometer resolution. In this work, the hydrogen motion and three-dimensional distribution after implantation into metal has been studied by resonance NRA, micro-ERDA and XRD etc Methods. The resolution of the H-depth-profile is in nanometer level and the lateral resolution can be reached to 2 micrometers. The evolution of hydrogen depth-profile in a titanium sample has been studied versus the change of normal stress in samples. Evident hydrogen diffusion has been observed, while a normal stress is changed in the range of 107-963 MPa. A new phase transformation during the hydrogenation is observed by the in-situ XRD analysis. The further study on the hydrogen behaviors in the structure materials of fusion reactor is in plan. (authors)

  5. Impact of dental implant insertion method on the peri-implant bone tissue: Experimental study

    Directory of Open Access Journals (Sweden)

    Stamatović Novak

    2013-01-01

    Full Text Available Background/Aim. The function of dental implants depends on their stability in bone tissue over extended period of time, i.e. on osseointegration. The process through which osseointegration is achieved depends on several factors, surgical insertion method being one of them. The aim of this study was to histopathologically compare the impact of the surgical method of implant insertion on the peri-implant bone tissue. Methods. The experiment was performed on 9 dogs. Eight weeks following the extraction of lower premolars implants were inserted using the one-stage method on the right mandibular side and two-stage method on the left side. Three months after implantation the animals were sacrificed. Three distinct regions of bone tissue were histopathologically analyzed, the results were scored and compared. Results. In the specimens of one-stage implants increased amount of collagen fibers was found in 5 specimens where tissue necrosis was also observed. Only moderate osteoblastic activity was found in 3 sections. The analysis of bone-to-implant contact region revealed statistically significantly better results regarding the amount of collagen tissue fibers for the implants inserted in the two-stage method (Wa = 59 105, α = 0.05. No necrosis and osteoblastic activity were observed. Conclusion. Better results were achieved by the two-stage method in bone-to-implant contact region regarding the amount of collagen tissue, while the results were identical regarding the osteoblastic activity and bone tissue necrosis. There was no difference between the methods in the bone-implant interface region. In the bone tissue adjacent to the implant the results were identical regarding the amount of collagen tissue, osteoblastic reaction and bone tissue necrosis, while better results were achieved by the two-stage method regarding the number of osteocytes.

  6. Theoretical examination of the trapping of ion-implanted hydrogen in metals

    International Nuclear Information System (INIS)

    Myers, S.M.; Nordlander, P.; Besenbacher, F.; Norskov, J.K.

    1986-01-01

    Theoretical analysis of the defect trapping of ion-implanted hydrogen in metals has been extended in two respects. A new transport formalism has been developed which takes account not only of the diffusion, trapping, and surface release of the hydrogen, which were included in earlier treatments, but also the diffusion, recombination, agglomeration, and surface annihilation of the vacancy and interstitial traps. In addition, effective-medium theory has been used to examine multiple hydrogen occupancy of the vacancy, and, for the fcc structure, appreciable binding enthalpies relative to the solution site have been found for occupancies of up to six. These extensions have been employed to model the depth distribution of ion-implanted hydrogen in Ni and Al during linear ramping of temperature, and the results have been used to interpret previously published data from these metals. The agreement between theory and experiment is good for both systems. In the case of Ni, the two experimentally observed hydrogen-release stages are both accounted for in terms of trapping at vacancies with a binding enthalpy that depends upon occupancy in accord with effective-medium theory

  7. Comparison of platelet formation in hydrogen and helium-implanted silicon

    International Nuclear Information System (INIS)

    Hebras, X.; Nguyen, P.; Bourdelle, K.K.; Letertre, F.; Cherkashin, N.; Claverie, A.

    2007-01-01

    A comparative transmission electron microscopy study of the extended defects formed in (0 0 1) Si after hydrogen or helium implantation was performed. Quantitative data on the size and density of the defects with different crystallographic variants have been obtained. Common defects observed after implants with a dose of 1 x 10 16 cm -2 and isothermal anneals at 350 o C in the presence of a stiffener were platelet-like structures lying on {1 0 0} habit planes parallel and perpendicular to the wafer surface. The differences in the defect morphology and in the variant platelet population are correspondingly related to the different chemical reactivity of H and He and the different compressive biaxial stresses generated by the H and He implants

  8. Quantitative analysis of swelling on annealing of hydrogen ion implanted diamond single crystals

    International Nuclear Information System (INIS)

    Kuznetsov, G.F.

    2006-01-01

    Local swelling observed upon high-temperature annealing of natural diamond single crystals implanted by 350-keV hydrogen ions with a dose of 12 10 16 cm 2 is studied. Based on room-temperature measurements, Griffith cracking criterion in combination with gas law, model quantitative calculations of the swelling size and the amount of hydrogen molecules in a swelling have been carried out for the first time. At room temperature, T 1 293 K, the amount of local elastic stresses in the upper layer of the diamond is counterbalanced by inner hydrogen pressure. Behavior of the gas bubbles with the annealing temperature increase up to 1693 K and repeated annealing at a temperature of 1743 K has been calculated [ru

  9. Effects of Hydrogen Ion Implantation on TiC-C Coating of Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LIU Yao-guang; HUANG Ning-kang

    2008-01-01

    Titanium carbide coatings are widely used as various wear-resistant material.The hydrogen erosion resistance of TiC-C films and the effect of hydrogen participation on TiC-C films were studied.Seventy-five percent TiC-C films are prepared on stainless steel surface by using ion mixing,where TiC-C films are deposited by rf magnetron sputtering followed by argon ion bombardment.The samples are then submitted to hydrogen ion implantation at 1.2×10-3 Pa.Characterization for the 75% TiC-C films was done with SIMS,XRD,AES,and XPS.Secondary ion mass spectroscopy (SIMS) was used to analyze hydrogen concentration variation with depth,X-Ray diffraction (XRD) was used to identify the phases,and Auger electron spectra (AES) as well as X-ray photoelectron spectra (XPS) were used to check the effects of hydrogen on shifts of chemical bonding states of C and Ti in the TiC-C films.It is found that TiC-C films on stainless steel surface can prevent hydrogen from entering stainless steel.

  10. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  11. ERP IMPLANTATION: KEY FACTORS OF SUCCESS AND IMPACT ON PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Dumitru Valentin

    2008-05-01

    Full Text Available The implantation of an ERP (abbreviation for "Enterprise Resource Planning" system is an enterprise project that implies the remodeling of the information system, mostly the rethinking of management procedures within the organization. The expansion and the complexity of these projects demand a theoretical framework and « optimal practices » in order to model and to evaluate the key factors of implementation success and to analyze its impact on the organization’s performance. The research problem of our communication can be divided into three research questions: - What conceptual framework for ERP implantation? - What are the key factors of success in ERP implantation? - What is the relationship between ERP implantation and enterprise performance?

  12. Hydrogen- and helium-implanted silicon: Low-temperature positron-lifetime studies

    DEFF Research Database (Denmark)

    Mäkinen, S.; Rajainmäki, H.; Linderoth, Søren

    1991-01-01

    High-purity single-crystal samples of float-zoned Si have been implanted with 6.95-MeV protons and with 25-MeV 3He2 ions at 15 K, and the positron-lifetime technique has been used to identify the defects created in the samples, and to study the effects of H and He on the annealing of point defects...... in Si. The results have been compared with those of proton-irradiated Si. A 100–300-K annealing stage was clearly observed in hydrogen (H+) -implanted Si, and this stage was almost identical to that in the p-irradiated Si. The final annealing state of the H+-implanted Si started at about 400 K......, and it is connected to annealing out of negatively charged divacancy-oxygen pairs. This stage was clearly longer than that for the p-irradiated Si, probably due to the breakup of Si-H bonds at about 550 K. The 100-K annealing stage was not seen with the He-implanted samples. This has been explained by assuming...

  13. Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se{sub 2} based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Seol, M.S.; Kwak, D.W.; Oh, J.S. [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, J.H. [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2012-08-01

    Hydrogen effects on deep level defects and a defect generation in proton implanted Cu(In,Ga)Se{sub 2} (CIGS) based thin films for solar cell were investigated. CIGS films with a thickness of 3 {mu}m were grown on a soda-lime glass substrate by a co-evaporation method, and then were implanted with protons. To study deep level defects in the proton implanted CIGS films, deep level transient spectroscopy measurements on the CIGS-based solar cells were carried out, these measurements found 6 traps (including 3 hole traps and 3 electron traps). In the proton implanted CIGS films, the deep level defects, which are attributed to the recombination centers of the CIGS solar cell, were significantly reduced in intensity, while a deep level defect was generated around 0.28 eV above the valence band maximum. Therefore, we suggest that most deep level defects in CIGS films can be controlled by hydrogen effects. - Highlights: Black-Right-Pointing-Pointer Proton implanted Cu(In,Ga)Se{sub 2} thin film and solar cell are prepared. Black-Right-Pointing-Pointer Deep level defects of Cu(In,Ga)Se{sub 2} thin film and solar cell are investigated. Black-Right-Pointing-Pointer Hydrogenation using proton implantation and H{sub 2} annealing reduces deep level defects. Black-Right-Pointing-Pointer Hydrogenation could enhance electrical properties and efficiency of solar cells.

  14. Impact of socioeconomic factors on paediatric cochlear implant outcomes.

    Science.gov (United States)

    Sharma, Shalabh; Bhatia, Khyati; Singh, Satinder; Lahiri, Asish Kumar; Aggarwal, Asha

    2017-11-01

    The study was aimed at evaluating the impact of certain socioeconomic factors such as family income, level of parents' education, distance between the child's home and auditory verbal therapy clinic, and age of the child at implantation on postoperative cochlear implant outcomes. Children suffering from congenital bilateral profound sensorineural hearing loss and a chronologic age of 4 years or younger at the time of implantation were included in the study. Children who were able to complete a prescribed period of a 1-year follow-up were included in the study. These children underwent cochlear implantation surgery, and their postoperative outcomes were measured and documented using categories of auditory perception (CAP), meaningful auditory integration (MAIS), and speech intelligibility rating (SIR) scores. Children were divided into three groups based on the level of parental education, family income, and distance of their home from the rehabilitation-- auditory verbal therapy clinic. A total of 180 children were studied. The age at implantation had a significant impact on the postoperative outcomes, with an inverse correlation. The younger the child's age at the time of implantation, the better were the postoperative outcomes. However, there were no significant differences among the CAP, MAIS, and SIR scores and each of the three subgroups. Children from families with an annual income of less than $7,500, between $7,500 and $15,000, and more than $15,000 performed equally well, except for significantly higher SIR scores in children with family incomes more than $15,000. Children with of parents who had attended high school or possessed a bachelor's or Master's master's degree had similar scores, with no significant difference. Also, distance from the auditory verbal therapy clinic failed to have any significantimpact on a child's performance. These results have been variable, similar to those of previously published studies. A few of the earlier studies

  15. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  16. Effect of thermal annealing on the optical and structural properties of silicon implanted with a high hydrogen fluence

    International Nuclear Information System (INIS)

    Kling, A.; Soares, J.C.; Rodriguez, A.; Rodriguez, T.; Avella, M.; Jimenez, J.

    2006-01-01

    Silicon capped by thermal oxide has been implanted with 1 x 10 17 H/cm 2 and the implant profile peaking at the interface. Samples were subjected to thermal annealing and characterized by ERD, FTIR, RBS/channeling, UV/VIS reflectance and cathodoluminescence regarding H-content, crystalline quality and light emission. The results show that the luminescent properties are independent of the hydrogen content but are strongly related with the present damage

  17. A novel kerf-free wafering process combining stress-induced spalling and low energy hydrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pingault, Timothee; Pokam-Kuisseu, Pauline Sylvia; Ntsoenzok, Esidor [CEMTHI - CNRS, Site Cyclotron, 3 A rue de la Ferollerie, 45071 Orleans (France); Blondeau, Jean-Philippe [CEMTHI - CNRS, Site Cyclotron, 3 A rue de la Ferollerie, 45071 Orleans (France); Universite d' Orleans, Chateau de la Source, 45100 Orleans (France); Ulyashin, Alexander [SINTEF, Forskningsveien 1, 0314 Oslo (Norway); Labrim, Hicham; Belhorma, Bouchra [CNESTEN, B.P. 1382 R.P., 10001 Rabat (Morocco)

    2016-12-15

    In this work, we studied the potential use of low-energy hydrogen implantation as a guide for the stress-induced cleavage. Low-energy, high fluence hydrogen implantation in silicon leads, in the right stiffening conditions, to the detachment of a thin layer, around a few hundreds nm thick, of monocrystalline silicon. We implanted monocrystalline silicon wafers with low-energy hydrogen, and then glued them on a cheap metal layer. Upon cooling down, the stress induced by the stressor layers (hardened glue and metal) leads to the detachment of a thin silicon layer, which thickness is determined by the implantation energy. We were then able to clearly demonstrate that, as expected, hydrogen oversaturation layer is very efficient to guide the stress. Using such process, thin silicon layers of around 710 nm-thick were successfully detached from low-energy implanted silicon wafers. Such layers can be used for the growth of very good quality monocrystalline silicon of around 50 μm-thick or less. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Comparison of thermally and mechanically induced Si layer transfer in hydrogen-implanted Si wafers

    International Nuclear Information System (INIS)

    Hoechbauer, T.; Misra, A.; Nastasi, M.; Henttinen, K.; Suni, T.; Suni, I.; Lau, S.S.; Ensinger, W.

    2004-01-01

    Hydrogen ion-implantation into Si and subsequent heat treatment has been shown to be an effective means of cleaving thin layer of Si from its parent wafer. This process has been called Smart Cut TM or ion-cut. We investigated the cleavage process in H-implanted silicon samples, in which the ion-cut was provoked thermally and mechanically, respectively. A oriented p-type silicon wafer was irradiated at room temperature with 100 keV H 2 + -ions to a dose of 5 x 10 16 H 2 /cm 2 and subsequently joined to a handle wafer. Ion-cutting was achieved by two different methods: (1) thermally by annealing to 350 deg. C and (2) mechanically by insertion of a razor blade sidewise into the bonded wafers near the bond interface. The H-concentration and the crystal damage depth profiles before and after the ion-cut were investigated through the combined use of elastic recoil detection analysis and Rutherford backscattering spectroscopy (RBS). The location at which the ion-cut occurred was determined by RBS in channeling mode and cross-section transmission electron spectroscopy. The ion-cut depth was found to be independent on the cutting method. The gained knowledge was correlated to the depth distribution of the H-platelet density in the as-implanted sample, which contains two separate peaks in the implantation zone. The obtained results suggest that the ion-cut location coincides with the depth of the H-platelet density peak located at a larger depth

  19. Fin field effect transistor directionality impacts printing of implantation shapes

    Science.gov (United States)

    Wang, Xiren; Granik, Yuri

    2018-01-01

    In modern integrated circuit (IC) fabrication processes, the photoresist receives considerable illumination energy that is reflected by underlying topography during optical lithography of implantation layers. Bottom antireflective coating (BARC) is helpful to mitigate the reflection. Often, however, BARC is not used, because its removal is technically challenging, in addition to its relatively high economic cost. Furthermore, the advanced technology nodes, such as 14/10-nm nodes, have introduced fin field effect transistor (FinFET), which makes reflection from nonuniform silicon substrates exceptionally complicated. Therefore, modeling reflection from topography becomes obligatory to accurately predict printing of implantation shapes. Typically, FinFET is always fixed in one direction in realistic designs. However, the same implantation rectangle may be oriented in either horizontal or vertical direction. Then, there are two types of relations between the critical dimension (CD) and FinFET, namely a parallel-to and a perpendicular-to relation. We examine the fin directionality impact on CD. We found that this impact may be considerable in some cases. We use our in-house rigorous optical topography simulator to reveal underlining physical reasons. One of the major causes of the CD differences is that in the parallel orientation, the solid sidewalls of the fins conduct considerable light reflections unlike for the perpendicular orientation. This finding can aid the compact modeling in optical proximity correction of implantation masks.

  20. RBS/channeling analysis of hydrogen-implanted single crystals of FZ silicon and 6H silicon

    International Nuclear Information System (INIS)

    Irwin, R.B.

    1984-01-01

    Single crystals of FZ silicon and 6H silicon carbide were implanted with hydrogen ions (50 and 80 keV, respectively) to fluences from 2 x 10 16 H + /cm 2 to 2 x 10 18 H+/cm 2 . The implantations were carried out at three temperatures: approx.95K, 300 K, and approx.800 K. Swelling of the samples was measured by surface profilometry. RBS/channeling was used to obtain the damage profiles and to determine the amount of hydrogen retained in the lattice. The damage profiles are centered around X/sub m/ for the implants into silicon and around R/sub p/ for silicon carbide. For silicon carbide implanted at 95 K and 300 K and for silicon implanted at 95 K, the peak damage region is amorphous for fluences above 8 x 10 16 H + /cm 2 , 4 x 10 17 H + /cm 2 , and 2 x 10 17 H + /cm 2 , respectively. Silicon implanted at 300 and 800 K and silicon carbide implanted at 800 K remain crystalline up to fluences of 1 x 10 18 H + /cm 2 . The channeling damage results agree with previously reported TEM and electron diffraction data. The predictions of a simple disorder-accumulation model with a linear annealing term explains qualitatively the observed damage profiles in silicon carbide. Quantitatively, however, the model predicts faster development of the damage profiles than is observed at low fluences in both silicon and silicon carbide. For samples implanted at 300 and 800 K, the model also predicts substantially less peak disorder than is observed. The effect of the surface, the retained hydrogen, the shape of S/sub D/(X), and the need for a nonlinear annealing term may be responsible for the discrepancy

  1. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  2. Group D. Initiator paper. Implants--peri-implant (hard and soft tissue) interactions in health and disease: the impact of explosion of implant manufacturers.

    Science.gov (United States)

    Ivanovski, Saso

    2015-01-01

    1. The best-documented implants have a threaded solid screw-type design and are manufactured from commercially pure (grade IV) titanium. There is good evidence to support implants ≥ 6 mm in length, and ≥ 3 mm in diameter. 2. Integrity of the seal between the abutment and the implant is important for several reasons, including minimization of mechanical and biological complications and maintaining marginal bone levels. Although the ideal design features of the implant-abutment connection have not been determined, an internal connection, micro-grooves at the implant collar, and horizontal offset of the implant-abutment junction (platform switch) appear to impart favorable properties. 3. Implants with moderately rough implant surfaces provide advantages over machined surfaces in terms of the speed and extent of osseointegration. While the favorable performances of both minimally and moderately rough surfaces are supported by long-term data, moderately rough surfaces provide superior outcomes in compromised sites, such as the posterior maxilla. 4. Although plaque is critical in the progression of peri-implantitis, the disease has a multi-factorial aetiology, and may be influenced by poor integrity of the abutment/implant connection. Iatrogenic factors, such as the introduction of a foreign body. (e.g., cement) below the mucosal margin, can be important contributors. 5. Clinicians should exercise caution when using a particular implant system, ensuring that the implant design is appropriate and supported by scientific evidence. Central to this is access to and participation in quality education on the impact that implant characteristics can have on clinical outcomes. Caution should be exercised in utilizing non-genuine restorative componentry that may lead to a poor implant-abutment fit and subsequent technical and biological complications.

  3. The impact of ethnicity on cochlear implantation in Norwegian children.

    Science.gov (United States)

    Amundsen, Viktoria Vedeler; Wie, Ona Bø; Myhrum, Marte; Bunne, Marie

    2017-02-01

    To explore the impact of parental ethnicity on cochlear implantation in children in Norway with regard to incidence rates of cochlear implants (CIs), comorbidies, age at onset of profound deafness (AOD), age at first implantation, uni- or bilateral CI, and speech recognition. This retrospective cohort study included all children (N = 278) aged Nordic ethnicity, of whom 46 were born in Nordic countries with two non-Nordic parents. Compared with the background population, children with non-Nordic parents were 1.9 times more likely to have received CI than Nordic children (i.e., born in Nordic countries with Nordic parents). When looking at AOD, uni-vs. bilateral CIs, and comorbidities, no significant differences were found between Nordic children and children with a non-Nordic ethnicity. Among children with AOD Nordic countries with two non-Nordic parents (n = 6) and adopted non-Nordic children (n = 6) received their first CI on average 14.9 and 21.1 months later than Nordic children (n = 104), respectively (p = 0.006 and 0.005). Among children with AOD Nordic countries with two non-Nordic parents (n = 31) received their CI at an older age than Nordic children, but this difference was not significant after adjusting for calendar year of implantation and excluding comorbidity as a potential cause of delayed implantation. The mean age at implantation for children with AOD Nordic children and 76.3% for children born in Norway with two non-Nordic parents (p = 0.002). The incidence of CI was significantly higher in children with a non-Nordic vs. a Nordic ethnicity, reflecting a higher incidence of profound deafness. Children born in Norway have equal access to CIs regardless of their ethnicity, but despite being born and receiving care in Norway, prelingually deaf children with non-Nordic parents are at risk of receiving CI later than Nordic children. Moreover, prelingually deaf children who arrive in Norway at an older age may be at risk for a worse

  4. Dental Implant Macro-Design Features Can Impact the Dynamics of Osseointegration.

    Science.gov (United States)

    Vivan Cardoso, Marcio; Vandamme, Katleen; Chaudhari, Amol; De Rycker, Judith; Van Meerbeek, Bart; Naert, Ignace; Duyck, Joke

    2015-08-01

    The purpose of this study was to compare the clinical performance of two dental implant types possessing a different macro-design in the in vivo pig model. Titanium Aadva(TM) implants (GC, Tokyo, Japan) were compared with OsseoSpeed(TM) implants (Astra, Mölndal, Sweden), with the Aadva implant displaying significant larger inter-thread dimensions than the OsseoSpeed implant. Implants were installed in the parietal bone of 12 domestic pigs and left for healing for either 1 or 3 months. Implant osseointegration was evaluated by quantitative histology (bone volume relative to the tissue volume [BV/TV]; bone-to-implant contact [BIC]) for distinct implant regions (collar, body, total implant length) with specific implant thread features. The Wilcoxon-Mann-Whitney nonparametric test with α = 0.05 was performed. An inferior amount of bone enveloping the Aadva implant compared with the OsseoSpeed implant was observed, in particular at the implant body part with its considerable inter-thread gaps (p macro-design negatively affected the amount of bone in direct contact with the implant for this specific implant part (p implant osseointegration at the initial healing stage (total implant length; 1-month healing; p implant displayed a clinically acceptable level of osseointegration, the findings demonstrate that implant macro-design features can impact the dynamics of implant osseointegration. Consideration of specific implant macro-design features should be made relative to the biological and mechanical microenvironment. © 2013 Wiley Periodicals, Inc.

  5. Impact analysis of a hydrogen isotopes container

    International Nuclear Information System (INIS)

    Lee, M. S.; Hwang, C. S.; Jeong, H. S.

    2003-01-01

    The container used for the radioactive materials, containing hydrogen isotopes is evaluated in a view of hypothetical accident. The computational analysis is a cost effective tool to minimize testing and streamline the regulatory procedures, and supports experimental programs to qualify the container for the safe transport of radioactive materials. The numerical analysis of 9m free-drop onto a flat unyielding, horizontal surface has been performed using the explicit finite element computer program ABAQUS. Especially free-drop simulations for 30 .deg. C tilted condition are precisely estimated

  6. Neutralization study of boron and some metallic impurities (gold, titanium, manganese, chromium) by hydrogen implantation in monocrystal silicon

    International Nuclear Information System (INIS)

    Zundel, T.

    1987-02-01

    Boron doped silicon implanted with hydrogen at low energy in the temperature range 80-140 0 C shows a large decrease of the electrically active dopant concentration up to a depth which increases with the temperature, the implantation duration and the starting material resistivity. This effect is assigned to the formation of an electrically inactive BH complex. The hydrogen incorporation process shows a weakly temperature dependent enhanced diffusion step followed by a normal diffusion phase which may be described by a thermally activated diffusion coefficient. Heating at 80 0 C produces a complete dissociation of the BH complexes in the space charge region of reverse biased Schottky diodes. Consequently the released hydrogen drifts under the electric field and the neutralization becomes more pronounced in the bulk. Hydrogen neutralizes the gold, chromium, manganese related deep levels but has no effect on titanium related defect levels. Thermal annealing at 495 0 C of hydrogenated chromium or manganese doped samples produces four majority carriers levels which disappear at 700 0 C [fr

  7. Formation of hydrogen-related shallow donors in Ge1-xSix crystals implanted with protons

    International Nuclear Information System (INIS)

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.; Markevich, V.P.; Peaker, A.R.; Abrosimov, N.A.

    2007-01-01

    It is found that shallow hydrogen-related donors are formed in the proton-implanted dilute Ge 1-x Si x alloys (0≤x≤0.031) as well as in Si-free Ge samples upon heat-treatments in the temperature range 225-300 degrees centigrade. The maximum concentration of the donors is about 1.5·10 16 cm -3 for a H + implantation dose of 10 15 cm -2 . Formation and annihilation temperatures of the proton-implantation-induced donors do not depend on the Si concentration in Ge 1-x Si x samples. However, the increase in Si content has resulted in a decrease of the concentration of the H-related donors. The possible origin of the H-related donors and mechanisms of Si-induced suppression of their formation are discussed. (authors)

  8. Impact of Different Surgeons on Dental Implant Failure.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    To assess the influence of several factors on the prevalence of dental implant failure, with special consideration of the placement of implants by different dental surgeons. This retrospective study is based on 2,670 patients who received 10,096 implants at one specialist clinic. Only the data of patients and implants treated by surgeons who had inserted a minimum of 200 implants at the clinic were included. Kaplan-Meier curves were stratified with respect to the individual surgeon. A generalized estimating equation (GEE) method was used to account for the fact that repeated observations (several implants) were placed in a single patient. The factors bone quantity, bone quality, implant location, implant surface, and implant system were analyzed with descriptive statistics separately for each individual surgeon. A total of 10 surgeons were eligible. The differences between the survival curves of each individual were statistically significant. The multivariate GEE model showed the following variables to be statistically significant: surgeon, bruxism, intake of antidepressants, location, implant length, and implant system. The surgeon with the highest absolute number of failures was also the one who inserted the most implants in sites of poor bone and used turned implants in most cases, whereas the surgeon with the lowest absolute number of failures used mainly modern implants. Separate survival analyses of turned and modern implants stratified for the individual surgeon showed statistically significant differences in cumulative survival. Different levels of failure incidence could be observed between the surgeons, occasionally reaching significant levels. Although a direct causal relationship could not be ascertained, the results of the present study suggest that the surgeons' technique, skills, and/or judgment may negatively influence implant survival rates.

  9. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    Science.gov (United States)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  10. Impact of an implantable steroid contraceptive (etonogestrel-releasing implant) on quality of life and sexual function: a preliminary study.

    Science.gov (United States)

    Di Carlo, Costantino; Sansone, Anna; De Rosa, Nicoletta; Gargano, Virginia; Tommaselli, Giovanni Antonio; Nappi, Carmine; Bifulco, Giuseppe

    2014-01-01

    The aim of the study was to determine the impact of etonogestrel (ENG)-implant used for contraceptive purpose on Quality of life (QoL) and on sexual function (FSF) of healthy Italian women. The Female Sexual Function Index (FSFI) questionnaire and the Short Form-36 (SF-36) validated questionnaire were administered at baseline, 3 and 6 months after insertion of Nexplanon. The implant seems to have a positive impact on QoL after the first three months of therapy. Users showed an improved general health status and physical role status. The implant did not show negative effects on libido and on sexual function. In the first three months of treatment, users experienced a temporary reduction of vitality, mental health, social functioning and emotional role functioning, which seem to disappear after six months of therapy.

  11. In situ observation of transformation in alpha-Fe sub 2 O sub 3 under hydrogen implantation

    CERN Document Server

    Watanabe, Y; Ishikawa, N; Furuya, K; Kato, M

    2002-01-01

    An in situ observation of the alpha-Fe sub 2 O sub 3 -to-Fe sub 3 O sub 4 transformation has been performed using a dual-ion-beam accelerator interfaced with a transmission electron microscope (TEM). During the hydrogen-ion implantation of alpha-Fe sub 2 O sub 3 , transformation into the new phase (gamma-Fe sub 2 O sub 3 or Fe sub 3 O sub 4) was observed. It was also found that the orientation relationship between alpha-Fe sub 2 O sub 3 and the new phase (gamma-Fe sub 2 O sub 3 or Fe sub 3 O sub 4) satisfies the Shoji-Nishiyama relationship, in agreement with previous experiments. It was also found that the nearest interatomic distance does not vary by the implantation until the re-stacked phase appears, although when the re-stacked phase is formed, the lattice expansion is observed in the transformed (re-stacked) phase. Judging from these results, we have concluded that the alpha-Fe sub 2 O sub 3 to Fe sub 3 O sub 4 transformation is induced during the hydrogen ion implantation of alpha-Fe sub 2 O sub 3.

  12. Simulation of carbon sputtering due to molecular hydrogen impact

    International Nuclear Information System (INIS)

    Laszlo, J.

    1993-01-01

    Simulated results are compared to experimental data on the sputtering yield of carbon due to atomic and to molecular hydrogen impact. The experimental sputtering yields of carbon (graphite) due to low energy hydrogen bombardment have been found to be higher than the simulated ones. Efforts are made to obtain high enough simulated yields by considering the formation of dimer, H 2 and D 2 molecules in the primary beam. The molecular beam model applies full neutralization and full dissociation at the surface. The simulation of sputtering yields of target materials up to Z 2 ≤ 30 is also included for the low primary energy regime for deuterium projectiles. It is found that, although the sputtering yields really tend to increase, the effect of molecule formation in the beam in itself cannot be made responsible for the deviation between measured and simulated sputtering yields. (orig.)

  13. Defects in Cu(InGa)Se2/CdS heterostructure films induced by hydrogen ion implantation

    International Nuclear Information System (INIS)

    Yakushev, M.V.; Tomlinson, R.D.; Hill, A.E.; Pilkington, R.D.; Mudryi, A.V.; Bondar, I.V.; Victorov, I.A.; Gremenok, V.F.; Shakin, I.A.; Patuk, A.I.

    1999-01-01

    The influence of H + ion implantation on the photoluminescence properties of Cu(InGa)Se 2 /CdS heterostructures has been studied. This treatment was found to increase the photoluminescence intensity of donor-acceptor band at 1.13 eV because of the passivation by hydrogen atoms of the non-radiative recombination centers on the boundary of Cu(InGa)Se 2 and CdS layers. Two broad bands peaks at 0.96 eV and at 0.82 eV in photoluminescence spectra of ion-implanted Cu(InGa)Se 2 films have been found. The tentative model to explain the origin of the broad photoluminescence bands has been discussed

  14. The psychosocial impacts of implantation on the dental aesthetics of missing anterior teeth patients.

    Science.gov (United States)

    Chen, P; Yu, S; Zhu, G

    2012-12-01

    The aim of the current study was to investigate the psychosocial impact of dental aesthetics among patients who received anterior implant-supported prostheses. The current study is a cross-sectional evaluation involving 115 individuals who had gone through treatment at the dental clinics of general hospitals. Participants completed the Chinese version of the psychosocial impact of dental aesthetics questionnaire (PIDAQ) before implantation and six months after crown restoration. Basic demographic information was recorded. Six months after implant crown restoration, participants were asked to self-assess their own oral aesthetics compared to before implantation. A total of 106 patients completed the study. PIDAQ scores correlated significantly with the self-assessment of the degree of oral aesthetics. Six months after crown restoration, the two factors (social impact and aesthetic attitude) decreased and the dental self-confidence score increased significantly compared to pre-implantation scores. Gender and education level significantly affected PIDAQ. Anterior implant-supported prostheses significantly affected the patients' psychosocial perception. Implantation of missing anterior teeth can significantly improve patients' negative psychosocial impact of dental aesthetics. Gender and education level are correlated with the degree of improvement. The PIDAQ can be used in assessing the psychosocial effects of implantation in missing anterior teeth.

  15. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Lin, Mu-Han; Li Jinsheng; Price, Robert A Jr; Wang Lu; Ma, C-M; Lee, Chung-Chi

    2013-01-01

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm 3 insert. The per cent depth dose distributions of a 3 × 3 cm 2 photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose–volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm 3 dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm 2 field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT patient dose

  16. The hydrogen influenced cold cracking tendency of two high strength low alloy steels - evaluated by the implant-test

    International Nuclear Information System (INIS)

    Neumann, V.; Schoenherr, W.

    1978-01-01

    A possible way of evaluating the hydrogen influenced cold cracking tendency of constructional steels is the implant test. Using this testing method, it is possible to adjust extensively independently of one other the three influencing parameters - hydrogen content of the welding deposit and the heat-affected zone, hardness structure and stresses - and to examine their effect on the crack behaviour. Due to the same microstructure formation in the heat affected zone of the implant samples and in the non-heat affected regions from the consequent position of the heat affected zone of component seams, welding conditions can be determined with suitable changing of the sample whose application to the real component practically excludes the danger of cold cracking. The broken surfaces in cold cracking are partly ductile and poor in deformation. The deformation-poor fracturing can possibly take an intercrystalline or transcrystalline course according to the chemical composition of the steel. The investigation confirm the theories and test results of other authors: The formation of deformation-poor, typical fracture sections for cold cracking was only obtained when there was a clear delay between putting on the test load and fracture of the sample. (orig./RW) [de

  17. Electron-impact ionization of atomic hydrogen: dynamical variational treatment

    Energy Technology Data Exchange (ETDEWEB)

    Defrance, P.; Lecointre, J. [Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, Louvain-la-Neuve (Belgium); Kereselidze, T.; Machavariani, Z.S. [Department of Exact and Natural Sciences, Tbilissi State University, Tbilissi (Georgia)

    2011-10-15

    A simple and straightforward calculating scheme is proposed for electron-impact single and multiple ionization of atoms. The method is based on the application of the Hulthen-Kohn dynamical variational principle. An effective charge seen by the scattered electron is determined for a certain type of trial wave functions mathematically in a rigorous way excluding any empirical assumptions. Validity of the elaborated approach is assessed by calculating triply differential cross section (TDCS) for electron-impact ionization of hydrogen. It is shown that, inclusion of the effective charge into the calculation reduces height of a 'binary peak' in comparison with the first Born approximation result. The height of a 'recoil peak' depends on the sign of the effective charge. The calculated TDCS are compared with the available experimental data and with the results of sophisticated theories and agreement is found. (authors)

  18. Electron-impact dissociation of molecular hydrogen into neutral fragments

    Science.gov (United States)

    Scarlett, Liam H.; Tapley, Jonathan K.; Fursa, Dmitry V.; Zammit, Mark C.; Savage, Jeremy S.; Bray, Igor

    2018-02-01

    We present convergent close-coupling calculations of electron-impact dissociation of the ground state of molecular hydrogen into neutral fragments over the range of impact energies from 6 to 300 eV. The calculations account for dissociative excitation, excitation radiative decay dissociation, and predissociation through all bound electronic triplet states, and singlet states up to the D' 1 Π u state. An estimate is given for the contribution from the remaining bound electronic singlet states. Our results are in agreement with the recommended data of Yoon et al. [J. Phys. Chem. Ref. Data 37, 913 (2008)] in the low (6-12 eV) and high (60-70 eV) energy regions, but somewhat lower at the intermediate energies.

  19. Impact of chronic infections (periodontic and endodontic in implant dentistry

    Directory of Open Access Journals (Sweden)

    Bhumanapalli Venkata Ramesh Reddy

    2015-01-01

    Full Text Available Dental implant plays an important role in oral rehabilitation. In recent decades, the concept of restoratively driven implant placement has become well-accepted. Thus, an increasing number of patients, especially those with past or present periodontitis or with periapical infections, desire to receive dental implants to restore their lost teeth. This review discusses the relationship between chronic periodontal and periapical infections with periimplantitis, with a focus on implant outcome. The studies considered for the inclusion were searched in MEDLINE (pubmed. The search was restricted to studies published in English from 1980 to 2015. Screening of eligible studies and data extraction were carried out by the reviewers. The articles included in the review comprised in vitro studies, in vivo studies (animals and humans, abstracts, and review articles.

  20. Lifecycle impacts of natural gas to hydrogen pathways on urban air quality

    International Nuclear Information System (INIS)

    Wang, Guihua; Ogden, Joan M.; Nicholas, Michael A.

    2007-01-01

    In this paper we examine the potential air quality impacts of hydrogen transportation fuel from a lifecycle analysis perspective, including impacts from fuel production, delivery, and vehicle use. We assume that hydrogen fuel cell vehicles are introduced in a specific region, Sacramento County, California. We consider two levels of market penetration where 9% or 20% of the light duty fleet are hydrogen fuel cell vehicles. The following three natural gas to hydrogen supply pathways are assessed in detail and compared in terms of emissions and the resulting changes in ambient air quality: (1) onsite hydrogen production; (2) centralized hydrogen production with gaseous hydrogen pipeline delivery systems; and (3) centralized hydrogen production with liquid hydrogen truck delivery systems. All the pathways examined use steam methane reforming (SMR) of natural gas to produce hydrogen. The source contributions to incremental air pollution are estimated and compared among hydrogen pathways. All of the hydrogen pathways result in extremely low contributions to ambient air concentrations of NO x , CO, particulates, and SO x , typically less than 0.1% of the current ambient pollution for both levels of market penetration. Among the hydrogen supply options, it is found that the central SMR with pipeline delivery systems is the lowest pollution option available provided the plant is located to avoid transport of pollutants into the city via prevailing winds. The onsite hydrogen pathway is comparable to the central hydrogen pathway with pipeline systems in terms of the resulting air pollution. The pathway with liquid hydrogen trucks has a greater impact on air quality relative to the other pathways due to emissions associated with diesel trucks and electricity consumption to liquefy hydrogen. However, all three hydrogen pathways result in negligible air pollution in the region. (author)

  1. Synergistic methane formation kinetics for hydrogen impact on carbon

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.

    1986-06-01

    A physical/chemical model is presented for the reaction kinetics for methane formation from carbon, due to bombardment by energetic (∼ 100's eV) H + ions and thermal (∼ 1 eV) H 0 atoms. While the model was developed for H + and H 0 , it can be readily applied to non-hydrogenic energetic particles (ions or atoms, e.g., Ar + , He + , He) in combination with thermal (∼ 1 eV) hydrogen (again ions or atoms) impacting on carbon. Both collisional (in the case of the energetic particles) and chemical reaction processes are included. Special cases of sub-eV H 0 alone, energetic H + alone and combined H 0 plus H + were considered and fitted to experimental data. Generally good agreement was found between theoretical predictions and experimental results over the experimental flux and H + energy ranges studied (H 0 flux: 6x10 14 - 7x10 15 H 0 /cm 2 s, H + flux: 6x10 12 - 5x10 15 H + /cm 2 s, H + energy: 300 eV/H + and 1 keV/H + )

  2. Impact of implant size on cement filling in hip resurfacing arthroplasty.

    Science.gov (United States)

    de Haan, Roel; Buls, Nico; Scheerlinck, Thierry

    2014-01-01

    Larger proportions of cement within femoral resurfacing implants might result in thermal bone necrosis. We postulate that smaller components are filled with proportionally more cement, causing an elevated failure rate. A total of 19 femoral heads were fitted with polymeric replicas of ReCap (Biomet) resurfacing components fixed with low-viscosity cement. Two specimens were used for each even size between 40 and 56 mm and one for size 58 mm. All specimens were imaged with computed tomography, and the cement thickness and bone density were analyzed. The average cement mantle thickness was 2.63 mm and was not correlated with the implant size. However, specimen with low bone density had thicker cement mantles regardless of size. The average filling index was 36.65% and was correlated to both implant size and bone density. Smaller implants and specimens with lower bone density contained proportionally more cement than larger implants. According to a linear regression model, bone density but not implant size influenced cement thickness. However, both implant size and bone density had a significant impact on the filling index. Large proportions of cement within the resurfacing head have the potential to generate thermal bone necrosis and implant failure. When considering hip resurfacing in patients with a small femoral head and/or osteoporotic bone, extra care should be taken to avoid thermal bone necrosis, and alternative cementing techniques or even cementless implants should be considered. This study should help delimiting the indications for hip resurfacing and to choose an optimal cementing technique taking implant size into account.

  3. Trapping of hydrogen isotopes in molybdenum and niobium predamaged by ion implantation

    International Nuclear Information System (INIS)

    Bottiger, J.; Picraux, S.T.; Rud, N.; Laursen, T.

    1977-01-01

    The trapping of hydrogen isotopes at defects in Mo and Nb have been studied. Ion beams of 11- and 18-keV He + , 55-keV O + and Ne + , and 500-keV Bi + were used to create defects. Subsequently H or D was injected at room temperature by use of molecular beams of 16-keV H + 2 and D + 2 . Appreciable enhancements were observed in the amount of H and D retained within the near-surface region of predamaged samples compared to samples with no prior damage. The total amount of D retained within the near-surface region was measured by means of the nuclear reaction D( 3 He,p) 4 He, and H depth profiles were measured via a resonance in the nuclear reaction 1 H( 19 F,αγ) 16 O. The H profiles correlate with the predicted predamaging ion profiles; however, appreciable tails to deeper depths for the hydrogen profiles are observed for the heavier predamaging ions. For a given predamage ion fluence, the amount of trapped deuterium increases linearly with incident deuterium fluence until a saturation in the enhancement is reached. The amount of deuterium trapped when saturation occurs increases with increasing predamage fluence. The experiments indicate that lighter ions, which create fewer primary displacements, are more effective per displacement in trapping hydrogen. An appreciable release of hydrogen is obtained upon annealing at 200 and 300 degreeC, and a preannealing experiment indicates this is due to detrapping rather than to any loss of traps. These temperatures suggest a much higher binding energy for the trapped hydrogen isotopes (approx.1.5 eV) than the available evidence gives for simple H-defect binding energies (approximately-less-than0.3 eV). The detailed trapping mechanism is not known. However, it is suggested on the basis of the high binding energies and the high concentrations of hydrogen which can be trapped that clusters of hydrogen may be formed

  4. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--implant and beta agonist impacts on beef palatability.

    Science.gov (United States)

    Garmyn, A J; Miller, M F

    2014-01-01

    The use of anabolic implants has a long-standing place in the cattle feeding industry, due to their positive impact on growth performance and subsequent profitability. However, implants can have adverse effects on carcass quality, shear force, and eating quality depending on the dose and frequency, or what some refer to as the aggressiveness of the implant regimen administered. Within the past decade, a new class of growth promotants, known as β-adrenergic agonists (βAA), has emerged in the beef feeding industry in the United States. Currently, 2 have gained U.S. Food and Drug Administration approval for use in beef finishing diets to improve performance and carcass yields. Much like anabolic implants, these repartitioning agents can have negative effects on Warner-Bratzler shear force (WBSF), but the differences do not necessarily translate directly to consumer responses for palatability and acceptance in some instances, especially when tenderness is managed through proper postmortem aging. As researchers continued to investigate the mechanisms responsible for the impact of βAA, inevitably this led to consideration of the interaction between βAA and anabolic implants. Early work combining zilpaterol hydrochloride (ZH) with anabolic implants improved performance, carcass yield, and meat yield with additive negative effects on WBSF. Similar results were produced when pairing ZH with anabolic steroids equipped with various release patterns. As with any tool, the key to success is proper management. Certain cattle populations may be better suited to receive growth promotants such as implants and βAA, and postmortem management of subprimal cuts becomes vital when producers take more aggressive approaches to improve performance and yield. The objective of this review is to overview research findings related to the impact of growth promotant technologies on beef palatability, focusing specifically on the role of implants and βAA on carcass quality, beef tenderness

  5. Hydrogen interstitial in H-ion implanted ZnO bulk single crystals: Evaluation by elastic recoil detection analysis and electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, T.; Kamioka, K.; Nishimura, T. [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kuriyama, K., E-mail: kuri@ionbeam.hosei.ac.jp [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Department of Arts and Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582 (Japan); Kinomura, A. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-12-15

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are evaluated by elastic recoil detection analysis (ERDA), electron paramagnetic resonance (EPR), and Van der Pauw methods. The H-ion implantation (peak concentration: 5.0 × 10{sup 15} cm{sup −2}) into ZnO is performed using a 500 keV implanter. The maximum of the concentration of the implanted H estimated by a TRIM simulation is at 3600 nm in depth. The resistivity decreases from ∼10{sup 3} Ω cm for un implanted ZnO to 6.5 Ω cm for as-implanted, 2.3 × 10{sup −1} Ω cm for 200 °C annealed, and 3.2 × 10{sup −1} Ω cm for 400 °C annealed samples. The ERDA measurements can evaluate the concentration of hydrogens which move to the vicinity of the surface (surface to 300 nm or 100 nm) because of the diffusion by the annealing at 200 °C and 400 °C. The hydrogen concentration near the surface estimated using the 2.0 MeV helium beam is ∼3.8 × 10{sup 13} cm{sup −2} for annealed samples. From EPR measurements, the oxygen vacancy of +charge state (V{sub o}{sup +}) is observed in as-implanted samples. The V{sub o}{sup +} related signal (g = 1.96) observed under no illumination disappears after successive illumination with a red LED and appears again with a blue light illumination. The activation energy of as-implanted, 200 °C annealed, and 400 °C annealed samples estimated from the temperature dependence of carrier concentration lies between 29 meV and 23 meV, suggesting the existence of H interstitial as a shallow donor level.

  6. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants.

    Science.gov (United States)

    Duque, Luisa; Körber, Martin; Bodmeier, Roland

    2018-05-30

    The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired. Copyright © 2018. Published by Elsevier B.V.

  7. Impact of H{sub 2} emissions of a global hydrogen economy on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Grooss, Jens-Uwe; Feck, Thomas; Vogel, Baerbel; Riese, Martin [Forschungszentrum Juelich (Germany)

    2010-07-01

    ''Green'' hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H{sub 2}) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H{sub 2} that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H{sub 2} can occur along the whole hydrogen process chain which increase the tropospheric H{sub 2} burden. The impact of these emissions is investigated. Figure 1 is a sketch that clarifies the path way and impact of hydrogen in the stratosphere. The air follows the Brewer-Dobson circulation in which air enters the stratosphere through the tropical tropopause, ascends then to the upper stratosphere and finally descends in polar latitudes within a typical transport time frame of 4 to 8 years. (orig.)

  8. Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    Science.gov (United States)

    Mori, K.; Lee, E. W.; Frazier, W. E.; Niji, K.; Battel, G.; Tran, A.; Iriarte, E.; Perez, O.; Ruiz, H.; Choi, T.; Stoyanov, P.; Ogren, J.; Alrashaid, J.; Es-Said, O. S.

    2015-01-01

    Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.

  9. Analysis of the holistic impact of the Hydrogen Economy on the coal industry

    Science.gov (United States)

    Lusk, Shannon Perry

    As gas prices soar and energy demand continues to grow amidst increasingly stringent environmental regulations and an assortment of global pressures, implementing alternative energy sources while considering their linked economic, environmental and societal impacts becomes a more pressing matter. The Hydrogen Economy has been proposed as an answer to meeting the increasing energy demand for electric power generation and transportation in an environmentally benign way. Based on current hydrogen technology development, the most practical feedstock to fuel the Hydrogen Economy may prove to be coal via hydrogen production at FutureGen plants. The planned growth of the currently conceived Hydrogen Economy will cause dramatic impacts, some good and some bad, on the economy, the environment, and society, which are interlinked. The goal of this research is to provide tools to inform public policy makers in sorting out policy options related to coal and the Hydrogen Economy. This study examines the impact of a transition to a Hydrogen Economy on the coal industry by creating FutureGen penetration models, forecasting coal MFA's which clearly provide the impact on coal production and associated environmental impacts, and finally formulating a goal programming model that seeks the maximum benefit to society while analyzing the trade-offs between environmental, social, and economical concerns related to coal and the Hydrogen Economy.

  10. Impact of hydrogen insertion on vehicular natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Strangueto, Karina Maretti; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. of Mechanical Engineering. Energy Dept.], Email: karinakms@fem.unicamp.br

    2010-07-01

    This article aims to analyze the possibility of insertion of hydrogen in the vehicular natural gas or even the insertion of the hydrogen in the compressed natural gas used in Brazil. For the production of this hydrogen, the spilled turbinable energy from Itaipu would be harnessed. The calculation of production can be extended to other power plants which are close to the natural gas pipelines, where the hydrogen would be introduced. Then, it was analyzed the consumption of natural gas in vehicles in Brazil, the regulation of transportation, the sales of compressed natural gas to fuelling station, the specifications that the piped gas should follow to be sold, and how much hydrogen could be accepted in the mix. (author)

  11. Noncrucial role of the defects in the splitting for hydrogen implanted silicon with high boron concentration

    International Nuclear Information System (INIS)

    Popov, V.P.; Stas, V.F.; Antonova, I.V.

    1999-01-01

    The present work deals with the investigation of the electrical and structural properties of heavily boron-doped silicon irradiated by hydrogen. Blistering and splitting processes are enhanced with an increase in boron concentration in the crystal. The measured values of perpendicular strain are over 0.7% which corresponds to a gas overpressure of 0.5 GPa. Processes which lead to blistering and splitting is better described in the frame of a gas pressure model than a model of local stress caused by the defects

  12. Hydrogen from nuclear energy and the impact on climate change

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Poehnell, T.G.

    2001-01-01

    The two major candidates for hydrogen production include nuclear power and other renewable energy sources. However, hydrogen produced by steam reforming of natural gas offers little advantage in total cycle greenhouse gas (GHG) emissions over hybrid internal combustion engine (ICE) technology. Only nuclear power offers the possibility of cutting GHG emissions significantly and to economically provide electricity for traditional applications and by producing hydrogen for its widespread use in the transportation sector. Using nuclear energy to produce hydrogen for transportation fuel, doubles or triples nuclear's capacity to reduce GHG emissions. An analysis at the Atomic Energy of Canada shows that a combination of hydrogen fuel and nuclear energy can stabilize GHG emissions and climate change for a wide range of the latest scenarios presented by the Intergovernmental Panel on Climate Change. The technology for replacing hydrocarbon fuels with non-polluting hydrogen exists with nuclear power, electrolysis and fuel cells, using electric power grids for distribution. It was emphasized that a move toward total emissions-free transportation will be a move towards solving the negative effects of climate change. This paper illustrated the trends between global economic and atmospheric carbon dioxide concentrations. Low carbon dioxide emission energy alternatives were discussed along with the sources of hydrogen and the full cycle assessment results in reduced emissions. It was shown that deploying 20 CANDU NPPs (of 690 MW (e) net each) would fuel 13 million vehicles with the effect of levelling of carbon dioxide emissions from transportation between 2020 to 2030. 13 refs., 2 tabs., 3 figs

  13. Comparison of the impact of scaler material composition on polished titanium implant abutment surfaces.

    Science.gov (United States)

    Hasturk, Hatice; Nguyen, Daniel Huy; Sherzai, Homa; Song, Xiaoping; Soukos, Nikos; Bidlack, Felicitas B; Van Dyke, Thomas E

    2013-08-01

    The purpose of this study was to compare the impact of the removal of biofilm with hand scalers of different material composition on the surface of implant abutments by assessing the surface topography and residual plaque after scaling using scanning electron microscopy (SEM). Titanium implant analogs from 3 manufacturers (Straumann USA LLC, Andover, Maine, Nobel BioCare USA LLC, Yorba Linda, Cali, Astra Tech Implant Systems, Dentsply, Mölndal, Sweden) were mounted in stone in plastic vials individually with authentic prosthetic abutments. Plaque samples were collected from a healthy volunteer, inoculated into growth medium and incubated with the abutments anaerobically for 1 week. A blinded, calibrated hygienist performed scaling to remove the biofilm using 6 implant scalers (in triplicate), 1 scaler for 1 abutment. The abutments were mounted on an imaging stand and processed for SEM. Images were captured in 3 randomly designated areas of interest on each abutment. Analysis of the implant polished abutment surface and plaque area measurements were performed using ImageJ image analysis software. Surface alterations were characterized by the number, length, depth and the width of the scratches observed. Glass filled resin scalers resulted in significantly more and longer scratches on all 3 abutment types compared to other scalers, while unfilled resin scalers resulted in the least surface change (p abutments with regard to plaque removal. The impact of scalers on implant abutment surfaces varies between abutment types presumably due to different surface characteristics with no apparent advantage of one abutment type over the other with regard to resistance to surface damage. Unfilled resin was found consistently to be the least damaging to abutment surfaces, although all scalers of all compositions caused detectable surface changes to polished surfaces of implant abutments.

  14. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  15. What we do and not know about electron impact excitation of atomic hydrogen

    International Nuclear Information System (INIS)

    Callaway, J.

    1982-11-01

    The present state of knowledge derived from both theoretical and experimental information on electron impact excitation of atomic hydrogen is briefly reviewed. Suggestions are made for further calculations and for additional experiments. (author)

  16. Effect of Annealing on Microstructures and Hardening of Helium-Hydrogen-Implanted Sequentially Vanadium Alloys

    Science.gov (United States)

    Jiang, Shaoning; Wang, Zhiming

    2018-03-01

    The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.

  17. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  18. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII)

    Energy Technology Data Exchange (ETDEWEB)

    Bakkar, A. [Institut fuer Materialpruefung und Werkstofftechnik, Dr. Doelling und Dr. Neubert GmbH, Freiberger Strasse 1, 38678 Clausthal (Germany); Department of Metallurgy and Materials Engineering, Suez Canal University, P.O. Box 43721, Suez (Egypt); Neubert, V. [Institut fuer Materialpruefung und Werkstofftechnik, Dr. Doelling und Dr. Neubert GmbH, Freiberger Strasse 1, 38678 Clausthal (Germany)]. E-mail: volkmar.neubert@tu-clausthal.de

    2005-05-01

    Magnesium-based hydrides are well known that they have a high hydrogen-storage capacity. In this study, two different methods have been provided for hydrogen surface modification of high purity magnesium (hp Mg) and AZ91 magnesium alloy. One was electrochemical ion reduction (EIR) of hydrogen from an alkaline electrolyte on such Mg-based cathode. The other was plasma immersion ion implantation (PIII or PI{sup 3}) into Mg-based substrate. The depth profile of H-modified surfaces was described by Auger electron spectroscopy (AES) and by secondary ion mass spectrometry (SIMS) measurements. Corrosion testing was carried out in Avesta cell by potentiodynamic polarisation in chloride-containing aqueous solutions of pH 7 and pH 12. A greatly significant improvement in the corrosion resistance of H-modified surfaces was verified.

  19. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII)

    International Nuclear Information System (INIS)

    Bakkar, A.; Neubert, V.

    2005-01-01

    Magnesium-based hydrides are well known that they have a high hydrogen-storage capacity. In this study, two different methods have been provided for hydrogen surface modification of high purity magnesium (hp Mg) and AZ91 magnesium alloy. One was electrochemical ion reduction (EIR) of hydrogen from an alkaline electrolyte on such Mg-based cathode. The other was plasma immersion ion implantation (PIII or PI 3 ) into Mg-based substrate. The depth profile of H-modified surfaces was described by Auger electron spectroscopy (AES) and by secondary ion mass spectrometry (SIMS) measurements. Corrosion testing was carried out in Avesta cell by potentiodynamic polarisation in chloride-containing aqueous solutions of pH 7 and pH 12. A greatly significant improvement in the corrosion resistance of H-modified surfaces was verified

  20. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    The study of low energy ionization of atomic hydrogen has undergone a rapid ... Three distinct theories for describing low energy ionization can now .... clear evidence that the backward peak for ΘЅѕ = 180° is due to positron-nucleus scat-.

  1. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  2. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  3. Influence of hydrogen content on impact toughness of Zr-2.5Nb pressure tube alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.N., E-mail: rnsingh@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Viswanathan, U.K.; Kumar, Sunil; Satheesh, P.M.; Anantharaman, S. [Post Irradiation Examination Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Stahle, P. [Division of Solid Mechanics, Lund University/LTH, SE22100 Lund (Sweden)

    2011-07-15

    Highlights: > For the first time impact behaviour of Zr-2.5Nb pressure tube material used in Indian Pressurized Heavy Water Reactor (IPHWR) as a function of hydrogen content and temperature is being reported. > The critical hydrogen concentration to cause low energy fracture at 25 and 200 deg. C is suggested. > The impact behaviour is rationalized in terms of hydrogen content, test temperature, microstructural features and state of stress ahead of a crack. - Abstract: Influence of hydrogen content on the impact toughness of Zr-2.5% Nb alloy was examined by carrying out instrumented drop weight tests in the temperature range of 25-250 deg. C using curved Charpy specimens fabricated from unirradiated pressure tubes of Indian Pressurized Heavy Water Reactor (IPHWR). Hydrogen content of the samples was between 10 and 170 ppm by weight (wppm). Sharp ductile-to-brittle-transition behaviour was demonstrated by hydrided materials. The temperature for the onset of transition increased with the increase in the hydrogen content of the specimens. The fracture surfaces of unhydrided specimen exhibited ductile fracture caused by micro void coalescence and tear ridges at lower temperatures and by fibrous fracture at intermediate and at higher temperatures. Except for the samples tested at the upper shelf energy levels, the fracture surfaces of all hydrided samples were suggestive of hydride assisted failure. In most cases the transverse cracks observed in the fracture path matched well with the hydride precipitate distribution and orientation.

  4. The dosimetric impact of implants on the spinal cord dose during stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yazici, Gozde; Sari, Sezin Yuce; Yedekci, Fazli Yagiz; Yucekul, Altug; Birgi, Sumerya Duru; Demirkiran, Gokhan; Gultekin, Melis; Hurmuz, Pervin; Yazici, Muharrem; Ozyigit, Gokhan; Cengiz, Mustafa

    2016-01-01

    The effects of spinal implants on dose distribution have been studied for conformal treatment plans. However, the dosimetric impact of spinal implants in stereotactic body radiotherapy (SBRT) treatments has not been studied in spatial orientation. In this study we evaluated the effect of spinal implants placed in sawbone vertebra models implanted as in vivo instrumentations. Four different spinal implant reconstruction techniques were performed using the standard sawbone lumbar vertebrae model; 1. L2-L4 posterior instrumentation without anterior column reconstruction (PI); 2. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (AIAC); 3. L2-L4 posterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (PIAC); 4. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with chest tubes filled with bone cement (AIABc). The target was defined as the spinous process and lamina of the lumbar (L) 3 vertebra. A thermoluminescent dosimeter (TLD, LiF:Mg,Ti) was located on the measurement point anterior to the spinal cord. The prescription dose was 8 Gy and the treatment was administered in a single fraction using a CyberKnife® (Accuray Inc., Sunnyvale, CA, USA). We performed two different treatment plans. In Plan A beam interaction with the rod was not limited. In plan B the rod was considered a structure of avoidance, and interaction between the rod and beam was prevented. TLD measurements were compared with the point dose calculated by the treatment planning system (TPS). In plan A, the difference between TLD measurement and the dose calculated by the TPS was 1.7 %, 2.8 %, and 2.7 % for the sawbone with no implant, PI, and PIAC models, respectively. For the AIAC model the TLD dose was 13.8 % higher than the TPS dose; the difference was 18.6 % for the AIABc model. In plan B for the AIAC and AIABc models, TLD measurement was 2.5 % and 0.9 % higher than the

  5. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis

    Science.gov (United States)

    Strietzel, Frank Peter; Neumann, Konrad; Hertel, Moritz

    2015-01-01

    Objective To address the focused question, is there an impact of platform switching (PS) on marginal bone level (MBL) changes around endosseous implants compared to implants with platform matching (PM) implant-abutment configurations? Material and methods A systematic literature search was conducted using electronic databases PubMed, Web of Science, Journals@Ovid Full Text and Embase, manual search for human randomized clinical trials (RCTs) and prospective clinical controlled cohort studies (PCCS) reporting on MBL changes at implants with PS-, compared with PM-implant-abutment connections, published between 2005 and June 2013. Results Twenty-two publications were eligible for the systematic review. The qualitative analysis of 15 RCTs and seven PCCS revealed more studies (13 RCTs and three PCCS) showing a significantly less mean marginal bone loss around implants with PS- compared to PM-implant-abutment connections, indicating a clear tendency favoring the PS technique. A meta-analysis including 13 RCTs revealed a significantly less mean MBL change (0.49 mm [CI95% 0.38; 0.60]) at PS implants, compared with PM implants (1.01 mm [CI95% 0.62; 1.40] (P marginal bone loss compared with PM technique. Due to heterogeneity of the included studies, their results require cautious interpretation. PMID:24438506

  6. Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars

    Science.gov (United States)

    Hyodo, Ryuki; Genda, Hidenori

    2018-04-01

    Observations and meteorites indicate that the Martian materials are enigmatically distributed within the inner solar system. A mega impact on Mars creating a Martian hemispheric dichotomy and the Martian moons can potentially eject Martian materials. A recent work has shown that the mega-impact-induced debris is potentially captured as the Martian Trojans and implanted in the asteroid belt. However, the amount, distribution, and composition of the debris has not been studied. Here, using hydrodynamic simulations, we report that a large amount of debris (∼1% of Mars’ mass), including Martian crust/mantle and the impactor’s materials (∼20:80), are ejected by a dichotomy-forming impact, and distributed between ∼0.5–3.0 au. Our result indicates that unmelted Martian mantle debris (∼0.02% of Mars’ mass) can be the source of Martian Trojans, olivine-rich asteroids in the Hungarian region and the main asteroid belt, and some even hit the early Earth. The evidence of a mega impact on Mars would be recorded as a spike of 40Ar–39Ar ages in meteorites. A mega impact can naturally implant Martian mantle materials within the inner solar system.

  7. Assessment of primary impacts of a hydrogen economy in New Zealand using UniSyD

    International Nuclear Information System (INIS)

    Leaver, Jonathan D.; Gillingham, Kenneth T.; Leaver, Luke H.T.

    2009-01-01

    Small economies such as New Zealand risk significant economic hardship without careful evaluation of alternatives to petroleum-based transportation due to the adverse effects of climate change and depleting international oil reserves. This paper uses an integrated multi-regional multi-fleet system dynamics model of New Zealand's energy economy to assess the primary impacts of alternative vehicle fleet technologies. Results suggest that hydrogen fuelled HICEs and FCVs may offer significantly greater economic savings than BEVs due to a much lower capital cost. Under our Base Case, 65% of the light fleet are HICEs and FCVs and 5% BEVs. Excluding hydrogen vehicles from the vehicle fleet can result in an average annual cost of US$562 per vehicle between 2015 and 2050. Co-production of hydrogen and electricity using coal gasification with carbon capture and storage is the dominant long term hydrogen production technology. (author)

  8. Implant test and acoustic emission technique used to investigate hydrogen assisted cracking in the melted zone of a welded HSLA-80 steel

    International Nuclear Information System (INIS)

    Fals, H. C.; Trevisan, R. E.

    1999-01-01

    Weld metal hydrogen assisted cracking was studied using two flux cored wire (AWS E 70T-5 and AWS E 120 T5-K4) and a mixture gas of CO 2 +5% H 2 to induce values of diffusible hydrogen in high strength low alloy steel (HSLA-80) weldments. An acoustical Emission Measurement System (AEMS) RMS voltmeter was coupled to the implant test (NF 89-100) apparatus to determine energy, amplitude and event numbers of signal. All cracks were initiated in the partially melted zone and propagated into the coarse-grained region of the heat affected zone when E 70 T5 consumable was used, and the quasi-cleavage fracture mode was predominant. When E 120 T5 K4 consumable was used the cracks propagated vertically across the fusion zone, and a mixed fracture mode was the most important. A significant relationship between acoustic emission parameters and fracture modes was found. (Author) 12 refs

  9. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, ... to find out more. Wisdom Teeth Management Wisdom Teeth Management An impacted wisdom tooth can damage neighboring ...

  10. Canola and hydrogenated soybean oils accelerate ectopic bone formation induced by implantation of bone morphogenetic protein in mice

    Directory of Open Access Journals (Sweden)

    Yoko Hashimoto

    2014-01-01

    Full Text Available Canola oil (Can and hydrogenated soybean oil (H2-Soy are commonly used edible oils. However, in contrast to soybean oil (Soy, they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK 1 in H2-Soy and unidentified component(s in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC] levels were significantly lower in the Can group than in the Soy group (p < 0.05. However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044 or was almost significantly lower (in H2-Soy; p = 0.053 than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s among the three dietary groups.

  11. Cerebrovascular accidents complicating transcatheter aortic valve implantation: frequency, timing and impact on outcomes.

    Science.gov (United States)

    Stortecky, Stefan; Windecker, Stephan; Pilgrim, Thomas; Heg, Dik; Buellesfeld, Lutz; Khattab, Ahmed A; Huber, Christoph; Gloekler, Steffen; Nietlispach, Fabian; Mattle, Heinrich; Jüni, Peter; Wenaweser, Peter

    2012-05-15

    Cerebrovascular accidents (CVA) are considered among the most serious adverse events after transcatheter aortic valve implantation (TAVI). The objective of the present study was to evaluate the frequency and timing of CVA after TAVI and to investigate the impact on clinical outcomes within 30 days of the procedure. Between August 2007 and October 2011, 389 high-risk elderly patients with symptomatic severe aortic stenosis underwent TAVI via transfemoral, transapical or subclavian access. A total of 14 patients (3.6%) experienced at least one CVA within 30 days of follow-up and most events (74%) occurred within the first day of the procedure. Patients with CVA had an increased risk of all-cause (42.3% vs. 5.1%, ORadjusted 11.7, 95% CI 3.4-40.3, pCerebrovascular accidents among patients undergoing TAVI occur predominantly during the periprocedural period, are associated with multiple implantation attempts of the bioprosthesis and significantly impair prognosis.

  12. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    Science.gov (United States)

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  13. Comparative environmental impact and efficiency assessment of selected hydrogen production methods

    Energy Technology Data Exchange (ETDEWEB)

    Ozbilen, Ahmet, E-mail: Ahmet.Ozbilen@uoit.ca; Dincer, Ibrahim, E-mail: Ibrahim.Dincer@uoit.ca; Rosen, Marc A., E-mail: Marc.Rosen@uoit.ca

    2013-09-15

    The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

  14. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  15. Solar Wind Implantation into Lunar Regolith II: Monte Carlo Simulations of Hydrogen Retention in a Surface with Defects and the Hydrogen (H, H2) Exosphere

    Science.gov (United States)

    Tucker, O. J.; Farrell, W. M.; Killen, R. M.; Hurley, D. M.

    2018-01-01

    Recently, the near-infrared observations of the OH veneer on the lunar surface by the Moon Mineralogy Mapper (M3) have been refined to constrain the OH content to 500-750 parts per million (ppm). The observations indicate diurnal variations in OH up to 200 ppm possibly linked to warmer surface temperatures at low latitude. We examine the M3 observations using a statistical mechanics approach to model the diffusion of implanted H in the lunar regolith. We present results from Monte Carlo simulations of the diffusion of implanted solar wind H atoms and the subsequently derived H and H2 exospheres.

  16. Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon Metallosphaera sedula▿

    Science.gov (United States)

    Auernik, Kathryne S.; Kelly, Robert M.

    2010-01-01

    Hydrogen served as a competitive inorganic energy source, impacting the CuFeS2 bioleaching efficiency of the extremely thermoacidophilic archaeon Metallosphaera sedula. Open reading frames encoding key terminal oxidase and electron transport chain components were triggered by CuFeS2. Evidence of heterotrophic metabolism was noted after extended periods of bioleaching, presumably related to cell lysis. PMID:20190092

  17. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent

    DEFF Research Database (Denmark)

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei

    2017-01-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before...

  18. Effect of vacuum polarization on the excitation of hydrogen atom by electron impact

    Directory of Open Access Journals (Sweden)

    Sujata Bhattacharyya

    1981-01-01

    for 1S−2S excitation of the hydrogen atom by electron impact. The excitation amplitude calculated field theoretically is found to be lowered by 0.47t2/(t2+93 where t2=4|P−Q|2, P and Q being the momenta of the incident and scattered electrons respectively.

  19. Thermodynamic investigation and environment impact assessment of hydrogen production from steam reforming of poultry tallow

    International Nuclear Information System (INIS)

    Hajjaji, Noureddine

    2014-01-01

    Highlights: • Thermodynamic analysis and environmental impact assessment of H 2 production system. • Thermodynamic analysis identifies optimal conditions for H 2 production. • LCA is applied to evaluate the environmental impacts of H 2 production system. • Inventories data are derived from process simulation and from literature review. • Thermal energy process is the main contributor to the environmental impact. - Abstract: In this research, various assessment tools are applied to comprehensively investigate hydrogen production from steam reforming of poultry tallow (PT). These tools investigate the chemical reactions, design and simulate the entire hydrogen production process, study the energetic performance and perform an environment impact assessment using life cycle assessment (LCA) methodology. The chemical reaction investigation identifies thermodynamically optimal operating conditions at which PT may be converted to hydrogen via the steam reforming process. The synthesis gas composition was determined by simulations to minimize the Gibbs free energy using the Aspen Plus™ 10.2 software. These optimal conditions are, subsequently, used in the design and simulation of the entire PT-to-hydrogen process. LCA is applied to evaluate the environmental impacts of PT-to-hydrogen system. The system boundaries include rendering and reforming along with the required transportation process. The reforming inventories data are derived from process simulation in Aspen Plus™, whereas the rendering data are adapted from a literature review. The life cycle inventories data of PT-to-hydrogen are computationally implemented into SimaPro 7.3. A set of seven relevant environmental impact categories are evaluated: global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, photochemical oxidant formation, and cumulative non-renewable fossil and nuclear energy demand. The results are subject to a systematic sensitivity analysis and compared

  20. Antiproton impact ionization of atomic hydrogen and helium

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 INN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2009-11-01

    We shall present results for antiproton ionization of H and He ranging from fully differential cross sections to total ionization. The calculations have been made in a coupled pseudostate impact parameter approximation. It will be shown that the interaction between the antiproton and the target nucleus is very important at low energies.

  1. Impact of systemic diseases on oral health related quality of life after implant-prosthodontic rehabilitation

    Directory of Open Access Journals (Sweden)

    Tina Pretnar

    2014-08-01

    Full Text Available Background: Implant-prosthodontic rehabilitation improves oral health related quality of life (OHRQoL, but the presence of systemic diseases can also affect the well-being of an individual.The study was carried out to determine the relationship between systemic diseases and OHRQoL after implant-prosthodontic rehabilitation on the basis of psychometric testing by a standardized questionnaire »Oral Health Impact Profile« (OHIP.Methods: 130 patients, who received one to eight Ankylos® implants (on average 2.6 ± 1.8 were included in this retrospective study in which all aspects of the OHRQoL construct were evaluated with a Slovenian version of the OHIP questionnaire. Data on all present systemic diseases were obtained from the existing health records. Dental status and dental restorations were identified on the basis of orthopantomographic images.Results: The majority of subjects had a cardiovascular disease (N = 37; 28.5 %, followed by a headache (N = 15, 11.5 %, allergies and asthma (n = 13, 10 %, and a rheumatic disease (N = 11, 8.5 %. Only osteoporosis was statistically significantly related to OHRQoL after implant-prosthodontic rehabilitation (p = 0.024. The best multiple linear regression model for the summary score for the questionnaire »Oral Health Impact Profile« for Slovenia (OHIP, and taking into account gender and age as confounding factors, included the number of remaining teeth and the presence of osteoporosis (p = 0.003, adjusted R2 = 0.104.Conclusions: The total number of remaining teeth in the oral cavity (p = 0.031, the presence of osteoporosis (p = 0.024, and taking into account the subject’s gender and age, are the most important clinical factors that affect the functioning of the SGS as well as psychosocial behavior of the patients after an implant-prosthodontic rehabilitation (adjusted R2 = 0.104. Other systemic diseases (cardiovascular disease, headache, allergies and

  2. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  3. Pansinusitis y afectación intracraneal por implante dental Pansinusitis and intracranial impact of a dental implant

    Directory of Open Access Journals (Sweden)

    Josep Rubio-Palau

    2012-03-01

    Full Text Available Las sinusitis odontógenas son una patología relativamente frecuente causada por infecciones dentales, quistes periapicales así como tras procedimientos bucodentales como una endodoncia, una elevación sinusal o la colocación de un implante. A continuación se presenta un caso extremo de una pansinusitis derecha con fistulización a espacio epidural causada por un implante osteointegrado. Ante la sospecha de una sinusitis maxilar de origen odontogénico se debe iniciar rápidamente un tratamiento antibiótico correcto y un seguimiento estrecho ya que pueden tener consecuencias fatales como la pérdida de un ojo, abscesos cerebrales o incluso la muerte.Odontogenic sinusitis is a relatively common disease caused by dental infections, periapical cysts and oral procedures such as root canal, sinus lift or implant placement. We report an extreme case of a right pansinusitis with an epidural space fistula caused by osseointegrated implants. When maxillary sinusitis of odontogenic origin is suspected, we should quickly start effective antibiotic treatment and monitor the patient closely because odontogenic sinusitis can have serious consequences, such as the loss of an eye, brain abscess or death.

  4. Assessment and Evaluation of Quality of Life (OHRQoL) of Patients with Dental Implants Using the Oral Health Impact Profile (OHIP-14) - A Clinical Study.

    Science.gov (United States)

    Alzarea, Bader K

    2016-04-01

    Peri-implant tissue health is a requisite for success of dental implant therapy. Plaque accumulation leads to initiation of gingivitis around natural teeth and peri-implantitis around dental implants. Peri-implantitis around dental implants may result in implant placement failure. For obtaining long-term success, timely assessment of dental implant site is mandatory. To assess and evaluate Quality of Life (OHRQoL) of individuals with dental implants using the Oral Health Impact Profile (OHIP-14). Total 92 patients were evaluated for assessment of the health of peri-implant tissues by recording, Plaque Index (PI), Probing Pocket Depth (PD), Bleeding On Probing (BOP) and Probing Attachment Level (PAL) as compared to contra-lateral natural teeth (control). In the same patients Quality of Life Assessment was done by utilizing Oral Health Impact Profile Index (OHIP-14). The mean plaque index around natural teeth was more compared to implants and it was statistically significant. Other three dimensions mean bleeding on probing; mean probing attachment level and mean pocket depth around both natural teeth and implant surfaces was found to be not statistically significant. OHIP-14 revealed that patients with dental implants were satisfied with their Oral Health-Related Quality of Life (OHRQoL). Similar inflammatory conditions are present around both natural teeth and implant prostheses as suggested by results of mean plaque index, mean bleeding on probing, mean pocket depth and mean probing attachment level, hence reinforcing the periodontal health maintenance both prior to and after incorporation of dental implants. Influence of implant prostheses on patient's oral health related quality of life (as depicted by OHIP-14) and patients' perceptions and expectations may guide the clinician in providing the best implant services.

  5. Two-state approximation applied to hydrogen formation by proton impact on positronium

    Directory of Open Access Journals (Sweden)

    E Ghanbari Adivi

    2009-09-01

    Full Text Available Although there is no experimental data available for antihydrogen formation following antiprotons impact on positroium atoms, as a charge transfer reaction, at incident energies which are suitable for antimatter high-precision spectroscopic studies, measurements were carried out for its charge-conjugate reaction i. e. hydrogen formation, by protons impact on positronium. In this study, a two-state approximation method is applied to charge exchange process in proton-positronium collision system. The nonorthogonality of initial and final states and its effects on the angular distribution of the differential cross sections is taken into account by using this method. The state-to-state differential cross sections are reported for transition from ground state of positronium into the ground and a few lowest excited states of the formed hydrogen. Integrated cross sections are presented as well.

  6. Influence of soft tissue in the assessment of the primary fixation of acetabular cup implants using impact analyses.

    Science.gov (United States)

    Bosc, Romain; Tijou, Antoine; Rosi, Giuseppe; Nguyen, Vu-Hieu; Meningaud, Jean-Paul; Hernigou, Philippe; Flouzat-Lachaniette, Charles-Henri; Haiat, Guillaume

    2018-06-01

    The acetabular cup (AC) implant primary stability is an important determinant for the success of cementless hip surgery but it remains difficult to assess the AC implant fixation in the clinic. A method based on the analysis of the impact produced by an instrumented hammer on the ancillary has been developed by our group (Michel et al., 2016a). However, the soft tissue thickness present around the acetabulum may affect the impact response, which may hamper the robustness of the method. The aim of this study is to evaluate the influence of the soft tissue thickness (STT) on the acetabular cup implant primary fixation evaluation using impact analyses. To do so, different AC implants were inserted in five bovine bone samples. For each sample, different stability conditions were obtained by changing the cavity diameter. For each configuration, the AC implant was impacted 25 times with 10 and 30 mm of soft tissues positioned underneath the sample. The averaged indicator I m was determined based on the amplitude of the signal for each configuration and each STT and the pull-out force was measured. The results show that the resonance frequency of the system increases when the value of the soft tissue thickness decreases. Moreover, an ANOVA analysis shows that there was no significant effect of the value of soft tissue thickness on the values of the indicator I m (F = 2.33; p-value = 0.13). This study shows that soft tissue thickness does not appear to alter the prediction of the acetabular cup implant primary fixation obtained using the impact analysis approach, opening the path towards future clinical trials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Impact of Nanostructuring on the Phase Behavior of Insertion Materials: The Hydrogenation Kinetics of a Magnesium Thin Film

    NARCIS (Netherlands)

    Bannenberg, L.J.; Schreuders, H.; van Eijck, L.; Heringa, J.R.; Steinke, N.J.; Dalgliesh, RM; Dam, B.; Mulder, F.M.; van Well, A.A.

    2016-01-01

    Nanostructuring is widely applied in both battery and hydrogen materials to improve the performance of these materials as energy carriers. Nanostructuring changes the diffusion length as well as the thermodynamics of materials. We studied the impact of nanostructuring on the hydrogenation in a model

  8. Precise Estimation of Cellular Radio Electromagnetic Field in Elevators and EMI Impact on Implantable Cardiac Pacemakers

    Science.gov (United States)

    Harris, Louis-Ray; Hikage, Takashi; Nojima, Toshio

    The purpose of this paper is to investigate the possible impact of cellular phones' signals on implantable cardiac pacemakers in elevators. This is achieved by carrying out precise numerical simulations based on the Finite-Difference-Time-Domain method to examine the electromagnetic fields in elevator models. In order to examine the realistic and complicated situations where humans are present in the elevator, we apply the realistic homogeneous human phantom and cellular radios operating in the frequency bands 800MHz, 1.5GHz and 2GHz. These computed results of field strength inside the elevator are compared with a certain reference level determined from the experimentally obtained maximum interference distance of implantable cardiac pacemakers. This enables us to carry out a quantitative evaluation of the EMI risk to pacemakers by cellular radio transmission. The results show that for the case when up to 5 mobile radio users are present in the elevator model used, there is no likelihood of pacemaker malfunction for the frequency bands 800MHz, 1.5GHz and 2GHz.

  9. Clinical and psychological impact of prophylactic implantable cardioverter-defibrillators in a community heart failure population.

    LENUS (Irish Health Repository)

    Arnous, S

    2012-02-01

    AIMS: ICD implantation for primary prevention of sudden cardiac death in patients with left ventricular systolic dysfunction (ejection fraction <\\/= 35%) has increased since the publication of the SCD-HEFT and MADIT-II data. The aim of this study is to examine the effectiveness and safety of prophylactic ICD use in a community heart failure population and to assess the impact on patient\\'s quality of life. METHODS AND RESULTS: Seventy-one ICDs were inserted between the years 2002 and 2006. The mean follow-up from time of insertion was 24 +\\/- 11 months. Eighteen patients (25%) had potentially life-saving therapy. Seven (10%) patients received inappropriate shocks. Complications were encountered in five patients (7%). CONCLUSION: In a community heart failure population, prophylactic ICD implantation is associated with a high incidence of life-saving therapy, a low complication rate and a high level of tolerability. These data indicate translation of clinical trial benefits to the general heart failure population.

  10. Instrumented impact properties of zircaloy-oxygen and zircaloy-hydrogen alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garde, A.M.; Kassner, T.F.

    1980-04-01

    Instrumented-impact tests were performed on subsize Charpy speciments of Zircaloy-2 and -4 with up to approx. 1.3 wt % oxygen and approx. 2500 wt ppM hydrogen at temperatures between 373 and 823/sup 0/K. Self-consistent criteria for the ductile-to-brittle transition, based upon a total absorbed energy of approx. 1.3 x 10/sup 4/ J/m/sup 2/, a dynamic fracture toughness of approx. 10 MPa.m/sup 1/2/, and a ductility index of approx. 0, were established relative to the temperature and oxygen concentration of the transformed BETA-phase material. The effect of hydrogen concentration and hydride morphology, produced by cooling Zircaloy-2 specimens through the temperature range of the BETA ..-->.. ..cap alpha..' = hydride phase transformation at approx. 0.3 and 3 K/s, on the impact properties was determined at temperatures between 373 and 673 K. On an atom fraction basis, oxygen has a greater effect than hydrogen on the impact properties of Zircaloy at temperatures between approx. 400 and 600 K. 34 figures.

  11. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, V. Amin; Miresmaeili, Reza, E-mail: miresmaeili@modares.ac.ir; Abdollah-Zadeh, Amir

    2017-01-02

    Micro-alloy steels are broadly used in gas and petroleum transportation industries. However, application of these steels in pipelines is challenged by hydrogen embrittlement due to presence of hydrogen sulfide in the medium. The present work deals with the interaction of hydrogen with plasticity of X65 steel. Two weld joints produced by common E7010-G and E7018 electrodes via shielded metal arc welding (SMAW) method were also investigated. It was revealed in microhardness test that direct charge of hydrogen to the surface did not lead to meaningful variations due to lamination as well as surface and sub-surface porosities. In fact, the effect of hydrogen on material plasticity was influenced by lamination and porosities. On the other hand, indirect charge on the tested surface led to increase in hardness by 12%, 9% and 6% in base metal as well as in weld metals obtained from E7010-G and E7018 electrodes, respectively. Therefore, hydrogen atoms affected plasticity of X65 steel more harshly than that of weld metals; thus, the base metal is more sensitive to hydrogen embrittlement. Due to high strain rate, impact test does not provide sufficient time for hydrogen diffusion through notch during the test. No observation of any variations in impact energies of charged samples may hence be explained by uniform hydrogen concentration throughout the samples. The base steel was seen to be much more sensitive to hydrogen defects rather than weld metals of both electrodes due to possessing pearlite/ferrite interfaces. According to hydrogen concentration studies, E710-G weld metal had more hydrogen diffusivity than X65 steel and E7018 weld metal by four time and 25%, respectively. This was due to acicular ferritic microstructure of E710-G weld metal and its dislocation tangles that provided many reversible traps for hydrogen.

  12. Impact of music on the quality of life of cochlear implant users: a focus group study.

    Science.gov (United States)

    Dritsakis, Giorgos; van Besouw, Rachel M; O' Meara, Aoife

    2017-07-01

    To study the aspects of the quality of life (QoL) on which music has an impact in adult cochlear implant (CI) users. Thirty adult CI users aged between 18 and 81 years old with a wide range of patient characteristics and musical backgrounds participated in the study. Six focus group discussions about music in everyday life were conducted and data were analysed using template analysis based on the QoL model of the World Health Organisation Quality of Life BREF questionnaire. A theoretical framework of the impact of music on the QoL was developed. Music was reported to contribute to many aspects of physical, psychological, and social well-being in adult CI users. These positive effects of music on QoL were similar to what has been reported in the literature for normal-hearing adults. However, difficulties in music perception and enjoyment were found to have a negative impact on CI users' QoL, especially by causing unpleasant feelings and limited participation in music-related or routine daily activities. These findings suggest that an improvement in music experiences of CI users may lead to improvements in QoL and therefore support the need for music rehabilitation. However, the relative importance of music overall and of specific aspects of music for each individual should be measured for an accurate assessment of the impact of music on the QoL of CI users.

  13. Investigation of the hydrogen multilayered target H/T-D{sub 2} and muonic X-ray yields in ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2011-12-21

    This paper extends applications of the multilayered solid target H/T-D{sub 2}, which is kept at 3 K. The time evolutions of muonic tritium atoms ({mu}t) are obtained, by taking into account {mu}t production rate at different places of deuterium material. The apparatus H/T-D{sub 2} can be used for checking nuclear properties of implanted ions, which take part at muon transfer. Electromagnetic X-rays are generated by muon atomic transitions. The muonic X-ray transition energies are strongly affected by the size of nuclei. Here, a solid hydrogen-tritium (H/T) with a Almost-Equal-To 1 mm thick is used for {mu}t production. For ion implantation, the required amount of deuterium material is determined to be about 3.2 {mu}m. Moreover, the muonic X-ray yields are estimated and compared with those of the arrangement H/T-D{sub 2}. While the present target requires argon ion beam intensity nearly a factor of 2 times smaller; gives a relatively higher X-ray yield (15% enhancement per hour) at the energy 644 keV with the detection efficiency of Almost-Equal-To 1%.

  14. Impact of carvedilol and metoprolol on inappropriate implantable cardioverter-defibrillator therapy

    DEFF Research Database (Denmark)

    Ruwald, Martin H; Abu-Zeitone, Abeer; Jons, Christian

    2013-01-01

    The goal of this study was to evaluate the effects of carvedilol and metoprolol on the endpoint of inappropriate implantable cardioverter-defibrillator therapy in the MADIT-CRT (Multicenter Automatic Defibrillator Implantation With Cardiac Resynchronization Therapy) study....

  15. Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis

    Directory of Open Access Journals (Sweden)

    Jan Christian Koj

    2017-06-01

    Full Text Available Industrial hydrogen production via alkaline water electrolysis (AEL is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However, today electricity from the national grid is widely utilized for industrial applications of AEL. Also, the ban on asbestos membranes led to a change in performance patterns, making a detailed assessment necessary. This study presents a comparative Life Cycle Assessment (LCA using the GaBi software (version 6.115, thinkstep, Leinfelden-Echterdingen, Germany, revealing inventory data and environmental impacts for industrial hydrogen production by latest AELs (6 MW, Zirfon membranes in three different countries (Austria, Germany and Spain with corresponding grid mixes. The results confirm the dependence of most environmental effects from the operation phase and specifically the site-dependent electricity mix. Construction of system components and the replacement of cell stacks make a minor contribution. At present, considering the three countries, AEL can be operated in the most environmentally friendly fashion in Austria. Concerning the construction of AEL plants the materials nickel and polytetrafluoroethylene in particular, used for cell manufacturing, revealed significant contributions to the environmental burden.

  16. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.

    Science.gov (United States)

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei; Angelidaki, Irini; Zhang, Yifeng

    2017-07-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before moving into MECs, respectively. Subsequently, CSFE was used as feedstock in all the three MECs. The maximum hydrogen yield with the anode pre-acclimated with butyrate (5.21±0.24L H 2 /L CSFE) was higher than that pre-acclimated with acetate (4.22±0.19L H 2 /L CSFE) and CSFE (4.55±0.14L H 2 /L CSFE). The current density (480±11A/m 3 ) and hydrogen production rate (4.52±0.13m 3 /m 3 /d) with the anode pre-acclimated with butyrate were also higher that another two reactors. These results demonstrated that the anode biofilm pre-acclimated with butyrate has significant advantages in CSFE treatment and could improve the performance of hydrogen production in MEC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  18. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  19. [Study on the factors impacting on early cochlear implantation between the eastern and western region of China].

    Science.gov (United States)

    Xiao, Hanqiong; Li, Wei; Ma, Ruixia; Gong, Zhengpeng; Shi, Haibo; Li, Huawei; Chen, Bing; Jiang, Ye; Dai, Chunfu

    2015-06-01

    To describe tne regional different factors which impact on early cochlear implantation in prelingual deaf children between eastern and western regions of China. The charts of 113 children who received the cochlear implantation after 24 months old were reviewed and analyzed. Forty-five of them came from the eastern region (Jiangsu, Zhejiang or Shanghai) while 68 of them came from the western region (Ningxia or Guizhou). Parental interviews were conducted to collect information regarding the factors that impact on early cochlear implantation. Result:Based on the univariate logistic regression analysis, the odds ratio (OR) value of universal newborn hearing screening (UNHS) was 5. 481, which indicated the correlation of UNHS with early cochlear implantation is significant. There was statistical difference between the 2 groups (P0. 05). The multivariate analysis indicated that the UNHS and financial burden are statistically different between the eastern and western regions (P=0. 00 and 0. 040 respectively). The UNHS and financial burden are statistically different between the eastern reinforced in the western region. In addition, the government and society should provide powerful policy and more financial support in the western region of China. The innovation of management system is also helpful to the early cochlear implantation.

  20. Impact of experience on government policy toward acceptance of hydrogen fuel cell vehicles in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Min Jung [Department of Information and Industrial Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul 120-749 (Korea, Republic of); Park, Heejun, E-mail: h.park@yonsei.ac.kr [Department of Information and Industrial Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul 120-749 (Korea, Republic of)

    2011-06-15

    As the 'low carbon, green growth' agenda, which emphasized sustainable development through equilibrium between economic growth and environmental preservation, is propagated rapidly in Korea. Despite this progress, it is not uncommon for new products made through advanced technologies, such as hydrogen fuel cell vehicles, to face public skepticism preventing market penetration. Therefore, the factors impacting customer acceptance of hydrogen fuel cell vehicles have to be estimated. Furthermore, it is necessary to examine whether or not the policies related to these products can prevent public skepticism regarding them. This empirical study examining the relationship between personal experiences related to the policy and acceptance of the innovative products of hydrogen fuel cell vehicles shows that government involvement in technology targeting and promotions administered by the 'low carbon, green growth' agenda rarely stimulate potential customers' purchase intentions. Thus, technology targeting administered by the 'low carbon, green growth' agenda needs to be reconciled with customer responses to the future market. - Highlights: > Experience of the 'low carbon, green growth' policy affects perception of it. > Positive perception on the policy seldom arouses positive perception on HFCV performance. > Technology targeting by the policy rarely stimulates purchase intention of HFCV. > Desire to be regarded as a person with environment concern impacts purchase intentions.> Technology targeting by the policy needs to be reconciled with customer responses to it.

  1. Impact of experience on government policy toward acceptance of hydrogen fuel cell vehicles in Korea

    International Nuclear Information System (INIS)

    Kang, Min Jung; Park, Heejun

    2011-01-01

    As the 'low carbon, green growth' agenda, which emphasized sustainable development through equilibrium between economic growth and environmental preservation, is propagated rapidly in Korea. Despite this progress, it is not uncommon for new products made through advanced technologies, such as hydrogen fuel cell vehicles, to face public skepticism preventing market penetration. Therefore, the factors impacting customer acceptance of hydrogen fuel cell vehicles have to be estimated. Furthermore, it is necessary to examine whether or not the policies related to these products can prevent public skepticism regarding them. This empirical study examining the relationship between personal experiences related to the policy and acceptance of the innovative products of hydrogen fuel cell vehicles shows that government involvement in technology targeting and promotions administered by the 'low carbon, green growth' agenda rarely stimulate potential customers' purchase intentions. Thus, technology targeting administered by the 'low carbon, green growth' agenda needs to be reconciled with customer responses to the future market. - Highlights: → Experience of the 'low carbon, green growth' policy affects perception of it. → Positive perception on the policy seldom arouses positive perception on HFCV performance. → Technology targeting by the policy rarely stimulates purchase intention of HFCV. → Desire to be regarded as a person with environment concern impacts purchase intentions.→ Technology targeting by the policy needs to be reconciled with customer responses to it.

  2. Prostate brachytherapy postimplant dosimetry: Seed orientation and the impact of dosimetric anisotropy in stranded implants

    International Nuclear Information System (INIS)

    Chng, Nicholas; Spadinger, Ingrid; Rasoda, Rosey; Morris, W. James; Salcudean, Septimiu

    2012-01-01

    Purpose: In postimplant dosimetry for prostate brachytherapy, dose is commonly calculated using the TG-43 1D formalism, because seed orientations are difficult to determine from CT images, the current standard for the procedure. However, the orientation of stranded seeds soon after implantation is predictable, as these seeds tend to maintain their relative spacing, and orient themselves along the implant trajectory. The aim of this study was to develop a method for determining seed orientations from reconstructed strand trajectories, and to use this information to investigate the dosimetric impact of applying the TG-43 2D formalism to clinical postimplant analysis. Methods: Using in-house software, the preplan to postimplant seed correspondence was determined for a cohort of 30 patients during routine day-0 CT-based postimplant dosimetry. All patients were implanted with stranded-seed trains. Spline curves were fit to each set of seeds composing a strand, with the requirement that the distance along the spline between seeds be equal to the seed spacing within the strand. The orientations of the seeds were estimated by the tangents to the spline at each seed centroid. Dose distributions were then determined using the 1D and 2D TG-43 formalisms. These were compared using the TG-137 recommended dose metrics for the prostate, prostatic urethra, and rectum. Results: Seven hundred and sixty one strands were analyzed in total. Defining the z-axis to be cranial-positive and the x-axis to be left-lateral positive in the CT coordinate system, the average seed had an inclination of 21 deg. ± 10 deg. and an azimuth of -81 deg. ± 57 deg. These values correspond to the average strand rising anteriorly from apex to base, approximately parallel to the midsagittal plane. Clinically minor but statistically significant differences in dose metrics were noted. Compared to the 2D calculation, the 1D calculation underestimated prostate V100 by 1.1% and D90 by 2.3 Gy, while

  3. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.

    Science.gov (United States)

    Trinidad, Javier; Arruebarrena, Gurutze; Marco, Iñigo; Hurtado, Iñaki; Sáenz de Argandoña, Eneko

    2013-12-01

    The increasing interest on magnesium alloys relies on their biocompatibility, bioabsorbility and especially on their mechanical properties. Due to these characteristics, magnesium alloys are becoming a promising solution to be used, as temporary implants. However, magnesium alloys must overcome their poor corrosion resistance. This article analyses the corrosion behaviour in phosphate-buffered saline solution of three commercial magnesium alloys (AZ31B, WE43 and ZM21) as well as the influence of fluoride treatment on their corrosion behaviour. It is shown that the corrosion rate of all the alloys is decreased by fluoride treatment. However, fluoride treatment affects each alloy differently.

  4. Incidence and impact of prosthesis-patient mismatch after transcatheter aortic valve implantation.

    Science.gov (United States)

    Bleiziffer, Sabine; Hettich, Ina; Hutter, Andrea; Wagner, Anke; Deutsch, Marcus-André; Piazza, Nicolo; Lange, Rüdiger

    2013-05-01

    The study aim was to investigate the incidence of patient-prosthesis mismatch (PPM) with new catheter valves, and its influence on the patients' clinical state. At present, few echocardiographic data are available on the incidence and impact of PPM with the CoreValve and Sapien prostheses for transcatheter aortic valve implantation (TAVI). The reliability of effective orifice area (EOA) measurements was assured by awaiting an interval of six months after TAVI. Of 256 survivors after TAVI, 149 complete echocardiographic data sets were available for the assessment of the indexed EOA (iEOA). In total, 106 CoreValve prostheses and 43 Sapien prostheses were implanted in this high-risk cohort (mean age 81 +/- 6 years, mean logistic EuroSCORE 20 +/- 13%). The overall incidence of PPM (iEOA body surface area were more likely to develop PPM (p = 0.001), while the prosthesis type, native annulus diameter, preoperative EOA, gender and prosthesis size had no influence. The mean aortic gradient was significantly higher in patients with PPM. A reduction in the left ventricular end-diastolic diameter was seen in all patients, without significant differences between groups. There were no differences in postoperative NYHA class or self-assessed health state between patients with or without PPM. PPM was common after TAVI in the presented cohort, presumably because the native calcium masses narrow the outflow area available for blood flow. As expected for low gradients, there was no impairment of left ventricular dimension regression or clinical state of the patients, even if severe PPM was present. Based on the presented data, it is assumed that PPM might be less relevant in TAVI patients.

  5. Working group report on ion-impact excitation: Recommended database for ion-impact excitation of atomic hydrogen

    International Nuclear Information System (INIS)

    Fritsch, W.; Olson, R.E.; Schartner, K.H.; Belkic, D.S.

    1989-01-01

    This report discusses (i) proton impact excitation, and (ii) excitation by ion collisions (from helium ions to iron ions) of atomic hydrogen, both for H(1s) and H(n>1), where where n = the principal quantum number, in the energy range from 1 keV/amu to 2 MeV/amu and 10 MeV/amu, respectively. For the range of ions considered, a few generic plots are given for the total cross section as a function of E/q, where E is the beam energy, for different values q (ion charge in units of proton charge) and different final principal quantum numbers. 12 refs, 3 figs

  6. Impact of oedema on implant geometry and dosimetry for temporary high dose rate brachytherapy of the prostate

    International Nuclear Information System (INIS)

    Kiffer, J.D.; Schumer, W.A.; Mantle, C.A.; McKenzie, B.J.; Feigen, M.; Quong, G.G.; Waterman, F.M.

    2003-01-01

    The optimal timing of dosimetry for permanent seed prostatic implants remains contentious given the half life of post-implant oedema resolution. The aim of this study was to establish whether prostatic oedematous change over the duration of a temporary high dose rate (HDR) interstitial brachytherapy (BR) boost would result in significant needle displacement, and whether this change in geometry would influence dosimetry. Two CT scans, one for dosimetric purposes on the day of the implant and the second just prior to implant removal, were obtained for four patients receiving transperineal interstitial prostate brachytherapy. The relative changes in cross-sectional dimensions of the implants were calculated by establishing the change in mean radial distance (MRD) of the needle positions from the geometric centre of the implant for each patient's pair of CT studies. The treatment plan, as calculated from the first CT scan, was used in the second set of CT images to allow a comparison of dose distribution. The percentage change in MRD over the duration of the temporary implants ranged from -1.91% to 1.95%. The maximum change in estimated volume was 3.94%. Dosimetric changes were negligible. In the four cases studied, the degree of oedematous change and consequent displacement of flexiguide needle positions was negligible and did not impact on the dosimetry. The rate and direction of oedematous change can be extremely variable but on the basis of the four cases studied and the results of a larger recent study, it might not be necessary to re-image patients for dosimetric purposes over the duration of a fractionated HDR BT boost to the prostate where flexiguide needles are utilized. Nevertheless, further investigation with larger patient numbers is required. Copyright (2003) Blackwell Science Pty Ltd

  7. Hydrogen depth distribution and fatigue properties of TiAl6V4 with implanted nitrogen; Wasserstoff-Tiefenverteilung und Ermuedungseigenschaften von Stickstoff-implantiertem TiAl6V4

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H. [Technische Univ. Darmstadt (Germany). Fachbereich Materialwissenschaft; Rueck, D.M. [Gesellschaft fuer Schwerionenforschung mbH (GSI), Darmstadt (Germany). Abt. fuer Materialforschung; Soltani-Farshi, M.; Baumann, H. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik

    1998-12-31

    Depth distributions and cracking initiation were analysed in TiAl6V4 with implanted nitrogen by means of high-energy backscattering spectroscopy, nuclear reaction analysis and fatigue tests under rotary bending loads. The hydrogen content in the substrate is approx. 0.4 at.%. The hydrogen content in the materials layer with implanted nitrogen is up to 2.6 at%. The highest hydrogen concentration was found in material consisting of titanium nitride (TiN) and {alpha}-titanium. In areas with high nitrogen accumulation, where a consistent TiN layer is formed, the hydrogen content is lower than 1.5 at.%. Nitrogen ion implantation was not found to significantly reduce the fatigue strength of the specimens tested under rotary bending loads, although fatigue-induced cracking primarily occurs in specimen zones where the maximum concentrations of hydrogen and nitrogen are close to the surface. (orig./CB) [Deutsch] Tiefenverteilungen und die Rissbildung von Stickstoff-implantiertem TiAl6V4 wurden mittels Hochenergie-Rueckstreu-Spektroskopie, Kernreaktionsanalyse und Umlaufbiegetests untersucht. Der Wasserstoffgehalt im Substrat betraegt etwa 0,4 at.%. In der Stickstoff-implantierten Schicht wird eine Wasserstoffakkumulation bis zu 2,6 at% beobachtet. Die hoechste Wasserstoffkonzentration tritt auf, wenn eine Mischung aus Titannitrid (TiN) und mit Stickstoff angereichertem {alpha}-Titan vorliegt. In Bereichen hoher Stickstoffanreicherung, in denen eine zusammenhaengende TiN-Schicht gebildet wird, sinkt der Wasserstoffanteil unter 1,5 at.% ab. Die Stickstoff-Implantation senkt die Lebensdauern im Umlaufbiegeversuch nicht signifikant ab, obwohl die Ermuedungsrisse bevorzugt von Probenbereichen ausgehen, in denen die Maximalgehalte von Stickstoff und Wasserstoff nahe an der Oberflaeche liegen. (orig.)

  8. Impact of Noise Reduction Algorithm in Cochlear Implant Processing on Music Enjoyment.

    Science.gov (United States)

    Kohlberg, Gavriel D; Mancuso, Dean M; Griffin, Brianna M; Spitzer, Jaclyn B; Lalwani, Anil K

    2016-06-01

    Noise reduction algorithm (NRA) in speech processing strategy has positive impact on speech perception among cochlear implant (CI) listeners. We sought to evaluate the effect of NRA on music enjoyment. Prospective analysis of music enjoyment. Academic medical center. Normal-hearing (NH) adults (N = 16) and CI listeners (N = 9). Subjective rating of music excerpts. NH and CI listeners evaluated country music piece on three enjoyment modalities: pleasantness, musicality, and naturalness. Participants listened to the original version and 20 modified, less complex versions created by including subsets of musical instruments from the original song. NH participants listened to the segments through CI simulation and CI listeners listened to the segments with their usual speech processing strategy, with and without NRA. Decreasing the number of instruments was significantly associated with increase in the pleasantness and naturalness in both NH and CI subjects (p  0.05): this was true for the original and the modified music segments with one to three instruments (p > 0.05). NRA does not affect music enjoyment in CI listener or NH individual with CI simulation. This suggests that strategies to enhance speech processing will not necessarily have a positive impact on music enjoyment. However, reducing the complexity of music shows promise in enhancing music enjoyment and should be further explored.

  9. Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Grieb, Thomas M; Mills, W B; Jacobson, Mark Z; Summers, Karen V; Crossan, A Brook

    2010-12-31

    Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the world's FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to

  10. Charpy impact test of oxidized and hydrogenated zircaloy using a thin strip specimen

    International Nuclear Information System (INIS)

    Otsuka, Teppei; Hashizume, Kenichi; Sugisaki, Masayasu

    2004-01-01

    The impact properties of an oxidized and a hydrogenated Zircaloy have been studied with an instrumented Charpy machine by using a strip Charpy V-notch specimen (1 mm thick by 4mm wide). Fracture processes such as crack initiation and propagation were examined using load-displacement curves obtained in this study. In the case of the hydrogenated specimen containing preferentially oriented hydrides, an appreciable decrease in the absorbed energy was observed in the crack propagation rather than in the crack initiation. From results of fractographs of the specimen, it was suggested that the reduction of the crack propagation energy of hydrogenated specimen could be attributed to the change of the stress state in the Zircaloy matrix, which was caused by the fracture of hydride in the inner part of specimen. In the case of the specimen oxidized at 973k for 60 min, on which an oxide layer (4 μm in thickness) and oxygen incursion layer (4μm) were formed, the surface layers affected the crack initiation process. The growing oxygen incursion layer, in particular, resulted in the constraint of plastic deformation of the Zircaloy matrix not only in the crack initiation but also in the crack propagation as its thickness increased. (author)

  11. Coulomb correlations in electron and positron impact ionization of hydrogen at intermediate and higher energies

    International Nuclear Information System (INIS)

    Jetzke, S.; Faisal, F.H.M.

    1992-01-01

    Investigating the relation between the asymptotic condition and the dynamic Coulomb correlation for single and multiple ionization we discuss a complete set of spatially separable N-electrons final-state wavefunctions, satisfying multiple ionization boundary conditions. We apply these results to electron and positron impact ionization of atomic hydrogen in the energy range 54.4 and 250 eV on the basis of a parameter-free model formulated within the scope of the multiple scattering approach. A comparison between our results and available experimental data and alternative theoretical calculations are made and discussed. (Author)

  12. State-selective charge transfer cross sections for light ion impact of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D. R. [University of North Texas; Stancil, Phillip C. [University of Georgia, Athens; Havener, C. C. [Oak Ridge National Laboratory (ORNL)

    2015-01-01

    Owing to the utility of diagnosing plasma properties such as impurity concentration and spatial distribution, and plasma temperature and rotation, by detection of photon emission following capture of electrons from atomic hydrogen to excited states of multiply charged ions, new calculations of state-selective charge transfer involving light ions have been carried out using the atomic orbital close-coupling and the classical trajectory Monte Carlo methods. By comparing these with results of other approaches applicable in a lower impact energy regime, and by benchmarking them using key experimental data, knowledge of the cross sections can be made available across the range parameters needed by fusion plasma diagnostics.

  13. Variational approach to excitation of atomic hydrogen atoms by impacts of protons at intermediate velocities

    International Nuclear Information System (INIS)

    Lasri, B.; Bouamoud, M.; Gayet, R.

    2006-01-01

    A variational approach to the excitation of atoms by ion impacts at intermediate velocities is re-examined. Contributions from intermediate states of the target continuum, that were ignored in previous applications of this approach, are taken into account. With this improved variational approach, excitation cross sections of hydrogen atoms by intermediate energy protons are calculated and compared to recent experimental data and to previous theoretical cross sections. The influence of the intermediate target continuum is found to be very weak. In addition, the present approach is shown to apply as long as the capture process is negligible

  14. Ejected electron energy distribution in the ionization of atomic hydrogen by C6+ impact

    International Nuclear Information System (INIS)

    Dey, Ritu; Roy, A.C.

    2006-01-01

    We report doubly differential cross section (DDCS) for C 6+ impact ionization of atomic hydrogen at the incident energy of 2.5 MeV/amu. The calculation is based on the eikonal approximation (EA) method. A comparison is made of the present DDCS with the results of other theoretical methods and experiment. It is found that the multiple scattering effect has a significant influence on the energy distributions of the ejected electrons. The cross sections predicted by the present EA also show reasonably good agreement with experiment

  15. The impact of a modified cutting flute implant design on osseointegration.

    Science.gov (United States)

    Jimbo, R; Tovar, N; Marin, C; Teixeira, H S; Anchieta, R B; Silveira, L M; Janal, M N; Shibli, J A; Coelho, P G

    2014-07-01

    Information concerning the effects of the implant cutting flute design on initial stability and its influence on osseointegration in vivo is limited. This study evaluated the early effects of implants with a specific cutting flute design placed in the sheep mandible. Forty-eight dental implants with two different macro-geometries (24 with a specific cutting flute design - Blossom group; 24 with a self-tapping design - DT group) were inserted into the mandibular bodies of six sheep; the maximum insertion torque was recorded. Samples were retrieved and processed for histomorphometric analysis after 3 and 6 weeks. The mean insertion torque was lower for Blossom implants (Pimplant contact (BIC) and P=0.52 for bone area fraction occupied (BAFO); at 6 weeks, P=0.55 for BIC and P=0.45 for BAFO. While no histomorphometric differences were observed, ground sections showed different healing patterns between the implants, with better peri-implant bone organization around those with the specific cutting flute design (Blossom group). Implants with the modified cutting flute design had a significantly reduced insertion torque compared to the DT implants with a traditional cutting thread, and resulted in a different healing pattern. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    Science.gov (United States)

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  17. Electron impact excitation of the n = 2 to n = 3 transition in atomic hydrogen near threshold

    Science.gov (United States)

    Hata, J.; Morgan, L. A.; McDowell, M. R. C.

    1980-06-01

    Close-coupling calculations of electron impact excitation of the n = 2 to n = 3 transition of atomic hydrogen at energies below the n = 4 threshold are presented. The algebraic variational close-coupling code of Morgan (1980) with an eighteen-state basis was used to obtain cross sections at eight impact energies from 2.04 to 2.45 eV, and calculations in a six-state close-coupling model were compared with the six-state calculations of Burke et al. (1967). The six-state values are found to be in satisfactory agreement with the exception of the singlet contribution to the 2s-3s transition. Near the n = 3 threshold the cross section obtained in the full calculation is found to be almost a factor of 2 lower than that predicted by Johnson (1972), thus explaining in part the discrepancy between Johnson's results and experiments on hydrogen plasmas. Estimates of rate coefficients based on the cross sections and assuming a Maxwellian velocity distribution, however, are shown to remain in disagreement with experiment.

  18. Theoretical calculation of fully differential cross sections for electron-impact ionization of hydrogen molecules

    International Nuclear Information System (INIS)

    Gao Junfang; Madison, D H; Peacher, J L

    2006-01-01

    We have recently proposed the orientation averaged molecular orbital (OAMO) approximation for calculating fully differential cross sections (FDCS) for electron-impact ionization of molecules averaged over all molecular orientations. Orientation averaged FDCS were calculated for electron-impact ionization of nitrogen molecules using the distorted wave impulse approximation (DWIA) and the molecular three-body distorted wave (M3DW) approximation. In this paper, we use the same methods to examine the FDCS for ionization of hydrogen molecules. It is found that the DWIA yields reasonable results for high-energy incident electrons. While the DWIA breaks down for low-energy electrons, the M3DW gives reasonable results down to incident-electron energies around 35 eV

  19. The impact of glucocorticosteroids administered for systemic diseases on the osseointegration and survival of dental implants placed without bone grafting-A retrospective study in 31 patients.

    Science.gov (United States)

    Petsinis, Vassilis; Kamperos, Georgios; Alexandridi, Foteini; Alexandridis, Konstantinos

    2017-08-01

    To evaluate the impact of glucocorticosteroids, administered for the treatment of systemic diseases, on the osseointegration and survival of dental implants placed without bone grafting. A retrospective study was conducted in search of patients treated with dental implants while receiving glucocorticosteroid therapy for various systemic diseases. In these cases, a conventional two-stage surgical protocol was used, without bone regeneration procedures. The osseointegration was clinically and radiographically tested at the uncovering of the implants. The follow-up after loading was set at a minimum of 3 years. A total of 31 patients were included in the study. Of the 105 dental implants placed, 104 were osseointegrated (99%). No bone absorption was radiographically noted at the uncovering of the osseointegrated implants. All of the osseointegrated implants were successfully loaded for the prosthetic restoration. The mean follow-up period after loading was 71 months, with an implant survival rate of 99%. Glucocorticosteroid intake for systemic diseases does not have a significant impact on the osseointegration and the 3-year survival of dental implants placed with a conventional two-stage surgical protocol and without bone grafting. Therefore, it should not be considered a contraindication for dental implant placement. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Impact of a "TED-Style" presentation on potential patients' willingness to accept dental implant therapy: a one-group, pre-test post-test study.

    Science.gov (United States)

    Ghanem, Henry; Afrashtehfar, Kelvin Ian; Abi-Nader, Samer; Tamimi, Faleh

    2015-12-01

    A survey was conducted to assess the impact of a TED-like educational session on participants' willingness to accept dental implant therapy. Volunteers interested in having information about dental implant therapies were recruited and asked to complete a two-part survey before and after an educational session. The initial survey elicited demographic information, self-perceived knowledge on dental implants and willingness to this kind of treatment. A "TED-style" presentation that provided information about dental implant treatments was conducted before asking the participants to complete a second set of questions assessing the impact of the session. The survey was completed by 104 individuals, 78.8% were women and the mean age was 66.5±10.8. Before the educational session, 76.0% of the participants refused dental implants mainly due to lack of knowledge. After the educational session, the rejection of dental implants decreased by almost four folds to 20.2%. This study proved that an educational intervention can significantly increase willingness to accept treatment with dental implants in a segment of the population who is interested in having information about dental implant therapy. Furthermore, educational interventions, such as TED-like talks, might be useful to increase popular awareness on dental implant therapy.

  1. Impact of a "TED-Style" presentation on potential patients' willingness to accept dental implant therapy: a one-group, pre-test post-test study

    Science.gov (United States)

    Ghanem, Henry; Abi-Nader, Samer

    2015-01-01

    PURPOSE A survey was conducted to assess the impact of a TED-like educational session on participants' willingness to accept dental implant therapy. MATERIALS AND METHODS Volunteers interested in having information about dental implant therapies were recruited and asked to complete a two-part survey before and after an educational session. The initial survey elicited demographic information, self-perceived knowledge on dental implants and willingness to this kind of treatment. A "TED-style" presentation that provided information about dental implant treatments was conducted before asking the participants to complete a second set of questions assessing the impact of the session. RESULTS The survey was completed by 104 individuals, 78.8% were women and the mean age was 66.5±10.8. Before the educational session, 76.0% of the participants refused dental implants mainly due to lack of knowledge. After the educational session, the rejection of dental implants decreased by almost four folds to 20.2%. CONCLUSION This study proved that an educational intervention can significantly increase willingness to accept treatment with dental implants in a segment of the population who is interested in having information about dental implant therapy. Furthermore, educational interventions, such as TED-like talks, might be useful to increase popular awareness on dental implant therapy. PMID:26816573

  2. The risk and prognostic impact of definite stent thrombosis or in-stent restenosis after coronary stent implantation

    DEFF Research Database (Denmark)

    Thayssen, Per; Jensen, Lisette Okkels; Lassen, Jens Flensted

    2012-01-01

    Aims: Data are limited on the prognostic impact of stent thrombosis and in-stent restenosis in patients treated with coronary stents. We examined the prognostic impact of stent thrombosis and in-stent restenosis in patients treated with percutaneous coronary intervention (PCI). Methods and results......: All patients who underwent stent implantation from 2002 to 2005 were identified in the Western Denmark Heart Registry. The hazard ratio (HR) for death associated with stent thrombosis or in-stent restenosis was estimated with a Cox regression analysis with stent thrombosis or in-stent restenosis...... as time-dependent variables. A total of 12,277 patients were treated with stent implantation. Stent thrombosis was observed in 111 (0.9%) patients and in-stent restenosis in 503 (4.1%) patients within 12 months after the index PCI. Occurrence of stent thrombosis was associated with an increased risk...

  3. Implantation processing of Si: A unified approach to understanding ion-induced defects and their impact

    International Nuclear Information System (INIS)

    Holland, O.W.; Roth, E.G.

    1997-05-01

    A model is presented to account for the effects of ion-induced defects during implantation processing of Si. It will be shown that processing is quite generally affected by the presence of defect excesses rather than the total number of defects. a defect is considered excess if it represents a surplus locally of one defect type over its compliment. Processing spanning a wide range of implantation conditions will be presented to demonstrate that the majority of the total defects played little or no role in the process. This is a direct result of the ease with which the spatially correlated Frenkel pairs recombine either dynamically or during a post-implantation annealing. Based upon this model, a method will be demonstrated for manipulating or engineering the excess defects to modify their effects. In particular high-energy, self-ions are shown to inject vacancies into a boron implanted region resulting in suppression of transient enhanced diffusion of the dopant

  4. Biomedical Impact in Implantable Devices-The Transcatheter Aortic Valve as an example

    Science.gov (United States)

    Anastasiou, Alexandros; Saatsakis, George

    2015-09-01

    Objective: To update of the scientific community about the biomedical engineering involvement in the implantable devices chain. Moreover the transcatheter Aortic Valve (TAV) replacement, in the field of cardiac surgery, will be analyzed as an example of contemporary implantable technology. Methods: A detailed literature review regarding biomedical engineers participating in the implantable medical product chain, starting from the design of the product till the final implantation technique. Results: The scientific role of biomedical engineers has clearly been established. Certain parts of the product chain are implemented almost exclusively by experienced biomedical engineers such as the transcatheter aortic valve device. The successful professional should have a multidisciplinary knowledge, including medicine, in order to pursue the challenges for such intuitive technology. This clearly indicates that biomedical engineers are among the most appropriate scientists to accomplish such tasks. Conclusions: The biomedical engineering involvement in medical implantable devices has been widely accepted by the scientific community, worldwide. Its important contribution, starting from the design and extended to the development, clinical trials, scientific support, education of other scientists (surgeons, cardiologists, technicians etc.), and even to sales, makes biomedical engineers a valuable player in the scientific arena. Notably, the sector of implantable devices is constantly raising, as emerging technologies continuously set up new targets.

  5. Hemodynamic and clinical impact of prosthesis-patient mismatch after transcatheter aortic valve implantation.

    Science.gov (United States)

    Ewe, See Hooi; Muratori, Manuela; Delgado, Victoria; Pepi, Mauro; Tamborini, Gloria; Fusini, Laura; Klautz, Robert J M; Gripari, Paola; Bax, Jeroen J; Fusari, Melissa; Schalij, Martin J; Marsan, Nina Ajmone

    2011-10-25

    This study examined the mid-term hemodynamic and clinical impact of prosthesis-patient mismatch (PPM) in patients undergoing transcatheter aortic valve implantation (TAVI) with balloon-expandable valves. PPM can be observed after aortic valve surgery. However, little is known about the incidence of PPM in patients undergoing TAVI. Echocardiography and clinical assessment were performed in 165 patients at baseline, before hospital discharge, and at 6 months after TAVI. PPM was defined as an indexed effective orifice area ≤0.85 cm(2)/m(2). Thirty patients (18.2%) showed PPM before hospital discharge. At baseline, patients with PPM had a larger body surface area (1.84 ± 0.18 m(2) vs. 1.73 ± 0.18 m(2), p = 0.003) and a greater severity of aortic stenosis (indexed valve area 0.35 ± 0.09 cm(2)/m(2) vs. 0.40 ± 0.10 cm(2)/m(2), p = 0.005) than patients without PPM. Patients with PPM demonstrated a slower and smaller reduction in mean transaortic gradient, limited left ventricular (LV) mass regression, and left atrial volume reduction over 6 months compared with patients without PPM. LV filling pressure, measured by E/e', tended to remain elevated in patients with PPM. Importantly, a higher proportion of patients with PPM did not improve in New York Heart Association functional class compared with patients without PPM (36.7% vs. 1.5%, p < 0.001), although major adverse valve-related and cardiovascular events did not differ between the 2 groups. PPM may be observed after TAVI and when present may be accompanied by less favorable changes in transvalvular hemodynamics, limited LV mass regression, persistent elevated LV filling pressure, and less improvement in clinical functional status. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Quality of Life of Patients Treated With Implant-Supported Mandibular Overdentures Evaluated With the Oral Health Impact Profile (OHIP-14: a Survey of 58 Patients

    Directory of Open Access Journals (Sweden)

    Ritva Kuoppala

    2013-06-01

    Full Text Available Objectives: The purpose of this study was to evaluate the oral health-related quality of life of patients treated with implant-supported mandibular overdentures and to compare the attachment systems used.Material and Methods: Altogether 112 patients treated with implant-supported mandibular overdentures in 1985 - 2004 were invited to the follow-up; 58 of them attended and replied to the Oral Health Impact Profile (OHIP-14 -questionnaire. There were 48 overdentures with a bar connection and 10 with a ball connection, the total number of implants installed and still in use was 197. The mean follow-up time was 13.7 years. The associations between the OHIP-14 variables and the patient’s age, gender as well as the number of implants supporting the overdenture and the type of attachment used were assessed.Results: The results showed that patients with implant-supported mandibular overdentures were satisfied with their oral health-related quality of life (OHRQoL. Older patients were more satisfied than younger ones in both genders. Neither the implant connection type nor the number of supporting implants seemed to have a significant influence on the OHRQoL.Conclusions: Especially older patients with mandibular implant-supported overdentures were satisfied with their oral health-related quality of life. Attachment type or the number of supporting implants did not have a significant influence on the oral health-related quality of life.

  7. Ventricular tachyarrhythmias and mortality in patients with an implantable cardioverter defibrillator: impact of depression in the MIDAS cohort.

    Science.gov (United States)

    Mastenbroek, Mirjam H; Versteeg, Henneke; Jordaens, Luc; Theuns, Dominic A M J; Pedersen, Susanne S

    2014-01-01

    We examined whether depression is independently associated with implantable cardioverter defibrillator (ICD) therapy for ventricular tachyarrhythmias and mortality. A cohort of 430 consecutive patients with a first-time ICD (79% men; mean [standard deviation] age = 57.8 [12.1] years) completed the Hospital Anxiety and Depression Scale 1 day before implantation. During follow-up, the ICD was interrogated at 3-month intervals. Cox proportional hazard regression analyses were used to examine the impact of depression on time to first appropriate ICD therapy and all-cause mortality during a median follow-up period of 3.8 years. Of all patients, 108 (25.1%) were depressed. Depression was not associated with time to first appropriate ICD therapy (unadjusted hazard ratio [HR] = 1.07, 95% confidence interval [CI] = 0.73-1.56). However, depression was associated with an increased risk for all-cause mortality (unadjusted HR = 2.18, 95% CI = 1.36-3.49). Depression remained independently associated with all-cause mortality (HR = 1.94, 95% CI = 1.06-3.54, p = .031), after adjusting for demographic and clinical characteristics. Patients who remained depressed during the first 3 months after implantation were at greatest risk for dying (HR = 2.88, 95% CI = 1.29-6.45, p = .010). The current study showed that depression at the time of implant is not associated with time to first appropriate ICD therapy but almost doubled the risk for all-cause mortality in patients with an ICD. Patients with persistent depression during the first 3 months after implantation face the greatest risk of dying. Current evidence indicates that multifactorial interventions are likely to be the most successful in terms of reducing distress. Whether this translates into enhanced survival has yet to be determined.

  8. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    International Nuclear Information System (INIS)

    Attaourti, Y.; Taj, S.

    2004-01-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the Dirac-Volkov plane wave Born approximation 1 where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the Dirac-Volkov plane wave Born approximation 2 where we take totally into account the relativistic dressing of the incident, scattered, and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the nonrelativistic and the relativistic regime

  9. Integrated cross sections for the ionisation of atomic hydrogen by electron impact

    International Nuclear Information System (INIS)

    Konovalov, D.A.; McCarthy, I.E.

    1992-05-01

    Distorted-wave Born approximation (DWBA) calculations are reported for singly-differential and total cross sections for the electron impact ionisation for atomic hydrogen at 25, 40, 60, 100, 150 and 250 eV. The theory is compared with available experiments. At all the energies except 25 eV the theory predicts a lower singly-differential cross section for the low-energy side of the secondary-electron energies (<5 eV), compared to the only available absolute measurements of Shyn (1992). The DWBA calculation is in good agreement with the experiment at 25 eV but only if e-e post-collision interaction is included in the theory in some way. 23 refs., 2 figs

  10. Impact of implanted metal plates on radiation dose distribution in vivo

    International Nuclear Information System (INIS)

    Liu Ming; Li Xingde; Niu Qingguo; Zhai Fushan

    2010-01-01

    Objective: To investigate the impact of metal plate on radiation dose distribution in surrounding tissues in cadaver specimens. Methods: Stainless steel plate, titanium plate, and muscle strip were implanted into the left thigh of a corpse, respectively. All the specimens were irradiated with 6 MV X-ray , SSD = 100 cm. The absorbed dose of surface was measured by thermoluminescent elements. Results: Surface dose distributions differed significantly among the three different materials (F = 57.35, P < 0.01), with the amounts of 1.18 Gy ± 0.04 Gy (stainless steel plate), 1.12 Gy ± 0.04 Gy (titanium plate) and 0.97 Gy ± 0.03 Gy (muscle strip), respectively. The surface absorbed doses on incident plane of stainless steel plate and titanium plate were significantly increased by 21.65% and 15.46% respectively as compared with that of muscle strip. The absorbed doses on the exit surface of stainless steel plate, titanium plate and muscle strip were 0.87 Gy ± 0.03 Gy, 0.90 Gy ± 0.02 Gy and 0.95 Gy ± 0.04 Gy, respectively (F =13.37, P <0.01). The doses on the exit surface of stainless steel plate and titanium plate were significantly lowered by 8.42% and 5.26% when compared with that of muscle strip. Using treatment planning system,the differences between dose distribution with and without metal plate were compared. Within 1 cm away from the incident plate, there was an obvious increase in the absorbed dose, while the influence was less than 5% 1 cm outside the surface. The effect of dose distribution on exit surface was less than 2%. Conclusions: The influence of metal plate on the radiotherapy dose distribution is significant. The deviations ranges from 5% to 29%. Under the same condition, the impact of stainless steel plate is much more than that of titanium alloy plate. (authors)

  11. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings.

    Science.gov (United States)

    Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini

    2016-09-01

    Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

  12. Impact of implant-supported prostheses on nutritional status and oral health perception in edentulous patients.

    Science.gov (United States)

    El Osta, Nada; El Osta, Lana; Moukaddem, Farah; Papazian, Tatiana; Saad, Robert; Hennequin, Martine; Rabbaa Khabbaz, Lydia

    2017-04-01

    Improvement of nutritional status and perception of oral health are supposed to be different with complete conventional denture or implant-supported fixed or removable prostheses. Since no study has been conducted in Lebanon, the aim of our study was to assess the nutritional status and oral heath related quality of life (OHRQoL) in totally edentulous patients after treatment with complete denture or implant supported-prostheses. This was an observational clinical prospective study. A convenient sample of Lebanese people aged 60 years or more was selected between September 2013 and July 2015 from the Departments of removable and fixed prosthesis at Saint-Joseph University of Beirut. The treatment options included complete denture, implant-supported complete denture and implant-supported fixed prostheses. Nutritional status and OHRQoL were assessed with the Mini-Nutritional Assessment Index (MNA) and the Geriatric Oral Health Assessment Index (GOHAI) respectively at Baseline (first visit before treatment), 2-3 weeks after treatment (t1), 3 months (t2) and 6 months (t3) after treatment. Fifty-one participants (mean age: 69.39 ± 7.164 years) were included. The results have shown an improvement over time in nutritional status and OHRQoL for all treatment groups. However, 2-3 weeks after treatment the number of participants at risk of malnutrition was higher with complete removable denture, intermediate with implant-supported complete denture and lower with implant-supported fixed prostheses (p-value = 0.049). Moreover, the mean GOHAI score was significantly lower over time with complete removable denture compared to implant-supported prostheses (p-value nutritional status for implant supported-prostheses compared to conventional removable dentures. Therefore, it is fundamental that dentists communicate with their patients about implant treatment to understand their expectations, to explain the outcomes and achieve the desired clinical result. Copyright © 2017

  13. Falls and Fractures in the Elderly with Sinus Node Disease: The Impact of Pacemaker Implantation

    Directory of Open Access Journals (Sweden)

    Nazmi Krasniqi

    2012-01-01

    Full Text Available Background. Falls and fractures in the elderly are among the leading causes of disability. We investigated whether pacemaker implantation prevents falls in patients with SND in a large cohort of patients. Methods. Patient demographics and medical history were collected prospectively. Fall history was retrospectively reconstituted from available medical records. The 10-year probability for major osteoporotic fractures was calculated retrospectively from available medical records using the Swiss fracture risk assessment tool FRAX-Switzerland. Results. During a mean observation period of 2.3 years after implantation, the rates of fallers and injured fallers with fracture were reduced to 15% and 6%, respectively. This corresponds to a relative reduction in the number of fallers of 75% (P<0.001 and of injured fallers of 63% (P=0.014 after pacemaker implantation. Similarly, the number of falls was reduced from 60 (48% before pacemaker implantation to 22 (18% thereafter (relative reduction 63%, P=0.035 and the number of falls with injury from 22 (18% to 7 (6%, which corresponds to a relative reduction of 67%, P=0.013. Conclusion. In patients with SND, pacemaker implantation significantly reduces the number of patients experiencing falls, the total number of falls, and the risk for osteoporotic fractures.

  14. Feasibility Studies of Vortex Flow Impact On the Proliferation of Algae in Hydrogen Production for Fuel Cell Applications

    Science.gov (United States)

    Miskon, Azizi; A/L Thanakodi, Suresh; Shiema Moh Nazar, Nazatul; Kit Chong, Marcus Wai; Sobri Takriff, Mohd; Fakir Kamarudin, Kamrul; Aziz Norzali, Abdul; Nooraya Mohd Tawil, Siti

    2016-11-01

    The instability of crude oil price in global market as well as the sensitivity towards green energy increases, more research works being carried out to find alternative energy replacing the depleting of fossil fuels. Photobiological hydrogen production system using algae is one of the promising alternative energy source. However, the yield of hydrogen utilizing the current photobioreactor (PBR) is still low for commercial application due to restricted light penetration into the deeper regions of the reactor. Therefore, this paper studies the feasibility of vortex flow impact utilizing magnetic stirring in hydrogen production for fuel cell applications. For comparison of results, a magnetic stirrer is placed under a PBR of algae to stir the algae to obtain an even distribution of sunlight to the algae while the controlled PBR of algae kept in static. The produced hydrogen level was measured using hydrogen sensor circuit and the data collected were communicated to laptop using Arduino Uno. The results showed more cell counts and hydrogen produced in the PBR under the influence of magnetic stirring compared to static PBR by an average of 8 percent in 4 days.

  15. Impact of the shape of the implantable ports on their efficiency of flow (injection and flushing

    Directory of Open Access Journals (Sweden)

    Guiffant G

    2014-09-01

    Full Text Available Gérard Guiffant,1 Patrice Flaud,1 Jean Jacques Durussel,1 Jacques Merckx1,2 1Université Paris Diderot, Paris, France; 2University Teaching Hospital Necker-Enfants Malades, Paris, FranceAbstract: Now widely used, totally implantable venous access devices allow mid- and long-term, frequent, repeated, or continuous injection of therapeutic products by vascular, cavitary, or perineural access. The effective flushing of these devices is a key factor that ensures their long-lasting use. We present experimental results and a numerical simulation to demonstrate that the implementation of rounded edge wall cavities improves flushing efficiency. We use the same approaches to suggest that the deposit amount may be reduced by the use of rounded edge wall cavities. Keywords: implantable ports, totally implantable venous access devices, flushing, obstruction, prevention

  16. The impact of cochlear implantation on speech understanding, subjective hearing performance, and tinnitus perception in patients with unilateral severe to profound hearing loss.

    Science.gov (United States)

    Távora-Vieira, Dayse; Marino, Roberta; Acharya, Aanand; Rajan, Gunesh P

    2015-03-01

    This study aimed to determine the impact of cochlear implantation on speech understanding in noise, subjective perception of hearing, and tinnitus perception of adult patients with unilateral severe to profound hearing loss and to investigate whether duration of deafness and age at implantation would influence the outcomes. In addition, this article describes the auditory training protocol used for unilaterally deaf patients. This is a prospective study of subjects undergoing cochlear implantation for unilateral deafness with or without associated tinnitus. Speech perception in noise was tested using the Bamford-Kowal-Bench speech-in-noise test presented at 65 dB SPL. The Speech, Spatial, and Qualities of Hearing Scale and the Abbreviated Profile of Hearing Aid Benefit were used to evaluate the subjective perception of hearing with a cochlear implant and quality of life. Tinnitus disturbance was measured using the Tinnitus Reaction Questionnaire. Data were collected before cochlear implantation and 3, 6, 12, and 24 months after implantation. Twenty-eight postlingual unilaterally deaf adults with or without tinnitus were implanted. There was a significant improvement in speech perception in noise across time in all spatial configurations. There was an overall significant improvement on the subjective perception of hearing and quality of life. Tinnitus disturbance reduced significantly across time. Age at implantation and duration of deafness did not influence the outcomes significantly. Cochlear implantation provided significant improvement in speech understanding in challenging situations, subjective perception of hearing performance, and quality of life. Cochlear implantation also resulted in reduced tinnitus disturbance. Age at implantation and duration of deafness did not seem to influence the outcomes.

  17. Impact of Bruxism on Ceramic Defects in Implant-Borne Fixed Dental Prostheses: A Retrospective Study.

    Science.gov (United States)

    Mikeli, Aikaterini; Walter, Michael H

    2016-01-01

    Ceramic veneer fracture is a frequent complication in implant-borne fixed restorations. The retrospective clinical study assesses the effect of bruxism on this complication. A sample of 507 implant-borne fixed units inserted between 1995 and 2011 in 144 patients were examined. Any detected veneer fractures were assigned to one of four groups according to extent and position. A hypothetical correlation between bruxism and ceramic veneer fractures was examined. Of 34 patients (23.6%) with at least one ceramic veneer fracture, 24 were bruxers (70%) and 10 were nonbruxers (30%) (P = .002). Bruxism may pose a risk for ceramic fractures.

  18. Patient-prosthesis mismatch after transapical aortic valve implantation: incidence and impact on survival.

    Science.gov (United States)

    Kukucka, Marian; Pasic, Miralem; Dreysse, Stephan; Mladenow, Alexander; Habazettl, Helmut; Hetzer, Roland; Unbehaun, Axel

    2013-02-01

    Transcatheter aortic valve implantation (TAVI) has become an important therapeutic option for high-risk patients with severe aortic valve stenosis. Patient-prosthesis mismatch (P-PM) is an important determinant of morbidity and mortality after open aortic valve replacement. The objective of our study was to evaluate P-PM incidence and its impact on survival in a large cohort of patients treated with TAVI. We retrospectively analyzed transesophageal echocardiographic data of 278 consecutive patients (Society of Thoracic Surgeons score 18.5 ± 15.3, age 80 ± 8 years) who underwent transapical TAVI with Edwards Sapien valves between April 2008 and March 2011. Effective orifice area was calculated using the continuity equation and indexed with body surface area (iEOA). P-PM was stratified as severe (iEOA < 0.65 cm(2)/cm(2)) and moderate (iEOA, 0.65-0.85 cm(2)/m(2)). Midterm survival (up to 30 months) was analyzed by Kaplan-Meier curves and log-rank tests. There was no P-PM in 181 (65.1%) patients; moderate P-PM was found in 76 (27.3%) patients and severe P-PM in 21 (7.6%). Thirty-day survival was 96.0%, 97.3%, and 90.5%. The 3-month survival was 91%, 90%, and 66%, respectively (P = .0013). Combination of severe P-PM with peak pressure gradients greater than 10 mm Hg further reduced the 3-month survival to 48%. Additionally, mean survival time in patients with an ejection fraction less than 50% was significantly shorter than in patients with an ejection fraction greater than 50% (20.8 ± 1.5 vs 24.1 ± 0.8 months; P = .027). P-PM is found in patients undergoing transapical TAVI. Severe mismatch is accompanied by high early mortality, especially when combined with increased pressure gradients. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  19. The impact of co-morbidity burden on appropriate implantable cardioverter defibrillator therapy and all-cause mortality

    DEFF Research Database (Denmark)

    Ruwald, Anne Christine; Vinther, Michael; Gislason, Gunnar H

    2017-01-01

    -ICD indication-related co-morbidities including atrial fibrillation, diabetes, chronic obstructive pulmonary disease, chronic renal disease, liver disease, cancer, chronic psychiatric disease, and peripheral and/or cerebrovascular disease, and divided into four groups (co-morbidity burden 0, 1, 2, and ≥3......). Through Cox models, we assessed the impact of co-morbidity burden on appropriate ICD therapy and mortality. Increasing co-morbidity burden was not associated with increased risk of appropriate therapy, irrespective of implant indication [all hazard ratios (HRs) 1.0-1.4, P = NS]. Using no co...

  20. New developments in managing opioid addiction: impact of a subdermal buprenorphine implant.

    Science.gov (United States)

    Itzoe, MariaLisa; Guarnieri, Michael

    2017-01-01

    Opioid addiction to prescription and illicit drugs is a serious and growing problem. In the US alone, >2.4 million people suffer from opioid use disorder. Government and pharmaceutical agencies have begun to address this crisis with recently released and revised task forces and medication-assisted therapies (MAT). For decades, oral or intravenous (IV) MATs have helped patients in their recovery by administration of opioid agonists (methadone, buprenorphine, oxycodone), antagonists (naltrexone, naloxone), and combinations of the two (buprenorphine/naloxone). While shown to be successful, particularly when combined with psychological counseling, oral and IV forms of treatment come with constraints and challenges. Patients can become addicted to the agonists themselves, and there is increased risk for diversion, abuse, or missed dosages. Consequently, long-acting implants have begun to be developed as a potentially preferable method of agonist delivery. To date, the newest implant approved by the US Food and Drug Administration (May 2016) is Probuphine ® , which delivers steady-state levels of buprenorphine over the course of 6 months. Numerous studies have demonstrated its efficacy and safety. Yet, implants come with their own risks such as surgical site irritation, possible movement, and protrusion of implant out of skin. This review introduces the opioid abuse epidemic, examines existing medications used for therapy, and highlights Probuphine as a new treatment option. Costs associated with MATs are also discussed.

  1. Impact of an implanted neuroprosthesis on community ambulation in incomplete SCI.

    Science.gov (United States)

    Lombardo, Lisa M; Kobetic, Rudolf; Pinault, Gilles; Foglyano, Kevin M; Bailey, Stephanie N; Selkirk, Stephen; Triolo, Ronald J

    2018-03-01

    Test the effect of a multi-joint control with implanted electrical stimulation on walking after spinal cord injury (SCI). Single subject research design with repeated measures. Hospital-based biomechanics laboratory and user assessment of community use. Female with C6 AIS C SCI 30 years post injury. Lower extremity muscle activation with an implanted pulse generator and gait training. Walking speed, maximum distance, oxygen consumption, upper extremity (UE) forces, kinematics and self-assessment of technology. Short distance walking speed at one-year follow up with or without stimulation was not significantly different from baseline. However, average walking speed was significantly faster (0.22 m/s) with stimulation over longer distances than volitional walking (0.12 m/s). In addition, there was a 413% increase in walking distance from 95 m volitionally to 488 m with stimulation while oxygen consumption and maximum upper extremity forces decreased by 22 and 16%, respectively. Stimulation also produced significant (P ≤ 0.001) improvements in peak hip and knee flexion, ankle angle at foot off and at mid-swing. An implanted neuroprosthesis enabled a subject with incomplete SCI to walk longer distances with improved hip and knee flexion and ankle dorsiflexion resulting in decreased oxygen consumption and UE support. Further research is required to determine the robustness, generalizability and functional implications of implanted neuroprostheses for community ambulation after incomplete SCI.

  2. Nucleation, growth and dissolution of extended defects in implanted Si: impact on dopant diffusion

    International Nuclear Information System (INIS)

    Claverie, A.; Giles, L.F.; Omri, M.; Mauduit, B. de; Ben Assayag, G.; Mathiot, D.

    1999-01-01

    Transient Enhanced Diffusion (TED) of boron in silicon is driven by the large supersaturations of self-interstitial silicon atoms left after implantation which also often lead to the nucleation and subsequent growth, upon annealing, of extended defects. In this paper we review selected experimental results and concepts concerning boron diffusion and/or defect behavior which have recently emerged with the ion implantation community and briefly indicate how they are, or will be, currently used to improve 'predictive simulations' softwares aimed at predicting TED. In a first part, we focus our attention on TED and on the formation of defects in the case of 'direct' implantation of boron in silicon. In a second part, we review our current knowledge of the defects and of the diffusion behavior of boron when annealing preamorphised Si. In a last part, we try to compare these two cases and to find out what are the reasons for some similarities and many differences in defect types and thermal evolution depending on whether boron is implanted in crystalline or amorphous silicon. While rising many more questions, we propose a 'thermodynamical' vision of the nucleation and growth of clusters and extended defects and stress the interactions between these defects and the free Si self-interstitial atoms which surround them and are the source for TED in all cases. A pragmatic approach to the simulation of TED for various experimental conditions is proposed

  3. Impact of Platform Switching on Peri-Implant Bone Remodeling around Short Implants in the Posterior Region, 1-Year Results from a Split-Mouth Clinical Trial

    NARCIS (Netherlands)

    Telleman, Gerdien; Raghoebar, Gerry M.; Vissink, Arjan; Meijer, Henny J. A.

    Aim: To assess the effect of platform switching on peri-implant bone remodeling around short implants (8.5mm) placed in the resorbed posterior mandibular and maxillary region of partially edentulous patients. Materials and Methods: Seventeen patients with one or more missing teeth at both sides in

  4. New developments in managing opioid addiction: impact of a subdermal buprenorphine implant

    Directory of Open Access Journals (Sweden)

    Itzoe M

    2017-05-01

    Full Text Available MariaLisa Itzoe, Michael Guarnieri Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA Abstract: Opioid addiction to prescription and illicit drugs is a serious and growing problem. In the US alone, >2.4 million people suffer from opioid use disorder. Government and pharmaceutical agencies have begun to address this crisis with recently released and revised task forces and medication-assisted therapies (MAT. For decades, oral or intravenous (IV MATs have helped patients in their recovery by administration of opioid agonists (methadone, buprenorphine, oxycodone, antagonists (naltrexone, naloxone, and combinations of the two (buprenorphine/naloxone. While shown to be successful, particularly when combined with psychological counseling, oral and IV forms of treatment come with constraints and challenges. Patients can become addicted to the agonists themselves, and there is increased risk for diversion, abuse, or missed dosages. Consequently, long-acting implants have begun to be developed as a potentially preferable method of agonist delivery. To date, the newest implant approved by the US Food and Drug Administration (May 2016 is Probuphine®, which delivers steady-state levels of buprenorphine over the course of 6 months. Numerous studies have demonstrated its efficacy and safety. Yet, implants come with their own risks such as surgical site irritation, possible movement, and protrusion of implant out of skin. This review introduces the opioid abuse epidemic, examines existing medications used for therapy, and highlights Probuphine as a new treatment option. Costs associated with MATs are also discussed. Keywords: addiction, opioids, medication-assisted therapy, long-acting implant, buprenorphine, Probuphine®

  5. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    International Nuclear Information System (INIS)

    Schrof, Julian; Müller, Ralph; Benick, Jan; Hermle, Martin; Reedy, Robert C.

    2015-01-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr 3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr 3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr 3

  6. Impacts of large-scale introduction of hydrogen in the road transport sector on urban air pollution and human exposure in Copenhagen

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, S.S.; Ketzel, M.; Brandt, J.; Frohn, L.M.; Winther, M.; Nielsen, O.K. (Aarhus Univ.. National Environmental Research Institute, Roskilde (Denmark)); Joergensen, K.; Karlsson, K. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Dept. of System Analysis, Roskilde (Denmark))

    2011-07-15

    The aim of the project 'Environmental and Health Impact Assessment of Scenarios for Renewable Energy Systems with Hydrogen' (HYSCENE) is to improve modelling of the environmental impacts and related socio-cultural and welfare economic impacts of a proposed hydrogen/renewable energy system with focus on large-scale introduction of hydrogen as energy carrier in the road transport sector (http://hyscene.dmu.dk). This extended abstract will focus on the impacts on urban air pollution and human exposure. (Author)

  7. A hydrogen economy and its impact on the world as we know it

    International Nuclear Information System (INIS)

    Blanchette, Stephen

    2008-01-01

    An assortment of governmental, technological, environmental, and economic factors has combined to spur renewed interest in alternatives to petroleum, and especially in hydrogen. While there is no clear consensus on the viability of the technology, governments and corporations alike have vigorous hydrogen research programs. The result is that hydrogen may stand on the verge of becoming a true successor to oil. A transition from oil to hydrogen would alter familiar global economic and political structures in profound ways. The ramifications will influence developed and developing nations, oil importers, and exporters alike. New alliances among governments, corporations, and other groups may challenge existing notions of governance. Although a hydrogen-based economy may be decades away, the vision for it requires near- and mid-term thinking to manage the transition smoothly. Further, hydrogen is only a metaphor; any change from the current oil economy will entail dramatic changes to the global status quo that must be planned for now

  8. Impact of a chronic smoking habit on the osteo-immunoinflammatory mediators in the peri-implant fluid of clinically healthy dental implants.

    Science.gov (United States)

    Negri, Brenno Marcondes; Pimentel, Suzana Peres; Casati, Marcio Zaffalon; Cirano, Fabiano Ribeiro; Casarin, Renato Correa; Ribeiro, Fernanda Vieira

    2016-10-01

    The aim of this study was to evaluate the influence of chronic cigarette smoking on the profile of osteo-immunoinflammatory markers in the peri-implant crevicular fluid (PICF) from clinically healthy implants DESIGNS: Twenty-five smokers and 23 non-smoker subjects with a unitary screwed implant-supported crown in the molar or pre-molar region were enrolled in this study. The implants should have been in functioning for at least 12 months, and the peri-implant tissue should be clinically healthy [probing depth (PD)0.05). Moreover, higher ICTP concentrations and a higher TH1/TH2 ratio were observed in the PICF of the smoker patients (p0.05). Smoking habit modulate peri-implant cytokine profile, leading to reductions in IL-4, -8 TNF-α, and OPG levels and an increased ICTP and TH1/TH2 ratio in peri-implant crevicular fluid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  10. Analysis of multiple scattering contributions in electron-impact ionization of molecular hydrogen

    Science.gov (United States)

    Ren, Xueguang; Hossen, Khokon; Wang, Enliang; Pindzola, M. S.; Dorn, Alexander; Colgan, James

    2017-10-01

    We report a combined experimental and theoretical study on the low-energy (E 0 = 31.5 eV) electron-impact ionization of molecular hydrogen (H2). Triple differential cross sections are measured for a range of fixed emission angles of one outgoing electron between {θ }1=-70^\\circ and -130° covering the full 4π solid angle of the second electron. The energy sharing of the outgoing electrons varies from symmetric ({E}1={E}2=8 eV) to highly asymmetric (E 1 = 1 eV and E 2 = 15 eV). In addition to the binary and recoil lobes, a structure is observed perpendicular to the incoming beam direction which is due to multiple scattering of the projectile inside the molecular potential. The absolutely normalized experimental cross sections are compared with results from the time-dependent close-coupling (TDCC) calculations. Molecular alignment dependent TDCC results demonstrate that these structures are only present if the molecule axis is lying in the scattering plane.

  11. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    Science.gov (United States)

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were debris landfills are suggested.

  12. [Long-term follow-up study of titanium implant impact on pediatric mandibular growth and development].

    Science.gov (United States)

    Hu, Yun; Li, Wei; Chen, Qi; Song, Fumin; Tang, Wei; Wang, Hang

    2015-08-01

    To explore the impact of titanium implant on the growth and development of pediatric mandible after suffering from mandibular fracture and undergoing open reduction and internal fixation (ORIF) compared with those that underwent titanium plate removal postoperatively. Fifteen pediatric patients with mandibular fracture who underwent ORIF were included in this study. Eight patients did not undergo titanium implant removal postoperatively, whereas the other seven patients underwent the routine. The postoperative data of the pediatrics were collected for comparative analysis by taking the patients' frontal and lateral photos, recording the inter-incisor distance, and measuring the height of mandibular ramus, length of the mandibular body, and combined length of the mandible in three-dimensional reconstruction image. All patients had acceptable facial contour, mouth opening, and occlusion, without obvious abnormalities. The radiography showed no significant difference between the bilateral mandibular lengths in the two groups of patients (P>0.05). The titanium plants have no significant impact on the growth and development of pediatric mandible postoperatively; hence, the question on whether the titanium plates should be removed or not may be neglected. The removal operation may lead to secondary trauma; thus, performing titanium plate removal routinely is not recommended.

  13. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.; de Jongh, P.E.

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the

  14. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    A. Sattar; C. Arslan; C. Ji; S. Sattar; K. Yousaf; S. Hashim

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen productio...

  15. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu

    2016-01-01

    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  16. A preliminary randomized clinical trial comparing diode laser and scalpel periosteal incision during implant surgery: impact on postoperative morbidity and implant survival.

    Science.gov (United States)

    Shahnaz, Aysan; Jamali, Raika; Mohammadi, Farnush; Khorsand, Afshin; Moslemi, Neda; Fekrazad, Reza

    2018-01-01

    The aim of this preliminary randomized clinical trial was to compare: (1) post-operative morbidity after application of laser or scalpel incision for flap advancement during implant surgery and bone grafting and (2) implant survival rate following flap advancement with laser or scalpel incision after 6 months of loading. Eighteen patients who were scheduled for dental implant placement and simultaneous bone grafting were randomly assigned to test or control groups. Diode laser (810 nm, 2 W, pulse interval 200 μs; pulse length 100 μs, 400-μm initiated fiber tip), or scalpel (control) was used to sever the periosteum to create a tension-free flap. Visual analogue scale (VAS) pain score, rate of nonsteroid anti-inflammatory drug (NSAID) consumption, intensity of swelling, and ecchymosis were measured for the six postsurgical days. Six months after loading, implant survival was assessed. VAS pain score (during the first four postoperative days), rate of NSAID consumption (during the first three postoperative days), and intensity of swelling (during the first five postoperative days) were significantly lower in the test group compared to the control group (All P values laser for performing periosteal releasing incision reduced the incidence and severity of postoperative morbidity of the patients undergone implant surgery in conjunction with bone augmentation procedure. We did not find any detrimental effect of laser incision on the implant survival within 6 months of loading.

  17. Impact of two telemetry transmitter implantation incision suturing methods on the physiological state and condition of perch (Perca fluviatilis

    Directory of Open Access Journals (Sweden)

    Rożyński Maciej

    2017-06-01

    Full Text Available The aim of this work was to determine the impact on European perch, Perca fluviatilis L. (mean body weight – 78.33 g of the intraperitoneal implantation of telemetry transmitters using different suturing methods. In the first experiment silk sutures were used (experiment I – group ST, while in the second tissue adhesive was used (experiment II – group GT. Following the procedure, the fish were kept for 42 days in a recirculating system. Differences in growth and condition parameters were only noted in the first week of the experiment. Specimens from group GT had lower values for DGR (daily growth rate and SGR (specific growth rate, but a higher value for FCR (feed conversion ratio values. For the hematological parameters, lower values of MCV (mean corpuscular volume and PLT (blood platelets were noted in group GT, while for the biochemical parameters, lowered ALP (alkaline phosphatase activity and Mg (magnesium concentrations were noted in group ST. In group ST, 33.3% of the specimens loss their tags, while in group GT 77.8% did so. Differences in incision healing were only noted in the second week, when specimens in group ST were observed to have fully closed incisions, while in group GT 50% of the incisions were open. Despite the high percentage of implantation incision healing in both groups, because of the high values of tag loss rate, neither method can be recommended for perch. It might be more effective to use tag with external antennae in this species. The method use for closing implantation incisions also must be improved to eliminate tag shedding.

  18. Impact of hydrogen absorption on crystal structure and magnetic properties of RE.sub.2./sub.T.sub.2./sub.X compounds

    Czech Academy of Sciences Publication Activity Database

    Mašková, S.; Kolomiets, A.; Havela, L.; Andreev, Alexander V.; Svoboda, P.

    2015-01-01

    Roč. 645, Suppl.1 (2015), S76-S79 ISSN 0925-8388. [International Symposium on Metal-Hydrogen Systems (MH14). Salford, 20.07.2014-25.07.2014] Institutional support: RVO:68378271 Keywords : rare earth s * hydrogen * metal hydrides * magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.014, year: 2015

  19. The impact of natural gas/hydrogen mixtures on the performance of end-use equipment : Interchangeability analysis for domestic appliances

    NARCIS (Netherlands)

    de Vries, Harmen; Mokhov, Anatoli V.; Levinsky, Howard B.

    2017-01-01

    The addition of hydrogen derived from renewable power to the natural gas network is being promoted as a viable means of storing excess wind and solar energy. However, the changes in combustion properties of the natural gas upon hydrogen addition can impact the performance of the end-use equipment

  20. Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plants

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Belapurkar, A.D.; Venkateswaran, G.; Kishore, K.

    2005-01-01

    Radiolytic hydrogen generation on γ irradiation of turbid solutions containing metal turbidities such as titanium, nickel, iron, chromium, copper, indium, and aluminium was studied. It is suggested that the chemical reactivity of the metal in the turbid solution with e aq -/H/OH produced by radiolysis of water interferes with the recombination reactions which destroy H 2 and H 2 O 2 , thus leading to higher yield of hydrogen. The rate of generation of hydrogen and the G(H 2 ) value is related to the reactivity of the metal ion/hydroxylated species with the free radicals. (orig.)

  1. Air pollution and climate-forcing impacts of a global hydrogen economy.

    Science.gov (United States)

    Schultz, Martin G; Diehl, Thomas; Brasseur, Guy P; Zittel, Werner

    2003-10-24

    If today's surface traffic fleet were powered entirely by hydrogen fuel cell technology, anthropogenic emissions of the ozone precursors nitrogen oxide (NOx) and carbon monoxide could be reduced by up to 50%, leading to significant improvements in air quality throughout the Northern Hemisphere. Model simulations of such a scenario predict a decrease in global OH and an increased lifetime of methane, caused primarily by the reduction of the NOx emissions. The sign of the change in climate forcing caused by carbon dioxide and methane depends on the technology used to generate the molecular hydrogen. A possible rise in atmospheric hydrogen concentrations is unlikely to cause significant perturbations of the climate system.

  2. Financial impact of adopting implantable loop recorder diagnostic for unexplained syncope compared with conventional diagnostic pathway in Portugal.

    Science.gov (United States)

    Providência, Rui; Candeias, Rui; Morais, Carlos; Reis, Hipólito; Elvas, Luís; Sanfins, Vitor; Farinha, Sara; Eggington, Simon; Tsintzos, Stelios

    2014-05-06

    To estimate the short- and long-term financial impact of early referral for implantable loop recorder diagnostic (ILR) versus conventional diagnostic pathway (CDP) in the management of unexplained syncope (US) in the Portuguese National Health Service (PNHS). A Markov model was developed to estimate the expected number of hospital admissions due to US and its respective financial impact in patients implanted with ILR versus CDP. The average cost of a syncope episode admission was estimated based on Portuguese cost data and landmark papers. The financial impact of ILR adoption was estimated for a total of 197 patients with US, based on the number of syncope admissions per year in the PNHS. Sensitivity analysis was performed to take into account the effect of uncertainty in the input parameters (hazard ratio of death; number of syncope events per year; probabilities and unit costs of each diagnostic test; probability of trauma and yield of diagnosis) over three-year and lifetime horizons. The average cost of a syncope event was estimated to be between 1,760€ and 2,800€. Over a lifetime horizon, the total discounted costs of hospital admissions and syncope diagnosis for the entire cohort were 23% lower amongst patients in the ILR group compared with the CDP group (1,204,621€ for ILR, versus 1,571,332€ for CDP). The utilization of ILR leads to an earlier diagnosis and lower number of syncope hospital admissions and investigations, thus allowing significant cost offsets in the Portuguese setting. The result is robust to changes in the input parameter values, and cost savings become more pronounced over time.

  3. Graphitic carbon nitride nanosheet for photocatalytic hydrogen production: The impact of morphology and element composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao; Zhang, Yijie [Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan 430074 (China); Lu, Luhua, E-mail: lhlu@cug.edu.cn [Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan 430074 (China); Zhejiang institute, China University of Geosciences Wuhan, Hangzhou 311305 (China); Si, Yanjie; Zhang, Si [Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan 430074 (China); Chen, Ying [Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan 430074 (China); Zhejiang institute, China University of Geosciences Wuhan, Hangzhou 311305 (China); Dai, Kai, E-mail: daikai94@ustc.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Duan, Ping [Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan 430074 (China); Zhejiang institute, China University of Geosciences Wuhan, Hangzhou 311305 (China); Duan, Limei [Inner Mongolia Key Lab of Chemistry of Natural Products and Synthesis of Functional Molecules, College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China); Liu, Jinghai, E-mail: jhliu2008@sinano.ac.cn [Inner Mongolia Key Lab of Chemistry of Natural Products and Synthesis of Functional Molecules, College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2017-01-01

    Highlights: • g-C{sub 3}N{sub 4} with tunable morphology was prepared by varying pyrolysis time. • g-C{sub 3}N{sub 4} showed reduced recombination of photogenerated electrons and holes. • g-C{sub 3}N{sub 4} showed enhanced photocatalytic hydrogen evolution activity. - Abstract: The intrinsic morphology and basal plane defects on g-C{sub 3}N{sub 4} nanosheet have important influences on its electronic structures and photocatalytic activity. In this work, we report extending thermal treatment time of g-C{sub 3}N{sub 4} at 550 °C not only change the morphology of g-C{sub 3}N{sub 4} but also element composition of g-C{sub 3}N{sub 4}. The morphology variation results in largely increased SSA from 40.22 to 117.27 m{sup 2} g{sup −1}, obviously reduced pore size from 3.99 to 2.77 nm for g-C{sub 3}N{sub 4} and formation of in-plane holes. Moreover, composition variation of g-C{sub 3}N{sub 4} has also been found to have changed as the pyrolysis time extended. These changes have significant impact on the optical properties and photoelectrical characters of g-C{sub 3}N{sub 4}, which were investigated by UV-DSR, PL and Photocurrent measurement. The photocatalytic activity of g-C{sub 3}N{sub 4} obtained via 9 h thermal treatment at 550 °C has shown highest photocatalytic activity, which is 1.77 times than that of g-C{sub 3}N{sub 4} obtained via 3 h thermal treatment under visible irradiation and 1.99 times under UV irradiation respectively.

  4. Graphitic carbon nitride nanosheet for photocatalytic hydrogen production: The impact of morphology and element composition

    International Nuclear Information System (INIS)

    Zhang, Zhao; Zhang, Yijie; Lu, Luhua; Si, Yanjie; Zhang, Si; Chen, Ying; Dai, Kai; Duan, Ping; Duan, Limei; Liu, Jinghai

    2017-01-01

    Highlights: • g-C_3N_4 with tunable morphology was prepared by varying pyrolysis time. • g-C_3N_4 showed reduced recombination of photogenerated electrons and holes. • g-C_3N_4 showed enhanced photocatalytic hydrogen evolution activity. - Abstract: The intrinsic morphology and basal plane defects on g-C_3N_4 nanosheet have important influences on its electronic structures and photocatalytic activity. In this work, we report extending thermal treatment time of g-C_3N_4 at 550 °C not only change the morphology of g-C_3N_4 but also element composition of g-C_3N_4. The morphology variation results in largely increased SSA from 40.22 to 117.27 m"2 g"−"1, obviously reduced pore size from 3.99 to 2.77 nm for g-C_3N_4 and formation of in-plane holes. Moreover, composition variation of g-C_3N_4 has also been found to have changed as the pyrolysis time extended. These changes have significant impact on the optical properties and photoelectrical characters of g-C_3N_4, which were investigated by UV-DSR, PL and Photocurrent measurement. The photocatalytic activity of g-C_3N_4 obtained via 9 h thermal treatment at 550 °C has shown highest photocatalytic activity, which is 1.77 times than that of g-C_3N_4 obtained via 3 h thermal treatment under visible irradiation and 1.99 times under UV irradiation respectively.

  5. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  6. Impact of the hydrogen partial pressure on lactate degradation in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1.

    Science.gov (United States)

    Junicke, H; Feldman, H; van Loosdrecht, M C M; Kleerebezem, R

    2015-04-01

    In this study, the impact of the hydrogen partial pressure on lactate degradation was investigated in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1. To impose a change of the hydrogen partial pressure, formate was added to the reactor. Hydrogen results from the bioconversion of formate besides lactate in the liquid phase. In the presence of a hydrogen-consuming methanogen, this approach allows for a better estimation of low dissolved hydrogen concentrations than under conditions where hydrogen is supplied externally from the gas phase, resulting in a more accurate determination of kinetic parameters. A change of the hydrogen partial pressure from 1,200 to 250 ppm resulted in a threefold increase of the biomass-specific lactate consumption rate. The 50 % inhibition constant of hydrogen on lactate degradation was determined as 0.692 ± 0.064 μM dissolved hydrogen (831 ± 77 ppm hydrogen in the gas phase). Moreover, for the first time, the maximum biomass-specific lactate consumption rate of Desulfovibrio sp. G11 (0.083 ± 0.006 mol-Lac/mol-XG11/h) and the affinity constant for hydrogen uptake of Methanobrevibacter arboriphilus DH1 (0.601 ± 0.022 μM dissolved hydrogen) were determined. Contrary to the widely established view that the biomass-specific growth rate of a methanogenic coculture is determined by the hydrogen-utilizing partner; here, it was found that the hydrogen-producing bacterium determined the biomass-specific growth rate of the coculture grown on lactate and formate.

  7. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.; Faaij, A.P.C.

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid

  8. The impact of diabetes mellitus on penile length in men undergoing inflatable penile prosthesis implantation.

    Science.gov (United States)

    Akın, Yiğit; Şahiner, İlker Fatih; Usta, Mustafa Faruk

    2013-09-01

    To evaluate the changing cavernosal length of patients with diabetes mellitus (DM) and organic erectile dysfunction (ED) who were treated with inflatable, three-piece penile prostheses, a current surgical treatment option in our clinic, over the course of 12 years. Between April 2000 and December 2012, we retrospectively investigated data from patients who were diagnosed with organic ED and undergone penile prosthesis implantation (PPI). Of the 239 patients, 235 of them were included in the study. Four patients who were operated on for trans-sexuality were excluded from the study. All patients were divided into two groups as those with (Group 1) or without DM (Group 2). Data, including age, body mass index (BMI) in kg/m(2), surgical history, comorbidities, International Index of Erectile Function (IIEF) questionnaire scores, combined intracavernous injection and stimulation (CIS) test results, length of corpus cavernosum while implanting the penile prosthesis, complications, operative times, mean hospital stay, and satisfaction of the patient and partner, were recorded. Kruskal-Wallis and Mann-Whitney U tests were used for statistical analysis. A p-value of 0.05). The length of the corpus cavernosum and the destruction of cavernosal tissues do not depend only on DM. We conclude that these features may have multifactorial causes.

  9. Impact of Various Charge States of Hydrogen on Passivation of Dislocation in Silicon

    Science.gov (United States)

    Song, Lihui; Lou, Jingjing; Fu, Jiayi; Ji, Zhenguo

    2018-03-01

    Dislocation, one of typical crystallographic defects in silicon, is detrimental to the minority carrier lifetime of silicon wafer. Hydrogen passivation is able to reduce the recombination activity of dislocation, however, the passivation efficacy is strongly dependent on the experimental conditions. In this paper, a model based on the theory of hydrogen charge state control is proposed to explain the passivation efficacy of dislocation correlated to the peak temperature of thermal annealing and illumination intensity. Experimental results support the prediction of the model that a mix of positively charged hydrogen and negatively charged hydrogen at certain ratio can maximise the passivation efficacy of dislocation, leading to a better power conversion efficiency of silicon solar cell with dislocation in it.

  10. Economic impacts of hydrogen as an energy carrier in European countries

    International Nuclear Information System (INIS)

    Wietschel, Martin; Seydel, Philipp

    2007-01-01

    The two objectives of this paper are to identify possible sectoral shifts and employment effects due to the application of hydrogen in the energy system for selected European countries till 2030. This is based on assumptions about the market penetration of hydrogen as an energy carrier, an analysis of the competitiveness of EU countries in this technology field and input-output model calculations. The analysis showed that the introduction of hydrogen leads to significant shifts between economic sectors and, as a policy recommendation, it is concluded that the required workforce skills in hydrogen technologies should be available in time in order to be properly prepared for this. Some employment gains are possible for the EU Member States analysed if the introduction of hydrogen does not result in significant changes in export/import flows. However, the lead market analysis also showed that the competitiveness of EU countries varies significantly and that, viewed as a whole, Europe is in danger of falling behind its main competitors. This may lead to job losses because the industry branches affected - automotive and plant manufacturers - represent key sectors for the EU. One policy goal, therefore, especially for countries with a large share of automobile and plant manufacturing, is to aim to be a lead market for hydrogen and fuel cells. (author)

  11. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  12. Nitrogen diffusion in hafnia and the impact of nitridation on oxygen and hydrogen diffusion: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M. [IBM Semiconductor Research and Development Center, Bangalore 560045 (India)

    2015-01-21

    Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switching mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)

  13. Impact of shocks on mortality in patients with ischemic or dilated cardiomyopathy and defibrillators implanted for primary prevention.

    Directory of Open Access Journals (Sweden)

    Florian Streitner

    Full Text Available BACKGROUND: Emerging interest is seen in the paradox of defibrillator shocks for ventricular tachyarrhythmia and increased mortality risk. Particularly in patients with dilated cardiomyopathy (DCM, the prognostic importance of shocks is unclear. The purpose of this study was to compare the outcome after shocks in patients with ischemic cardiomyopathy (ICM or DCM and defibrillators (ICD implanted for primary prevention. METHODS AND RESULTS: Data of 561 patients were analyzed (mean age 68.6±10.6 years, mean left ventricular ejection fraction 28.6±7.3%. During a median follow-up of 49.3 months, occurrence of device therapies and all-cause mortality were recorded. 74 out of 561 patients (13.2% experienced ≥1 appropriate and 51 out of 561 patients (9.1% ≥1 inappropriate shock. All-cause mortality was 24.2% (136 out of 561 subjects. Appropriate shock was associated with a trend to higher mortality in the overall patient population (HR 1.48, 95% CI 0.96-2.28, log rank p = 0.072. The effect was significant in ICM patients (HR 1.61, 95% CI 1.00-2.59, log rank p = 0.049 but not in DCM patients (HR 1.03, 95% CI 0.36-2.96, log rank p = 0.96. Appropriate shocks occurring before the median follow-up revealed a much stronger impact on mortality (HR for the overall patient population 2.12, 95% CI 1.24-3.63, p = 0.005. The effect was driven by ICM patients (HR 2.48, 95% CI 1.41-4.37, p = 0.001, as appropriate shocks again did not influence survival of DCM patients (HR 0.63, 95% CI 0.083-4.75, p = 0.65. Appropriate shocks occurring after the median follow-up and inappropriate shocks occurring at any time revealed no impact on survival in any of the groups (p = ns. CONCLUSION: Appropriate shocks are associated with reduced survival in patients with ICM but not in patients with DCM and ICDs implanted for primary prevention. Furthermore, the negative effect of appropriate shocks on survival in ICM patients is only evident within the

  14. Impact of helium implantation and ion-induced damage on reflectivity of molybdenum mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Carrasco, A., E-mail: alvarogc@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Petersson, P.; Hallén, A. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Grzonka, J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Gilbert, M.R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Fortuna-Zalesna, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Rubel, M. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden)

    2016-09-01

    Molybdenum mirrors were irradiated with Mo and He ions to simulate the effect of neutron irradiation on diagnostic first mirrors in next-generation fusion devices. Up to 30 dpa were produced under molybdenum irradiation leading to a slight decrease of reflectivity in the near infrared range. After 3 × 10{sup 17} cm{sup −2} of helium irradiation, reflectivity decreased by up to 20%. Combined irradiation by helium and molybdenum led to similar effects on reflectivity as irradiation with helium alone. Ion beam analysis showed that only 7% of the implanted helium was retained in the first 40 nm layer of the mirror. The structure of the near-surface layer after irradiation was studied with scanning transmission electron microscopy and the extent and size distribution of helium bubbles was documented. The consequences of ion-induced damage on the performance of diagnostic components are discussed.

  15. Vapor Phase Hydrogen Peroxide Sanitization of an Isolator for Aseptic Filling of Monoclonal Antibody Drug Product - Hydrogen Peroxide Uptake and Impact on Protein Quality.

    Science.gov (United States)

    Hubbard, Aaron; Reodl, Thomas; Hui, Ada; Knueppel, Stephanie; Eppler, Kirk; Lehnert, Siegfried; Maa, Yuh-Fun

    2018-03-15

    A monoclonal antibody drug product (DP) manufacturing process was transferred to a different production site, where aseptic filling took place within an isolator that was sanitized using vapor phase hydrogen peroxide (VPHP). A quality-by-design approach was applied for study design to understand the impact of VPHP uptake in the isolator on DP quality. A combination of small-scale and manufacturing-scale studies was performed to evaluate the sensitivity of the monoclonal antibody to hydrogen peroxide (H2O2) as well as VPHP uptake mechanisms during the filling process. The acceptable H2O2 level was determined to be 100 ng/mL for the antibody in the H2O2 spiking study; protein oxidation was observed above this threshold. The most prominent sources of VPHP uptake were identified to be via the silicone tubing assembly (associated with the peristaltic pumps) and open, filled vials. Silicone tubing, an effective depot to H2O2, could absorb VPHP during different stages of the filling process and discharge H2O2 into the DP solution during filling interruptions. A small-scale isolator model, established to simulate manufacturing-scale conditions, was a useful tool in understanding H2O2 uptake in relation to tubing dimensions and VPHP concentration in the isolator air (or atmosphere). Although the tubing assembly had absorbed a substantial amount of VPHP during the decontamination phase, the majority of H2O2 could be removed during tubing cleaning and sterilization in the subsequent isolator aeration phase, demonstrating that H2O2 in the DP solution is taken up primarily via atmospheric VPHP residues in the isolator during filling. Picarro sensor monitoring suggested that the validated VPHP aeration process generates reproducible residual VPHP profiles in isolator air, thus allowing small-scale studies to provide more relevant recommendations on tubing size and interruption time limits for commercial manufacturing. The recommended process parameters were demonstrated to be

  16. The hydrogen peroxide impact on larval settlement and metamorphosis of abalone Haliotis diversicolor supertexta

    Science.gov (United States)

    Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua

    2008-08-01

    Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.

  17. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    Science.gov (United States)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10

  18. Impact of shuttle environment on prelaunch handling of nickel-hydrogen batteries

    Science.gov (United States)

    Green, R. S.

    1986-01-01

    Deployment of the American Satellite Company 1 spacecraft for the Space Shuttle Discovery in August 1985 set a new milestone in nickel-hydrogen battery technology. This communications satellite is equipped with two 35 Ah nickel-hydrogen batteries and it is the first such satellite launched into orbit via the Space Shuttle. The prelaunch activities, combined with the environmental constraints onboard the Shuttle, led to the development of a new battery handling procedure. An outline of the prelaunch activities, with particular attention to battery charging, is presented.

  19. Impact of hydrogen fuelling on confinement properties in radiative improved mode

    International Nuclear Information System (INIS)

    Kalupin, D; Dumortier, P; Messiaen, A; Tokar, M Z; Unterberg, B; Verdoolaege, Geert; Wassenhove, G Van; Weynants, R

    2003-01-01

    The radiative improved (RI) mode at TEXTOR is a high confinement regime, which is obtained by the seeding of neon into deuterium plasmas. Recent experiments were aimed to study the influence of external gas fuelling on the confinement properties of the RI mode. In particular, it was found that a hydrogen puff into such plasmas leads to lower confinement compared with the discharges fuelled with the same amount of deuterium gas. This paper attempts to explain the reduction of confinement in RI plasmas with an external hydrogen puff and its relation to the level of impurity concentration, which is a critical parameter for RI mode confinement

  20. Hydrogen in oxides and nitrides: unexpected physics and impact on devices

    International Nuclear Information System (INIS)

    Van De Walle, Chris G; Janotti, Anderson

    2010-01-01

    Controlling the conductivity of wide-band-gap semiconductors is key to enabling applications in electronics and optoelectronics. Many oxides exhibit unintentional n-type conductivity, and oxygen vacancies have been widely discussed as the source of this conductivity. Based on first-principles investigations we have shown that this cannot be true in ZnO and SnO 2 . We suggest that the conductivity is due to unintentional incorporation of donor impurities, with hydrogen being a likely candidate. Both interstitial and substitutional hydrogen act as shallow donors in a number of oxides. The atomic and electronic structures of these centers is discussed.

  1. Dosimetric impact of gold markers implanted closely to lung tumors: a Monte Carlo simulation.

    Science.gov (United States)

    Shiinoki, Takehiro; Sawada, Akira; Ishihara, Yoshitomo; Miyabe, Yuki; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2014-05-08

    We are developing an innovative dynamic tumor tracking irradiation technique using gold markers implanted around a tumor as a surrogate signal, a real-time marker detection system, and a gimbaled X-ray head in the Vero4DRT. The gold markers implanted in a normal organ will produce uncertainty in the dose calculation during treatment planning because the photon mass attenuation coefficient of a gold marker is much larger than that of normal tissue. The purpose of this study was to simulate the dose variation near the gold markers in a lung irradiated by a photon beam using the Monte Carlo method. First, the single-beam and the opposing-beam geometries were simulated using both water and lung phantoms. Subsequently, the relative dose profiles were calculated using a stereotactic body radiotherapy (SBRT) treatment plan for a lung cancer patient having gold markers along the anterior-posterior (AP) and right-left (RL) directions. For the single beam, the dose at the gold marker-phantom interface laterally along the perpendicular to the beam axis increased by a factor of 1.35 in the water phantom and 1.58 in the lung phantom, respectively. Furthermore, the entrance dose at the interface along the beam axis increased by a factor of 1.63 in the water phantom and 1.91 in the lung phantom, while the exit dose increased by a factor of 1.00 in the water phantom and 1.12 in the lung phantom, respectively. On the other hand, both dose escalations and dose de-escalations were canceled by each beam for opposing portal beams with the same beam weight. For SBRT patient data, the dose at the gold marker edge located in the tumor increased by a factor of 1.30 in both AP and RL directions. In clinical cases, dose escalations were observed at the small area where the distance between a gold marker and the lung tumor was ≤ 5 mm, and it would be clinically negligible in multibeam treatments, although further investigation may be required.

  2. Contribution to the study of the environmental impact from fuel cells and hydrogen, using the Delphi methodology

    International Nuclear Information System (INIS)

    Ribeiro, Maria Alice M.; Oliveira, Wagner dos Santos; Hamada, Margarida Mizue

    2007-01-01

    The evaluation of the future systems of energy supply is of greatest importance to obtain information on the potential risk of environmental impact of some new processes. This work has as main objective to make a forecast of the environmental impact of low and average temperature fuel cells, in the long run, analyzing all the stages of their useful life and final disposal of the materials that constitute them, using the Delphi methodology. Data-collecting of Life Cycle Analysis are presented for the fuel cells type PEMFC related to the evaluation of the environmental impact that the new materials and processes will cause during the manufacture, operation and final disposal, after complete their useful life. This work also presents the hydrogen production nuclear methods. The entrance data and the philosophy to be used in this study of the future scenario are presented, as well as the results obtained from the first round of the questionnaire applied in the Delphi Method. (author)

  3. Family involvement in music impacts participation of children with cochlear implants in music education and music activities

    Science.gov (United States)

    Driscoll, Virginia; Gfeller, Kate; Tan, Xueli; See, Rachel L.; Cheng, Hsin-Yi; Kanemitsu, Mikiko

    2014-01-01

    Objective Children with cochlear implants (CIs) participate in musical activities in school and daily lives. Considerable variability exists regarding the amount of music involvement and enjoyment. Using the Music Engagement Questionnaire-Preschool/Elementary (MEQ-P/E), we wanted to determine patterns of musical participation and the impact of familial factors on engagement. Methods Parents of 32 children with CIs (16 preschool, 16 elementary) completed a questionnaire regarding the musical involvement of their child with an implant and a normal-hearing (NH) sibling (if one existed). We compared CI children's involvement to that of their NH siblings as well as across groups of children with and without CIs. Correlations between parent ratings of music importance, demographic factors, and involvement of CI and NH children were conducted within and across groups. Results No significant differences were found between children with CIs and NH siblings, meaning children from the same family showed similar levels of musical involvement. When compared at the same developmental stage, no significant differences were found between preschool children with and without CIs. Parents who rated the importance of music as “low” or “middle” had children (NH and CI) who were less involved in music activities. Children whose parents rated music importance as “high” were involved in monthly to weekly music activities with 81.25% reporting daily music listening. Conclusion Despite a less-than-ideal auditory signal for music, preschool and school-aged CI children enjoy and are involved in musical experiences. Families who enjoy and spend a greater amount of time involved in music tend to have children who also engage more actively in music. PMID:25431978

  4. Family involvement in music impacts participation of children with cochlear implants in music education and music activities.

    Science.gov (United States)

    Driscoll, Virginia; Gfeller, Kate; Tan, Xueli; See, Rachel L; Cheng, Hsin-Yi; Kanemitsu, Mikiko

    2015-05-01

    Objective Children with cochlear implants (CIs) participate in musical activities in school and daily lives. Considerable variability exists regarding the amount of music involvement and enjoyment. Using the Music Engagement Questionnaire-Preschool/Elementary (MEQ-P/E), we wanted to determine patterns of musical participation and the impact of familial factors on engagement. Methods Parents of 32 children with CIs (16 preschool and 16 elementary) completed a questionnaire regarding the musical involvement of their child with an implant and a normal-hearing (NH) sibling (if one existed). We compared CI children's involvement to that of their NH siblings as well as across groups of children with and without CIs. Correlations between parent ratings of music importance, demographic factors, and involvement of CI and NH children were conducted within and across groups. Results No significant differences were found between children with CIs and NH siblings, meaning children from the same family showed similar levels of musical involvement. When compared at the same developmental stage, no significant differences were found between preschool children with and without CIs. Parents who rated the importance of music as 'low' or 'middle' had children (NH and CI) who were less involved in music activities. Children whose parents rated music importance as 'high' were involved in monthly to weekly music activities with 81.25% reporting daily music listening. Conclusion Despite a less-than-ideal auditory signal for music, preschool and school-aged CI children enjoy and are involved in musical experiences. Families who enjoy and spend a greater amount of time involved in music tend to have children who also engage more actively in music.

  5. Edema associated with I-125 or Pd-103 prostate brachytherapy and its impact on post-implant dosimetry: an analysis based on serial CT acquisition

    International Nuclear Information System (INIS)

    Waterman, Frank M.; Yue, Ning; Corn, Benjamin W.; Dicker, Adam P.

    1998-01-01

    Purpose: To characterize the magnitude and duration of post-implant edema following the implantation of I-125 or Pd-103 seeds into the prostate and to investigate its effect on the CT-based calculation of the total dose delivered by the implant. Materials and Methods: A pre-implant CT scan and 3 to 5 serial post-implant CT scans were obtained on 10 patients who received either I-125 or Pd-103 seed implants. None of the patients received hormone therapy. The magnitude and duration of edema were determined from the change in the spatial distribution of the implanted seeds as the edema resolves. Dose volume histograms were compiled to determine the percentage of the prostate volume that received a dose equal to, or greater than, the prescribed dose. Results: The magnitude of the edema, expressed as the ratio of the post- to pre-implant volume on the day of the procedure, ranged from 1.33 to 1.96 (mean 1.52). The edema decreased exponentially with time; however, the edema half-life (time for the edema to decrease by 1/2) varied from 4 to 25 days (mean 9.3 days). As the edema resolved, the percentage of the prostate that received a dose equal to or greater than the prescribed dose increased by at least 7% in 7 of the 10 patients and increased by more than 15% in 2. In those patients in whom dose coverage was unaffected by the resolution of edema, more than 90% of the prostate was covered by the prescribed dose in the initial CT scan. Conclusion: Post-implant edema increased the prostate volume by factors which ranged from 1.33 to 1.96 (mean: 1.52). The edema resolved exponentially with an edema half-life which varied from 4 to 25 days (mean: 9.3 days). Edema had a significant effect on the post-implant dosimetry in 7 of 10 cases. Factors that affect the impact of edema on the dosimetry are the magnitude of the edema and the planned margin between the prescribed isodose line and the periphery of the prostate

  6. Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity

    International Nuclear Information System (INIS)

    Green, Richard; Hu, Helen; Vasilakos, Nicholas

    2011-01-01

    Hydrogen production via electrolysis has been proposed as a way of absorbing the fluctuating electricity generated by wind power, potentially allowing the use of cheap electricity at times when it would otherwise be in surplus. We show that large-scale adoption of electrolysers would change the shape of the load-duration curve for electricity, affecting the optimal capacity mix. Nuclear power stations will replace gas-fired power stations, as they are able to run for longer periods of time. Changes in the electricity capacity mix will be much greater than changes to the pattern of prices. The long-run supply price of hydrogen will thus tend to be insensitive to the amount produced. - Research Highlights: → Hydrogen production from electrolysis may offset intermittent wind generation. → The generation capacity mix will change in response to changed demand patterns. → The long-run equilibrium supply curve for hydrogen will be quite flat. → The production cost will be very sensitive to fuel prices paid by generators.

  7. AN INTEGRATED ASSESSMENT OF THE IMPACTS OF HYDROGEN ECONOMY ON TRANSPORTATION, ENERGY USE, AND AIR EMISSIONS

    Science.gov (United States)

    This paper presents an analysis of the potential energy, economic and environmental implications of hydrogen fuel cell vehicle (H2-FCV) penetration into the U.S. light duty vehicle fleet. The approach, which uses the U.S. EPA MARKet ALlocation technology database and model, allow...

  8. Glauber amplitudes for transitions from low lying states in hydrogen atom by charged particle impact

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Srivastava, M K [Roorkee Univ. (India). Dept. of Physics

    1977-07-01

    The Glauber amplitudes for the general transition nlm ..-->.. n'1'm' in charged particle - hydrogen atom collisions have been obtained in the form of a one-dimensional integral. The final expression involves only a few hypergeometric functions if n is not too large and is particularly suited to study excitation to highly excited states from a low lying state.

  9. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  10. Breast implants following mastectomy in women with early-stage breast cancer: prevalence and impact on survival

    International Nuclear Information System (INIS)

    Le, Gem M; O'Malley, Cynthia D; Glaser, Sally L; Lynch, Charles F; Stanford, Janet L; Keegan, Theresa HM; West, Dee W

    2005-01-01

    Few studies have examined the effect of breast implants after mastectomy on long-term survival in breast cancer patients, despite growing public health concern over potential long-term adverse health effects. We analyzed data from the Surveillance, Epidemiology and End Results Breast Implant Surveillance Study conducted in San Francisco–Oakland, in Seattle–Puget Sound, and in Iowa. This population-based, retrospective cohort included women younger than 65 years when diagnosed with early or unstaged first primary breast cancer between 1983 and 1989, treated with mastectomy. The women were followed for a median of 12.4 years (n = 4968). Breast implant usage was validated by medical record review. Cox proportional hazards models were used to estimate hazard rate ratios for survival time until death due to breast cancer or other causes for women with and without breast implants, adjusted for relevant patient and tumor characteristics. Twenty percent of cases received postmastectomy breast implants, with silicone gel-filled implants comprising the most common type. Patients with implants were younger and more likely to have in situ disease than patients not receiving implants. Risks of breast cancer mortality (hazard ratio, 0.54; 95% confidence interval, 0.43–0.67) and nonbreast cancer mortality (hazard ratio, 0.59; 95% confidence interval, 0.41–0.85) were lower in patients with implants than in those patients without implants, following adjustment for age and year of diagnosis, race/ethnicity, stage, tumor grade, histology, and radiation therapy. Implant type did not appear to influence long-term survival. In a large, population-representative sample, breast implants following mastectomy do not appear to confer any survival disadvantage following early-stage breast cancer in women younger than 65 years old

  11. Modification of the hydriding of uranium using ion implantation

    International Nuclear Information System (INIS)

    Musket, R.G.; Robinson-Weis, G.; Patterson, R.G.

    1983-01-01

    The hydriding of depleted uranium at 76 Torr hydrogen and 130 0 C has been significantly reduced by implantation of oxygen ions. The high-dose implanted specimens had incubation times for the initiation of the reaction after exposure to hydrogen that exceeded those of the nonimplanted specimens by more than a factor of eight. Furthermore, the nonimplanted specimens consumed enough hydrogen to cause macroscopic flaking of essentially the entire surface in times much less than the incubation time for the high-dose implanted specimens. In contrast, the ion-implanted specimens reacted only at isolated spots with the major fraction of the surface area unaffected by the hydrogen exposure

  12. Exploring future hydrogen development and the impact of policy: A novel investment-led approach

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2011-01-01

    It is generally recognised that the primary tools being utilised today for hydrogen energy forecasting and policy development take a least-cost approach. While useful for comparing the viability of different technologies from a cost perspective, it is argued that these models fail to capture the potential value contribution such technologies could offer companies and, in consequence, the likelihood of their receiving investment. The authors propose a novel model for forecasting the deployment of hydrogen energy systems based on a company value maximisation approach designed to assist governments in the development of appropriate policy instruments. In this paper a theoretical relationship between market sector valuations and investment activity is presented using 3 value metrics, namely net present value (NPV), earnings per share (EPS) and sum of the parts (SOP). It is shown that, as the electricity and transport fuel markets begin to converge, examination of the effects of different policy measures through the value-led model can highlight otherwise hidden counter incentives. The model further recognises that the propensity to invest in hydrogen differs according to the characteristics of the company looking to make the investment and the implications for policy-makers regarding levels of support are also discussed in the paper. - Research highlights: → A novel approach to forecasting energy market development is proposed. → Approach based on analysis of value contribution of investment opportunities. → Model applied to the potential hydrogen energy market in Scotland. → Reveals potential inadequacy of assessing market development based on levelised cost alone. → Highlights relevance of investor company performance in assessing market development.

  13. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste...

  14. The impact of hydrogen-bearing gas to change indexes of car engine in operating conditions

    Directory of Open Access Journals (Sweden)

    Korpach A.

    2016-08-01

    Full Text Available Due to lower oil and petroleum products there is a constant problem of the growing use of alternative fuels. One of the most promising is hydrogen, but its use as a self-fuel is rather difficult, but using as the form of supplements has prospects for widespread use in road transport. In order to establish the effectiveness of its use as a hydrogen-containing gas as a product of the electrolysis of the alkaline solution, a series of tests conducted. Tests were carried out on the car ZAZ–1102 "Tavria", which is equipped with an engine MeMZ–245 with carburetor feed system and electrolyser SuperKit 10, which is powered by the vehicle electrical system. At the same time also used electrolytic League–02. The effect on fuel economy additives hydrogen-containing gas to the air charge is determined when the engine is idling. When using additives 1,34 % interest, from the weight of the fuel, fuel efficiency has increased by 1,9 %.

  15. The impact of hydrogen and oxidizing impurities in chemical vapor deposition of graphene on copper

    Science.gov (United States)

    Choubak, Saman

    Graphene, the single-atom layer of carbon, has attracted scientists and technologists due to its outstanding physical and opto/electronic properties. The use of graphene in practical applications requires a reliable and cost-effective method to produce large area graphene films with low defects and controlled thicknesses. Direct growth of graphene using chemical vapor deposition (CVD) on copper, in which carbonaceous gaseous species react with the metal substrate in the presence of hydrogen at high temperatures (850-1100° C), led to high coverage of high quality graphene, opening up a promising future for methods of this type and a large step towards commercial realization of graphene products. The present thesis deals with the synthesis of graphene via low pressure CVD (LP-CVD) on copper catalyst using methane as the carbon precursor. The focus is mainly on the determination of the role of hydrogen and oxidizing impurities during graphene formation with an ultimate purpose: to elucidate a viable and reproducible method for the production of high quality graphene films compatible with industrial manufacturing processes. The role of molecular hydrogen in graphene CVD is explored in the first part of the thesis. Few studies claimed that molecular hydrogen etches graphene films on copper by conducting annealing experiments. On the other hand, we speculated that this graphene etching reaction is due to the presence of trace amount of oxygen in the furnace atmosphere. Thus, we took another approach and designed systematic annealing experiments to investigate the role of hydrogen in the etching reaction of graphene on copper foils. No evidence of graphene etching on copper was observed when purified ultra high purity (UHP) hydrogen was used at 825 °C and 500 mTorr. Nevertheless, graphene films exposed to the unpurified UHP hydrogen were etched due to the presence of oxidizing impurities. Our results show that hydrogen is not responsible for graphene etching reaction

  16. Study of the microstructural and mechanical properties of titanium-niobium-zirconium based alloys processed with hydrogen and powder metallurgy for use in dental implants

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio

    2009-01-01

    Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)

  17. The impact of hydrogen enrichment and bluff-body lip thickness on characteristics of blended propane/hydrogen bluff-body stabilized turbulent diffusion flames

    International Nuclear Information System (INIS)

    Kashir, Babak; Tabejamaat, Sadegh; Jalalatian, Nafiseh

    2015-01-01

    Highlights: • Characteristics of C 3 H 8 –H 2 bluff-body stabilized flames are investigated. • Decreasing the bluff-body lip thickness led into enhanced flame length. • CO mass fraction is increased with reducing hydrogen content in the fuel stream. • Augmenting hydrogen content increased the maximum temperature. • Jet-like zone in propane–hydrogen bluff-body stabilized flames is very unstable. - Abstract: At the beginning of this study, the well-known turbulent bluff-body stabilized diffusion flame of HM1 is simulated by a coupled flamelet/radiation approach. The HM1 flame comprises a CH 4 :H 2 [50:50 Vol.] jet flame at a Reynolds number of 15,800. The results showed reasonable agreement for the flow field and species. Afterwards, the abovementioned approach is employed to investigate the effects of hydrogen addition on bluff-body stabilized flames of propane–hydrogen. Adding hydrogen to the blended fuel of propane/hydrogen shifts the recirculation zone outwards the bluff-body and thus culminates in increased flame length. Besides this, the flame length is predicted to be enhanced with decreasing the lip thickness of the bluff-body configuration. The CO emission level is found to be decreased with hydrogen addition in near-burner and far field regions which might be attributed to the decrease of inflow carbon atoms. The local radiative heat power reveals higher values for fuel blends with decreased contents of hydrogen at the recirculation and jet-like zones. This might be attributed to the increased local heat release rate due to breaking further carbon bonds

  18. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants.

    Science.gov (United States)

    Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R

    2014-11-01

    Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier-Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. © 2014 Wiley Periodicals, Inc.

  19. Impact of Moderate to Severe Renal Impairment on Mortality and Appropriate Shocks in Patients with Implantable Cardioverter Defibrillators

    Directory of Open Access Journals (Sweden)

    Venkata M. Alla

    2010-01-01

    Full Text Available Background. Due to underrepresentation of patients with chronic kidney disease (CKD in large Implantable-Cardioverter Defibrillator (ICD clinical trials, the impact of ICD remains uncertain in this population. Methods. Consecutive patients who received ICD at Creighton university medical center between years 2000–2004 were included in a retrospective cohort after excluding those on maintenance dialysis. Based on baseline Glomerular filtration rate (GFR, patients were classified as severe CKD: GFR < 30 mL/min; moderate CKD: GFR: 30–59 mL/min; and mild or no CKD: GFR ≥ 60 mL/min. The impact of GFR on appropriate shocks and survival was assessed using Kaplan-Meier method and Generalized Linear Models (GLM with log-link function. Results. There were 509 patients with a mean follow-up of 3.0 + 1.3 years. Mortality risk was inversely proportional to the estimated GFR: 2 fold higher risk with GFR between 30–59 mL/min and 5 fold higher risk with GFR < 30 mL/min. One hundred and seventy-seven patients received appropriate shock(s; appropriate shock-free survival was lower in patients with severe CKD (GFR < 30 compared to mild or no CKD group (2.8 versus 4.2 yrs. Conclusion. Even moderate renal dysfunction increases all cause mortality in CKD patients with ICD. Severe but not moderate CKD is an independent predictor for time to first appropriate shock.

  20. Irradiation effects and hydrogen behavior in H{sub 2}{sup +} and He{sup +} implanted γ-LiAlO{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin, E-mail: weilin.jiang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Zhang, Jiandong; Kovarik, Libor; Zhu, Zihua [Pacific Northwest National Laboratory, Richland, WA (United States); Price, Lloyd; Gigax, Jonathan; Castanon, Elizabeth; Wang, Xuemei; Shao, Lin [Department of Nuclear Engineering, Texas A& M University, College Station, TX (United States); Senor, David J. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2017-02-15

    Gamma-phase lithium aluminate (γ-LiAlO{sub 2}) is a breeder material for tritium, a necessary substance for strategic stockpile and fusion power systems. A fundamental study of structural evolution and tritium diffusion in γ-LiAlO{sub 2} under displacive irradiation is needed to fully assess the material performance. This study utilizes ion implantation of protium (surrogate for tritium) and helium in γ-LiAlO{sub 2} single crystals at elevated temperatures to emulate the irradiation effects. The results show that at 573 K there are two distinct disorder saturation stages to 1 dpa without full amorphization; overlapping implantation of H{sub 2}{sup +} and He{sup +} ions suggests possible formation of gas bubbles. For irradiation to 10{sup 21} H{sup +}/m{sup 2} (0.36 dpa at peak) at 773 K, amorphization occurs at surface with H diffusion and dramatic Li loss; the microstructure contains bubbles and cubic LiAl{sub 5}O{sub 8} precipitates with sizes up to 200 nm or larger. In addition, significant H diffusion and release are observed during thermal annealing. - Highlights: • Disorder saturation stages are observed in γ-LiAlO{sub 2} irradiated with H{sub 2}{sup +} ions at 573 K. • Li loss occurs during H{sub 2}{sup +} ion implantation in γ-LiAlO{sub 2} at elevated temperatures (573–773 K). • Both gas bubbles and cubic LiAl{sub 5}O{sub 8} precipitates are formed in γ-LiAlO{sub 2} irradiated with H{sub 2}{sup +} ions at 773 K. • Isochronal annealing at temperatures up to 773 K leads to significant H release.

  1. IMPACTS OF BOVINE TRACEABILITY IMPLANTATION IN COMPUTERIZED RURAL COMPANIES: CASE STUDIES

    Directory of Open Access Journals (Sweden)

    Henri Cócaro

    2008-02-01

    Full Text Available This study looked into evaluating the impacts that the adhesion to the bovine traceability caused in four agricultural companies that adopted or used ITs for tracked herd management. After comparing the case studies it was concluded that the adhesion to traceability caused the adoption of ITs, mainly of the management and traceability system for beef cattle and the electronic scale; the zoo technical changes that happened were, the individual identification of the animals, the control of animal stock and the possibility to determine performance and reproductive indexes; the management changes that happened were the development of new controls by filing the animal identification document (DIA, the documentation of the purchase, use and exit of inputs (nutritional and sanitarian, and the documentation of animal movements. It was not verified the return of managerial or zoo technical information by SISBOV that aided the companies in their decision-taking process.

  2. Impact of preoperative antithrombotic therapy on blood management after implantation of primary total knee arthroplasty.

    Science.gov (United States)

    Leitner, Lukas; Musser, Ewald; Kastner, Norbert; Friesenbichler, Jörg; Hirzberger, Daniela; Radl, Roman; Leithner, Andreas; Sadoghi, Patrick

    2016-08-04

    Red blood cell concentrates (RCC) substitution after total knee arthroplasty (TKA) is correlated with multifold of complications and an independent predictor for higher postoperative mortality. TKA is mainly performed in elderly patients with pre-existing polymorbidity, often requiring permanent preoperative antithrombotic therapy (PAT). The aim of this retrospective analysis was to investigate the impact of demand for PAT on inpatient blood management in patients undergoing TKA. In this study 200 patients were retrospectively evaluated after TKA for differences between PAT and non-PAT regarding demographic parameters, preoperative ASA score > 2, duration of operation, pre-, and intraoperative hemoglobin level, and postoperative parameters including amount of wound drainage, RCC requirement, and inpatient time. In a multivariate logistic regression analysis the independent influences of PAT, demographic parameters, ASA score > 2, and duration of the operation on RCC demand following TKA were analyzed. Patients with PAT were significantly older, more often had an ASA > 2 at surgery, needed a higher number of RCCs units and more frequently and had lower perioperative hemoglobin levels. Multivariate logistic regression revealed PAT was an independent predictor for RCC requirement. PAT patients are more likely to require RCC following TKA and should be accurately monitored with respect to postoperative blood loss.

  3. AbioCor totally implantable artificial heart. How will it impact hospitals?

    Science.gov (United States)

    2002-09-01

    Although heart transplantation remains the most effective treatment for severe heart failure, there are far fewer donor hearts available than there are patients who could benefit from them. One approach to addressing this shortfall is the total artificial heart, or TAH. To date, however, no TAH design has been able to achieve one of the ultimate goals of heart replacement: to allow a patient to live a reasonably normal life without being connected to external machinery. A new design, the AbioCor TAH developed by Abiomed Inc., may make this goal achievable. Thanks to a power system that transfers energy through the skin without the aid of wires, the AbioCor--currently undergoing clinical trials in the United States--allows the patient to be completely mobile. The lack of transcutaneous wires also eliminates the primary source of the infections that have plagued TAH patients in the past. Though it is not without drawbacks, the AbioCor could represent a crucial advance in TAH technology. In this Technology Overview, we describe the operation of the AbioCor and discuss its likely impact on hospitals if it is approved for marketing in the United States. We also discuss a related cardiac-support technology: ventricular assist devices (VADs), which may also be used for permanent cardiac support someday.

  4. Positron impact excitation (n = 2 states) of hydrogen at 20 eV

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, M. Z. M.; Ratnavelu, K. [University of Malaya, Kuala Lumpur (Malaysia)

    2011-10-15

    The calculation of accurate differential cross sections (DCS) has always posed a litmus test for theoretical models. Among the positron-atom scattering systems, the positron-hydrogen (e{sup +}-H) atom system is the fundamental prototype. Thus, the present work utilizes 12- and 15-states coupled channel optical method (CCOM) calculations to study the DCS H(2s+2p) excitation, together with the angular correlation parameters ({lambda}(2p)), for the e{sup +}-H system at 20 eV, but up to now, there have been no measurements yet on the DCS for this system. A comparison is done with other theoretical and experimental works, including the electron case.

  5. Electron capture into the n = 3 states of hydrogen by proton impact on CO, CO2, and N2O

    International Nuclear Information System (INIS)

    Loyd, D.H.; Dawson, H.R.

    1979-01-01

    Absolute cross sections for electron capture into the 3s, 3p, and 3d states of hydrogen have been measured for 2.2--8.2-keV proton impact on CO, CO 2 , and N 2 O. The relative magnitudes of the 3s, 3p, and 3d cross sections for CO are very similar to cross sections previously measured for elemental gases. The CO 2 and N 2 O cross sections have a very different relative distribution among the 3s, 3p, and 3d states compared to all other gases studied in this laboratory, with the 3p cross section being so small that only an estimate of the upper limit to the cross section was possible

  6. The impact on bone tissues of immediate implant-supported mandibular overdentures with cusped and cuspless teeth

    OpenAIRE

    Khalid A. Arafa

    2016-01-01

    Objectives: To examine the effects on bone tissues of immediate implant-supported mandibular overdentures with cusped or cuspless teeth. Methods: A randomized controlled trial was conducted at the Dental Clinic, Faculty of Dentistry, Al-Azhar University, Assiut Branch, Egypt, over a 12-month period from September 2013 to September 2014. Twenty patients were treated with immediate implant-supported overdentures: one group received overdentures with cusped teeth, and the other group receive...

  7. Breast implants following mastectomy in women with early-stage breast cancer: prevalence and impact on survival

    OpenAIRE

    Le, Gem M; O'Malley, Cynthia D; Glaser, Sally L; Lynch, Charles F; Stanford, Janet L; Keegan, Theresa HM; West, Dee W

    2004-01-01

    Background Few studies have examined the effect of breast implants after mastectomy on long-term survival in breast cancer patients, despite growing public health concern over potential long-term adverse health effects. Methods We analyzed data from the Surveillance, Epidemiology and End Results Breast Implant Surveillance Study conducted in San Francisco?Oakland, in Seattle?Puget Sound, and in Iowa. This population-based, retrospective cohort included women younger than 65 years when diagnos...

  8. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  9. The impact on bone tissues of immediate implant-supported mandibular overdentures with cusped and cuspless teeth

    Directory of Open Access Journals (Sweden)

    Khalid A. Arafa

    2016-01-01

    Full Text Available Objectives: To examine the effects on bone tissues of immediate implant-supported mandibular overdentures with cusped or cuspless teeth. Methods: A randomized controlled trial was conducted at the Dental Clinic, Faculty of Dentistry, Al-Azhar University, Assiut Branch, Egypt, over a 12-month period from September 2013 to September 2014. Twenty patients were treated with immediate implant-supported overdentures: one group received overdentures with cusped teeth, and the other group received overdentures with cuspless teeth. The rate of implant success was assessed clinically and radiographically at 3, 6, 9, and 12 months. The data were collected by a questionnaire, an observation checklist, and radiography. The data were then analyzed using computerized methods. Results: Overdentures with cusped teeth showed a significant improvement in the clinical criteria, including the absence of clinical implant mobility, pain, and bone resorption, while the clinical criteria for the absence of peri-implant radiolucency were insignificantly different between the 2 groups (p>0.05. There were no significant differences in the clinical evaluations for bone levels at the time of insertion or 3 months after insertions, while significant differences were found at 6, 9, and 12 months after insertion. Conclusion: Overdentures with cusped teeth supported by immediate implants were found superior regarding many clinical criteria than those cuspless counterparts.

  10. The impact on bone tissues of immediate implant-supported mandibular overdentures with cusped and cuspless teeth.

    Science.gov (United States)

    Arafa, Khalid A

    2016-01-01

    To examine the effects on bone tissues of immediate implant-supported mandibular overdentures with cusped or cuspless teeth. A randomized controlled trial was conducted at the Dental Clinic, Faculty of Dentistry, Al-Azhar University, Assiut Branch, Egypt, over a 12-month period from September 2013 to September 2014. Twenty patients were treated with immediate implant-supported overdentures: one group received overdentures with cusped teeth, and the other group received overdentures with cuspless teeth. The rate of implant success was assessed clinically and radiographically at 3, 6, 9, and 12 months. The data were collected by a questionnaire, an observation checklist, and radiography. The data were then analyzed using computerized methods.  Overdentures with cusped teeth showed a significant improvement in the clinical criteria, including the absence of clinical implant mobility, pain, and bone resorption, while the clinical criteria for the absence of peri-implant radiolucency were insignificantly different between the 2 groups (p more than 0.05). There were no significant differences in the clinical evaluations for bone levels at the time of insertion or 3 months after insertions, while significant differences were found at 6, 9, and 12 months after insertion. Overdentures with cusped teeth supported by immediate implants were found superior regarding many clinical criteria than those cuspless counterparts.

  11. Impact of pre-implant lower urinary tract symptoms on postoperative urinary morbidity after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Teishima, Jun; Iwamoto, Hideo; Miyamoto, Katsutoshi; Shoji, Koichi; Masumoto, Hiroshi; Inoue, Shogo; Kobayashi, Kanao; Kajiwara, Mitsuru; Matsubara, Akio

    2012-01-01

    The objectives of this study was to assess the impact of baseline lower urinary tract symptoms on postoperative urinary morbidity in patients being treated for prostate cancer with 125-I permanent prostate brachytherapy. A total of 104 prostate cancer patients were enrolled in this study. Their urinary morbidity was followed up using the International Prostate Symptom Score and Expanded Prostate Cancer Index Composite for 12 months or more after permanent prostate brachytherapy. Patients were classified into two groups based on their baseline International Prostate Symptom Score: the low International Prostate Symptom Score group (score≤7) and the high International Prostate Symptom Score group (score≥8). Urinary morbidity was estimated in each group based on the results of the International Prostate Symptom Score and Expanded Prostate Cancer Index Composite measured before permanent prostate brachytherapy, and at 1, 3, 6, 9 and 12 months after the end of all radiation therapy. The overall mean total International Prostate Symptom Score, International Prostate Symptom Score quality of life score, and urinary-related scores for Expanded Prostate Cancer Index Composite were significantly worse at 1 month after the end of treatment, but they improved gradually after the treatment and recovered to the baseline level within 12 months. Even in the high-International Prostate Symptom Score group, the International Prostate Symptom Score and International Prostate Symptom Score Quality of Life score were significantly worse at 1-3 months after permanent prostate brachytherapy, and then recovered to the baseline level without prolongation. Although the urination-related Expanded Prostate Cancer Index Composite score in the high-International Prostate Symptom Score group was significantly worse at 1 month after permanent prostate brachytherapy in comparison with that in the low-International Prostate Symptom Score group, it recovered to the baseline level without

  12. Cochlear Implants

    Science.gov (United States)

    ... implant, including: • How long a person has been deaf, •The number of surviving auditory nerve fibers, and • ... Implant, Severe Sensoryneurial Hearing Loss Get Involved Professional Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  13. Non-impact modeling of electron broadening of hydrogen spectral lines in dense but relatively cold plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Buescher, S.; Wrubel, Th.; Kunze, H.-J.; Calisti, A.; Stamm, R.; Talin, B.

    2001-01-01

    The standard static-ion/impact-electron theory of line broadening is assessed with calculations of hydrogen lines over a broad range of plasma conditions. In most cases, discrepancies between results from theory and experiments are explained by the neglect of ion-dynamics effects. Nevertheless, recent experiments involving high density but low temperature plasmas indicate that ion-dynamics/impact-electron models may seriously overestimate the broadening for such conditions. We show that the observed discrepancies are not due to the ion modeling but due to the impact approximation of the electrons in the Original Frequency Fluctuation Model (FFM). This situation arises for plasma conditions where the interactions with the electrons are a major broadening mechanism and quasi-static, i.e. non-binary, electron effects are important. An alternative approach to a binary collision operator is therefore proposed by means of the FFM code generalized to the two components (ions and electrons) of the plasma. Accurate simulations accounting for the electron plus ion field dynamics have been used to corroborate the FFM as applied to both ion and electron perturbers, and good agreement is found with recent experiments on H α and P α for dense but relatively cold plasmas

  14. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  15. Kinematically complete study on electron impact ionisation of aligned hydrogen molecules

    Energy Technology Data Exchange (ETDEWEB)

    Senftleben, Arne

    2009-10-28

    Within the work presented here, single ionisation of spatially aligned hydrogen molecules by 200 eV electrons was studied in a kinematically complete experiment. For the first time, a comprehensive set of fully differential cross sections (FDCS) was obtained for this process on a molecular target. The direction of the internuclear axis was derived from the fragment emission of post-collision dissociation of the residual H{sub 2}{sup +} ion. Therefore, a protonic fragment was detected in coincidence with the two final-state electrons using a dedicated reaction microscope and sophisticated data analysis. For direct ionisation into the ionic ground state, existing theoretical cross sections for aligned molecules were tested. Additionally, we observed molecular frame angular distributions of Auger electrons emitted through dissociative autoionisation of H{sub 2}. Earlier findings of kinematically incomplete experiments were reproduced, but the FDCS reveal structures so far unknown. Furthermore, for random alignment, differential cross sections at two distinct values of the mean internuclear distance were obtained, providing new arguments in the current discussion on the nature of discrepancies observed between atomic and molecular collisions. (orig.)

  16. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  17. The TiCl{sub 3} catalyst in NaAlH{sub 4} for hydrogen storage induces grain refinement and impacts on hydrogen vacancy formation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Eijt, S.W.H. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Huot, J. [Universite du Quebec a Trois Rivieres, Quebec (Canada); Kockelmann, W.A. [ISIS, Rutherford Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Wagemaker, M. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Mulder, F.M. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)], E-mail: f.m.mulder@tudelft.nl

    2007-09-15

    TiCl{sub 3} acts as an efficient catalyst for NaAlH{sub 4} (sodium alanate), altering its hydrogen sorption kinetics and reversibility considerably. In order to clarify its role, we performed in situ neutron diffraction experiments on protonated catalysed and uncatalysed NaAlH{sub 4}. The phase transformations were monitored in the first two reaction steps during hydrogen release and in the second step during reloading. Our study for the first time provides clear indications that both Ti{sub x}Al{sub 1-x} and NaCl formed act as grain refiner for Al and NaH, respectively, preventing particle growth. Particle sizes generally stay small upon desorption and reloading of TiCl{sub 3} catalysed NaAlH{sub 4}, while significant particle growth is observed for uncatalysed NaAlH{sub 4}. The small crystallite sizes and observed hydrogen vacancy formation greatly facilitate the mass transfer during loading and unloading. This study underlines the importance of grain refining for achieving reversibility and faster kinetics of the hydrogen sorption processes, with a crucial double role played by the catalyst.

  18. The quality of life in cochlear implant children after two years from surgery and its impact on the family

    Directory of Open Access Journals (Sweden)

    Seyed Basir Hashemi

    2010-06-01

    Full Text Available Introduction: Cochlear implant has been established as effective option in rehabilitation of individuals with profound hearing impairment. As much of the studies about cochlear implants concentrated on aspects of speech perception and production, so we decided to study the quality of life of pre-lingual deaf children after at least 2 years of implantation. Materials and Methods: Twenty four patients’ parents in Fars Center were selected that had been implanted for at least 2 years and they filled the quality of life questionnaire. Three months later this questionnaire was filled again and results of two stages were analyzed. Results: In part of assessments p-value shows significant change in parent’s satisfaction. They believe that they can be beneficial for their children and in another part of this study, parents believe that the children communicate better, but still they need special care to do school homework and they have some difficulties in articulation. Conclusion: cochlear implantation is associated with improvement in quality of life. The improvement is significant in aspects of social communications and happiness.   

  19. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  20. Experimental Investigation In The PANDA Facility Of The Impact Of A Hydrogen Release On Passive Containment Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Auban, O.; Paladino, D.; Candreia, P.; Huggenberger, M.; Strassberger, H.J

    2003-03-01

    The large-scale, thermal-hydraulics PANDA facility has been used in the past for investigating passive decay-heat removal systems and related containment phenomena for a number of next-generation Light Water Reactors. Passive Containment Condenser (PCC) systems operate by transferring heat via steam condensation from inside the containment to outside, and serve to mitigate pressure build-up in the event of steam discharge from the primary circuit. Five new integral tests have recently been performed in the context of the 5th European Framework Program project TEMPEST. One main objective was to assess the influence of a light gas (hydrogen) on the performance of the Passive Containment Cooling System (PCCS). Hydrogen release in the case of a severe accident is simulated in PANDA by injecting helium with steam into the Drywell. In addition, the impact of a new accident-mitigating design feature, the Drywell Gas Re-Circulation System (DGRS), on the long-term containment behaviour was tested. Another important objective was also to provide relevant data for the validation of modern 3/4 mainly Computational Fluid Dynamics (CFD) 3/4 codes. The paper reports main observations from two of these new integral tests in which standard PANDA instrumentation has provided important data concerning system response when helium is released in the course of the transient. The results show that some important stratification phenomena have occurred, as a result of the buoyant flow generated by the helium injection. The resulting temperature and concentration measurements show how helium is being distributed in the Drywell (DW) volume during the helium injection phase, and how helium is retained or vented out of these vessels once the injection stops. The paper includes some discussion concerning the influence of gas mixing and stratification and the effect of the DGRS on PCC performance and system pressure build-up. (author)

  1. Impact of timing on soft tissue augmentation during implant treatment: A systematic review and meta-analysis.

    Science.gov (United States)

    Lin, Cho-Ying; Chen, Zhaozhao; Pan, Whei-Lin; Wang, Hom-Lay

    2018-05-01

    To achieve a predictable esthetic and functional outcome, soft tissue augmentation has become popular in implant treatment. The aim of this systematic review and meta-analysis was to assess the influence of different timing for soft tissue augmentation during implant treatment on soft tissue conditions and its stability. Electronic and manual searches for articles written in English up to September 2017 were performed by two independent reviewers. Human clinical studies with the purpose of evaluating outcomes (at least 3-month follow-up) of autogenous soft tissue graft for augmentation during implant treatment, either simultaneous or after implant placement (staged), were included. Cumulative changes of keratinized tissue width (KTW), soft tissue thickness (STT), and mid-buccal mucosal recession (MR) data were analyzed with a random-effects model to compare the postoperative outcomes. Twenty-nine human studies (eight randomized clinical trials, six cohort studies, and 15 case series) that met the inclusion criteria were included. For the overall data, the weighted mean STT gain (1 year after surgery) was 1.03 mm (95% CI: 0.78-1.29 mm), among which the simultaneous group was 1.12 mm (95% CI: 0.75-1.49 mm) and staged group (3-6 months after implant placement) was 0.95 mm (95% CI: 0.58-1.31 mm). There was no statistically significant difference in KTW and MR between 3 months and more than 3 months after surgery. This review revealed that the stability of soft tissue, in terms of KTW and mid-buccal MR, can be obtained 3 months after surgery. There is no difference between simultaneous and staged soft tissue augmentation during implant treatment, and both procedures significantly enhance KTW and STT. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Impact of Intentional Overload on Joint Stability of Internal Implant-Abutment Connection System with Different Diameter.

    Science.gov (United States)

    Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2017-09-05

    To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.

  3. Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: a comparative in vivo study.

    Science.gov (United States)

    Kraft, C N; Burian, B; Perlick, L; Wimmer, M A; Wallny, T; Schmitt, O; Diedrich, O

    2001-12-05

    The impairment of skeletal muscle microcirculation by a biomaterial may have profound consequences. With moderately good physical and corrosion characteristics, implant-quality stainless steel is particularly popular in orthopedic surgery. However, due to the presence of a considerable amount of nickel in the alloy, concern has been voiced in respect to local tissue responses. More recently a stainless steel alloy with a significant reduction of nickel has become commercially available. We, therefore, studied in vivo nutritive perfusion and leukocytic response of striated muscle to this nickel-reduced alloy, and compared these results with those of the materials conventional stainless steel and titanium. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, we could demonstrate that reduction of the nickel quantity in a stainless steel implant has a positive effect on local microvascular parameters. Although the implantation of a conventional stainless steel sample led to a distinct and persistent activation of leukocytes combined with disruption of the microvascular endothelial integrity, marked leukocyte extravasation, and considerable venular dilation, animals with a nickel-reduced stainless steel implant showed only a moderate increase of these parameters, with a clear tendency of recuperation. Titanium implants merely caused a transient increase of leukocyte-endothelial cell interaction within the first 120 min, and no significant change in macromolecular leakage, leukocyte extravasation, or venular diameter. Pending biomechanical and corrosion testing, nickel-reduced stainless steel may be a viable alternative to conventional implant-quality stainless steel for biomedical applications. Concerning tolerance by the local vascular system, titanium currently remains unsurpassed. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 404-412, 2001

  4. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  5. Impact of patient-prosthesis mismatch after transcatheter aortic valve-in-valve implantation in degenerated bioprostheses.

    Science.gov (United States)

    Seiffert, Moritz; Conradi, Lenard; Baldus, Stephan; Knap, Malgorzata; Schirmer, Johannes; Franzen, Olaf; Koschyk, Dietmar; Meinertz, Thomas; Reichenspurner, Hermann; Treede, Hendrik

    2012-03-01

    Transcatheter valve-in-valve implantation is evolving as an alternative to reoperative valve replacement in high-risk patients with degenerated bioprostheses. Nevertheless, hemodynamic performance is limited by the previously implanted xenograft. We report our experience with patient-prosthesis mismatch (PPM) after valve-in-valve implantation in the aortic position. Eleven patients (aged 79.3 ± 6.1 years) received transapical implantation of a balloon-expandable pericardial heart valve into a degenerated bioprosthesis (size, 23.9 ± 1.6 mm; range, 21-27 mm) in the aortic position. All patients were considered high risk for surgical valve replacement (logistic European System for Cardiac Operative Risk Evaluation, 31.8% ± 24.1%). Severe PPM was defined as an indexed effective orifice area less than 0.65 cm(2)/m(2), determined by discharge echocardiography. Severe PPM was evident in 5 patients (group 1) and absent in 6 patients (group 2). Mean transvalvular gradients decreased from 29.2 ± 15.4 mm Hg before implantation to 21.2 ± 9.7 mm Hg at discharge (group 1) and from 28.2 ± 9.0 mm Hg before implantation to 15.2 ± 6.5 mm Hg at discharge (group 2). Indexed effective orifice area increased from 0.5 ± 0.1 cm(2)/m(2) to 0.6 ± 0.1 cm(2)/m(2) and from 0.6 ± 0.3 cm(2)/m(2) to 0.8 ± 0.3 cm(2)/m(2). Aortic regurgitation decreased from grade 2.0 ± 1.1 to 0.4 ± 0.5 overall. No differences in New York Heart Association class improvement or survival during follow-up were observed. One patient required reoperation for symptomatic PPM 426 days after implantation. Valve-in-valve implantation can be performed in high-risk surgical patients to avoid reoperation. However, PPM frequently occurs, making adequate patient selection crucial. Small bioprostheses (body surface area less than 1.8 m(2). Larger prostheses seem to carry a lower risk for PPM. Although no delay in clinical improvement was seen at short-term, 1 PPM-related surgical intervention raises concern regarding

  6. Hydrogen analysis by elastic recoil spectrometry

    International Nuclear Information System (INIS)

    Tirira, J.; Trocellier, P.

    1989-01-01

    An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs

  7. The impact of transcatheter aortic valve implantation on left ventricular performance and wall thickness – single-centre experience

    Science.gov (United States)

    Szymański, Piotr; Dąbrowski, Maciej; Zakrzewski, Dariusz; Michałek, Piotr; Orłowska-Baranowska, Ewa; El-Hassan, Kamal; Chmielak, Zbigniew; Witkowski, Adam; Hryniewiecki, Tomasz

    2015-01-01

    Introduction Transcatheter aortic valve implantation (TAVI) is a treatment alternative for the elderly population with severe symptomatic aortic stenosis (AS) at high risk for surgical aortic valve replacement (SAVR). Aim To assess the impact of TAVI on echocardiographic parameters of left ventricular (LV) performance and wall thickness in patients subjected to the procedure in a single-centre between 2009 and 2013. Material and methods The initial group consisted of 170 consecutive patients with severe AS unsuitable for SAVR. Logistic European System for Cardiac Operative Risk Evaluation (EuroSCORE) was 21.73 ±12.42% and mean age was 79.9 ±7.5 years. Results The TAVI was performed in 167 (98.2%) patients. Mean aortic gradient decreased significantly more rapidly after the procedure (from 58.6 ±16.7 mm Hg to 11.9 ±4.9 mm Hg, p < 0.001). The LV ejection fraction (LVEF) significantly increased in both short-term and long-term follow-up (57 ±14% vs. 59 ±13%, p < 0.001 and 56 ±14% vs. 60 ±12%, p < 0.001, respectively). Significant regression of interventricular septum diameter at end-diastole (IVSDD) and end-diastolic posterior wall thickness (EDPWth) was noted in early (15.0 ±2.4 mm vs. 14.5 ±2.3 mm, p < 0.001 and 12.7 ±2.1 mm vs. 12.4 ±1.9 mm, p < 0.028, respectively) and late post-TAVI period (15.1 ±2.5 mm to 14.3 ±2.5 mm, p < 0.001 and 12.8 ±2.0 mm to 12.4 ±1.9 mm, p < 0.007, respectively). Significant paravalvular leak (PL) was noted in 21 (13.1%) patients immediately after TAVI and in 13 (9.6%) patients in follow-up (p < 0.001). Moderate or severe mitral regurgitation (msMR) was seen in 24 (14.9%) patients from the initial group and in 19 (11.8%) patients after TAVI (p < 0.001). Conclusions The TAVI had an immediate beneficial effect on LVEF, LV walls thickness, and the incidence of msMR. The results of the procedure are comparable with those described in other centres. PMID:25848369

  8. Spillover Phenomena and Its Striking Impacts in Electrocatalysis for Hydrogen and Oxygen Electrode Reactions

    Directory of Open Access Journals (Sweden)

    Georgios D. Papakonstantinou

    2011-01-01

    striking target issue of the present paper, has been shown to be the superior for substantiation of the revertible cell assembly for spontaneous reversible alterpolar interchanges between PEMFC and WE. The main target of the present thorough review study has been to throw some specific insight light on the overall spillover phenomena and their effects in electrocatalysis of oxygen and hydrogen electrode reactions from diverse angles of view and broad contemporary experimental methods and approaches (XPS, FTIR, DRIFT, XRD, potentiodynamic spectra, UHRTEM.

  9. Comparative Impacts of Scala Vestibuli Versus Scala Tympani Cochlear Implantation on Auditory Performances and Programming Parameters in Partially Ossified Cochleae.

    Science.gov (United States)

    Trudel, Mathieu; Côté, Mathieu; Philippon, Daniel; Simonyan, David; Villemure-Poliquin, Noémie; Bussières, Richard

    2018-07-01

    To compare scala vestibuli versus scala tympani cochlear implantation in terms of postoperative auditory performances and programming parameters in patients with severe scala tympani ossification. Retrospective case-control study. Tertiary referral center. One hundred three pediatric and adult patients who underwent cochlear implant surgery between 2000 and 2016. Three groups were formed: a scala vestibuli group, a scala tympani with ossification group, and a scala tympani without ossification group. Patients were matched based on their age, sex, duration of deafness, and side of implantation (ratio of 1:2:2). Postoperative evaluation of auditory performances and programming parameters following intensive functional rehabilitation program completion. Multimedia adaptive test (MAT), hearing in noise test (HINT SNR +10 dB, HINT SNR +5 dB, and HINT SNR +0 dB), impedances, neural response telemetry thresholds (NRT), neural response imaging thresholds (NRI), comfortable levels (C-levels), and threshold levels (T-levels) were compared between groups. Twenty-one patients underwent scala vestibuli cochlear implantation: 19 adults and two children. Auditory performances were similar between groups, although sentence recognition in a noisy environment was slightly higher in the scala vestibuli group. Impedance values were also higher in the scala vestibuli group, but all other programming parameters were similar between groups. We present the largest series of patients with scala vestibuli cochlear implantation. This approach provides at least comparable auditory performances without having any deleterious effects on programming parameters. This viable and useful insertion route might be the primary surgical alternative when facing partial cochlear ossification.

  10. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Science.gov (United States)

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-11-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.

  11. The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium

    Science.gov (United States)

    Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt

    2018-05-01

    Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.

  12. The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge.

    Science.gov (United States)

    Akobi, Chinaza; Hafez, Hisham; Nakhla, George

    2016-12-01

    This study evaluated the impact of furfural (a furan derivative) on hydrogen production rates and yields at initial substrate-to-microorganism ratios (S°/X°) of 4, 2, 1, and 0.5gCOD/gVSS and furfural concentrations of 4, 2, 1, and 0.5g/L. Fermentation studies were carried out in batches using synthetic lignocellulosic hydrolysate as substrate and mesophilic anaerobic digester sludge as seed. Contrary to other literature studies where furfural was inhibitory, this study showed that furfural concentrations of up to 1g/L enhanced hydrogen production with yields as high as 19% from the control (batch without furfural). Plots of hydrogen yields against gfurfural/gsugars and hydrogen yields versus gfurfural/gbiomass showed negative linear correlation indicating that these parameters influence biohydrogen production. Regression analysis indicated that gfurfural/gsugars initial exerted a greater effect on the degree of inhibition of hydrogen production than gfurfural/gVSS final . Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High-Resolution Electron-Impact Study of the Far-Ultraviolet Emission Spectrum of Molecular Hydrogen

    Science.gov (United States)

    Liu, Xian-Ming; Ahmed, Syed M.; Multari, Rosalie A.; James, Geoffrey K.; Ajello, Joseph M.

    1995-01-01

    The emission spectrum of molecular hydrogen produced by electron-impact excitation at 100 eV has been measured in the wavelength range 1140-1690 A. High-resolution, optically thin spectra (delta(lambda) = 0.136 A) of the far-ultraviolet (FUV) Lyman and Werner band systems have been obtained with a newly constructed 3 m spectrometer. Synthetic spectral intensities based on the transition probabilities calculated by Abgrall et al. are in very good agreement with experimentally observed intensities. Previous modeling that utilized Allison & Daigarno band transition probabilities with Hoenl-London factors breaks down when the transition moment has significant J dependence or when ro-vibrational coupling is significant. Ro-vibrational perturbation between upsilon = 14 of the B(sup 1)Sigma(sup +, sub u) state and upsilon = 3 of the C(sup 1)Pi(sub u) state and the rotational dependence of the transition moment in the bands of the Lyman system are examined. Complete high-resolution experimental reference FUV spectra, together with the model synthetic spectra based on the Abgrall transition probabilities, are presented. An improved calibration standard is obtained, and an accurate calibration of the 3 m spectrometer has been achieved.

  14. Impacts of a massive release of methane and hydrogen sulfide on oxygen and ozone during the late Permian mass extinction

    Science.gov (United States)

    Kaiho, Kunio; Koga, Seizi

    2013-08-01

    The largest mass extinction of animals and plants in both the ocean and on land occurred in the late Permian (252 Ma), largely coinciding with the largest flood basalt volcanism event in Siberia and an oceanic anoxic/euxinic event. We investigated the impacts of a massive release of methane (CH4) from the Siberian igneous province and the ocean and/or hydrogen sulfide (H2S) from the euxinic ocean on oxygen and ozone using photochemical model calculations. Our calculations indicated that an approximate of 14% decrease in atmospheric O2 levels would have occurred in the case of a large combined CH4 and H2S flux to the atmosphere, whereas an approximate of 8 to 10% decrease would have occurred from the CH4 flux and oxidation of all H2S in the ocean. The slight decrease in atmospheric O2 levels may have contributed to the extinction event. We demonstrate for the first time that a massive release of CH4 from the Siberian igneous province and a coincident massive release of CH4 and H2S did not cause ozone collapse. A collapse of stratospheric ozone leading to an increase in UV is not supported by the maximum model input levels for CH4 and H2S. These conclusions on O2 and O3 are correspondent to every H2S release percentages from the ocean to the atmosphere.

  15. Double ionization of the hydrogen sulfide molecule by electron impact: Influence of the target orientation on multiple differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Imadouchene, N. [Laboratoire de Mécanique, Structures et Energétique Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17, Tizi-Ouzou 15000 (Algeria); Aouchiche, H., E-mail: h_aouchiche@yahoo.fr [Laboratoire de Mécanique, Structures et Energétique Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17, Tizi-Ouzou 15000 (Algeria); Champion, C. [Centre d’Etudes Nucléaires de Bordeaux Gradignan, Université Bordeaux, CNRS/IN2P3, Boîte Postale 120, Gradignan 33175 (France)

    2016-07-15

    Highlights: • The double ionization of the H{sub 2}S molecule is here theoretically studied. • The orientation dependence of the differential cross sections is scrutinized. • The specific double ionizing mechanisms are clearly identified. - Abstract: Multiple differential cross sections of double ionization of hydrogen sulfide molecule impacted by electrons are here investigated within the first Born approximation. In the initial state, the incident electron is represented by a plane wave function whereas the target is described by means of a single-center molecular wave function. In the final state, the two ejected electrons are described by Coulomb wave functions coupled by the Gamow factor, whereas the scattered electron is described by a plane wave. In this work, we analyze the role played by the molecular target orientation in the double ionization of the four outermost orbitals, namely 2b{sub 1}, 5a{sub 1}, 2b{sub 2} and 4a{sub 1} in considering the particular case of two electrons ejected from the same orbital. The contribution of each final state to the double ionization process is studied in terms of shape and magnitude for specific molecular orientations and for each molecular orbital we identified the mechanisms involved in the double ionization process, namely, the Shake-Off and the Two-Step 1.

  16. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  17. Heterogeneous hydrogen distribution in orthopyroxene from veined mantle peridotite (San Carlos, Arizona): Impact of melt-rock interactions

    Science.gov (United States)

    Denis, Carole M. M.; Demouchy, Sylvie; Alard, Olivier

    2018-03-01

    Experimental studies have shown that hydrogen embedded as a trace element in mantle mineral structures affects the physical properties of mantle minerals and rocks. Nevertheless, hydrogen concentrations in mantle minerals are much lower than predicted by hydrogen solubilities obtained experimentally at high pressure and temperature. Here, we report textural analyses and major and trace element concentrations (including hydrogen) in upper mantle minerals from a spinel-bearing composite xenolith (dunite and pyroxenite) transported by silica-undersaturated mafic alkaline lavas from the San Carlos volcanic field (Arizona, USA). Our results suggest that the composite xenolith results from the percolation-reaction of a basaltic liquid within dunite channels, and is equilibrated with respect to trace elements. Equilibrium temperatures range between 1011 and 1023 °C. Hydrogen concentrations (expressed in ppm H2O by weight) obtained from unpolarized and polarized Fourier transform infrared spectroscopy are low, with average values water stored in the Earth's upper mantle.

  18. Impact of implantable defibrillators and resynchronization therapy on outcome in patients with left ventricular dysfunction--a meta-analysis

    DEFF Research Database (Denmark)

    Abdulla, Jawdat; Haarbo, Jens; Køber, Lars

    2006-01-01

    tolerance and New York Heart Association class. RESULTS: Implantation of CRT reduced all cause mortality odds ratio (OR) = 0.73 (0.60-0.89) p = 0.002 and hospitalization for heart failure OR = 0.60 (0.45, 0.80) p = 0.001, increased peak oxygen consumption by 1.77 (0.32-3.22) ml/kg/min p = 0.017 and improved...

  19. Impaction grafting in the femur in cementless modular revision total hip arthroplasty: a descriptive outcome analysis of 243 cases with the MRP-TITAN revision implant

    Directory of Open Access Journals (Sweden)

    Wimmer Matthias D

    2013-01-01

    Full Text Available Abstract Background We present a descriptive and retrospective analysis of revision total hip arthroplasties (THA using the MRP-TITAN stem (Peter Brehm, Weisendorf, GER with distal diaphyseal fixation and metaphyseal defect augmentation. Our hypothesis was that the metaphyseal defect augmentation (Impaction Bone Grafting improves the stem survival. Methods We retrospectively analyzed the aggregated and anonymized data of 243 femoral stem revisions. 68 patients with 70 implants (28.8% received an allograft augmentation for metaphyseal defects; 165 patients with 173 implants (71.2% did not, and served as controls. The mean follow-up was 4.4 ± 1.8 years (range, 2.1–9.6 years. There were no significant differences (p > 0.05 between the study and control group regarding age, body mass index (BMI, femoral defects (types I-III as described by Paprosky, and preoperative Harris Hip Score (HHS. Postoperative clinical function was evaluated using the HHS. Postoperative radiologic examination evaluated implant stability, axial implant migration, signs of implant loosening, periprosthetic radiolucencies, as well as bone regeneration and resorption. Results There were comparable rates of intraoperative and postoperative complications in the study and control groups (p > 0.05. Clinical function, expressed as the increase in the postoperative HHS over the preoperative score, showed significantly greater improvement in the group with Impaction Bone Grafting (35.6 ± 14.3 vs. 30.8 ± 15.8; p ≤ 0.05. The study group showed better outcome especially for larger defects (types II C and III as described by Paprosky and stem diameters ≥ 17 mm. The two groups did not show significant differences in the rate of aseptic loosening (1.4% vs. 2.9% and the rate of revisions (8.6% vs. 11%. The Kaplan-Meier survival for the MRP-TITAN stem in both groups together was 93.8% after 8.8 years. [Study group 95.7% after 8.54 years ; control group 93

  20. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  1. Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation.

    Science.gov (United States)

    Novak, Matthew T; Yuan, Fan; Reichert, William M

    2010-10-01

    Little is known mechanistically about why implanted glucose sensors lag behind blood glucose levels in both the time to peak sensor response and the magnitude of peak sensor response. A mathematical model of glucose transport from capillaries through surrounding tissue to the sensor surface was constructed to address how different aspects of the tissue affect glucose transport to an implanted sensor. Physiologically relevant values of capsule diffusion coefficient, capsule porosity, cellular glucose consumption, capsule thickness, and subcutaneous vessel density were used as inputs to create simulated sensor traces that mimic experimental instances of time lag and concentration attenuation relative to a given blood glucose profile. Using logarithmic sensitivity analysis, each parameter was analyzed to study the effect of these variables on both lag and attenuation. Results identify capsule thickness as the strongest determinant of sensor time lag, while subcutaneous vessel density and capsule porosity had the largest effects on attenuation of glucose that reaches the sensor surface. These findings provide mechanistic insight for the rational design of sensor modifications that may alleviate the deleterious consequences of tissue effects on implanted sensor performance.

  2. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  3. Cochlear implants in children implanted in Jordan: A parental overview.

    Science.gov (United States)

    Alkhamra, Rana A

    2015-07-01

    Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (pparents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.

  4. Modern technology electrolysis for power application. II. The impact of the energy market on the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    LaRoche, U [Brown Boveri AG, Baden, Switzerland; Bidard, R

    1979-01-01

    This paper considers the effects of the energy market on the use of hydrogen as a fuel and discusses various schemes of supplanting fossil fuels. Different fossil fuel substitution models in various parts of the western community result in rather different timing of market penetration needs and possibilities. This requires a consideration of the time span needed to implement different technologies in the choice of hydrogen production methods.

  5. Impacts of seasonality on hydrogen production using natural gas pressure letdown stations. Paper no. IGEC-1-083

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, D.

    2005-01-01

    One of the difficulties associated with the development of a hydrogen economy is the creation of a supply infrastructure. A means for distributed hydrogen generation through a process using the exergy in high pressure natural gas streams has been proposed. The system recovers energy via expansion of natural gas through a turbo-expander at existing pressure reduction systems. Generated electric power is then used to drive an electrolyzer and create hydrogen. A model of the process is used to determine production rates for electricity and hydrogen given flow data for a number of pressure letdown sites in BC. Like many traditional renewable energy sources, most letdown stations have strong annual variations in flow conditions. Annual variations in stream flow rate, inlet pressure and inlet temperature can greatly affect hydrogen production rates. In the model, component efficiencies are scaled for operation at part-load, or away from optimum design conditions. Results indicate a significant reduction in predicted hydrogen production rates as compared to installed component name-plate capacity. Operating the system with a 'grid-tie' can increase the capacity factor, but economic viability will depend on local electricity and natural gas prices. (author)

  6. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  7. Impact of contrast injection and stent-graft implantation on reproducibility of volume measurements in semiautomated segmentation of abdominal aortic aneurysm on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Morin-Roy, Florence; Hadjadj, Sofiane; Thomas, Olivier; Yang, Dan Yang [Centre Hospitalier Universitaire de Montreal (CHUM), Hopital Notre-Dame, Department of Radiology, Montreal, Quebec (Canada); Kauffmann, Claude [University of Montreal, Centre de Recherche, Centre Hospitalier Universitaire de Montreal (CRCHUM), Montreal, Quebec (Canada); Tang, An [University of Montreal, Centre de Recherche, Centre Hospitalier Universitaire de Montreal (CRCHUM), Montreal, Quebec (Canada); Centre Hospitalier Universitaire de Montreal (CHUM), Hopital Saint-Luc, Department of Radiology, Montreal, Quebec (Canada); Piche, Nicolas [Object Research System, Montreal, Quebec (Canada); Elkouri, Stephane [Centre Hospitalier Universitaire de Montreal (CHUM), Hopital Hotel-Dieu, Department of Vascular surgery, Montreal, Quebec (Canada); Therasse, Eric [University of Montreal, Centre de Recherche, Centre Hospitalier Universitaire de Montreal (CRCHUM), Montreal, Quebec (Canada); Centre Hospitalier Universitaire de Montreal (CHUM), Hopital Hotel-Dieu, Department of Radiology, Montreal, Quebec (Canada); Soulez, Gilles [Centre Hospitalier Universitaire de Montreal (CHUM), Hopital Notre-Dame, Department of Radiology, Montreal, Quebec (Canada); University of Montreal, Centre de Recherche, Centre Hospitalier Universitaire de Montreal (CRCHUM), Montreal, Quebec (Canada)

    2014-07-15

    To assess the impact of contrast injection and stent-graft implantation on feasibility, accuracy, and reproducibility of abdominal aortic aneurysm (AAA) volume and maximal diameter (D-max) measurements using segmentation software. CT images of 80 subjects presenting AAA were divided into four equal groups: with or without contrast enhancement, and with or without stent-graft implantation. Semiautomated software was used to segment the aortic wall, once by an expert and twice by three readers. Volume and D-max reproducibility was estimated by intraclass correlation coefficients (ICC), and accuracy was estimated between the expert and the readers by mean relative errors. All segmentations were technically successful. The mean AAA volume was 167.0 ± 82.8 mL and the mean D-max 55.0 ± 10.6 mm. Inter- and intraobserver ICCs for volume and D-max measurements were greater than 0.99. Mean relative errors between readers varied between -1.8 ± 4.6 and 0.0 ± 3.6 mL. Mean relative errors in volume and D-max measurements between readers showed no significant difference between the four groups (P ≥ 0.2). The feasibility, accuracy, and reproducibility of AAA volume and D-max measurements using segmentation software were not affected by the absence of contrast injection or the presence of stent-graft. (orig.)

  8. Impacts of a care process model and inpatient electrophysiology service on cardiovascular implantable electronic device infections: a preliminary evaluation.

    Science.gov (United States)

    Tan, Eugene M; Nagpal, Avish; DeSimone, Daniel C; Anderson, Brenda; Linderbaum, Jane; De Ziel, Thomas; Li, Zhuo; Sohail, Muhammad R; Cha, Yong-Mei; Loomis, Erica; Espinosa, Raul; Friedman, Paul A; Greason, Kevin; Schiller, Henry; Virk, Abinash; Wilson, Walter R; Steckelberg, James M; Baddour, Larry M

    2017-10-01

    Cardiovascular implantable electronic device infection (CIEDI) rates are rising. To improve outcomes, our institution developed an online care process model (CPM) and a specialized inpatient heart rhythm service (HRS). This retrospective review compared hospital length of stay (LOS), mortality, and times to subspecialty consultation and procedures before and after CPM and HRS availability. CPM use was associated with shortened time to surgical consultation (median 2 days post-CPM vs. 3 days pre-CPM, p = 0.0152), pocket closure (median 4 vs. 5 days, p < 0.0001), and days to new CIED implant (median 7 vs. 8 days, p = 0.0126). Post-HRS patients were more likely to have a surgical consultation (OR 7.01, 95% CI 1.56-31.5, p = 0.011) and shortened time to pocket closure (coefficient - 2.21 days, 95% CI - 3.33 to - 1.09, p < 0.001), compared to pre-HRS. The CPM and HRS were associated with favorable outcomes, but further integration of CPM features into hospital workflow is needed.

  9. Impact of residual defects caused by extension ion implantation in FinFETs on parasitic resistance and its fluctuation

    Science.gov (United States)

    Matsukawa, Takashi; Liu, Yongxun; Mori, Takahiro; Morita, Yukinori; Otsuka, Shintaro; O'uchi, Shin-ichi; Fuketa, Hiroshi; Migita, Shinji; Masahara, Meishoku

    2017-06-01

    The influence of extension doping on parasitic resistance and its variability has been investigated for FinFETs. Electrical characterization of FinFETs and crystallinity evaluation of the doped fin structure are carried out for different fin thicknesses and different donor species for ion implantation, i.e., As and P. Reducing the fin thickness and the use of donor species with a larger mass cause serious degradation in the variability and median value of the parasitic resistance. Crystallinity evaluation by transmission electron microscope reveals that significant crystal defects remain after dopant activation annealing for the cases of smaller fin thickness and the implanted dopant with a larger mass. The unrecovered defects cause serious degradation in the parasitic resistance and its variability. In 1998, he joined the Electrotechnical Laboratory, which is former organization of National Institute of Advanced Industrial Science and Technology (AIST). He has been working on development of front-end process technology, variability issues of the FinFETs and technologies for suppressing the variability. He is now a group leader of the AIST and leads the research on the silicon-based CMOS devices. He is a member of the IEEE Electron Devices Society, and the Japan Society of Applied Physics.

  10. Profiling hydrogen in materials using ion beams

    International Nuclear Information System (INIS)

    Ziegler, J.F.; Wu, C.P.; Williams, P.

    1977-01-01

    Over the last few years many ion beam techniques have been reported for the profiling of hydrogen in materials. Nine of these were evaluated using similar samples of hydrogen ion-implanted into silicon. When possible the samples were analyzed using two or more techniques to confirm the ion-implanted accuracy. The results of this analysis which has produced a consensus profile of H in silicon which is useful as a calibration standard are reported. The analytical techniques used have capabilities ranging from very high depth resolution (approximately 50 A) and high sensitivity (less than 1 ppM) to deep probes for hydrogen which can sample throughout thin sheets

  11. Carmustine Implant

    Science.gov (United States)

    ... works by slowing or stopping the growth of cancer cells in your body. ... are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while receiving carmustine implant, call your doctor. Carmustine may harm the fetus.

  12. Cochlear Implants

    Science.gov (United States)

    ... NIDCD A cochlear implant is a small, complex electronic device that can help to provide a sense ... Hearing Aids Retinitis Pigmentosa - National Eye Institute Telecommunications Relay Services Usher Syndrome Your Baby's Hearing Screening News ...

  13. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  14. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  15. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  16. Impact of platform switching on inter-proximal bone levels around short implants in the posterior region; 1-year results from a randomized clinical trial

    NARCIS (Netherlands)

    Telleman, Gerdien; Raghoebar, Gerry M.; Vissink, Arjan; Meijer, Henny J. A.; Meyer, H.J.A.

    Aim To assess the outcome of short implants (8.5 mm) supplied with a conventional platform-matched implant-abutment connection or a platform-switched design. Materials and Methods Eighty patients with one or more missing teeth in the posterior zone were randomly assigned to be treated with implants

  17. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    The implantation and sputtering mechanisms which are relevant to ion bombardment of surfaces are described. These are: collision, thermal, electronic and photon-induced sputtering. 135 refs.; 36 figs.; 9 tabs

  18. Single-Sided Deafness: Impact of Cochlear Implantation on Speech Perception in Complex Noise and on Auditory Localization Accuracy.

    Science.gov (United States)

    Döge, Julia; Baumann, Uwe; Weissgerber, Tobias; Rader, Tobias

    2017-12-01

    To assess auditory localization accuracy and speech reception threshold (SRT) in complex noise conditions in adult patients with acquired single-sided deafness, after intervention with a cochlear implant (CI) in the deaf ear. Nonrandomized, open, prospective patient series. Tertiary referral university hospital. Eleven patients with late-onset single-sided deafness (SSD) and normal hearing in the unaffected ear, who received a CI. All patients were experienced CI users. Unilateral cochlear implantation. Speech perception was tested in a complex multitalker equivalent noise field consisting of multiple sound sources. Speech reception thresholds in noise were determined in aided (with CI) and unaided conditions. Localization accuracy was assessed in complete darkness. Acoustic stimuli were radiated by multiple loudspeakers distributed in the frontal horizontal plane between -60 and +60 degrees. In the aided condition, results show slightly improved speech reception scores compared with the unaided condition in most of the patients. For 8 of the 11 subjects, SRT was improved between 0.37 and 1.70 dB. Three of the 11 subjects showed deteriorations between 1.22 and 3.24 dB SRT. Median localization error decreased significantly by 12.9 degrees compared with the unaided condition. CI in single-sided deafness is an effective treatment to improve the auditory localization accuracy. Speech reception in complex noise conditions is improved to a lesser extent in 73% of the participating CI SSD patients. However, the absence of true binaural interaction effects (summation, squelch) impedes further improvements. The development of speech processing strategies that respect binaural interaction seems to be mandatory to advance speech perception in demanding listening situations in SSD patients.

  19. CT and MR image fusion using two different methods after prostate brachytherapy: impact on post-implant dosimetric assessment

    International Nuclear Information System (INIS)

    Servois, V.; El Khoury, C.; Lantoine, A.; Ollivier, L.; Neuenschwander, S.; Chauveinc, L.; Cosset, J.M.; Flam, T.; Rosenwald, J.C.

    2003-01-01

    To study different methods of CT and MR images fusion in patient treated by brachytherapy for localized prostate cancer. To compare the results of the dosimetric study realized on CT slices and images fusion. Fourteen cases of patients treated by 1125 were retrospectively studied. The CT examinations were realized with continuous section of 5 mm thickness, and MR images were obtained with a surface coil with contiguous section of 3 mm thickness. For the images fusion process, only the T2 weighted MR sequence was used. Two processes of images fusion were realized for each patient, using as reference marks the bones of the pelvis and the implanted seeds. A quantitative and qualitative appreciation was made by the operators, for each patient and both methods of images fusion. The dosimetric study obtained by a dedicated software was realized on CT images and all types of images fusion. The usual dosimetric indexes (D90, V 100 and V 150) were compared for each type of image. The quantitative results given by the software of images fusion showed a superior accuracy to the one obtained by the pelvic bony reference marks. Conversely, qualitative and quantitative results obtained by the operators showed a better accuracy of the images fusion based on iodine seeds. For two patients out of three presenting a D90 inferior to 145 Gy on CT examination, the D90 was superior to this norm when the dosimetry was based on images fusion, whatever the method used. The images fusion method based on implanted seed matching seems to be more precise than the one using bony reference marks. The dosimetric study realized on images fusion could allow to rectify possible errors, mainly due to difficulties in surrounding prostate contour delimitation on CT images. (authors)

  20. An Investigation of Spatial Hearing in Children with Normal Hearing and with Cochlear Implants and the Impact of Executive Function

    Science.gov (United States)

    Misurelli, Sara M.

    The ability to analyze an "auditory scene"---that is, to selectively attend to a target source while simultaneously segregating and ignoring distracting information---is one of the most important and complex skills utilized by normal hearing (NH) adults. The NH adult auditory system and brain work rather well to segregate auditory sources in adverse environments. However, for some children and individuals with hearing loss, selectively attending to one source in noisy environments can be extremely challenging. In a normal auditory system, information arriving at each ear is integrated, and thus these binaural cues aid in speech understanding in noise. A growing number of individuals who are deaf now receive cochlear implants (CIs), which supply hearing through electrical stimulation to the auditory nerve. In particular, bilateral cochlear implants (BICIs) are now becoming more prevalent, especially in children. However, because CI sound processing lacks both fine structure cues and coordination between stimulation at the two ears, binaural cues may either be absent or inconsistent. For children with NH and with BiCIs, this difficulty in segregating sources is of particular concern because their learning and development commonly occurs within the context of complex auditory environments. This dissertation intends to explore and understand the ability of children with NH and with BiCIs to function in everyday noisy environments. The goals of this work are to (1) Investigate source segregation abilities in children with NH and with BiCIs; (2) Examine the effect of target-interferer similarity and the benefits of source segregation for children with NH and with BiCIs; (3) Investigate measures of executive function that may predict performance in complex and realistic auditory tasks of source segregation for listeners with NH; and (4) Examine source segregation abilities in NH listeners, from school-age to adults.

  1. Significant impact of electrical storm on mortality in patients with structural heart disease and an implantable cardiac defibrillator.

    Science.gov (United States)

    Noda, Takashi; Kurita, Takashi; Nitta, Takashi; Chiba, Yasutaka; Furushima, Hiroshi; Matsumoto, Naoki; Toyoshima, Takeshi; Shimizu, Akihiko; Mitamura, Hideo; Okumura, Ken; Ohe, Tohru; Aizawa, Yoshifusa

    2018-03-15

    Electrical storm (E-Storm), defined as multiple episodes of ventricular arrhythmias within a short period of time, is an important clinical problem in patients with an implantable cardiac defibrillator (ICD) including cardiac resynchronization therapy devices capable of defibrillation. The detailed clinical aspects of E-Storm in large populations especially for non-ischemic dilated cardiomyopathy (DCM), however, remain unclear. This study was performed to elucidate the detailed clinical aspects of E-Storm, such as its predictors and prevalence among patients with structural heart disease including DCM. We analyzed the data of the Nippon Storm Study, which was a prospective observational study involving 1570 patients enrolled from 48 ICD centers. For the purpose of this study, we evaluated 1274 patients with structural heart disease, including 482 (38%) patients with ischemic heart disease (IHD) and 342 (27%) patients with DCM. During a median follow-up of 28months (interquartile range: 23 to 33months), E-Storm occurred in 84 (6.6%) patients. The incidence of E-Storm was not significantly different between patients with IHD and patients with DCM (log-rank p=0.52). Proportional hazard regression analyses showed that ICD implantation for secondary prevention of sudden cardiac death (p=0.0001) and QRS width (p=0.015) were the independent risk factors for E-storm. In a comparison between patients with and without E-Storm, survival curves after adjustment for clinical characteristics showed a significant difference in mortality. E-Storm was associated with subsequent mortality in patients with structural heart disease including DCM. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Spectrum of hydrogen atom, Niels Bohr and their impact on contemporary science: a glimpse of modern spectroscopy

    International Nuclear Information System (INIS)

    Sastry, M.D.

    2013-01-01

    This contribution reviews developments in the atomic spectroscopy subsequent to Bohr's model. This follows a brief description of Bohr's model of hydrogen atom that accounts for sharp line spectra of hydrogen atom. The developments include the effects of electron and nuclear spins, spectroscopy of multi electron atom which involve electron-electron repulsion and different angular momentum coupling schemes. More recently, Bohr's atom model has found application to processes at nano dimensions of semiconducting materials. It has now become possible to create a hydrogen-like atom, an exciton, with its size comparable or even more than that of the particle it self. This brings in extra quantization and has profound effects on the motion of the particles involved viz electron and hole. (author)

  3. Vacancy-acceptor complexes in germanium produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, U.; Vianden, R. (Inst. fuer Strahlen- und Kernphysik, Univ. Bonn (Germany)); Alves, E.; Silva, M.F. da (Dept. de Fisica, ICEN/LNETI, Sacavem (Portugal)); Szilagyi, E.; Paszti, F. (Central Research Inst. for Physics, Hungarian Academy of Sciences, Budapest (Hungary)); Soares, J.C. (Centro de Fisica Nuclear, Univ. Lisbon (Portugal))

    1991-07-01

    Combining results obtained by the {gamma}-{gamma} perturbed angular correlation method, Rutherford backscattering and elastic recoil detection of hydrogen, a defect complex formed in germanium by indium implantation is identified as a vacancy trapped by the indium probe. (orig.).

  4. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  5. In vivo evaluation of biofunctionalized implant surfaces with a synthetic peptide (P-15) and its impact on osseointegration. A preclinical animal study.

    Science.gov (United States)

    Schmitt, Christian M; Koepple, Markus; Moest, Tobias; Neumann, Konrad; Weisel, Tamara; Schlegel, Karl Andreas

    2016-11-01

    The overall aim of the study was to investigate a biofunctionalized implant surface with electrochemically deposition of hydroxyapatite and the synthetic peptide (P-15) and its effect on osseointegration. Three modified implant types of ANKYLOS ® C/X implants were used; (1) machined implants used as negative control (M, n = 20), (2) implants with the FRIADENT ® plus surface (grit blasted and acid-etched) used as positive control (P, n = 20), and (3) implants with a biomimetic surface consisting of hydroxyapatite and the synthetic 15 aminoacids containing peptide P-15 (BP, n = 40). The implants were randomly inserted in the mandibles of 10 beagle dogs following 4 months after tooth extraction (P1-P4). Three animals were sacrificed 2 and 7 days after implant insertion, respectively, and four animals were sacrificed 6 months post implant insertion. Bone-to-implant contacts (BICs) were analyzed via histomorphometrical analyses at five different region of interests (ROIs); two at the middle part on either side of the implant (ROI 1/4), two at the apical part of the implant at each side (ROI 2/3), and one at the tip of the implant (ROI 5). All implant surfaces showed a high level of osseointegration and osteoconductivity. The cumulative implant survival rate (CSR) was 93.8%, 100% in the M, 85% in the P, and 95% in the BP group. No statistical difference in BICs at ROI 1/4, 2/3, and 5 could be shown between implant types following 2 and 7 days of healing. BIC values increased in all groups over time. After 6 months of healing the BP group showed superiority in BIC in ROI 2/3 (73.2 ± 15.6%) compared to the P (48.3 ± 10.6%) and M group (66.3 ± 30.2%) with a significant difference between BP and P (P = 0.002). It is hypothesized, that the surface biofunctionalization improves peri-implant bone formation and remodeling, leading to an increased bone-to implant contact. However, within the limitations of the study set-up no benefit in the early phase of

  6. Hip Implant Systems

    Science.gov (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  7. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  8. [Impact of metoprolol use in the treatment of patients with electrical-storm after cardioverter defibrillators implantation].

    Science.gov (United States)

    Yu, Jin-bo; Yang, Bing; Xu, Dong-jie; Chen, Ming-long; Shan, Qi-jun; Zou, Jian-gang; Chen, Chun; Zhang, Feng-xiang; Hou, Xiao-feng; Li, Wen-qi; Zhang, Rong; Cao, Ke-jiang

    2011-08-01

    To explore the effectiveness of the metoprolol dosage adjustment on reducing the incidence of electrical-storm (ES) in patients with Implantable Cardioverter Defibrillators (ICDs). Data from patients with ICD implantation between Jan, 2003 and Jun, 2006 in our hospital were retrospectively analyzed. ES was defined as either ≥ 3 times of ventricular tachyarrhythmias (VTAs) resulting in ICD therapy or VTAs lasting more than 30 s detected by ICD without any therapy within 24 hours. During a follow-up period of (27.5 ± 21.2) months, ES was recorded in 39 cases [34 males, average age (52.0 ± 13.1) years] out of 119 patients (32.8%) and 9 patients died after ES. During the period of storm attack, ES was successfully controlled in 25/30 patients by various interventions, including predisposing factors corrected in 5 cases, ICD reprogramming and antiarrhythmic drugs therapy optimized in 16 cases (one received intravenous injection of metoprolol), and VTAs eliminated by catheter ablation in 4 cases. ES was spontaneously resolved in the remaining 5 cases. In the chronic phase, 2 patients with Brugada syndrome were treated with Quinidine mono-therapy while the dosage of metoprolol was adjusted in the remaining 23 patients and the dosage of metoprolol was increased gradually from (26.8 ± 13.9) mg/d to (88.9 ± 53.5) mg/d without any adverse effects (9 patients received also oral amiodarone 200 mg/d). Post dosage adjustment, the total VTA episodes [(1.9 ± 1.7) times/month vs. (0.8 ± 0.6) times/month, P = 0.004], incidence of antitachycardia pacing therapies [(4.2 ± 3.8) runs/month vs. (2.3 ± 2.0) runs/month, P = 0.003], as well as electrical cardioversion or defibrillation [(1.1 ± 0.9) times/month vs. (0.4 ± 0.2) times/month, P = 0.001] were significantly decreased. ES was not controlled until a extremely high dosage [225 - 300 (255.3 ± 41.7) mg/d] of metoprolol was reached in the remaining 5 patients. Metoprolol use is essential and its dosage should be

  9. Evaluation of the Impact That PARs Have on the Hydrogen Risk in the Reactor Containment: Methodology and Application to PSA Level 2

    Directory of Open Access Journals (Sweden)

    Ahmed Bentaib

    2010-01-01

    Full Text Available This paper presents a methodology and its application to a Level 2 Probabilistic Safety Assessment (PSA-2, to evaluate the impact of the Passive Autocatalytic Recombiners (PARs on the hydrogen risk in the reactor containment in case of a severe accident. Among the whole set of accidental scenarios calculated in the framework of the PSA-2, nine have been selected as representative in terms of the in-vessel hydrogen production rate and in-vessel total produced hydrogen mass. Five complementary scenarios have been added as representative of the core reflooding situations. For this set of selected scenarios the evolution of the conditions in the containment (i.e., pressure, temperature, and composition during the in-vessel phase of the accident has been evaluated by means of a lumped parameter approach. The use of spray systems in the containment has also been considered as well as the presence of recombiners. Moreover, the ignition by recombiners of the flammable atmosphere has been considered.

  10. Population of the 3s state in hydrogen due to H+, H2+ and H3+ impact on ethylene, 1-butene and cis-2-butene

    International Nuclear Information System (INIS)

    Loyd, D.H.; Dawson, H.R.

    1983-01-01

    Absolute cross sections were measured for capture or dissociation into the 3s state of atomic hydrogen due to impact of 14-28 keV H + , H +2 and H +3 ions on ethylene, 1-butene and cis-2-butene. The cross sections obtained for the butene targets were almost identical and support the additive rule for cross sections. Ethylene cross sections were 21% lower than the values predicted by the additive rule, which agrees well with the observed trend toward reduction in total electron capture cross sections for protons on these gases at much higher energies

  11. Physicochemical impact of zeolites as the support for photocatalytic hydrogen production using solar-activated TiO2-based nanoparticles

    International Nuclear Information System (INIS)

    Taheri Najafabadi, Amin; Taghipour, Fariborz

    2014-01-01

    Highlights: • Zeolite chemical properties are crucial to photocatalytic hydrogen production. • Basic zeolite, TiO 2 , heteropolyacid and cobalt together are active under visible light. • TiO 2 impregnation on zeolite causes band gap widening and band edges’ anodic shift. • Heteropolyacid enhances the visible light activity of the photocatalyst. • Zeolite’s basicity can overshadow the anodic shift, advancing hydrogen evolution. - Abstract: Silico-aluminates (zeolites) have been recently utilized promisingly as the support for photocatalytic hydrogen production using solar-activated TiO 2 -based nanoparticles. Aside from conventional advantages offered by the supports in photocatalysis, we demonstrate the unique physicochemical impact of zeolites on photocatalytic hydrogen production. Beside zeolites, our synthesized materials comprise titanium dioxide (TiO 2 ) as the semiconductor, cobalt ions as the hydrogen evolution sites, and heteropolyacids (HPAs) as the multifunctional solid acids with significant excitability under visible light. Four classes of zeolites (Na-Y, Na-mordenite, H-Y, and H-beta) with different Si/Al ratios and sodium contents were evaluated. Among the studied photocatalysts, Na-Y and Na-mordenite containing 10 wt% titania emerged as the potential candidates for the hydrogen evolution reaction, with corresponding rates of 250.8 and 187.2 μmol/g h, in comparison to 84.2 μmol/g h for Degussa P25; while these values for H-Y and H-beta were 96.8 and 100.1 μmol/g h, respectively. The higher photocatalytic activity of the first two classes is attributed to the basicity of the zeolite matrix, which is possibly due to the pH dependency of the TiO 2 band edges. The results indicate the importance of controlling the chemical properties of the zeolite as a photocatalyst support through the selection of suitable types. Furthermore, our analyses show that the precise pore size distribution of the zeolite framework rules over accommodating the

  12. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  13. SU-E-J-84: Quantitative Dosimetry Assessment of the Impact of Image Artifacts of Metal Implants in Spinal SABR Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T; Zhang, M; Hanft, S; Green, R; Yue, N; Goyal, S [Rutgers University, New Brunswick, NJ (United States)

    2015-06-15

    Purpose: Metal rods are frequently used to stabilize the spine in patients with metastatic disease. The high Z material causes imaging artifacts in the surrounding tissue in CT scans, which introduces dosimetric uncertainty when inhomogeneity correction is enabled for radiation treatment planning. The purpose of this study is to quantify the dosimetric deviations caused by the imaging artifacts and to evaluate the effectiveness of using Hounsfield units (HU) overwriting to reduce dosimetric uncertainties. Methods: We retrospectively reviewed treatment plans for 4 patients with metal implants who received stereotactic ablative radiation therapy (SABR) for metastatic disease to the spine on Tomotherapy HiArt. For all four patients, the region of imaging artifact surrounding the metal implants was contoured and the pixel HU’s were overwritten to be water equivalent. We then generated adaptive treatment plans for these patients using the MVCT pretreatment set up images and batched beamlets in the original treatment plans. The dosimetry deviation between the adaptive and original plans were compared and quantitatively analyzed. Results: For three out of four patient, the major OAR (spinal cord) dose (0.35cc or 10% according to protocols and fractionation) increased (2.7%, 5.5%, 0%, 3.9%, mean=3.0±2.3%, p=0.04), and the PTV dose (D90 or D95 as per prescription) increased for all four patients ( 2%, 5%, 0.7%, 3.6%, mean=2.8±1.9%, p=0.03) in the adaptive plan with HU overwriting. The average point dose deviation of the Tomotherapy DQA for the same patients was −1.0±1.0%. For plans without HU overwriting, the dose deviation from the treatment plan will increase. Conclusion: The metal implant and the imaging artifacts may cause a significant dosimetric impact on radiation treatment plans for spinal disease. The dose to the PTV and the spinal cord was under-calculated in treatment plans without considering the imaging artifacts. HU overwriting can reduce the dosimetry

  14. Ion Implantation and Synthesis of Materials

    CERN Document Server

    Nastasi, Michael

    2006-01-01

    Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

  15. Effect of oxygen implantation on the electrochemical properties of palladium

    International Nuclear Information System (INIS)

    Fujihana, T.; Ueshima, M.; Takahashi, K.; Iwaki, M.

    1995-01-01

    Hydrogen presence in metals has significant effects on their properties. A stress caused by hydrogen migration leads to cracks in metals. The suppression of hydrogen incorporation for the protection of such hydrogen embrittlement is one of the most important subjects for industrial engineering. In contrast, the development of active materials for hydrogen absorption and desorption reactions is expected to make a potable storage of hydrogen which is clean and virtually inexhaustible fuel. The electrochemical properties of O + -implanted Pd measured by cyclic voltammetry in a 0.25 mol dm -3 H 2 SO 4 solution were investigated in relation to their composition and structure. Implantation of 16 O + was performed with doses between 10 17 and 10 18 ions cm -2 at 150 keV, and at nearly room temperature. SIMS, ERD combined with RBS, and XRD were used to analyze the composition depth profile and structure of O + -implanted Pd surface layers. The H atoms were accumulated with a gaussian distribution and carbon materials containing the solid solution of PdCx (x = 0.13--0.15) were also formed in the near surface layers during O + -implantation. The distribution of implanted oxygen changed from gaussian to trapezoidal as the dose increased, accompanied by the crystal growth of Pd(OH) 2 , and simultaneously, the amount of accumulated H atoms increased. The voltammetric measurements revealed that with an increase in the dose, the hydrogen absorption was suppressed at the early stage of sweep cycles, and at the final stage, the redox reaction of both hydrogen and Pd was activated. From these results, the authors propose that the carbon materials containing the PdCx formed during O + -implantation suppress the hydrogen absorption, and the metallic Pd like a Pd-black formed by the reduction of Pd(OH) 2 during voltammetric measurements causes the electrochemical activation of O + -implanted Pd

  16. Preservation of keratinized mucosa around implants using a prefabricated implant-retained stent: a case-control study

    OpenAIRE

    Kim, Chang-Soon; Duong, Hieu Pham; Park, Jung-Chul; Shin, Hyun-Seung

    2016-01-01

    Purpose The aim of this study was to clinically assess the impact of a prefabricated implant-retained stent clipped over healing abutments on the preservation of keratinized mucosa around implants after implant surgery, and to compare it with horizontal external mattress sutures. Methods A total of 50 patients were enrolled in this study. In the test group, a prefabricated implant-retained stent was clipped on the healing abutment after implant surgery to replace the keratinized tissue bucco-...

  17. Patient-prosthesis mismatch in patients treated with transcatheter aortic valve implantation – predictors, incidence and impact on clinical efficacy. A preliminary study

    Directory of Open Access Journals (Sweden)

    Karol Zbroński

    2017-11-01

    Full Text Available Introduction : Patient-prosthesis mismatch (PPM is relatively frequent after surgical aortic valve replacement (SAVR and negatively impacts prognosis. Aim : We sought to determine the frequency and clinical effects of PPM after transcatheter aortic valve implantation (TAVI. Material and methods : Overall, 238 patients who underwent TAVI were screened. Moderate PPM was defined as indexed effective orifice area (EOAi between 0.65 and 0.85 cm2/m2, and severe PPM as < 0.65 cm2/m2. All-cause mortality and the Valve Academic Research Consortium 2 (VARC-2 defined composite of clinical efficacy at 1 year were the primary endpoints. Results : Finally, 201 patients were included (mean age: 79.6 ±7.4 years, 52% females. The femoral artery served as the delivery route in 79% and most of the prostheses were self-expanding (68%. Any PPM was present in 48 (24% subjects, and only 7 (3.5% had severe PPM. Body surface area (BSA independently predicted any PPM (OR = 16.9, p 20 mm Hg. Conclusions : Severe PPM after TAVI is rare, can be predicted by larger BSA and does not seem to affect mid-term mortality or composite clinical outcome. Larger studies are needed to find different independent predictors of PPM and elucidate its impact in terms of device durability and long-term clinical efficacy.

  18. Revisited study of fluorine implantation impact on negative bias temperature instability for input/output device of automotive micro controller unit

    Science.gov (United States)

    Yoshida, Tetsuya; Maekawa, Keiichi; Tsuda, Shibun; Shimizu, Tatsuo; Ogasawara, Makoto; Aono, Hideki; Yamaguchi, Yasuo

    2018-04-01

    We investigate the effect of fluorine implanted in the polycrystalline silicon (poly-Si) gate and source/drain (S/D) region on negative bias temperature instability (NBTI) improvement. It is found that there is a trade-off implantation energy dependence of NBTI between fluorine in the poly-Si gate and that in the S/D region. Fluorine implanted in the poly-Si gate contributes to NBTI improvement under low energy implantation. On the other hand, NBTI is improved by fluorine implanted in the S/D region under high energy. We propose that the two-step implantation process with high and low energy is the optimum condition for NBTI improvement.

  19. The Crista Fenestra and Its Impact on the Surgical Approach to the Scala Tympani during Cochlear Implantation.

    Science.gov (United States)

    Angeli, Roberto D; Lavinsky, Joel; Setogutti, Enio T; Lavinsky, Luiz

    2017-01-01

    The aim of this work was to describe the dimensions of the crista fenestra and determine its presence by means of high-resolution computed tomography (CT) for the purpose of cochlear implantation via the round window approach. A series of 10 adult human temporal bones underwent high-resolution CT scanning and were further dissected for microscopic study of the round window niche. In all of the specimens, the round window membrane was fully visualized after the complete removal of bony overhangs. The crista fenestra was identified as a sharp bony crest located in the anterior and inferior borders of the niche; its area ranged from 0.28 to 0.80 mm2 (mean 0.51 ± 0.18). The proportion of the area occupied by the crista fenestra in the whole circumference of the round window ranged from 23 to 50% (mean 36%). We found a moderate positive correlation between the area of the niche and the dimensions of the crista fenestra (Spearman rho: 0.491). In every case, high-resolution CT scanning was unable to determine the presence of the crista fenestra. The crista fenestra occupies a variable but expressive area within the bony round window niche. Narrower round window niches tended to house smaller crests. The presence of the crista fenestra is an important obstacle to adequate access to the scala tympani. Nevertheless, a high-resolution CT scan provides no additional preoperative information with regard to its presence for the purpose of surgical access to the scala tympani via the round window niche. © 2017 S. Karger AG, Basel.

  20. Soaking morselized allograft in bisphosphonate can impair implant fixation

    DEFF Research Database (Denmark)

    Jakobsen, Thomas; Baas, Jørgen; Bechtold, Joan E

    2007-01-01

    biomechanical implant fixation and graft incorporation. In 10 dogs, a pair of titanium implants surrounded by a 2.5-mm gap was inserted into the proximal part of each humerus during two separate surgeries to allow two observation periods. The gap was filled with impacted, morselized allograft soaked in either...... of implants was observed for 12 weeks and the second pair for 4 weeks. Implants were evaluated by histomorphometry and biomechanical pushout test. We found substantially decreased biomechanical implant fixation for all implants surrounded by impacted, morselized allograft that had been soaked in alendronate...

  1. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  2. Impact of He and H relative depth distributions on the result of sequential He+ and H+ ion implantation and annealing in silicon

    Science.gov (United States)

    Cherkashin, N.; Daghbouj, N.; Seine, G.; Claverie, A.

    2018-04-01

    Sequential He++H+ ion implantation, being more effective than the sole implantation of H+ or He+, is used by many to transfer thin layers of silicon onto different substrates. However, due to the poor understanding of the basic mechanisms involved in such a process, the implantation parameters to be used for the efficient delamination of a superficial layer are still subject to debate. In this work, by using various experimental techniques, we have studied the influence of the He and H relative depth-distributions imposed by the ion energies onto the result of the sequential implantation and annealing of the same fluence of He and H ions. Analyzing the characteristics of the blister populations observed after annealing and deducing the composition of the gas they contain from FEM simulations, we show that the trapping efficiency of He atoms in platelets and blisters during annealing depends on the behavior of the vacancies generated by the two implants within the H-rich region before and after annealing. Maximum efficiency of the sequential ion implantation is obtained when the H-rich region is able to trap all implanted He ions, while the vacancies it generated are not available to favor the formation of V-rich complexes after implantation then He-filled nano-bubbles after annealing. A technological option is to implant He+ ions first at such an energy that the damage it generates is located on the deeper side of the H profile.

  3. Longevity, Esthetic Perception, and Psychosocial Impact of Teeth Bleaching by Low (6%) Hydrogen Peroxide Concentration for In-office Treatment: A Randomized Clinical Trial.

    Science.gov (United States)

    Fernández, E; Bersezio, C; Bottner, J; Avalos, F; Godoy, I; Inda, D; Vildósola, P; Saad, Jrc; Oliveira, O B; Martín, J

    The aim was to evaluate the color longevity after nine months of in-office bleaching with gel (6% hydrogen peroxide), to compare this to a control concentration of 35% in a split-mouth study model, and to assess the dental confidence and psychosocial impact on patients. Twenty-seven patients were assessed at the nine-month recall. The bleaching procedure with 6% or 35% hydrogen peroxide gel was performed randomly in the upper hemi-arch of each patient. The color was measured at baseline and at one week, one month, and nine months after the procedure, using the Vita Easyshade spectrophotometer, the Vita classical shade guide organized by value, and Vita Bleach Guide 3DMaster. Moreover, two surveys, OHIP-Esthetics and PIDAQ, were used to assess the esthetic self-perception and psychosocial impact of the bleaching procedure. During the nine-month recall, the color was assessed before and after dental prophylaxis. Twenty-seven patients participated in the nine-month recall. There was a significant difference in ΔE between the two groups at all times assessed (p0.20). There was no significant difference in ΔSGU at all times (p>0.05). There was a significant difference in OHIP-Esthetics and PIDAQ sums compared with baseline scores (p<0.03). The two compounds remained effective at nine months, with a slight rebound of color, and maintained their objective color difference but not the subjective color difference. Patients were satisfied with the bleaching procedure, and this had a positive impact on esthetic perception and a positive psychosocial impact at the nine-month recall.

  4. Study on the viability for the implantation of a hydrogen-solar-aeolian system for the state of Ceara, Brazil; Estudo de viabilidade para implantacao de um sistema a hidrogenio-solar-eolico para o estado do Ceara, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sales, A.D.; Sacramento, E.M. do; Lima, L.C. de [Universidade Estadual do Ceara (UECE), Fortaleza, CE (Brazil)

    2008-07-01

    The state of the Ceara imports most of its consumed energy, configuring itself as a region eminently energy importer. However, the manufacture of its wind power Atlas demonstrated a high potential for the generation of electric energy originated from this renewable source. It is known, also, through studies, that this state possesses high potential for the exploitation of solar energy also for the generation of electric energy. A clean option to obtain hydrogen is the utilization of such renewable sources. This work presents results of the application of a model of solar-wind hydrogen energy for the Ceara state and variables such as population, gross intern product, energetic demand, energy imports, fossil fuel and hydrogen prices, income from hydrogen sale, and others parameters. The hydrogen will be produced from the sea water desalinisation, using solar and wind energies. The produced hydrogen eventually will be introduced in Ceara State through three scenarios which are one of, fast introduction, other of slow introduction and other of no introduction of hydrogen. (author)

  5. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  6. The hydrogen highway

    International Nuclear Information System (INIS)

    Grigg, A.

    2004-01-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  7. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  8. New hydrogen donors in germanium

    International Nuclear Information System (INIS)

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.

    2003-01-01

    The electrophysical properties of the n-type conductivity germanium, irradiated through protons, is studied by the volt-farad method. It is shown that the heat treatment of the implanted germanium at the temperature of 200-300 deg C leads to formation of the fast-diffusing second-rate donors. It is established that the diffusion coefficient of the identified donors coincides with the diffusion coefficient of the atomic hydrogen with an account of the capture on the traps. The conclusion is made, that the atomic hydrogen is the second-rate donor center in germanium [ru

  9. Hydrogen absorption in U{sub 3}Si{sub 2} and its impact on electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mašková, Silvie, E-mail: maskova@mag.mff.cuni.cz [Department of Condensed Matter Physics, Charles University, Prague 2, The Czech Republic (Czech Republic); Miliyanchuk, Khrystyna [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Lviv (Ukraine); Havela, Ladislav [Department of Condensed Matter Physics, Charles University, Prague 2, The Czech Republic (Czech Republic)

    2017-04-15

    U{sub 3}Si{sub 2} reversibly absorbs hydrogen at very low H{sub 2} pressures (kPa range), yielding U{sub 3}Si{sub 2}H{sub 1.8}. One characteristic desorption temperature implies that there is only one type of H sites. U{sub 3}Si{sub 2} is a weak Pauli paramagnet (χ < 2·10{sup −8} m{sup 3}/mol U) with the shortest inter-uranium distances between the U atoms in different sheets (d{sub U-U} = 332 pm). The volume-expanded (10%) hydride is a spin fluctuator with temperature dependent magnetic susceptibility and a weak ferromagnetic component gradually arising below T = 100 K. The location of U{sub 3}Si{sub 2}H{sub 1.8} at the verge of magnetic ordering is evidenced by the low temperature specific heat with an upturn in C/T and a dramatic enhancement of the Sommerfeld coefficient of electronic specific heat γ, which reaches 500 mJ/mol f.u. K{sup 2}. - Highlights: •U{sub 3}Si{sub 2} can be hydrogenated at very low H{sub 2} pressure, yielding U{sub 3}Si{sub 2}H{sub 1.8}. •The H absorption to a single H-site is reversible. •Hydrogenation leads to the expansion of the unit cell by 10%. •U{sub 3}Si{sub 2} is a weak Pauli paramagnet. •The hydride is a spin fluctuator with temperature dependent magnetic susceptibility.

  10. Impact of platform switching on inter-proximal bone levels around 8.5 mm implants in the posterior region; 5-year results from a randomized clinical trial

    NARCIS (Netherlands)

    Telleman, Gerdien; Raghoebar, Gerry M.; Vissink, Arjan; Meijer, Henny J. A.

    Aim: To assess the medium- term results of 8.5 mm implants supplied with a conventional platform- matched implant- abutment connection or a platform- switched design. Materials and Methods: Eighty patients with one or more missing teeth in the maxillary or mandibular posterior zone were randomly

  11. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  12. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  13. Surface modifications of dental implants.

    Science.gov (United States)

    Stanford, C M

    2008-06-01

    Dental implant surface technologies have been evolving rapidly to enhance a more rapid bone formation on their surface and hold a potential to increase the predictability of expedited implant therapy. While implant outcomes have become highly predictable, there are sites and conditions that result in elevated implant loss. This paper reviews the impact of macro-retentive features which includes approaches to surface oxide modification, thread design, press-fit and sintered-bead technologies to increase predictability of outcomes. Implant designs that lead to controlled lateral compression of the bone can improve primary stability as long as the stress does not exceed the localized yield strength of the cortical bone. Some implant designs have reduced crestal bone loss by use of multiple cutting threads that are closely spaced, smoothed on the tip but designed to create a hoop-stress stability of the implant as it is completely seated in the osteotomy. Following the placement of the implant, there is a predictable sequence of bone turnover and replacement at the interface that allows the newly formed bone to adapt to microscopic roughness on the implant surface, and on some surfaces, a nanotopography (<10(-9) m scale) that has been shown to preferably influence the formation of bone. Newly emerging studies show that bone cells are exquisitely sensitive to these topographical features and will upregulate the expression of bone related genes for new bone formation when grown on these surfaces. We live in an exciting time of rapid changes in the modalities we can offer patients for tooth replacement therapy. Given this, it is our responsibility to be critical when claims are made, incorporate into our practice what is proven and worthwhile, and to continue to support and provide the best patient care possible.

  14. COCHLEAR IMPLANTATION PREVALENCE IN ELDERLY

    Directory of Open Access Journals (Sweden)

    A. V. Starokha

    2014-01-01

    Full Text Available Current paper describes an experience of cochlear implantation in elderly. Cochlear implantation has become a widely accepted intervention in the treatment of individuals with severe-to-profound sensorineural hearing loss. Cochlear implants are now accepted as a standard of care to optimize hearing and subsequent speech development in children and adults with deafness. But cochlear implantation affects not only hearing abilities, speech perception and speech production; it also has an outstanding impact on the social life, activities and self-esteem of each patient. The aim of this study was to evaluate the cochlear implantation efficacy in elderly with severe to profound sensorineural hearing loss. There were 5 patients under our observation. Surgery was performed according to traditional posterior tympanotomy and cochleostomy for cochlear implant electrode insertion for all observed patients. The study was conducted in two stages: before speech processor’s activation and 3 months later. Pure tone free field audiometry was performed to each patient to assess the efficiency of cochlear implantation in dynamics. The aim of the study was also to evaluate quality of life in elderly with severe to profound sensorineural hearing loss after unilateral cochlear implantation. Each patient underwent questioning with 36 Item Short Form Health Survey (SF-36. SF-36 is a set of generic, coherent, and easily administered quality-of-life measures. The SF-36 consists of eight scaled scores, which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale on the assumption that each question carries equal weight. The eight sections are: physical functioning; physical role functioning; emotional role functioning; vitality; emotional well-being; social role functioning; bodily pain; general health perceptions. Our results demonstrate that cochlear implantation in elderly consistently improved quality of life

  15. SU-E-T-492: The Dosimetric and Clinical Impact of the Metallic Dental Implants on Radiation Dose Distributions in IMRT Head and Neck Cancer Patients.

    Science.gov (United States)

    Wang, L; Xing, L; Le, Q

    2012-06-01

    In H&N cancer patients, the development of oral mucositis is related closely to the radiation dose to the oral cavity. It is generally presumed that the existence of metallic dental implants makes it worse due to the scattering effect of the metal. This study investigates the effects of the dental implants on radiation doses to PTV, tongue mucosa, and other structures for IMRT H&N cancer patients by Monte Carlo (MC) dose calculations. Two H&N cancer patients who have dental implant and are treated by IMRT technique are selected for the purpose. The BEAMnrc/DOSXYZnrc MC codes are employed for the CT-image based dose calculations. The radiation sources are the validated Varian phase-space files for 6MV linac beams. The CT image artifacts caused by the dental fillings are replaced by tissue material. Two sets of MC calculations for each patient are performed at a calculation statistics of 1%: one treats all dental implants as bones, the other substitutes the implants by metal of either titanium or gold with correct density. Doses in PTV and various tissue structures are compared for the two scenarios. With titanium implant, there is no significant difference in doses to PTV and tongue mucosa from that when treating implant as bone. With gold implant, the mean dose to PTV is slightly lowered by 1%; the mean dose to tongue mucosa is reduced by less than 0.5%, although the maximum dose is increased by 5%. The scattering dose from titanium implants is not of concern for H&N patients irradiated by 6MV IMRT beams. For gold implants, the scattering dose to tongue mucosa is not as severe as presumed; and the dose to PTV could be slightly compromised due to the attenuation effect of the metal. This work was supported in part by Varian Medical Systems. © 2012 American Association of Physicists in Medicine.

  16. Impact of heavy smoking on the clinical, microbiological and immunological parameters of patients with dental implants: a prospective cross-sectional study.

    Science.gov (United States)

    Ata-Ali, Javier; Flichy-Fernández, Antonio Juan; Alegre-Domingo, Teresa; Ata-Ali, Fadi; Peñarrocha-Diago, Miguel

    2016-11-01

    The aim of the present study was to investigate how heavy smoking influences the clinical, microbiological, and host-response characteristics in peri-implant sulcus fluid of patients with healthy dental implants. A total of 29 individuals with 74 dental implants were included in the present study; 20 implants were in heavy smokers and 54 were in non-smokers. The modified gingival index, modified plaque index, and probing pocket depth were evaluated. Periodontopathogenic bacteria Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis were evaluated, together with the total bacterial load. Peri-implant sulcus fluid samples were analyzed for the quantification of interleukin-8, interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor-α. No significant differences in the clinical parameters evaluated were found between the groups, although smokers had poorer peri-implant parameters. Among the smokers, subgingival microbiota was composed of a greater number of periodontal pathogens; these differences were not statistically significant. Smokers showed a greater expression of interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor-α, but interleukin-8 was slightly higher among non-smokers, but not significantly. Although smokers presented deeper probing depths, bleeding on probing, and peri-implant microbiota composed of a greater number of periodontal pathogens than in non-smoking patients, these data did not show significant differences. In the present study, and in relation to the samples analyzed, smoking alone did not influence the immunological and microbiological parameters in dental implants with healthy peri-implant tissues. Further studies with larger samples are required to better evaluate the influence of smoking on dental implants. © 2015 Wiley Publishing Asia Pty Ltd.

  17. Oxygen segregation and its impact on the absorption of hydrogen in vanadium; Einfluss der Sauerstoffsegregation auf die Absorption von Wasserstoff in Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, H.; Lammers, M. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany); Mueller, K.H. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany)]|[Paderborn Univ. (Gesamthochschule), Soest (Germany). Fachbereich 16 - Elektrische Energietechnik; Kiss, G.; Kemeny, Z. [Technical Univ. Budapest (Hungary)

    1998-12-31

    The impact of the dissolved oxygen on the hydrogen absorption in vanadium was analysed with an UHV apparatus. The vanadium specimen with an oxygen content of 230 ppm was treated by a variety of heat treatments. The depth distributions of the induced concentrations of segregated oxygen in the specimen were analysed by SIMS. It was found that the amount of segregated oxygen increases with rising final temperature and tempering period. In a further experiment, the specimen was exposed after each segregation process to a H{sub 2}-pressure of 2.2 x 10{sup -4} Pa for a period of 1800 sec. The hydrogen amounts absorbed in the specimen were determined by thermal desorption mass spectrometry (TDMS). It was found that segregation of oxygen close to the surface of the specimen likewise hampers the absorption of hydrogen. (orig./CB) [Deutsch] Der Einfluss des im Volumen geloesten Sauerstoffs auf die Wasserstoff-Absorption in Vanadium wurde in einer UHV-Apparatur untersucht. Zunaechst wurde die V-Probe mit einem Sauerstoffgehalt von 230 ppm unterschiedlichen thermischen Behandlungen ausgesetzt. Die sich einstellenden Konzentrationstiefenverteilungen des an der Oberflaeche segregierten Sauerstoffs wurden anschliessend mit SIMS untersucht. Dabei nimmt die Menge des segregierten Sauerstoffs mit der Hoehe der Endtemperatur sowie der Temperzeit zu. In einem weiteren Experiment wurde die Probe nach jeder Segregationsprozedur fuer eine Zeit von 1800 sec einem H{sub 2}-Druck von 2.2 x 10{sup -4} Pa ausgesetzt. Die Mengen des dabei aufgenommenen Wasserstoffs wurden mit Hilfe der thermischen Desorptions-Massenspektrometrie TDMS bestimmt. Dabei zeigt sich, dass auch die Segregation von Sauerstoff im oberflaechennahen Bereich die Wasserstoffaufnahme in Vanadium behindert. (orig.)

  18. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  19. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  20. The Brazilian electric sector regulation as reference for the hydrogen regulation as energetic vector; A regulacao do setor eletrico brasileiro como referencia para regulacao do hidrogenio como vetor energetico

    Energy Technology Data Exchange (ETDEWEB)

    Paternostro, Andre de Goes [Universidade Salvador (UNIFACS), Salvador, BA (Brazil); Fundacao de Amparo a Pesquisa do Estado da Bahia (FAPSB), Salvador, BA (Brazil)]. E-mail: apater@hotmail.com

    2008-07-01

    This paper is based on the Brazilian electric sector to outline parallels for introduction of hydrogen as energetic vector in Brazilian matrix. For this purpose it was achieved an analysis of regulation theory, of electric sector reorganization, the new model of energy trade and the NOS role. In face of this analysis, hydrogen regulation may be established through a mix of four models: tariff model by return tax; tariff by marginal cost; regulation by performance and price cap. This new industrial sector should start vertical and with its maturity become non vertical as electric sector after its reorganization. Regarding the market, advanced purchase of hydrogen should be established enabling the reduction of incertitude in trade as well as reduction of implantation costs. NOS should pursue electric energy generation from hydrogen as this may carry impacts in transmission networks as well as in distribution network depending on how hydrogen was generated, whether in large scale or for local consumption supply. (author)

  1. Impact of bread making on fructan chain integrity and effect of fructan enriched breads on breath hydrogen, satiety, energy intake, PYY and ghrelin.

    Science.gov (United States)

    Morris, C; Lynn, A; Neveux, C; Hall, A C; Morris, G A

    2015-08-01

    Recently, there has been considerable interest in the satiety inducing properties of inulin type fructans (ITF) as a tool for weight management. As a staple food, breads provide an excellent vehicle for ITF supplementation however the integrity of the ITF chains and properties upon bread making need to be assessed. Breads enriched with 12% fructooligosaccharides (FOS) and 12% inulin were baked and the degree of polymerisation of fructans extracted from the breads were compared to those of pure compounds. An acute feeding study with a single blind cross-over design was conducted with 11 participants to investigate the effect of ITF enriched breads on breath hydrogen, self-reported satiety levels, active ghrelin, total PYY and energy intake. Size exclusion chromatography indicated that little or no depolymerisation of inulin occurred during bread making, however, there was evidence of modest FOS depolymerisation. Additionally, ITF enriched breads resulted in increased concentrations of exhaled hydrogen although statistical significance was reached only for the inulin enriched bread (p = 0.001). There were no significant differences between bread types in reported satiety (p = 0.129), plasma active ghrelin (p = 0.684), plasma PYY (p = 0.793) and energy intake (p = 0.240). These preliminary results indicate that inulin enriched bread may be a suitable staple food to increase ITF intake. Longer intervention trials are required to assess the impact of inulin enriched breads on energy intake and body weight.

  2. Full-mouth rehabilitation with immediate loading of implants inserted with computer-guided flap-less surgery: a 3-year multicenter clinical evaluation with oral health impact profile.

    Science.gov (United States)

    Marra, Roberto; Acocella, Alessandro; Rispoli, Alessandra; Sacco, Roberto; Ganz, Scott D; Blasi, Andrea

    2013-10-01

    The purpose of this report is to present the clinical outcomes and patients' satisfaction of full-mouth rehabilitation using computer-aided flapless implant placement and immediate loading of a prefabricated prosthesis. The study included 30 consecutive fully edentulous patients who received 312 implants. Mandible and maxilla were treated in the same surgical session with computer-guided flapless approach using the NobelGuide protocol. Prefabricated screw-retained fixed prostheses were inserted at the end of surgery. Clinical and radiographic evaluations were assessed at 6, 12, and 36 months. At baseline and 6 months after surgery, patients answered Oral Health Impact Profile in Edentulous Adults questionnaire to assess satisfaction. The implant survival rate was 97.9%, whereas the average marginal bone loss was 1.9 ± 1.3 mm after 3 years. At 6 months, patients showed significantly greater satisfaction with their fixed rehabilitation when compared with conventional dentures. The results of this study confirm that rehabilitation with a prefabricated fixed prosthesis supported by implants placed with NobelGuide protocol is a viable and predictable treatment and increases patients' satisfaction and improves oral health-related quality of life.

  3. Impact of target volume coverage with Radiation Therapy Oncology Group (RTOG) 98-05 guidelines for transrectal ultrasound guided permanent Iodine-125 prostate implants

    International Nuclear Information System (INIS)

    Horwitz, Eric M.; Mitra, Raj K.; Uzzo, Robert G.; Das, Indra J.; Pinover, Wayne H.; Hanlon, Alexandra L.; McNeeley, Shawn W.; Hanks, Gerald E.

    2003-01-01

    Purpose: Despite the wide use of permanent prostate implants for the treatment of early stage prostate cancer, there is no consensus for optimal pre-implant planning guidelines that results in maximal post-implant target coverage. The purpose of this study was to compare post-implant target volume coverage and dosimetry between patients treated before and after Radiation Therapy Oncology Group (RTOG) 98-05 guidelines were adopted using several dosimetric endpoints. Materials and methods: Ten consecutively treated patients before the adoption of the RTOG 98-05 planning guidelines were compared with ten consecutively treated patients after implementation of the guidelines. Pre-implant planning for patients treated pre-RTOG was based on the clinical target volume (CTV) defined by the pre-implant TRUS definition of the prostate. The CTV was expanded in each dimension according to RTOG 98-05 and defined as the planning target volume. The evaluation target volume was defined as the post-implant computed tomography definition of the prostate based on RTOG 98-05 protocol recommendations. Implant quality indicators included V 100 , V 90 , V 100 , and Coverage Index (CI). Results: The pre-RTOG median V 100 , V 90 , D 90 , and CI values were 82.8, 88.9%, 126.5 Gy, and 17.1, respectively. The median post-RTOG V 100 , V 90 , D 90 , and CI values were 96.0, 97.8%, 169.2 Gy, and 4.0, respectively. These differences were all statistically significant. Conclusions: Implementation of the RTOG 98-05 implant planning guidelines has increased coverage of the prostate by the prescription isodose lines compared with our previous technique, as indicated by post-implant dosimetry indices such as V 100 , V 90 , D 90 . The CI was also improved significantly with the protocol guidelines. Our data confirms the validity of the RTOG 98-05 implant guidelines for pre-implant planning as it relates to enlargement of the CTV to ensure adequate margin between the CTV and the prescription isodose

  4. Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Mehrnaz Karimi

    1992-04-01

    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  5. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  6. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  7. Methods to measure stability of dental implants

    Directory of Open Access Journals (Sweden)

    Shruti Digholkar

    2014-01-01

    Full Text Available Dental implant treatment is an excellent option for prosthetic restoration that is associated with high success rates. Implant stability is essential for a good outcome. The clinical assessment of osseointegration is based on mechanical stability rather than histological criteria, considering primary stability (absence of mobility in bone bed after implant insertion and secondary stability (bone formation and remodeling at implant-bone interface. However, due to the invasive nature of the histological methods various other methods have been proposed: Radiographs, the surgeon′s perception, Insertion torque (cutting torque analysis, seating torque, reverse torque testing, percussion testing, impact hammer method, pulsed oscillation waveform, implant mobility checker, Periotest, resonance frequency analysis. This review focuses on the methods currently available for the evaluation of implant stability.

  8. Effects of H-implantation energy on the optical stability of implanted usher films under photo-irradiation

    International Nuclear Information System (INIS)

    Awazu, K.; Yasui, H.; Kasamori, M.; Ichikawa, T.; Funada, Y.; Iwaki, M.

    1999-01-01

    A study has been made on the improvement of the optical stability of urushi films under optical irradiation using ion implantation. Ion implantation of hydrogen ions in urushi films was performed with a dose of 10 15 ions/cm 2 at ion energies ranging from 0.2 to 150 keV at room temperature. The photo-irradiation onto the urushi films was carried out at irradiation energies ranging from 40 to 400 MJ/m 2 . H-implantation onto urushi films is useful for improving the optical stability under photo-irradiation when the implantation energy is larger than 60 keV

  9. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  10. The Risk of Acute Kidney Injury and Its Impact on 30-Day and Long-Term Mortality after Transcatheter Aortic Valve Implantation

    Directory of Open Access Journals (Sweden)

    Katrin Gebauer

    2012-01-01

    Full Text Available Background. Transcatheter aortic valve implantation (TAVI is widely used in high risk patients (pts with aortic stenosis. Underlying chronic kidney disease implicates a high risk of postprocedural acute kidney injury (AKI. We analyzed its occurrence, impact on hospital stay, and mortality. Methods. 150 consecutive pts underwent TAVI in our institution (mean age 81 ± 7 years; logistic EuroSCORE 24 ± 15%. AKI definition was a creatinine rise of 26.5 μmol/L or more within 48 hours postprocedural. Ten patients on chronic hemodialysis were excluded. Results. AKI occurred in 28 pts (20%. Baseline creatinine was higher in AKI pts (126.4 ± 59.2 μmol/L versus 108.7 ± 45.1 μmol/L, P=0.09. Contrast media use was distributed evenly. Both, 30-day mortality (29% versus 7%, P<0.0001 and long-term mortality (43% versus 18%, P<0.0001 were higher; hospital stay was longer in AKI pts (20 ± 12 versus 15 ± 10 days, P=0.03. Predicted renal failure calculated STS Score was similar (8.0 ± 5.0% [AKI] versus 7.1 ± 4.0% [non-AKI], P=0.32 and estimated lower renal failure rates than observed. Conclusion. AKI remains a frequent complication with increased mortality in TAVI pts. Careful identification of risk factors and development of more suitable risk scores are essential.

  11. Anomalously deep penetration of hydrogen into niobium under action of pulse high temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Didyk, A.Yu.

    2011-01-01

    The method of elastic recoil detection (ERD) has been used for the study of storage and redistribution processes of hydrogen atoms under the influence of pulse high temperature hydrogen plasma obtained using the 'Plasma Focus' PF-4 set-up in three high purity niobium foils. It was established that with an increase of number of PF-4 set-up pulses there occur spreading and transfer of implanted hydrogen atoms to large depths in three Nb-foils which are significantly larger than the projected range of hydrogen ions (with the velocity ∼ 10 8 cm/s). The maximum hydrogen concentration up to 60 at. % is reached in the nearest to Ph-4 surface of the third Nb-foil at 20 impulses of the Ph-4 set-up. The observed phenomenon can be described by transfer of implanted hydrogen atoms under the action of powerful shock waves, created by pulse hydrogen plasma and (or) by accelerating hydrogen atom diffusion under the influence of compression straining wave at the front of the shock wave at redistribution of hydrogen atoms at large depths. Similar behavior was discovered and described also in series of nickel, vanadium, niobium and tantalum foils (two or three foils and more in a series) including series of foils from heterogeneous (different) materials, which were studied, too

  12. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  13. Interobserver variations of target volume delineation and its impact on irradiated volume in accelerated partial breast irradiation with intraoperative interstitial breast implant

    Directory of Open Access Journals (Sweden)

    Ritu Raj Upreti

    2017-02-01

    Full Text Available Purpose: To investigate the interobserver variations in delineation of lumpectomy cavity (LC and clinical target volume (CTV, and its impact on irradiated volume in accelerated partial breast irradiation using intraoperative multicatheter brachytherapy. Material and methods : Delineation of LC and CTV was done by five radiation oncologists on planning computed tomography (CT scans of 20 patients with intraoperative interstitial breast implant. Cavity visualization index (CVI, four-point index ranging from (0 = poor to (3 = excellent was created and assigned by observers for each patient. In total, 200 contours for all observers and 100 treatment plans were evaluated. Spatial concordance (conformity index, CI common , and CIgen, average shift in the center of mass (COM, and ratio of maximum and minimum volumes (V max /V min of LC and CTV were quantified among all observers and statistically analyzed. Variation in active dwell positions (0.5 cm step for each catheter, total reference air kerma (TRAK, volume enclosed by prescription isodose (V100% among observers and its spatial concordance were analyzed. Results : The mean ± SD CI common of LC and CTV was 0.54 ± 0.09, and 0.58 ± 0.08, respectively. Conformity index tends to increase, shift in COM and V max /V min decrease significantly (p < 0.05, as CVI increased. Out of total 309 catheters, 29.8% catheters had no change, 29.8% and 17.5% catheters had variations of 1 and 2 dwell positions (0.5 cm and 1 cm, respectively. 9.3% catheters shown variations ≥ 10 dwell positions (5 cm. The mean ± SD CI common of V100% was 0.75 ± 0.11. The mean observed V max /V min of prescription isodose and TRAK was 1.18 (range, 1.03 to 1.56 and 1.11 (range, 1.03 to 1.35, respectively. Conclusions : Interobserver variability in delineation of target volume was found to be significantly related to CVI. Smaller variability was observed with excellent visualization of LC. Interobserver variations showed dosimetric

  14. Impact of catalyst reduction mode on selective hydrogenation of cinnamaldehyde over Ru-Sn sol-gel catalysts

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Kumar, N.; Salmi, T.; Murzin, DY.; Karhu, H.; Väyrynen, J.; Červený, L.; Paseka, Ivo

    2003-01-01

    Roč. 42, č. 2 (2003), s. 295-305 ISSN 0888-5885 R&D Projects: GA ČR GA104/00/1009 Institutional research plan: CEZ:AV0Z4032918 Keywords : Supported ruthenium catalysts * Ru-Sn-Al2O3 catalysts * benzene Subject RIV: CA - Inorganic Chemistry Impact factor: 1.317, year: 2003

  15. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  16. Implantation temperature and thermal annealing behavior in H{sub 2}{sup +}-implanted 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Li, B.S., E-mail: b.s.li@impcas.ac.cn; Wang, Z.G.; Jin, J.F.

    2013-12-01

    The effects of hydrogen implantation temperature and annealing temperature in 6H-SiC are studied by the combination of Rutherford backscattering in channeling geometry (RBS/C), high-resolution X-ray diffraction (HRXRD) and scanning electron microscopy (SEM). 6H-SiC wafers were implanted with 100 keV H{sub 2}{sup +} ions to a fluence of 2.5 × 10{sup 16} H{sub 2}{sup +} cm{sup −2} at room temperature (RT), 573 K and 773 K. Post-implantation, the samples were annealing under argon gas flow at different temperatures from 973 K to 1373 K for isochronal annealing (15 min). The relative Si disorder at the damage peak for the sample implanted at RT decreases gradually with increasing annealing temperature. However, the reverse annealing effect is found for the samples implanted at 573 K and 773 K. As-implantation, the intensity of in-plane compressive stress is the maximum as the sample was implanted at RT, and is the minimum as the sample was implanted at 573 K. The intensity of in-plane compressive stress for the sample implanted at RT decreases gradually with increasing annealing temperature, while the intensities of in-plane compressive stress for the sample implanted at 573 K and 773 K show oscillatory changes with increasing annealing temperature. After annealing at 1373 K, blisters and craters occur on the sample surface and their average sizes increase with increasing implantation temperature.

  17. Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks.

    Science.gov (United States)

    Sumida, Kenji; Stück, David; Mino, Lorenzo; Chai, Jeng-Da; Bloch, Eric D; Zavorotynska, Olena; Murray, Leslie J; Dincă, Mircea; Chavan, Sachin; Bordiga, Silvia; Head-Gordon, Martin; Long, Jeffrey R

    2013-01-23

    Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications.

  18. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  19. Construction and characterization of a new high current ion source for research of impact of hydrogen irradiation on wall materials for use in nuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo Parra, Rodrigo; Neu, Rudolf [Max Planck Institute for Plasma Physics, Garching (Germany); Technische Universitaet Muenchen, Garching (Germany); Oberkofler, Martin; Schmid, Klaus; Weghorn, Arno [Max Planck Institute for Plasma Physics, Garching (Germany)

    2016-07-01

    The HSQ (HochStromQuelle) is a high current DuoPIGatron type ion source used for research in surface properties of wall materials for nuclear fusion reactors. The existing HSQ-I will be replaced by the conceptually identical HSQ-II, currently under construction. Varying the acceleration potential and optimizing gas inflow and beam focusing grid voltage, ion currents before the deflecting magnet between 10 and 875 μA were reached for acceleration voltages of 0.7 to 8 kV. The ion beam footprint will be characterized, and ion optics will be installed before and after the deflecting magnet, capable of bending 10 keV Ar. A monoenergetic beam of a single species (e.g. D{sub 3}{sup +}) will finally be used for irradiation of samples in the separate implantation chamber at a base pressure of 10{sup -8} mbar. The energy of the impinging particles ranges from 200 eV/D to several keV/D. Fluxes of 10{sup 15} D/cm{sup 2}/s to the target are expected. The temperature of the sample is varied via electron impact heating and the sample weight can be assessed in situ by means of a magnetic suspension balance.

  20. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  1. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad

    2010-01-01

    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  2. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  3. Magnetic liquefier for hydrogen

    International Nuclear Information System (INIS)

    1992-01-01

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century

  4. Modernization of serial facility 'BULAT-6' for synthesis of vacuum-arc coatings by the method of plasma-based ion implantation and deposition as well as ion hydrogen-free nitriding

    International Nuclear Information System (INIS)

    Shulaev, V.M.; Andreev, A.A.; Rudenko, V.P.

    2008-01-01

    The model of laboratory vacuum-arc facility for realization of the method of plasma-based ion implantation and deposition is worked out by means modernization of serial industrial facility 'BULAT-6'. The facility is suitable for surface modification of instrumental steel items, including the low-alloyed steels with low temperatures of tempering. The low-temperature deposition of coatings on the preliminary nitrided surface of instrument permits obtaining dense coating with minimum maintenance of macroparticles, as well as with coatings superhigh adhesion to the substrate and with superhardness. The coatings possess high property stableness in time.

  5. Determination of hydrogen abundance in selected lunar soils

    Science.gov (United States)

    Bustin, Roberta

    1987-01-01

    Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.

  6. Prosthesis-patient mismatch after transcatheter aortic valve implantation: impact of 2D-transthoracic echocardiography versus 3D-transesophageal echocardiography.

    Science.gov (United States)

    da Silva, Cristina; Sahlen, Anders; Winter, Reidar; Bäck, Magnus; Rück, Andreas; Settergren, Magnus; Manouras, Aristomenis; Shahgaldi, Kambiz

    2014-12-01

    To investigate the role of 2D-transthoracic echocardiography (2D-TTE) and 3D-transesophageal echocardiography (3D-TEE) in the determination of aortic annulus size prior transcatheter aortic valve implantation (TAVI) and its' impact on the prevalence of patient prosthesis mismatch (PPM). Echocardiography plays an important role in measuring aortic annulus dimension in patients undergoing TAVI. This has great importance since it determines both eligibility for TAVI and selection of prosthesis type and size, and can be potentially important in preventing an inadequate ratio between the prosthetic valvular orifice and the patient's body surface area, concept known as prosthesis-patient mismatch (PPM). A total of 45 patients were studied pre-TAVI: 20 underwent 3D-TEE (men/women 12/8, age 84.8 ± 5.6) and 25 2D-TTE (men/women 9/16, age 84.4 ± 5.4) in order to measure aortic annulus diameter. The presence of PPM was assessed before hospital discharge and after a mean period of 3 months. Moderate PPM was defined as indexed aortic valve area (AVAi) ≤ 0.85 cm(2)/m(2) and severe PPM as AVAi 3D-TEE and 2D-TTE respectively p value = n.s) and severe PPM occurred in 10 % of the patients who underwent 3D-TEE and in 20 % in those with 2D-TTE (p value = n.s). The echocardiographic evaluation 3 months post-TAVI showed 25 % moderate PPM in the 3D-TEE group compared with 24 % in the 2D-TTE group (p value = n.s) and no cases of severe PPM in the 3DTEE group comparing to 20 % in the 2D-TTE group (p = 0.032). Our results indicate a higher incidence of severe PPM in patients who performed 2DTTE compared to those performing 3DTEE prior TAVI. This suggests that the 3D technique should replace the 2DTTE analysis when investigating the aortic annulus diameter in patients undergoing TAVI.

  7. Impact of fluorine co-implantation on B deactivation and leakage currents in low and high energy Ge preamorphised p+n shallow junctions

    International Nuclear Information System (INIS)

    Girginoudi, D.; Tsiarapas, C.

    2008-01-01

    The impact of fluorine (F) co-implantation on boron (B) deactivation and B TED, as well as on the I-V characteristics of p + n shallow junctions, have been studied for low (10 keV) and high (70 keV) energy Ge preamorphised (PAI) n-type Si samples, that were annealed at 600 deg. C and 700 deg. C. Transmission electron microscopy revealed the existence of defects and dislocation loops (DLs) in the EOR region. It has been found that F stabilizes the EOR defect population via the increase of EOR defect density and the percentage of the stable DLs. This phenomenon is more pronounced when the preamorphisation is shallow (10 keV Ge energy). SIMS and sheet resistance measurements showed the formation of BICs, which implies B deactivation and increased B TED, especially in the shallow PAI samples and at the 700 deg. C annealing temperature. The role of F on B deactivation is multiplex: in the 70 keV PAI samples, and at 600 deg. C annealing temperature, F forms clusters with B causing further B deactivation. In the case of 700 deg. C annealing temperature, F probably forms fluorine-vacancy (F-V) clusters that trap silicon interstitials (Is), thus reducing the possibility of forming BICs and, therefore, resulting in B re-activation and suppression of B TED. Conversely, in the 10-keV PAI samples, and irrespective of the annealing temperature, F improves significantly the sheet resistance, and we suggest that this is a result of the contribution of two physical mechanisms: in the EOR region, F is trapped into DLs, which release less Is than other types of defects. In the amorphous part of Si, there are probably F-V clusters that trap the Is released from the EOR region. Although F in most cases improves B deactivation, it increases the reverse leakage currents, probably due to the stabilization of the EOR defects. As regards the carrier-transport mechanisms, it has been found that the dominant mechanism is the generation-recombination process under forward bias as well as under

  8. Impact of femoral artery puncture using digital subtraction angiography and road mapping on vascular and bleeding complications after transfemoral transcatheter aortic valve implantation.

    Science.gov (United States)

    El-Mawardy, Mohamed; Schwarz, Bettina; Landt, Martin; Sulimov, Dmitriy; Kebernik, Julia; Allali, Abdelhakim; Becker, Bjoern; Toelg, Ralph; Richardt, Gert; Abdel-Wahab, Mohamed

    2017-01-20

    The use of large-diameter sheaths carries the risk of significant vascular and bleeding complications after transfemoral transcatheter aortic valve implantation (TAVI). In this analysis, we sought to assess the impact of a modified femoral artery puncture technique using digital subtraction angiography (DSA) and road mapping during transfemoral TAVI on periprocedural vascular and bleeding events. This is a retrospective analysis of transfemoral TAVI patients included in a prospective institutional database. The modified femoral artery puncture technique using DSA-derived road mapping guidance was introduced in October 2012. Before the introduction of this technique, vascular puncture was acquired based on an integration of angiographic data, the bony iliofemoral landmarks and a radiopaque object. Consecutive patients who underwent TAVI with the road mapping technique (RM group, n=160) were compared with consecutive patients who underwent TAVI without road mapping (control group, n=160) prior to its introduction. A standardised strategy of periprocedural anticoagulation was adopted in both groups as well as the use of a single suture-based closure device. All endpoints were defined according to the VARC-2 criteria for event definition. The mean age in the RM group was 80±7.7 years compared to 81±5.9 years in the control group (p=0.19), and females were equally distributed between both groups (63.1% vs. 58.1%, p=0.36). The baseline logistic EuroSCORE was 20.7±14.4% vs. 24.9±15.2% in the RM and control group, respectively (p=0.01). Notably, sheath size was significantly larger in the RM compared to the control group due to the more frequent use of the 20 Fr sheath (23.8% vs. 1.8%, proad map group but did not reach statistical significance (8.1% vs. 13.8%, p=0.1). Other forms of vascular and bleeding complications as well as all-cause mortality were comparable in both groups. A modified femoral artery puncture technique using DSA and road mapping was associated

  9. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    Science.gov (United States)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    drier climates inhibiting C4 agriculture. Comparison with studies of modern vegetation and lake sediments indicate that these co-occurring isotopic shifts are not primarily due to differences in plant-wax δD between plant groups. We have developed a preliminary drought impact index based on differences between standardized residuals of plant-wax δD and δ13C records. This index suggests strong climate impacts on agriculture directly before and during the Terminal Classic period in both the southern and northern Maya lowlands. We also find evidence for smaller scale drought impacts on agriculture at the end of the Preclassic Period (ca. 1800 years BP) and at 2500 years BP. Differences in the timing of plant-wax δD and δ13C between the northern and southern Maya Lowlands suggest spatial differences in drought impacts on agriculture that could relate to different societal outcomes of the Terminal Classic between these two regions. Combined analyses of plant-wax δD and δ13C records can provide a potentially valuable indicator of drought impacts on ancient agriculture in regions with longstanding C4-plant agricultural traditions.

  10. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  11. Embryo quality and impact of specific embryo characteristics on ongoing implantation in unselected embryos derived from modified natural cycle in vitro fertilization

    NARCIS (Netherlands)

    Pelinck, Marie-Jose; Hoek, Annemieke; Simons, Arnold H. M.; Heineman, Maas Jan; van Echten-Arends, Janny; Arts, Eus G. J. M.

    Objective: To study the implantation potential of unselected embryos derived from modified natural cycle IVF according to their morphological characteristics. Design: Cohort study. Setting: Academic department of reproductive medicine. Patient(S): A series of 449 single embryo transfers derived from

  12. Impact of ion-implantation-induced band gap engineering on the temperature-dependent photoluminescence properties of InAs/InP quantum dashes

    International Nuclear Information System (INIS)

    Hadj Alouane, M. H.; Ilahi, B.; Maaref, H.; Salem, B.; Aimez, V.; Morris, D.; Turala, A.; Regreny, P.; Gendry, M.

    2010-01-01

    We report on the effects of the As/P intermixing induced by phosphorus ion implantation in InAs/InP quantum dashes (QDas) on their photoluminescence (PL) properties. For nonintermixed QDas, usual temperature-dependent PL properties characterized by a monotonic redshift in the emission band and a continual broadening of the PL linewidth as the temperature increases, are observed. For intermediate ion implantation doses, the inhomogeneous intermixing enhances the QDas size dispersion and the enlarged distribution of carrier confining potential depths strongly affects the temperature-dependent PL properties below 180 K. An important redshift in the PL emission band occurs between 10 and 180 K which is explained by a redistribution of carriers among the different intermixed QDas of the ensemble. For higher implantation doses, the homogeneous intermixing reduces the broadening of the localized QDas state distribution and the measured linewidth temperature behavior matches that of the nonintermixed QDas. An anomalous temperature-dependent emission energy behavior has been observed for extremely high implantation doses, which is interpreted by a possible QDas dissolution.

  13. Impact of programming strategies aimed at reducing nonessential implantable cardioverter defibrillator therapies on mortality: a systematic review and meta-analysis.

    Science.gov (United States)

    Tan, Vern Hsen; Wilton, Stephen B; Kuriachan, Vikas; Sumner, Glen L; Exner, Derek V

    2014-02-01

    Patients who receive implantable cardioverter defibrillator therapies are at higher risk of death versus those who do not. Programmed settings to reduce nonessential implantable cardioverter defibrillator therapies (therapy reduction programming) have been developed but may have adverse effects. This systematic review and meta-analysis assessed the relationship between therapy reduction programming with the risks of death from any cause, implantable cardioverter defibrillator shocks, and syncope. MEDLINE, EMBASE, and clinicaltrials.gov databases were searched to identify relevant studies. Those that followed patients for ≥6 months and reported mortality were included. Six met the inclusion criteria; 4 randomized (Comparison of Empiric to Physician-Tailored Programming of ICDs [EMPIRIC], Multicenter Automatic Defibrillator Implantation Trial-Reduce Inappropriate Therapy [MADIT-RIT], Avoid Delivering Therapies for Non-sustained Arrhythmias in ICD Patients III [ADVANCE III], and Programming Implantable Cardioverter-Defibrillators in Patients with Primary Prevention Indication to Prolong Time to First Shock [PROVIDE]) and 2 prospective studies (Role of Long Detection Window Programming in Patients With Left Ventricular Dysfunction, Non-ischemic Etiology in Primary Prevention Treated with a Biventricular ICD [RELEVANT] and Primary Prevention Parameters Evaluation [PREPARE]). These 6 studies included 7687 (3598 conventional and 4089 therapy reduction programming) patients. Most (77%) participants were men, had a history of ischemic heart disease (56%), and were prescribed β-blockers (84%). Therapy reduction programming was associated with a 30% relative reduction in mortality (95% confidence interval, 16%-41%; Pprogramming (P=0.5). Therapy reduction programming results in a large, significant, and consistent reduction in mortality, with no apparent increase in the risk of syncope.

  14. Hydrogen retention in ion irradiated steels

    International Nuclear Information System (INIS)

    Hunn, J.D.; Lewis, M.B.; Lee, E.H.

    1998-01-01

    In the future 1--5 MW Spallation Neutron Source, target radiation damage will be accompanied by high levels of hydrogen and helium transmutation products. The authors have recently carried out investigations using simultaneous Fe/He,H multiple-ion implantations into 316 LN stainless steel between 50 and 350 C to simulate the type of radiation damage expected in spallation neutron sources. Hydrogen and helium were injected at appropriate energy and rate, while displacement damage was introduced by nuclear stopping of 3.5 MeV Fe + , 1 microm below the surface. Nanoindentation measurements showed a cumulative increase in hardness as a result of hydrogen and helium injection over and above the hardness increase due to the displacement damage alone. TEM investigation indicated the presence of small bubbles of the injected gases in the irradiated area. In the current experiment, the retention of hydrogen in irradiated steel was studied in order to better understand its contribution to the observed hardening. To achieve this, the deuterium isotope ( 2 H) was injected in place of natural hydrogen ( 1 H) during the implantation. Trapped deuterium was then profiled, at room temperature, using the high cross-section nuclear resonance reaction with 3 He. Results showed a surprisingly high concentration of deuterium to be retained in the irradiated steel at low temperature, especially in the presence of helium. There is indication that hydrogen retention at spallation neutron source relevant target temperatures may reach as high as 10%

  15. Study of the microstructural and mechanical properties of titanium-niobium-zirconium based alloys processed with hydrogen and powder metallurgy for use in dental implants; Estudo das propriedades mecanicas e microestruturais de ligas a base de titanio-niobiozirconio processados com hidrogenio e metalurgia do po para utilizacao em implantes dentarios

    Energy Technology Data Exchange (ETDEWEB)

    Duvaizem, Jose Helio

    2009-07-01

    Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)

  16. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  17. Analysis of Data on the Cross Sections for Electron-Impact Ionization and Excitation of Electronic States of Atomic Hydrogen (Review)

    Science.gov (United States)

    Shakhatov, V. A.; Lebedev, Yu. A.

    2018-01-01

    A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.

  18. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  19. Electron impact ionization of size selected hydrogen clusters (H2)N: ion fragment and neutral size distributions.

    Science.gov (United States)

    Kornilov, Oleg; Toennies, J Peter

    2008-05-21

    Clusters consisting of normal H2 molecules, produced in a free jet expansion, are size selected by diffraction from a transmission nanograting prior to electron impact ionization. For each neutral cluster (H2)(N) (N=2-40), the relative intensities of the ion fragments Hn+ are measured with a mass spectrometer. H3+ is found to be the most abundant fragment up to N=17. With a further increase in N, the abundances of H3+, H5+, H7+, and H9+ first increase and, after passing through a maximum, approach each other. At N=40, they are about the same and more than a factor of 2 and 3 larger than for H11+ and H13+, respectively. For a given neutral cluster size, the intensities of the ion fragments follow a Poisson distribution. The fragmentation probabilities are used to determine the neutral cluster size distribution produced in the expansion at a source temperature of 30.1 K and a source pressure of 1.50 bar. The distribution shows no clear evidence of a magic number N=13 as predicted by theory and found in experiments with pure para-H2 clusters. The ion fragment distributions are also used to extract information on the internal energy distribution of the H3+ ions produced in the reaction H2+ + H2-->H3+ +H, which is initiated upon ionization of the cluster. The internal energy is assumed to be rapidly equilibrated and to determine the number of molecules subsequently evaporated. The internal energy distribution found in this way is in good agreement with data obtained in an earlier independent merged beam scattering experiment.

  20. Excitation of the hydrogen atom by fast-electron impact in the presence of a laser field

    International Nuclear Information System (INIS)

    Bhattacharya, M.; Sinha, C.; Sil, N.C.

    1991-01-01

    An approach has been developed to study the excitation of a ground-state H atom to the n=2 level under the simultaneous action of fast-electron impact and a monochromatic, linearly polarized, homogeneous laser beam. The laser frequency is assumed to be low (soft-photon limit) so that a stationary-state perturbation theory can be applied as is done in the adiabatic theory. An elegant method has been developed in the present work to construct the dressed excited-state wave functions of the H atom using first-order perturbation theory in the parabolic coordinate representation. By virtue of this method, the problem arising due to the degeneracy of the excited states of the H atom has been successfully overcome. The main advantage of the present approach is that the dressed wave function has been obtained in terms of a finite number of Laguerre polynomials instead of an infinite summation occurring in the usual perturbative treatment. The amplitude for direct excitation (without exchange) has been obtained in closed form. Numerical results for differential cross sections are presented for individual excitations to different Stark manifolds as well as for excitations to the n=2 level at high energies (100 and 200 eV) and for field directions both parallel and perpendicular to the incident electron momentum. Extension to a higher order of perturbation is also possible in the present approach for the construction of the dressed states, and the electron-exchange effect can also be taken into account without any further approximation

  1. Excitation of the hydrogen atom by fast-electron impact in the presence of a laser field

    Science.gov (United States)

    Bhattacharya, Manabesh; Sinha, C.; Sil, N. C.

    1991-08-01

    An approach has been developed to study the excitation of a ground-state H atom to the n=2 level under the simultaneous action of fast-electron impact and a monochromatic, linearly polarized, homogeneous laser beam. The laser frequency is assumed to be low (soft-photon limit) so that a stationary-state perturbation theory can be applied as is done in the adiabatic theory. An elegant method has been developed in the present work to construct the dressed excited-state wave functions of the H atom using first-order perturbation theory in the parabolic coordinate representation. By virtue of this method, the problem arising due to the degeneracy of the excited states of the H atom has been successfully overcome. The main advantage of the present approach is that the dressed wave function has been obtained in terms of a finite number of Laguerre polynomials instead of an infinite summation occurring in the usual perturbative treatment. The amplitude for direct excitation (without exchange) has been obtained in closed form. Numerical results for differential cross sections are presented for individual excitations to different Stark manifolds as well as for excitations to the n=2 level at high energies (100 and 200 eV) and for field directions both parallel and perpendicular to the incident electron momentum. Extension to a higher order of perturbation is also possible in the present approach for the construction of the dressed states, and the electron-exchange effect can also be taken into account without any further approximation.

  2. Hydrogen manufacturing using plasma reformers

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  3. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  4. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  5. Intercavitary implants dosage calculation

    International Nuclear Information System (INIS)

    Rehder, B.P.

    The use of spacial geometry peculiar to each treatment for the attainment of intercavitary and intersticial implants dosage calculation is presented. The study is made in patients with intercavitary implants by applying a modified Manchester technique [pt

  6. Research in Hydrogen Passivation of Defects and Impurities in Silicon: Final Report, 2 May 2000-2 July 2003

    International Nuclear Information System (INIS)

    Ashok, S.

    2004-01-01

    This subcontract report describes hydrogenating Si samples by different methods such as low-energy implantation, electron cyclotron resonance (ECR) plasma, and thermal diffusion. The samples were provided through NREL. The experimental work, carried out at Penn State, involved the study of hydrogen interaction with defects, trapping, migration, and formation of complexes. The principal vehicle for the latter study was ion implantation, and the intent to understand mechanisms of defect passivation and activation by hydrogen. NREL implemented a study of hydrogen passivation of impurities and defects in silicon solar cells. The work included theoretical and experimental components performed at different universities. The theoretical studies consisted of the calculation of the structure and parameters related to hydrogen diffusion and interactions of hydrogen with transition-metal impurities in silicon. Experimental studies involved measurements of hydrogen and hydrogen-impurity complexes, and diffusion properties of various species of hydrogen in Si. The experimental work at Penn State included introduction of hydrogen in a variety of PV Si by ECR plasma, low-energy ion implantation, and thermal diffusion. The specific tasks were the evaluation of hydrogen interaction with defects engineered by ion implantation; defect passivation, activation, and migration in hydrogenated Si under thermal anneal; and electrical activity of hydrogen-impurity complexes. Electrical characterization entailed I-V and C-V measurements, spreading resistance, and deep-level transient spectroscopy (DLTS)

  7. Plasma source ion implantation of ammonia into electroplated chromium

    International Nuclear Information System (INIS)

    Scheuer, J.T.; Walter, K.C.; Rej, D.J.; Nastasi, M.; Blanchard, J.P.

    1995-01-01

    Ammonia gas (NH 3 ) has been used as a nitrogen source for plasma source ion implantation processing of electroplated chromium. No evidence was found of increased hydrogen concentrations in the bulk material, implying that ammonia can be used without risking hydrogen embrittlement. The retained nitrogen dose of 2.1 x 10 17 N-at/cm 2 is sufficient to increase the surface hardness of electroplated Cr by 24% and decrease the wear rate by a factor of 4

  8. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  9. Hydrogen transport behavior of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Hankins, M.R.; Longhurst, G.R.; Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho, Inc., Idaho Falls, ID (United States)); Macaulay-Newcombe, R.G. (Dept. of Engineering Physics, Univ. Hamilton, ON (Canada))

    1992-12-01

    Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy. Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important. (orig.).

  10. Brain implants for substituting lost motor function: state of the art and potential impact on the lives of motor-impaired seniors.

    Science.gov (United States)

    Ramsey, N F; Aarnoutse, E J; Vansteensel, M J

    2014-01-01

    Recent scientific achievements bring the concept of neural prosthetics for reinstating lost motor function closer to medical application. Current research involves severely paralyzed people under the age of 65, but implications for seniors with stroke or trauma-induced impairments are clearly on the horizon. Demographic changes will lead to a shortage of personnel to care for an increasing population of senior citizens, threatening maintenance of an acceptable level of care and urging ways for people to live longer at their home independent from personal assistance. This is particularly challenging when people suffer from disabilities such as partial paralysis after stroke or trauma, where daily personal assistance is required. For some of these people, neural prosthetics can reinstate some lost motor function and/or lost communication, thereby increasing independence and possibly quality of life. In this viewpoint article, we present the state of the art in decoding brain activity in the service of brain-computer interfacing. Although some noninvasive applications produce good results, we focus on brain implants that benefit from better quality brain signals. Fully implantable neural prostheses for home use are not available yet, but clinical trials are being prepared. More sophisticated systems are expected to follow in the years to come, with capabilities of interest for less severe paralysis. Eventually the combination of smart robotics and brain implants is expected to enable people to interact well enough with their environment to live an independent life in spite of motor disabilities. © 2014 S. Karger AG, Basel.

  11. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli.

    Science.gov (United States)

    Sharma, Preeti; Melkania, Uma

    2018-05-01

    In the present study, the effect of heavy metals (lead, mercury, copper, and chromium) on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. Heavy metals were applied at concentration range of 0.5, 1, 2, 5, 10, 20, 50 and 100 mg/L. The results revealed that lead, mercury, and chromium negatively affected hydrogen production for the range of concentrations applied. Application of copper slightly enhanced hydrogen production at low concentration and resulted in the hydrogen yield of 36.0 mLH 2 /gCarbo initial with 10 mg/L copper supplementation as compared to 24.2 mLH 2 /gCarbo initial in control. However, the higher concentration of copper (>10 mg/L) declined hydrogen production. Hydrogen production inhibition potential of heavy metals can be arranged in the following increasing order: Cu 2+  metal addition. Thus, the present study reveals that the presence of heavy metals in the feedstock is detrimental for the hydrogen production. Therefore, it is essential to remove the toxic heavy metals prior to anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis

    Directory of Open Access Journals (Sweden)

    Gattinger Johannes

    2016-09-01

    Full Text Available Aim of this study was to prove the possibility of manufacturing patient specific root analogue two-part (implant and abutment implants by direct metal laser sintering. The two-part implant design enables covered healing of the implant. Therefore, CT-scans of three patients are used for reverse engineering of the implants, abutments and crowns. Patient specific implants are manufactured and measured concerning dimensional accuracy and surface roughness. Impacts of occlusal forces are simulated via FEA and compared to those of standard implants.

  13. Formation of metal-alloy nanoclusters in silica by ion implantation and annealing in selected atmosphere

    International Nuclear Information System (INIS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Mattei, G.; Mazzoldi, P.; Sada, C.; Zhang, X.

    2000-01-01

    The formation of binary alloy clusters in sequentially ion-implanted Au-Cu or Au-Ag silica glass has been studied as a function of the annealing atmosphere. Alloy formation has been evidenced in the as-implanted samples. The selective influence on Au precipitation of either oxygen or hydrogen annealing atmosphere governs the alloy cluster formation and the thermal stability

  14. Influence of ion implanted helium on deuterium trapping in Kh18N10T stainless steel

    International Nuclear Information System (INIS)

    Tolstolutskaya, G.D.; Ruzhitskij, V.V.; Kopanets, I.E.

    2004-01-01

    The results are presented on evolution of distribution profiles and helium and deuterium thermal desorption ion implanted in steel 18Cr10NiTi. Accumulation, trapping, retention and microstructure evolution are studied; effect helium and hydrogen simultaneous implantation on these processes is also studied

  15. Patient satisfaction with maxillary 3-implant overdentures using different attachment systems opposing mandibular 2-implant overdentures.

    Science.gov (United States)

    Al-Zubeidi, Mohammed I; Alsabeeha, Nabeel H M; Thomson, W Murray; Payne, Alan G T

    2012-05-01

    Patient-based outcomes with maxillary overdentures on a minimum number of implants, opposing mandibular 2-implant overdentures are not evident in the literature. To evaluate patient's satisfaction with maxillary 3-implant overdentures, opposing mandibular 2-implant overdentures, using two different attachment systems over the first 2 years of service. Forty participants wearing mandibular 2-implant overdentures for 3 years were randomly allocated to one of two similar implant system groups to receive maxillary 3-implant overdentures. Twenty participants were allocated to splinted and unsplinted attachment system treatment groups for each system. Patient satisfaction with pre-treatment complete maxillary dentures, with maxillary 3-implant overdentures at baseline and annually for 2 years, was measured using visual analogue scale questionnaires and the oral health impact profiles. Palatal coverage of the maxillary overdentures was reduced at the first annual recall. Data showed significant improvement in pain reduction, comfort, stability, and function variables of the visual analogue scale after treatment. Analysis by prosthodontic design using visual analogue scale showed no significant difference. The total oral health impact profile-14 scores after treatment for all participants, regardless of prosthodontic design, were significantly lower (more satisfied). The overall oral health impact profile-20E score at baseline was significantly higher (more satisfied) compared with pre-treatment conventional maxillary dentures. No significant changes were observed in the first or second years compared with baseline results. Twenty-two participants (84.6%) preferred reduced palatal coverage, regardless of prosthodontic design, after 1 year. Twenty participants (76.9%) still preferred reduced palatal coverage at the end of the second year. The provision of maxillary 3-implant overdentures to oppose mandibular 2-implant overdentures significantly improve levels of patient

  16. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  17. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments

  18. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.; Muhich, Christopher L.; Al-Shankiti, Ibraheam; Weimer, Alan W.

    2016-01-01

    . The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas

  19. Trends in cochlear implants.

    Science.gov (United States)

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.

  20. Benefits and Risks of Cochlear Implants

    Science.gov (United States)

    ... and Medical Procedures Implants and Prosthetics Cochlear Implants Benefits and Risks of Cochlear Implants Share Tweet Linkedin ... the Use of Cochlear Implants What are the Benefits of Cochlear Implants? For people with implants: Hearing ...

  1. Hydrogenated graphenes by birch reduction: influence of electron and proton sources on hydrogenation efficiency, magnetism, and electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Eng, A.Y.S.; Sofer, Z.; Huber, Š.; Bouša, D.; Maryško, Miroslav; Pumera, M.

    2015-01-01

    Roč. 21, č. 7 (2015), 16828-16838 ISSN 0947-6539 Institutional support: RVO:68378271 Keywords : hydrogenated graphenes * birch reduction * magnetism * electrochemistry * hydrogenation efficiency Subject RIV: CA - Inorganic Chemistry Impact factor: 5.771, year: 2015

  2. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  3. Hydrogen, fuel of the future?

    International Nuclear Information System (INIS)

    Bello, B.

    2008-01-01

    The European project HyWays has drawn out the road map of hydrogen energy development in Europe. The impact of this new energy vector on the security of energy supplies, on the abatement of greenhouse gases and on the economy should be important in the future. This article summarizes the main conclusions of the HyWays study: CO 2 emissions, hydrogen production mix, oil saving abatement, economic analysis, contribution of hydrogen to the development of renewable energies, hydrogen uses, development of regional demand and of users' centers, transport and distribution. The proposals of the HyWays consortium are as follows: implementing a strong public/private European partnership to reach the goals, favoring market penetration, developing training, tax exemption on hydrogen in the initial phase for a partial compensation of the cost difference, inciting public fleets to purchase hydrogen-fueled vehicles, using synergies with other technologies (vehicles with internal combustion engines, hybrid vehicles, biofuels of second generation..), harmonizing hydrogen national regulations at the European scale. (J.S.)

  4. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  5. Antiproton collisions with molecular hydrogen

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Theoretical antiproton and proton cross sections for ionization and excitation of hydrogen molecules as well as energy spectra of the ionized electrons were calculated in the impact-energy range from 8  to  4000  keV. The cross sections were computed with the close-coupling formulation of the sem......Theoretical antiproton and proton cross sections for ionization and excitation of hydrogen molecules as well as energy spectra of the ionized electrons were calculated in the impact-energy range from 8  to  4000  keV. The cross sections were computed with the close-coupling formulation...

  6. Dental implants in medically complex patients-a retrospective study.

    Science.gov (United States)

    Manor, Yifat; Simon, Roy; Haim, Doron; Garfunkel, Adi; Moses, Ofer

    2017-03-01

    Dental implant insertion for oral rehabilitation is a worldwide procedure for healthy and medically compromised patients. The impact of systemic disease risks on the outcome of implant therapy is unclear, since there are few if any published randomized controlled trials (RCTs). The objective of this study is to investigate the rate of complications and failures following dental implantation in medically compromised patients in order to elucidate risk factors and prevent them. A retrospective cohort study was conducted from patient files treated with dental implantation between the years 2008-2014. The study group consisted of medically complex patients while the control group consisted of healthy patients. Preoperative, intraoperative, and post operative clinical details were retrieved from patients' files. The survival rate and the success rate of the dental implants were evaluated clinically and radiographically. A total of 204 patients (1003 dental implants) were included in the research, in the study group, 93 patients with 528 dental implants and in the control group, 111 patients with 475 dental implants. No significant differences were found between the groups regarding implant failures or complications. The failure rate of dental implants among the patients was 11.8 % in the study group and 16.2 % in the control group (P = 0.04). It was found that patients with a higher number of implants (mean 6.8) had failures compared with patients with a lower number of implants (mean 4.2) regardless of their health status (P dental implantation in medically complex patients and in healthy patients. Medically complex patients can undergo dental implantation. There are similar rates of complications and failures of dental implants in medically complex patients and in healthy patients.

  7. Modifications of the hydriding kinetics of a metallic surface, using ion implantation

    International Nuclear Information System (INIS)

    Crusset, D.

    1992-10-01

    Uranium reacts with hydrogen to form an hydride: this reaction leads to the total destruction of the material. To modify the reactivity of an uranium surface towards hydrogen, ion implantation was selected, among surface treatments techniques. Four elements (carbon, nitrogen, oxygen, sulfur) were implanted to different doses. The results show a modification of the hydriding mechanism and a significant increase in the reaction induction times, notably at high implantation doses. Several techniques (SIMS, X-rays phases analysis and residual stresses determination) were used to characterize the samples and understand the different mechanisms involved

  8. Canadian Hydrogen Association workshop on building Canadian strength with hydrogen systems. Proceedings

    International Nuclear Information System (INIS)

    2006-01-01

    The Canadian Hydrogen Association workshop on 'Building Canadian Strength with Hydrogen Systems' was held in Montreal, Quebec, Canada on October 19-20, 2006. Over 100 delegates attended the workshop and there were over 50 presentations made. The Canadian Hydrogen Association (CHA) promotes the development of a hydrogen infrastructure and the commercialization of new, efficient and economic methods that accelerate the adoption of hydrogen technologies that will eventually replace fossil-based energy systems to reduce greenhouse gas emissions. This workshop focused on defining the strategic direction of research and development that will define the future of hydrogen related energy developments across Canada. It provided a forum to strengthen the research, development and innovation linkages among government, industry and academia to build Canadian strength with hydrogen systems. The presentations described new technologies and the companies that are making small scale hydrogen and hydrogen powered vehicles. Other topics of discussion included storage issues, hydrogen safety, competition in the hydrogen market, hydrogen fuel cell opportunities, nuclear-based hydrogen production, and environmental impacts

  9. Solar hydrogen for urban trucks

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  10. Impact of hydrogen absorption on crystal structure and magnetic properties of RE{sub 2}T{sub 2}X compounds

    Energy Technology Data Exchange (ETDEWEB)

    Mašková, S., E-mail: maskova@mag.mff.cuni.cz [Department of Condensed Matter Physics, Charles University, Prague 2 (Czech Republic); Kolomiets, A. [Department of Condensed Matter Physics, Charles University, Prague 2 (Czech Republic); Department of Physics, Lviv Polytechnic National University, Lviv (Ukraine); Havela, L. [Department of Condensed Matter Physics, Charles University, Prague 2 (Czech Republic); Andreev, A.V. [Institute of Physics, AVCR, Prague 8 (Czech Republic); Svoboda, P. [Department of Condensed Matter Physics, Charles University, Prague 2 (Czech Republic)

    2015-10-05

    Highlights: • RE{sub 2}Pd{sub 2}In(Sn) compounds absorb, depending on RE, different amounts of hydrogen. • Compounds with the light rare earths become amorphous upon the hydrogenation. • Compounds with the heavy rare earths preserve the original tetragonal structure. • Magnetic ordering temperatures of RE{sub 2}Pd{sub 2}In compounds are reduced by the hydrogenation. - Abstract: RE{sub 2}Pd{sub 2}In, RE{sub 2}Pd{sub 2}Sn compounds (RE = rare earth) absorb, depending on the rare earth (RE) element, different amounts of hydrogen. The parent compounds RE{sub 2}Pd{sub 2}In show the linear decrease of both lattice parameters and the unit cell volume with the increasing atomic number of RE, attributed to the lanthanide contraction. All the compounds absorb at least 2 H/f.u.; the tetragonal structure is merely expanded. The expansion is anisotropic (Δc/c > Δa/a), and for RE = Tb, Dy, Ho, and Er the lattice even contracts along the a-axis (Δa/a < 0), whereas Δc/c still weakly increases. A higher H concentration can be achieved in the compounds with light rare earths (La, Nd, both for In and Sn), which then become amorphous. The magnetic ordering temperatures of all studied RE{sub 2}Pd{sub 2}In compounds are dramatically reduced by the hydrogenation, typically to the temperature range below 1.8 K.

  11. Donor level of interstitial hydrogen in GaAs

    International Nuclear Information System (INIS)

    Dobaczewski, L.; Bonde Nielsen, K.; Nylandsted Larsen, A.; Peaker, A.R.

    2006-01-01

    The first data evidencing the existence of the donor level of the interstitial hydrogen in GaAs are presented. The abundant formation of the (0/+) donor level after in situ low-temperature implantation of hydrogen into the depletion layer of GaAs Schottky diodes has been observed and the activation energy and annealing properties have been determined by Laplace DLTS. The activation energy for electron emission of this donor state is 0.14eV. Above 100K the hydrogen deep donor state is unstable, converting to a more stable form when there are electrons available for the capture process. A slightly perturbed form of the hydrogen donor in its neutral charge state can be recovered by illuminating the sample. This process releases twice as many electrons as the ionisation process of the hydrogen donor state itself. This fact, by analogy with the silicon case, evidences the negative-U behaviour of hydrogen in GaAs

  12. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  13. The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Peteves, Stathis D.

    2005-01-01

    Carbon sequestration is a distinct technological option with a potential for controlling carbon emissions; it complements other measures, such as improvements in energy efficiency and utilization of renewable energy sources. The deployment of carbon sequestration technologies in electricity generation and hydrogen production will increase the production costs of these energy carriers. Our economic assessment has shown that the introduction of carbon sequestration technologies in Europe in 2020, will result in an increase in the production cost of electricity by coal and natural gas technologies of 30-55% depending on the electricity-generation technology used; gas turbines will remain the most competitive option for generating electricity; and integrated gasification combined cycle technology will become competitive. When carbon sequestration is coupled with natural-gas steam reforming or coal gasification for hydrogen production, the production cost of hydrogen will increase by 14-16%. Furthermore, natural-gas steam reforming with carbon sequestration is far more economically competitive than coal gasification

  14. The role of implantation damage in the production of silicon-on-insulator films by co-implantation of He+ and H+

    International Nuclear Information System (INIS)

    Venezia, V.C.; Agarwal, A.; Lucent Technologies, Murray Hill, NJ; Haynes, T.E.; Holland, O.W.; Eaglesham, D.J.; Weldon, M.K.; Chabal, Y.J.

    1998-01-01

    Recent work has demonstrated that the process of silicon thin film separation by hydrogen implantation, as well as the more basic phenomenon of surface blistering, can occur at a much lower total dose when H and He are co-implanted than when H is implanted alone. Building on that work, this paper investigates the role of implantation damage in this process by separating the contributions of gas pressure from those of damage. Three different experiments using co-implantation were designed. In the first of these experiments, H and He implants were spatially separated thereby separating the damage from each implant. The second experiment involved co-implantation of H and He at a temperature of 77 K to retain a larger amount of damage for the same gas dose. In the third experiment, Li was co-implanted with H, to create additional damage without introducing additional gas. These experiments together show that increasing the implantation damage itself hampers the formation of surface blisters, and that the increased efficiency observed for He co-implantation with H is due to the supplementary source of gas provided by the He

  15. Ion implantation in semiconductors

    International Nuclear Information System (INIS)

    Gusev, V.; Gusevova, M.

    1980-01-01

    The historical development is described of the method of ion implantation, the physical research of the method, its technological solution and practical uses. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material, ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions. (M.S.)

  16. Ion implantation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, V; Gusevova, M

    1980-06-01

    The historical development of the method of ion implantation, the physical research of the method, its technological solution and practical uses is described. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material and ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions.

  17. Trends in Cochlear Implants

    OpenAIRE

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic as...

  18. Impact of Ni promotion on the hydrogenation pathways of phenanthrene on MoS 2 /γ-Al 2 O 3

    Energy Technology Data Exchange (ETDEWEB)

    Schachtl, Eva; Yoo, Jong Suk; Gutiérrez, Oliver Y.; Studt, Felix; Lercher, Johannes A.

    2017-08-01

    The reaction network and elementary steps of the hydrogenation of phenanthrene are explored on parent and Ni-promoted MoS2/c-Al2O3. Two pathways were identified, i.e., Path 1: Phenanthrene _ 9,10-dihydrophenanthrene (DiHPhe)?1,2,3,4,4a,9,10,10a-octahydro-phenanthrene (asymOHPhe), and Path 2: Phenanthrene ?1,2,3,4-tetrahydrophenanthrene (TetHPhe)?1,2,3,4,5,6,7,8-octahydrophenan threne. The steps TetHPhe?asymOHPhe (hydrogenation), and DiHPhe?TetHPhe (hydrogenationisomerization) become notable at phenanthrene conversions above 20%. The reaction preferentially proceeds via Path 1 (90% selectivity) on MoS2/Al2O3. Ni promotion (Ni/(Ni + Mo) molar ratio of 0.3 at the edges on MoS2) increases the hydrogenation activity per active edge twofold and leads to 50% selectivity to both pathways. The reaction orders in H2 vary from _0.8 on MoS2/Al2O3 to _1.2 on Ni-MoS2/Al2O3, whereas the reaction orders in phenanthrene (_0.6) hardly depend on Ni promotion. The reaction orders in H2S are zero on MoS2/Al2O3 and slightly negative on Ni-MoS2/Al2O3. DFT calculations indicate that phenanthrene is preferentially adsorbed parallel to the basal planes, while H is located at the edges perpendicular to the basal planes. Theory also suggests that Ni atoms, incorporated preferentially on the S-edges, increase the stability of hydrogenated intermediates. Hydrogenation of phenanthrene proceeds through quasi-equilibrated adsorption of the reactants followed by consecutive addition of hydrogen pairs to the adsorbed hydrocarbon. The rate determining steps for the formation of DiHPhe and TetHPhe are the addition of the first and second hydrogen pair, respectively. The concentration of SH groups (activated H at the edges) increases with Ni promotion linearly correlating the rates of Path 1 and Path 2, albeit with different functions. The enhancing effect of Ni on Path 2 is attributed to accelerated hydrogen addition to adsorbed hydrocarbons without important changes in their coverages.

  19. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  20. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  1. [Silastic implant and synovitis].

    Science.gov (United States)

    Sennwald, G

    1989-07-22

    The silastic implant based on siloxane polymere induces granulomatous synovitis in certain predisposed individuals, a reaction which may continue even after removal of the implant. This is also true of a prosthesis of the trapezium in two of our patients, though to a lesser degree. This is probably the reason why the problem has not yet been widely recognized. The hypothesis is put forward that an enzymatic predisposition may allow chemical degradation of the fragmented silastic implant into a toxic component responsible for the pathologic condition. The slow progression of the lesions is a challenge for the future and puts in question the further use of silastic implants.

  2. Cochlear implant magnet retrofit.

    Science.gov (United States)

    Cohen, N L; Breda, S D; Hoffman, R A

    1988-06-01

    An implantable magnet is now available for patients who have received the standard Nucleus 22-channel cochlear implant and who are not able to wear the headband satisfactorily. This magnet is attached in piggy-back fashion to the previously implanted receiver/stimulator by means of a brief operation under local anesthesia. Two patients have received this magnet retrofit, and are now wearing the headset with greater comfort and satisfaction. It is felt that the availability of this magnet will increase patient compliance in regard to hours of implant usage.

  3. Motor Development of Deaf Children with and without Cochlear Implants

    Science.gov (United States)

    Gheysen, Freja; Loots, Gerrit; Van Waelvelde, Hilde

    2008-01-01

    The purpose of this study was to investigate the impact of a cochlear implant (CI) on the motor development of deaf children. The study involved 36 mainstreamed deaf children (15 boys, 21 girls; 4- to 12-years old) without any developmental problems. Of these children, 20 had been implanted. Forty-three hearing children constituted a comparison…

  4. The impact of changing antiseptic skin preparation agent used for cardiac implantable electronic device (CIED) procedures on the risk of infection.

    Science.gov (United States)

    Qintar, Mohammed; Zardkoohi, Omeed; Hammadah, Muhammad; Hsu, Amy; Wazni, Oussama; Wilkoff, Bruce L; Tarakji, Khaldoun G

    2015-02-01

    Cardiac implantable electronic device (CIED) infection is a major complication that is associated with increased morbidity and mortality. Recent data suggested a relationship between the antiseptic agent used for skin preparation at time of CIED procedure and risk for infection. On April 30, 2011, we changed the antiseptic agent used for skin preparation at our tertiary care facility from chlorhexidine-alcohol to povidone-iodine for all CIED procedures. We retrospectively reviewed records of all patients who underwent CIED procedure 1 year before and after the change. CIED infection was defined as pocket or endovascular systemic infection that required removal within 1 year of the index procedure. We examined if the change affected the risk of CIED infection. A total of 2,792 patients underwent 2,840 CIED procedures; 1,748 (61.5%) had implantable cardioverter defibrillator procedures and 1,092 (38.4%) had permanent pacemaker procedures. Chlorhexidine-alcohol agent was used in 1,450 (51.1%) procedures, and povidone-iodine agent was used in 1,390 (48.9%). After 1 year of follow-up, 31 patients (1.09%) developed CIED infection that required system removal. The 1-year infection rate was 1.1% among both antiseptic agent groups and there were no significant differences in the infection presentations among both groups (P = 0.950). Multivariate Cox proportional hazards regression model showed that risk factors for infection within 1 year included age, diabetes, and African American race. In one large cohort of patients undergoing CIED procedures, the antiseptic agent used for skin preparation (chlorhexidine-alcohol vs povidone-iodine) was not associated with increased risk of developing CIED infection. ©2014 Wiley Periodicals, Inc.

  5. Destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; Dufour, L

    1929-01-21

    Oils of high boiling point, e.g. gas oil, lamp oil, schist oil, brown coal tar etc., are converted into motor benzine by heating them at 200 to 500/sup 0/C under pressure of 5 to 40 kilograms/cm/sup 2/ in the presence of ferrous chloride and gases such as hydrogen, or water gas, the desulfurization of the oils proceeding simultaneously. One kilogram of lamp oil and 100 g. ferrous chloride are heated in an autoclave in the presence of water gas under a pressure of 18 kg/cm/sup 2/ to 380 to 400/sup 0/C. The gaseous products are allowed to escape intermittently and are replaced by fresh water gas. A product distilling between 35 and 270/sup 0/C is obtained.

  6. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    Science.gov (United States)

    Wimmer, Michael

    transport channels. My findings suggest that the hydrogen-bond networks are crucial in understanding the conductance of these junctions. A broader impact of this work pertains the fact that characterizing transport through hydrogen bonding networks may help in developing faster and cost-effective approaches to personalized medicine, to advance DNA sequencing and implantable electronics, and to progress in the design and application of new drugs.

  7. Hydrogen trapping in and release from tungsten: modeling and comparison with graphite with regard to its use as fusion reactor material

    International Nuclear Information System (INIS)

    Franzen, P.; Garcia-Rosales, C.; Plank, H.; Alimov, V.Kh.

    1997-01-01

    Trapping and release of deuterium implanted in tungsten is investigated by modeling the results of reemission, thermal and isothermal desorption experiments. Rate coefficients and activation energies for diffusion, trapping and detrapping are derived. Hydrogen atoms are able to diffuse deep into tungsten, establishing a solute amount of the same order of magnitude as the trapped one. This 'diffusion zone' exceeds the implantation zone by more than two orders of magnitude, even at room temperature. The solute amount of hydrogen in tungsten depends only slightly on the incident ion energy, but scales with implantation fluence. This high amount of solute hydrogen is the main difference of tungsten compared to graphite where nearly all hydrogen is trapped in the implantation zone, the solute amount being orders of magnitude lower. The resulting unlimited accumulation of hydrogen in tungsten deep in the material down to the backward surface disadvantages tungsten as fusion reactor material with regard to hydrogen recycling properties. (orig.)

  8. Impact of furan derivatives and phenolic compounds on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli.

    Science.gov (United States)

    Sharma, Preeti; Melkania, Uma

    2017-09-01

    In the present study, the effect of furan derivatives (furfural and 5-hydroxymethylfurfural) and phenolic compounds (vanillin and syringaldehyde) on hydrogen production from organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. The inhibitors were applied in the concentration ranges of 0.25, 0.5, 1, 2 and 5g/L each. Inhibition coefficients of phenolic compounds were higher than those of furan derivatives and vanillin exhibited maximum inhibition coefficients correspondingly lowest hydrogen yield among all inhibitors. Furfural and 5-hydroxymethylfurfural addition resulted in an average decrease of 26.99% and 37.16% in hydrogen yield respectively, while vanillin and syringaldehyde resulted in 49.40% and 42.26% average decrease in hydrogen yield respectively. Further analysis revealed that Furfural and 5-hydroxymethylfurfural were completely degraded up to concentrations of 1g/L, while vanillin and syringaldehyde were degraded completely up to the concentration of 0.5g/L. Volatile fatty acid generation decreased with inhibitors addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure.

    Science.gov (United States)

    Zhao, Jing; Westerholm, Maria; Qiao, Wei; Yin, Dongmin; Bi, Shaojie; Jiang, Mengmeng; Dong, Renjie

    2018-05-01

    The present study investigates the conversion of acetate, propionate and hydrogen consumption linked to the microbial community structure and related to temperature and substrate concentration. Biogas reactors were continuously fed with coffee powder (20 g-COD/L) or acetate (20, 40, and 60 g-COD/L) and operated for 193 days at 37 °C or 55 °C conditions. Starting HRT was 23 days which was then reduced to 7 days. The kinetics of acetate and propionate degradation and hydrogen consumption rates were measured in batch assays. At HRT 7 days, the degradation rate of propionate was higher in thermophilic batches, while acetate degradation rate was higher at mesophilic conditions. The gaseous hydrogen consumption in acetate reactors increased proportionally with temperature and substrate concentration, while the dissolved hydrogen was not affected. The relative high abundance of hydrogentrophic methanogens indicated that the methanogenesis was directed towards the syntrophic acetate oxidation pathway at high acetate concentration and high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Towards an ammonia-mediated hydrogen economy?

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Johannessen, Tue; Sørensen, Rasmus Zink

    2006-01-01

    Materialization of a hydrogen economy could provide a solution to significant global challenges, In particular. the possibility of improving the efficiency and simultaneously minimizing the environmental impact of energy conversion processes, together with the opportunity to reduce the dependency...

  11. A hydrogen economy: opportunities and challenges

    International Nuclear Information System (INIS)

    Tseng, P.; Lee, J.; Friley, P.

    2005-01-01

    A hydrogen economy, the long-term goal of many nations, can potentially confer energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel-cell technologies, problems in hydrogen production and its distribution infrastructure, and the response of petroleum markets. This study uses the US MARKAL model to simulate the impacts of hydrogen technologies on the US energy system and to identify potential impediments to a successful transition. Preliminary findings highlight possible market barriers facing the hydrogen economy, as well as opportunities in new R and D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. (author)

  12. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  13. The Effect of Breast Implants on Mammogram Outcomes.

    Science.gov (United States)

    Kam, Kelli; Lee, Esther; Pairawan, Seyed; Anderson, Kendra; Cora, Cherie; Bae, Won; Senthil, Maheswari; Solomon, Naveenraj; Lum, Sharon

    2015-10-01

    Breast cancer detection in women with implants has been questioned. We sought to evaluate the impact of breast implants on mammographic outcomes. A retrospective review of women undergoing mammography between March 1 and October 30, 2013 was performed. Demographic characteristics and mammogram results were compared between women with and without breast implants. Overall, 4.8 per cent of 1863 women identified during the study period had breast implants. Median age was 59 years (26-93). Women with implants were younger (53.9 vs 59.2 years, P breast tissue (72.1% vs 56.4%, P = 0.004) than those without. There were no statistically significant differences with regards to Breast Imaging Recording and Data System 0 score (13.3% with implants vs 21.4% without), call back exam (18.9% with vs 24.1% without), time to resolution of abnormal imaging (58.6 days with vs 43.3 without), or cancer detection rate (0% with implants vs 1.0% without). Because implants did not significantly affect mammogram results, women with implants should be reassured that mammography remains useful in detecting cancer. However, future research is required to determine whether lower call back rates and longer time to resolution of imaging findings contribute to delays in diagnosis in patients with implants.

  14. Chemical and catalytic effects of ion implantation

    International Nuclear Information System (INIS)

    Wolf, G.K.

    1982-01-01

    Energetic particles are used for inducing chemical reactions as well as for modifying the properties of materials with regard to their bulk and surface chemical behavior. The effects are partly caused by radiation damage or phase intermixing, partly by the chemical properties of the individual bombarding particles. In this contribution a survey of relevant applications of these techniques is presented: (1) Chemical reactions of implanted and recoil atoms and their use for syntheses, doping and labeling of compounds. (2) The formation of thin films by decomposing chemical compounds with ion beams. 3) Catalytic effects on substrates treated by sputtering or ion implantation. Recent results with nonmetallic substrates are reviewed. Mainly hydrogenation reactions at a solid/gas interface or redox reactions at an electrified solid/liquid interface are mentioned. The present status and future prospects of these kinds of investigations will be discussed. (author)

  15. Development of a high current ion implanter

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Kim, Wan; Jin, Jeong Tae

    1990-01-01

    A high current ion implanter of the energy of 100 Kev and the current of about 100 mA has been developed for using the high dose ion implantation, surface modification of steels and ceramics, and ion beam milling. The characteristics of the beam extraction and transportation are investigated. A duoPIGatron ion source compatible with gas ion extraction of about 100 mA, a single gap acceleration tube which is able to compensate the divergence due to the space charge effect, and a beam transport system with the concept of the space charge neutralization are developed for the high current machine. The performance of the constructed machine shows that nitrogen, argon, helium, hydrogen and oxygen ion beams are successfully extracted and transported at a beam divergence due to space charge effect is negligible in the operation pressure of 2 x 10 -5 torr. (author)

  16. He bubble sites in implanted copper alloy

    International Nuclear Information System (INIS)

    Moreno, D.; Eliezer, D.

    1996-01-01

    Structural materials in fusion reactors will be exposed to helium implantation over a broad range of energies. The deformation and partial exfoliation of surface layers due to hydrogen isotopes and helium contribute to the total erosion of the first wall. For this reason, one of the most important criteria in the choice of materials for the first wall of fusion reactors is the material's damage resistance. Recent advances in developing nuclear fusion reactors reveal that efficient heat removal from plasma-facing components is very important. Copper and copper alloys are considered an attractive choice for transporting such a high heat flux without thermal damage as they have high thermal conductivity. In the present study the authors report on the structural changes in a copper alloy, due to the helium implantation on the very near surface area, observed by transmission electron microscopy

  17. Measuring hydrogen-isotope distribution profiles

    International Nuclear Information System (INIS)

    Poppe, C.H.

    1977-01-01

    A new nondestructive technique was developed for measuring the depth distribution of hydrogen isotopes absorbed or implanted near the surface of any material. The method allows real-time study of the inventory and diffusion of hydrogen, deuterium, and tritium. Briefly, the technique involves bombarding the surface with a monoenergetic beam of ions chosen for their ability to react with the hydrogen isotope in question and produce fast neutrons. The energy distribution of the neutrons is a sensitive indicator of the energy of the bombarding particles at the instant of reaction, and hence of the depth of the reaction sites below he surface of the material. A sensitivity of one part per million was obtained for tritium in copper. The technique is applicable to several energy-related materials problems. 5 figures

  18. Percutaneous and skeletal biocarbon implants

    Science.gov (United States)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  19. Degradable Implantate: Entwicklungsbeispiele

    Science.gov (United States)

    Ruffieux, Kurt; Wintermantel, Erich

    Resorbierbare Implantate werden seit mehreren Jahrzehnten in der Implantologie eingesetzt. Bekannt wurden diese Biomaterialien mit dem Aufkommen von sich selbst auflösenden Nahtfäden auf der Basis von synthetisch hergestellten Polylactiden und Polyglycoliden in den 70er Jahren. In einem nächsten Schritt wurden Implantate wie Platten und Schrauben zur Gewebefixation aus den gleichen Biomaterialien hergestellt.

  20. Risks of Breast Implants

    Science.gov (United States)

    ... have a risk of developing a type of cancer called breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) in the breast tissue surrounding the implant. BIA-ALCL is not breast cancer. Women diagnosed with BIA-ALCL may need to ...

  1. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1976-01-01

    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  2. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  3. Implantation of β-emitters on biomedical implants: 32 P isotropic ion implantation using a coaxial plasma reactor

    International Nuclear Information System (INIS)

    Fortin, M.A.; Paynter, R.W.; Sarkissian, A.; Stansfield, B.L.; Terreault, B.; Dufresne, V.

    2003-01-01

    The development of endovascular brachytherapy and the treatment of certain types of cancers (liver, lung, prostate) often require the use of beta-emitters, sometimes in the form of radioisotope-implanted devices. Among the most commonly used isotopes figures 32 P, a pure beta-emitter (maximum energy: 1.7 MeV), of which the path in biological tissues is of a few cm, restricting the impact of electron bombardment to the immediate environment of the implant. Several techniques and processes have been tried to elaborate surfaces and devices showing strongly bonded, or implanted 32 P. Anodizing, vapor phase deposition, grafting of oligonucleotides, as well as ion implantation processes have been investigated by several research groups as methods to implant beta-radioisotopes into surfaces. A coaxial plasma reactor was developed at INRS to implant radioisotopes into cylindrical metallic objects, such as coronary stents commonly used in angioplasty procedures. The dispersion of 32 P atoms on the interior surfaces of the chamber can be investigated using radiographs, contributing to image the plasma ion transport mechanisms that guide the efficiency of the implantation procedure. The amount of radioactivity on the wall liner, on the internal components, and on the biomedical implants are quantified using a surface barrier detector. A comparative study establishes a relationship between the gray scale of the radiographs, and dose measurements. A program was developed to convert the digitized images into maps showing surface dose density in mCi/cm 2 . An integration process allows the quantification of the doses on the walls and components of the reactor. Finally, the resulting integral of the 32 P dose is correlated to the initial amount of radioactivity inserted inside the implanter before the dismantling procedure. This method could be introduced as a fast and reliable way to test, qualify and assess the amount of radioactivity present on the as-produced implants

  4. Defect studies of H+ implanted niobium

    Czech Academy of Sciences Publication Activity Database

    Prochazka, I.; Čížek, J.; Havránek, Vladimír; Anwand, W.

    2015-01-01

    Roč. 645, SI1 (2015), s. 69-71 ISSN 0925-8388. [14th International Symposium on Metal-Hydrogen Systems (MH). Salford, 20.07.2014-25.07.2014] R&D Projects: GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : Niobium * Hydrogen * defects * Positron annihilation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.014, year: 2015

  5. Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material.

    Science.gov (United States)

    Huang, Liping; Li, Ming; Pan, Yuzhen; Quan, Xie; Yang, Jinhui; Puma, Gianluca Li

    2018-04-16

    The deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production was investigated in stacked bioelectrochemical systems (BESs) composed of microbial electrolysis cell (1#) serially connected with parallel connected microbial fuel cell (2#). The impact of W/Mo molar ratio (in the range 0.01 mM : 1 mM and vice-versa), initial pH (1.5 to 4.0) and cathode material (stainless steel mesh (SSM), carbon rod (CR) and titanium sheet (TS)) on the BES performance was systematically investigated. The concentration of Mo(VI) was more influential than W(VI) in determining the rate of deposition of both metals and the rate of hydrogen production. Complete metal recovery was achieved at equimolar W/Mo ratio of 0.05 mM : 0.05 mM. The rates of metal deposition and hydrogen production increased at acidic pH, with the fastest rates at pH 1.5. The morphology of the metal deposits and the valence of the Mo were correlated with W/Mo ratio and pH. CR cathodes (2#) coupled with SSM cathodes (1#) achieved a significant rate of hydrogen production (0.82 ± 0.04 m 3 /m 3 /d) with W and Mo deposition (0.049 ± 0.003 mmol/L/h and 0.140 ± 0.004 mmol/L/h (1#); 0.025 ± 0.001 mmol/L/h and 0.090 ± 0.006 mmol/L/h (2#)). Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Top-Cited Articles in Implant Dentistry.

    Science.gov (United States)

    Fardi, Anastasia; Kodonas, Konstantinos; Lillis, Theodoros; Veis, Alexander

    science articles published in high-impact specialized journals are most likely to be cited in the field of implant dentistry.

  7. An in vivo assessment of the effects of using different implant abutment occluding materials on implant microleakage and the peri-implant microbiome

    Science.gov (United States)

    Rubino, Caroline

    Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper

  8. Number of implants for mandibular implant overdentures: a systematic review

    Science.gov (United States)

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  9. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  10. Ion implantation into iron

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1978-01-01

    The distribution of implanted ions in iron, the friction characteristics and the corrosion of iron were studied. The distribution of Ni or Cr ions implanted into mild steel was measured. The accelerated voltage was 150 keV, and the beam current density was about 2 microampere/cm 2 . The measurement was made with an ion microanalyzer. The measured distribution was compared with that of LSS theory. Deep invasion of Ni was seen in the measured distribution. The distribution of Cr ions was different from the distribution calculated by the LSS theory. The relative friction coefficient of mild steel varied according to the dose of implanted Cu or N ions, and to the accelerating voltage. Formation of compound metals on the surfaces of metals by ion-implantation was investigated for the purpose to prevent the corrosion of metals. The resistance of mild steel in which Ni ions were implanted was larger than that of mild steel without any treatment. (Kato, T.)

  11. Hydrogen converters

    International Nuclear Information System (INIS)

    Mondino, Angel V.

    2003-01-01

    The National Atomic Energy Commission of Argentina developed a process of 99 Mo production from fission, based on irradiation of uranium aluminide targets with thermal neutrons in the RA-3 reactor of the Ezeiza Atomic Centre. These targets are afterwards dissolved in an alkaline solution, with the consequent liberation of hydrogen as the main gaseous residue. This work deals with the use of a first model of metallic converter and a later prototype of glass converter at laboratory scale, adjusted to the requirements and conditions of the specific redox process. Oxidized copper wires were used, which were reduced to elementary copper at 400 C degrees and then regenerated by oxidation with hot air. Details of the bed structure and the operation conditions are also provided. The equipment required for the assembling in cells is minimal and, taking into account the operation final temperature and the purge with nitrogen, the procedure is totally safe. Finally, the results are extrapolated for the design of a converter to be used in a hot cell. (author)

  12. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  13. Transfemoral Aortic Valve Implantation with the New Edwards Sapien 3 Valve for Treatment of Severe Aortic Stenosis-Impact of Valve Size in a Single Center Experience.

    Directory of Open Access Journals (Sweden)

    Jochen Wöhrle

    Full Text Available The third generation Edwards Sapien 3 (Edwards Lifesciences Inc., Irvine, California system was optimized to reduce residual aortic regurgitation and vascular complications.235 patients with severe symptomatic aortic stenosis were prospectively enrolled. Transcatheter aortic valve implantations (TAVI were performed without general anesthesia by transfemoral approach. Patients were followed for 30 days. Patients received 23mm (N = 77, 26mm (N = 91 or 29mm (N = 67 valve based on pre-procedural 256 multislice computer tomography. Mean oversizing did not differ between the 3 valves. There was no residual moderate or severe aortic regurgitation. Rate of mild aortic regurgitation and regurgitation index did not differ between groups. There was no switch to general anesthesia or conversion to surgery. Rate of major vascular complication was 3.0% with no difference between valve and delivery sheath sizes. Within 30 days rates of all cause mortality (2.6% and stroke (2.1% were low.In patients with severe aortic stenosis transfemoral TAVI with the Edwards Sapien 3 valve without general anesthesia was associated with a high rate of device success, no moderate or severe residual aortic regurgitation, low rates of major vascular complication, mortality and stroke within 30 days with no difference between the 3 valve sizes.ClinicalTrials.gov NCT02162069.

  14. Thoracic Malignancies and Pulmonary Nodules in Patients under Evaluation for Transcatheter Aortic Valve Implantation (TAVI): Incidence, Follow Up and Possible Impact on Treatment Decision

    Science.gov (United States)

    Kaleschke, Gerrit; Schülke, Christoph; Görlich, Dennis; Schliemann, Christoph; Kessler, Torsten; Schulze, Arik Bernard; Buerke, Boris; Kuemmel, Andreas; Thrull, Michael; Wiewrodt, Rainer; Baumgartner, Helmut; Berdel, Wolfgang E.; Mohr, Michael

    2016-01-01

    Background Transcatheter aortic valve implantation (TAVI) has become the treatment of choice in patients with severe aortic valve stenosis who are not eligible for operative replacement and an alternative for those with high surgical risk. Due to high age and smoking history in a high proportion of TAVI patients, suspicious findings are frequently observed in pre-procedural chest computer tomography (CCT). Methods CCT scans of 484 consecutive patients undergoing TAVI were evaluated for incidentally discovered solitary pulmonary nodules (SPN). Results In the entire study population, SPN ≥ 5 mm were found in 87 patients (18%). These patients were compared to 150 patients who were incidentally collected from the 397 patients without SPN or with SPN 8 mm (p = 0.328) were significant predictors of overall survival. Conclusions Despite the high prevalence of SPNs in this single center TAVI cohort lung cancer incidence at midterm follow-up seems to be low. Thus, aggressive diagnostic approaches for incidentally discovered SPN during TAVI evaluation should not delay the treatment of aortic stenosis. Unless advanced thoracic malignancy is obvious, the well documented reduction of morbidity and mortality by TAVI outweighs potentially harmful delays regarding further diagnostics. Standard guideline-approved procedure for SPN can be safely performed after TAVI. PMID:27171441

  15. Impact of intrinsic parameter fluctuations on the performance of In0.75Ga0.25As implant free MOSFETs

    International Nuclear Information System (INIS)

    Seoane, N; Garcia-Loureiro, A; Aldegunde, M; Kalna, K; Asenov, A

    2009-01-01

    We investigate the level of statistical variability in implant free (IF) MOSFETs, which are one of the most promising candidates III–V channels implementation. We report results for the threshold voltage (V T ) fluctuations in aggressively scaled IF III–V MOSFETs induced by random discrete dopants in the δ-doping plane obtained using 3D drift–diffusion (D–D) device simulations. The D–D simulator is meticulously calibrated against results obtained from ensemble Monte Carlo device simulations. The simulated 30, 20 and 15 nm gate length In 0.75 Ga 0.25 As channel IF transistors exhibit threshold voltage standard deviations of 42, 58 and 61 mV, respectively, at a drain voltage of 0.1 V. At a drain voltage of 0.8 V, the threshold voltage standard deviations increase to 55, 71 and 81 mV, respectively. While the standard deviations of V T in the 30 and 20 nm IF MOSFETs are close to those observed in bulk Si MOSFETs with equivalent gate lengths, the threshold voltage standard deviation in the 15 nm gate length IF MOSFET is lower

  16. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  17. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  18. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

    2004-01-01

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies and challenges to nuclear options

  19. Hydrogen in air transportation. Proceedings of the international symposium, Stuttgart, West Germany, September 11-14, 1979, and supplement

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Symposium emphasizes future oil prospects, experience with gaseous hydrogen pipeline systems, hydrogen fueled turbofan engines, liquid hydrogen airport requirements, and a liquid hydrogen experimental airline project. Papers were given on the impacts of fossil fuel on the environment, alternate fuels for aircraft, production of hydrogen by coal gasification, production of hydrogen from solar energy and water, handling of hydrogen, liquid hydrogen fueled aircraft, turbofan engine and fuel system for liquid hydrogen use, liquid hydrogen engines, and design concept for LH2 airport facilities.

  20. Implants for orthodontic anchorage

    Science.gov (United States)

    Zheng, Xiaowen; Sun, Yannan; Zhang, Yimei; Cai, Ting; Sun, Feng; Lin, Jiuxiang

    2018-01-01

    Abstract Implantanchorage continues to receive much attention as an important orthodontic anchorage. Since the development of orthodontic implants, the scope of applications has continued to increase. Although multiple reviews detailing implants have been published, no comprehensive evaluations have been performed. Thus, the purpose of this study was to comprehensively evaluate the effects of implants based on data published in review articles. An electronic search of the Cochrane Library, Medline, Embase, Ebsco and Sicencedirect for reviews with “orthodontic” and “systematic review or meta analysis” in the title, abstract, keywords, or full text was performed. A subsequent manual search was then performed to identify reviews concerning orthodontic implants. A manual search of the orthodontic journals American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), European Journal of Orthodontics (EJO), and Angle Othodontist was also performed. Such systematic reviews that evaluated the efficacy and safety of orthodontic implants were used to indicate success rates and molar movements. A total of 23 reviews were included in the analysis. The quality of each review was assessed using a measurement tool for Assessment of Multiple Systematic Reviews (AMSTAR), and the review chosen to summarize outcomes had a quality score of >6. Most reviews were less than moderate quality. Success rates of implants ranged in a broad scope, and movement of the maxillary first molar was superior with implants compared with traditional anchorage. PMID:29595673

  1. Maintenance in dental implants

    Directory of Open Access Journals (Sweden)

    Giselle Póvoa Gomes

    2008-01-01

    Full Text Available In implants, maintenance is a decisive factor for obtaining success when implant supported overdentures and dentures are used. The present stud presents, a clinical case of a patient, a 70 year-old white man, with a completely edentulous mandibular alveolar ridge, severe bone resorption with presence of basal bone only, and absence of vestibule. Initially, treatment consisted of the placement of a mandibular overdenture, supported on three implants in the anterior inter-foramen region, as the left implant was transfixed in the basal bone of 2 to 3 millimeters. Eleven years later, another two implants were placed in the anterior area and an immediate load was performed up to the first molars, for the placement of an implant supported fixed. Throughout the entire treatment, meticulous maintenance was carried out, with follow-up for fourteen years, interrupted by the patient’s death. From the third month after the opening the three implants initially placed, the presence of keratinized mucosa, definition of the vestibule, maturation of the alveolar ridge and bone formation in the mento region were observed. It was concluded that good planning, allied to mastery of the technique and adequate maintenance were the prerequisites necessary for obtaining favorable results, success of the present case, and for the patient to have a better quality of life.

  2. Application of hydrogen-plasma technology for property modification of silicon and producing the silicon-based structures

    International Nuclear Information System (INIS)

    Fedotov, A.K.; Mazanik, A.V.; Ul'yashin, A.G.; Dzhob, R; Farner, V.R.

    2000-01-01

    Effects of atomic hydrogen on the properties of Czochralski-grown single crystal silicon as well as polycrystalline shaped silicon have been investigated. It was established that the buried defect layers created by high-energy hydrogen or helium ion implantation act as a good getter centers for hydrogen atoms introduced in silicon in the process of hydrogen plasma hydrogenation. Atomic hydrogen was shown to be active as a catalyzer significantly enhancing the rate of thermal donors formation in p-type single crystal silicon. This effect can be used for n-p- and p-n-p-silicon based device structures producing [ru

  3. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  4. Nanotechnology for dental implants.

    Science.gov (United States)

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  5. Ion implantation for microelectronics

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1977-01-01

    Ion implantation has proved to be a versatile and efficient means of producing microelectronic devices. This review summarizes the relevant physics and technology and assesses the advantages of the method. Examples are then given of widely different device structures which have been made by ion implantation. While most of the industrial application has been in silicon, good progress continues to be made in the more difficult field of compound semiconductors. Equipment designed for the industrial ion implantation of microelectronic devices is discussed briefly. (Auth.)

  6. Optimization of dental implantation

    Science.gov (United States)

    Dol, Aleksandr V.; Ivanov, Dmitriy V.

    2017-02-01

    Modern dentistry can not exist without dental implantation. This work is devoted to study of the "bone-implant" system and to optimization of dental prostheses installation. Modern non-invasive methods such as MRI an 3D-scanning as well as numerical calculations and 3D-prototyping allow to optimize all of stages of dental prosthetics. An integrated approach to the planning of implant surgery can significantly reduce the risk of complications in the first few days after treatment, and throughout the period of operation of the prosthesis.

  7. Wind in the future hydrogen economy

    International Nuclear Information System (INIS)

    Andres, P.

    2006-01-01

    Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

  8. Elders with implant overdentures: a 22-year clinical report.

    Science.gov (United States)

    Alsabeeha, Nabeel H M

    2012-09-01

    To report on the long-term survival and prosthodontic maintenance of two edentulous adults with mandibular overdentures supported by hydroxyapatite (HA)-coated implants. Mandibular implant overdentures are a successful treatment option with positive impact on the quality of life of elderly edentulous adults. Long-term survival of the implants requires continued rigorous prosthodontic maintenance. Two elderly edentulous adults with mandibular overdentures supported by 2 HA-coated implants were presented for prosthodontic rehabilitation after 22 years of placement. The implants were osseo-integrated and surviving at presentation based on accepted criteria. The mandibular implant overdentures suffered recurrent loss of retention and stability. Prosthodontic treatment involving the replacement of defective attachment systems and construction of new sets of mandibular implant overdentures opposing complete maxillary dentures is presented. The long-term survival of mandibular 2-implant overdentures requires continued prosthodontic maintenance. A conservative approach in the rehabilitation of two older edentulous adults with mandibular 2-implant overdentures was described including proper selection of attachment systems. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  9. Deuterium implantation in first wall candidate materials by exposure in the Princeton large torus

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center); Manos, D. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    Titanium alloys are of interest as a first wall material in fusion reactors because of their excellent thermophysical and thermomechanical properties. A major concern with their application to the first wall is associated with the known affinity of titanium for hydrogen and the related consequences for fuel recycling, tritium inventory, and hydrogen embrittlement. Little information exists on trapping and release of hydrogen isotopes implanted at energies below 500 eV. This work was undertaken to measure hydrogen isotope trapping and release at the first wall of the Princeton Large Torus Tokamak (PLT).

  10. Predicting the Failure of Dental Implants Using Supervised Learning Techniques

    Directory of Open Access Journals (Sweden)

    Chia-Hui Liu

    2018-05-01

    Full Text Available Prosthodontic treatment has been a crucial part of dental treatment for patients with full mouth rehabilitation. Dental implant surgeries that replace conventional dentures using titanium fixtures have become the top choice. However, because of the wide-ranging scope of implant surgeries, patients’ body conditions, surgeons’ experience, and the choice of implant system should be considered during treatment. The higher price charged by dental implant treatments compared to conventional dentures has led to a rush among medical staff; therefore, the future impact of surgeries has not been analyzed in detail, resulting in medial disputes. Previous literature on the success factors of dental implants is mainly focused on single factors such as patients’ systemic diseases, operation methods, or prosthesis types for statistical correlation significance analysis. This study developed a prediction model for providing an early warning mechanism to reduce the chances of dental implant failure. We collected the clinical data of patients who received artificial dental implants at the case hospital for a total of 8 categories and 20 variables. Supervised learning techniques such as decision tree (DT, support vector machines, logistic regressions, and classifier ensembles (i.e., Bagging and AdaBoost were used to analyze the prediction of the failure of dental implants. The results show that DT with both Bagging and Adaboost techniques possesses the highest prediction performance for the failure of dental implant (area under the receiver operating characteristic curve, AUC: 0.741; the analysis also revealed that the implant systems affect dental implant failure. The model can help clinical surgeons to reduce medical failures by choosing the optimal implant system and prosthodontics treatments for their patients.

  11. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  12. Breast Reconstruction with Implants

    Science.gov (United States)

    ... your surgical options and discuss the advantages and disadvantages of implant-based reconstruction, and may show you ... Policy Notice of Privacy Practices Notice of Nondiscrimination Advertising Mayo Clinic is a not-for-profit organization ...

  13. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  14. Precipitation processes in implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.

    1978-01-01

    Ion implantation is a nonequilibrium process. It is possible to implant materials with impurities to concentration levels which exceed the solid solubilities. The return of the system to thermodynamic equilibrium is often accomplished by precipitation of the implanted species or a compound involving atoms of both the host and the implanted species. This may involve long time scales when taking place at room temperature or it may take place during the implantation

  15. Antibacterial iodine-supported titanium implants.

    Science.gov (United States)

    Shirai, T; Shimizu, T; Ohtani, K; Zen, Y; Takaya, M; Tsuchiya, H

    2011-04-01

    Deep infection remains a serious complication in orthopedic implant surgery. In order to reduce the incidence of implant-associated infections, several biomaterial surface treatments have been proposed. This study focused on evaluating the antibacterial activity of iodine-supported titanium (Ti-I(2)) and its impact on post-implant infection, as well as determining the potential suitability of Ti-I(2) as a biomaterial. External fixation pins were used in this experiment as trial implants because of the ease of making the septic models. The antibacterial activity of the metal was measured using a modification of the Japanese Industrial Standards method. Activity was evaluated by exposing the implants to Staphylococcus aureus or Escherichia coli and comparing reaction of pathogens to Ti-I(2) vs. stainless steel and titanium controls. Ti-I(2) clearly inhibited bacterial colonization more than the control metals. In addition, cytocompatibility was assessed by counting the number of colonies that formed on the metals. The three metals showed the same amount of fibroblast colony formation. Japanese white rabbits were used as an in vivo model. Three pins were inserted into both femora of six rabbits for histological analysis. Pin sites were inspected and graded for infection and inflammation. Fewer signs of infection and inflammatory changes were observed in conjunction with the Ti-I(2) pins. Furthermore, osteoconductivity of the implant was evaluated with osteoid formation surface of the pin. Consecutive bone formation was observed around the Ti-I(2) and titanium pins, while little osteoid formation was found around the stainless steel pins. These findings suggest that Ti-I(2) has antimicrobial activity and exhibits cytocompatibility. Therefore, Ti-I(2) substantially reduces the incidence of implant infection and shows particular promise as a biomaterial. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  17. Aortic Root Enlargement or Sutureless Valve Implantation?

    Directory of Open Access Journals (Sweden)

    Nikolaos G. Baikoussis

    2016-11-01

    Full Text Available Aortic valve replacement (AVR in patients with a small aortic annulus is a challenging issue. The importance of prosthesis–patient mismatch (PPM post aortic valve replacement (AVR is controversial but has to be avoided. Many studies support the fact that PPM has a negative impact on short and long term survival. In order to avoid PPM, aortic root enlargement may be performed. Alternatively and keeping in mind that often some comorbidities are present in old patients with small aortic root, the Perceval S suturelles valve implantation could be a perfect solution. The Perceval sutureless bioprosthesis provides reasonable hemodynamic performance avoiding the PPM and providing the maximum of aortic orifice area. We would like to see in the near future the role of the aortic root enlargement techniques in the era of surgical implantation of the sutureless valve (SAVR and the transcatheter valve implantation (TAVI.

  18. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  19. Hydrogen energy technology

    International Nuclear Information System (INIS)

    Morovic, T.; Pilhar, R.; Witt, B.

    1988-01-01

    A comprehensive assessment of different energy systems from the economic point of view has to be based on data showing all relevant costs incurred and benefits drawn by the society from the use of such energy systems, i.e. internal costs and benefits visible to the energy consumer as prices paid for power supplied, as well as external costs and benefits. External costs or benefits of energy systems cover among other items employment or wage standard effects, energy-induced environmental impacts, public expenditure for pollution abatement and mitigation of risks and effects of accidents, and the user costs connected with the exploitation of reserves, which are not rated high enough to really reflect and demonstrate the factor of depletion of non-renewable energy sources, as e.g. fossil reserves. Damage to the natural and social environment induced by anthropogenous air pollutants up to about 90% counts among external costs of energy conversion and utilisation. Such damage is considered to be the main factor of external energy costs, while the external benefits of energy systems currently are rated to be relatively unsignificant. This means that an internalisation of external costs would drive up current prices of non-renewable energy sources, which in turn would boost up the economics of renewable energy sources, and the hydrogen produced with their energy. Other advantages attributed to most of the renewable energy sources and to hydrogen energy systems are better environmental compatibility, and no user costs. (orig.) [de

  20. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.

    1976-06-01

    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  1. Ion implantation - an introduction

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1986-01-01

    Ion implantation is a widely used technique with a literature that covers semiconductor production, surface treatments of steels, corrosion resistance, catalysis and integrated optics. This brief introduction outlines advantages of the technique, some aspects of the underlying physics and examples of current applications. Ion implantation is already an essential part of semiconductor technology while in many other areas it is still in an early stage of development. The future scope of the subject is discussed. (author)

  2. Surface behaviour of first-wall materials due to the synergistic effect of helium and hydrogen isotopes

    International Nuclear Information System (INIS)

    Abramov, E.; Moreno, D.; Solovioff, G.; Eliezer, D.

    1994-01-01

    Scanning electron microscopy has been used to investigate changes in surface morphology due to helium implantation and hydrogen charging. Pure polycrystalline nickel, OFHC copper and Cu-1.8Be-0.2Co (CAD 172) alloy have been studied. The influence of helium implantation parameters on blister formation and growth was investigated. Hydrogen charging (cathodic or thermal-gas) was found to lower the helium content needed for blistering and surface exfoliation. The effect of heating, carried out after hydrogen charging, was also studied. For the copper samples, hydrogen damage was produced by oxide reduction at the oxide-metal interface. This damage was found to be lower when the sputtering due to helium implantation increased. The CuBe alloy showed a greater hydrogen resistance due to the stability of the surface BeO. ((orig.))

  3. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  4. Contraceptive implants: current perspectives

    Directory of Open Access Journals (Sweden)

    Rowlands S

    2014-09-01

    Full Text Available Sam Rowlands,1,2 Stephen Searle3 1Centre of Postgraduate Medical Research and Education, School of Health and Social Care, Bournemouth University, Bournemouth, United Kingdom; 2Dorset HealthCare, Bournemouth, United Kingdom; 3Sexual Health Services, Chesterfield, United KingdomAbstract: Progestin-only contraceptive implants are a highly cost-effective form of long-acting reversible contraception. They are the most effective reversible contraceptives and are of a similar effectiveness to sterilization. Pregnancies are rare in women using this method of contraception, and those that do occur must be fully investigated, with an ultrasound scan of the arm and serum etonogestrel level if the implant cannot be located. There are very few contraindications to use of implants, and they have an excellent safety profile. Both acceptability and continuation with the method are high. Noncontraceptive benefits include improvements in dysmenorrhea, ovulatory pain, and endometriosis. Problematic bleeding is a relatively common adverse effect that must be covered in preinsertion information-giving and supported adequately if it occurs. Recognized training for both insertion and removal should be undertaken. Care needs to be taken at both insertion and removal to avoid neurovascular injury. Implants should always be palpable; if they are not, noninsertion should be assumed until disproven. Etonogestrel implants are now radiopaque, which aids localization. Anticipated difficult removals should be performed by specially trained experts. Keywords: contraceptive, subdermal implant, etonogestrel, levonorgestrel, progestin-only, long-acting reversible contraception

  5. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  6. Plasma source ion implantation

    International Nuclear Information System (INIS)

    Conrad, J.R.; Forest, C.

    1986-01-01

    The authors' technique allows the ion implantation to be performed directly within the ion source at higher currents without ion beam extraction and transport. The potential benefits include greatly increased production rates (factors of 10-1000) and the ability to implant non-planar targets without rastering or shadowing. The technique eliminates the ion extractor grid set, beam raster equipment, drift space and target manipulator equipment. The target to be implanted is placed directly within the plasma source and is biased to a large negative potential so that plasma ions gain energy as they accelerate through the potential drop across the sheath that forms at the plasma boundary. Because the sheath surrounds the target on all sides, all surfaces of the target are implanted without the necessity to raster the beam or to rotate the target. The authors have succeeded in implanting nitrogen ions in a silicon target to the depths and concentrations required for surface treatment of materials like stainless steel and titanium alloys. They have performed ESCA measurements of the penetration depth profile of a silicon target that was biased to 30 kV in a nitrogen discharge plasma. Nitrogen ions were implanted to a depth of 700A at a peak concentration of 30% atomic. The measured profile is quite similar to a previously obtained profile in titanium targets with conventional techniques

  7. Emission scenarios for a global hydrogen economy and the consequences for global air pollution

    NARCIS (Netherlands)

    van Ruijven, B.J.; Lamarque, J.F.; van Vuuren, D.P.; Kram, T.; Eerens, H.

    2011-01-01

    Hydrogen is named as possible energy carrier for future energy systems. However, the impact of large-scale hydrogen use on the atmosphere is uncertain. Application of hydrogen in clean fuel cells reduces emissions of air pollutants, but emissions from hydrogen production and leakages of molecular

  8. Short dental implants: an emerging concept in implant treatment.

    Science.gov (United States)

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  9. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  10. Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Huang, Y.L.; Ma, Y.; Job, R.; Ulyashin, A.G.

    2004-01-01

    In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450 deg. C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps

  11. Model of diffusers / permeators for hydrogen processing

    International Nuclear Information System (INIS)

    Jacobs, W. D.; Hang, T.

    2008-01-01

    Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper. (authors)

  12. Study of wettability and cell viability of H implanted stainless steel

    Science.gov (United States)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  13. Multiscale study on hydrogen mobility in metallic fusion divertor material

    International Nuclear Information System (INIS)

    Heinola, K.

    2010-01-01

    For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and

  14. Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison