WorldWideScience

Sample records for impact limiter material

  1. Impact-limiting materials characterization

    International Nuclear Information System (INIS)

    Glass, R.E.; Duffey, T.A.; McConnell, P.

    1993-01-01

    Three types of impact-limiting materials have been characterized which have applications in packages for the transport of radioactive materials. These materials are aluminum honeycombs, polyurethane foams, and aluminum foams. The results of the materials characterization have indicated strengths and weaknesses for each type of material. The polyurethane foams provide good impact limiting ability and excellent thermal insulation. However, they burn when subjected to the regulatory thermal event in the presence of air. The aluminum honeycombs provide excellent impact resistance in specific impact orientations. However, they provide relatively poor resistance to thermal assault. Finally, the aluminum foams exhibit relatively poor impact energy absorption capacities, significant variability in energy absorption, and limited thermal insulation. The development of the figures of merit examined the response of the materials to the impact event with the intent of maximizing the energy absorption of the materials with respect to either the volume or mass of the materials. Three figures of merit will be presented for the structural response. The figure of merit for the thermal event is based on minimizing the heat flux to the containment boundary. The paper presents a discussion of the test methods, a summary of the data and the figures of merit for each material. (J.P.N.)

  2. An Internet enabled impact limiter material database

    Energy Technology Data Exchange (ETDEWEB)

    Wix, S.; Kanipe, F.; McMurtry, W.

    1998-09-01

    This paper presents a detailed explanation of the construction of an interest enabled database, also known as a database driven web site. The data contained in the internet enabled database are impact limiter material and seal properties. The technique used in constructing the internet enabled database presented in this paper are applicable when information that is changing in content needs to be disseminated to a wide audience.

  3. An internet enabled impact limiter material database

    Energy Technology Data Exchange (ETDEWEB)

    Wix, S.; Kanipe, F.; McMurtry, W. [Sandia National Labs., Albuquerque, NM (United States)

    1998-07-01

    This paper presents a detailed explanation of the construction of an internet enabled database, also known as a database driven web site. The data contained in the internet enabled database are impact limiter material and seal properties. The techniques used in constructing the internet enabled database presented in this paper are applicable when information that is changing in content needs to be disseminated to a wide audience. (authors)

  4. An internet enabled impact limiter material database

    International Nuclear Information System (INIS)

    Wix, S.; Kanipe, F.; McMurtry, W.

    1998-01-01

    This paper presents a detailed explanation of the construction of an internet enabled database, also known as a database driven web site. The data contained in the internet enabled database are impact limiter material and seal properties. The techniques used in constructing the internet enabled database presented in this paper are applicable when information that is changing in content needs to be disseminated to a wide audience. (authors)

  5. An Internet enabled impact limiter material database

    International Nuclear Information System (INIS)

    Wix, S.; Kanipe, F.; McMurtry, W.

    1998-01-01

    This paper presents a detailed explanation of the construction of an interest enabled database, also known as a database driven web site. The data contained in the internet enabled database are impact limiter material and seal properties. The technique used in constructing the internet enabled database presented in this paper are applicable when information that is changing in content needs to be disseminated to a wide audience

  6. Testing of materials and scale models for impact limiters

    International Nuclear Information System (INIS)

    Maji, A.K.; Satpathi, D.; Schryer, H.L.

    1991-01-01

    Aluminum Honeycomb and Polyurethane foam specimens were tested to obtain experimental data on the material's behavior under different loading conditions. This paper reports the dynamic tests conducted on the materials and on the design and testing of scale models made out of these open-quotes Impact Limiters,close quotes as they are used in the design of transportation casks. Dynamic tests were conducted on a modified Charpy Impact machine with associated instrumentation, and compared with static test results. A scale model testing setup was designed and used for preliminary tests on models being used by current designers of transportation casks. The paper presents preliminary results of the program. Additional information will be available and reported at the time of presentation of the paper

  7. Development of a impact limiter for radioactive material transport packages - characterization of the polymeric material used

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta; Mattar Neto, Miguel

    2000-01-01

    Impact limiters are sacrificial components widely used to protect radioactive waste packages against damages arising from falls, fires and collisions with protruding objects. Several materials have been used as impact limiter filling: wood, aluminum honeycomb, and metallic or polymeric foams. Besides, hollow structures are also used as shock absorbers, either as a single shell or as a tube array. One of the most popular materials among package designers is rigid polyurethane foam, owing to its toughness, workability, low specific weight, low costs and commercial availability. In Brazil, a foam developed using the polymer extracted from the castor oil plant (Ricinus communis) is being studied as a potential impact limiter filling. For a better performance of this material, it is necessary to minimize the impact limiter dimensions without compromising the package safety. For this, a detailed knowledge of the foam physical and mechanical properties is essential. A relatively vast amount of data about regular polymeric foams can be found in the literature and in foreign manufacturers brochures, but no data has been published about the properties of the castor oil foam. This paper presents data gathered in an ongoing research program aiming at the development of a Type-B packaging. Foam samples were submitted to uniaxial static compression tests and to hydrostatic tests. The results obtained reveal that the castor oil foam has a mechanical behavior similar to that of regular foams, with good property reproducibility and homogeneity. (author)

  8. A simple sizing optimization technique for an impact limiter based on dynamic material properties

    International Nuclear Information System (INIS)

    Choi, Woo-Seok; Seo, Ki-Seog

    2010-01-01

    According to IAEA regulations, a transportation package for radioactive material should perform its intended function of containing the radioactive contents after a drop test, which is one of the hypothetical accident conditions. Impact limiters attached to a transport cask absorb most of the impact energy. So, it is important to determine the shape, size and material of impact limiters properly. The material data needed in this determination is a dynamic one. In this study, several materials considered as those of impact limiters were tested by drop weight equipment to acquire the dynamic material characteristics data. The impact absorbing volume of the impact limiter was derived mathematically for each drop condition. A size optimization of the impact limiter was conducted. The derived impact absorbing volumes were applied as constraints. These volumes should be less than the critical volumes generated based on the dynamic material characteristics. The derived procedure to decide the shape of the impact limiter can be useful at the preliminary design stage when the transportation package's outline is roughly determined and applied as an input value.

  9. The use of castor oil polyurethane foam in impact limiters for radioactive materials packages

    International Nuclear Information System (INIS)

    Mouro, R.P.; Neto, M.M.

    2003-01-01

    This paper presents ongoing research aiming to assess the use of a 'bio based' polyurethane foam as filling material in impact limiters for transport packages in the nuclear field. The foam is made from castor oil, which replaces the petroleum based polyols in the manufacture of polyurethane products, with good environmental advantages. The research comprises the selection of the cellular material, its structural characterisation by mechanical laboratory tests, the development of a case study, preliminary determination of the best foam density for the case study, performance of the case and its numerical simulation using the finite element method. Prototypes with foam density that is pre-determined as ideal, as well as prototypes using lighter and heavier foams, were tested for comparison. The results obtained validate the research methodology, as expectations about the ideal foam density were confirmed by the drop tests and the numerical simulation. (author)

  10. Impact limiters for radioactive materials transport packagings: a methodology for assessment

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta

    2002-01-01

    This work aims at establishing a methodology for design assessment of a cellular material-filled impact limiter to be used as part of a radioactive material transport packaging. This methodology comprises the selection of the cellular material, its structural characterization by mechanical tests, the development of a case study in the nuclear field, preliminary determination of the best cellular material density for the case study, performance of the case and its numerical simulation using the finite element method. Among the several materials used as shock absorbers in packagings, the polyurethane foam was chosen, particularly the foam obtained from the castor oil plant (Ricinus communis), a non-polluting and renewable source. The case study carried out was the 9 m drop test of a package prototype containing radioactive wastes incorporated in a cement matrix, considered one of the most severe tests prescribed by the Brazilian and international transport standards. Prototypes with foam density pre-determined as ideal as well as prototypes using lighter and heavier foams were tested for comparison. The results obtained validate the methodology in that expectations regarding the ideal foam density were confirmed by the drop tests and the numerical simulation. (author)

  11. Material selection for TFTR limiters

    International Nuclear Information System (INIS)

    Ulrickson, M.

    1980-10-01

    The requirements for the material to be used as the first surface of limiters in TFTR are that it: (1) withstand a heat flux of 1 kw/cm 2 for a pulse length of 1.5s and a duty cycle of 1/200 for 10 5 cycles, (2) withstand the thermal and electro-magnetic loads from 10 4 plasma current disruptions lasting about 200 μs, (3) generate impurities at a rate low enough to meet impurity control requirements (which depend on the atomic number of the material) for TFTR, and (4) have tritium retention characteristics consistent with tritium inventory requirements for TFTR. An extensive set of material tests using electron beams, neutral beams, and plasma bombardment have been carried out to identify materials which can meet the thermal requirements of the above

  12. Investigation of the behaviour of impact limiting devices of transport casks for radioactive materials in the package approval and risk analysis

    International Nuclear Information System (INIS)

    Neumann, Martin

    2009-01-01

    Transport casks for radioactive materials with a Type-B package certificate have to ensure that even under severe accident scenarios the radioactive content remains safely enclosed, in an undercritical arrangement and that ionising radiation is sufficiently shielded. The impact limiter absorbs in an accident scenario the major part of the impact energy and reduces the maximum force applied on the cask body. Therefore the simulation of the behaviour of impact limiting devices of transport casks for nuclear material is of great interest for the design assessment in the package approval as well as for risk analysis in the field of transport of radioactive materials. The behaviour of the impact limiter is influenced by a number of parameters like impact limiter construction, material properties and loading conditions. Uncertainties exist for the application of simplified numerical tools for calculations of impact limiting devices. Uncertainities exist when applying simplified numerical tools. A model describing the compression of wood in axial direction of wood under large deformations for simulation with complex numerical procedures like dynamic Finite Element Methods has not been developed yet. Therefore this thesis concentrates on deriving a physical model for the behaviour of wood and analysing the applicability of different modeling techniques. A model describing the compression of wood in axial direction under large deformations was developed on the basis of an analysis of impact limiter of prototypes of casks for radioactive materials after a 9-m-drop-test and impact tests with wooden specimens. The model describes the softening, which wood under large deformation exhibits, as a function of the lateral strain constraint. The larger the lateral strain restriction, the more energy wood can absorb. The energy absorption capacity of impact limiter depends therefore on the ability of the outer steel sheet structure to prevent wood from evading from the main

  13. FUEL CASK IMPACT LIMITER VULNERABILITIES

    International Nuclear Information System (INIS)

    Leduc, D.; England, J.; Rothermel, R.

    2009-01-01

    Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs

  14. Impacted material placement plans

    International Nuclear Information System (INIS)

    Hickey, M.J.

    1997-01-01

    Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility

  15. Toward Modeling Limited Plasticity in Ceramic Materials

    National Research Council Canada - National Science Library

    Grinfeld, Michael; Schoenfeld, Scott E; Wright, Tim W

    2008-01-01

    The characteristic features of many armor-related ceramic materials are the anisotropy on the micro-scale level and the very limited, though non-vanishing, plasticity due to limited number of the planes for plastic slip...

  16. Material limitations on the detection limit in refractometry

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Nunes, Pedro; Xiao, Sanshui

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and...

  17. Material Limitations on the Detection Limit in Refractometry

    OpenAIRE

    Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a...

  18. Material limitations on the detection limit in refractometry.

    Science.gov (United States)

    Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.

  19. Material Limitations on the Detection Limit in Refractometry

    Directory of Open Access Journals (Sweden)

    Niels Asger Mortensen

    2009-10-01

    Full Text Available We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.

  20. Dynamic tests on metallic impact limiters

    International Nuclear Information System (INIS)

    Sagartz, M.J.

    1978-01-01

    Three different types of metallic impact limiters were tested; plain fins, laterally stiffened fins and tubes whose axes were aligned with the direction of impact. All specimens were made of 304 stainless steel and were annealed before testing. A heavy steel drop table of variable mass and moving at about 13.4 m/s (44 ft/s) was used to impact the specimens which were mounted on a stationary base. Impact velocity, drop table acceleration vs. time and force vs. time were measured on each test and were used to calculate the energy absorbed by the impact limiters. Results showed that the peak stress that a plain fin can transmit to the cask body can be several times the static yield stress of the fin. Also as buckling proceeds the load in a plain fin drops significantly and the rate at which it absorbs energy falls off dramatically, making the fin a rather inefficient energy absorber overall. The laterally stiffened fin and the cylinders did not exhibit this rapid decrease in load-carrying capacity with deformation and hence were able to absorb relatively more energy per unit volume of material

  1. Mechanical properties of aluminium honeycomb impact limiters

    International Nuclear Information System (INIS)

    Maji, A.K.; Satpathi, D.; Donald, S.

    1992-01-01

    Aluminium honeycombs have been extensively used as impact limiters in nuclear waste transport casks. The mechanical behaviour of these shock absorbing materials was studied to develop an extensive experimental database. A series of tests were performed along various loading paths. Different densities of aluminium honeycombs were tested in different orientations. Static tests included uniaxial tension, uniaxial compression and torsion. Dynamic tests were conducted at different strain rates of up to 100 s -1 , to generate experimental data relevant to accident situations. Dynamic studies included the effects of specimen size and confinement. The purpose of using different loading paths was to generate an extensive experimental database which may also be used to develop constitutive models for these materials. Design charts were constructed which can be accessed by various cask designers to optimise and economise on cask development. (Author)

  2. Impact limiter retention using a tape joint

    International Nuclear Information System (INIS)

    Gonzales, A.; Eakes, R.G.

    1986-01-01

    The Beneficial Uses Shipping System (BUSS) Cask employs polyurethane foam impact limiters that fit onto the ends of the cask. A foam impact limiter takes energy out of a system during a hypothetical accident condition by allowing foam crush and large deformations to occur. This, in turn, precludes high stresses or deformations from occurring to the cask. Because of the need to transmit significant amounts of heat to the environment, the BUSS cask impact limiters were designed to shield a minimum amount of the cask surface area. With this design impact limiter retention after the initial impact resulting from the 9 meter regulatory drops becomes a concern. Retention is essential to ensure the cask does not experience higher stresses during any secondary or rebound effects without impact limiters than it does during the 9 meter regulatory drop with impact limiters in place

  3. Investigation of the behaviour of impact limiting devices of transport casks for radioactive materials in the package approval and risk analysis; Untersuchung des Verhaltens stossdaempfender Bauteile von Transportbehaeltern fuer radioaktive Stoffe in Bauartpruefung und Risikoanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Martin

    2009-08-20

    Transport casks for radioactive materials with a Type-B package certificate have to ensure that even under severe accident scenarios the radioactive content remains safely enclosed, in an undercritical arrangement and that ionising radiation is sufficiently shielded. The impact limiter absorbs in an accident scenario the major part of the impact energy and reduces the maximum force applied on the cask body. Therefore the simulation of the behaviour of impact limiting devices of transport casks for nuclear material is of great interest for the design assessment in the package approval as well as for risk analysis in the field of transport of radioactive materials. The behaviour of the impact limiter is influenced by a number of parameters like impact limiter construction, material properties and loading conditions. Uncertainties exist for the application of simplified numerical tools for calculations of impact limiting devices. Uncertainities exist when applying simplified numerical tools. A model describing the compression of wood in axial direction of wood under large deformations for simulation with complex numerical procedures like dynamic Finite Element Methods has not been developed yet. Therefore this thesis concentrates on deriving a physical model for the behaviour of wood and analysing the applicability of different modeling techniques. A model describing the compression of wood in axial direction under large deformations was developed on the basis of an analysis of impact limiter of prototypes of casks for radioactive materials after a 9-m-drop-test and impact tests with wooden specimens. The model describes the softening, which wood under large deformation exhibits, as a function of the lateral strain constraint. The larger the lateral strain restriction, the more energy wood can absorb. The energy absorption capacity of impact limiter depends therefore on the ability of the outer steel sheet structure to prevent wood from evading from the main

  4. Performance limits for fusion first-wall structural materials

    International Nuclear Information System (INIS)

    Smith, D.L.; Majumdar, S.; Billone, M.; Mattas, R.

    2000-01-01

    Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, high-performance fusion power systems will be required in order to be an economically competitive energy option. As in most energy systems, the operating limits of structural materials pose a primary constraint to the performance of fusion power systems. In the case of fusion power, the first-wall/blanket system will have a dominant impact on both economic and safety/environmental attractiveness. This paper presents an assessment of the influence of key candidate structural material properties on performance limits for fusion first-wall blanket applications. Key issues associated with interactions of the structural materials with the candidate coolant/breeder materials are discussed

  5. Materials and processing science: Limits for microelectronics

    Science.gov (United States)

    Rosenberg, R.

    1988-09-01

    The theme of this talk will be to illustrate examples of technologies that will drive materials and processing sciences to the limit and to describe some of the research being pursued to understand materials interactions which are pervasive to projected structure fabrication. It is to be expected that the future will see a progression to nanostructures where scaling laws will be tested and quantum transport will become more in evidence, to low temperature operation for tighter control and improved performance, to complex vertical profiles where 3D stacking and superlattices will produce denser packing and device flexibility, to faster communication links with optoelectronics, and to compatible packaging technologies. New low temperature processing techniques, such as epitaxy of silicon, PECVD of dielectrics, low temperature high pressure oxidation, silicon-germanium heterostructures, etc., must be combined with shallow metallurgies, new lithographic technologies, maskless patterning, rapid thermal processing (RTP) to produce needed profile control, reduce process incompatibilities and develop new device geometries. Materials interactions are of special consequence for chip substrates and illustrations of work in metal-ceramic and metal-polymer adhesion will be offered.

  6. Optimization of an impact limiter for radioactive waste packaging

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta; Mattar Neto, Miguel

    1999-01-01

    A certain class of packages for the transportation of radioactive wastes - type B packages in the transport jargon - is supposed to resist to a series of postulated tests, the most severe for the majority of the packages being the 9 m height drop test. To improve the performance of the packages under this test, impact limiters are added to them, normally as a removable overpack, with the primary goal of reducing the deceleration loads transmitted to the packages and their contents. The first impact limiter concept, developed during the '70s, used a shell-type impact limiter attached to both ends of the package. Later on, wood was tested as impact limiter filling, which improved the package's mechanical performance, but not its thermal resistance. The popularization of the polymeric materials and their growing use in engineer applications have led to the use of these materials in impact limiters, with the extra advantage of the polymers good thermal properties. This paper proposes a methodology for the optimization of an impact limiter for a package for the conditioning of spent sealed sources. Two simplified methods for the design of impact limiters are presented. Finally, a brief discussion is presented on the methodology usually employed in the design of accident-resisting packages. (author)

  7. Laser-limiting materials for medical use

    Science.gov (United States)

    Podgaetsky, Vitaly M.; Kopylova, Tat'yana N.; Tereshchenko, Sergey A.; Reznichenko, Alexander V.; Selishchev, Sergey V.

    2004-03-01

    The important problem of modern laser medicine is the decrease of an exposure of biological tissues outside of an operational field and can be solved by optical radiation limiting. Organic dyes with reversibly darkening can be placed onto surfaces of irradiated tissues or can be introduced in solder for laser welding of vessels. The limiting properties of a set of nontoxic organic compounds were investigated. Nonlinear optical properties of dyes having reverse saturable absorption (pyran styryl derivatives, cyanine and porphyrine compounds) were studied under XeCl and YAG:Nd (II harmonics) lasers excitation. The effect of attenuation of a visible laser radiation is obtained for ethanol solutions of cyanines: radiation attenuation coefficient ( AC) = 25-35 at N/S = 100-250 MW/cm2. In water solutions of such compounds in UV spectrum range AC ~ 10. The spectral characteristics of compounds appeared expedient enough to operational use in laser limiters (broad passband in visible range of a spectrum). Under the data of Z-scanning (the scheme F/10) value AC ~ 70 was reached. The limiting of power laser radiation in visible (λ = 532 nm) and UV- (λ = 308 nm) spectral region and nanosecond pulse duration (7 -13 ns) across porphyrine solutions and their complexes with some metals (13 compounds) was investigated too. The comparative study of optical limiting dependence on intensity of laser radiation, solvent type and concentration of solutions was carried out for selecte wavelength. There was shown a possible use of pyran styryl derivatives DCM as limiters of visual laser radiation. To understand a mechanism of laser radiation limitation the light induced processes were experimentally and theoretically studied in organic molecules. The quantum-chemical investigation of one cyanine compound was carried out. There were noted the perspectives of laser radiation limiting by application of inverted schemes of traditional laser shutters. Usage of phenomena of light -induced

  8. Limiting values for radioactive materials in food

    International Nuclear Information System (INIS)

    Steiner, Martin

    2014-01-01

    The contribution describes the fundamentals of radiation protection: LNT (linear, no threshold) hypotheses, ALARA (a slow as reasonably achievable), limiting values. Using the example the nuclear accident in Chernobyl the differences in contamination development in different foodstuffs in Germany is demonstrated including recommended limiting values and the radiation exposures after 30 years due to consumption of contaminated food. The natural radioactivity is about 0.3 mSv/year.

  9. Limiting our impact on the environment

    CERN Multimedia

    2012-01-01

    CERN’s fourth safety objective for 2012 concerns the reduction of the environmental impact of noise and energy consumption associated with CERN's activities.   In order to continue to reduce the impact of noise on our neighbours, the HSE Unit is coordinating measures to reduce noise in the environment at all the LHC and SPS points, and on the Meyrin and Prévessin sites. If you are aware of a high-intensity noise that could disturb those living and working close to our sites, you can contact the HSE Unit. And most important of all, please take this potential nuisance into account when you're planning new projects. The HSE Unit is there to help you. The other aspect of our environmental target for the year is to optimise CERN's energy consumption. We can achieve this by limiting the energy consumption of facilities right from the design stage - from small components to large installations - and by using renewable energies even on a sma...

  10. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  11. Doublet III limiter performance and implications for mechanical design and material selection for future limiters

    International Nuclear Information System (INIS)

    Sabado, M.M.; Marcus, F.B.; Trester, P.W.; Wesley, J.C.

    1979-10-01

    The plasma limiter system for Doublet III is described. Initially, high-Z materials, Ta-10W for the primary limiter and Mo for the backup limiters, were selected as the most attractive metallic candidates from the standpoint of thermal and structural properties. For the purpose of evaluating the effect of material Z on plasma performance, the nonmagnetic, Ni-base alloy Inconel X-750 was selected for a medium-Z limiter material. Graphite, a low-Z material, will likely be the next limiter material for evaluation. Design and material selection criteria for the different Z ranges are presented. The performance of the high-Z limiters in Doublet III is reviewed for an operation period that included approximately 5000 plasma shots. Changes in surface appearance and metallurgical changes are characterized. Discussion is presented on how and to what extent the high-Z elements affected the performance of the plasma based on theory and measurements in Doublet III. The fabrication processes for the Inconel X-750 limiters are summarized, and, last, observations on early performance of the Inconel limiters are described

  12. Doublet III limiter performance and implications for mechanical design and material selection for future limiters

    Energy Technology Data Exchange (ETDEWEB)

    Sabado, M.M.; Marcus, F.B.; Trester, P.W.; Wesley, J.C.

    1979-10-01

    The plasma limiter system for Doublet III is described. Initially, high-Z materials, Ta-10W for the primary limiter and Mo for the backup limiters, were selected as the most attractive metallic candidates from the standpoint of thermal and structural properties. For the purpose of evaluating the effect of material Z on plasma performance, the nonmagnetic, Ni-base alloy Inconel X-750 was selected for a medium-Z limiter material. Graphite, a low-Z material, will likely be the next limiter material for evaluation. Design and material selection criteria for the different Z ranges are presented. The performance of the high-Z limiters in Doublet III is reviewed for an operation period that included approximately 5000 plasma shots. Changes in surface appearance and metallurgical changes are characterized. Discussion is presented on how and to what extent the high-Z elements affected the performance of the plasma based on theory and measurements in Doublet III. The fabrication processes for the Inconel X-750 limiters are summarized, and, last, observations on early performance of the Inconel limiters are described. (MOW)

  13. Impurity concentration limits and activation in fusion reactor structural materials

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1991-01-01

    This paper examines waste management problems related to impurity activation in first-wall, shield, and magnet materials for fusion reactors. Definitions of low activity based on hands-on recycling, remote recycling, and shallow land burial waste management criteria are discussed. Estimates of the impurity concentration in low-activation materials (elementally substituted stainless steels and vanadium alloys) are reported. Impurity activation in first-wall materials turns out to be critical after a comparison of impurity concentration limits and estimated levels. Activation of magnet materials is then considered: Long-term activity is not a concern, while short-term activity is. In both cases, impurity activation is negligible. Magnet materials, and all other less flux-exposed materials, have no practical limitation on impurities in terms of induced radioactivity

  14. Magnetic and material limiter discharges in Tokapole II

    International Nuclear Information System (INIS)

    Moyer, R.A.

    1988-01-01

    Disruptive instabilities have been studied in Tokapole II, a small poloidal divertor tokamak, in magnetic and material limiter configurations. In the magnetic limiter configuration, the divertor separatrix defines the tokamak current channel boundary. Limiters or neutralizer plates are not used to remove plasma in the scrape-off region. The relatively hot, dense plasma in the scrape-off region carries 5--20% of the current. In the material limiter configuration, limiter plates are inserted to the separatrix to remove plasma and current in the scrape-off region. The plates vary the tokamak current channel boundary condition in a controlled manner, and provide a benchmark for comparison with other tokamaks. Internal and external disruptions have been studied, and several unique features in the magnetic limiter configuration have been identified. The magnitic limiter configuration enables routine passing of the stability barriers at q(a) = 2 and q(a) = 1, where q(a) is the the edge safety factor, without a close fitting wall, external windings, or detailed profile control techniques. Passing the q(a) = 1 barrier permits operation in the q < 1 regime where total reconnection of the sawtooth does not occur. Discharges with q < 1 are also obtained in the material limiter configuration, suggesting that partial reconnection is characteristic of the sawteeth, and not the magnetic limiter configuration. The magnetic limiter configuration suppresses current termination in a major disruption. Current termination occurs in material limiter discharges due to enhanced interaction with the inboard limiter following the post-disruptive shift in major radius

  15. Nuclide-related exemption limits for radioactive materials

    International Nuclear Information System (INIS)

    Przyborowski, S.; Scheler, R.

    1984-01-01

    A procedure has been proposed for setting nuclide-related exemption limits for radioactive materials. It consists in grading the radionuclides into 4 groups of radiotoxicity and assigning only one activity limit to each of them. Examples are given for about 200 radionuclides. The radiation exposures resulting from a continuous steady release of activity fractions or from short-period release of the entire activity were assessed to remain below 0.1 ALI in both of these borderline cases, thus justifying the license-free utilization of radioactive materials below the exemption limits. (author)

  16. LimitS - A system for limit state analysis and optimal material layout

    DEFF Research Database (Denmark)

    Damkilde, Lars; Krenk, Steen

    1997-01-01

    distribution or an optimal material layout is determined. Through linearization of the yield criteria the optimization problem is stated as a linear programming problem. Within the formulation of the discretized model the optimal lower-bound solution is shown to be an upper-bound solution, and thereby both...

  17. Model for movement of molten limiter material during the ISX-B beryllium limiter experiment

    International Nuclear Information System (INIS)

    Langley, R.A.; England, A.C.; Edmonds, P.H.; Hogan, J.T.; Neilson, G.H.

    1986-01-01

    A model is proposed for the movement and erosion of limiter material during the Beryllium Limiter Experiment performed on the ISX-B Tokamak. This model is consistent with observed experimental results and plasma operational characteristics. Conclusions drawn from the model can provide an understanding of erosion mechanisms, thereby contributing to the development of future design criteria. (author)

  18. Impact Testing of Stainless Steel Materials

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-01-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a ''total impact energy'' approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper

  19. Application of the tack weld to cask impact limiter case

    International Nuclear Information System (INIS)

    Ku, J. H.; Choung, W. M.; You, G. S.; Park, S. W.

    2001-01-01

    The objective of this paper is to evaluate the benefit of the application of intermittent tack weld to the cask impact limiter case in the cask impact accident. This paper describes the test results of weldment rupture of foam filled tube type energy absorber and analytical evaluation of the effect of intermittent tack weld to the cask impact limiter case on the cask impact behavior. Prior to the cask impact analysis, the evaluation of weldment joint was carried out for intermittent tack weldment considering the weldment rupture. The intermittent tack welded part is weaker than ordinary weldment so ruptured if the stress exceeds certain limit. The rupture of the impact limiter case causes to lose its constraining effect for the wood blocks, which are filled into the metal incasement between the case and the gussets. The application of intermittent tack weld to the impact limiter case showed great advantage in vertical and horizontal drop impacts

  20. Direct methods for limit states in structures and materials

    CERN Document Server

    Weichert, Dieter

    2014-01-01

    Knowing the safety factor for limit states such as plastic collapse, low cycle fatigue or ratcheting is always a major design consideration for civil and mechanical engineering structures that are subjected to loads. Direct methods of limit or shakedown analysis that proceed to directly find the limit states offer a better alternative than exact time-stepping calculations as, on one hand, an exact loading history is scarcely known, and on the other they are much less time-consuming. This book presents the state of the art on various topics concerning these methods, such as theoretical advances in limit and shakedown analysis, the development of relevant algorithms and computational procedures, sophisticated modeling of inelastic material behavior like hardening, non-associated flow rules, material damage and fatigue, contact and friction, homogenization and composites.

  1. Halden fuel and material experiments beyond operational and safety limits

    International Nuclear Information System (INIS)

    Volkov, Boris; Wiesenack, Wolfgang; McGrath, M.; Tverberg, T.

    2014-01-01

    One of the main tasks of any research reactor is to investigate the behavior of nuclear fuel and materials prior to their introduction into the market. For commercial NPPs, it is important both to test nuclear fuels at a fuel burn-up exceeding current limits and to investigate reactor materials for higher irradiation dose. For fuel vendors such tests enable verification of fuel reliability or for the safety limits to be found under different operational conditions and accident situations. For the latter, in-pile experiments have to be performed beyond some normal limits. The program of fuel tests performed in the Halden reactor is aimed mainly at determining: The thermal FGR threshold, which may limit fuel operational power with burn-up increase, the “lift-off effect” when rod internal pressure exceeds coolant pressure, the effects of high burn-up on fuel behavior under power ramps, fuel relocation under LOCA simulation at higher burn-up, the effect of dry-out on high burn-up fuel rod integrity. This paper reviews some of the experiments performed in the Halden reactor for understanding some of the limits for standard fuel utilization with the aim of contributing to the development of innovative fuels and cladding materials that could be used beyond these limits. (author)

  2. Impact Compaction of a Granular Material

    Science.gov (United States)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  3. Magnetic- and material-limiter discharges in Tokapole II

    International Nuclear Information System (INIS)

    Moyer, R.A.

    1988-01-01

    Disruptive instabilities were studied in Tokapole II, a small poloidal-divertor tokamak, in magnetic- and material-limiter configurations. In the magnetic limiter configuration, the divertor separatrix defines the tokamak current channel boundary. Limiters or neutralizer plate are not used to remove plasma in the scrape-off region. The relatively hot, dense plasma in the scrape-off region carries 5-20% of the current. In the material-limiter configuration, limiter plates are inserted to the separatrix to remove plasma and current in the scrape-off region. The plates vary the tokamak current-channel boundary condition in a controlled manner, and provide a benchmark for comparison with other tokamaks. Internal and external disruptions have been studied, and several unique features in the magnetic-limiter configuration were identified. The magnetic-limiter configuration enables routine passing of the stability barriers at q(a) = 2 and q(a) = 1, where q(a) is the edge safety factor, without a close-fitting wall, external windings, or detailed profile control techniques. Passing the q(a) = 1 barrier permits operation in the q < 1 regime where total reconnection of the sawtooth does not occur

  4. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... detrimental to their recycling. Finally, a material flow analysis (MFA) approach revealed the potential for accumulation and spreading of contaminants in material recycling, on the example of the European paper cycle. Assessment of potential mitigation measures indicated that prevention of chemical use...

  5. Possibilities and limits of climate impact research, shown with regard to the field of tourism in the coastal area of northern Germany. Materials volume 1; Moeglichkeiten und Grenzen der Klimafolgenforschung. Dargestellt am Beispiel des Fremdenverkehrs im norddeutschen Kuestenraum. Materialband 1

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, C.

    1995-06-01

    In this thesis the possibilities and limits of societal climate impact research are analysed. Rather than using a climate-deterministic approach, the analysis focuses on the ability of society to adapt to climate changes. A climate impact assessment that does not consider societal adaption proesses underestmates the capacity of social systems to learn and to adapt to environmental changes. However, a blind confindence in the ability of society to adapt to these changes fails to recognize and address the problems, resulting from the process of adaptation itself. Therefore a method for successful evaluation of these adaptation processes has been developed in regards to the field of tourism in the coastal area of northern Germany. (orig./KW)

  6. Microscopic Investigation of Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2017-08-04

    Our overall goal is to contribute to the understanding of defects that limit the high accelerating gradient performance of Nb SRF cavities. Our approach is to develop a microscopic connection between materials defects and SRF performance. We developed a near-field microwave microscope to establish this connection. The microscope is based on magnetic hard drive write heads, which are designed to create very strong rf magnetic fields in very small volumes on a surface.

  7. Technical limitations of nuclear fuel materials and structures

    International Nuclear Information System (INIS)

    Hansson, L.; Planman, T.; Vitikainen, E.

    1993-05-01

    This report gives a summary of the tasks carried out within the project 'Technical limitations of nuclear fuel materials and structures' which belongs to the Finnish national research programme called 'Systems behaviour and operational aspects of safety'. The duration of the project was three years from 1990 to 1992. Most western LWR utilities, including the two Finnish ones have an incentive to implement extended burnup fuel cycles in their nuclear power plants. The aim of this project has been authorities to support them in the assessment and licensing of new fuel designs and materials. The research work of the project was focused on collecting and qualifying fuel performance data and on performing laboratory tests on fresh and irradiated cladding and structural materials. Moreover, knowledge of the high burnup phenomena was obtained through participation in international research projects such as OECD Halden Project and several Studsvik projects. Experimental work within the framework of the VVER fuel cooperative effort was also continued. (orig.)

  8. Materials and structures under shock and impact

    CERN Document Server

    Bailly, Patrice

    2013-01-01

    In risk studies, engineers often have to consider the consequences of an accident leading to a shock on a construction. This can concern the impact of a ground vehicle or aircraft, or the effects of an explosion on an industrial site.This book presents a didactic approach starting with the theoretical elements of the mechanics of materials and structures, in order to develop their applications in the cases of shocks and impacts. The latter are studied on a local scale at first. They lead to stresses and strains in the form of waves propagating through the material, this movement then extending

  9. Plasma characteristics in FTU with different limiter materials

    International Nuclear Information System (INIS)

    Apicella, M.; Apruzzese, G.; Bracco, G.; Ciotti, M.; Crisanti, F.; De Angelis, R.; Ferro, C.; Gabellieri, L.; Gatti, G.; Kroegler, H.

    1995-12-01

    Over the last several years, a great deal of effort has been devoted to solve the problem of power and particle handling in divertors, which has been recognised as a critical issue for the operation of a magnetic fusion reactor. In particular the choice of materials for plasma facing components has been examined in view of developing heat and erosion resistant materials for divertor target plates. A large data base on the behaviour of low materials in Tokamak is available, while for high Z materials there is little experience in present generation of magnetic fusion devices. FTU, a high field compact Tokamak, has devoted part of its experimental campaign to study the plasma characteristics when its limiter material is changed from the usual Inconel to molybdenum and tungsten. In this work results are reported concerning the plasma operation, the difference in plasma characteristics and radiation losses, the impurity generation mechanisms and their relative concentrations in the core plasma. A simulation of the experimental results, made with a self-consistent edge-core coupled model is presented, in order to put in evidence the main physics mechanisms responsible for the observed behaviour

  10. CubeSat Material Limits for Design for Demise

    Science.gov (United States)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.

  11. Mass of materials: the impact of designers on construction ergonomics.

    Science.gov (United States)

    Smallwood, John

    2012-01-01

    Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries.

  12. Thermal stress analysis and the effect of temperature dependence of material properties on Doublet III limiter design

    International Nuclear Information System (INIS)

    McKelvey, T.E.; Koniges, A.E.; Marcus, F.; Sabado, M.; Smith, R.

    1979-10-01

    Temperature and thermal stress parametric design curves are presented for two materials selected for Doublet III primary limiter applications. INC X-750 is a candidate for the medium Z limiter design and ATJ graphite for the low Z design. The dependence of significant material properties on temperature is shown and the impact of this behavior on the decision to actively or passively cool the limiter is discussed

  13. Enhanced optical limiting effects of graphene materials in polyimide

    International Nuclear Information System (INIS)

    Gan, Yao; Feng, Miao; Zhan, Hongbing

    2014-01-01

    Three different graphene nanostructure suspensions of graphene oxide nanosheets (GONSs), graphene oxide nanoribbons (GONRs), and graphene oxide quantum dots (GOQDs) are prepared and characterized. Using a typical two-step method, the GONSs, GONRs, and GOQDs are incorporated into a polyimide (PI) matrix to synthesize graphene/PI composite films, whose nonlinear optical (NLO) and optical limiting (OL) properties are investigated at 532 nm in the nanosecond regime. The GONR suspension exhibits superior NLO and OL effects compared with those of GONSs and GOQDs because of its stronger nonlinear scattering and excited-state absorption. The graphene/PI composite films exhibit NLO and OL performance superior to that of their corresponding suspensions, which is attributed primarily to a combination of nonlinear mechanisms, charge transfer between graphene materials and PI, and the matrix effect

  14. Impact induced depolarization of ferroelectric materials

    Science.gov (United States)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    2018-06-01

    We study the large deformation dynamic behavior and the associated nonlinear electro-thermo-mechanical coupling exhibited by ferroelectric materials in adiabatic environments. This is motivated by a ferroelectric generator which involves pulsed power generation by loading the ferroelectric material with a shock, either by impact or a blast. Upon impact, a shock wave travels through the material inducing a ferroelectric to nonpolar phase transition giving rise to a large voltage difference in an open circuit situation or a large current in a closed circuit situation. In the first part of this paper, we provide a general continuum mechanical treatment of the situation assuming a sharp phase boundary that is possibly charged. We derive the governing laws, as well as the driving force acting on the phase boundary. In the second part, we use the derived equations and a particular constitutive relation that describes the ferroelectric to nonpolar phase transition to study a uniaxial plate impact problem. We develop a numerical method where the phase boundary is tracked but other discontinuities are captured using a finite volume method. We compare our results with experimental observations to find good agreement. Specifically, our model reproduces the observed exponential rise of charge as well as the resistance dependent Hugoniot. We conclude with a parameter study that provides detailed insight into various aspects of the problem.

  15. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    Science.gov (United States)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  16. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  17. Legal weight truck cask model impact limiter response

    International Nuclear Information System (INIS)

    Meinert, N.M.; Shappert, L.B.

    1989-01-01

    Dynamic and quasi-static quarter-scale model testing was performed to supplement the analytical case presented in the Nuclear Assurance Corporation Legal Weight Truck (NAC LWT) cask transport licensing application. Four successive drop tests from 9.0 meters (30 feet) onto an unyielding surface and one 1.0-meter (40-inch) drop onto a scale mild steel pin 3.8 centimeters (1.5 inches) in diameter, corroborated the impact limiter design and structural analyses presented in the licensing application. Quantitative measurements, made during drop testing, support the impact limiter analyses. High-speed photography of the tests confirm that only a small amount of energy is elastically stored in the aluminum honeycomb and that oblique drop slapdown is not significant. The qualitative conclusion is that the limiter protected LWT cask will not sustain permanent structural damage and containment will be maintained, subsequent to a hypothetical accident, as shown by structural analyses

  18. Hugoniot elastic limits and compression parameters for brittle materials

    International Nuclear Information System (INIS)

    Gust, W.H.

    1979-01-01

    The physical properties of brittle materials are of interest because of the rapidly expanding use of these material in high-pressure and shock wave techology, e.g., geophysics and explosive compaction as well as military applications. These materials are characterized by unusually high sonic velocities, have large dynamic impedances and exhibit large dynamic yield strengths

  19. Green revolution: impacts, limits, and the path ahead.

    Science.gov (United States)

    Pingali, Prabhu L

    2012-07-31

    A detailed retrospective of the Green Revolution, its achievement and limits in terms of agricultural productivity improvement, and its broader impact at social, environmental, and economic levels is provided. Lessons learned and the strategic insights are reviewed as the world is preparing a "redux" version of the Green Revolution with more integrative environmental and social impact combined with agricultural and economic development. Core policy directions for Green Revolution 2.0 that enhance the spread and sustainable adoption of productivity enhancing technologies are specified.

  20. Materials and society -- Impacts and responsibilities

    Energy Technology Data Exchange (ETDEWEB)

    Westwood, A.R.C.

    1995-11-01

    The needs of today`s advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This paper will present some examples of how this is occurring, and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.

  1. Efficacy of materials used by resource limited farmers in ethno ...

    African Journals Online (AJOL)

    zino

    2013-04-03

    Apr 3, 2013 ... and efficacy of selected materials used in the control fleas in free-range chickens. The materials tested .... Mature fleas, Ctenocephalides felis of mixed sex were obtained from Clinvet ... were bought from one farmer in the Amatola basin. In addition, ..... Ababa University of School of graduate studies.

  2. Evaluation of a bi-directional aluminum honeycomb impact limiter design

    International Nuclear Information System (INIS)

    Doman, M.J.

    1995-01-01

    A 120 Ton shipping cask is being developed for the on-site shipment of dry spent fuel at the Idaho National Engineering Laboratory. Impact limiters were incorporated in the cask design to limit the inertial load of the package and its contents during the hypothetical 9-meter (30-foot) drop accident required by 10CFR71. The design process included: (1) a series of static and dynamic tests to determine the crush characteristics of the bi-directional aluminum honeycomb impact limiter material, (2) the development of an analytical model to predict the cask deceleration force as a function of impact limiter crush, and (3) a series of quarter scale model drop tests to qualify the analytical model. The scale model testing, performed at Sandia National Laboratory in Albuquerque, New Mexico, revealed several design aspects which should be considered in developing bi-directional aluminum honeycomb impact limiters and several other design aspects which should be considered for impact limiter designs in general

  3. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  4. Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials

    International Nuclear Information System (INIS)

    Maes, Dries; Van Passel, Steven

    2014-01-01

    Innovative bioenergy projects show a growing diversity in biomass pathways, transformation technologies and end-products, leading to complex new processes. Existing energy-based indicators are not designed to include multiple impacts and are too constrained to assess the sustainability of these processes. Alternatively, indicators based on exergy, a measure of “qualitative energy”, could allow a more holistic view. Exergy is increasingly applied in analyses of both technical and biological processes. But sustainability assessments including exergy calculations, are not very common and are not generally applicable to all types of impact. Hence it is important to frame the use of exergy for inclusion in a sustainability assessment. This paper reviews the potentials and the limitations of exergy calculations, and presents solutions for coherent aggregation with other metrics. The resulting approach is illustrated in a case study. Within the context of sustainability assessment of bioenergy, exergy is a suitable metric for the impacts that require an ecocentric interpretation, and it allows aggregation on a physical basis. The use of exergy is limited to a measurement of material and energy exchanges with the sun, biosphere and lithosphere. Exchanges involving services or human choices are to be measured in different metrics. This combination provides a more inclusive and objective sustainability assessment, especially compared to standard energy- or carbon-based indicators. Future applications of this approach in different situations are required to clarify the potential of exergy-based indicators in a sustainability context. -- Highlights: • Innovative bioenergy projects require more advanced sustainability assessments to incorporate all environmental impacts. • Exergy-based indicators provide solutions for objective and robust measurements. • The use of exergy in a sustainability assessment is limited to material exchanges, excluding exchanges with society

  5. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  6. Piezoelectric PVDF materials performance and operation limits in space environments

    International Nuclear Information System (INIS)

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  7. The Limits of Materialism: Auspicious for Teleological Explanation?

    Science.gov (United States)

    Athearn, Daniel

    2012-09-01

    The idea that scientific explanation runs up against certain inherent limits beyond which the field is open for other kinds of explanation is based on flawed assumptions. Modern physical knowledge, as I read it, does contain at least one important implication for theology having to do with how "Creation" is understood, if indeed the term remains usable and suitable.

  8. Deflection of resilient materials for reduction of floor impact sound.

    Science.gov (United States)

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  9. Some limitations on processing materials in acoustic levitation devices

    Science.gov (United States)

    Oran, W. A.; Witherow, W. K.; Ross, B. B.; Rush, J. E.

    1979-01-01

    The spot heating of samples, suspended in an acoustic field, was investigated to determine if the technique could be used to process materials. A single axis resonance device operating in air at 25 C with an rms pressure maximum of 160 to 170 db was used in the experiments. The heat flow from a hot object suspended in a levitation node is dominated by the effects of the field, with the heat loss approximately 20 times larger than that due to natural convection. The acoustic forces which suspend the body at a node also serve to eject the heated air. The coupling between the locally heated region around the body and the acoustic field results in instabilities in both the pressure wave and force field. The investigations indicated the extreme difficulties in developing a materials processing device based on acoustic/spot heating for use in a terrestrial environment.

  10. Limit State of Materials and Structures Direct Methods 2

    CERN Document Server

    Oueslati, Abdelbacet; Charkaluk, Eric; Tritsch, Jean-Bernard

    2013-01-01

    To determine the carrying capacity of a structure or a structural element susceptible to operate beyond the elastic limit is an important task in many situations of both mechanical and civil engineering. The so-called “direct methods” play an increasing role due to the fact that they allow rapid access to the request information in mathematically constructive manners. They embrace Limit Analysis, the most developed approach now widely used, and Shakedown Analysis, a powerful extension to the variable repeated loads potentially more economical than step-by-step inelastic analysis. This book is the outcome of a workshop held at the University of Sciences and Technology of Lille. The individual contributions stem from the areas of new numerical developments rendering these methods more attractive for industrial design, extension of the general methodology to new horizons, probabilistic approaches and concrete technological applications.

  11. Impact limiter design for a lightweight tritium hydride vessel transport container

    International Nuclear Information System (INIS)

    Harding, D.C.; Longcope, D.B.; Neilsen, M.K.

    1995-01-01

    Sandia National Laboratories (SNL) has designed an impact-limiting system for a small, lightweight radioactive material shipping container. The Westinghouse Savannah River Company (WSRC) is developing this Type B package for the shipment of tritium, replacing the outdated LP-50 shipping container. Regulatory accident resistance requirements for Type B packages, including this new tritium package, are specified in 10 CFR 71 (NRC 1983). The regulatory requirements include a 9-meter free drop onto an unyielding target, a 1-meter drop onto a mild steel punch, and a 30-minute 800 degrees C fire test. Impact limiters are used to protect the package in the free-drop accident condition in any impact orientation without hindering the package's resistance to the thermal accident condition. The overall design of the new package is based on a modular concept using separate thermal shielding and impact mitigating components in an attempt to simplify the design, analysis, test, and certification process. Performance requirements for the tritium package's limiting system are based on preliminary estimates provided by WSRC. The current tritium hydride vessel (THV) to be transported has relatively delicate valving assemblies and should not experience acceleration levels greater than approximately 200 g's. A thermal overpack and outer stainless steel shell, to be designed by WSRC, will form the inner boundary of the impact-limiting system (see Figure 1). The mass of the package, including cargo, inner container, thermal overpack, and outer stainless steel shell (not including impact limiters) should be approximately 68 kg. Consistent with the modular design philosophy, the combined thermal overpack and containment system should be considered essentially rigid, with the impact limiters incurring all deformation

  12. Impact of aging and material structure on CANDU plant performance

    International Nuclear Information System (INIS)

    Nadeau, E.; Ballyk, J.; Ghalavand, N.

    2011-01-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  13. Impact of aging and material structure on CANDU plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, E.; Ballyk, J.; Ghalavand, N. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  14. Crush performance of redwood for developing design procedures for impact limiters

    International Nuclear Information System (INIS)

    Cramer, S.M.; Hermanson, J.C.; McMurtry, W.M.

    1995-01-01

    Containers for the transportation of hazardous and radioactive materials incorporate redwood in impact limiters. Redwood is an excellent energy absorber, but only the most simplistic information exists on its crush properties. Tbe stress-strain interrelationship for any wood species subject to three-dimensional stresses is largely unknown for any all stress condition and wood behavior at both high strains and high strain-rates is known only in general terms. Both stress-strain and crush failure theories have been developed based only on uniaxial load tests. The anisotropy of wood adds an additional complexity to measuring wood response and developing suitable theories to describe it. A long history of wood utilization in the building industry has led to design procedures and property information related to simple uniaxial loadings that do not inflict damage to the wood. This lack of knowledge may be surprising for a material that has a long history of engineered use, but the result is difficulty in utilizing wood in more sophisticated designs such as impact limiters. This study provides a step toward filling the information gap on wood material response for high performance applications such as impact limiters

  15. Gelatin as a new humidity sensing material: Characterization and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Shapardanis, Steven [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Hudpeth, Mathew [Department of Physics, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Kaya, Tolga, E-mail: kaya2t@cmich.edu [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States)

    2014-12-15

    The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10{sup −5} cm{sup 2}/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  16. Gelatin as a new humidity sensing material: Characterization and limitations

    Directory of Open Access Journals (Sweden)

    Steven Shapardanis

    2014-12-01

    Full Text Available The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10−5 cm2/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  17. Evaluation of mechanical properties and low velocity impact characteristics of balsa wood and urethane foam applied to impact limiter of nuclear spent fuel shipping cask

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Junsung; Shin, Kwangbok [Hanbat Nat' l Univ., Daejeon (Korea, Republic of); Choi, Woosuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-11-15

    The paper aims to evaluate the low velocity impact responses and mechanical properties of balsa wood and urethane foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5J. The experimental results showed that both the urethane foam and the balsa wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.

  18. The Limited Impact of Exposure Duration on Holistic Word Processing.

    Science.gov (United States)

    Chen, Changming; Abbasi, Najam Ul Hasan; Song, Shuang; Chen, Jie; Li, Hong

    2016-01-01

    The current study explored the impact of stimuli exposure duration on holistic word processing measured by the complete composite paradigm (CPc paradigm). The participants were asked to match the cued target parts of two characters which were presented for either a long (600 ms) or a short duration (170 ms). They were also tested by two popular versions of the CPc paradigm: the "early-fixed" task where the attention cue was visible from the beginning of each trial at a fixed position, and the "delayed-random" task where the cue showed up after the study character at random locations. The holistic word effect, as indexed by the alignment × congruency interaction, was identified in both tasks and was unaffected by the stimuli duration in both tasks. Meanwhile, the "delayed-random" task did not bring about larger holistic word effect than the "early-fixed" task. These results suggest the exposure duration (from around 150 to 600 ms) has a limited impact on the holistic word effect, and have methodological implications for experiment designs in this field.

  19. Plasma processing of fibre materials for enhanced impact protection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Simor, M.

    2009-01-01

    The performance of lightweight impact protective clothing depends on the constituting materials, their assembly in a system and interaction under various dynamic impact conditions. In this paper an overview of options for improved impact protective clothing systems based on a new plasma technology

  20. Low-Z material for limiters and wall surfaces in JET: beryllium and carbon

    International Nuclear Information System (INIS)

    Rebut, P.H.; Hugon, M.; Booth, S.J.; Dean, J.R.; Dietz, K.J.; Sonnenberg, K.; Watkins, M.L.

    1985-01-01

    The relative merits of graphite and beryllium, as a low-Z material for limiters and wall surfaces in JET, are compared. A consideration of data on thermomechanical properties, retention of hydrogen and gettering action, indicates that beryllium offers the best prospects as a material for the JET belt limiters and walls. (U.K.)

  1. Propagation law of impact elastic wave based on specific materials

    Directory of Open Access Journals (Sweden)

    Chunmin CHEN

    2017-02-01

    Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.

  2. Direct methods for limit and shakedown analysis of structures advanced computational algorithms and material modelling

    CERN Document Server

    Pisano, Aurora; Weichert, Dieter

    2015-01-01

    Articles in this book examine various materials and how to determine directly the limit state of a structure, in the sense of limit analysis and shakedown analysis. Apart from classical applications in mechanical and civil engineering contexts, the book reports on the emerging field of material design beyond the elastic limit, which has further industrial design and technological applications. Readers will discover that “Direct Methods” and the techniques presented here can in fact be used to numerically estimate the strength of structured materials such as composites or nano-materials, which represent fruitful fields of future applications.   Leading researchers outline the latest computational tools and optimization techniques and explore the possibility of obtaining information on the limit state of a structure whose post-elastic loading path and constitutive behavior are not well defined or well known. Readers will discover how Direct Methods allow rapid and direct access to requested information in...

  3. Dynamic material behavior determination using single fiber impact

    NARCIS (Netherlands)

    Heru Utomo, B.D.; Broos, J.P.F.

    2007-01-01

    Mechanical properties of fiber materials are used as input data for amongst others impact simulations on fiber based structures to predict their behavior. Accurate predictions for such materials are still not possible, because the mechanical properties are usually determined (quasi-)statically or

  4. Impact of Universities' Promotional Materials on College Choice.

    Science.gov (United States)

    Armstrong, Jami J.; Lumsden, D. Barry

    1999-01-01

    Evaluated the impact of printed promotional materials on the recruitment of college freshmen using focus groups of students attending a large, southern metropolitan university. Students provided detailed suggestions on ways to improve the method of distribution, graphic design, and content of the materials. (Author/DB)

  5. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    Science.gov (United States)

    Schiffman, Y. M.; Tahami, J. E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply and demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  6. Impact of indoor surface material on perceived air quality.

    Science.gov (United States)

    Senitkova, I

    2014-03-01

    The material combination impact on perceived indoor air quality for various surface interior materials is presented in this paper. The chemical analysis and sensory assessments identifies health adverse of indoor air pollutants (TVOCs). In this study, emissions and odors from different common indoor surface materials were investigated in glass test chamber under standardized conditions. Chemical measurements (TVOC concentration) and sensory assessments (odor intensity, air acceptability) were done after building materials exposure to standardized conditions. The results of the chemical and sensory assessment of individual materials and their combinations are compared and discussed within the paper. The using possibility of individual material surface sorption ability was investigated. The knowledge of targeted sorption effects can be used in the interior design phase. The results demonstrate the various sorption abilities of various indoor materials as well as the various sorption abilities of the same indoor material in various combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Analysis of stresses and strains in the materials with limiting structure using x-ray

    International Nuclear Information System (INIS)

    Imafuku, Muneyuki

    2010-01-01

    This review outlines the principle of analysis and the measuring instruments using X-ray for the stresses and strains in the materials with limiting structure. Further the several experimental examples are shown. This method is expected to be useful widely for the characterization evaluation, the reliability insurance, and the development of materials. (M.H.)

  8. Principles for establishing limits for the release of radioactive materials into the environment

    International Nuclear Information System (INIS)

    1978-01-01

    The document provides a basic consideration of concepts and principles for use by national authorities in setting limits for planned releases of radioactive material. The following topics are discussed general concepts, assessment of dose to the critical group, assessment of collective dose commitments, application of optimization techniques to the determination of discharge limits, explanation and application of the concept of collective dose commitment, discharge limitations based on concentration indices

  9. 10 CFR 51.76 - Draft environmental impact statement-limited work authorization.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Draft environmental impact statement-limited work...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Production and Utilization Facilities § 51.76 Draft environmental impact statement—limited work authorization. The NRC will prepare a...

  10. Ceramic bar impact experiments for improved material model

    International Nuclear Information System (INIS)

    Brar, N.S.; Proud, W.G.; Rajendran, A.M.

    2004-01-01

    Ceramic bar-on-bar (uniaxial stress) experiments are performed to extend uniaxial strain deformation states imposed in flyer plate impact experiments. A number of investigators engaged in modeling the bar-on-bar experiments have varying degrees of success in capturing the observed fracture modes in bars and correctly simulating the measured in-situ axial stress or free surface velocity histories. The difficulties encountered are related to uncertainties in understanding the dominant failure mechanisms as a function of different stress states imposed in bar impacts. Free surface velocity of the far end of the target AD998 bar were measured using a VISAR in a series of bar-on-bar impact experiments at nominal impact speeds of 100 m/s, 220 m/s, and 300 m/s. Velocity history data at an impact of 100 m/s show the material response as elastic. At higher impact velocities of 200 m/s and 300 m/s the velocity history data suggest an inelastic material response. A high-speed (Imacon) camera was employed to examine the fracture and failure of impactor and target bars. High speed photographs provide comprehensive data on geometry of damage and failure patterns as a function of time to check the validity of a particular constitutive material model for AD998 alumina used in numerical simulations of fracture and failure of the bars on impact

  11. Density as a factor limiting the workability of P/M materials

    International Nuclear Information System (INIS)

    Libura, W.; Zasadzinski, J.

    1993-01-01

    In this study a general scheme expressing the factors which affect a workability of powder materials is presented. It was found from laboratory experiments that workability of powder metal materials is limited by their density. Aluminium based materials with additions of Cu, Ni and Sn were used in the experiments. Workability determined in compression tests depends strongly on a sintered density, independently of the chemical composition of material. A linear dependence between workability and sintered density was found. The results are related to relatively high density values, taken from the range of 0.85-0.96 of theoretical density. (orig.)

  12. Gold nanorods-silicone hybrid material films and their optical limiting property

    Science.gov (United States)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  13. New approaches to deriving limits of the release of radioactive material into the environment

    International Nuclear Information System (INIS)

    Lindell, B.

    1977-01-01

    During the last few years, new principles have been developed for the limitation of the release of radioactive material into the environment. It is no longer considered appropriate to base the limitation on limits for the concentrations of the various radionuclides in air and water effluents. Such limits would not prevent large amounts of radioactive material from reaching the environment should effluent rates be high. A common practice has been to identify critical radionuclides and critical pathways and to base the limitation on authorized dose limits for local ''critical groups''. If this were the only limitation, however, larger releases could be permitted after installing either higher stacks or equipment to retain the more short-lived radionuclides for decay before release. Continued release at such limits would then lead to considerably higher exposure at a distance than if no such installation had been made. Accordingly there would be no immediate control of overlapping exposures from several sources, nor would the system guarantee control of the future situation. The new principles described in this paper take the future into account by limiting the annual dose commitments rather than the annual doses. They also offer means of controlling the global situation by limiting not only doses in critical groups but also global collective doses. Their objective is not only to ensure that individual dose limits will always be respected but also to meet the requirement that ''all doses be kept as low as reasonably achievable''. The new approach is based on the most recent recommendations by the ICRP and has been described in a report by an IAEA panel (Procedures for establishing limits for the release of radioactive material into the environment). It has been applied in the development of new Swedish release regulations, which illustrate some of the problems which arise in the practical application

  14. New approaches to deriving limits of the release of radioactive material into the environment

    International Nuclear Information System (INIS)

    Lindell, B.

    1977-01-01

    During the last few years, new principles have been developed for the limitation of the release of radioactive material into the environment. It is no longer considered appropriate to base the limitation on limits for the concentrations of the various radionuclides in air and water effluents. Such limits would not prevent large amounts of radioactive material from reaching the environment should effluent rates be high. A common practice has been to identify critical radionuclides and critical pathways and to base the limitation on authorized dose limits for local ''critical groups''. If this were the only limitation, however, larger releases could be permitted after installing either higher stacks or equipment to retain the more shortlived radionuclides for decay before release. Continued release at such limits would then lead to considerably higher exposure at a distance than if no such installation had been made. Accordingly there would be no immediate control of overlapping exposures from several sources, nor would the system guarantee control of the future situation. The new principles described in this paper take the future into account by limiting the annual dose commitments rather than the annual doses. They also offer means of controlling the global situation by limiting not only doses in critical groups but also global collective doses. Their objective is not only to ensure that individual dose limits will always be respected but also to meet the requirement that ''all doses be kept as low as reasonably achievable''. The new approach is based on the most recent recommendations by the ICRP and has been described in a report by an IAEA panel (Procedures for Establishing Limits for the Release of Radioactive Material into the Environment). It has been applied in the development of new Swedish release regulations, which illustrate some of the problems which arise in the practical application. (author)

  15. The impact of teachers' limited English proficiency on English ...

    African Journals Online (AJOL)

    The importance of the role of language in teacher education programmes and in children's learning is crucial. This study focuses on the use of English as the language of learning and teaching and its impact on the language development of English second language (ESL) student teachers and ESL learners. Against the ...

  16. A Market Model for Evaluating Technologies That Impact Critical-Material Intensity

    Science.gov (United States)

    Iyer, Ananth V.; Vedantam, Aditya

    2016-07-01

    A recent Critical Materials Strategy report highlighted the supply chain risk associated with neodymium and dysprosium, which are used in the manufacturing of neodymium-iron-boron permanent magnets (PM). In response, the Critical Materials Institute is developing innovative strategies to increase and diversify primary production, develop substitutes, reduce material intensity and recycle critical materials. Our goal in this paper is to propose an economic model to quantify the impact of one of these strategies, material intensity reduction. Technologies that reduce material intensity impact the economics of magnet manufacturing in multiple ways because of: (1) the lower quantity of critical material required per unit PM, (2) more efficient use of limited supply, and (3) the potential impact on manufacturing cost. However, the net benefit of these technologies to a magnet manufacturer is an outcome of an internal production decision subject to market demand characteristics, availability and resource constraints. Our contribution in this paper shows how a manufacturer's production economics moves from a region of being supply-constrained, to a region enabling the market optimal production quantity, to a region being constrained by resources other than critical materials, as the critical material intensity changes. Key insights for engineers and material scientists are: (1) material intensity reduction can have a significant market impact, (2) benefits to manufacturers are non-linear in the material intensity reduction, (3) there exists a threshold value for material intensity reduction that can be calculated for any target PM application, and (4) there is value for new intellectual property (IP) when existing manufacturing technology is IP-protected.

  17. Impact Testing of Orbiter Thermal Protection System Materials

    Science.gov (United States)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  18. Modeling of Impact Properties of Auxetic Materials Phase 2

    Science.gov (United States)

    2014-03-01

    over the more conventional engineering materials, such as higher indentation resistance, higher fracture toughness and greater resistance to impact...entrant materials were fixed at L=H=1.0 mm from which the rib lengths and thickness for each test case could be calculated using Equations (5) and (6...specimen. In all finite element models, the horizontal (2h) and diagonal (l) ribs shown in Figure 2 were idealized by ten and five shell elements

  19. GA-4/GA-9 honeycomb impact limiter tests and analytical model

    International Nuclear Information System (INIS)

    Koploy, M.A.; Taylor, C.S.

    1991-01-01

    General Atomics (GA) has a test program underway to obtain data on the behavior of a honeycomb impact limiter. The program includes testing of small samples to obtain basic information, as well as testing of complete 1/4-scale impact limiters to obtain load-versus-deflection curves for different crush orientations. GA has used the test results to aid in the development of an analytical model to predict the impact limiter loads. The results also helped optimize the design of the impact limiters for the GA-4 and GA-9 Casks

  20. Impact analysis of automotive structures with distributed smart material systems

    Science.gov (United States)

    Peelamedu, Saravanan M.; Naganathan, Ganapathy; Buckley, Stephen J.

    1999-06-01

    New class of automobiles has structural skins that are quite different from their current designs. Particularly, new families of composite skins are developed with new injection molding processes. These skins while support the concept of lighter vehicles of the future, are also susceptible to damage upon impact. It is important that their design should be based on a better understanding on the type of impact loads and the resulting strains and damage. It is possible that these skins can be integrally designed with active materials to counter damages. This paper presents a preliminary analysis of a new class of automotive skins, using piezoceramic as a smart material. The main objective is to consider the complex system with, the skin to be modeled as a layered plate structure involving a lightweight material with foam and active materials imbedded on them. To begin with a cantilever beam structure is subjected to a load through piezoceramic and the resulting strain at the active material site is predicted accounting for the material properties, piezoceramic thickness, adhesive thickness including the effect of adhesives. A finite element analysis is carried out to compare experimental work. Further work in this direction would provide an analytical tool that will provide the basis for algorithms to predict and counter impacts on the future class of automobiles.

  1. Asia's hunger for energy. Raw materials exploitation taken to the limit; Asiens Energiehunger. Rohstoffe am Limit

    Energy Technology Data Exchange (ETDEWEB)

    Pilny, Karl; Reid, Gerard

    2011-07-01

    The world is facing a dramatic change, owing to the rapid economic growth of China and India, which is unique in history. The result will be an enraged battle for limited fossil fuels like oil and gas. To secure energy resources, the current and future powers will increasingly use power play and also armed solutions. This is why we need profound changes, not only in the manner of power generation but also in the distribution and uses of the generated power. The book intends to give the reader profound understanding of the role of raw materials in future energy supply and of the options we have to solve the energy problem. (orig./RHM)

  2. Efficiency Limits of Solar Energy Harvesting via Internal Photoemission in Carbon Materials

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2018-02-01

    Full Text Available We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, including visible and near-infrared light. The energy of photo-generated non-equilibrium or ‘hot’ charge carriers can be harvested before they thermalize with the crystal lattice via the process of their internal photo-emission (IPE through the rectifying Schottky junction with a semiconductor. However, the low efficiency and the high cost of noble metals necessitates the search for cheaper abundant alternative materials, and we show here that carbon can serve as a promising IPE material candidate. We compare the upper limits of performance of IPE photon energy-harvesting platforms, which incorporate either gold or carbon as the photoactive material where hot electrons are generated. Through a combination of density functional theory, joint electron density of states calculations, and Schottky diode efficiency modeling, we show that the material electron band structure imposes a strict upper limit on the achievable efficiency of the IPE devices. Our calculations reveal that graphite is a good material candidate for the IPE absorber for harvesting visible and near-infrared photons. Graphite electron density of states yields a sizeable population of hot electrons with energies high enough to be collected across the potential barrier. We also discuss the mechanisms that prevent the IPE device efficiency from reaching the upper limits imposed by their material electron band structures. The proposed approach is general and allows for efficient pre-screening of materials for their potential use in IPE energy converters and photodetectors within application-specific spectral windows.

  3. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user

  4. Materials and process limitations for thermoplastic composite materials for wind turbine blades - preform of prepregs and commingled yarns

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, R.T.D.

    2011-07-01

    Wind turbine blades are produced based on the current thermoset resin technology, but thermoplastics can offer better potential to become the future blade materials. One of the most important goals when designing larger blade systems is to keep the blade weight under control. Thermoplastic materials offer weight saving similar to thermosets, apart from many other benefits like design flexibility, durability, cost, weight saving, and performance advantageous to the wind industry. In the current research study a detailed discussion on material and process limitations such as thermoplastic prepreg tapes and commingled yams are presented in terms of their properties and available forms in the current markets. A critical review of thermoplastics discussed in the context of turbine blades applications. (Author)

  5. Some issues on environmental impact report of radioactive material transport

    International Nuclear Information System (INIS)

    Wang Jiaming

    2001-01-01

    The author puts forward some issues which should be paid attention to when compiling a environmental impact report of radioactive material transport. The main issues discussed are as follows: (1) Optimization analysis for transport routes. (2) Source terms under accident conditions in transport. (3) Precautions against accidents and emergency preparedness. (4) Quality assurance of transport, etc

  6. Size limitations for microwave cavity to simulate heating of blanket material in fusion reactor

    International Nuclear Information System (INIS)

    Wolf, D.

    1987-01-01

    The power profile in the blanket material of a nuclear fusion reactor can be simulated by using microwaves at 200 MHz. Using these microwaves, ceramic breeder materials can be thermally tested to determine their acceptability as blanket materials without entering a nuclear fusion environment. A resonating cavity design is employed which can achieve uniform cross sectional heating in the plane transverse to the neutron flux. As the sample size increases in height and width, higher order modes, above the dominant mode, are propagated and destroy the approximation to the heating produced in a fusion reactor. The limits at which these modes develop are determined in the paper

  7. Analysis of ceramic materials for impact members in isotopic heat sources

    International Nuclear Information System (INIS)

    Simonen, F.A.; Duckworth, W.H.

    1976-01-01

    Of the available high strength ceramics, silicon nitride offers the most promise followed by silicon carbide and aluminum oxide, and stress analyses show severe limitations on allowable velocities for impact with granite following reentry for these ceramics. Impact velocities in the 100 to 200 fps regime can be achieved only by the addition of an additional layer to distribute the high contact stress. Besides impact limitations, application of ceramic materials in heat sources would present problems both in terms of weight and fabrication. The required thickness of a ceramic impact member would be comparable to that for a carbon-carbon composite material, but the least dense of the high strength ceramics are 2 to 3 times more dense than the carbon-carbon composites. Fabrication of a ceramic heat source would require a high strength bond between the fuel and the impact member if reasonable impact velocities are to be achieved. Formation of such a bond in ceramic materials is a difficult task under normal circumstances, and would be more difficult under the restrictions imposed on the processing and handling of the 238 PuO 2 fuel. 16 fig

  8. Assessment of the impact of HTSCs on superconducting fault-current limiters

    International Nuclear Information System (INIS)

    Giese, R.F.; Runde, M.

    1992-01-01

    The possible impact of nitrogen-cooled superconductors on the design and cost of superconducting fault-current limiters is assessed by considering the technical specifications such devices must meet and by comparing material properties of 77-K and 4-K superconductors. The main advantage of operating superconducting at 77 K is that the refrigeration operating cost is reduced by a factor of up to 25, and the refrigeration capital cost is reduced by a factor of up to 10. The heat capacity at 77 K is several orders of magnitude larger than at 4 K. This phenomenon increases conductor stability against flux jumps but makes switching from the superconducting to normal state slow and difficult. Therefore, a high critical current density, probably at least 10 5 A/cm 2 , is required

  9. Accelerated carbonation testing of mortar with supplementary cement materials. Limitation of the acceleration due to drying

    NARCIS (Netherlands)

    Visser, J.H.M.

    2012-01-01

    In the design stage of a concrete structure, decisions have to be made on how to fulfil the required service life and consequently, what concrete composition to use. Concrete compositions can be chosen on account of known performances but this will limit the choice of compositions and materials to

  10. Impact on geologic repository usage from limited actinide recycle in pressurized light water reactors

    International Nuclear Information System (INIS)

    Wigeland, Roald A.; Bauer, Theodore H.; Hill, Robert N.; Stillman, John A.

    2007-01-01

    A project has been conducted as part of the U.S. Department of Energy Advanced Fuel Cycle Initiative to evaluate the impact of limited actinide recycling in light water reactors on the utilization of a geologic repository where loading of the repository is constrained by the decay heat of the emplaced materials. In this study, it was assumed that spent PWR fuel was processed, removing the uranium, plutonium, americium, and neptunium, along with the fission products cesium and strontium. Previous work had demonstrated that these elements were responsible for limiting loading in the repository based on thermal constraints. The plutonium, americium, and neptunium were recycled in a PWR, with process waste and spent recycled fuel being sent to the repository. The cesium and strontium were placed in separate storage for 100-300 years to allow for decay prior to disposal. The study examined the effect of single and multiple recycles of the recovered plutonium, americium, and neptunium, as well as different processing delay times. The potential benefit to the repository was measured by the increase in utilization of repository space as indicated by the allowable linear loading in the repository drifts (tunnels). The results showed that limited recycling would provide only a small fraction of the benefit that could be achieved with repeated processing and recycling, as is possible in fast neutron reactors. (author)

  11. Benefits of the S/F cask impact limiter weldment imperfection

    International Nuclear Information System (INIS)

    Ku, Jeong Hoe; Lee, Ju Chan; Kim, Jong Hun; Park, Seong Won; Park, Hyun Soo

    2000-01-01

    This paper describes the beneficial effect of weldment imperfection of the cask impact limiter, by applying intermittent-weld, for impact energy absorbing behavior. From the point of view of energy absorbing efficiency of an energy absorber, it is desirable to reduce the crush load resistance and increase the deformation of the energy absorber within certain limit. This paper presents the test results of intermittent-weldment and the analysis results of cask impacts and the discussions of the improvement of impact mitigating effect by the imperfect-weldment. The rupture of imperfect weldment of an impact limiter improves the energy-absorbing efficiency by reducing the crush load amplitude without loss of total energy absorption. The beneficial effect of weldment imperfection should be considered to the cask impact limiter design. (author)

  12. Characterization of impact behaviour of armour plate materials

    Science.gov (United States)

    Bassim, M. N.; Bolduc, M.; Nazimuddin, G.; Delorme, J.; Polyzois, I.

    2012-08-01

    Three armour plate materials, including two steels, namely HHA and Mars 300, and an aluminium alloy 5083, were studied under impact loading to determine their behaviour and the mechanisms of deformation that lead to failure. The experimental testing was carried out using either a direct impact compression Split Hopkinson Bar or a torsion Hopkinson Bar. The impact properties and stress-strain cures were obtained as a function of the impact momentum in compression and the angle of twist in torsion. It was found that at the high strain rates developed in the specimen during the tests, the deformation occurs by the formation of adiabatic shear bands (ASBs) which may lead to the formation of cracks within the bands and the ultimate failure of the specimens. It was also found that below a certain impact momentum, the deformation is more uniform and no ASBs are formed. Also, ASBs are more likely to form in the BCC metals such as the two steels while diffuse ASBs associated with plastic flow are exhibited in the 5083 aluminum alloy. Microstructural techniques ranging from optical microscopy to atomic force microscopy (AFM) were used to study the topography of the ASBs. Also, modelling of the formation was performed. The results provide a comprehensive understanding of the role of ASBs in the failure of these materials.

  13. Characterization of impact behaviour of armour plate materials

    Directory of Open Access Journals (Sweden)

    Nazimuddin G.

    2012-08-01

    Full Text Available Three armour plate materials, including two steels, namely HHA and Mars 300, and an aluminium alloy 5083, were studied under impact loading to determine their behaviour and the mechanisms of deformation that lead to failure. The experimental testing was carried out using either a direct impact compression Split Hopkinson Bar or a torsion Hopkinson Bar. The impact properties and stress-strain cures were obtained as a function of the impact momentum in compression and the angle of twist in torsion. It was found that at the high strain rates developed in the specimen during the tests, the deformation occurs by the formation of adiabatic shear bands (ASBs which may lead to the formation of cracks within the bands and the ultimate failure of the specimens. It was also found that below a certain impact momentum, the deformation is more uniform and no ASBs are formed. Also, ASBs are more likely to form in the BCC metals such as the two steels while diffuse ASBs associated with plastic flow are exhibited in the 5083 aluminum alloy. Microstructural techniques ranging from optical microscopy to atomic force microscopy (AFM were used to study the topography of the ASBs. Also, modelling of the formation was performed. The results provide a comprehensive understanding of the role of ASBs in the failure of these materials.

  14. Dental Glass Ionomer Cements as Permanent Filling Materials? – Properties, Limitations and Future Trends

    Directory of Open Access Journals (Sweden)

    Ulrich Lohbauer

    2009-12-01

    Full Text Available Glass ionomer cements (GICs are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  15. Radiological environmental impacts from transportation of nuclear materials

    International Nuclear Information System (INIS)

    Shuai Zhengqing

    1994-01-01

    The author describes radiological impacts from transportation of nuclear materials. RADTRAN 4.0 supplied by IAEA was adopted to evaluate radiological consequence of incident-free transportation as well as the radiological risks from vehicular accidents occurring during transportation. The results of calculation show that the collective effective dose equivalent of incident-free transportation to the public and transportation workers is 7.94 x 10 -4 man·Sv. The calculated data suggest that the environmental impacts under normal and assumed accidental conditions are acceptable

  16. Radiological impact assessment of building materials on ordinary houses dwellers

    International Nuclear Information System (INIS)

    Campos, M.P. de.

    1994-01-01

    The radiological impact due to building materials on habitants living in the Santo Andre district of Sao Paulo state, Brazil, was assessed through the total effective dose equivalent rate determination, for external and internal irradiation. The effective dose equivalent rate for external irradiation was calculated by the gamma spectrometry determination of natural radionuclides specific activity in the dwelling materials. The effective dose equivalent rate due to 222 Rn inhalation was calculated through the radon indoor activity determination by using solid state nuclear track detectors. (author). 46 refs, 6 figs, 14 tabs

  17. Grey radiative transfer in binary statistical media with material temperature coupling: asymptotic limits

    International Nuclear Information System (INIS)

    Prinja, A.K.; Olson, G.L.

    2005-01-01

    Simplified models for the unconditional ensemble-averaged radiation intensity and material energy are developed for radiative transfer in binary statistical media. Asymptotic analysis is used to construct an effective transport model with homogenized opacities in two limits. In the first, the material properties are assumed to have low contrast on average, and is shown to correctly reproduce the well-known atomic mix model in both time-dependent and equilibrium situations. Our analysis successfully resolves an inconsistency previously noted in the literature with the application of the standard definition of the atomic mix limit to radiative transfer in participating random media. In the second limit considered, the materials are assumed to have highly contrasting opacities, yielding a reduced transport model with effective scattering. The existence of these limits requires the mean chunk sizes to be independent of the photon direction and this creates an ambiguity in the interpretation of the models when the underlying stochastic geometry is comprised of alternating one-dimensional slabs. A consistent one-dimensional setting is defined and the asymptotic models are numerically validated over a broad range of physical parameter values

  18. Device Innovation and Material Challenges at the Limits of CMOS Technology

    Science.gov (United States)

    Solomon, P. M.

    2000-08-01

    Scaling of the predominant silicon complementary metal-oxide semiconductor (CMOS) technology is finally approaching an end after decades of exponential growth. This review explores the reasons for this limit and some of the strategies available to the semiconductor industry to continue the technology extension. Evolutionary change to the silicon transistor will be pursued as long as possible, with increasing demands being placed on materials. Eventually new materials such a silicon-germanium may be used, and new device topologies such as the double-gated transistor may be employed. These strategies are being pursued in research organizations today. It is likely that planar technology will reach its limit with devices on the 10-nm scale, and then the third dimension will have to be exploited more efficiently to achieve further performance and density improvements.

  19. The analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference

    Science.gov (United States)

    Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi

    2017-08-01

    The aim of this study was to describe the analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference. The purpose of this study is to describe the analysis of mathematics teacher's learning on limit algebraic functions in terms of the differences of teaching experience. Learning analysis focused on Pedagogical Content Knowledge (PCK) of teachers in mathematics on limit algebraic functions related to the knowledge of pedagogy. PCK of teachers on limit algebraic function is a type of specialized knowledge for teachers on how to teach limit algebraic function that can be understood by students. Subjects are two high school mathematics teacher who has difference of teaching experience they are one Novice Teacher (NP) and one Experienced Teacher (ET). Data are collected through observation of learning in the class, videos of learning, and then analyzed using qualitative analysis. Teacher's knowledge of Pedagogic defined as a knowledge and understanding of teacher about planning and organizing of learning, and application of learning strategy. The research results showed that the Knowledge of Pedagogy on subject NT in mathematics learning on the material of limit function algebra showed that the subject NT tended to describe procedurally, without explaining the reasons why such steps were used, asking questions which tended to be monotonous not be guiding and digging deeper, and less varied in the use of learning strategies while subject ET gave limited guidance and opportunities to the students to find their own answers, exploit the potential of students to answer questions, provide an opportunity for students to interact and work in groups, and subject ET tended to combine conceptual and procedural explanation.

  20. Environmental impact of accidents involving radioactive material shipping systems

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Pope, R.B.; Huerta, M.; Nilson, R.H.

    1978-01-01

    Four full-scale spent fuel cask crash tests have been performed, including two head-on truck-barrier impacts (100 and 135 km/h), one railcar-barrier impact (130 km/h), and one locomotive grade crossing impact (130 km/h). Releases to the environment were limited to seepage of about 100 cc of cavity liquid from the cask head in the 135 km/h truck impact test and a slight head seal air leak in the 130 km/h locomotive grade crossing test. These releases were well within the limits specified by the NRC regulations, would have been easily cleaned up, and would have caused little effect on the environment and virtually no risk to the public. To further evaluate cask capability, the crashed spent-fuel rail cask system was fire tested. The cask withstood 90 minutes of a fully engulfing hydrocarbon pool fire while maintaining its structural integrity. At approximately 100 minutes into the fire test, the outer shell of the cask cracked resulting in the partial loss of lead radiation shielding. The failure of the shell was attributed to poor quality control during the original fabrication of the cask in the early 1960's. Present regulatory standards would prevent such occurrences in casks built and licensed today. In addition, the test was much more severe than the qualification criteria specified by present licensing requirements. 4 tables, 13 figures

  1. Modeling the dynamic crush of impact mitigating materials

    International Nuclear Information System (INIS)

    Logan, R.W.; McMichael, L.D.

    1995-01-01

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D will be discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a 4-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations

  2. Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage

    Science.gov (United States)

    2017-01-01

    The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar. PMID:28413259

  3. Tensile strength and impact resistance properties of materials used in prosthetic check sockets, copolymer sockets, and definitive laminated sockets

    OpenAIRE

    Maria J. Gerschutz, PhD; Michael L. Haynes, MS; Derek M. Nixon, BS; James M. Colvin, MS

    2011-01-01

    Prosthetic sockets serve as the interface between people with amputations and their prostheses. Although most materials used to make prosthetic sockets have been used for many years, knowledge of these materials' properties is limited, especially after they are subjected to fabrication processes. This study evaluated tensile and impact properties of the current state-of-the-art materials used to fabricate prosthetic check sockets, copolymer sockets, and definitive laminated sockets. Thermolyn...

  4. Engineering model for low-velocity impacts of multi-material cylinder on a rigid boundary

    Directory of Open Access Journals (Sweden)

    Delvare F.

    2012-08-01

    Full Text Available Modern ballistic problems involve the impact of multi-material projectiles. In order to model the impact phenomenon, different levels of analysis can be developed: empirical, engineering and simulation models. Engineering models are important because they allow the understanding of the physical phenomenon of the impact materials. However, some simplifications can be assumed to reduce the number of variables. For example, some engineering models have been developed to approximate the behavior of single cylinders when impacts a rigid surface. However, the cylinder deformation depends of its instantaneous velocity. At this work, an analytical model is proposed for modeling the behavior of a unique cylinder composed of two different metals cylinders over a rigid surface. Material models are assumed as rigid-perfectly plastic. Differential equation systems are solved using a numerical Runge-Kutta method. Results are compared with computational simulations using AUTODYN 2D hydrocode. It was found a good agreement between engineering model and simulation results. Model is limited by the impact velocity which is transition at the interface point given by the hydro dynamical pressure proposed by Tate.

  5. Impact analysis of TOTEM data at the LHC: black disk limit exceeded

    CERN Document Server

    Alkin, A; Kovalenko, O; Troshin, S M

    2015-01-01

    We discuss the profile of the impact--parameter dependent elastic scattering amplitude. Extraction of impact-parameter dependence from the dataset with inclusion of the experimental data on elastic scattering at the LHC energies helps to reveal the asymptotics of hadron interactions. Analysis of the data clearly indicates that the impact-parameter elastic scattering amplitude exceed the black disk limit at the LHC energy 7TeV and the inelastic overlap function reaches its maximum value at $b>0$

  6. Impact of proposed financial assurance requirements on nuclear materials licensees

    International Nuclear Information System (INIS)

    Hendrickson, P.L.; Scott, M.J.; Mullen, M.F.; Nicholls, A.K.; Smith, S.A.

    1987-09-01

    The NRC is considering a possible rulemaking that would require certain nuclear materials licensees to demonstrate financial ability to clean up accidental releases of radioactive materials. The rulemaking would potentially affect approximately 16,350 NRC and Agreement State licensees. This report was prepared for NRC by the Pacific Northwest Laboratory to provide background information and analysis for the potential rulemaking. Specific topics examined in the report include: (1) characteristics of potentially affected licensees, (2) the availability and cost of various financial assurance mechanisms, (3) the financial impacts for licensees (including licensees classified as small businesses) of providing $2M of assurance per licensee and a sliding amount of assurance tied to risk, (4) the cost of administering a financial assurance rule, and (5) overall benefits and costs. Tabular information on past material licensee accidents and cleanup efforts is also included. The financial occurrence mechanism that appears to be most suitable for providing the desired financial assurance is one or more newly formed captive insurance companies. Potential benefits of the rulemaking include reduced need for taxpayer-funded cleanup of accidental releases, reduces administrative time to secure such funds, and the possibility of more cleanup with correspondingly reduced occupational and public exposure to radioactive materials

  7. A local isotropic/global orthotropic finite element technique for modeling the crush of wood in impact limiters

    International Nuclear Information System (INIS)

    Attaway, S.W.; Yoshimura, H.R.

    1989-01-01

    Wood is often used as the energy absorbing material in impact limiters, because it begins to crush at low strains, then maintains a near constant crush stress up to nearly 60% volume reduction, and then locks up. Hill (Hill and Joseph, 1974) has performed tests that show that wood is an excellent absorber. However, wood's orthotropic behavior for large crush is difficult to model. In the past, analysts have used isotropic foam-like material models for modeling wood. A new finite element technique is presented in this paper that gives a better model of wood crush than the model currently in use. The orthotropic technique is based on locally isotropic, but globally orthotropic (LIGO) (Attaway, 1988) assumptions in which alternating layers of hard and soft crushable material are used. Each layer is isotropic; however, by alternating hard and soft thin layers, the resulting global behavior is orthotropic. In the remainder of this paper, the new technique for modeling orthotropic wood crush will be presented. The model is used to predict the crush behavior for different grain orientations of balsa wood. As an example problem, an impact limiter containing balsa wood as the crushable material is analyzed using both an isotropic model and the LIGO model

  8. Material Evidence for Ocean Impact from Shock-Metamorphic Experiments

    Science.gov (United States)

    Miura, Y.; Takayama, K.; Iancu, O. G.

    1993-07-01

    Continental impact reveals an excavated crater that has few fresh fine ejecta showing major high shock metamorphism due to weathering [1]. A giant ocean impact rarely remains as an excavated crater mainly due to crushing by dynamic plate-tectonic movements on the crust [2]. However, all impact materials, including fine-grained ejecta, can be obtained with artificial impact experiments [3]. The purpose of this study is to discuss material evidence for ocean impact based on shock-metamorphic experiments. Artificial impact experiments indicate that fine shocked quartz (SQ) aggregates can be formed on several target rocks (Table 1) [1]. It is found in Table 1 that (1) the largest-density deviation of SQ grain is found not at the wall-rock or the impact crater but at fine-grained ejecta, and (2) silica-poor rocks of basalt, gabbro, and anorthosite can also make fine SQ aggregates by impact. Table 1, which appears here in the hard copy, shows formations of fine shocked quartz aggregates from ocean-floor rocks of basalt, gabbroic anorthosite, and granite [3]. An asteroid (about 10 km across) hits the Earth ~65 m.y. ago [4] to result in global catastrophe by titanic explosion and climate change. But shocked quartz grains found in the K/T boundary layer were considered to come from crystalline continental rocks [5]. The present result as listed in Table 1 indicates that fine SQ aggregates can also be formed at sea-floor basaltic and gabbroic rocks [3]. The present result of formation of the SQ grains from sea- floor target rocks is nearly consistent with the finding of a sea-impact crater at the K/T boundary near the Caribbean [6]. Impact-induced volcanism at the K/T boundary can explained by the penetration from thin ocean crust to upper mantle reservoirs, if giant impact of a 10-km- diameter asteroid hit the ocean [2,7]. The present result can explain "phreatomagmatic (magmatic vapor) explosion," which is created by abrupt boiling between high-temperature magma and cold

  9. Evaluation of geologic materials to limit biological intrusion of low-level waste site covers

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.; Karlen, E.M.

    1982-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. This paper reports the preliminary results of a screening study to-determine the effectiveness of four biobarrier materials to stop plant root and animal penetration into simulated low-level wastes. Experiments employed 288 lysimeters consisting of 25-cm-diam PVC pipe, with four factors tested: plant species (alfalfa, barley, and sweet clover); top soil thickness (30 and 60 cm); biobarrier material (crushed tuff, bentonite clay, cobble, and cobble-gravel); and biobarrier thickness (clay-15, 30, and 45 cm, others 30, 60, and 90 cm). The crushed tuff, a sandy backfill material, offers little resistance to root and animal intrusion through the cover profile, while bentonite clay, cobble, and cobble-gravel combinations do reduce plant root and animal intrusion thorugh cover profiles. However, dessication of the clay barrier by invading plant roots may limit the usefulness of this material as a moisture and/or biological barrier. The cobble-gravel combination appears to be the best candidate for further testing on a larger scale because the gravel helps impede the imgration of soil into the cobble layer - the probable cause of failure of cobble-only biobarriers

  10. Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution

    Directory of Open Access Journals (Sweden)

    Bus Agnieszka

    2017-09-01

    Full Text Available Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution. Polonite® is an effective reactive material (manufactured from opoka rock for removing phosphorus from aqueous solutions. In conducted experiments, Polonite® of grain size of 2–5 mm was used as a potential reactive material which can be used as a filter fulfillment to reduce phosphorus diffuse pollution from agriculture areas. Kinetic and equilibrium studies (performed as a batch experiment were carried out as a function of time to evaluate the sorption properties of the material. The obtained results show that Polonite® effectively removes such contamination. All tested concentrations (0.998, 5.213, 10.965 mg P-PO4·L−1 are characterized by a better fit to pseudo-second kinetic order. The Langmuir isotherm the best reflects the mechanism of adsorption process in case of Polonite® and based on the isotherm, calculated maximum adsorption capacity equals 96.58 mg P-PO4·g−1.

  11. The Impact of Visuals on Nutrition and Health Education Materials

    Directory of Open Access Journals (Sweden)

    Emily Clyatt

    2015-10-01

    Full Text Available Colorado State University Extension (CSUE recently launched a new website, Live Eat Play Colorado (LEP; www.liveeatplay.colostate.edu which promotes traditional CSUE fact sheets as well as new consumer-friendly materials with dense imagery and lower reading levels. LEP has allowed for an increased use of visuals to enrich nutrition and health materials. Appealing visuals serve as tools designed to increase comprehension and memory of health topics (Frisch, Camerini, & Schultz, 2013. Information retention is higher when visuals are combined with text, as opposed to text-only information (Peregrin, 2010. Testing this idea, visuals were placed in the text-only fact sheet, “Nutrition for the Athlete” (231,424 page views in 2014. Google Analytics data revealed that read time increased 23% in the 15 months after visuals were placed compared to the 15 months prior, from an average of 5:32 to 6:50 minutes. The increased read time could suggest that readers are more engaged with information on the webpage and demonstrates the potential positive impact of visuals on web-based education materials. Educators should intentionally select images for fact sheets that will support, reinforce, and/or clarify messages on health topics.

  12. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    Science.gov (United States)

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  13. 10 CFR 51.80 - Draft environmental impact statement-materials license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Draft environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Draft Environmental Impact Statements-Materials Licenses § 51.80 Draft environmental impact statement—materials license. (a) The NRC staff will either prepare a draft environmental...

  14. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Final environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Final Environmental Impact Statements-Materials Licenses § 51.97 Final environmental impact statement—materials license. (a) Independent spent fuel storage installation (ISFSI...

  15. Impact resistance of sustainable construction material using light weight oil palm shells reinforced geogrid concrete slab

    International Nuclear Information System (INIS)

    Muda, Z C; Usman, F; Beddu, S; Alam, M A; Mustapha, K N; Birima, A H; Sidek, L M; Rashid, M A; Malik, G; Zarroq, O S

    2013-01-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete slab with geogrid reinforcement of 300mm × 300mm size with 20mm, 30mm and 40 mm thick casted with different geogrid orientation and boundary conditions subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance the slab thickness, boundary conditions and geogrid reinforcement orientation. Test results indicate that the used of the geogrid reinforcement increased the impact resistance under service (first) limit crack up to 5.9 times and at ultimate limit crack up to 20.1 times against the control sample (without geogrid). A good linear relationship has been established between first and ultimate crack resistance against the slab thickness. The orientation of the geogrid has minor significant to the crack resistance of the OPS concrete slab. OPS geogrid reinforced slab has a good crack resistance properties that can be utilized as a sustainable impact resistance construction materials.

  16. Validation of an impact limiter crush prediction model with test data: the case of the HI-STAR 100 package

    International Nuclear Information System (INIS)

    Singh, K.P.; Soler, A.I.; Bullard, C.W.

    2004-01-01

    An impact limiter is an essential appurtenance in a Part 71 transport package. The impact limiter serves to protect the cask contents from excessive deceleration in the event of a mechanical accident. 10CFR71.73 (as do the IAEA regulations) specifies a drop height of 9 meters (30 feet) onto an essentially rigid surface as the design requirement for the impact limiter. The orientation of the cask relative to the ''target'' at the instance of the impact, however, is not specified in the regulations. Therefore, the impact limiter must be capable of limiting the cask's deceleration to a prescribed limit regardless of the cask's orientation at impact. In addition to the indeterminacy with respect to the orientation at impact, the impact limiter must be capable of performing its intended function under a wide range of ambient conditions, ranging from -20 F to 100 F, and relative humidity from zero to 100%

  17. Impact Angle and Time Control Guidance Under Field-of-View Constraints and Maneuver Limits

    Science.gov (United States)

    Shim, Sang-Wook; Hong, Seong-Min; Moon, Gun-Hee; Tahk, Min-Jea

    2018-04-01

    This paper proposes a guidance law which considers the constraints of seeker field-of-view (FOV) as well as the requirements on impact angle and time. The proposed guidance law is designed for a constant speed missile against a stationary target. The guidance law consists of two terms of acceleration commands. The first one is to achieve zero-miss distance and the desired impact angle, while the second is to meet the desired impact time. To consider the limits of FOV and lateral maneuver capability, a varying-gain approach is applied on the second term. Reduction of realizable impact times due to these limits is then analyzed by finding the longest course among the feasible ones. The performance of the proposed guidance law is demonstrated by numerical simulation for various engagement conditions.

  18. Tensile strength and impact resistance properties of materials used in prosthetic check sockets, copolymer sockets, and definitive laminated sockets.

    Science.gov (United States)

    Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek M; Colvin, James M

    2011-01-01

    Prosthetic sockets serve as the interface between people with amputations and their prostheses. Although most materials used to make prosthetic sockets have been used for many years, knowledge of these materials' properties is limited, especially after they are subjected to fabrication processes. This study evaluated tensile and impact properties of the current state-of-the-art materials used to fabricate prosthetic check sockets, copolymer sockets, and definitive laminated sockets. Thermolyn Rigid and Orfitrans Stiff check socket materials produced significantly lower tensile strength and impact resistance than polyethylene terephthalate glycol (PETG). Copolymer socket materials exhibited greater resistance to impact forces than the check socket materials but lower tensile strengths than PETG. The heated molding processes, for the check socket and copolymer materials, reduced both tensile strength and elongation at break. Definitive laminated sockets were sorted according to fabrication techniques. Nyglass material had significantly higher elongation, indicating a more ductile material than carbon-based laminations. Carbon sockets with pigmented resin had higher tensile strength and modulus at break than nonpigmented carbon sockets. Elongation at yield and elongation at break were similar for both types of carbon-based laminations. The material properties determined in this study provide a foundation for understanding and improving the quality of prosthetic sockets using current fabrication materials and a basis for evaluating future technologies.

  19. The Impact of Mutual Recognition: Inbuilt Limits and Domestic Responses to the Single Market

    OpenAIRE

    Schmidt, S.

    2002-01-01

    What have been the consequences of integrating the single market via mutual recognition? Did competitive deregulation result? Or were its implications less significant than expected? In this paper I analyse two previously highly regulated service sectors, insurance and road haulage, and study the impact of European policies in Germany and France. I find that the Council instituted mutual recognition in a restrictive way. This limits its impact on member states, which is moreover mediated by n...

  20. On the limits of the effective description of hyperbolic materials in the presence of surface waves

    International Nuclear Information System (INIS)

    Tschikin, Maria; Biehs, Svend-Age; Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Here, we address the question of the validity of an effective description for hyperbolic metamaterials in the near-field region. We show that the presence of localized modes such as surface waves drastically limits the validity of the effective description, and requires revisiting the concept of homogenization in the near-field. We demonstrate, from exact scattering matrix calculations for multilayer hyperbolic structures, that one can find surface modes in spectral regions where the effective approach predicts hyperbolic modes only. Hence, the presence of surface modes which are not accounted for in the effective description can lead to physical misinterpretations in the description of hyperbolic materials and their related properties. In particular, we discuss in detail how the choice of the topmost layer affects the validity of the effective medium approach for calculating the local density of states and the super-Planckian thermal radiation. (paper)

  1. On Limitations of the Ultrasonic Characterization of Pieces Manufactured with Highly Attenuating Materials

    Science.gov (United States)

    Ramos, A.; Moreno, E.; Rubio, B.; Calas, H.; Galarza, N.; Rubio, J.; Diez, L.; Castellanos, L.; Gómez, T.

    Some technical aspects of two Spanish cooperation projects, funded by DPI and Innpacto Programs of the R&D National Plan, are discussed. The objective is to analyze the common belief about than the ultrasonic testing in MHz range is not a tool utilizable to detect internal flaws in highly attenuating pieces made of coarse-grained steel. In fact high-strength steels, used in some safe industrial infrastructures of energy & transport sectors, are difficult to be inspected using the conventional "state of the art" in ultrasonic technology, due to their internal microstructures are very attenuating and coarse-grained. It is studied if this inspection difficulty could be overcome by finding intense interrogating pulses and advanced signal processing of the acquired echoes. A possible solution would depend on drastically improving signal-to-noise-ratios, by applying new advances on: ultrasonic transduction, HV electronics for intense pulsed driving of the testing probes, and an "ad-hoc" digital processing or focusing of the received noisy signals, in function of each material to be inspected. To attain this challenging aim on robust steel pieces would open the possibility of obtaining improvements in inspecting critical industrial components made of highly attenuating & dispersive materials, as new composites in aeronautic and motorway bridges, or new metallic alloys in nuclear area, where additional testing limitations often appear.

  2. IMPACLIB: a material property data library for impact analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1997-12-01

    The paper describes the structural data library and graphical program for impact and stress analyses of radioactive material transport casks. Four kinds of material data, structure steels, stainless steels, leads and woods are compiled. These materials are main structural elements of casks. Structural data such as, coefficient of thermal expansion, modulus of longitudinal elasticity, modulus of transverse elasticity, Poisson's ratio and stress-strain relationship have been tabulated. Main features of IMPACLIB are as follows: (1) data have been tabulated against temperature or strain rate, (2) thirteen kinds of polynominal fitting for stress-strain curve are available, (3) it is capable of graphical representations for structural data and (4) the IMPACLIB is able to be used on not only main frame computers but also work stations (OS UNIX) and personal computers (OS Windows 3.1). In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides a user's guide for computer program and input data for the IMPACLIB. (author)

  3. IMPACLIB: a material property data library for impact analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-12-01

    The paper describes the structural data library and graphical program for impact and stress analyses of radioactive material transport casks. Four kinds of material data, structure steels, stainless steels, leads and woods are compiled. These materials are main structural elements of casks. Structural data such as, coefficient of thermal expansion, modulus of longitudinal elasticity, modulus of transverse elasticity, Poisson`s ratio and stress-strain relationship have been tabulated. Main features of IMPACLIB are as follows: (1) data have been tabulated against temperature or strain rate, (2) thirteen kinds of polynominal fitting for stress-strain curve are available, (3) it is capable of graphical representations for structural data and (4) the IMPACLIB is able to be used on not only main frame computers but also work stations (OS UNIX) and personal computers (OS Windows 3.1). In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides a user`s guide for computer program and input data for the IMPACLIB. (author)

  4. Transient Structures and Possible Limits of Data Recording in Phase-Change Materials.

    Science.gov (United States)

    Hu, Jianbo; Vanacore, Giovanni M; Yang, Zhe; Miao, Xiangshui; Zewail, Ahmed H

    2015-07-28

    Phase-change materials (PCMs) represent the leading candidates for universal data storage devices, which exploit the large difference in the physical properties of their transitional lattice structures. On a nanoscale, it is fundamental to determine their performance, which is ultimately controlled by the speed limit of transformation among the different structures involved. Here, we report observation with atomic-scale resolution of transient structures of nanofilms of crystalline germanium telluride, a prototypical PCM, using ultrafast electron crystallography. A nonthermal transformation from the initial rhombohedral phase to the cubic structure was found to occur in 12 ps. On a much longer time scale, hundreds of picoseconds, equilibrium heating of the nanofilm is reached, driving the system toward amorphization, provided that high excitation energy is invoked. These results elucidate the elementary steps defining the structural pathway in the transformation of crystalline-to-amorphous phase transitions and describe the essential atomic motions involved when driven by an ultrafast excitation. The establishment of the time scales of the different transient structures, as reported here, permits determination of the possible limit of performance, which is crucial for high-speed recording applications of PCMs.

  5. Numerical Material Model for Composite Laminates in High-Velocity Impact Simulation

    Directory of Open Access Journals (Sweden)

    Tao Liu

    Full Text Available Abstract A numerical material model for composite laminate, was developed and integrated into the nonlinear dynamic explicit finite element programs as a material user subroutine. This model coupling nonlinear state of equation (EOS, was a macro-mechanics model, which was used to simulate the major mechanical behaviors of composite laminate under high-velocity impact conditions. The basic theoretical framework of the developed material model was introduced. An inverse flyer plate simulation was conducted, which demonstrated the advantage of the developed model in characterizing the nonlinear shock response. The developed model and its implementation were validated through a classic ballistic impact issue, i.e. projectile impacting on Kevlar29/Phenolic laminate. The failure modes and ballistic limit velocity were analyzed, and a good agreement was achieved when comparing with the analytical and experimental results. The computational capacity of this model, for Kevlar/Epoxy laminates with different architectures, i.e. plain-woven and cross-plied laminates, was further evaluated and the residual velocity curves and damage cone were accurately predicted.

  6. Revised dose limits and new respiratory tract model and their implications for annual limits of intake of radioactive materials - A review of recent ICRP publications

    International Nuclear Information System (INIS)

    Schlesinger, T.; Silverman, I.; Shapira, M.

    1996-01-01

    Ionizing radiation may cause immediate and/or delayed biological damages to the body of the exposed person and/or his/her progeny. The exposure may be caused by an external source or may arise due to internal contamination by a radioactive material. In order to prevent such exposure, or to reduce the probability that it will occur, national authorities and international organizations that are engaged in radiation safety and protection have set limits for the exposure to ionizing radiation from either source. The sensitivity of the body to ionizing radiation usually decreases with age. For this reason and due to the limited possibilities to control the exposure of the general public, different limits have been set for for occupational exposure and for the exposure of members of the public of different age groups. The general principles of these limits and guidelines for their calculations are set by the International Commission on Radiological Protection (ICRP) and published in the Annals of the ICRP. The basic philosophy of the Commission, which includes the principles of justification, optimization and dose limits, the basic radiobiological models, and the distinction between stochastic and non-stochastic effects has been presented in its publication no. 26 . Based on this philosophy, the Commission issued between 1979 and 1988 a series of publications followed by annexes and addenda known as publication no. 30 . This series presented models describing the metabolism of radioactive materials which enter the body by inhalation and ingestion, the transfer of such materials from the respiratory tract and the gastrointestinal tract to the blood, and from there to the body organs and the excretion of the material from the body. This series presented also values for biokinetic parameters of these systems and transfer paths, and methods for calculating limits on intake which ensure that the exposure from internal contamination will not exceed the dose limits set by the

  7. Revised dose limits and new respiratory tract model and their implications for annual limits of intake of radioactive materials - A review of recent ICRP publications

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T; Silverman, I; Shapira, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    Ionizing radiation may cause immediate and/or delayed biological damages to the body of the exposed person and/or his/her progeny. The exposure may be caused by an external source or may arise due to internal contamination by a radioactive material. To prevent such exposure, or to reduce the probability that it will occur, national authorities and international organizations engaged in radiation safety and protection have set limits for the exposure to ionizing radiation from either source. The sensitivity of the body to ionizing radiation usually decreases with age. For this reason and due to the limited possibilities to control the exposure of the general public, different limits have been set for for occupational exposure and for the exposure of members of the public of different age groups. The general principles of these limits and guidelines for their calculations are set by the International Commission on Radiological Protection (ICRP) and published in the Annals of the ICRP. The basic philosophy of the Commission, which includes the principles of justification, optimization and dose limits, the basic radiobiological models, and the distinction between stochastic and non-stochastic effects has been presented in its publication no. 26. Based on this philosophy, the Commission issued between 1979 and 1988 a series of publications followed by annexes and addenda known as publication no. 30. This series presented models describing the metabolism of radioactive materials which enter the body by inhalation and ingestion, the transfer of such materials from the respiratory tract and the gastrointestinal tract to the blood, and from there to the body organs and the excretion of the material from the body. This series presented also values for biokinetic parameters of these systems and transfer paths, and methods for calculating limits on intake which ensure that the exposure from internal contamination will not exceed the dose limits set.

  8. Electro-mechanical impact system excited by a source of limited power

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav

    2008-01-01

    Roč. 15, č. 6 (2008), s. 1-10 ISSN 1802-1484 R&D Projects: GA ČR GA101/06/0063 Institutional research plan: CEZ:AV0Z20760514 Keywords : mechanical oscillations * impacts * limited power of exciter * electro-mechanical interaction Subject RIV: BI - Acoustics

  9. Experimental studies of dynamic impact response with scale models of lead shielded radioactive material shipping containers

    International Nuclear Information System (INIS)

    Robinson, R.A.; Hadden, J.A.; Basham, S.J.

    1978-01-01

    Preliminary experimental studies of dynamic impact response of scale models of lead-shielded radioactive material shipping containers are presented. The objective of these studies is to provide DOE/ECT with a data base to allow the prediction of a rational margin of confidence in overviewing and assessing the adequacy of the safety and environmental control provided by these shipping containers. Replica scale modeling techniques were employed to predict full scale response with 1/8, 1/4, and 1/2 scale models of shipping containers that are used in the shipment of spent nuclear fuel and high level wastes. Free fall impact experiments are described for scale models of plain cylindrical stainless steel shells, stainless steel shells filled with lead, and replica scale models of radioactive material shipping containers. Dynamic induced strain and acceleration measurements were obtained at several critical locations on the models. The models were dropped from various heights, attitudes to the impact surface, with and without impact limiters and at uniform temperatures between -40 and 175 0 C. In addition, thermal expansion and thermal gradient induced strains were measured at -40 and 175 0 C. The frequency content of the strain signals and the effect of different drop pad compositions and stiffness were examined. Appropriate scale modeling laws were developed and scaling techniques were substantiated for predicting full scale response by comparison of dynamic strain data for 1/8, 1/4, and 1/2 scale models with stainless steel shells and lead shielding

  10. Football Players' Head-Impact Exposure After Limiting of Full-Contact Practices.

    Science.gov (United States)

    Broglio, Steven P; Williams, Richelle M; O'Connor, Kathryn L; Goldstick, Jason

    2016-07-01

    Sporting organizations limit full-contact football practices to reduce concussion risk and based on speculation that repeated head impacts may result in long-term neurodegeneration. To directly compare head-impact exposure in high school football players before and after a statewide restriction on full-contact practices. Cross-sectional study. High school football field. Participants were varsity football athletes from a single high school. Before the rule change, 26 athletes (age = 16.2 ± 0.8 years, height = 179.6 ± 6.4 cm, weight = 81.9 ± 13.1 kg) participated. After the rule change, 24 athletes (age = 15.9 ± 0.8 years, height = 178.3 ± 6.5 cm, weight = 76.2 ± 11.6 kg) participated. Nine athletes participated in both years of the investigation. Head-impact exposure was monitored using the Head Impact Telemetry System while the athletes participated in football games and practices in the seasons before and after the rule change. Head-impact frequency, location, and magnitude (ie, linear acceleration, rotational acceleration, and Head Impact Telemetry severity profile [HITsp], respectively) were measured. A total of 15 398 impacts (592 impacts per player per season) were captured before the rule change and 8269 impacts (345 impacts per player per season) after the change. An average 42% decline in impact exposure occurred across all players, with practice-exposure declines occurring among linemen (46% decline); receivers, cornerbacks, and safeties (41% decline); and tight ends, running backs (including fullbacks), and linebackers (39% decline). Impact magnitudes remained largely unchanged between the years. A rule change limiting full-contact high school football practices appears to have been effective in reducing head-impact exposure across all players, with the largest reduction occurring among linemen. This finding is likely associated with the rule modification, particularly because the coaching staff and offensive scheme remained consistent, yet how

  11. High-Strain-Rate Material Behavior and Adiabatic Material Instability in Impact of Micron-Scale Al-6061 Particles

    Science.gov (United States)

    Chen, Qiyong; Alizadeh, Arash; Xie, Wanting; Wang, Xuemei; Champagne, Victor; Gouldstone, Andrew; Lee, Jae-Hwang; Müftü, Sinan

    2018-04-01

    Impact of spherical particles onto a flat sapphire surface was investigated in 50-950 m/s impact speed range experimentally and theoretically. Material parameters of the bilinear Johnson-Cook model were determined based on comparison of deformed particle shapes from experiment and simulation. Effects of high-strain-rate plastic flow, heat generation due to plasticity, material damage, interfacial friction and heat transfer were modeled. Four distinct regions were identified inside the particle by analyzing temporal variation of material flow. A relatively small volume of material near the impact zone becomes unstable due to plasticity-induced heating, accompanied by severe drop in the flow stress for impact velocity that exceeds 500 m/s. Outside of this region, flow stress is reduced due to temperature effects without the instability. Load carrying capacity of the material degrades and the material expands horizontally leading to jetting. The increase in overall plastic and frictional dissipation with impact velocity was found to be inherently lower than the increase in the kinetic energy at high speeds, leading to the instability. This work introduces a novel method to characterize HSR (109 s-1) material properties and also explains coupling between HSR material behavior and mechanics that lead to extreme deformation.

  12. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Müller, Marius N; Trull, Thomas W; Hallegraeff, Gustaaf M

    2017-08-01

    Future oceanic conditions induced by anthropogenic greenhouse gas emissions include warming, acidification and reduced nutrient supply due to increased stratification. Some parts of the Southern Ocean are expected to show rapid changes, especially for carbonate mineral saturation. Here we compare the physiological response of the model coccolithophore Emiliania huxleyi (strain EHSO 5.14, originating from 50 o S, 149 o E) with pH/CO 2 gradients (mimicking ocean acidification ranging from 1 to 4 × current pCO 2 levels) under nutrient-limited (nitrogen and phosphorus) and -replete conditions. Both nutrient limitations decreased per cell photosynthesis (particulate organic carbon (POC) production) and calcification (particulate inorganic carbon (PIC) production) rates for all pCO 2 levels, with more than 50% reductions under nitrogen limitation. These impacts, however, became indistinguishable from nutrient-replete conditions when normalized to cell volume. Calcification decreased three-fold and linearly with increasing pCO 2 under all nutrient conditions, and was accompanied by a smaller ~30% nonlinear reduction in POC production, manifested mainly above 3 × current pCO 2 . Our results suggest that normalization to cell volume allows the major impacts of nutrient limitation (changed cell sizes and reduced PIC and POC production rates) to be treated independently of the major impacts of increasing pCO 2 and, additionally, stresses the importance of including cell volume measurements to the toolbox of standard physiological analysis of coccolithophores in field and laboratory studies.

  13. Life cycle assessment as a method of limitation of a negative environment impact of castings

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-07-01

    Full Text Available Casting production constitutes environmental problems going far beyond the foundry plant area. Applying a notion of the life cycle the input (suppliers side and output factors (clients side can be identified. The foundry plant activities for the environment hazard mitigation can be situated on various stages of the casting life cycle. The environment impact of motorisation castings made of different materials – during the whole life cycle of castings – are discussed in the paper. It starts from the charge material production, then follows via the casting process, car assembly, car exploitation and ends at the car breaking up for scrap.

  14. Optimizing 3D concrete printing: exploring potentials and limitations of materials and production

    Directory of Open Access Journals (Sweden)

    Jeroen Coenders

    2017-12-01

    Full Text Available The application of new Computer Aided Manufacturing (CAM, digital fabrication and additive manufacturing techniques in the construction industries is expected to bring major change to these industries. Driven by a foreseen reduction of construction time and labor cost, simplification of logistics and an increase of constructible geometrical freedom, many experiments are performed both at academia and in practice. Beyond these economical and architectural objectives, digital fabrication in construction can be used to reduce the environmental footprint of the industry. The increased level of control offered by digital fabrication enables the use of advanced computational optimisation techniques. With these optimisation techniques buildings can be designed which, for instance, combine an optimal thermal performance with a minimum use of materials, while still complying with all codes and standards. In order to fully utilise this potential of digital fabrication, the capabilities and limitations of the manufacturing process need to be taken into account during optimisation. By combining the concrete 3D printing knowledge of Eindhoven University of Technology, the optimisation expertise of the BEMNext lab at Delft University of Technology and software development by White Lioness technologies, the ‘Optimising 3D concrete printing’ Lighthouse project has made the first steps towards more knowledge on integrated optimisation and manufacturing.

  15. Impact analysis of side door of a car and bullet proof vest with material ‘SAM2X5-630’ using finite element analysis

    Science.gov (United States)

    Dhode, Trushant; Patil, Girish; Rajkumar, E.

    2017-11-01

    The components which are bound to impact are subjected to deformation even though it may be for a small scale. The efforts are always on for finding the best material to take impact that has no failure or moreover, less plastic deformation. A newly found material which is glass matrix steel named as ‘SAM2X5-630’ has astounding high elastic limit of 12.5GPa. Thus it can take powerful impact & regain its original shape avoiding the deformation of component under impact. The paper is focused on performing the Finite element analysis to assess the behaviour of ‘SAM2X5-630’ steel under impact loading of side door of car as well as impact of bullet on bulletproof jacket on which the material is assigned. The displacement or deformation occurred during impact is found to be lesser than known materials like Kevlar in bulletproof vest and Aluminium alloy in car door.

  16. Impact and Limitations Deriving from Basel II within the Context of the Current Financial Crisis

    Directory of Open Access Journals (Sweden)

    Oana Miruna DĂNILĂ

    2012-06-01

    Full Text Available The Banking sector risk management framework, geared towards maintaining a solid capital adequacy level, has witnessed a permanent evolution, determined by the global economic and financial reality.Basel II has brought an improvement of the risk management framework by adding minimum capital levels corresponding to market and operational risk and by the introduction of internal rating models. However the current crisis has brought forward some adverse effects as well as limitations.This paper analyses the evolution of prudential rules and regulations introduced by Basel II and their impact on the banking system together with outlining certain limitations.

  17. Impact assessment at the submergence of radioactive materials during sea transport

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Tsubono, Takaki; Saegusa, Toshiari; Ito, Chihiro

    2009-01-01

    Radioactive materials in Type B package have been transported safely on the sea under INF code and IAEA standard. Environmental and dose impact assessments have been made by assuming that a Type B package might be sunk into the sea since 1970s to enhance public understanding on safety of these transport. A method of the impact assessment consists of the estimation of release rates of radionuclide from a package, simulation of radionuclide concentration both in the coastal and global areas, and estimation of dose assessment for the public. We summarized the radiological impact at the submergence of Type B packages. The evaluated results of the dose equivalents by radiation exposure to the public for all materials were far below the dose equivalent limit of the ICRP recommendation (1mSv year -1 ). These assessments had a lot of uncertainties especially in the simulation of radionuclide concentration therefore the results might be overestimated. Estimations of ocean circulation and diffusion are important in this assessment. Ocean circulation model have been improved to simulate the material transport with higher resolutions. We developed more realistic methods to simulate both in the coastal and global areas to explain the evaluated results of the impacts to the public in an efficient manner. General circulation models around Japan and an ocean general circulation model were employed at the coastal and global areas respectively. It is impossible to validate the method directly because no accidents with release of radionuclide in the ocean have occurred since first sea transport of Type B packages. Therefore we simulated background radionuclide concentrations by fallouts ( 137 Cs) to validate the methods. Fallouts were input into ocean by nuclear weapon test since 1945 and mainly in 1960s. And their concentrations in the ocean have been measured to keep monitoring the artificial contaminations now. Observed database is useful to compare with simulated results in both

  18. Chemical Footprint Method for Improved Communication of Freshwater Ecotoxicity Impacts in the Context of Ecological Limits

    DEFF Research Database (Denmark)

    Bjørn, Anders; Diamond, Miriam; Birkved, Morten

    2014-01-01

    The ecological footprint method has been successful in communicating environmental impacts of anthropogenic activities in the context of ecological limits. We introduce a chemical footprint method that expresses ecotoxicity impacts from anthropogenic chemical emissions as the dilution needed...... to avoid freshwater ecosystem damage. The indicator is based on USEtox characterization factors with a modified toxicity reference point. Chemical footprint results can be compared to the actual dilution capacity within the geographic vicinity receiving the emissions to estimate whether its ecological...... limit has been exceeded and hence whether emissions can be expected to be environmentally sustainable. The footprint method was illustrated using two case studies. The first was all inventoried emissions from European countries and selected metropolitan areas in 2004, which indicated that the dilution...

  19. Regional Investment Policy Under The Impact Of Budget Limitations And Economic Sanctions

    OpenAIRE

    Avramenko, Yelena S.; Vlasov, Semyon V.; Lukyanov, Sergey A.; Temkina, Irina M.

    2018-01-01

    This article presents the results of research on the impact which budget limitations and economic sanctions have had on regional investment policy External sanctions and sluggish economic growth have affected the social and economic development of the region. Relying on the results of comparative and statistical analysis, the article demonstrates the need for altering the focus of current investment policy from quantitative growth to qualitative enhancement. The article analyses a new trend i...

  20. The Impact of Materiality: Accounting's Best Kept Secret

    OpenAIRE

    Niamh Brennan; Sidney J. Gray

    2005-01-01

    This paper comprises a review of the literature on materiality in accounting. The paper starts by examining the context in which materiality is relevant, and the problems arising from applying the concept in practice. Definitions of materiality from legal, accounting and stock exchange sources are compared. The relevance of materiality to various accounting situations is discussed. Methods of calculating quantitative thresholds are described and illustrated. Prior research is reviewed, focuss...

  1. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due...... to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future....

  2. The impact of regulations, safety considerations and physical limitations on research progress at maximum biocontainment.

    Science.gov (United States)

    Shurtleff, Amy C; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S; Bavari, Sina

    2012-12-01

    We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review.

  3. The Impact of Regulations, Safety Considerations and Physical Limitations on Research Progress at Maximum Biocontainment

    Directory of Open Access Journals (Sweden)

    Jean Patterson

    2012-12-01

    Full Text Available We describe herein, limitations on research at biosafety level 4 (BSL-4 containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review.

  4. The Impact of Regulations, Safety Considerations and Physical Limitations on Research Progress at Maximum Biocontainment

    Science.gov (United States)

    Shurtleff, Amy C.; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S.; Bavari, Sina

    2012-01-01

    We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review. PMID:23342380

  5. Impact of selected risk factors on expected lifetime without long-standing, limiting illness in Denmark

    DEFF Research Database (Denmark)

    Brønnum-Hansen, Henrik; Juel, Knud; Davidsen, Michael

    2007-01-01

    long-standing, limiting illness was 8-10 years shorter among sedentary than physically active people. Obesity shortened lifetime without illness by 5 years for men and ten years for women. CONCLUSION: The results of this study could be used in health policy-making, as the potential gains in public......OBJECTIVE: To estimate the impacts of tobacco smoking, high alcohol consumption, physical inactivity and overweight on expected lifetime with and without long-standing, limiting illness. METHODS: Life tables for each level of exposure to the risk factors were constructed, mainly on the basis......-olds was 9-10 years shorter for heavy smokers than for those who never smoke, and all the lifetime lost would have been without long-standing, limiting illness. Similarly, all 5 years of expected lifetime lost by men with high alcohol consumption would have been without illness. The expected lifetime without...

  6. The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review

    International Nuclear Information System (INIS)

    Zhang, S.B.

    2002-01-01

    This paper reviews the recent developments in first-principles total energy studies of the phenomenological equilibrium 'doping limit rule' that governs the maximum electrical conductivity of semiconductors via extrinsic or intrinsic doping. The rule relates the maximum equilibrium carrier concentrations (electrons or holes) of a wide range of materials to their respective band alignments. The microscopic origin of the mysterious 'doping limit rule' is the spontaneous formation of intrinsic defects: e.g., in n-type semiconductors, the formation of cation vacancies. Recent developments in overcoming the equilibrium doping limits are also discussed: it appears that a common route to significantly increase carrier concentrations is to expand the physically accessible range of the dopant atomic chemical potential by non-equilibrium doping processes, which not only suppresses the formation of the intrinsic defects but also lowers the formation energy of the impurities, thereby significantly increasing their solubility. (author)

  7. Organic material in clay-based buffer materials and its potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Goulard, M.; Stroes-Gascoyne, S.; Haveman, S.A.; Bachinski, D.B.; Hamon, C.J.; Comba, R.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. In this disposal concept used fuel would be emplaced in corrosion-resistant containers which would be surrounded by clay-based buffer and backfill materials. Once groundwater is able to penetrate the buffer and corrosion-resistant container, radionuclides could be transported from the waste form to the surrounding geosphere, and eventually to the biosphere. The release of radionuclides from the waste form and their subsequent transport would be determined by the geochemistry of the disposal vault and surrounding geosphere. Organic substances affect the geochemistry of radionuclides through complexation reactions that increase solubility and alter mobility, by affecting the redox of certain radionuclides and by providing food for microbes. The purpose of this study was to determine whether the buffer and backfill materials proposed for use in a disposal vault contain organics that could be leached by groundwater in large enough quantities to complex with radionuclides and affect their mobility within the disposal vault and surrounding geosphere. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon, humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 deg C and 90 deg C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. Humic substances were isolated from the leachates to determine the concentrations of humic and fulvic acids and to determine their functional group content by acid-base titrations. The results showed that groundwater would leach significant amounts of organics that would complex with radionuclides such as

  8. Experimental investigation of thermal limits in parallel plate configuration for the future material testing reactor (JHR)

    International Nuclear Information System (INIS)

    Brigitte Noel

    2005-01-01

    Full text of publication follows: The design of the future material testing reactor, named Jules Horowitz Reactor and dedicated to technological irradiations, will allow very high performances. The JHR will be cooled and moderated by light water. The preliminary core of JHR consists of 46 assemblies, arranged in a triangular lattice inside a rectangular aluminium matrix. It is boarded on two sides by a beryllium reflector. The other two sides are left free in order to introduce mobile irradiation devices. The JHR assembly would be composed of 3 x 6 cylindrical fuel plates maintained by 3 stiffeners. The external diameter of the assembly is close to 8 cm with a 600 mm heated length, coolant channels having a 1.8 mm gap width. The JHR core must be designed to accommodate high power densities using a high coolant mass flux and sub-cooling level at moderate pressure. The JHR core configuration with multi-channels is subject to a potential excursive instability, called flow redistribution, and is distinguished from a true critical heat flux which would occur at a fixed channel flow rate. At thermal-hydraulic conditions applicable to the JHR, the availability of experimental data for both flow redistribution and CHF is very limited. Consequently, a thermal-hydraulic test facility (SULTAN-RJH) was designed and built in CEA-Grenoble to simulate a full-length coolant sub-channel representative of the JHR core, allowing determination of both thermal limits under relevant thermal hydraulics conditions. The SULTAN-RJH test section simulates a single sub-channel in the JHR core with a cross section corresponding to a mean span (∼50 mm) that has a full reactor length (600 mm), the same flow channel gap (1.5 mm) and Inconel plates of 1 mm thickness. The tests with light water flowing vertically upward will investigate a heat flux range of 0-7 MW/m 2 , velocity range of 0.6-18 m/s, exit pressure range of 0.2-1.0 MPa and inlet temperature range of 25-180 deg. C. The test section

  9. Dose limits and licensing requirements for the limitation of the emission of radioactive materials from nuclear power stations in the FRG and the USA

    Energy Technology Data Exchange (ETDEWEB)

    Schwibach, J; Huber, O

    1975-08-01

    In licensing the operation of nuclear power plants in the FRG and USA, particular limitations of the release of radioactive materials in the air and water are layed down to correspond to the protective laws of radiation and environmental protection. The first limiting recommendations for the removal of radioactive waste waters were worked out in 1965 in the FRG and in 1968/69 for the removal of radioactive exhaust air of nuclear power plants. Based on this, in 1975 these relevant regulations were included in the draft of the new radiation protection specification. In 1971, these type of guidelines were put to discussion in the USA and were dismissed in 1975 in a licensing regulation of the NRC. These regulations or guidelines differ in their various dose limits. For example, the German dose limits of 30 mrem/a whole body dose for radioactive materials in the exhaust air of nuclear power plants and of 90 mrem/a for the thyroid dose through radioiodine via the exposure exhaust air-pasture-cow-milk-infant are often compared to the American dose limits of 5 mrem/a whole body dose and 15 mrem/a skin dose as well as 15 mrem/a thyroid dose. Such a numerical comparison is, howewer, wrong. The dose limits used in the FRG are, e.g., not to be exceeded. Furthermore, in the FRG, all contributions to be calculated on one site are to be considered. In the USA, the corresponding values are only valid for actual exposure paths due to the emission of a power reactor. They can be multiply exceeded. Thus the German licensing practise is clearly more restrictive.

  10. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  11. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available of the environmental impacts of a product (or service). The Life Cycle Assessment (LCA) concept previously known as Life Cycle Analysis has emerged as one of the most appropriate tools for assessing product-related environmental impacts and for supporting an effective...

  12. Investigation on low velocity impact resistance of SMA composite material

    Science.gov (United States)

    Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong

    2016-04-01

    A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.

  13. Impact Testing for Materials Science at NASA - MSFC

    Science.gov (United States)

    Sikapizye, Mitch

    2010-01-01

    The Impact Testing Facility (ITF) at NASA - Marshall Space Flight Center is host to different types of guns used to study the effects of high velocity impacts. The testing facility has been and continues to be utilized for all NASA missions where impact testing is essential. The Facility has also performed tests for the Department of Defense, other corporations, as well as universities across the nation. Current capabilities provided by Marshall include ballistic guns, light gas guns, exploding wire gun, and the Hydrometeor Impact Gun. A new plasma gun has also been developed which would be able to propel particles at velocities of 20km/s. This report includes some of the guns used for impact testing at NASA Marshall and their capabilities.

  14. Radiological impact of radioactive materials transport in France

    International Nuclear Information System (INIS)

    Hamard, J.

    1987-01-01

    Radiation doses of personnel and populations are estimated between 1983 and 1985 during road transport of radiopharmaceuticals, spent fuels, wastes and other radioactive materials. Dose equivalent received by air transport and others are difficult to know. Results are summed up in 8 tables. Radioactive materials transport represents less than 1% of exposures related to the fuel cycle [fr

  15. Impact studies of five ceramic materials and pyrex

    International Nuclear Information System (INIS)

    Cunningham, B.J.; Holt, A.C.; Hord, B.L.; Kusubov, A.S.; Reaugh, J.E.; Wilkins, M.L.

    1998-01-01

    We measured the ballistic performance of five ceramic materials (alumina, silicon carbide, boron carbide, aluminum nitride, and titanium diboride) and Pyrex, when they are backed by thick steel plates. The projectile for all tests was a right-circular cylinder of tungsten sinter-alloy W2 with length 25.4 mm and diameter 6.35 mm, fired at velocities from 1.35 to 2.65 km/s. For this threat we determined the minimum areal density of each material that is needed to keep the projectile from penetrating the backup steel. For all of the facing materials studied here, this performance measure increases approximately linearly with projectile velocity. However, the rate of increase is significantly lower for aluminum nitride than for the other materials studied. Indeed, aluminum nitride is a poor performer at the lowest velocity tested, but is clearly the best at the highest velocity. Our computer simulations show the significant influence of the backing material on ceramic performance, manifested by a transition region extending two projectile diameters upstream from the material interface. Experiments with multiple material layers show that this influence also manifests itself through a significant dependence of ballistic performance on the ordering of the material

  16. Glucose reactivity with filling materials as a limitation for using the glucose leakage model

    NARCIS (Netherlands)

    Shemesh, H.; Souza, E.M.; Wu, M.K.; Wesselink, P.R.

    2008-01-01

    Aim To evaluate the reactivity of different endodontic materials and sealers with glucose and to asses the reliability of the glucose leakage model in measuring penetration of glucose through these materials. Methodology Ten uniform discs (radius 5 mm, thickness 2 mm) were made of each of the

  17. Impact assessment at a hypothetical submergence of a transport package of radioactive materials

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Saegusa, Toshiari; Ito, Chihiro

    2007-01-01

    Under INF code and IAEA standard, radioactive materials are transported safety on the sea. To gain the public acceptance for these transports additionally, impact assessments have been made by assuming that a radioactive material package might be sunk into the sea. A method of the impact assessment consists of the calculation of release rate of radionuclide from a package, calculation of radionuclide concentration in the ocean, and estimation of dose assessment for the public. An ocean general circulation model was used to calculate the radionuclide concentration in the ocean. Background radionuclide concentration by fallout was simulated by the ocean general circulation model in this method for the verification. Agreement between calculation and observation suggests that this method is appropriate for the assessment. In the both cases for a package sunk at the coastal region at the depth of two hundreds meters and for that sunk at the ocean at the depth of several thousands meters, the evaluated result of the dose equivalent by radiation exposure to the public are far below the dose equivalent limit of the ICRP recommendation (1 mSv/year). (author)

  18. Impact of Bilingual Education Programs on Limited English Proficient Students and Their Peers

    DEFF Research Database (Denmark)

    Daysal, N. Meltem; Chin, Aimee; Imberman, Scott

    2013-01-01

    bilingual education above this 20-student cutoff. Using this discontinuity as an instrument for district bilingual education provision, we find that providing bilingual education programs (relative to providing only English as a Second Language programs) does not significantly impact the standardized test...... scores of students with Spanish as their home language (comprised primarily of ever-LEP students). However, we find significant positive impacts on non-LEP students’ achievement, which indicates that education programs for LEP students have spillover effects to non-LEP students.......Texas requires a school district to offer bilingual education when its enrollment of limited English proficient (LEP) students in a particular elementary grade and language is twenty or higher. Using school panel data, we find a significant increase in the probability that a district provides...

  19. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    Science.gov (United States)

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  20. Impact test on natural fiber reinforced polymer composite materials

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2013-06-01

    Full Text Available In this research, natural fibers like Sisal (Agave sisalana, Banana (Musa sepientum & Roselle (Hibiscus sabdariffa , Sisal and banana (hybrid , Roselle and banana (hybrid and Roselle and sisal (hybrid are fabricated with bio epoxy resin using molding method. In this work, impact strength of Sisal and banana (hybrid, Roselle and banana (hybridand Roselle and sisal (hybrid composite at dry and wet conditions were studied. Impact test were conducted izod impact testing machine. In this work micro structure of the specimens are scanned by the Scanning Electron Microscope.

  1. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    International Nuclear Information System (INIS)

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact

  2. Materialism moderates the impact of mortality salience on impulsive tendencies toward luxury brands.

    Science.gov (United States)

    Audrin, Catherine; Cheval, Boris; Chanal, Julien

    2018-02-01

    Luxury goods have been shown to help individuals coping with death-related anxiety. However, the extent to which the symbolic value allocated to possessions (i.e., materialism) moderates this effect is still unclear. Here, we investigated the impact of materialism on impulsive approach tendencies toward luxury clothing brands in a context of mortality salience. Results showed that the impact of mortality salience was moderated by materialism with lower impulsive approach tendencies toward luxury clothing brands observed in non-materialistic participants. These findings highlight how materialism values may impact luxury consumption through impulsive pathways in a situation of death-related anxiety.

  3. Impacts Of Passive Removal Materials On Indoor Air Quality

    DEFF Research Database (Denmark)

    Darling, Erin; Cros, Clement; Wargocki, Pawel

    2011-01-01

    Indoor air quality (IAQ) was determined in the presence of eight combinations of building materials with and without ozone. Air samples were collected in twin 30 m3 chambers to assess the C5 to C10 aldehyde content of the air while a panel of 18 to 23 human subjects assessed air quality using...... a continuous acceptability scale. Materials were either new carpet that was aired out for three weeks, clay plaster applied to gypsum wallboard that was aired out for up to one month, both materials, or neither. Perceived Air Quality (PAQ) assessed by the panel was most acceptable and concentrations...

  4. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  5. Impact of Load Behavior on Transient Stability and Power Transfer Limitations

    DEFF Research Database (Denmark)

    Gordon, Mark

    2009-01-01

    This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together with the......This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together...... with the impact on rotor angle excursions of large scale generators during the transient and post-transient period. Responses of multi-induction motor stalling are also considered for different fault clearances in the system. Findings of the investigations carried out on the Eastern Australian interconnected...

  6. Fiber-reinforced plastic composites. Possibilities and limitations of applications as machine-construction materials

    Science.gov (United States)

    Ophey, Lothar

    1988-01-01

    The use of fiber-reinforced composite structural materials in engineering applications is discussed in a survey of currently available technology and future prospects. The ongoing rapid growth in the use of these materials is described, and the criteria to be applied in selecting base materials, lamination schemes, fasteners, and processing methods are examined in detail and illustrated with graphs, diagrams, flow charts, and drawings. A description of a sample application (comparing the properties of steel, CFRP, SiC-reinforced Al, CFRP/steel, and CFRP/Al automobile piston rods) is included.

  7. Drop Impact on Textile Material: Effect of Fabric Properties

    Directory of Open Access Journals (Sweden)

    Romdhani Zouhaier

    2014-09-01

    Full Text Available This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on the drop profile and the spreading behaviour. An important drop deformation at the surface impact was observed. Then, fabric construction as the weft count deeply affects the drop impact. For plain weave, an increase of weft count causes a decrease in penetration and increase in the spreading rate. The same result was obtained for coated fabric. Therefore, the impact energy was modified and the drop shape was affected, which directly influenced the spreading rate.

  8. Impact of phosphate limitation on PHA production in a feast-famine process.

    Science.gov (United States)

    Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2017-12-01

    Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A procedure for estimating site specific derived limits for the discharge of radioactive material to the atmosphere

    CERN Document Server

    Hallam, J; Jones, J A

    1983-01-01

    Generalised Derived Limits (GDLs) for the discharge of radioactive material to the atmosphere are evaluated using parameter values to ensure that the exposure of the critical group is unlikely to be underestimated significantly. Where the discharge is greater than about 5% of the GDL, a more rigorous estimate of the derived limit may be warranted. This report describes a procedure for estimating site specific derived limits for discharges of radioactivity to the atmosphere taking into account the conditions of the release and the location and habits of the exposed population. A worksheet is provided to assist in carrying out the required calculations.

  10. Present limits and improvements of structural materials for fusion reactors - a review

    Science.gov (United States)

    Tavassoli, A.-A. F.

    2002-04-01

    Since the transition from ITER or DEMO to a commercial power reactor would involve a significant change in system and materials options, a parallel R&D path has been put in place in Europe to address these issues. This paper assesses the structural materials part of this program along with the latest R&D results from the main programs. It is shown that stainless steels and ferritic/martensitic steels, retained for ITER and DEMO, will also remain the principal contenders for the future FPR, despite uncertainties over irradiation induced embrittlement at low temperatures and consequences of high He/dpa ratio. Neither one of the present advanced high temperature materials has to this date the structural integrity reliability needed for application in critical components. This situation is unlikely to change with the materials R&D alone and has to be mitigated in close collaboration with blanket system design.

  11. Present limits and improvements of structural materials for fusion reactors - a review

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. E-mail: tavassoli@cea.fr

    2002-04-01

    Since the transition from ITER or DEMO to a commercial power reactor would involve a significant change in system and materials options, a parallel R and D path has been put in place in Europe to address these issues. This paper assesses the structural materials part of this program along with the latest R and D results from the main programs. It is shown that stainless steels and ferritic/martensitic steels, retained for ITER and DEMO, will also remain the principal contenders for the future FPR, despite uncertainties over irradiation induced embrittlement at low temperatures and consequences of high He/dpa ratio. Neither one of the present advanced high temperature materials has to this date the structural integrity reliability needed for application in critical components. This situation is unlikely to change with the materials R and D alone and has to be mitigated in close collaboration with blanket system design.

  12. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material

  13. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  14. Deposition velocities and impact of physical properties on ozone removal for building materials

    Science.gov (United States)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  15. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1986-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. (author)

  16. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1987-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. SEM, AES and EPMA have been applied to the surface analyses

  17. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials

    Science.gov (United States)

    Baker, Donald J.

    1994-01-01

    To use graphite polyetheretherketone (PEEK) material on highly curved surfaces requires that the material be drapable and easily conformable to the surface. This paper presents the mechanical property characterization and impact resistance results for laminates made from two types of graphite/PEEK materials that will conform to a curved surface. These laminates were made from two different material forms. These forms are: (1) a fabric where each yarn is a co-mingled Celion G30-500 3K graphite fiber and PEEK thermoplastic fiber; and (2) an interleaved material of Celion G30-500 3K graphite fabric interleaved with PEEK thermoplastic film. The experimental results from the fabric laminates are compared with results for laminates made from AS4/PEEK unidirectional tape. The results indicate that the tension and compression moduli for quasi-isotropic and orthotropic laminates made from fabric materials are at least 79 percent of the modulus of equivalent laminates made from tape material. The strength of fabric material laminates is at least 80 percent of laminates made from tape material. The evaluation of fabric material for shear stiffness indicates that a tape material laminate could be replaced by a fabric material laminate and still maintain 89 percent of the shear stiffness of the tape material laminate. The notched quasi-isotropic compression panel failure strength is 42 to 46 percent of the unnotched quasi-isotropic laminate strength. Damage area after impact with 20 ft-lbs of impact energy is larger for the co-mingled panels than for the interleaved panels. The inerleaved panels have less damage than panels made from tape material. Residual compression strength of quasi-isotropic panels after impact of 20 ft-lbs of energy varies between 33 percent of the undamaged quasi-isotropic material strength for the tape material and 38 percent of the undamaged quasi-isotropic material strength for the co-mingled fabric material.

  18. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations.

    Science.gov (United States)

    Tykot, Robert H

    2016-01-01

    Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials. © The Author(s) 2015.

  19. Assessment of the radiological impact of selected building materials

    International Nuclear Information System (INIS)

    Gwiazdowski, B.

    1983-02-01

    Naturally occurring radionuclides in building materials are a source of external and internal radiation exposure to essentially the entire Polish population. The programme of our studies met two main aspects on radioactivity of building materials: Gamma dose rate and radon or alpha potential energy concentration measurements in dwellings of various kinds of structure and materials in both industrial and rural districts of Poland. Gamma dose rate measurements were made in about 2200 dwellings and radon or alpha potential energy concentration measurements - in 750 dwellings. On the basis of these studies the annual effective dose equivalent to the Polish population due to gamma and alpha radiation indoors was estimated to be 0.39 mSv/a and 0.99 mSv/a, respectively. The contribution of external (from gamma) and internal (from alpha) radiation exposure due to naturally occurring radionuclides in building materials to the total radiation exposure of Polish population was assessed to be 3.6 per cent and 34.2 per cent, respectively. Measurements of about 1500 samples of various kinds of building materials and raw materials were made to determine radionuclide concentrations in them. The highest values were obtained in samples of phosphogypsum, fly ash and slag: potassium concentration ranges up to 36 pCi g -1 (a slag sample), radium - up to 17 pCi g -1 (a phosphogypsum sample) and thorium - up to 4 pCi g -1 (a phosphogypsum). On the basis of the results of our studies we came to the conclusion that it was necessary to work out a control system which could protect habitants against enhancement of indoor exposure to ionizing radiation

  20. The opportunity to limit and reduce inventories of fissionable weapon materials

    International Nuclear Information System (INIS)

    Hebel, L.C.

    1991-01-01

    As the United States and the Soviet government agree on major reductions in nuclear weapon delivery systems, they need to address the disposal of the nuclear warheads and bombs for those systems. Such measures could be strongly reinforced if the two nations also institute restraints and reductions in the total amount of fissionable materials available for weapons. Many metric tonnes of such materials would be made surplus by the reductions in strategic nuclear weapons due to the Strategic Arms Reduction Treaty (START-I). Equally large reductions in short-range (theater) nuclear weapons are expected in the wake of the recent Treaty on Conventional Forces in Europe (CFE)

  1. [The misery of degeneration: Buffon's materialism and the 'limitations' of his transformism].

    Science.gov (United States)

    Caponi, Gustavo

    2009-01-01

    In "Of the degeneration of animals" (1766), Buffon espoused a kind of limited transformism. Yet twelve years later, in Epochs of Nature, he supplemented this with a materialist theory on the origin of life that left no room for this alternative: the conditions under which living beings develop could explain how the different species within each animal genus had formed through the degeneration of an originating species. But the formation of these multiple, originating varieties could only be explained by a sudden process of spontaneous generation. A limitation inherent to the very system of ideas that had taken Buffon to limited transformism the underlying theory of generation and reproduction -preempted the possibility of its radicalization.

  2. Response of Infrared-Transparent Materials to Raindrop Impacts

    Science.gov (United States)

    1979-10-01

    because a clear understanding of its origin will be necessary later. Consider two solutions to the wave equa- tion in the half-space denoted by (uA, tk2 ...pressute profile developed by Rosenblatt, et al. (1977) into Blowers’ formu- lation of the water drop impact problem. The deficiencies in their modifi

  3. Strongly emissive plasma-facing material under space-charge limited regime: Application to emissive probes

    Czech Academy of Sciences Publication Activity Database

    Cavalier, Jordan; Lemoine, N.; Bousselin, G.; Plihon, N.; Ledig, J.

    2017-01-01

    Roč. 24, č. 1 (2017), č. článku 013506. ISSN 1070-664X Institutional support: RVO:61389021 Keywords : plasma * tokamak * emissive probes Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016 http://dx.doi.org/10.1063/1.4973557

  4. Investigation of ferroelectric materials by the thermal noise method: advantages and limitations

    Czech Academy of Sciences Publication Activity Database

    Bednyakov, Petr; Shnaidshtein, I. V.; Strukov, B. A.

    2016-01-01

    Roč. 500, č. 1 (2016), 203-217 ISSN 0015-0193 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : thermal noise * ferroelectricity * thin films * dielectric permittivity * equivalent circuit Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.551, year: 2016

  5. Composite materials for Tokamak wall armor, limiters, and beam dump applications

    International Nuclear Information System (INIS)

    Riley, R.E.; Wallace, T.C.; Dickinson, J.M.

    1979-01-01

    This paper describes materials which are composites of carbon fibers and low Z number carbides. The composite materials are fabricated by applying chemical vapor deposition (CVD) coats of either low Z number elements (i.e., boron, titanium, silicon, or nickel) or carbides (B 4 C, TiC, or SiC) onto graphite fibers, in the form of yarn, cloth, or three-dimensional structures, and then hot pressing the coated material to full density. The benefits of this approach are: (1) Each graphite filament (approx. 9 μm diameter) is surrounded by a refractory carbide which offers better resistance to erosion loss than graphite. If some material is spalled from the surface, the underlying graphite fibers are still coated, and thus still protected from hydrogen bombardment; (2) The composites should have longer thermal fatigue lives than carbides because of the graphite fiber reinforcement running through the composite; (3) Enhanced mechanical properties are obtained because of completely interconnected networks of carbide and graphite

  6. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...

  7. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  8. 76 FR 10771 - Hazardous Materials: Limiting the Use of Electronic Devices by Highway

    Science.gov (United States)

    2011-02-28

    ... second), this equates to a driver traveling 371 feet, the approximate length of a football field... operations. 3. Federal Railroad Administration On October 7, 2008, FRA published Emergency Order 26 (73 FR... driving. In addition, Sec. 392.80 provides a limited exception for emergency use that allows CMV drivers...

  9. Material mixing on W/C twin limiter in TEXTOR-94

    International Nuclear Information System (INIS)

    Tanabe, T.; Ohgo, T.; Wada, M.; Rubel, M.; Philipps, V.; Seggern, J. von; Ohya, K.; Huber, A.; Pospieszczyk, A.; Schweer, B.

    2000-01-01

    In order to investigate the effect of mutual contamination between tungsten (W) and carbon (C) and its influence on the plasma, a W-C twin test limiter, half made of W and the other half of C, was inserted into the edge plasma of TEXTOR-94 under ohmic and NBI heating conditions. The contamination process was observed by spectroscopy, and the intensity distribution of WI showed migration of W onto the C side by the successive cycles of sputtering and prompt redeposition. On the other hand, the deposition of C on the W surface was not obvious. Most of the hydrogen (deuterium) on the limiter was found to be retained in the deposited layers and that in the deposited C layer much higher than that in the deposited W layer. This indicates that tritium retention is smaller in metallic deposits above 500 K. The AES analysis conducted after the exposure of the test limiter showed that W deposited on C reacted with the substrate to form carbides at higher temperatures. The thickness of carbide layer, and/or the content of W in C were influenced by the temperature and flux distributions, and no carbide layer was formed at the limiter edge where the temperature was relatively low

  10. The impact of catalytic materials on fuel reformulation

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Stefano [Snamprogetti, S. Donato Milanese, Milan (Italy)

    2003-01-15

    Fuel reformulation has been seeded by the growing consciousness of the potential damages mankind was causing to the ecosystem and to itself. Fuel reformulation means that fuels are defined on a chemical composition base with additional engine-technology related standards rather than on pure performance bases. These standards, which are getting more and more stringent, can be met by different leverages, mainly catalysts and processes operating conditions.This survey reviews the contribution of catalytic materials to the production of cleaner fuel components through some significant examples selected from scientific and technical literature. Having described the trends in automotive fuels quality, production of gasoline and diesel pool components is discussed relating the required properties to the material active site configuration, i.e. acidity/basicity, structural parameters, physical constraints. While distinctions are made between pathways leading to gasoline and those leading to diesel, sulfur removal is faced on a more generalized approach.

  11. Sorption-capacity limited retardation of radionuclides transport in water-saturated packing materials

    International Nuclear Information System (INIS)

    Pescatore, C.; Sullivan, T.

    1984-01-01

    Radionuclides breakthrough times as calculated through constant retardation factors obtained in dilute solutions are non-conservative. The constant retardation approach regards the solid as having infinite sorption capacity throughout the solid. However, as the solid become locally saturated, such as in the proximity of the waste form-packing materials interface, it will exhibit no retardation properties, and transport will take place as if the radionuclides were locally non-reactive. The magnitude of the effect of finite sorption capacity of the packing materials on radionuclide transport is discussed with reference to high-level waste package performance. An example based on literature sorption data indicated that the breakthrough time may be overpredicted by orders of magnitude using a constant retardation factor as compared to using the entire sorption isotherm to obtain a concentration-dependent retardation factor. 8 refs., 3 figs., 3 tabs

  12. Sorption-capacity limited retardation of radionuclides transport in water-saturated packing materials

    International Nuclear Information System (INIS)

    Pescatore, C.; Sullivan, T.

    1984-01-01

    Radionuclides breakthrough times as calculated through constant retardation factors obtained in dilute solutions are non-conservative. The constant retardation approach regards the solid as having infinite sorption capacity throughout the solid. However, as the solid becomes locally saturated, such as in the proximity of the waste form-packing materials interface, it will exhibit no retardation properties, and transport will take place as if the radionuclides were locally non-reactive. The magnitude of the effect of finite sorption capacity of the packing materials on radionuclide transport is discussed with reference to high-level waste package performance. An example based on literature sorption data indicates that the breakthrough time may be overpredicted by orders of magnitude using a constant retardation factor as compared to using the entire sorption isotherm to obtain a concentration-dependent retardation factor. 8 references, 3 figures, 3 tables

  13. Modeling the 2016-2017 Yemen Cholera Outbreak with the Impact of Limited Medical Resources.

    Science.gov (United States)

    He, Daihai; Wang, Xueying; Gao, Daozhou; Wang, Jin

    2018-05-01

    We present a mathematical model to investigate the transmission dynamics of the 2016-2017 Yemen Cholera Outbreak. Our model describes the interaction between the human hosts and the pathogenic bacteria, under the impact of limited medical resources. We fit our model to Yemen epidemic data published by the World Health Organization, at both the country and regional levels. We find that the Yemen cholera outbreak is shaped by the interplay of environmental, socioeconomic, and climatic factors. Our results suggest that improvement of the public health system and strategic implementation of control measures with respect to time and location are key to future cholera prevention and intervention in Yemen. Copyright © 2018. Published by Elsevier Ltd.

  14. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    International Nuclear Information System (INIS)

    Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed

  15. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  16. Response to a radioactive materials release having a transboundary impact

    International Nuclear Information System (INIS)

    1989-01-01

    Compared with an accidental release of radioactive material which is confined to the accident State, a transboundary release has added dimensions which were not fully anticipated in publications dealing with response to accidents at nuclear facilities. The new aspects to the problem may be summarized as follows: (1) A transboundary release of radioactive material, as distinct from a release which affects only the accident State, has international repercussions in the following ways: Potentially at least, the difficulties associated with a transboundary release may be magnified in those States that have no nuclear facilities of their own and may, therefore, have foreseen no need for resources to assess and deal with radioactive contamination of their food supplies, their water and their environment appropriately. International trade, in food commodities particularly, may be severely affected. Issues of compensation may arise for which the dispute settlement mechanisms are weak or non-existent. (2) Many Member States are in such geographic locations that they could be affected by a transboundary release occurring in any of their surrounding neighbour States. Planning for and responding to such an event is necessarily more difficult than planning for an accidental release from a single, identified nuclear facility. (3) Deposits of radioactive material from a distant source are apt to be highly unpredictable. Depending on weather conditions, they may be localized in a random fashion or widespread. Because of the international dimension of the problem and its essentially unpredictable character it is recommended here that planning for such events should be carried at the national or federal government level rather than at provincial government level. 14 refs

  17. Mechanical joining of materials with limited ductility: Analysis of process-induced defects

    Science.gov (United States)

    Jäckel, M.; Coppieters, S.; Hofmann, M.; Vandermeiren, N.; Landgrebe, D.; Debruyne, D.; Wallmersberger, T.; Faes, K.

    2017-10-01

    The paper shows experimental and numerical analyses of the clinching process of 6xxx series aluminum sheets in T6 condition and the self-pierce riveting process of an aluminum die casting. In the experimental investigations the damage behavior of the materials when using different tool parameters is analyzed. The focus of the numerical investigations is the damage prediction by a comparison of different damage criteria. Moreover, strength-and fatigue tests were carried out to investigate the influence of the joining process-induced damages on the strength properties of the joints.

  18. Social construction and materiality: the limits of indeterminacy in therapeutic settings.

    Science.gov (United States)

    Lannamann, J W

    1998-01-01

    By drawing parallels between the courtroom testimony of a Christian Science practitioner and an intersession conversation between systemic family therapists, I critique the abstract idealism of language-centered social constructionism. I argue that social constructionist inquiry that highlights the indeterminacy of meaning without a corresponding emphasis on the responsive embodied practices of family members glosses over the material conditions shaping the politics of interaction. The implications of this problem are discussed as they relate to the setting of family therapy, where social construction theory is often used to guide practical interventions.

  19. Numerical simulation of a high velocity impact on fiber reinforced materials

    International Nuclear Information System (INIS)

    Thoma, Klaus; Vinckier, David

    1994-01-01

    Whereas the calculation of a high velocity impact on isotropical materials can be done on a routine basis, the simulation of the impact and penetration process into nonisotropical materials such as reinforced concrete or fiber reinforced materials still is a research task.We present the calculation of an impact of a metallic fragment on a modern protective wall structure. Such lightweight protective walls typically consist of two layers, a first outer layer made out of a material with high hardness and a backing layer. The materials for the backing layer are preferably fiber reinforced materials. Such types of walls offer a protection against fragments in a wide velocity range.For our calculations we used a non-linear finite element Lagrange code with explicit time integration. To be able to simulate the high velocity penetration process with a continuous erosion of the impacting metallic fragment, we used our newly developed contact algorithm with eroding surfaces. This contact algorithm is vectorized to a high degree and especially robust as it was developed to work for a wide range of contact-impact problems. To model the behavior of the fiber reinforced material under the highly dynamic loads, we present a material model which initially was developed to calculate the crash behavior (automotive applications) of modern high strength fiber-matrix systems. The model can describe the failure and the postfailure behavior up to complete material crushing.A detailed simulation shows the impact of a metallic fragment with a velocity of 750ms -1 on a protective wall with two layers, the deformation and erosion of fragment and wall material and the failure of the fiber reinforced material. ((orig.))

  20. Predicting the behavioural impact of transcranial direct current stimulation: issues and limitations

    Directory of Open Access Journals (Sweden)

    Archy Otto De Berker

    2013-10-01

    Full Text Available The transcranial application of weak currents to the human brain has enjoyed a decade of success, providing a simple and powerful tool for non-invasively altering human brain function. However, our understanding of current delivery and its impact upon neural circuitry leaves much to be desired. We argue that the credibility of conclusions drawn with tDCS is contingent upon realistic explanations of how tDCS works, and that our present understanding of tDCS limits the technique’s use to localize function in the human brain. We outline two central issues where progress is required: the localization of currents, and predicting their functional consequence. We encourage experimenters to eschew simplistic explanations of mechanisms of transcranial current stimulation. We suggest the use of individualized current modelling, together with computational neurostimulation to inform mechanistic frameworks in which to interpret the physiological impact of tDCS. We hope that through mechanistically richer descriptions of current flow and action, insight into the biological processes by which transcranial currents influence behaviour can be gained, leading to more effective stimulation protocols and empowering conclusions drawn with tDCS.

  1. The impact of teachers' limited english proficiency on english second language learners in South African schools

    Directory of Open Access Journals (Sweden)

    Norma Nel

    2010-01-01

    Full Text Available The importance of the role of language in teacher education programmes and in children's learning is crucial. This study focuses on the use of English as the language of learning and teaching and its impact on the language development of English second language (ESL student teachers and ESL learners. Against the background of major theories in second language (L2 acquisition and learning, this topic is contextualized within the South African education system. An empirical inquiry was carried out in which portfolios (evidence of practical teaching including lesson plans and learners' work submitted by final year student teachers enrolled at a large distance teaching university for the Advanced Certificate in Education: Inclusive Education were scrutinised. A comparison of teacher and learner written errors was made. Based on the findings, a questionnaire was designed to determine the extent of the impact of teachers' limited English proficiency on learners' English proficiency. The findings of the questionnaire responses are presented. Recommendations are made on how student teachers can improve their teaching practice to ensure quality ESL teacher input and ESL learner performance.

  2. Impacts and limitations of medialization thyroplasty on swallowing function of patients with unilateral vocal fold paralysis.

    Science.gov (United States)

    Tateya, Ichiro; Hirano, Shigeru; Kishimoto, Yo; Suehiro, Atsushi; Kojima, Tsuyohi; Ohno, Satoshi; Ito, Juichi

    2010-11-01

    Medialization thyroplasty was effective in improving swallowing function as well as vocal function in most cases with unilateral vocal fold paralysis. The impact of medialization thryoplasty was insufficient for the case with severe atrophy and that in which the vocal fold was fixed in the lateral position. To evaluate the impacts and limitations of medialization thyroplasty on swallowing function of the patients with unilateral vocal fold paralysis. Eight cases (mean age 68.5 years) with unilateral vocal fold paralysis chiefly complaining of swallowing disturbance were studied. All patients underwent thyroplasty type I. The causes of the paralysis were lung cancer in four cases, esophageal cancer in one case, aortic aneurysm in one case, subarachnoid hemorrhage in one case, and unknown in one case. Subjective swallowing function score, maximum phonation time (MPT), mean flow rate (MFR), amplitude perturbation quotient (APQ), and pitch perturbation quotient (PPQ) were examined pre- and postoperatively. The swallowing score improved in all except two cases. However, bilateral thryoplasty was necessary for the case with severe vocal fold atrophy and arytenoid adduction was needed for the case in which the vocal fold was fixed in the lateral position. The swallowing score, MPT, and MFR showed significant improvement after surgery.

  3. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    Science.gov (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  4. Development of an Advanced Composite Material Model Suitable for Blast and Ballistic Impact Simulations

    National Research Council Canada - National Science Library

    Yen, C. F; Cheeseman, B. A

    2004-01-01

    A robust composite progressive failure model has been successfully developed to account for the strain-rate and pressure dependent behavior of composite materials subjected to high velocity ballistic impact...

  5. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  6. The use of reactive material for limiting P-leaching from green roof substrate.

    Science.gov (United States)

    Bus, Agnieszka; Karczmarczyk, Agnieszka; Baryła, Anna

    2016-01-01

    The aim of the study is to assess the influence of drainage layer made of reactive material Polonite(®) on the water retention and P-PO(4) concentration in runoff. A column experiment was performed for extensive substrate underlined by 2 cm of Polonite(®) layer (SP) and the same substrate without supporting layer as a reference (S). The leakage phosphorus concentration ranged from 0.001 to 0.082 mg P-PO(4)·L(-1), with average value 0.025 P-PO(4)·L(-1) of S experiment and 0.000-0.004 P-PO(4)·L(-1) and 0.001 P-PO(4)·L(-1) of SP experiment, respectively. The 2 cm layer of Polonite(®) was efficient in reducing P outflow from green roof substrate by 96%. The average effluent volumes from S and SP experiments amounted 61.1 mL (5.8-543.3 mL) and 46.4 mL (3.3-473.3 mL) with the average irrigation rate of 175.5 mL (6.3-758.0 mL). The substrate retention ability of S and SP experiments was 65% and 74%, respectively. Provided with reactive materials, green roof layers implemented in urban areas for rain water retention and delaying runoff also work for protection of water quality.

  7. Studies on properties of low atomic number ceramics as limiter materials for fusion applications

    International Nuclear Information System (INIS)

    Thiele, B.A.; Hoven, H.; Koizlik, K.; Linke, J.; Wallure, E.

    1986-01-01

    The present study deals with thermal shock and erosion-redeposition behaviour of low-Z-bulk-ceramics: SiC, SiC + Si, SiC + 3% Al, SiC + 2% AlN, AlN, Si 3 N 4 , BN with graphite as reference material. Also included are substrate-coating systems: TiC coated graphite, Cr 2 C 3 coated graphite and TiN on Inconel. The properties are being investigated by electron beam and in-pile fusion machine tests in the KFA-Tokamak machine Textor. The electron-beam tests showed that sublimation was the dominant damaging effect for graphite, BN and SiN 4 . Materials with mediocre thermo-mechanical properties, such as SiC and AlN, showed cracks. The highest energy density values were tolerated by specimens of SiC alloyed with 2% AlN. In general, the in pile behaviour of the ceramics was comparable with the electron beam tests: BN and SiC + 2% AlN are at present regarded as the prime candidates for future irradiation tests. (author)

  8. Methods of calculation and determination of density and moisture of inhomogeneous materials within capacity of limited dimensions

    International Nuclear Information System (INIS)

    Mukanov, D.M.

    1996-01-01

    Both a definition of optimal sizes and an opinion about representation of assay present practical interest during process of physical characteristics calculation of inhomogeneous materials by neutron method. The opinion about calculation sphere is introduced for definition of necessary dependences. It presents limited by convex surface with center coinciding with center of initial measuring transformer. Sizes of calculation sphere have been defined by physical process character of neutral radiation interaction with measured substance and its nuclear-physical parameters. 3 figs

  9. RCRA materials analysis by laser-induced breakdown spectroscopy: Detection limits in soils

    International Nuclear Information System (INIS)

    Koskelo, A.; Cremers, D.A.

    1994-01-01

    The goal of the Technical Task Plan (TTP) that this report supports is research, development, testing and evaluation of a portable analyzer for RCRA and other metals. The instrumentation to be built will be used for field-screening of soils. Data quality is expected to be suitable for this purpose. The data presented in this report were acquired to demonstrate the detection limits for laser-induced breakdown spectroscopy (LIBS) of soils using instrument parameters suitable for fieldable instrumentation. The data are not expected to be the best achievable with the high pulse energies available in laboratory lasers. The report presents work to date on the detection limits for several elements in soils using LIBS. The elements targeted in the Technical Task Plan are antimony, arsenic, beryllium, cadmium, chromium, lead, selenium, and zirconium. Data for these elements are presented in this report. Also included are other data of interest to potential customers for the portable LIBS apparatus. These data are for barium, mercury, cesium and strontium. Data for uranium and thorium will be acquired during the tasks geared toward mixed waste characterization

  10. Know your limits? Climate extremes impact the range of Scots pine in unexpected places.

    Science.gov (United States)

    Julio Camarero, J; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel

    2015-11-01

    Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios. © The Author 2015. Published by

  11. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    Science.gov (United States)

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spectral and temporal cues for perception of material and action categories in impacted sound sources

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; McAdams, Stephen

    2016-01-01

    In two experiments, similarity ratings and categorization performance with recorded impact sounds representing three material categories (wood, metal, glass) being manipulated by three different categories of action (drop, strike, rattle) were examined. Previous research focusing on single impact...... correlated with the pattern of confusion in categorization judgments. Listeners tended to confuse materials with similar spectral centroids, and actions with similar temporal centroids and onset densities. To confirm the influence of these different features, spectral cues were removed by applying...

  13. Waste-based materials; capability, application and impact on indoor environment – literature review

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Rode, Carsten; Kolarik, Jakub

    2014-01-01

    This paper reviews and discusses various sustainable materials utilizing waste products with the focus on their properties having an impact on the indoor environmental conditions and indoor air quality (IAQ). Materials included in the review are selected considering the following aspects......: sustainability, cradle to cradle perspective, application, their impact on indoor environment and human well-being. The attempt of the paper is to cover a wide spectrum of information so to provide better understanding of waste utilization in construction industry....

  14. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    International Nuclear Information System (INIS)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-01-01

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  15. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Oliver [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Karlsruhe Institute of Technology, Institute for Geography and Geoecology, Adenauerring 20, 76131 Karlsruhe (Germany); Bayer, Peter, E-mail: bayer@erdw.ethz.ch [Swiss Federal Institute of Technology Zurich, Geological Institute, Sonneggstrasse 5, 8092 Zurich (Switzerland); Juraske, Ronnie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Verones, Francesca [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Hellweg, Stefanie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland)

    2014-10-15

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  16. Topological interlocking provides stiffness to stochastically micro-cracked materials beyond the transport percolation limit

    Science.gov (United States)

    Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.

  17. Characterizing, for packaging and transport, large objects contaminated by radioactive material having a limited A2 value

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Cash, J.M.; Best, R.E.

    1998-02-01

    The International Atomic Energy Agency (IAEA) Regulations for the safe packaging and transportation of radioactive materials follow a graded approach to the requirements for both packaging and controls during transport. The concept is that, the lower the risk posed to the people and the environment by the contents, (1) the less demanding are the packaging requirements and (2) the smaller in number are the controls imposed on the transport of the material. There are likely to be a great number of situations arising in coming years when large objects, contaminated with radioactive material having unlimited A 2 values will result from various decommissioning and decontamination (D and D) activities and will then require shipment from the D and D site to a disposal site. Such situations may arise relatively frequently during the cleanup of operations involving mining, milling, feedstock, and uranium enrichment processing facilities. Because these objects are contaminated with materials having an unlimited A 2 value they present a low radiological risk to worker and public safety and to the environment during transport. However, when these radioactive materials reside on the surfaces of equipment and other large objects, where the equipment and objects themselves are not radioactive, the radioactive materials appear as surface contamination and, if the contaminated object is categorized as a surface contaminated object, it would need to be packaged for shipment according to the requirements of the Regulations for SCO. Despite this categorization, alternatives may be available which will allow these contaminants, when considered by themselves for packaging and transport, to be categorized as either (1) a limited quantity of radioactive material to be shipped in an excepted package or (2) low specific activity (LSA) materials to be shipped in an IP-1 package or possibly even shipped unpackaged. These options are discussed in this paper

  18. Near field heat transfer between random composite materials. Applications and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Eva Yazmin; Esquivel-Sirvent, Raul [Univ. Nacional Autonoma de Mexico (Mexico). Inst. de Fisica

    2017-05-01

    We present a theoretical study of the limits and bounds of using effective medium approximations in the calculation of the near field radiative heat transfer between a composite system made of Au nanoparticles in a SiC host and an homogeneous SiC slab. The effective dielectric function of the composite slab is calculated using three different approximations: Maxwell-Garnett, Bruggeman, and Looyenga's. In addition, we considered an empirical fit to the effective dielectric function by Grundquist and Hunderi. We show that the calculated value of the heat flux in the near field is dependent on the model, and the difference in the effective dielectric function is larger around the plasmonic response of the Au nanoparticles. This, in turn, accounts for the difference in the near field radiative heat flux. For all values of filling fractions, the Looyenga approximation gives a lower bound for the heat flux.

  19. Impact of reduced dose limits on NRC licensed activities. Major issues in the implementation of ICRP/NCRP dose limit recommendations: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, C.B. [Brookhaven National Lab., Upton, NY (United States)

    1995-05-01

    This report summarizes information required to estimate, at least qualitatively, the potential impacts of reducing occupational dose limits below those given in 10 CFR 20 (Revised). For this study, a questionnaire was developed and widely distributed to the radiation protection community. The resulting data together with data from existing surveys and sources were used to estimate the impact of three dose-limit options; 10 mSv yr{sup {minus}1} (1 rem yr{sup {minus}1}), 20 mSv yr{sup {minus}1} (2 rem yr{sup {minus}1}), and a combination of an annual limit of 50 mSv yr{sup {minus}1} (5 rem yr{sup {minus}1}) coupled with a cumulative limit, in rem, equal to age in years. Due to the somewhat small number of responses and the lack of data in some specific areas, a working committee of radiation protection experts from a variety of licensees was employed to ensure the exposure data were representative. The following overall conclusions were reached: (1) although 10 mSv yr{sup {minus}1} is a reasonable limit for many licensees, such a limit could be extraordinarily difficult to achieve and potentially destructive to the continued operation of some licensees, such as nuclear power, fuel fabrication, and medicine; (2) twenty mSv yr{sup {minus}1} as a limit is possible for some of these groups, but for others it would prove difficult. (3) fifty mSv yr{sup {minus}1} and age in 10s of mSv appear reasonable for all licensees, both in terms of the lifetime risk of cancer and severe genetic effects to the most highly exposed workers, and the practicality of operation.

  20. Impact of reduced dose limits on NRC licensed activities. Major issues in the implementation of ICRP/NCRP dose limit recommendations: Final report

    International Nuclear Information System (INIS)

    Meinhold, C.B.

    1995-05-01

    This report summarizes information required to estimate, at least qualitatively, the potential impacts of reducing occupational dose limits below those given in 10 CFR 20 (Revised). For this study, a questionnaire was developed and widely distributed to the radiation protection community. The resulting data together with data from existing surveys and sources were used to estimate the impact of three dose-limit options; 10 mSv yr -1 (1 rem yr -1 ), 20 mSv yr -1 (2 rem yr -1 ), and a combination of an annual limit of 50 mSv yr -1 (5 rem yr -1 ) coupled with a cumulative limit, in rem, equal to age in years. Due to the somewhat small number of responses and the lack of data in some specific areas, a working committee of radiation protection experts from a variety of licensees was employed to ensure the exposure data were representative. The following overall conclusions were reached: (1) although 10 mSv yr -1 is a reasonable limit for many licensees, such a limit could be extraordinarily difficult to achieve and potentially destructive to the continued operation of some licensees, such as nuclear power, fuel fabrication, and medicine; (2) twenty mSv yr -1 as a limit is possible for some of these groups, but for others it would prove difficult. (3) fifty mSv yr -1 and age in 10s of mSv appear reasonable for all licensees, both in terms of the lifetime risk of cancer and severe genetic effects to the most highly exposed workers, and the practicality of operation

  1. Limiting the impact of light pollution on human health, environment and stellar visibility.

    Science.gov (United States)

    Falchi, Fabio; Cinzano, Pierantonio; Elvidge, Christopher D; Keith, David M; Haim, Abraham

    2011-10-01

    Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this "residual light pollution", cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment

  2. What are critical features of science curriculum materials that impact student and teacher outcomes?

    NARCIS (Netherlands)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined

  3. Quality and Knowledge Content in Music Activities in Preschool: The Impact of Human Materiality Combinations

    Science.gov (United States)

    Zimmerman Nilsson, Marie-Helene; Holmberg, Kristina

    2017-01-01

    Traditionally, pedagogical research has been child centered, where materialities often have been considered as objects and tools. However, in recent posthuman research, attempts have been made to consider human materiality combinations to have impact on pedagogical activities in preschool, but to a large extent music as an issue has been…

  4. What Are Critical Features of Science Curriculum Materials That Impact Student and Teacher Outcomes?

    Science.gov (United States)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined curriculum features associated with student and…

  5. Impact of cementitious materials decalcification on transfer properties: application to radioactive waste deep repository

    International Nuclear Information System (INIS)

    Perlot, C.

    2005-09-01

    Cementitious materials have been selected to compose the engineering barrier system (EBS) of the French radioactive waste deep repository, because of concrete physico-chemical properties: the hydrates of the cementitious matrix and the pH of the pore solution contribute to radionuclides retention; furthermore the compactness of these materials limits elements transport. The confinement capacity of the system has to be assessed while a period at least equivalent to waste activity (up to 100.000 years). His durability was sustained by the evolution of transfer properties in accordance with cementitious materials decalcification, alteration that expresses structure long-term behavior. Then, two degradation modes were carried out, taking into account the different physical and chemical solicitations imposed by the host formation. The first mode, a static one, was an accelerated decalcification test using nitrate ammonium solution. It replicates the EBS alteration dues to underground water. Degradation kinetic was estimated by the amount of calcium leached and the measurement of the calcium hydroxide dissolution front. To evaluate the decalcification impact, samples were characterized before and after degradation in term of microstructure (porosity, pores size distribution) and of transfer properties (diffusivity, gas and water permeability). The influence of cement nature (ordinary Portland cement, blended cement) and aggregates type (lime or siliceous) was observed: experiments were repeated on different mortars mixes. On this occasion, an essential reflection on this test metrology was led. The second mode, a dynamical degradation, was performed with an environmental permeameter. It recreates the EBS solicitations ensured during the re-saturation period, distinguished by the hydraulic pressure imposed by the geologic layer and the waste exothermicity. This apparatus, based on triaxial cell functioning, allows applying on samples pressure drop between 2 and 10 MPa and

  6. Limitations of Cs3Bi2I9 as lead-free photovoltaic absorber materials.

    Science.gov (United States)

    Ghosh, Biplab; Wu, Bo; Mulmudi, Hemant Kumar; Guet, Claude; Weber, Klaus; Sum, Tze Chien; Mhaisalkar, Subodh G; Mathews, Nripan

    2018-01-17

    Lead (Pb) halide perovskites have attracted tremendous attention in recent years due to their rich optoelectronic properties, which have resulted in more than 22% power conversion efficient photovoltaics. Nevertheless, Pb-metal toxicity remains a huge hurdle for extensive applications of these compounds. Thus, alternative compounds with similar optoelectronic properties need to be developed. Bismuth possesses similar electronic structure as that of lead with the presence of ns2 electrons that exhibit rich structural variety as well as interesting optical and electronic properties. Herein, we critically assess Cs3Bi2I9 as a candidate for thin-film solar cell absorber. Despite a reasonable optical bandgap (~2eV) and absorption coefficient, the power conversion efficiency of the Cs3Bi2I9 mesoscopic solar cells was found to be severely lacking, limited by poor photocurrent density. The efficiency of the Cs3Bi2I9 solar cell can be slightly improved by changing the stoichiometry of the precursor solutions. We have investigated the possible reasons behind the poor performance of Cs3Bi2I9 by transient absorption and luminescence spectroscopy. Comparison between thin-films and single crystals highlights the presence of intrinsic defects in thin-films which act as nonradiative recombination centers.

  7. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions.

    Science.gov (United States)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-10-01

    In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk

  8. German Energiewende and the heating market – Impact and limits of policy

    International Nuclear Information System (INIS)

    Bauermann, Klaas

    2016-01-01

    The German Energiewende envisages achieving a climate-neutral building stock in 2050 by means of two major pillars of regulation. First, residential buildings should consume 80% less primary energy and second; the remaining energy demand should be covered primarily with renewables. This paper simulates the future German heating market under different policy scenarios in order to evaluate the impact and limits of recent and conceivable policies. The investigation is based upon a dual model approach, linking a residential heating model to a discrete choice model. The major finding is that current regulations are not suitable for the achievement of governmental targets. Scenario calculations show that additional carbon emission reductions, triggered by the current regulatory regime, are falling short of expectations. In terms of economic efficiency, all calculated policy alternatives outperform the regulation currently in place. This allows to draw the conclusion that carbon emission reductions can be achieved without a major increase in cost. The model results highlight two policy implications. First, a rising mandatory share of renewables in the heating market is needed for target achievement and can be cost effectively. Second, renewable obligations for heating systems must include the existing building stock to achieve the postulated political targets. - Highlights: •The residential heating market accounts for major share of carbon emissions. •The disregard of the building stock weakens the impact of recent regulation. •Current regulation preserves a heating market dominated by fossil fuels. •A significant renewable share can be achieved through direct regulation. •Alternative policy leads to emission reductions without major increases in costs.

  9. Limited impact on decadal-scale climate change from increased use of natural gas.

    Science.gov (United States)

    McJeon, Haewon; Edmonds, Jae; Bauer, Nico; Clarke, Leon; Fisher, Brian; Flannery, Brian P; Hilaire, Jérôme; Krey, Volker; Marangoni, Giacomo; Mi, Raymond; Riahi, Keywan; Rogner, Holger; Tavoni, Massimo

    2014-10-23

    The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.

  10. Environmental impacts on the evapotranspiration of an water limited and heterogeneous Mediterranean ecosystem.

    Science.gov (United States)

    Montaldo, N.; Curreli, M.; Corona, R.; Oren, R.

    2015-12-01

    Mediterranean water limited ecosystems are characterized by an heterogeneous spatial distribution of different plant functional types (PFT), such as grass and trees, competing for water use. Typically, during the dry summers, these ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. The coupled use of sap flow measurements and eddy covariance technique is essential to estimate Evapotransiration (ET) in an heterogeneous ecosystem. An eddy covariance - micrometeorological tower has been installed since 2003 and 33 thermo-dissipation probes based on the Granier technique have installed at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. A network of 30 soil moisture sensors has also been installed for monitoring soil moisture spatial and temporal dynamics and their correlation with trees. Sap flow measurements show the significantly impacts on ET of soil moisture, radiation, vapor pressure deficit (VPD) and interestingly of tree position into the clump, showing double rates for the trees inside the wild olive clumps. The sap flow sensor outputs are analyzed for estimating innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the approximation of the eddy covariance technique. Finally the impact of environmental factors on ET for different soil depth and tree position is demonstrated.

  11. Transfer of impact ejecta material from the surface of Mars to Phobos and Deimos.

    Science.gov (United States)

    Chappaz, Loïc; Melosh, Henry J; Vaquero, Mar; Howell, Kathleen C

    2013-10-01

    The Russian Phobos-Grunt spacecraft originally planned to return a 200 g sample of surface material from Phobos to Earth. Although it was anticipated that this material would mainly be from the body of Phobos, there is a possibility that such a sample may also contain material ejected from the surface of Mars by large impacts. An analysis of this possibility is completed by using current knowledge of aspects of impact cratering on the surface of Mars and the production of high-speed ejecta that might reach Phobos or Deimos.

  12. Implementation of e-commerce in developing countries: impact and its limitations-Albanian Case study

    Directory of Open Access Journals (Sweden)

    Genti Çela

    2016-07-01

    Full Text Available The implementation of Electronic Commerce (hereinafter referred to as "e-Commerce" in developed countries has been proven as an indisputable potential to ameliorate the efficiency and productivity in different areas, therefore, its implementation is attracting significant attention in developing countries. Despite its opportunities established in developed countries, there were many doubts about the e-commerce implementation in developing countries. That reluctance is heightened by the limited number of studies on e-commerce and the lack of legislation. This paper aims to contribute on filling the research gap by highlighting the e-commerce implementation in Albania as a developing country, its importance, the level of trust, its benefits, its positive or negative impacts and its limitations. This study will be continuously and accordingly updated with new evidence based on research results, along with future developments of Albania’s economic, political, social and demographic environment. This is because different areas represent different infrastructure and different social and economic characteristics, different levels of trust on transactions, different attitudes towards institutions. We have also take into consideration that different communities have different attitudes toward the acceptance and developments of e-Commerce system. In this paper, we present a comprehensive approach to e-commerce, concentrating specifically on Albanian case. Firstly we analyze the current situation of e-Commerce. Secondly we pay attention to the benefits and legal strategies for its implementation. The third step consists in presenting the relevant objectives. We believe and insist that the development of e-commerce in developing nations, - including Albania, has a positive perspective, if the government, companies and the public can better understand and implement e-Commerce.

  13. Assessment of the benefits and impacts in the U.S. Nuclear Power Industry of hypothesized lower occupational dose limits

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, R.L.; Schmitt, J.F. [Nuclear Energy Institute, Washington, DC (United States)

    1995-03-01

    The International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements have issued recommendations that would limit occupational exposure of individuals to doses lower than regulatory limits contained in the Nuclear Regulatory Commission`s 10 CFR Part 20, {open_quotes}Standards for Protection Against Radiation{close_quotes}. Because of this situation, there is interest in the potential benefits and impacts that would be associated with movement of the NRC regulatory limits toward the advisory bodies recommendations. The records of occupational worker doses in the U.S. commercial nuclear power industry show that the vast majority of these workers have doses that are significantly below the regulatory limit of 50 mSv (5 rem) per year. Some workers doses do approach the limits, however. This is most common in the case of specially skilled workers, especially those with skills utilized in support of plant outage work. Any consideration of the potential benefits and impacts of hypothesized lower dose limits must address these workers as an important input to the overall assessment. There are also, of course, many other areas in which the benefits and impacts must be evaluated. To prepare to provide valid, constructive input on this matter, the U.S. nuclear power industry is undertaking an assessment, facilitated by the Nuclear Energy Institute (NEI), of the potential benefits and impacts at its facilities associated with hypothesized lower occupational dose limits. Some preliminary results available to date from this assessment are provided.

  14. Assessment of the benefits and impacts in the U.S. Nuclear Power Industry of hypothesized lower occupational dose limits

    International Nuclear Information System (INIS)

    Andersen, R.L.; Schmitt, J.F.

    1995-01-01

    The International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements have issued recommendations that would limit occupational exposure of individuals to doses lower than regulatory limits contained in the Nuclear Regulatory Commission's 10 CFR Part 20, open-quotes Standards for Protection Against Radiationclose quotes. Because of this situation, there is interest in the potential benefits and impacts that would be associated with movement of the NRC regulatory limits toward the advisory bodies recommendations. The records of occupational worker doses in the U.S. commercial nuclear power industry show that the vast majority of these workers have doses that are significantly below the regulatory limit of 50 mSv (5 rem) per year. Some workers doses do approach the limits, however. This is most common in the case of specially skilled workers, especially those with skills utilized in support of plant outage work. Any consideration of the potential benefits and impacts of hypothesized lower dose limits must address these workers as an important input to the overall assessment. There are also, of course, many other areas in which the benefits and impacts must be evaluated. To prepare to provide valid, constructive input on this matter, the U.S. nuclear power industry is undertaking an assessment, facilitated by the Nuclear Energy Institute (NEI), of the potential benefits and impacts at its facilities associated with hypothesized lower occupational dose limits. Some preliminary results available to date from this assessment are provided

  15. Liquid impact erosion mechanism and theoretical impact stress analysis in TiN-coated steam turbine blade materials

    International Nuclear Information System (INIS)

    Lee, M.K.; Kim, W.W.; Rhee, C.K.; Lee, W.J.

    1999-01-01

    Coating of TiN film was done by reactive magnetron sputter ion plating to improve the liquid impact erosion resistance of steam turbine blade materials, 12Cr steel and Stellite 6B, for nuclear power plant application. TiN-coated blade materials were initially deformed with depressions due to plastic deformation of the ductile substrate. The increase in the curvature in the depressions induced stress concentration with increasing number of impacts, followed by circumferential fracture of the TiN coating due to the circular propagation of cracks. The liquid impact erosion resistance of the blade materials was greatly improved by TiN coating done with the optimum ion plating condition. Damage decreased with increasing TiN coating thickness. According to the theoretical analysis of stresses generated by liquid impact, TiN coating alleviated the impact stress of 12Cr steel and Stellite 6B due to stress attenuation and stress wave reactions such as reflection and transmission at the coating-substrate interface

  16. Knockouts of high-ranking males have limited impact on baboon social networks.

    Science.gov (United States)

    Franz, Mathias; Altmann, Jeanne; Alberts, Susan C

    Social network structures can crucially impact complex social processes such as collective behaviour or the transmission of information and diseases. However, currently it is poorly understood how social networks change over time. Previous studies on primates suggest that `knockouts' (due to death or dispersal) of high-ranking individuals might be important drivers for structural changes in animal social networks. Here we test this hypothesis using long-term data on a natural population of baboons, examining the effects of 29 natural knockouts of alpha or beta males on adult female social networks. We investigated whether and how knockouts affected (1) changes in grooming and association rates among adult females, and (2) changes in mean degree and global clustering coefficient in these networks. The only significant effect that we found was a decrease in mean degree in grooming networks in the first month after knockouts, but this decrease was rather small, and grooming networks rebounded to baseline levels by the second month after knockouts. Taken together our results indicate that the removal of high-ranking males has only limited or no lasting effects on social networks of adult female baboons. This finding calls into question the hypothesis that the removal of high-ranking individuals has a destabilizing effect on social network structures in social animals.

  17. Critical Minerals and Energy–Impacts and Limitations of Moving to Unconventional Resources

    Directory of Open Access Journals (Sweden)

    Benjamin C. McLellan

    2016-05-01

    Full Text Available The nexus of minerals and energy becomes ever more important as the economic growth and development of countries in the global South accelerates and the needs of new energy technologies expand, while at the same time various important minerals are declining in grade and available reserves from conventional mining. Unconventional resources in the form of deep ocean deposits and urban ores are being widely examined, although exploitation is still limited. This paper examines some of the implications of the transition towards cleaner energy futures in parallel with the shifts through conventional ore decline and the uptake of unconventional mineral resources. Three energy scenarios, each with three levels of uptake of renewable energy, are assessed for the potential of critical minerals to restrict growth under 12 alternative mineral supply patterns. Under steady material intensities per unit of capacity, the study indicates that selenium, indium and tellurium could be barriers in the expansion of thin-film photovoltaics, while neodymium and dysprosium may delay the propagation of wind power. For fuel cells, no restrictions are observed.

  18. Effects of antifreezes and bundled material on the stability and optical limiting in aqueous suspensions of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasov, Andrey Yu.; Venediktova, Anastasia V.; Sokolova, Ekaterina P. [Department of Chemistry, St. Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504 (Russian Federation); Videnichev, Dmitry A. [S.I. Vavilov State Optical Institute, Birzhevaya line 12, St. Petersburg 199034 (Russian Federation); St. Petersburg National Research University ITMO, Kronverksky pr. 49, St. Petersburg 197101 (Russian Federation); Lasers and Optical Systems JSC, Birzhevaya line 12, St. Petersburg 199034 (Russian Federation); Kislyakov, Ivan M. [S.I. Vavilov State Optical Institute, Birzhevaya line 12, St. Petersburg 199034 (Russian Federation); St. Petersburg National Research University ITMO, Kronverksky pr. 49, St. Petersburg 197101 (Russian Federation); Obraztsova, Elena D. [A.M. Prokhorov Institute of General Physics, Russian Academy of Sciences, Vavilov Str. 38, Moscow 119991 (Russian Federation)

    2012-12-15

    This work gives data on the stability of dispersions of single wall carbon nanotubes stabilized by sodium dodecylbenzenesulfonate in binary polar solvents ''water + antifreeze'' (glycerol, polyethyleneglycole) with eutectic compositions. The absorption spectra of the suspensions demonstrate no changes during 1-year storage with temperature spanning from -40 to +40 C. The systems provide relevant optical power limiting properties, the one with glycerol showing good resistance to optical bleaching effects. We also demonstrate that aqueous dispersions of nanotubes exhibit considerable enhancement of optical limiting parameters alongside an increase of the bundled material populace. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Microstructural Quantification, Property Prediction, and Stochastic Reconstruction of Heterogeneous Materials Using Limited X-Ray Tomography Data

    Science.gov (United States)

    Li, Hechao

    An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive. In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial correlation functions from limited x-ray tomography data. The key component of the procedure is the computation of a "probability map", which provides the probability of an arbitrary point in the material system belonging to specific phase. The correlation functions of interest are then readily computed from the probability map. Using effective medium theory, accurate predictions of physical properties (e.g., elastic moduli) can be obtained. Secondly, a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of x-ray tomographic projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal data fusion is proposed, where both X-ray projections and correlation functions computed from limited 2D optical images are fused to accurately reconstruct complex heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be able to integrate the complementary data to perform an excellent optimization procedure, which indicates its high efficiency in using limited structural information. Finally, the accuracy of the stochastic reconstruction procedure using limited X

  20. Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering.

    Science.gov (United States)

    Arzhantsev, Sergey; Li, Xiang; Kauffman, John F

    2011-02-01

    We introduce a new method for analysis of X-ray fluorescence (XRF) spectra based on continuous wavelet transform filters, and the method is applied to the determination of toxic metals in pharmaceutical materials using hand-held XRF spectrometers. The method uses the continuous wavelet transform to filter the signal and noise components of the spectrum. We present a limit test that compares the wavelet domain signal-to-noise ratios at the energies of the elements of interest to an empirically determined signal-to-noise decision threshold. The limit test is advantageous because it does not require the user to measure calibration samples prior to measurement, though system suitability tests are still recommended. The limit test was evaluated in a collaborative study that involved five different hand-held XRF spectrometers used by multiple analysts in six separate laboratories across the United States. In total, more than 1200 measurements were performed. The detection limits estimated for arsenic, lead, mercury, and chromium were 8, 14, 20, and 150 μg/g, respectively.

  1. Sustainable manufacturing: Effect of material selection and design on the environmental impact in the manufacturing process

    International Nuclear Information System (INIS)

    Harun, Mohd Hazwan Syafiq; Salaam, Hadi Abdul; Taha, Zahari

    2013-01-01

    The environmental impact of a manufacturing process is also dependent on the selection of the material and design of a product. This is because the manufacturing of a product is directly connected to the amount of carbon emitted in consuming the electrical energy for that manufacturing process. The difference in the general properties of materials such as strength, hardness and impact will have significant effect on the power consumption of the machine used to complete the product. In addition the environmental impact can also be reduced if the proposed designs use less material. In this study, an LCA tool called Eco-It is used. Evaluate the environmental impact caused by manufacturing simple jig. A simple jig with 4 parts was used as a case study. Two experiments were carried out. The first experiment was to study the environmental effects of different material, and the second experiment was to study the environmental impact of different design. The materials used for the jig are Aluminium and mild steel. The results showed a decrease in the rate of carbon emissions by 60% when Aluminium is use instead from mild steel, and a decrease of 26% when the-design is modified

  2. Experimental screening of carbon-base materials for impact members in isotopic heat sources

    International Nuclear Information System (INIS)

    Bansal, G.K.; Duckworth, W.H.

    1976-11-01

    Fourteen C/C composites and three reentry-grade bulk graphites were evaluated experimentally to determine their applicability for impact member use in radioisotope heat sources. The composites included the following generic types: (1) 2-D cloth lay-ups; (2) 2-D and 3-D felts; (3) 3-D weaves; (4) 3-D pierced fabrics; (5) 7-D weave; and (6) coarse polar weave. Also included was the 2-D randomly wound, resin-impregnated C/C material presently used as the impact member in the MHW RTG and commonly designated ''GIS'' (an acronym for graphite impact shell). The various materials were evaluated as energy absorbing materials. None of the materials in these tests performed appreciably better than the GIS impact member material now used in the MHW heat source, HITCO Pyro Carb 814. Two cloth lay-up composites, HITCO's Pyro Carb 903 and Carborundum's Carbitex 700, were somewhat superior in performance, while the bulk graphites and felt-base composites ranked least effective as energy absorbers. All experimental data and other factors considered to date suggest that Pyro Carb 903 is the best prospect for a bifunctional heat shield and impact member. Its high density (1.80 g/cm 3 ) indicates potentially good ablation resistance to accompany its indicated good performance as an energy absorber

  3. Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials

    Directory of Open Access Journals (Sweden)

    Seungjun Roh

    2018-05-01

    Full Text Available Because the reduction in environmental impacts (EIs of buildings using life-cycle assessment (LCA has been emphasized as a practical strategy for the sustainable development of the construction industry, studies are required to analyze not only the operational environmental impacts (OEIs of buildings, but also the embodied environmental impacts (EEIs of building materials. This study aims to analyze the EEIs of Korean apartment buildings on the basis of major building materials as part of research with the goal of reducing the EIs of buildings. For this purpose, six types of building materials (ready-mixed concrete, reinforcement steel, concrete bricks, glass, insulation, and gypsum for apartment buildings were selected as major building materials, and their inputs per unit area according to the structure types and plans of apartment buildings were derived by analyzing the design and bills of materials of 443 apartment buildings constructed in South Korea. In addition, a life-cycle scenario including the production, construction, maintenance, and end-of-life stage was constructed for each major building material. The EEIs of the apartment buildings were quantitatively assessed by applying the life-cycle inventory database (LCI DB and the Korean life-cycle impact assessment (LCIA method based on damage-oriented modeling (KOLID, and the results were analyzed.

  4. The Impact of Heterogeneity on Threshold-Limited Social Contagion, and on Crowd Decision-Making

    Science.gov (United States)

    Karampourniotis, Panagiotis Dimitrios

    Recent global events and their poor predictability are often attributed to the complexity of the world event dynamics. A key factor generating the turbulence is human diversity. Here, we study the impact of heterogeneity of individuals on opinion formation and emergence of global biases. In the case of opinion formation, we focus on the heterogeneity of individuals' susceptibility to new ideas. In the case of global biases, we focus on the aggregated heterogeneity of individuals in a country. First, to capture the complex nature of social influencing we use a simple but classic model of contagion spreading in complex social systems, namely the threshold model. We investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We show that individuals' heterogeneity of susceptibility governs the dynamics, resulting in different sizes of initiators needed for consensus. Furthermore, given the impact of heterogeneity on the cascade dynamics, we investigate selection strategies for accelerating consensus. To this end, we introduce two new selection strategies for Influence Maximization. One of them focuses on finding the balance between targeting nodes which have high resistance to adoptions versus nodes positioned in central spots in networks. The second strategy focuses on the combination of nodes for reaching consensus, by targeting nodes which increase the group's influence. Our strategies outperform other existing strategies regardless of the susceptibility diversity and network degree assortativity. Finally, we study the aggregated biases of humans in a global setting. The emergence of technology and globalization gives raise to the debate on whether the world moves towards becoming flat, a world where preferential attachment does not govern economic growth. By

  5. Sorption-desorption processes of radioisotopes with solid materials from liquid releases and atmosphere deposits. The distribution coefficient (Ksub(d)), its uses, limitations, and practical applications

    International Nuclear Information System (INIS)

    Saas, Arsene

    1979-03-01

    The various sorption-desorption processes of radionuclides with environmental materials are presented. The parameters governing the distribution coefficient are reviewed in the light of various examples. The factors affecting equilibria between the different phases are: reaction time, concentration of the solid phase, water quality, salinity, competition between ions, concentration of radioisotopes or stable isotopes, pH of the mobile phase, particle diameter, chemical form of the radioisotopes, nature of the solid phase, temperature. The effects of the biological parameters on the distribution coefficient are discussed. Biological processes affect the main chemical transformations: mineralization, insolubilization, oxidation-reduction, complexation, ... The importance of these processes is demonstrated by a number of examples in various media. Finally, the practical use of Ksub(d) in the assessment of the environmental impact of radioactive releases is developed, with special emphasis on the limits of its use in siting studies and its essential interest in specifying pathways and capacity of a river system [fr

  6. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    Science.gov (United States)

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  7. Limiting the impact of recent outage experience in a midsize university reactor environment

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1996-01-01

    The University of Florida Training Reactor (UFTR) is a light-water-cooled, graphite- and light-water-moderated, modified Argonaut-type reactor licensed to operate at steady-state power levels up to 100 kW. The UFTR continues to utilize high-enriched materials test reactor-type fuel in a piping circuit type of system versus the more familiar pool reactor design. Though somewhat limited for research and service, the UFTR is a valuable educational facility. Despite its relatively low power level, the two-slab core configuration provides a peak thermal flux near 2 x 10 12 n/cm 2 · s; in addition, other modifications and experimental adaptations have been implemented in the 36-yr history of the facility to enhance the potential of the facility for diverse types of unique educational usage. Its small physical size in a loop configuration makes it a good teaching tool, but it can also be associated with unique maintenance problems, as in this case. The mission of the UFTR is to serve regional needs for access to quality reactor usage in a variety of areas to support educational and training needs as well as research and service, including public information about nuclear energy. As the only nonpower reactor in the state of Florida in affiliation with an established and diverse nuclear and radiological engineering department, it has a strong role to play in education, training, research, and service, especially the former. As a result of its unique position, the facility has been quite successful in its mission. With so much educational usage scheduled, sometimes for classes arriving from 100 miles away, it is important to avoid unexpected outages as well as unexpectedly lengthy outages. Such planning usually is successful and has allowed the RFTR to build a clientele of more than four dozen regular educational users, although events in 1995 could have undetermined this effort

  8. Simulating The Impact Of The Material Flow In The Jordanian Construction Supply Chain And Its Impact On Project Performance

    Directory of Open Access Journals (Sweden)

    Dr. Ghaith Al-Werikat

    2017-03-01

    Full Text Available With the new developments and challenges within the construction industry improving the construction supply chain is becoming a major concern to both governments and industries. Improving the construction supply chain helps in improving the quality of construction projects reducing cost wastes delays and other disruptions. This paper discusses the analysis of material flow in the construction supply chain. The methodology consisted of preliminary investigations survey and simulation development to analyse the extent of impact that material flow has on construction projects in Jordan. Both the main survey and the investigations revealed that material flow delays are caused mainly by 3 types of delays late delivery wrong specification and material damaged on site. The highest impact regarding late deliveries was scaffolding with a 16 probability of occurrence a 2-day delay on the activitys duration. Concrete ranked highest regarding wrong specification with a 19 probability of occurrence an 8-day delay the activitys duration. Regarding materials damaged on site bricks ranked highest with a 9 probability of occurrence a 3-day delay on the duration. The simulation results exhibited a delay of 50 on the projects duration and a probability of a delay occurring is 9.2.

  9. Temperature impact on cementitious materials carbonation - description of water transport influence

    International Nuclear Information System (INIS)

    Drouet, E.

    2010-11-01

    evolution (porosity coarsening). The environmental conditions impact is studied using preconditioned samples (12 different RHs and 20, 50 and 80 C) and accelerated carbonation tests. The latter are performed in a new device allowing accurate control of the environmental conditions as well as the carbon dioxide concentration. The carbonated depths and the mineralogical modifications induced by carbonation are assessed using XRD and TGA for each temperature and RH. Most of the mineralogical modifications notified in temperature (hydrates consumption and nature of crystallographic phase of calcium carbonate) are similar with these identified at ambient temperature. Yet the results show a significant influence of the environmental conditions on calcium carbonate polymorphic abundance: the lower the RH, the more abundant the metastable phases (vaterite and aragonite). The rate of the polymorphic transformation (from the metastable states into calcite by dissolution precipitation) is believed to decrease with RH because of lack of liquid water. A significant influence of the environmental conditions on the carbonation rate is also observed. It depends of the competition between the temperature effect on moisture transfer and retrograde solubility of reactants. Carbonation depths appear to be maximal at the RH-starting point of capillary condensation of each material and temperature. Carbonation depths increase with temperature until a limit of temperature characteristic of the material. Above this temperature, reactants solubility might control the main process. (author)

  10. THE ENVIRONMENTAL IMPACT OF THE DELIVERY OF MINERAL RAW MATERIALS USED FOR BUILDING MATERIALS PRODUCTION TO THE CITY OF ZAGREB AND THE ZAGREB COUNTY

    Directory of Open Access Journals (Sweden)

    Karolina Novak

    2011-12-01

    Full Text Available Mineral raw material transport directly affects a product’s unit price and exhaust gases amounts. Transportation length is proportional to raw material price; its low price enables short transportation distances only. Taking into account stone aggregates delivered to Zagreb, the consequence of exploitation fields closure in the Zagreb area, particularly within the Medvednica Nature Park, we tried to answer the question of the impact of transport distances on the greenhouse gas emissions. Certain models will present environmental impact of the stone aggregate transportation and of nearby city quarries. The generally accepted public opinion on the closure of nearby city quarries as the best solution to environmental pollution will have to be reviewed. Mining works are predestined by mineral resources sites and limited by real possibilities and intentions of the community, therefore the experts, i.e. miners, geologists and other geoscientists, should be actively involved in spatial planning. During the years of intensive construction, millions of tons have been delivered from distances up to 100 km. The question arises whether some more rational solutions could be generated by more appropriate spatial planning? (the paper is published in Croatian

  11. Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars

    Science.gov (United States)

    Hyodo, Ryuki; Genda, Hidenori

    2018-04-01

    Observations and meteorites indicate that the Martian materials are enigmatically distributed within the inner solar system. A mega impact on Mars creating a Martian hemispheric dichotomy and the Martian moons can potentially eject Martian materials. A recent work has shown that the mega-impact-induced debris is potentially captured as the Martian Trojans and implanted in the asteroid belt. However, the amount, distribution, and composition of the debris has not been studied. Here, using hydrodynamic simulations, we report that a large amount of debris (∼1% of Mars’ mass), including Martian crust/mantle and the impactor’s materials (∼20:80), are ejected by a dichotomy-forming impact, and distributed between ∼0.5–3.0 au. Our result indicates that unmelted Martian mantle debris (∼0.02% of Mars’ mass) can be the source of Martian Trojans, olivine-rich asteroids in the Hungarian region and the main asteroid belt, and some even hit the early Earth. The evidence of a mega impact on Mars would be recorded as a spike of 40Ar–39Ar ages in meteorites. A mega impact can naturally implant Martian mantle materials within the inner solar system.

  12. Calculation of coal power plant cost on agricultural and material building impact of emission

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Wiku Lulus Widodo

    2016-01-01

    Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)

  13. A new tensile impact test for the toughness characterization of sheet material

    Science.gov (United States)

    Könemann, Markus; Lenz, David; Brinnel, Victoria; Münstermann, Sebastian

    2018-05-01

    In the past, the selection of suitable steels has been carried out primarily based on the mechanical properties of different steels. One of these properties is the resistance against crack propagation. For many constructions, this value plays an important role, because it can compare the impact toughness of different steel grades easily and gives information about the loading capacity of the specific materials. For thin sheets, impact toughness properties were usually not considered. One of the reasons for this is that the Charpy-impact test is not applicable for sheets with thicknesses below 2 mm. For a long time, this was not relevant because conventional steels had a sufficient impact toughness in a wide temperature range. However, since new multiphase steel grades with improved mechanical property exploitations are available, it turned out that impact toughness properties need to be considered during the component design phase, as the activation of the cleavage fracture mechanism is observed under challenging loading conditions. Therefore, this work aims to provide a new and practical testing procedure for sheet material or thin walled structures. The new testing procedure is based on tensile tests conducted in an impact pendulum similar to the Charpy impact hammer. A new standard geometry is provided, which enables a comparison between different steels or steel grades. A connection to the conventional Charpy test is presented using a damage mechanics model, which predicts material failure with consideration of to the stress state at various temperatures. Different specimen geometries are analysed to cover manifold stress states. A special advantage of the damage mechanics model is also the possibility to predict the materials behaviour in the transition area. To verify the method a conventional steel was tested in Charpy tests as well as in the new tensile impact test.

  14. Determination of elemental abundances in impact materials by micro-PIXE and micro-SRXRF methods

    International Nuclear Information System (INIS)

    Uzonyi, I.; Szabo, Gy.; Kiss, A.Z.; Szoeoer, Gy.; Rozsa, P.

    2004-01-01

    The most famous and well-preserved meteorite crater in the world is the Barringer Meteor Crater (Arizona, USA). The meteorite is supposed to be a fragment of a small asteroid of our solar system. During the impact event the matter of the projectile mixed with that of the target rocks forming breccias, slag and spherules. For the non-destructive characterization of the impact materials a combined micro-PIXE and micro-SRXRF technique was applied. (N.T.)

  15. Capsule shell material impacts the in vitro disintegration and dissolution behaviour of a green tea extract

    OpenAIRE

    Glube, Natalie; Moos, Lea von; Duchateau, Guus

    2013-01-01

    Purpose In vitro disintegration and dissolution are routine methods used to assess the performance and quality of oral dosage forms. The purpose of the current work was to determine the potential for interaction between capsule shell material and a green tea extract and the impact it can have on the release. Methods A green tea extract was formulated into simple powder-in-capsule formulations of which the capsule shell material was either of gelatin or HPMC origin. The disintegration times we...

  16. Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede

    Science.gov (United States)

    Fink, J. H.; Greeley, R.; Gault, D. E.

    1982-01-01

    Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.

  17. Waste management issues and their potential impact on technical specifications of CANDU fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J.C.; Johnson, L.H. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The technical specifications for the composition of nuclear fuels and materials used in Canada's CANDU reactors have been developed by AECL and materials manufacturers, taking into account considerations specific to their manufacture and the effect of minor impurities on fuel behaviour in reactor. Nitrogen and chlorine are examples of UO{sub 2} impurities, however, where there is no technical specification limit. These impurities are present in the source materials or introduced in the fabrication process and are neutron activated to {sup 14}C and {sup 36}C1, which after {sup 129}I , are the two most significant contributors to dose in safety assessments for the disposal of used fuel. For certain impurities, environmental factors, particularly the safety of the disposal of used fuels, should be taken into consideration when deriving 'allowable' impurity limits for nuclear fuel materials. (author)

  18. Waste management issues and their potential impact on technical specifications of CANDU fuel materials

    International Nuclear Information System (INIS)

    Tait, J.C.; Johnson, L.H.

    1997-01-01

    The technical specifications for the composition of nuclear fuels and materials used in Canada's CANDU reactors have been developed by AECL and materials manufacturers, taking into account considerations specific to their manufacture and the effect of minor impurities on fuel behaviour in reactor. Nitrogen and chlorine are examples of UO 2 impurities, however, where there is no technical specification limit. These impurities are present in the source materials or introduced in the fabrication process and are neutron activated to 14 C and 36 C1, which after 129 I , are the two most significant contributors to dose in safety assessments for the disposal of used fuel. For certain impurities, environmental factors, particularly the safety of the disposal of used fuels, should be taken into consideration when deriving 'allowable' impurity limits for nuclear fuel materials. (author)

  19. Impact of optical hard limiter on the performance of an optical overlapped-code division multiple access system

    Science.gov (United States)

    Inaty, Elie; Raad, Robert; Tablieh, Nicole

    2011-08-01

    Throughout this paper, a closed form expression of the multiple access interference (MAI) limited bit error rate (BER) is provided for the multiwavelength optical code-division multiple-access system when the system is working above the nominal transmission rate limit imposed by the passive encoding-decoding operation. This system is known in literature as the optical overlapped code division multiple access (OV-CDMA) system. A unified analytical framework is presented emphasizing the impact of optical hard limiter (OHL) on the BER performance of such a system. Results show that the performance of the OV-CDMA system may be highly improved when using OHL preprocessing at the receiver side.

  20. Impact parameter representation without high-energy, small-angle limitation

    International Nuclear Information System (INIS)

    Islam, M.M.

    Using Watson-Sommerfeld transform the impact parameter representation of the scattering amplitude is shown to be valid for all physical energies and scattering angles. It is also shown how the direct channel Regge poles enter in the impact parameter amplitude [fr

  1. Long-term Impact of Bile Duct Injury on Morbidity, Mortality, Quality of Life, and Work Related Limitations

    NARCIS (Netherlands)

    Booij, Klaske A. C.; de Reuver, Philip R.; van Dieren, Susan; van Delden, Otto M.; Rauws, Erik A.; Busch, Olivier R.; van Gulik, Thomas M.; Gouma, Dirk J.

    2017-01-01

    Assessment of long-term comprehensive outcome of multimodality treatment of bile duct injury (BDI) in terms of morbidity, mortality, quality of life (QoL), survival, and work related limitations. The impact of BDI on work ability is scarcely investigated. BDI patients referred to a tertiary center

  2. [Limiting a Medline/PubMed query to the "best" articles using the JCR relative impact factor].

    Science.gov (United States)

    Avillach, P; Kerdelhué, G; Devos, P; Maisonneuve, H; Darmoni, S J

    2014-12-01

    Medline/PubMed is the most frequently used medical bibliographic research database. The aim of this study was to propose a new generic method to limit any Medline/PubMed query based on the relative impact factor and the A & B categories of the SIGAPS score. The entire PubMed corpus was used for the feasibility study, then ten frequent diseases in terms of PubMed indexing and the citations of four Nobel prize winners. The relative impact factor (RIF) was calculated by medical specialty defined in Journal Citation Reports. The two queries, which included all the journals in category A (or A OR B), were added to any Medline/PubMed query as a central point of the feasibility study. Limitation using the SIGAPS category A was larger than the when using the Core Clinical Journals (CCJ): 15.65% of PubMed corpus vs 8.64% for CCJ. The response time of this limit applied to the entire PubMed corpus was less than two seconds. For five diseases out of ten, limiting the citations with the RIF was more effective than with the CCJ. For the four Nobel prize winners, limiting the citations with the RIF was more effective than the CCJ. The feasibility study to apply a new filter based on the relative impact factor on any Medline/PubMed query was positive. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. High-impact strength acrylic denture base material processed by autoclave.

    Science.gov (United States)

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  4. ENERGY RELEASE FROM IMPACTING PROMINENCE MATERIAL FOLLOWING THE 2011 JUNE 7 ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, H. R.; Inglis, A. R.; Mays, M. L.; Ofman, L.; Thompson, B. J.; Young, C. A. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-10-10

    Solar filaments exhibit a range of eruptive-like dynamic activity, ranging from the full or partial eruption of the filament mass and surrounding magnetic structure as a coronal mass ejection to a fully confined or failed eruption. On 2011 June 7, a dramatic partial eruption of a filament was observed by multiple instruments on board the Solar Dynamics Observatory (SDO) and Solar-Terrestrial Relations Observatory. One of the interesting aspects of this event is the response of the solar atmosphere as non-escaping material falls inward under the influence of gravity. The impact sites show clear evidence of brightening in the observed extreme ultraviolet wavelengths due to energy release. Two plausible physical mechanisms for explaining the brightening are considered: heating of the plasma due to the kinetic energy of impacting material compressing the plasma, or reconnection between the magnetic field of low-lying loops and the field carried by the impacting material. By analyzing the emission of the brightenings in several SDO/Atmospheric Imaging Assembly wavelengths, and comparing the kinetic energy of the impacting material (7.6 × 10{sup 26}-5.8 × 10{sup 27} erg) to the radiative energy (≈1.9 × 10{sup 25}-2.5 × 10{sup 26} erg), we find the dominant mechanism of energy release involved in the observed brightening is plasma compression.

  5. Energy Release from Impacting Prominence Material Following the 2011 June 7 Eruption

    Science.gov (United States)

    Gilbert, H. R.; Inglis, A. R.; Mays, M. L.; Ofman, L.; Thompson, B. J.; Young, C. A.

    2013-01-01

    Solar filaments exhibit a range of eruptive-like dynamic activity, ranging from the full or partial eruption of the filament mass and surrounding magnetic structure as a coronal mass ejection to a fully confined or failed eruption. On 2011 June 7, a dramatic partial eruption of a filament was observed by multiple instruments on board the Solar Dynamics Observatory (SDO) and Solar-Terrestrial Relations Observatory. One of the interesting aspects of this event is the response of the solar atmosphere as non-escaping material falls inward under the influence of gravity. The impact sites show clear evidence of brightening in the observed extreme ultraviolet wavelengths due to energy release. Two plausible physical mechanisms for explaining the brightening are considered: heating of the plasma due to the kinetic energy of impacting material compressing the plasma, or reconnection between the magnetic field of low-lying loops and the field carried by the impacting material. By analyzing the emission of the brightenings in several SDO/Atmospheric Imaging Assembly wavelengths, and comparing the kinetic energy of the impacting material (7.6 × 10(exp 26) - 5.8 × 10(exp 27) erg) to the radiative energy (approx. 1.9 × 10(exp 25) - 2.5 × 10(exp 26) erg), we find the dominant mechanism of energy release involved in the observed brightening is plasma compression.

  6. PENETRATION OF CONICAL INDENTER INTO FOUNDATION MATERIAL AT COMBINED PERCUSSION AND SUBSEQUENT ULTRASONIC IMPACTS

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2012-01-01

    Full Text Available The aim of this paper is theoretical and experimental studys of a percussion and subsequent ultrasonic impacts on the indenter depth penetration into material of rigid-plastic foundation.The obtained results allow us to estimate an influence of percussion (low-frequency and ultrasound (high-frequency component parameters on a charging process.

  7. Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts

    Czech Academy of Sciences Publication Activity Database

    Starčuková, Jana; Starčuk jr., Zenon; Hubálková, H.; Linetskiy, I.

    2008-01-01

    Roč. 24, č. 6 (2008), s. 715-723 ISSN 0109-5641 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : metallic dental materials * dental alloys * amalgams * MR imaging * magnetic susceptibility * electric conductivity * image artifact Subject RIV: FF - HEENT, Dentistry Impact factor: 2.941, year: 2008

  8. The environmental impact and recovery at two dumping sites for dredged material in the North Sea

    NARCIS (Netherlands)

    Stronkhorst, J.; Ariese, F.; Hattum, van B.; Postma, J.F.; Kluijver, de M.; Besten, den P.; Bergman, M.J.N.; Daan, R.; Murk, A.J.; Vethaak, A.D.

    2003-01-01

    The environmental impact and recovery associated with the long and uninterrupted disposal of large volumes of moderately contaminated dredged material from the port of Rotterdam was studied at nearby dumping sites in the North Sea. Observations were made on sediment contamination, ecotoxicity,

  9. Impacts of Insufficient Instructional Materials on Teaching Biology: Higher Education Systems in Focus

    Science.gov (United States)

    Edessa, Sutuma

    2017-01-01

    The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was…

  10. Environmental impact of accident-free transportation of radioactive material in the United States

    International Nuclear Information System (INIS)

    Taylor, J.M.; Smith, D.R.; Luna, R.E.

    1978-01-01

    A recent study performed for the Nuclear Regulatory Commission (NRC) by Sandia Laboratories which considered transportation of radioactive materials in the United States suggests that a significant portion of the radiological impact results from accident-free transport. This paper explores the basis for that conclusion

  11. Assessing the Impact of Computer Programming in Understanding Limits and Derivatives in a Secondary Mathematics Classroom

    Science.gov (United States)

    de Castro, Christopher H.

    2011-01-01

    This study explored the development of student's conceptual understandings of limit and derivative when utilizing specifically designed computational tools. Fourteen students from a secondary Advanced Placement Calculus AB course learned and explored the limit and derivative concepts from differential calculus using visualization tools in the…

  12. Environmental impacts of the transportation of radioactive materials in urban areas

    International Nuclear Information System (INIS)

    Finley, N.C.; Taylor, J.M.; Daniel, S.L.; Ericson, D.M. Jr.

    1980-01-01

    Radioactive material transport in urban areas is investigated and the specific urban features which influence environmental impacts are addressed. These features include the geographic and demographic make-up, and vehicular population and transportation patterns in the area. Previous efforts have not identified a most important population exposure pathway or group. This assessment examines several pathways and a number of urban specific population groups to evaluate their relative significance. In addition, because different causative events contribute to the overall environmental impacts, this assessment addresses four of these: incident free transport, vehicular accidents, human errors, and sabotage or malevolent acts. Not only does radioactive material transport produce radiological and economic consequences but also it can have social impacts. The objective of this study is to examine both the quantitative environmental impacts of radioactive material transport in urban areas and the more subjective social effects of this process. The social impacts assessment was performed by Battelle Human Affairs Research Centers, Seattle, Washington and their conclusions are only summarized here

  13. Construction cost impacts related to manpower, material, and equipment factors in contractor firms perspective

    Science.gov (United States)

    Husin, Saiful; Abdullah, Riza, Medyan; Afifuddin, Mochammad

    2017-11-01

    Risk can be defined as consequences which possible happened inscrutably. Although an activity has planned as good as possible, but it keep contains uncertainty. Implementation of construction project was encountering various risk impacts from a number of risk factors. This study was intended to analyze the impacts of construction cost to for contractor firms as construction project executor related to the factors of manpower, material and equipment. The study was using data obtained from questionnaires distributed to 15 large qualification contractor firms. The period of study classified into conflict period (2000-2004), post tsunami disaster rehabilitation and reconstruction period (2005-2009), and post rehabilitation and reconstruction period (2010-present). The statistical analysis of severity index and variance used to analyze the data. The three risk factors reviewed generally affected the cost in a medium impact. The high impact occurred in minor variables, which are `increase in material prices', `theft of materials', and `the fuel scarcity'. In overall, the three risk factors and the observed period contributed significant impact on construction costs.

  14. The economic and community impacts of closing Hanford's N Reactor and nuclear materials production facilities

    International Nuclear Information System (INIS)

    Scott, M.J.; Belzer, D.B.; Nesse, R.J.; Schultz, R.W.; Stokowski, P.A.; Clark, D.C.

    1987-08-01

    This study discusses the negative economic impact on local cities and counties and the State of Washington of a permanent closure of nuclear materials production at the Hanford Site, located in the southeastern part of the state. The loss of nuclear materials production, the largest and most important of the five Department of Energy (DOE) missions at Hanford, could occur if Hanford's N Reactor is permanently closed and not replaced. The study provides estimates of statewide and local losses in jobs, income, and purchases from the private sector caused by such an event; it forecasts impacts on state and local government finances; and it describes certain local community and social impacts in the Tri-Cities (Richland, Kennewick, and Pasco) and surrounding communities. 33 refs., 8 figs., 22 tabs

  15. The Impact of IFRS 16 on the Companies’ Key Performance Indicators: Limits, Advantages and Drawbacks

    OpenAIRE

    Alin Eliodor Tanase; Traian Ovidiu Calota; Florin Razvan Oncioiu

    2018-01-01

    t This article focuses on the impact of the new standard IFRS 16 Leases on the companies’ key performance indicators. The magnitude of this impact could be said to change depending on the usage density of the lease in the companies and also depending on the sector they are in. The results show that future transactions may be influenced by IFRS 16 such as sale and leaseback, acquisitions and mergers, and lease vs. buying.

  16. The Impact of IFRS 16 on the Companies’ Key Performance Indicators: Limits, Advantages and Drawbacks

    Directory of Open Access Journals (Sweden)

    Alin Eliodor Tanase

    2018-03-01

    Full Text Available t This article focuses on the impact of the new standard IFRS 16 Leases on the companies’ key performance indicators. The magnitude of this impact could be said to change depending on the usage density of the lease in the companies and also depending on the sector they are in. The results show that future transactions may be influenced by IFRS 16 such as sale and leaseback, acquisitions and mergers, and lease vs. buying.

  17. Effect of environmental and material factors on the response of nanocomposite foam impact sensors

    Science.gov (United States)

    Bird, Evan; Merrell, Jake; Rosquist, Parker; Martineau, Adin; Bowden, Anton; Seeley, Matthew; Fullwood, David

    2018-05-01

    Nanocomposite foam (NCF) is a multifunctional material that can be used to measure impact. Interactions between the flexible polymer matrix and conductive particles dispersed throughout it produce a voltage signal under dynamic strain, which correlates to the magnitude of impact. Though promising in applications requiring both impact sensing and energy absorption, NCF’s voltage response has been observed to suffer from significant signal drift. This paper investigates several causes of variance in the response of NCF sensors to consistent impacts. These effects can be classified into three general types: recoverable transient effects (such as those relating to viscoelasticity or capacitive charging), environmental drift (due to humidity and temperature), and permanent signal decay from material degradation. The motivation for the study arises from various potential repeat-impact applications where periodic recalibration of the sensor would be difficult (such as a gait-tracking insole in use for a marathon event). A cyclic drop testing machine was used to apply consistent impacts to NCF, and drift resulting from each factor (in ranges typical of an insole environment) was experimentally isolated. Models representing each factor’s contribution to signal drift are presented. Of the factors investigated, humidity and temperature caused the most significant drift, with permanent material degradation accounting for only minor decay in voltage response. Transient effects were also observed, with a characteristic ‘warm-up’ (or ‘charging’) time required for the NCF to achieve steady-state; this phenomenon, and the related ‘recovery’ time for the material to return to its original state, were determined. The resultant data can be leveraged to implement a correction algorithm or other drift-compensating method to retain an NCF sensor’s accuracy in both long and short data collection scenarios.

  18. Measuring the impact of health problems among adults with limited mobility in Thailand: further validation of the Perceived Impact of Problem Profile

    Directory of Open Access Journals (Sweden)

    Manderson Lenore

    2008-01-01

    Full Text Available Abstract Background The Perceived Impact of Problem Profile (PIPP was developed to provide a tool for measuring the impact of a health condition from the individual's perspective, using the ICF model as a framework. One of the aims of the ICF is to enable the comparison of data across countries, however, relatively little is known about the subjective experience of disability in middle and low-income countries. The aim of this study was to assess the validity of the Perceived Impact of Problem Profile (PIPP for use among adults with a disability in Thailand using Rasch analysis. Methods A total of 210 adults with mobility impairment from the urban, rural and remote areas of northeast Thailand completed the PIPP, which contains 23 items assessing both impact and distress across five key domains (Self-care, Mobility, Participation, Relationships, and Psychological Well-being. Rasch analysis, using RUMM2020, was conducted to assess the internal validity and psychometric properties of the PIPP Impact subscales. Validation of the PIPP Impact scales was conducted by comparing scores across the different response levels of the EQ5D items. Results Rasch analysis indicated that participants did not clearly differentiate between 'impact' and 'distress,' the two aspects assessed by the PIPP. Further analyses were therefore limited to the PIPP Impact subscales. These showed adequate psychometric properties, demonstrating fit to the Rasch model and good person separation reliability. Preliminary validity testing using the EQ5D items provided support for the PIPP Impact subscales. Conclusion The results provide further support for the psychometric properties of the PIPP Impact scales and indicate that it is a suitable tool for use among adults with a locomotor disability in Thailand. Further research is needed to validate the PIPP across different cultural contexts and health conditions and to assess the usefulness of separate Impact and Distress subscales.

  19. Measuring the impact of health problems among adults with limited mobility in Thailand: further validation of the Perceived Impact of Problem Profile

    Science.gov (United States)

    Misajon, RoseAnne; Pallant, Julie F; Manderson, Lenore; Chirawatkul, Siriporn

    2008-01-01

    Background The Perceived Impact of Problem Profile (PIPP) was developed to provide a tool for measuring the impact of a health condition from the individual's perspective, using the ICF model as a framework. One of the aims of the ICF is to enable the comparison of data across countries, however, relatively little is known about the subjective experience of disability in middle and low-income countries. The aim of this study was to assess the validity of the Perceived Impact of Problem Profile (PIPP) for use among adults with a disability in Thailand using Rasch analysis. Methods A total of 210 adults with mobility impairment from the urban, rural and remote areas of northeast Thailand completed the PIPP, which contains 23 items assessing both impact and distress across five key domains (Self-care, Mobility, Participation, Relationships, and Psychological Well-being). Rasch analysis, using RUMM2020, was conducted to assess the internal validity and psychometric properties of the PIPP Impact subscales. Validation of the PIPP Impact scales was conducted by comparing scores across the different response levels of the EQ5D items. Results Rasch analysis indicated that participants did not clearly differentiate between 'impact' and 'distress,' the two aspects assessed by the PIPP. Further analyses were therefore limited to the PIPP Impact subscales. These showed adequate psychometric properties, demonstrating fit to the Rasch model and good person separation reliability. Preliminary validity testing using the EQ5D items provided support for the PIPP Impact subscales. Conclusion The results provide further support for the psychometric properties of the PIPP Impact scales and indicate that it is a suitable tool for use among adults with a locomotor disability in Thailand. Further research is needed to validate the PIPP across different cultural contexts and health conditions and to assess the usefulness of separate Impact and Distress subscales. PMID:18208616

  20. Projected environmental impacts of radioactive material transportation to the first US repository site

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Cashwell, J.W.; Reardon, P.C.; Ostmeyer, R.M.; McNair, G.W.

    1986-01-01

    This paper discusses the relative national environmental impacts of transporting nuclear wastes to each of the nine candidate repository sites in the United States. Several of the potential sites are closely clustered and, for the purpose of distance and routing calculations, are treated as a single location. These are: Cypress Creek Dome and Richton Dome in Mississippi (Gulf Interior Region), Deaf Smith County and Swisher County sites in Texas (Permian Basin), and Davis Canyon and Lavender Canyon site in Utah (Paradox Basin). The remaining sites are: Vacherie Dome, Louisiana; Yucca Mountain, Nevada; and Hanford Reservation, Washington. For compatibility with both the repository system authorized by the NWPA and with the MRS option, two separate scenarios were analyzed. In belief, they are (1) shipment of spent fuel and high-level wastes (HLW) directly from waste generators to a repository (Reference Case) and (2) shipment of spent fuel to a Monitored Retrievable Storage (MRS) facility and then to a repository. Between 17 and 38 truck accident fatalities, between 1.4 and 7.7 rail accident fatalities, and between 0.22 and 12 radiological health effects can be expected to occur as a result of radioactive material transportation during the 26-year operating period of the first repository. During the same period in the United States, about 65,000 total deaths from truck accidents and about 32,000 total deaths from rail accidents would occur; also an estimated 58,300 cancer fatalities are predicted to occur in the United States during a 26-year period from exposure to background radiation alone (not including medical and other manmade sources). The risks reported here are upper limits and are small by comparison with the ''natural background'' of risks of the same type. 3 refs., 6 tabs

  1. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Numpilai, Thanapha [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Muenmee, Suthaporn [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand); Witoon, Thongthai, E-mail: fengttwi@ku.ac.th [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand); NANOTEC-KU-Center of Excellence on Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900 (Thailand)

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N{sub 2}-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5 nm to 10 nm increased the ibuprofen loading from 0.74 to 0.85 mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8–20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92 wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. - Highlights: • Impacts of pore characteristics of supports on adsorption and release of ibuprofen • Increasing mesopore size increased the ibuprofen loading and dissolution rate. • Macropores reduced the diffusion pathway of ibuprofen and dissolution medium.

  2. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen

    International Nuclear Information System (INIS)

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-01-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N 2 -sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5 nm to 10 nm increased the ibuprofen loading from 0.74 to 0.85 mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8–20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92 wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. - Highlights: • Impacts of pore characteristics of supports on adsorption and release of ibuprofen • Increasing mesopore size increased the ibuprofen loading and dissolution rate. • Macropores reduced the diffusion pathway of ibuprofen and dissolution medium.

  3. Experimental Technique for Producing and Recording Precise Particle Impacts on Transparent Window Materials

    Science.gov (United States)

    Gray, Perry; Guven, Ibrahim

    2016-01-01

    A new facility for making small particle impacts is being developed at NASA. Current sand/particle impact facilities are an erosion test and do not precisely measure and document the size and velocity of each of the impacting particles. In addition, evidence of individual impacts is often obscured by subsequent impacts. This facility will allow the number, size, and velocity of each particle to be measured and adjusted. It will also be possible to determine which particle produced damage at a given location on the target. The particle size and velocity will be measured by high speed imaging techniques. Information as to the extent of damage and debris from impacts will also be recorded. It will be possible to track these secondary particles, measuring size and velocity. It is anticipated that this additional degree of detail will provide input for erosion models and also help determine the impact physics of the erosion process. Particle impacts will be recorded at 90 degrees to the particle flight path and also from the top looking through the target window material.

  4. The Materials Science and its impact in the Archaeology- Volume 2

    International Nuclear Information System (INIS)

    Mendoza A, D.; Arenas A, J.A.; Rodriguez L, V.

    2005-01-01

    This book seeks to gather the different investigations carried out in the context of the materials science guided to the archaeometry, presented in the 'International Congress of Materials 2004', looking for with it to facilitate the knowledge transfer related with the application of the modern nuclear analytical techniques for the materials characterization as, X-ray diffraction, Scanning Electron Microscopy, Absorption spectroscopy, PIXE analysis, X-ray fluorescence analysis among other techniques to understand with a bigger depth the characteristics and properties of the materials used in diverse activities in the different stages of the humanity, there have been characterized materials as ceramics, metals, polymers, biomaterials, composite materials, pigments, nano structured materials. Since the articles here presented are of quality and its approach each topic with an original vision, this volume 2 of the book 'The Science of Materials and their Impact in the Archaeology' it will woke up the interest of a wide number of investigators, and that the different presented topics allow to visualize that this methods and techniques here approached its represent powerful tools, to enlarge our knowledge on the different cultures that preceded us. (Author)

  5. Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization

    International Nuclear Information System (INIS)

    Moita, A.S.; Moreira, A.L.N.

    2007-01-01

    This paper addresses an experimental study aimed at characterizing the mechanisms of disintegration which occur when individual water and fuel droplets impact onto heated surfaces. The experiments consider the use of a simplified flow configuration and make use of high-speed visualization together with image processing techniques to characterize the morphology of the impact and to quantify the outcome of secondary atomization in terms of droplet size and number. The results evidence that surface topography, wettability and liquid properties combine in a complex way to alter the wetting behaviour of droplets at impact at different surface temperatures. The relative importance of the dynamic vapor pressure associated with the rate of vaporization and surface roughness increases with surface temperature and becomes dominant at the film boiling regime. The analysis is aimed at giving a phenomenological description of droplet disintegration within the various heat transfer regimes

  6. Impact of sensor detection limits on protecting water distribution systems from contamination events

    International Nuclear Information System (INIS)

    McKenna, Sean Andrew; Hart, David Blaine; Yarrington, Lane

    2006-01-01

    Real-time water quality sensors are becoming commonplace in water distribution systems. However, field deployable, contaminant-specific sensors are still in the development stage. As development proceeds, the necessary operating parameters of these sensors must be determined to protect consumers from accidental and malevolent contamination events. This objective can be quantified in several different ways including minimization of: the time necessary to detect a contamination event, the population exposed to contaminated water, the extent of the contamination within the network, and others. We examine the ability of a sensor set to meet these objectives as a function of both the detection limit of the sensors and the number of sensors in the network. A moderately sized distribution network is used as an example and different sized sets of randomly placed sensors are considered. For each combination of a certain number of sensors and a detection limit, the mean values of the different objectives across multiple random sensor placements are calculated. The tradeoff between the necessary detection limit in a sensor and the number of sensors is evaluated. Results show that for the example problem examined here, a sensor detection limit of 0.01 of the average source concentration is adequate for maximum protection. Detection of events is dependent on the detection limit of the sensors, but for those events that are detected, the values of the performance measures are not a function of the sensor detection limit. The results of replacing a single sensor in a network with a sensor having a much lower detection limit show that while this replacement can improve results, the majority of the additional events detected had performance measures of relatively low consequence.

  7. Assessment of the radiological impact of the transport of radioactive materials

    International Nuclear Information System (INIS)

    1986-12-01

    In order to facilitate the assessment of the radiological impact of transport, and to guide the collection of data for future assessments, the IAEA convened a technical committee (The Technical Committee on the Assessment of the Radiological Impact from the Transport of Radioactive Materials; TC-556) in Vienna, Austria on 21-25 October 1985. The Terms of Reference called for this committee ''to collect and assess data on the radiation exposure of workers and the public during the transport of radioactive material, and to develop a summary statement, reflecting current practice and current state of knowledge, on the radiological impact of transport.'' This technical document provides the summary statement developed by TC-556. The statement should be viewed as an interim assessment since it utilized only data then available, or made available, to the committee. This document consists of three Sections: Section I - Background Information to the Summary Statement (prepared by the Secretariat); Section II - The Summary Statement on the Radiological Impact of the Transport of Radioactive Materials (developed by TC-556); and Section III - Recommendations for Future Assessments (a summary of statements and conclusions provided in the TC-556 Chairman's Report)

  8. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    International Nuclear Information System (INIS)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-01-01

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments – which involve moderate to extensive levels of particle damage – are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 × 105 grains are presented.

  9. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A. [Engineer Research and Development Center - Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH 03755 (United States)

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  10. Results of regulatory impact survey of industrial and medical materials licensees of the Office of Nuclear Material Safety and Safeguards

    International Nuclear Information System (INIS)

    Lach, D.; Melber, B.; Brichoux, J.; Hattrup, M.; Conger, R.; Hughes, K.

    1995-06-01

    This report presents the findings of a regulatory impact survey of nuclear materials licensees of the United States Nuclear Regulatory Commission (NRC). Commissioners of the NRC directed staff to provide the Commission with first hand information from licensees that could be used to improve the overall regulatory program. A self-administered, mail-out survey questionnaire was used to collect data from a sample of licensees who had interaction with the NRC during the previous 12 months. A total of 371 respondents of the 589 who were sent questionnaires returned completed surveys, for a response rate of 63%. The body of the report presents the findings of the survey including a brief introduction to the approach used, followed by survey findings regarding regulations, policies and regulatory guidance; experience with licensing applications, renewals and amendments; inspections; reporting requirements; and enforcement actions. The appendices of the report include a copy of the survey as administered to licensees, a fuller description of the survey design and data collection methods, and detailed graphic material describing survey responses

  11. Phylloplane bacteria increase the negative impact of food limitation on insect fitness

    NARCIS (Netherlands)

    Olson, Grant L.; Myers, Judith H.; Hemerik, Lia; Cory, Jenny S.

    2017-01-01

    1. When populations of herbivorous insects increase in density, they can alter the quantity or quality of their food. The impacts of diet-related stressors on insect fitness have been investigated singly, but not simultaneously. 2. Foliage quantity and quality of red alder, Alnus rubra, were

  12. Potential economic impact of limiting the international trade of timber as a phytosanitary measure

    Science.gov (United States)

    Ruhong Li; J. Buongiorno; S. Zhu; J.A. Turner; J. Prestemon

    2007-01-01

    We assessed the impact on the world forest sector of reducing the risk of exotic pest spread by curtailing the roundwood trade. The analysis compared predictions from 2006 to 2015, with and without a gradual ban of roundwood exports between 2006 and 2010. With a ban on roundwood trade, world consumer expenditures for wood products and producer revenues would rise by 2...

  13. Environmental impact assessment of CCS chains – Lessons learned and limitations from LCA literature

    NARCIS (Netherlands)

    Corsten, M.A.M.; Ramirez, C.A.; Shen, L.; Koornneef, A.; Faaij, A.P.C.

    2013-01-01

    This study performs an assessment of existing LCA literature to obtain insights into potential environmental impacts over the complete life cycle of fossil fuel fired power plants with CCS. CCS results in a net reduction of the GWP of power plants through their life cycle in the order of 65–84%

  14. Uranium mining and milling by Cogema environmental impact compared to 1 mSv limit

    International Nuclear Information System (INIS)

    Bernhard, S.; Daroussin, J.L.; Pfiffelmann, J.P.

    1996-01-01

    CEA then COGEMA have been operating mines and mills in France since 1948. Total production nears 70000 t of U in the concentrate which were contained in some 85 millions tons of ores (pulp and heap leaching). Many sites are now undergoing remediation and impact on the environment has always been a great concern. (author)

  15. Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Sudová, Radka

    2016-01-01

    Roč. 99, MAR 2016 (2016), s. 78-88 ISSN 0929-1393 R&D Projects: GA AV ČR(CZ) KJB600050636 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal symbiosis * heavy metal contamination * lead, zinc, copper and cadmium Subject RIV: EH - Ecology, Behaviour Impact factor: 2.786, year: 2016

  16. Updating the Northern Tsetse Limit in Burkina Faso (1949–2009: Impact of Global Change

    Directory of Open Access Journals (Sweden)

    Fabrice Courtin

    2010-04-01

    Full Text Available The northern distribution limit of tsetse flies was updated in Burkina Faso and compared to previous limits to revise the existing map of these vectors of African trypanosomiases dating from several decades ago. From 1949 to 2009, a 25- to 150-km shift has appeared toward the south. Tsetse are now discontinuously distributed in Burkina Faso with a western and an eastern tsetse belt. This range shift can be explained by a combination of decreased rainfall and increased human density. Within a context of international control, this study provides a better understanding of the factors influencing the distribution of tsetse flies.

  17. The Impact of Different Permissible Exposure Limits on Hearing Threshold Levels Beyond 25 dBA

    OpenAIRE

    Sayapathi, Balachandar S; Su, Anselm Ting; Koh, David

    2014-01-01

    Background: Development of noise-induced hearing loss is reliant on a few factors such as frequency, intensity, and duration of noise exposure. The occurrence of this occupational malady has doubled from 120 million to 250 million in a decade. Countries such as Malaysia, India, and the US have adopted 90 dBA as the permissible exposure limit. According to the US Occupational Safety and Health Administration (OSHA), the exposure limit for noise is 90 dBA, while that of the US National Institut...

  18. Effect of temperature on composite sandwich structures subjected to low velocity impact. [aircraft construction materials

    Science.gov (United States)

    Sharma, A. V.

    1980-01-01

    The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.

  19. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.

    Science.gov (United States)

    Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.

  20. Impact of the zebra mussel Dreissena polymorpha invasion on the budget of suspended material in a shallow lagoon ecosystem

    Science.gov (United States)

    Daunys, Darius; Zemlys, Petras; Olenin, Sergej; Zaiko, Anastasija; Ferrarin, Christian

    2006-05-01

    The role of the zebra mussel Dreissena polymorpha in redistribution of total particulate material (TPM) between the water column and bottom sediment was estimated using the TPM budget for a mussel bed in the Curonian lagoon, the Baltic Sea. Seasonal clearance rates were derived from the TPM budget assuming two resuspension scenarios: no resuspension and full resuspension of biodeposits. Estimated clearance rates for both scenarios were compared with the rates calculated from the population clearance rate model. Seasonal clearance rates estimated using the population model (1.1 and 11.8 l g-1 SFDW day-1) fitted well into the interval of seasonal clearance rates calculated from TPM budgets assuming no resuspension of biodeposits (3.2 and 21.4 l g SFDW-1 day-1). In the scenario with biodeposits resuspension clearance rates were much higher (57.4 and 148.9 g SFDW-1 day-1). The ratio of clearance to residence time was highly dependent on the fate of biodeposits. Therefore its use in interpretation of the species impact on TPM was limited. An alternative measure based on the ratio of the amount of TPM biodeposited to TPM transported into the bed was used. It was found that zebra mussels are able to deposit between 10 and 30% of the incoming TPM, and the amount of biodeposited material was correlated with water residence time. Results indicate that the impact of zebra mussels on TPM in the lagoon is small relative to the high transport rates of TPM over the bed. However, annual biosedimentation rate (~590 g m-2) in the mussel bed was higher than physical deposition rate (~380 g m-2) in accumulation areas devoid of large suspension feeders. We suggest that a local impact due to enhanced availability of organic material to other trophic groups of associated benthic organisms may be more significant than effects on TPM pathways at an ecosystem scale.

  1. Evaluation of the impact of frost resistances on potential altitudinal limit of trees.

    Science.gov (United States)

    Charrier, Guillaume; Cochard, Hervé; Améglio, Thierry

    2013-09-01

    Winter physiology of woody plants is a key issue in temperate biomes. Here, we investigated different frost resistance mechanisms on 1-year-old branches of 11 European tree species from November until budburst: (i) frost hardiness of living cells (by electrolyte leakage method), (ii) winter embolism sensitivity (by percentage loss of conductivity: PLC) and (iii) phenological variation of budburst (by thermal time to budburst). These ecophysiological traits were analyzed according to the potential altitudinal limit, which is highly related to frost exposure. Seasonal frost hardiness and PLC changes are relatively different across species. Maximal PLC observed in winter (PLCMax) was the factor most closely related to potential altitudinal limit. Moreover, PLCMax was related to the mean hydraulic diameter of vessels (indicating embolism sensitivity) and to osmotic compounds (indicating ability of living cells to refill xylem conducting elements). Winter embolism formation seems to be counterbalanced by active refilling from living cells. These results enabled us to model potential altitudinal limit according to three of the physiological/anatomical parameters studied. Monitoring different frost resistance strategies brings new insights to our understanding of the altitudinal limits of trees.

  2. Wind farms generation limits and its impact in real-time voltage stability assessment

    DEFF Research Database (Denmark)

    Perez, Angel; Jóhannsson, Hjörtur; Østergaard, Jacob

    2015-01-01

    . Thismethodology is tested in a platform that produces synthesizedPMU measurements from time-domain simulations and criticalboundary for the wind-farm limits are shown. The methodology isalso tested for synchronous machines and its parallel structure isexploited when implemented in a High Performance...

  3. Potential Impact of Latest Proposals for New European Vehicle Noise Limits

    NARCIS (Netherlands)

    Dittrich, M.G.; Roo, F. de

    2013-01-01

    Noise emission of new road vehicles is regulated by European Directives [1] and subsequent amendments. Proposals for tighter noise emission limits for road vehicles made by the European Commission in 2011 [2] have been adopted in modified form by the European Parliament in 2013 [3]. In the VENOLIVA

  4. Narrow limiter SOL power channels and their impact of ITER first wall shaping

    Czech Academy of Sciences Publication Activity Database

    Kocan, M.; Pitts, R.A.; Arnoux, G.; Balboa, I.; Dejarnac, Renaud; Furno, I.; Goldston, R.J.; Horáček, Jan; Komm, Michael; Labit, B.; LaBombard, B.; Lasnier, C.J.; Mitteau, R.; Nespoli, F.; Pace, D.; Pánek, Radomír; Stangeby, P.C.; Terry, J.L.; Theiler, C.; Tsui, C.; Vondráček, Petr; Wolfe, S.

    2014-01-01

    Roč. 59, č. 5 (2014), JI1:00001 ISSN 0003-0503. [Annual Meeting of the APS Division of Plasma Physics /56./. 27.10.2014-31.10.2014, New Orleans, Louisiana] Institutional support: RVO:61389021 Keywords : ITER * power flux * limiter * narrow channel Subject RIV: BL - Plasma and Gas Discharge Physics

  5. The Impact of Debt Limitations and Referenda Requirements on the Cost of School District Bond Issues

    Science.gov (United States)

    Harris, Mary H.; Munley, Vincent G.

    2011-01-01

    One distinction between the markets for corporate and municipal bonds involves institutional constraints that apply to some municipal bond issues. This research focuses on how public finance institutions, in particular explicit debt limits and referenda requirements, affect the borrowing cost of individual school district bond issues. The…

  6. The Impact of the Proposed delta Gp Limits on Glass Formulation Efforts: Part II. Experimental Results

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    The Savannah River National Laboratory (SRNL) has initiated studies to assess alternative durability options that may provide access to compositional regions of interest in support of the accelerated cleanup mission at the Defense Waste Processing Facility (DWPF). One of the options being pursued is the redefinition of the durability model acceptability limits. Some of the conservative steps used in establishing the current limits without compromising the high confidence required for meeting the specification on the waste form quality were identified and eliminated. The results led to a set of three new Property Acceptability Region (PAR) values for the preliminary glass dissolution estimator that has the potential to allow access to compositional regions of interest to improve melt rate or waste loading. Although these limits are available for implementation, there is no driving force to do so with the current sludge batch (i.e., the current Frit 418 - Sludge Batch 3 (SB3) system is TL limited). The objectives of this task were to investigate (and generate) the incentive of applying the proposed durability limits in the Product Composition Control System (PCCS) from a glass formulation perspective. Glass compositions were identified or developed to transition into and through the region of GP acceptability as defined by the current and proposed durability limits. The progression through the newly defined acceptability region was accomplished by increasing the total alkali in the glass via higher alkali frits and/or waste loading (WL). The focus of this report is on the measured durability response as it compares to model predictions to assess the applicability and/or potential conservatism of the various limits or durability approaches. The normalized boron release values (NL [B] g/L) for the study glasses ranged from approximately 1.0 g/L to 2.0 g/L. The Product Consistency Test (PCT) responses provide evidence that implementation of the proposed GP limits will

  7. Institutionalizing social impact assessment in Bangladesh resource management: limitations and opportunities

    International Nuclear Information System (INIS)

    Momtaz, Salim

    2005-01-01

    Consideration of social issues in environmental impact assessment (EIA) of development projects has been an integral part of project cycle since the inception of EIA in Bangladesh in the early 1990s. This paper examines the emergence of social impact assessment (SIA) in Bangladesh environmental management and its institutionalization. It reveals that although SIA does not have a statutory status like EIA, social dimensions are firmly established in donor funded poverty alleviation projects. It is proposed that SIA is given a clear legislative mandate. The Department of Environment (DOE) - the agency that looks after the implementation of EIA on behalf of the government--needs to be strengthened and transparent in order to play a more effective role

  8. Impact of a narrow limiter SOL heat flux channel on the ITER first wall panel shaping

    Czech Academy of Sciences Publication Activity Database

    Kocan, M.; Pitts, R.A.; Arnoux, G.; Balboa, I.; de Vries, P.C.; Dejarnac, Renaud; Furno, I.; Goldston, R.J.; Gribov, Y.; Horáček, Jan; Komm, Michael; Labit, B.; LaBombard, B.; Lasnier, C.J.; Mitteau, R.; Nespoli, F.; Pace, D.; Pánek, Radomír; Stangeby, P.C.; Terry, J.L.; Tsui, C.; Vondráček, Petr

    2015-01-01

    Roč. 55, č. 3 (2015), 033019-033019 ISSN 0029-5515 R&D Projects: GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : plasma * tokamak * ITER * first wall panel Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/0029-5515/55/3/033019/pdf/0029-5515_55_3_033019.pdf

  9. Determination of the dynamical behaviour of biological materials during impact using a pendulum device

    Science.gov (United States)

    Van Zeebroeck, M.; Tijskens, E.; Van Liedekerke, P.; Deli, V.; De Baerdemaeker, J.; Ramon, H.

    2003-09-01

    A pendulum device has been developed to measure contact force, displacement and displacement rate of an impactor during its impact on the sample. Displacement, classically measured by double integration of an accelerometer, was determined in an alternative way using a more accurate incremental optical encoder. The parameters of the Kuwabara-Kono contact force model for impact of spheres have been estimated using an optimization method, taking the experimentally measured displacement, displacement rate and contact force into account. The accuracy of the method was verified using a rubber ball. Contact force parameters for the Kuwabara-Kono model have been estimated with success for three biological materials, i.e., apples, tomatoes and potatoes. The variability in the parameter estimations for the biological materials was quite high and can be explained by geometric differences (radius of curvature) and by biological variation of mechanical tissue properties.

  10. The Impact of Different Permissible Exposure Limits on Hearing Threshold Levels Beyond 25 dBA.

    Science.gov (United States)

    Sayapathi, Balachandar S; Su, Anselm Ting; Koh, David

    2014-10-01

    Development of noise-induced hearing loss is reliant on a few factors such as frequency, intensity, and duration of noise exposure. The occurrence of this occupational malady has doubled from 120 million to 250 million in a decade. Countries such as Malaysia, India, and the US have adopted 90 dBA as the permissible exposure limit. According to the US Occupational Safety and Health Administration (OSHA), the exposure limit for noise is 90 dBA, while that of the US National Institute of Occupational Safety and Health (NIOSH) is 85 dBA for 8 hours of noise exposure. This study aimed to assess the development of hearing threshold levels beyond 25 dBA on adoption of 85 dBA as the permissible exposure limit compared to 90 dBA. This is an intervention study done on two automobile factories. There were 203 employees exposed to noise levels beyond the action level. Hearing protection devices were distributed to reduce noise levels to a level between the permissible exposure limit and action level. The permissible exposure limits were 90 and 85 dBA in factories 1 and 2, respectively, while the action levels were 85 and 80 dBA, respectively. The hearing threshold levels of participants were measured at baseline and at first month of postshift exposure of noise. The outcome was measured by a manual audiometer. McNemar and chi-square tests were used in the statistical analysis. We found that hearing threshold levels of more than 25 dBA has changed significantly from pre-intervention to post-intervention among participants from both factories (3000 Hz for the right ear and 2000 Hz for the left ear). There was a statistically significant association between participants at 3000 Hz on the right ear at 'deteriorated' level ( χ² (1) = 4.08, φ = - 0.142, P = 0.043), whereas there was worsening of hearing threshold beyond 25 dBA among those embraced 90 dBA. The adoption of 85 dBA as the permissible exposure limit has preserved hearing threshold level among participants at 3000 Hz

  11. 77 FR 64311 - Potential Market Impact of the Proposed Fiscal Year 2014 Annual Materials Plan; National Defense...

    Science.gov (United States)

    2012-10-19

    ... actually be associated with the two material research and development projects will depend on the market... Market Impact of the Proposed Fiscal Year 2014 Annual Materials Plan; National Defense Stockpile Market... Stockpile Market Impact Committee, co-chaired by the Departments of Commerce and State, is seeking public...

  12. IMPACT TESTING OF MATERIALS USING AN EIGHT-INCH AIR GUN AND COMPUTER REDUCTION OF DATA

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, L. F.

    1973-10-01

    A mechanical shock actuator has been converted into an air gun capable of firing 8-inch-·diameter (20.32 cm) projectiles to velocities exceeding 1000 fps (304.8 m/ s). This new capability has been used to study the effect of impact velocity upon the energy.absorbed by crushable materials. Shockpulse data is reduced by computer techniques and test results are displayed in either tabular or graphic format by use of the C DC 6600 Calcomp plotter.

  13. The radiological impact of the normal rail transport of radioactive materials in the United Kingdom

    International Nuclear Information System (INIS)

    Mairs, J.H.

    1983-01-01

    Recently the NRPB, under contract to the Health and Safety Executive, and in association with the British Railways Board, has assessed the radiological impact of consignments transported on the British Rail system. The work has shown the radiation exposure of British Rail staff and of the public to be low. This paper identifies the types of radioactive materials transported by rail, outlines the methods used to assess the doses to persons exposed and presents the results of these assessments. (author)

  14. Limiting overselling in international emissions trading 1: Costs and environmental impacts of alternative proposals

    Energy Technology Data Exchange (ETDEWEB)

    Haites, E.; Missfeldt, F.

    2002-07-01

    Emission trading allows a country with an emission limitation commitment, an Annex B Party, to sell parts of its assigned amount (AAUs) to other Annex B Parties. If the seller subsequently does not have sufficient AAUs to cover its actual emissions it will be subject to the penalties for non-compliance. The revenue from the sale of AAUs may exceed the sanctions for non-compliance if these penalties are weak or difficult to enforce. Under these circumstances emission trading enables a country to benefit financially through non-compliance. Liability proposals seek to ensure that non-compliance is not rewarded, by limiting sales of AAUs to amounts surplus to the seller's compliance needs. This study develops and applies a model to assess the performance of different liability proposals. A simple model based on the Emissions Projection and Policy Analysis (EPPA) model of the Massachusetts Institute of Technology is used for the analysis. (BA)

  15. Evaluating the Impact of Conservatism in Industrial Fatigue Analysis of Life-Limited Components

    Directory of Open Access Journals (Sweden)

    Hoole Joshua

    2018-01-01

    Full Text Available This paper presents a review of the conservatism approaches applied by different industrial sectors to the stress-life (S-N analysis of ‘life-limited’ or ‘safe-life’ components. A comparison of the fatigue design standards for 6 industrial sectors identified that the conservatism approaches are highly inconsistent when comparing the areas of variability and uncertainty accounted for along with the conservatism magnitude and method of application. Through the use of a case-study based on the SAE keyhole benchmark and 4340 steel S-N data, the industrial sector which introduces the greatest reduction of a component life-limit was identified as the nuclear sector. The results of the case-study also highlighted that conservatism applied to account for scatter in S-N data currently provides the greatest contribution to the reduction of component life-limits.

  16. Study of anticipated impact on DOE programs from proposed reductions to the external occupational radiation exposure limit

    International Nuclear Information System (INIS)

    1981-02-01

    A study of the impact of reducing the occupational radiation exposure limit from 5 rem/yr to 2.5, 1.0 and 0.5 rem/yr, respectively produced the following conclusions: reduction of the occupational exposure limit would result in significant increase in total accumulated exposure to the current radiation worker population and could require an increase in the work force; important programs would have to be abandoned at a planned exposure limit of 0.5 rem/yr; some engineering technology is not sufficiently developed to design or operate at the 0.5 rem/yr limit; even a factor of 2 reduction (2.5 rem/yr) would significantly increase costs and would result in an increase in total exposure to the work force; in addition to a significant one-time initial capital cost resulting from a 0.5 rem/yr limit, there would be a significant increase in annual costs; the major emphasis in controlling occupational exposure should be on further reduction of total man-rem; and current standards are used only as a limit. For example, 97% of the employees receive less than 0.5 rem/yr

  17. The Impact of Nitrogen Limitation and Mycorrhizal Symbiosis on Aspen Tree Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Bich Thi Ngoc [Univ. of Alabama, Huntsville, AL (United States)

    2014-08-18

    Nitrogen deficiency is the most common and widespread nutritional deficiency affecting plants worldwide. Ectromycorrhizal symbiosis involves the beneficial interaction of plants with soil fungi and plays a critical role in nutrient cycling, including the uptake of nitrogen from the environment. The main goal of this study is to understand how limiting nitrogen in the presence or absence of an ectomycorrhizal fungi, Laccaria bicolor, affects the health of aspen trees, Populus temuloides.

  18. Impact of power limitations on the performance of WLANs for home networking applications

    OpenAIRE

    Armour, SMD; Lee, BS; Doufexi, A; Nix, AR; Bull, DR

    2001-01-01

    This paper considers the application of 5 GHz wireless LAN technology to home networking applications. An assessment of physical layer performance is presented in the form of the achievable data rate as a function of received signal to noise ratio. The transmit power limitations imposed by the relevant regulatory bodies are also summarised. Based on this information, a state of the art propagation modelling tool is used to evaluate the coverage achieved by a WLAN system in an example resident...

  19. Increasing P limitation and viral infection impact lipid remodeling of the picophytoplankter Micromonas pusilla

    Science.gov (United States)

    Maat, Douwe S.; Bale, Nicole J.; Hopmans, Ellen C.; Sinninghe Damsté, Jaap S.; Schouten, Stefan; Brussaard, Corina P. D.

    2016-03-01

    The intact polar lipid (IPL) composition of phytoplankton is plastic and dependent on environmental factors. Previous studies have shown that phytoplankton under low phosphorus (P) availability substitutes phosphatidylglycerols (PGs) with sulfoquinovosyldiacylglycerols (SQDGs) and digalactosyldiacylglycerols (DGDGs). However, these studies focused merely on P depletion, while phytoplankton in the natural environment often experience P limitation whereby the strength depends on the supply rate of the limiting nutrient. Here we report on the IPL composition of axenic cultures of the picophotoeukaryote Micromonas pusilla under different degrees of P limitation, i.e., P-controlled chemostats at 97 and 32 % of the maximum growth rate, and P starvation (obtained by stopping P supply to these chemostats). P-controlled cultures were also grown at elevated partial carbon dioxide pressure (pCO2) to mimic a future scenario of strengthened vertical stratification in combination with ocean acidification. Additionally, we tested the influence of viral infection for this readily infected phytoplankton host species. Results show that both SQDG : PG and DGDG : PG ratios increased with enhanced P limitation. Lipid composition was, however, not affected by enhanced (750 vs. 370 µatm) pCO2. In the P-starved virally infected cells the increase in SQDG : PG and DGDG : PG ratios was lower, whereby the extent depended on the growth rate of the host cultures before infection. The lipid membrane of the virus MpV-08T itself lacked some IPLs (e.g., monogalactosyldiacylglycerols; MGDGs) in comparison with its host. This study demonstrates that, besides P concentration, also the P supply rate, viral infection and even the history of the P supply rate can affect phytoplankton lipid composition (i.e., the non-phospholipid : phospholipid ratio), with possible consequences for the nutritional quality of phytoplankton.

  20. The Impact of Including Below Detection Limit Samples in Post Decommissioning Soil Sample Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hwan; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    To meet the required standards the site owner has to show that the soil at the facility has been sufficiently cleaned up. To do this one must know the contamination of the soil at the site prior to clean up. This involves sampling that soil to identify the degree of contamination. However there is a technical difficulty in determining how much decontamination should be done. The problem arises when measured samples are below the detection limit. Regulatory guidelines for site reuse after decommissioning are commonly challenged because the majority of the activity in the soil at or below the limit of detection. Using additional statistical analyses of contaminated soil after decommissioning is expected to have the following advantages: a better and more reliable probabilistic exposure assessment, better economics (lower project costs) and improved communication with the public. This research will develop an approach that defines an acceptable method for demonstrating compliance of decommissioned NPP sites and validates that compliance. Soil samples from NPP often contain censored data. Conventional methods for dealing with censored data sets are statistically biased and limited in their usefulness. In this research, additional methods are performed using real data from a monazite manufacturing factory.

  1. Impact of steam generator start-up limitations on the performance of a parabolic trough solar power plant

    DEFF Research Database (Denmark)

    Ferruzza, Davide; Topel, Monika; Laumert, Björn

    2018-01-01

    typically start-up and shut down every day, so in order to maximize their profitability, it is necessary to increase their flexibility in transient operation and to initiate power generation as rapidly as possible. Two of the key components are the steam generator and steam turbine and the rates at which...... they can reach operational speed are limited by thermo-mechanical constraints. This paper presents an analysis of the effects of the thermal stress limitations of the steam generator and steam turbine on the power plant start-up, and quantifies their impact on the economy of the system. A dynamic model......-driven and peak-load. The results indicate that for steam generator hot start-ups, a 1.5% increase in peak-load electricity production would be achieved by doubling the maximum allowable heating rate of the evaporator. No useful increase would be achieved by increasing the rates beyond a limit of 7–8 K...

  2. The impact of resource limitation and the phenology of parasitoid attack on the duration of insect herbivore outbreaks.

    Science.gov (United States)

    Umbanhowar, James; Hastings, Alan

    2002-11-01

    Fluctuations in resource quality and quantity, and changes in mortality due to predators and parasites are thought to be of prime importance in the regular fluctuations of forest insects. We examine how food limitation and parasitoids with different phenologies of attack regulate the population cycles of insect hosts. Our analysis of the limit cycle of a model with a biologically realistic form of density dependence in the host yields two novel predictions. First, outbreaks will typically last for only 2 generations after parasitoids begin to reduce the host population below the maximum density. Second, host growth rate is important in determining cycle length only when parasitoids attack before the impacts of resource limitation affect the host. The robustness of these predictions are tested using a more general form of density dependence in the host, revealing that our predictions are valid as long as density dependence in the host is not too overcompensatory.

  3. Assessment of the environmental impacts produced by the transport of radioactive materials through urban areas

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Taylor, J.M.; Tierney, M.S.; Finley, B.H.

    1977-01-01

    Sandia Laboratories is performing an environmental assessment for the Nuclear Regulatory Commission to ascertain the impacts produced by the transportation of radioactive materials near and through a large, densely populated area. Radiological, nonradiological and economic environmental impacts due to the transportation of all radioactive materials are considered, excepting those related to weapons, weapon components, or shipments on military vehicles. Although New York City is being studied initially to execute the methodology as a function of a real, complex urban environment, the assessment model developed is general in its basic content and is suitable for application to any urban area. Radiological consequences are being computed for cases involving ''normal'' and accident conditions. In the ''normal'' case, nothing unusual takes place, but small radiation doses are still received by nearby people. In the accident case, dispersion of possibly released material away from the accident site is considered. In addition, impacts due to deviations from quality assurance practices, as a result of human error, are being calculated using the assessment model in a special manner. Certain aspects of sabotage and diversion are also being investigated for an urban setting. Radiological consequences are being quantified in terms of human health effects and decontamination costs

  4. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    Science.gov (United States)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  5. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen.

    Science.gov (United States)

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N2-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5nm to 10nm increased the ibuprofen loading from 0.74 to 0.85mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8-20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    International Nuclear Information System (INIS)

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, Jim

    2015-01-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  7. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, Jim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  8. Environmental impact of coal utilization (from raw material to waste resources): Proceedings

    International Nuclear Information System (INIS)

    Sahu, K.C.

    1991-10-01

    The proceedings contains 27 papers presented at the conference on environmental impact of coal utilization from raw material to waste resources which was held at the Indian Institute of Technology, Bombay, during 14-15 January 1991. The conference was held as a follow-up of the research project to study the impact of coal utilization. The project was undertaken jointly by the Indian Institute of Technology, Bombay and the University of Western Ontario, Canada. The project was funded by the International Development Research Centre, Ottawa (Canada). The principle themes of the conference were : occurrence of trace elements in coal, fate of trace elements during combustion of coal, characterisation of fly ash and its properties and utilization, and environmental impact of ash disposal. (M.G.B.)

  9. FINCRUSH : a computer program for impact analysis of radioactive material transport cask with fins

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1997-05-01

    In drop impact analyses for radioactive material transport cask with cooling fins, relationship between fin plastic deformation and fin energy absorption is used. This relationship was obtained by ORNL experiments and MONSER Co. in Canada. Based on ORNL experiments, a computer program FINCRUSH has been developed for rapid safety analysis of cask drop impact to obtain the maximum impact acceleration and the maximum fin deformation. Main features of FINCRUSH are as follows: (1) annulus fins on a cylindrical shell and plate fins on a disk can be treated, (2) it is capable of graphical representations for calculation results and fin absorption energy data and (3) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of the FINCRUSH. In the paper, brief illustration of calculation method of FINCRUSH is presented. The second section presents comparisons between FINCRUSH and experimental results. The third section provides a use's guide for FINCRUSH. (author)

  10. FINCRUSH : a computer program for impact analysis of radioactive material transport cask with fins

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    In drop impact analyses for radioactive material transport cask with cooling fins, relationship between fin plastic deformation and fin energy absorption is used. This relationship was obtained by ORNL experiments and MONSER Co. in Canada. Based on ORNL experiments, a computer program FINCRUSH has been developed for rapid safety analysis of cask drop impact to obtain the maximum impact acceleration and the maximum fin deformation. Main features of FINCRUSH are as follows: (1) annulus fins on a cylindrical shell and plate fins on a disk can be treated, (2) it is capable of graphical representations for calculation results and fin absorption energy data and (3) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of the FINCRUSH. In the paper, brief illustration of calculation method of FINCRUSH is presented. The second section presents comparisons between FINCRUSH and experimental results. The third section provides a use`s guide for FINCRUSH. (author)

  11. The role of porosity and annealing in the impact fragmentation of an aluminum reactive material

    Science.gov (United States)

    Hooper, Joseph

    2017-06-01

    A reactive fragment has a unique structural requirement to survive explosive launch but then fragment catastrophically and combust upon impact. Suitable materials for this application tend to be metal composites with high ductility in compression but elastic-brittle behavior in tension. Characterizing the dynamic fragmentation of such materials is key for understanding their lethality. Here we consider a prototypical aluminum reactive frag material, formed via cold isostatic pressing of micron-scale powder followed by annealing. Samples were gun-launched into a target and recovered in a soft-catch medium of artificial snow, allowing for excellent recovery down to micron sizes and minimal contamination. Recovered fragment distributions were analyzed and compared to standard energy-balance theories. We study the effect of compaction pressure and annealing conditions on the fragmentation behavior at 500-800 m/s impacts, and find a particularly strong effect from short annealing periods. Though dynamic fracture occurs entirely along original particle boundaries in this material, recovery processes within the Al microstructure during annealing lead to a rapid decrease in the extent of fragmentation. This work was funded by the Office of Naval Research, program director Cliff Bedford.

  12. Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy

    KAUST Repository

    Shaheen, Basamat

    2017-05-17

    Understanding light-triggered charge carrier dynamics near photovoltaic-material surfaces and at interfaces has been a key element and one of the major challenges for the development of real-world energy devices. Visualization of such dynamics information can be obtained using the one-of-a-kind methodology of scanning ultrafast electron microscopy (S-UEM). Here, we address the fundamental issue of how the thickness of the absorber layer may significantly affect the charge carrier dynamics on material surfaces. Time-resolved snapshots indicate that the dynamics of charge carriers generated by electron impact in the electron-photon dynamical probing regime is highly sensitive to the thickness of the absorber layer, as demonstrated using CdSe films of different thicknesses as a model system. This finding not only provides the foundation for potential applications of S-UEM to a wide range of devices in the fields of chemical and materials research, but also has impact on the use and interpretation of electron beam-induced current for optimization of photoactive materials in these devices.

  13. Use of a 33 MJ high-energy rotary impact testing machine for investigations into material behaviour under impact loads

    International Nuclear Information System (INIS)

    Issler, W.

    1989-01-01

    To investigate material behaviour under impact loads, previously very different testing machines have been developed. One of these concepts is the rotary impact testing machine which stores rotational energy and on which a tension impact test can be performed with almost unchanged trigger speed. With this device maximum trigger speeds can be achieved by using mechanical, elastically stored or hydraulic energy. Usable sample geometries include in particular smooth or notched round or flat tensile specimen up to 30 mm in diameter and CT10 or CT15 mechanical strength test specimen, permitting a direct comparison with results from quasi-static tests. For present speeds of load application the elastic modulus of steel can be considered as being constant. For Poisson's ratio, measurements indicated changes by approximately -8% to +20%. Early tests to investigate the strain rate showed that the strain rate under purely elastic loads applied to smooth round tensile specimen is approximately 3-10 times slower than the strain rate under plastic deformation, while this ratio may have an order of magnitude of 1:100 for notched tensile specimen. Therefore it is unreasonable to indicate only one value for the strain rate as a test characterising parameter. (orig./MM) [de

  14. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  15. The impact of high-risk drivers and benefits of limiting their driving degree of freedom.

    Science.gov (United States)

    Habtemichael, Filmon G; de Picado-Santos, Luis

    2013-11-01

    The perception of drivers regarding risk-taking behaviour is widely varied. High-risk drivers are the segment of drivers who are disproportionately represented in the majority of crashes. This study examines the typologies of drivers in risk-taking behaviour, the common high-risk driving errors (speeding, close following, abrupt lane-changing and impaired driving), their safety consequences and the technological (ITS) devices for their detection and correction. Limiting the driving degree of freedom of high-risk drivers is proposed and its benefits on safety as well as traffic operations are quantified using VISSIM microscopic traffic simulation at various proportions of high-risk drivers; namely, 4%, 8% and 12%. Assessment of the safety benefits was carried out by using the technique of simulated vehicle conflicts which was validated against historic crashes, and reduction in travel time was used to quantify the operational benefits. The findings imply that limiting the freedom of high-risk drivers resulted in a reduction of crashes by 12%, 21% and 27% in congested traffic conditions; 9%, 13% and 18% in lightly congested traffic conditions as well as 9%, 10% and 17% in non-congested traffic conditions for high-risk drivers in proportions of 4%, 8% and 12% respectively. Moreover, the surrogate safety measures indicated that there was a reduction in crash severity levels. The operational benefits amounted to savings of nearly 1% in travel time for all the proportions of high-risk drivers considered. The study concluded that limiting the freedom of high-risk drivers has safety and operational benefits; though there could be social, legal and institutional concerns for its practical implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments

    International Nuclear Information System (INIS)

    Bessell-Browne, Pia; Negri, Andrew P.; Fisher, Rebecca; Clode, Peta L.; Duckworth, Alan; Jones, Ross

    2017-01-01

    As part of an investigation of the effects of water quality from dredging/natural resuspension on reefs, the effects of suspended sediment concentrations (SSCs) (0, 30, 100 mg L −1 ) and light (~ 0, 1.1, 8.6 mol photons m −2 d −1 ) were examined alone and in combination, on the corals Acropora millepora, Montipora capricornis and Porites spp. over an extended (28 d) period. No effects were observed at any sediment concentrations when applied alone. All corals in the lowest light treatments lost chlorophyll a and discoloured (bleached) after a week. Coral mortality only occurred in the two lowest light treatments and was higher when simultaneously exposed to elevated SSCs. Compared to water quality data collected during large dredging programs and natural resuspension events (and in the absence of sediment deposition as a cause-effect pathway) these data suggest the light reduction associated with turbidity poses a proportionally greater risk than effects of elevated SSCs alone. - Highlights: • Exposure of corals to low light conditions results in reduced quantum yields followed by bleaching of tissue. • Suspended sediment concentrations, without a reduction in light, have no impact on coral health. • An interaction between elevated suspended sediment concentrations and reduced light result in partial mortality of corals. • Management of dredging should minimise exposure of corals to low light to avoid unnecessary stress and impacts upon health.

  17. Limitations to the Use of Species-Distribution Models for Environmental-Impact Assessments in the Amazon.

    Directory of Open Access Journals (Sweden)

    Lorena Ribeiro de A Carneiro

    Full Text Available Species-distribution models (SDM are tools with potential to inform environmental-impact studies (EIA. However, they are not always appropriate and may result in improper and expensive mitigation and compensation if their limitations are not understood by decision makers. Here, we examine the use of SDM for frogs that were used in impact assessment using data obtained from the EIA of a hydroelectric project located in the Amazon Basin in Brazil. The results show that lack of knowledge of species distributions limits the appropriate use of SDM in the Amazon region for most target species. Because most of these targets are newly described and their distributions poorly known, data about their distributions are insufficient to be effectively used in SDM. Surveys that are mandatory for the EIA are often conducted only near the area under assessment, and so models must extrapolate well beyond the sampled area to inform decisions made at much larger spatial scales, such as defining areas to be used to offset the negative effects of the projects. Using distributions of better-known species in simulations, we show that geographical-extrapolations based on limited information of species ranges often lead to spurious results. We conclude that the use of SDM as evidence to support project-licensing decisions in the Amazon requires much greater area sampling for impact studies, or, alternatively, integrated and comparative survey strategies, to improve biodiversity sampling. When more detailed distribution information is unavailable, SDM will produce results that generate uncertain and untestable decisions regarding impact assessment. In many cases, SDM is unlikely to be better than the use of expert opinion.

  18. The Impact of Authentic Listening Materials on Elementary EFL Learners’ Listening Skills

    Directory of Open Access Journals (Sweden)

    Masoud Khalili Sabet

    2012-09-01

    Full Text Available Listening is one of the most pivotal skills, though; it is unjustly neglected throughout the literature. It was previously considered as passive skill but now those myths have been demystified. Therefore seeking the innovative trends for teaching and developing listening for EFL students are taken for granted. Lack of adequate exposure to listening and dearth of attention with regard to these issues sets the ground for authentic listening materials to fill the cited gaps in Iranian context. There have been controversial ideas based on studies in dealing with authentic listening materials. Their results ranged from totally abstinence to completely utilizing. This study intends to investigate the impact of authentic listening materials on listening skills of Elementary students at university level. To this aim, sixty students of university were randomly assigned to two groups. One group   was exposed to and received authentic listening materials (experimental group and the other groups received simplified listening materials (control group. A proficiency test (consisted of two sub-tests; listening comprehension and listening perception was used as a pretest to measure the students’ potential differences at outset of study. After the instruction sessions the same proficiency test was administered for both groups. Besides students feedback survey was given to experimental group to evaluate their attitudes and opinions regarding the materials. Analysis of quantitative study and comparing the mean scores of two groups via t-test showed that students who were exposed to authentic materials performed better in posttest. The analysis of feedback survey also denoted their satisfaction and positive attitudes to authentic listening materials.

  19. Impact of schoolchildren's involvement in the design process on the effectiveness of healthy food promotion materials.

    Science.gov (United States)

    Gustafson, Christopher R; Abbey, Bryce M; Heelan, Kate A

    2017-06-01

    Marketing techniques may improve children's vegetable consumption. However, student participation in the design of marketing materials may increase the material's salience, while also improving children's commitment and attitudes towards healthy eating. The impact of student-led design of vegetable promotional materials on choice and consumption was investigated using 1614 observations of students' vegetable choice and plate waste in four public elementary schools in Kearney, Nebraska. Data were collected on children's vegetable choice and consumption in four comparison groups: 1) control; 2) students designed materials only; 3) students were exposed to promotional materials only; and 4) students designed materials that were then posted in the lunchroom. Vegetable choice and consumption data were collected through a validated digital photography-based plate-waste method. Multivariate linear regression was used to estimate average treatment effects of the conditions at various time periods. Dependent variables were vegetable choice and consumption, and independent variables included the condition, time period, and interaction terms, as well as controls for gender and grade. Relative to baseline, students in group 4 doubled their vegetable consumption ( p  < 0.001) when materials were posted. Vegetable consumption remained elevated at a follow-up 2-3 months later ( p  < 0.05). Students in group 3 initially increased the quantity of vegetables selected ( p  < 0.05), but did not increase consumption. In the follow-up period, however, students in group 3 increased their vegetable consumption ( p  < 0.01). Involving elementary-aged students in the design of vegetable promotional materials that were posted in the lunchroom increased the amount of vegetables students consumed.

  20. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers

    International Nuclear Information System (INIS)

    Li Lin; Benson, Craig H.

    2010-01-01

    Ground water flow and geochemical reactive transport models were used to assess the effectiveness of five strategies used to limit fouling and to enhance the long-term hydraulic behavior of continuous-wall permeable reactive barriers (PRBs) employing granular zero valent iron (ZVI). The flow model accounted for geological heterogeneity and the reactive transport model included a geochemical algorithm for simulating iron corrosion and mineral precipitation reactions that have been observed in ZVI PRBs. The five strategies that were evaluated are pea gravel equalization zones, a sacrificial pre-treatment zone, pH adjustment, large ZVI particles, and mechanical treatment. Results of simulations show that installation of pea gravel equalization zones results in flow equalization and a more uniform distribution of residence times within the PRB. Residence times within the PRB are less affected by mineral precipitation when a pre-treatment zone is employed. pH adjustment limits the total amount of hydroxide ions in ground water to reduce porosity reduction and to retain larger residence times. Larger ZVI particles reduce porosity reduction as a result of the smaller iron surface area for iron corrosion, and retain longer residence time. Mechanical treatment redistributes the porosity uniformly throughout the PRB over time, which is effective in maintaining residence time.

  1. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    Directory of Open Access Journals (Sweden)

    Gilson Morales

    2010-12-01

    Full Text Available This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects considering the eco-design theory. Moreover, the scale allowed classifying the materials and processes environmental impact through four score categories which resulted in a single final impact score. It was concluded that the EI scale could be cheap, accessible, and relevant tool for environmental impact controlling and reduction, allowing the planning and material specification to minimize the construction negative effects caused in the environment.

  2. Impacts of Voltage Control Methods on Distribution Circuit’s Photovoltaic (PV Integration Limits

    Directory of Open Access Journals (Sweden)

    Anamika Dubey

    2017-10-01

    Full Text Available The widespread integration of photovoltaic (PV units may result in a number of operational issues for the utility distribution system. The advances in smart-grid technologies with better communication and control capabilities may help to mitigate these challenges. The objective of this paper is to evaluate multiple voltage control methods and compare their effectiveness in mitigating the impacts of high levels of PV penetrations on distribution system voltages. A Monte Carlo based stochastic analysis framework is used to evaluate the impacts of PV integration, with and without voltage control. Both snapshot power flow and time-series analysis are conducted for the feeder with varying levels of PV penetrations. The methods are compared for their impacts on (1 the feeder’s PV hosting capacity; (2 the number of voltage violations and the magnitude of the largest bus voltage; (3 the net reactive power demand from the substation; and (4 the number of switching operations of feeder’s legacy voltage support devices i.e., capacitor banks and load tap changers (LTCs. The simulation results show that voltage control help in mitigating overvoltage concerns and increasing the feeder’s hosting capacity. Although, the legacy control solves the voltage concerns for primary feeders, a smart inverter control is required to mitigate both primary and secondary feeder voltage regulation issues. The smart inverter control, however, increases the feeder’s reactive power demand and the number of LTC and capacitor switching operations. For the 34.5-kV test circuit, it is observed that the reactive power demand increases from 0 to 6.8 MVAR on enabling Volt-VAR control for PV inverters. The total number of capacitor and LTC operations over a 1-year period also increases from 455 operations to 1991 operations with Volt-VAR control mode. It is also demonstrated that by simply changing the control mode of capacitor banks, a significant reduction in the unnecessary

  3. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China); Weschler, Charles J., E-mail: weschlch@rwjms.rutgers.edu [Department of Building Science, Tsinghua University, Beijing (China); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ (United States); International Center for Indoor Environment and Energy, Technical University of Denmark, Lyngby (Denmark)

    2014-11-01

    Semi-volatile organic compounds (SVOCs) partition between the gas phase and airborne particles. The size distribution of particle-associated SVOCs impacts their fate in outdoor and indoor environments, as well as human exposure to these compounds and subsequent health risks. Allen et al. (1996) previously proposed that the rate of mass transfer can impact polycyclic aromatic hydrocarbon (PAH) partitioning among different sized particles, especially for time scales relevant to urban aerosols. The present study quantitatively builds on this idea, presenting a model that incorporates dynamic SVOC/particle interaction and applying this model to typical outdoor and indoor scenarios. The model indicates that the impact of mass transfer limitations on the size distribution of a particle-associated SVOC can be evaluated by the ratio of the time to achieve gas–particle equilibrium relative to the residence time of particles. The higher this ratio, the greater the influence of mass transfer limitations on the size distribution of particle-associated SVOCs. The influence of such constraints is largest on the fraction of particle-associated SVOCs in the coarse mode (> 2 μm). Predictions from the model have been found to be in reasonable agreement with size distributions measured for PAHs at roadside and suburban locations in Japan. The model also quantitatively explains shifts in the size distributions of particle associated SVOCs compared to those for particle mass, and the manner in which these shifts vary with temperature and an SVOC's molecular weight. - Highlights: • Rate of mass transfer can impact SVOC partitioning among different sized particles. • Model was developed that incorporates dynamic SVOC/particle sorption. • Key parameters: mass-transfer coefficients, partition coefficient, residence time • Model explains observed SVOC size distribution shifts with temperature and MW. • Largest impact of mass transfer constraints: SVOC sorption to coarse

  4. Impact of Nanostructuring on the Phase Behavior of Insertion Materials: The Hydrogenation Kinetics of a Magnesium Thin Film

    NARCIS (Netherlands)

    Bannenberg, L.J.; Schreuders, H.; van Eijck, L.; Heringa, J.R.; Steinke, N.J.; Dalgliesh, RM; Dam, B.; Mulder, F.M.; van Well, A.A.

    2016-01-01

    Nanostructuring is widely applied in both battery and hydrogen materials to improve the performance of these materials as energy carriers. Nanostructuring changes the diffusion length as well as the thermodynamics of materials. We studied the impact of nanostructuring on the hydrogenation in a model

  5. ENVIRONMENTAL IMPACT OF LIMITATION ON USE OUTFLOW POLLUTION WITH RURAL FARM

    Directory of Open Access Journals (Sweden)

    Sławomir Szymczyk

    2014-10-01

    Full Text Available The intensity of the movement of mineral and organic substances in the agro-forestry catchment is decisive influenced by weather conditions. Intensive drainage caused an increase in the outflow of the substances of the farmstead. Rural farm located on light soils is a major source of groundwater contamination by organic and mineral substances. An important role in the through of pollutants migration played an ecological area, which contributed to a significant reduction in the concentration of the ash components, chlorides and sulfates in groundwater, and consequently reduced the negative impact of farmstead on the water quality in a nearby pond. Periodically functioning supply of forest area by groundwater of the midfield pond contributed to the deterioration of groundwater quality in the forest.

  6. Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors

    Science.gov (United States)

    Biscans, S.; Warner, J.; Mittleman, R.; Buchanan, C.; Coughlin, M.; Evans, M.; Gabbard, H.; Harms, J.; Lantz, B.; Mukund, N.; Pele, A.; Pezerat, C.; Picart, P.; Radkins, H.; Shaffer, T.

    2018-03-01

    Advanced gravitational-wave detectors such as the laser interferometer gravitational-wave observatories (LIGO) require an unprecedented level of isolation from the ground. When in operation, they measure motion of less than 10‑19 m. Strong teleseismic events like earthquakes disrupt the proper functioning of the detectors, and result in a loss of data. An earthquake early-warning system, as well as a prediction model, have been developed to understand the impact of earthquakes on LIGO. This paper describes a control strategy to use this early-warning system to reduce the LIGO downtime by  ∼30%. It also presents a plan to implement this new earthquake configuration in the LIGO automation system.

  7. Study of anticipated impact on DOE programs from proposed reductions to the external occupational radiation exposure limit

    International Nuclear Information System (INIS)

    1978-01-01

    Many years of radiation exposure experience in all phases of nuclear energy applications were surveyed to evaluate the impact of reducing the present DOE limit of 5 rem/yr. Conclusions drawn are: (1) Reduction of the occupational exposure limit would result in significant increase in total accumulated exposure to the current radiation worker population and could require an increase in the work force with attending personnel and administrative problems. (2) Important programs/facilities would have to be abandoned. (3) Some engineering technology is not sufficiently developed to design or operate at the 0.5 rem/yr limit. (4) Exposure reduction to 2.5 rem/yr would significantly increase costs and would result in a small increase in total exposure to the work force. (5) Significant initial capital cost plus increased annual costs would result. (6) The major emphasis in controlling occupational exposure should be on continued work toward further reduction of total man-rem. This should involve continued development of ALAP programs along with improvements in dose measurement and recording methods, more sophisticated exposure records, and containment, handling and remote maintenance techniques. (7) Radiation protection practices at DOE facilities have maintained exposures of the bulk of the nuclear work force substantially below current limits for many years. (8) The current standards of 5 rem/yr is used only as a limit. For example, 97% of the employees receive less than 0.5 rem/yr

  8. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    R. R. Hood

    2007-07-01

    Full Text Available The overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997; GS97 anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2-fixation that are required to do so. We present results from a new Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2-fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detrital iron compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr−1 from 10° N–30° N, 3.4×1012 moles N yr−1 from 25° S–65° N. In the model the surface nitrogen fixation rate patterns are not co-located with subsurface gradients in N*. Rather, the fixed nitrogen is advected away from its source prior to generating a subsurface N* anomaly. Changes in the phosphorus remineralization rate (relative to nitrogen linearly determine the surface nitrogen fixation rate because they change the degree of phosphorus limitation, which is the dominant limitation in the Atlantic in the model. Phosphorus remineralization rate must be increased by about a factor of 2 (relative to nitrogen in order to generate subsurface N* anomalies that are comparable to the observations. We conclude that N2-fixation rate estimates for the Atlantic (and globally may need to be revised upward, which

  9. High heat flux testing impact on the Tore Supra toroidal pumped limiter achievement

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Cordier, J.J.; Mitteau, R.; Durocher, A.; Grosman, A.

    2003-01-01

    The toroidal pumped limiter of Tore Supra is made of 576 elementary high heat flux (HHF) cooled plasma-facing components (PFCs) and designed to sustain 10 MW/m 2 in steady state. One of the main technical difficulties is to ensure a high quality of the bond between the carbon fiber composite armor tile and the water-cooled heat sink due to the high thermal stresses that develop at the bond during operation. Consequently, a HHF facility able to reproduce in service operation of PFCs is required all along the development and manufacturing route. In Europe, the FE200 facility (electron beam, 200 kW, France) operating since 1991, was extensively used for such a development. A first testing campaign in 1995 was devoted to the qualification of this bond: AMC technology from Plansee GmbH was selected. Afterwards, a second campaign on scale-one elements (1996) allowed an optimization of the element design and series production to be launched. During the mass production, a non-destructive control process - cheaper and faster than HHF testing - based on infrared characterization was routinely operated on 100% of the manufactured elements. Strong variability of the bond quality was observed and a repair process allowing the replacement of deficient tiles was developed. In 2000 and 2001, 2 campaigns of HHF testing were launched to correlate the non-destructive measurements and to optimize and validate the repair process. This was done, in two steps, with success. This yielded moreover interesting information for qualifying both tests across each other and also to analyze the fatigue evolution of the bond. The qualification and the achievement of the Tore Supra limiter has greatly been made possible by such HHF tests, which appears as essential before and during PFC manufacturing. (authors)

  10. The impact of material attributes and process parameters on the micronisation of lactose monohydrate.

    Science.gov (United States)

    Shariare, M H; de Matas, M; York, P; Shao, Q

    2011-04-15

    Dry powder inhalers (DPIs), which are important medicines for drug delivery to the lungs, require drug particles in the respirable size range of 1-6 μm for optimal lung deposition. Drugs administered by the oral route also derive benefit from particles in this size range owing to their large surface area to volume ratio, which provides potential for rapid dissolution. Micronisation used in the production of particles, however often leads to heterogeneous product containing mechanically activated surfaces with amorphous content. This study was therefore carried out to evaluate the effect of particle properties of three grades of lactose monohydrate, with sizes above and below the brittle-ductile transition (dcrit) and their interaction with process variables on the quality of micronised material. Following an experimental design, the impact of three factors (grinding pressure, injector pressure and feed rate) on the particulate attributes of micronised powders produced from the different size grades was assessed. Processing conditions were shown to be important determinants of powder properties only for the coarsest starting material. Ultrafine material was achieved by processing finer grade feed stock below dcrit. However the resultant product was more crystalline and transformed on heating to the anhydrous state with markedly reduced onset temperature with lower energy surfaces than powders produced from larger sized starting material. Thus the propensity for micronisation of lactose monohydrate can be altered through control of starting materials and optimal settings for process variables. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Directory of Open Access Journals (Sweden)

    Chunlei Fan

    2018-01-01

    Full Text Available The tests of bullet impact on the base material (BM of a simple specimen with a single resistance-spot-welded (RSW nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM and the scanning electro microscope (SEM. For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling. For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the “notch tip” spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the “notch tip”, propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle

  12. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Science.gov (United States)

    Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang

    2018-01-01

    The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile

  13. Study on Impact Acoustic-Visual Sensor-Based Sorting of ELV Plastic Materials.

    Science.gov (United States)

    Huang, Jiu; Tian, Chuyuan; Ren, Jingwei; Bian, Zhengfu

    2017-06-08

    This paper concentrates on a study of a novel multi-sensor aided method by using acoustic and visual sensors for detection, recognition and separation of End-of Life vehicles' (ELVs) plastic materials, in order to optimize the recycling rate of automotive shredder residues (ASRs). Sensor-based sorting technologies have been utilized for material recycling for the last two decades. One of the problems still remaining results from black and dark dyed plastics which are very difficult to recognize using visual sensors. In this paper a new multi-sensor technology for black plastic recognition and sorting by using impact resonant acoustic emissions (AEs) and laser triangulation scanning was introduced. A pilot sorting system which consists of a 3-dimensional visual sensor and an acoustic sensor was also established; two kinds commonly used vehicle plastics, polypropylene (PP) and acrylonitrile-butadiene-styrene (ABS) and two kinds of modified vehicle plastics, polypropylene/ethylene-propylene-diene-monomer (PP-EPDM) and acrylonitrile-butadiene-styrene/polycarbonate (ABS-PC) were tested. In this study the geometrical features of tested plastic scraps were measured by the visual sensor, and their corresponding impact acoustic emission (AE) signals were acquired by the acoustic sensor. The signal processing and feature extraction of visual data as well as acoustic signals were realized by virtual instruments. Impact acoustic features were recognized by using FFT based power spectral density analysis. The results shows that the characteristics of the tested PP and ABS plastics were totally different, but similar to their respective modified materials. The probability of scrap material recognition rate, i.e., the theoretical sorting efficiency between PP and PP-EPDM, could reach about 50%, and between ABS and ABS-PC it could reach about 75% with diameters ranging from 14 mm to 23 mm, and with exclusion of abnormal impacts, the actual separation rates were 39.2% for PP, 41

  14. What Has Limited the Impact of UK Disability Equality Law on Social Justice?

    Directory of Open Access Journals (Sweden)

    Rupert Harwood

    2016-11-01

    Full Text Available The literature indicates that disabled workers in the UK experience more social injustice than UK workers as a whole, including in relation to employment rates and wage levels. Drawing on the author’s 2015 qualitative study of 265 disabled workers, this paper considers how successful the Equality Act 2010 Reasonable Adjustments Duty has been in tackling this social injustice. It finds that in the context of the “flexible” labour force (consisting of insecure jobs, and the “reformed” welfare state, the Reasonable Adjustments Duty is ill-equipped to achieve its original purpose of reducing the substantial disadvantage that disabled workers face. As regards the “flexible” labour force, there appeared, for example, to be a strong reluctance to make reasonable adjustments for workers on zero hours contracts; while, as regards the impact of welfare reform, fear of being dismissed and facing benefit sanctions discouraged zero hours workers from pushing for adjustments which had been refused. The paper goes on to suggest a possible wording for a strengthened Reasonable Adjustments Duty. It concludes, however, that, without changes to unfair dismissal, and other labour laws, to address the wider iniquities of the flexible labour market, a strengthened duty will not be able to prevent a long term increase in social injustice for disabled workers.

  15. The Impact of Social Media on Press Freedom in Greece: Benefits, Challenges and Limitations

    Directory of Open Access Journals (Sweden)

    Katerina SERAFEIM

    2012-01-01

    Full Text Available The purpose of the essay is to put light on the expansion of social media in news broadcasting in Greece, highlighting their impact on press freedom and freedom of expression. Taken for granted that the media in Greece (television, radio and print press have created, except from their “traditional version”, social media profiles (facebook profile, twitter etc. in order to disseminate the news, the essay investigates the interconnection between the aforementioned use of social media and press freedom. In addition, special focus is given to the challenges that appear from the emergence of social media as news platforms and to the debate that has occurred “for” and “against” this new role of them. Moreover, the essay puts light to some crucial questions that arise:Do social media in Greece, as news platforms, extend freedom of expression and how do they accomplish that? Does the fact that social media empower journalists to provide journalism in more ways than one through tweets, postings, and video and photo uploads, enhance journalists’ freedom of expression and, in a wider sense, the freedom of the press? Has the invasion of social media in the news flow and coverage changed the media landscape in Greece?

  16. APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR RADIOACTIVE MATERIALS PACKAGINGS

    International Nuclear Information System (INIS)

    Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

    2007-01-01

    Polyurethane foam has been widely used as an impact absorbing and thermal insulating material for large radioactive materials packages, since the 1980's. With the adoption of the regulatory crush test requirement, for smaller packages, polyurethane foam has been adopted as a replacement for cane fiberboard, because of its ability to withstand the crush test. Polyurethane foam is an engineered material whose composition is much more closely controlled than that of cane fiberboard. In addition, the properties of the foam can be controlled by controlling the density of the foam. The conditions under which the foam is formed, whether confined or unconfined have an affect on foam properties. The study reported here reviewed the application of polyurethane foam in RAM packagings and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation

  17. Stabilization/solidification of battery debris ampersand lead impacted material at Schuylkill Metals, Plant City, Florida

    International Nuclear Information System (INIS)

    Anguiano, T.; Floyd, D.

    1997-01-01

    The Schuylkill Metals facility in Plant City Florida (SMPCI) operated as a battery recycling facility for approximately 13 years. During its operation, the facility disposed of battery components in surrounding wetland areas. In March of 1991 the U.S. EPA and SMPCI entered into a Consent Decree for the remediation of the SMPCI site using stabilization/solidification and on-site disposal. In November of 1994, ENTACT began remediation at the facility and to date has successfully stabilized/solidified over 228,000 tons of lead impacted battery components and lead impacted material. The ENTACT process reduces the size of the material to be treated to ensure that complete mixing of the phosphate/cement additive is achieved thereby promoting the chemical reactions of stabilization and solidification. ENTACT has met the following performance criteria for treated material at the SMPCI site: (1) Hydraulic Conductivity less than 1x10 -6 cm/s, (2) Unconfined Compressive Strength greater than 50 psi, (3) Lead, Cadmium, Arsenic, Chromium TCLP Leachability below hazardous levels

  18. Impacts of insufficient instructional materials on teaching biology: Higher education systems in focus

    Directory of Open Access Journals (Sweden)

    Sutuma Edessa

    2017-01-01

    Full Text Available Abstract The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was collected while these trainees were attending the course of Biology Teaching Methods in the Post Graduate Diploma in Teaching, both in the regular and summer 2015/2016 training programs at Addis Ababa University. The study employs a mixed method design of both qualitative and quantitative data evaluations. Data was collected through classroom observations and interviews with the trainees. The findings indicated that insufficient instructional materials and ineffective teaching methods in higher education had negative impacts; that have affected the skills of performing biological tasks of graduates 71%. In the course of the Post Graduate Diploma in Teaching training, trainees were unsuccessful to conduct essential biological tasks expected from graduates of biology upon the completion of their undergraduate study program. The study was concluded with emphasis on the need to integrate theory and practice through using adequate instructional materials and proper teaching methods in the higher education biology teaching.

  19. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  20. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    OpenAIRE

    Gilson Morales; Antonio Edésio Jungles; Sheila Elisa Scheidemantel Klein; Juliana Guarda

    2010-01-01

    This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects consid...

  1. The Impact of an ECV Service is Limited by Antenatal Breech Detection: A Retrospective Cohort Study.

    Science.gov (United States)

    Hemelaar, Joris; Lim, Lee N; Impey, Lawrence W

    2015-06-01

    External cephalic version (ECV) reduces the chance of breech presentation at term birth and lowers the chance of a cesarean delivery. ECV services are now in place in many units in the United Kingdom but their effectiveness is unknown. The aim of this study was to investigate the reasons for breech presentation at term birth. We performed a retrospective cohort study of 394 consecutive babies who were in breech presentation at term birth in a large United Kingdom maternity unit that offers ECV. The cohort was analyzed over two time periods 10 years apart: 1998-1999 and 2008-2009. Only 33.8 percent of women had undergone a (failed) ECV attempt. This low proportion was mainly because breech presentation was not diagnosed antenatally (27.9%). Other contributing factors were: ECV not offered by clinicians (12.2%), ECV declined by women (14%), and contraindications to ECV (10.7%). Over the 10-year period, the proportion of breech presentations that were not diagnosed antenatally increased from 23.2 to 32.5 percent (p = 0.04), which constituted 52.8 percent of women who had not undergone an ECV attempt in 2008-2009. Failure of clinicians to offer ECV reduced from 21.6 to 3.0 percent (p = 0.0001) and the proportion of women declining ECV decreased from 19.1 to 9.0 percent (p = 0.005). Overall, ECV attempts increased from 28.9 to 38.5 percent (p = 0.05). Although ECV counseling, referral, and attempt rates have increased, failure to detect breech presentation antenatally is the principal barrier to successful ECV. Improved breech detection would have a greater impact than methods to increase ECV success rates. © 2015 Wiley Periodicals, Inc.

  2. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening

    Science.gov (United States)

    Gujba, Abdullahi K.; Medraj, Mamoun

    2014-01-01

    The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed. PMID:28788284

  3. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Plan for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.

  5. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  6. The Influence of Corrosion Attack on Grey Cast Iron Brittle‑Fracture Behaviour and Its Impact on the Material Life Cycle

    Directory of Open Access Journals (Sweden)

    Jiří Švarc

    2017-01-01

    Full Text Available The paper is concerned with brittle‑fracture behaviour of grey cast iron attacked by corrosion and its impact on the life cycle of a spare part made of grey cast iron. In a corrosion chamber, outdoor climatic conditions (temperature and relative air humidity were simulated in which degradation processes, induced by material corrosion, degrading mechanical properties of a material and possibly leading to irreversible damage of a machine component, occur in the material of maintenance vehicles that are out of operation for the period of one year. The corrosion degradation of grey cast iron, which the spare parts constituting functional parts of an engine are made of grey cast iron, is described with regard to brittle‑fracture behaviour of the material. For the description of corrosion impact on grey cast iron, an instrumented impact test was employed. A corrosion degradation effect on grey cast iron was identified based on measured values of total energy, macro plastic deformation limit, initiation force of unstable crack propagation and force exerted on unstable crack arrest. In the first part of the experiment, a corrosion test of the material concerned was simulated in a condensation chamber; in the second part of the experiment, research results are provided for the measured quantities describing the material brittle‑fracture behaviour; this part is supplemented with a table of results and figures showing the changes in the values of the measured quantities in relation to test temperatures. In the discussion part, the influence of corrosion on the values of unstable crack initiation and arrest forces is interpreted. In the conclusion, an overview of the most significant research findings concerning the impact of corrosion on the life cycle of grey cast iron material is provided.

  7. Guidelines for conducting impact tests on shipping packages for radioactive material

    International Nuclear Information System (INIS)

    Mok, G.C.; Carlson, R.W.; Lu, S.C.; Fischer, L.E.

    1995-09-01

    Federal regulation (10 CFR Part 71) specifies a number of impact conditions (free-drop, penetration, and puncture), under which a package for the transport of radioactive materials must be tested or evaluated to demonstrate compliance with the regulation. This report is a comprehensive guide to the planning and execution of these impact tests. The report identifies the required considerations for both the design, pre-, and post-test inspections of the test model and the measurement, recording, analysis, and reporting of the test data. The report also presents reasons for the requirements, identifies the major difficulties in meeting these requirements, and suggests possible methods to overcome the difficulties. Discussed in substantial detail is the use of scale models and instrumented measurements

  8. Diagnostic tool for structural health monitoring: effect of material nonlinearity and vibro-impact process

    Science.gov (United States)

    Hiwarkar, V. R.; Babitsky, V. I.; Silberschmidt, V. V.

    2013-07-01

    Numerous techniques are available for monitoring structural health. Most of these techniques are expensive and time-consuming. In this paper, vibration-based techniques are explored together with their use as diagnostic tools for structural health monitoring. Finite-element simulations are used to study the effect of material nonlinearity on dynamics of a cracked bar. Additionally, several experiments are performed to study the effect of vibro-impact behavior of crack on its dynamics. It was observed that a change in the natural frequency of the cracked bar due to crack-tip plasticity and vibro-impact behavior linked to interaction of crack faces, obtained from experiments, led to generation of higher harmonics; this can be used as a diagnostic tool for structural health monitoring.

  9. The Impact of Authentic Materials and Tasks on Students’ Communicative Competence at a Colombian Language School

    Directory of Open Access Journals (Sweden)

    César Augusto Castillo Losada

    2017-01-01

    Full Text Available This article reports on a study carried out in a foreign language school at a Colombian public university. Its main purpose was to analyze the extent to which the use of authentic materials and tasks contributes to the enhancement of the communicative competence on an A2 level English course. A mixed study composed of a quasi-experimental and a descriptive-qualitative research design was implemented by means of a pre-test, a post-test, observations, semi-structured interviews, surveys, and diaries. The findings showed that the use of authentic materials and tasks, within the framework of a pedagogical project, had an impact on students’ communicative competence progress and on the teaching practices of the experimental group teacher.

  10. Validating Material Modelling of OFHC Copper Using Dynamic Tensile Extrusion (DTE) Test at Different Impact Velocity

    Science.gov (United States)

    Bonora, Nicola; Testa, Gabriel; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using phenomenological and physically based models (Johnson-Cook, Zerilli-Armstrong and Rusinek-Klepaczko), are presented. Preliminary simulation of microstructure evolution was performed using crystal plasticity package CPFEM, providing, as input, the strain history obtained with FEM at selected locations along the extruded fragments. Results were compared with EBSD investigation.

  11. A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards

    International Nuclear Information System (INIS)

    BAER, MELVIN R.; DRUMHELLER, D.S.; MATHESON, E.R.

    1999-01-01

    The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample

  12. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    Science.gov (United States)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-06-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  13. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    Science.gov (United States)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-04-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  14. Impacts on health and safety from transfer/consolidation of nuclear materials and hazardous chemicals

    International Nuclear Information System (INIS)

    Gallucci, R.H.V.

    1994-11-01

    Environmental restoration plans at the US Department of Energy (USDOE) Hanford Site calls for transfer/consolidation of ''targets/threats,'' namely nuclear materials and hazardous chemicals. Reductions in the health and safety hazards will depend on the plans implemented. Pacific Northwest Laboratory (PNL) estimated these potential impacts, assuming implementation of the current reference plan and employing ongoing risk and safety analyses. The results indicated the potential for ''significant'' reductions in health and safety hazards in the long term (> 25 years) and a potentially ''noteworthy'' reduction in health hazard in the short term (≤ 25 years)

  15. Capsule shell material impacts the in vitro disintegration and dissolution behaviour of a green tea extract☆

    Science.gov (United States)

    Glube, Natalie; Moos, Lea von; Duchateau, Guus

    2013-01-01

    Purpose In vitro disintegration and dissolution are routine methods used to assess the performance and quality of oral dosage forms. The purpose of the current work was to determine the potential for interaction between capsule shell material and a green tea extract and the impact it can have on the release. Methods A green tea extract was formulated into simple powder-in-capsule formulations of which the capsule shell material was either of gelatin or HPMC origin. The disintegration times were determined together with the dissolution profiles in compendial and biorelevant media. Results All formulations disintegrated within 30 min, meeting the USP criteria for botanical formulations. An immediate release dissolution profile was achieved for gelatin capsules in all media but not for the specified HPMC formulations. Dissolution release was especially impaired for HPMCgell at pH 1.2 and for both HPMC formulations in FeSSIF media suggesting the potential for food interactions. Conclusions The delayed release from studied HPMC capsule materials is likely attributed to an interaction between the catechins, the major constituents of the green tea extract, and the capsule shell material. An assessment of in vitro dissolution is recommended prior to the release of a dietary supplement or clinical trial investigational product to ensure efficacy. PMID:25755998

  16. Capsule shell material impacts the in vitro disintegration and dissolution behaviour of a green tea extract.

    Science.gov (United States)

    Glube, Natalie; Moos, Lea von; Duchateau, Guus

    2013-01-01

    In vitro disintegration and dissolution are routine methods used to assess the performance and quality of oral dosage forms. The purpose of the current work was to determine the potential for interaction between capsule shell material and a green tea extract and the impact it can have on the release. A green tea extract was formulated into simple powder-in-capsule formulations of which the capsule shell material was either of gelatin or HPMC origin. The disintegration times were determined together with the dissolution profiles in compendial and biorelevant media. All formulations disintegrated within 30 min, meeting the USP criteria for botanical formulations. An immediate release dissolution profile was achieved for gelatin capsules in all media but not for the specified HPMC formulations. Dissolution release was especially impaired for HPMCgell at pH 1.2 and for both HPMC formulations in FeSSIF media suggesting the potential for food interactions. The delayed release from studied HPMC capsule materials is likely attributed to an interaction between the catechins, the major constituents of the green tea extract, and the capsule shell material. An assessment of in vitro dissolution is recommended prior to the release of a dietary supplement or clinical trial investigational product to ensure efficacy.

  17. Secondary materials: Engineering properties, environmental consequences, and social and economic impacts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Breslin, V.; Reaven, S.; Schwartz, M.; Swanson, L.; Zweig, M.; Bortman, M.; Schubel, J.

    1993-08-01

    This report investigates two secondary materials, plastic lumber made from mixed plastic waste, and cement blocks and structures made with incinerator ash. Engineering properties, environmental impacts, and energy costs and savings of these secondary materials are compared to standard lumber products and cement blocks. Market capacity and social acceptance of plastic lumber and stabilized ash products are analyzed. These secondary materials apparently have potential markets; however, their economic value is primarily that they will not take up landfill space. For plastic lumber and stabilized incinerator ash products, marine and highway construction seem ideal public works applications. Incinerator ash may be suitable to use in seawalls, jetties, fishing reefs, highway barriers, and roadbed applications. Docks, piers, highway sound barriers, parking stops, and park furniture may all be made from plastic lumber. To encourage public acceptance and improve the market potential of secondary materials, these activities could be beneficial: industry should emphasize developing useful, long-lived products; industry and governments should create product performance criteria; government should provide rigorous testing and demonstration programs; and government and industry should cooperate to improve public outreach and educational programs.

  18. Environmental Impacts and Embodied Energy of Construction Methods and Materials in Low-Income Tropical Housing

    Directory of Open Access Journals (Sweden)

    Arman Hashemi

    2015-06-01

    Full Text Available This paper evaluates the current conditions of Ugandan low-income tropical housing with a focus on construction methods and materials in order to identify the key areas for improvement. Literature review, site visits and photographic surveys are carried out to collect relevant information on prevailing construction methods/materials and on their environmental impacts in rural areas. Low quality, high waste, and energy intensive production methods, as well as excessive soil extraction and deforestation, are identified as the main environmental damage of the current construction methods and materials. The embodied energy is highlighted as the key area which should be addressed to reduce the CO2 emissions of low-income tropical housing. The results indicate that the embodied energy of fired bricks in Uganda is up to 5.7 times more than general clay bricks. Concrete walling is identified as a much more environmentally friendly construction method compared to brick walling in East African countries. Improving fuel efficiency and moulding systems, increasing access to renewable energy sources, raising public awareness, educating local manufacturers and artisans, and gradual long-term introduction of innovative construction methods and materials which are adapted to local needs and conditions are some of the recommended actions to improve the current conditions.

  19. Transportation impact analysis for shipment of irradiated N-reactor fuel and associated materials

    International Nuclear Information System (INIS)

    Daling, P.M.; Harris, M.S.

    1994-12-01

    An analysis of the radiological and nonradiological impacts of highway transportation of N-Reactor irradiated fuel (N-fuel) and associated materials is described in this report. N-fuel is proposed to be transported from its present locations in the 105-KE and 105-KW Basins, and possibly the PUREX Facility, to the 327 Building for characterization and testing. Each of these facilities is located on the Hanford Site, which is near Richland, Washington. The projected annual shipping quantity is 500 kgU/yr for 5 years for a total of 2500 kgU. It was assumed the irradiated fuel would be returned to the K- Basins following characterization, so the total amount of fuel shipped was assumed to be 5000 kgU. The shipping campaign may also include the transport and characterization of liquids, gases, and sludges from the storage basins, including fuel assembly and/or canister parts that may also be present in the basins. The impacts of transporting these other materials are bounded by the impacts of transporting 5000 kgU of N-fuel. This report was prepared to support an environmental assessment of the N-fuel characterization program. The RADTRAN 4 and GENII computer codes were used to evaluate the radiological impacts of the proposed shipping campaign. RADTRAN 4 was used to calculate the routine exposures and accident risks to workers and the general public from the N-fuel shipments. The GENII computer code was used to calculate the consequences of the maximum credible accident. The results indicate that the transportation of N-fuel in support of the characterization program should not cause excess radiological-induced latent cancer fatalities or traffic-related nonradiological accident fatalities. The consequences of the maximum credible accident are projected to be small and result in no excess latent cancer fatalities

  20. DFT, Its Impact on Condensed Matter and on ``Materials-Genome'' Research

    Science.gov (United States)

    Scheffler, Matthias

    About 40 years ago, two seminal works demonstrated the power of density-functional theory (DFT) for real materials. These studies by Moruzzi, Janak, and Williams on metals and Yin and Cohen on semiconductors visualized the spatial distribution of electrons, predicted the equation of state of solids, crystal stability, pressure-induced phase transitions, and more. They also stressed the importance of identifying trends by looking at many systems (e.g. the whole transition-metal series). Since then, the field has seen numerous applications of DFT to solids, liquids, defects, surfaces, and interfaces providing important descriptions and explanations as well as predictions of experimentally not yet identified systems. - ∖ ∖ About 10 years ago, G. Ceder and his group [Ref. 3 and references therein] started with high-throughput screening calculations in the spirit of what in 2011 became the ``Materials Genome Initiative''. The idea of high-throughput screening is old (a key example is the ammonia catalyst found by A. Mittasch at BASF more than 100 years ago), but it is now increasingly becoming clear that big data of materials does not only provide direct information but that the data is structured. This enables interpolation, (modest) extrapolation, and new routes towards understanding [Ref. 5 and references therein]. - ∖ ∖ The amount of data created by ``computational materials science'' is significant. For instance, the NoMaD Repository (which includes also data from other repositories, e.g. AFLOWLIB and OQMD) now holds more than 18 million total-energy calculations. In fact, the amount of data of computational materials science is steadily increasing, and about hundred million CPU core hours are nowadays used every day, worldwide, for DFT calculations for materials. - ∖ ∖ The talk will summarize this enormous impact of DFT on materials science, and it will address the next steps, e.g. the issue how to exploit big data of materials for doing forefront

  1. Epidemiology and history of knee injury and its impact on activity limitation among football premier league professional referees.

    Science.gov (United States)

    Mahdavi Mohtasham, Hamid; Shahrbanian, Shahnaz; Khoshroo, Fatemeh

    2018-01-01

    The purpose of this study was to determine the epidemiology and history of knee injury and its impact on activity limitation among football premier league professional referees in Iran. This was a descriptive study. 59 Football Premier League professional referees participated in the study. The knee injury related information such as injury history and mechanism was recorded. Injury related symptoms and their impacts on the activity limitation, ability to perform activities of daily living as well participation in sports and recreational activities was obtained through the Knee Outcome Survey (KOS). The results indicated that 31 out of 59 participants reported the history of knee injury. In addition, 18.6%, 22.4% and 81% of the referees reported that they had been injured during the last 6 months of the last year, and at some point in their refereeing careers, respectively. Results further indicated that 48.8% of the injuries occurred in the non-dominant leg and they occurred more frequently during training sessions (52%). Furthermore, the value of KOS was 85 ± 13 for Activities of Daily Living subscale and 90 ± 9 for Sports and Recreational Activities subscale of the KOS. Knee injury was quite common among the Football Premier League professional referees. It was also indicated that the injuries occurred mainly due to insufficient physical fitness. Therefore, it is suggested that football referees undergo the proper warm-up program to avoid knee injury.

  2. The Impact of Dielectric Material and Temperature on Dielectric Charging in RF MEMS Capacitive Switches

    Science.gov (United States)

    Papaioannou, George

    The present work attempts to provide a better insight on the dielectric charging in RF-MEMS capacitive switches that constitutes a key issue limiting parameter of their commercialization. The dependence of the charging process on the nature of dielectric materials widely used in these devices, such as SiO2, Si3N4, AlN, Al2O3, Ta2O5, HfO2, which consist of covalent or ionic bonds and may exhibit piezoelectric properties is discussed taking into account the effect of deposition conditions and resulting material stoichiometry. Another key issue parameter that accelerates the charging and discharging processes by providing enough energy to trapped charges to be released and to dipoles to overcome potential barriers and randomize their orientation is the temperature will be investigated too. Finally, the effect of device structure will be also taken into account.

  3. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    Science.gov (United States)

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  4. Air pollution impacts of speed limitation measures in large cities: The need for improving traffic data in a metropolitan area

    Science.gov (United States)

    Baldasano, José M.; Gonçalves, María; Soret, Albert; Jiménez-Guerrero, Pedro

    2010-08-01

    Assessing the effects of air quality management strategies in urban areas is a major concern worldwide because of the large impacts on health caused by the exposure to air pollution. In this sense, this work analyses the changes in urban air quality due to the introduction of a maximum speed limit to 80 km h -1 on motorways in a large city by using a novel methodology combining traffic assimilation data and modelling systems implemented in a supercomputing facility. Albeit the methodology has been non-specifically developed and can be extrapolated to any large city or megacity, the case study of Barcelona is presented here. Hourly simulations take into account the entire year 2008 (when the 80 km h -1 limit has been introduced) vs. the traffic conditions for the year 2007. The data has been assimilated in an emission model, which considers hourly variable speeds and hourly traffic intensity in the affected area, taken from long-term measurement campaigns for the aforementioned years; it also permits to take into account the traffic congestion effect. Overall, the emissions are reduced up to 4%; however the local effects of this reduction achieve an important impact for the adjacent area to the roadways, reaching 11%. In this sense, the speed limitation effects assessed represent enhancements in air quality levels (5-7%) of primary pollutants over the area, directly improving the welfare of 1.35 million inhabitants (over 41% of the population of the Metropolitan Area) and affecting 3.29 million dwellers who are potentially benefited from this strategy for air quality management (reducing 0.6% the mortality rates in the area).

  5. Determining the Elasticity of Materials Employing Quantum-mechanical Approaches:From the Electronic Ground State to the Limits of Materials Stability

    Czech Academy of Sciences Publication Activity Database

    Friák, Martin; Hickel, T.; Kormann, F.; Udyansky, A.; Dick, A.; Šob, Mojmír

    2011-01-01

    Roč. 82, č. 2 (2011), s. 86-100 ISSN 1611-3683 R&D Projects: GA AV ČR IAA100100920; GA MŠk OC10008 Institutional research plan: CEZ:AV0Z20410507 Keywords : electronic structure * elasticity * theoretical strength Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.733, year: 2011

  6. Semi-Supervised Bayesian Classification of Materials with Impact-Echo Signals

    Directory of Open Access Journals (Sweden)

    Jorge Igual

    2015-05-01

    Full Text Available The detection and identification of internal defects in a material require the use of some technology that translates the hidden interior damages into observable signals with different signature-defect correspondences. We apply impact-echo techniques for this purpose. The materials are classified according to their defective status (homogeneous, one defect or multiple defects and kind of defect (hole or crack, passing through or not. Every specimen is impacted by a hammer, and the spectrum of the propagated wave is recorded. This spectrum is the input data to a Bayesian classifier that is based on the modeling of the conditional probabilities with a mixture of Gaussians. The parameters of the Gaussian mixtures and the class probabilities are estimated using an extended expectation-maximization algorithm. The advantage of our proposal is that it is flexible, since it obtains good results for a wide range of models even under little supervision; e.g., it obtains a harmonic average of precision and recall value of 92.38% given only a 10% supervision ratio. We test the method with real specimens made of aluminum alloy. The results show that the algorithm works very well. This technique could be applied in many industrial problems, such as the optimization of the marble cutting process.

  7. A constructive nonlinear array (CNA) method for barely visible impact detection in composite materials

    Science.gov (United States)

    Malfense Fierro, Gian Piero; Meo, Michele

    2017-04-01

    Currently there are numerous phased array techniques such as Full Matrix Capture (FMC) and Total Focusing Method (TFM) that provide good damage assessment for composite materials. Although, linear methods struggle to evaluate and assess low levels of damage, while nonlinear methods have shown great promise in early damage detection. A sweep and subtraction evaluation method coupled with a constructive nonlinear array method (CNA) is proposed in order to assess damage specific nonlinearities, address issues with frequency selection when using nonlinear ultrasound imaging techniques and reduce equipment generated nonlinearities. These methods were evaluated using multiple excitation locations on an impacted composite panel with a complex damage (barely visible impact damage). According to various recent works, damage excitation can be accentuated by exciting at local defect resonance (LDR) frequencies; although these frequencies are not always easily determinable. The sweep methodology uses broadband excitation to determine both local defect and material resonances, by assessing local defect generated nonlinearities using a laser vibrometer it is possible to assess which frequencies excite the complex geometry of the crack. The dual effect of accurately determining local defect resonances, the use of an image subtraction method and the reduction of equipment based nonlinearities using CNA result in greater repeatability and clearer nonlinear imaging (NIM).

  8. One decade after Chernobyl: Environmental impact and prospects for the future. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    One decade after the accident at the Chernobyl nuclear power plant, the levels of radioactive contamination of the affected territories are generally well known. Through the impetus from national and international organizations, scientific and technical studies are being undertaken in order to reach a better understanding of the circumstances of the accident, the behavior of radioactive materials in different environmental media and the most efficient ways of decontamination. Doses received by populations have been and continue to be assessed. Taking into account the completed and ongoing studies by other organizations as well as the results of the International Chernobyl Project completed in 1991, the IAEA formulated, in co-operation with the Institut de Protection et de Surete Nucleaire (IPSN) in France, a project focusing on the environmental impact of the Chernobyl accident. The project aimed to make the findings of the scientists understandable to and relevant for the decision makers, who form the target group. Thus the study focused on the environmental impact in the future and was complementary to the other studies performed. It was a synthesis of available material and reports. Refs, figs, tabs

  9. One decade after Chernobyl: Environmental impact and prospects for the future. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    One decade after the accident at the Chernobyl nuclear power plant, the levels of radioactive contamination of the affected territories are generally well known. Through the impetus from national and international organizations, scientific and technical studies are being undertaken in order to reach a better understanding of the circumstances of the accident, the behavior of radioactive materials in different environmental media and the most efficient ways of decontamination. Doses received by populations have been and continue to be assessed. Taking into account the completed and ongoing studies by other organizations as well as the results of the International Chernobyl Project completed in 1991, the IAEA formulated, in co-operation with the Institut de Protection et de Surete Nucleaire (IPSN) in France, a project focusing on the environmental impact of the Chernobyl accident. The project aimed to make the findings of the scientists understandable to and relevant for the decision makers, who form the target group. Thus the study focused on the environmental impact in the future and was complementary to the other studies performed. It was a synthesis of available material and reports. Refs, figs, tabs.

  10. Impact of carbonation on water transport properties of cement-based materials

    International Nuclear Information System (INIS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.

    2015-01-01

    Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)

  11. Environmental Impact Assessment of a School Building in Iceland Using LCA-Including the Effect of Long Distance Transport of Materials

    Directory of Open Access Journals (Sweden)

    Nargessadat Emami

    2016-11-01

    Full Text Available Buildings are the key components of urban areas and society as a complex system. A life cycle assessment was applied to estimate the environmental impacts of the resources applied in the building envelope, floor slabs, and interior walls of the Vættaskóli-Engi building in Reykjavik, Iceland. The scope of this study included four modules of extraction and transportation of raw material to the manufacturing site, production of the construction materials, and transport to the building site, as described in the standard EN 15804. The total environmental effects of the school building in terms of global warming potential, ozone depletion potential, human toxicity, acidification, and eutrophication were calculated. The total global warming potential impact was equal to 255 kg of CO2 eq/sqm, which was low compared to previous studies and was due to the limited system boundary of the current study. The effect of long-distance overseas transport of materials was noticeable in terms of acidification (25% and eutrophication (31% while it was negligible in other impact groups. The results also concluded that producing the cement in Iceland caused less environmental impact in all five impact categories compared to the case in which the cement was imported from Germany. The major contribution of this work is that the environmental impacts of different plans for domestic production or import of construction materials to Iceland can be precisely assessed in order to identify effective measures to move towards a sustainable built environment in Iceland, and also to provide consistent insights for stakeholders.

  12. Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing

    Science.gov (United States)

    Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred

    2010-06-01

    The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.

  13. Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing

    International Nuclear Information System (INIS)

    Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred

    2010-01-01

    The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.

  14. Identification of exponent from load-deformation relation for soft materials from impact tests

    Science.gov (United States)

    Ciornei, F. C.; Alaci, S.; Romanu, I. C.; Ciornei, M. C.; Sopon, G.

    2018-01-01

    When two bodies are brought into contact, the magnitude of occurring reaction forces increase together with the amplitude of deformations. The load-deformation dependency of two contacting bodies is described by a function having the form F = Cxα . An accurate illustration of this relationship assumes finding the precise coefficient C and exponent α. This representation proved to be very useful in hardness tests, in dynamic systems modelling or in considerations upon the elastic-plastic ratio concerning a Hertzian contact. The classical method for identification of the exponent consists in finding it from quasi-static tests. The drawback of the method is the fact that the accurate estimation of the exponent supposes precise identification of the instant of contact initiation. To overcome this aspect, the following observation is exploited: during an impact process, the dissipated energy is converted into heat released by internal friction in the materials and energy for plastic deformations. The paper is based on the remark that for soft materials the hysteresis curves obtained for a static case are similar to the ones obtained for medium velocities. Furthermore, utilizing the fact that for the restitution phase the load-deformation dependency is elastic, a method for finding the α exponent for compression phase is proposed. The maximum depth of the plastic deformations obtained for a series of collisions, by launching, from different heights, a steel ball in free falling on an immobile prism made of soft material, is evaluated by laser profilometry method. The condition that the area of the hysteresis loop equals the variation of kinetical energy of the ball is imposed and two tests are required for finding the exponent. Five collisions from different launching heights of the ball were taken into account. For all the possible impact-pair cases, the values of the exponent were found and close values were obtained.

  15. The CERN antiproton target: hydrocode analysis of its core material dynamic response under proton beam impact

    CERN Document Server

    Martin, Claudio Torregrosa; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-01-01

    Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 {\\deg}C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of...

  16. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    Directory of Open Access Journals (Sweden)

    Claudio Torregrosa Martin

    2016-07-01

    Full Text Available Antiprotons are produced at CERN by colliding a 26  GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa’s. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii The existence of end-of-pulse tensile waves and its relevance on the overall response (iii A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  17. Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance

    Directory of Open Access Journals (Sweden)

    Steven L. McGeehan

    2012-01-01

    Full Text Available Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment.

  18. Optimization of cask for transport of radioactive material under impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kuldeep, E-mail: kuldeep.brit@gmail.com [Indian Institute of Technology Bombay (India); Pawaskar, D.N.; Guha, Anirban [Indian Institute of Technology Bombay (India); Singh, R.K. [Bhabha Atomic Research Center (India)

    2014-07-01

    Highlights: • Cost and weight are important criteria for fabrication and transportation of cask used for transportation of radioactive material. • Reduction of cask cost by modifying few cask geometry parameters using complex search method. • Maximum von Mises stress generated and deformation after impact as design constraints. • Up to 6.9% reduction in cost and 4.6% reduction in weight observed in the examples used. - Abstract: Casks used for transporting radioactive material need to be certified fit by subjecting them to a specific set of tests (IAEA, 2012). The high cost of these casks gives rise to the need for optimizing them. Conducting actual experiments for the process of design iterations is very costly. This work outlines a procedure for optimizing Type B(U) casks through simulations of the 9 m drop test conducted in ABAQUS{sup ®}. Standard designs and material properties were chosen, thus making the process as realistic as reasonable even at the cost of reducing the options (design variables) available for optimization. The results, repeated for different source cavity sizes, show a scope for 6.9% reduction in cost and 4.6% reduction in weight over currently used casks.

  19. Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

    1995-03-01

    This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

  20. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  1. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    International Nuclear Information System (INIS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-01-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  2. A technique for the assessment of the visual impact of nearshore confined dredged materials and other built islands

    Science.gov (United States)

    Roy Mann

    1979-01-01

    Drilling rigs, confined dredged material disposal sites power and sewage treatment facilities, and other built objects on or near shorelines have often created appreciable impacts on the aesthetic perceptions of residents and recreational users. Techniques for assessing such impacts that are reviewed in this paper include viewscape analysis for large-scale shore...

  3. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  4. The Relative Impact of Aligning Tier 2 Intervention Materials with Classroom Core Reading Materials in Grades K-2

    Science.gov (United States)

    Foorman, Barbara R.; Herrera, Sarah; Dombek, Jennifer

    2018-01-01

    This randomized controlled trial in 55 low-performing schools across Florida compared 2 early literacy interventions--1 using stand-alone materials and 1 using materials embedded in the existing core reading/language arts program. A total of 3,447 students who were below the 30th percentile in vocabulary and reading-related skills participated in…

  5. Regulatory impact analysis of final effluent limitations guidelines and standards for the offshore oil and gas industry. Final report

    International Nuclear Information System (INIS)

    1993-01-01

    For all major rulemaking actions, Executive Order 12291 requires a Regulatory Impact Analysis (RIA), in which benefits of the regulation are compared to costs imposed by the regulation. The report presents the Environmental Protection Agency's (EPA, or the Agency) RIA of the final rule on the effluent limitations guidelines for the Offshore Subcategory of the Oil and Gas Extraction Industry. The principal requirement of the Executive Order is that the Agency perform an analysis comparing the benefits of the regulation to the costs that the regulation imposes. Three types of benefits are analyzed in this RIA: quantified and monetized benefits; quantified and non-monetized benefits; and non-quantified and non-monetized benefits

  6. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I.; Sasai, Keisuke; Veld, Aart A. van't; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D_2 − D_9_8, where D_2 and D_9_8 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to 98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and

  7. Soapstone as a locally used and limited sculptural material in remote area of Northern Moravia (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Vavro, Martin; Gajda, J.; Přikryl, R.; Siegl, P.

    2015-01-01

    Roč. 73, č. 8 (2015), s. 4557-4571 ISSN 1866-6280 Institutional support: RVO:68145535 Keywords : soapstone * quarrying history * Northern Moravia * local use * properties Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.765, year: 2014 http://link.springer.com/article/10.1007/s12665-014-3742-3

  8. A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis

    Science.gov (United States)

    Hoffarth, Canio

    Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components - deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure

  9. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  10. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Science.gov (United States)

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  11. Reporting surgical site infections following total hip and knee arthroplasty: impact of limiting surveillance to the operative hospital.

    Science.gov (United States)

    Yokoe, Deborah S; Avery, Taliser R; Platt, Richard; Huang, Susan S

    2013-11-01

    Public reporting of surgical site infections (SSIs) by hospitals is largely limited to infections detected during surgical hospitalizations or readmissions to the same facility. SSI rates may be underestimated if patients with SSIs are readmitted to other hospitals. We assessed the impact of readmissions to other facilities on hospitals' SSI rates following primary total hip arthroplasty (THA) or total knee arthroplasty (TKA). This was a retrospective cohort study of all patients who underwent primary THA or TKA at California hospitals between 1 January 2006 and 31 December 2009. SSIs were identified using ICD-9-CM diagnosis codes predictive of SSI assigned at any California hospital within 365 days of surgery using a statewide repository of hospital data that allowed tracking of patients between facilities. We used statewide data to estimate the fraction of each hospital's THA and TKA SSIs identified at the operative hospital versus other hospitals. A total of 91 121 THA and 121 640 TKA procedures were identified. Based on diagnosis codes, SSIs developed following 2214 (2.3%) THAs and 2465 (2.0%) TKAs. Seventeen percent of SSIs would have been missed by operative hospital surveillance alone. The proportion of hospitals' SSIs detected at nonoperative hospitals ranged from 0% to 100%. Including SSIs detected at nonoperative hospitals resulted in better relative ranking for 61% of THA hospitals and 61% of TKA hospitals. Limiting SSI surveillance to the operative hospital caused varying degrees of SSI underestimation and substantially impacted hospitals' relative rankings, suggesting that alternative methods for comprehensive postdischarge surveillance are needed for accurate benchmarking.

  12. The impact of self-perceived limitations, stigma and sense of coherence on quality of life in multiple sclerosis patients : results of a cross-sectional study

    NARCIS (Netherlands)

    Broersma, Feddrik; Oeseburg, Barth; Dijkstra, Jacob; Wynia, Klaske

    2018-01-01

    OBJECTIVE: To examine the impact of perceived limitations, stigma and sense of coherence on quality of life in multiple sclerosis patients. DESIGN: Cross-sectional survey. SETTING: Department of Neurology, University Medical Center Groningen, the Netherlands. SUBJECTS: Multiple sclerosis patients.

  13. Scaling impact and shock-compression response for porous materials: Application to planetary formation

    Science.gov (United States)

    Jeanloz, R.

    2016-12-01

    A thermodynamic model based on the Mie-Grüneisen equation of state does a good job of describing the response of porous materials to impact, so can provide insights into the accretion and cohesion of planetesimals too small to be significantly held together by gravity (e.g., tens of km or less in average diameter). The model identifies an offset in Hugoniot pressure (ΔPH) due to porosity that is found to be in agreement with experimental shock-compression measurements for samples having a wide range of initial porosities. Assuming the Grüneisen parameter (γ) is proportional to volume (γ/V = constant), the relative offset in Hugoniot pressure as a function of initial porosity (φ = 1 - V0/V0por) and compression (η = 1 - V/V0) is ΔPH/PH = γ0 φ/[2(1 - φ) - γ0 (φ + η(1 - φ))] where subscripts 0 and por represent zero-pressure (non-porous) conditions and a porous sample, respectively. This additional thermal pressure at a given volume is due to the extra internal energy and corresponding temperature increase associated with collapsing pores (Fig. 1: near-identical curves for φ = 0.001 and 0.01). This result can be interpreted as indicating that upon collapse individual pores create hot spots with temperatures of order 103-104K above the background, suggesting that impact into an initially porous target can result in cohesion due to partial melting and vaporization. Moreover, the waste heat associated with pore closure far exceeds the dissipation in shock loading of non-porous material, reflecting the ability of a porous target to absorb and dissipate impact energy. The Mie-Grüneisen model along with analysis of waste heat thus provides a scaling for planetesimal impact that might explain how rock and regolith accrete into a gravitationally bound planet. Fig. 1. Porosity-induced anomaly in Hugoniot temperature per unit of porosity, shown as a function of compression for samples with initial porosity φ = 0.001 (green), 0.01 (blue) and 0.1 (gold) assuming

  14. Health Economics as Rhetoric: The Limited Impact of Health Economics on Funding Decisions in Four European Countries.

    Science.gov (United States)

    Franken, Margreet; Heintz, Emelie; Gerber-Grote, Andreas; Raftery, James

    2016-12-01

    A response to the challenge of high-cost treatments in health care has been economic evaluation. Cost-effectiveness analysis presented as cost per quality-adjusted life-years gained has been controversial, raising heated support and opposition. To assess the impact of economic evaluation in decisions on what to fund in four European countries and discuss the implications of our findings. We used a protocol to review the key features of the application of economic evaluation in reimbursement decision making in England, Germany, the Netherlands, and Sweden, reporting country-specific highlights. Although the institutions and processes vary by country, health economic evaluation has had limited impact on restricting access of controversial high-cost drugs. Even in those countries that have gone the furthest, ways have been found to avoid refusing to fund high-cost drugs for particular diseases including cancer, multiple sclerosis, and orphan diseases. Economic evaluation may, however, have helped some countries to negotiate price reductions for some drugs. It has also extended to the discussion of clinical effectiveness to include cost. The differences in approaches but similarities in outcomes suggest that health economic evaluation be viewed largely as rhetoric (in D.N. McCloskey's terms in The Rhetoric of Economics, 1985). This is not to imply that economics had no impact: rather that it usually contributed to the discourse in ways that differed by country. The reasons for this no doubt vary by perspective, from political science to ethics. Economic evaluation may have less to do with rationing or denial of medical treatments than to do with expanding the discourse used to discuss such issues. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. Estimating the Lower Limit of the Impact of Amines on Nucleation in the Earth’s Atmosphere

    Directory of Open Access Journals (Sweden)

    Alexey B. Nadykto

    2015-04-01

    Full Text Available Amines, organic derivatives of NH3, are important common trace atmospheric species that can enhance new particle formation in the Earth’s atmosphere under favorable conditions. While methylamine (MA, dimethylamine (DMA and trimethylamine (TMA all efficiently enhance binary nucleation, MA may represent the lower limit of the enhancing effect of amines on atmospheric nucleation. In the present paper, we report new thermochemical data concerning MA-enhanced nucleation, which were obtained using the DFT PW91PW91/6-311++G (3df, 3pd method, and investigate the enhancement in production of stable pre-nucleation clusters due to the MA. We found that the MA ternary nucleation begins to dominate over ternary nucleation of sulfuric acid, water and ammonia at [MA]/[NH3] > ~10−3. This means that under real atmospheric conditions ([MA] ~ 1 ppt, [NH3] ~ 1 ppb the lower limit of the enhancement due to methylamines is either close to or higher than the typical effect of NH3. A very strong impact of the MA is observed at low RH; however it decreases quickly as the RH grows. Low RH and low ambient temperatures were found to be particularly favorable for the enhancement in production of stable sulfuric acid-water clusters due to the MA.

  16. Limits on the impact parameters occurring in specific K-p interactions at 8.25 GeV/c

    International Nuclear Information System (INIS)

    Simopoulon, E.; Fry, J.R.; Muirhead, H.; Rohringer, H.; Apostolakis, A.; Papaelias, P.; Rosaki, H.; Vassiliadis, G.; Filippas, T.A.; Grammatikakis, G.; Tsilimigras, P.; Vayaki, A.; Dallman, D.P.; Markytan, M.

    1976-01-01

    The authors have determined a lower limit of the impact parameter for the reaction associated with the channels K - p→K - pπ + π - and K - p→LAMBDAπ + π - π 0 . The limit was found to be highest for the diffractive part of the first channel (approximately 0.52fm) and smallest for the forward LAMBDA in the second channel (approximately 0.21fm). They have also examined the elements of the inverse correlation matrix for the transfer: the off-diagonal elements are small (consistent with zero) for n=4-7 body products. The log of the correlation matrix as a function of mod(i-j) falls on a straight line and the eigenvalue lambda 1 of the transverse momentum transfer eigenfunction was found to increase slightly from approximately 0.6 for 4-body to approximately 0.7 for 7-body products. The of the Qsub(i), Qsub(j) shows similar behaviour to the . (Auth.)

  17. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  18. Impact of material thicknesses on fission observables obtained with the FALSTAFF experimental setup

    Directory of Open Access Journals (Sweden)

    Thulliez L.

    2017-01-01

    Full Text Available In the past years, the fission studies have been mainly focused on thermal fission because most of the current nuclear reactors work in this energy domain. With the development of GEN-IV reactor concepts, mainly working in the fast energy domain, new nuclear data are needed. The FALSTAFF spectrometer under development at CEA-Saclay, France, is a two-arm spectrometer which will provide mass yields before (2V method and after (EV method neutron evaporation and consequently will have access to the neutron multiplicity as a function of mass. The axial ionization chamber, in addition to the kinetic energy value, will measure the energy loss profile of the fragment along its track. This energy loss profile will give information about the fragment nuclear charge. This paper will focus on recent developments on the FALSTAFF design. A special attention will be paid to the impact of the detector material thickness on the uncertainty of different observables.

  19. INTERTRAN: A system for assessing the impact from transporting radioactive material

    International Nuclear Information System (INIS)

    Ericsson, A.M.; Elert, M.

    1983-05-01

    The document presents a system, provided to the IAEA by the Swedish Nuclear Power Inspectorate, which offers a simple method to assess the impact from any transportation of packages of radioactive materials. The first part gives a detailed description of the model, giving examples of both incident-free calculations and accident calculations. Input parameters are described in a next section. The effect of a variation of an input variable on the output (sensitivity analysis) is estimated in another section, and, finally, a description of the computer code (named INTERTRAN) and of its input and output is given. The system is intended as a model easy to handle and use by all IAEA Member States

  20. Limitations on the concentration of radioactive elements substances (natural or enhanced by human activity) in building materials - a proposal for draft Israeli regulations

    International Nuclear Information System (INIS)

    Schlesinger, T.; Hareuveny, R.; Margaliot, M.

    1997-01-01

    Natural radioactive elements 40 K 228 U and 232 Th and their decay product such as 226 Ra and its short lived daughters occur in building materials in relatively high concentrations. 40 K and part of the above mentioned radionuclides cause external exposure while the inhalation of 222 Ra and its short lived progeny lead to internal exposure of the respiratory tract to alpha particles. In recent years there is a growing tendency to use new construction materials with naturally or technologically enhanced levels of radioactivity (e.g. phosphogypsum, fly ash, exotic minerals etc). This trend causes a growing health concern.The result of this concern is legislation activity and publication of guidance notes by national authorities and international professional organizations related to the radiological implications of these novel technologies. The Ministry of the Environment in Israel is authorized by Israeli legislation to control the exposure of the public to ionising radiation. The ministry asked in 1996 a professional group in the Radiation Protection Division in the Soreq NRC (the authors of this presentation) to study the radiological implications of the use of building materials with naturally or technologically enhanced concentrations of radioactive substances, and to submit draft regulations setting primary limits on excess exposure of the public to ionizing radiation from building materials, and derived limits related to concentrations of specific radionuclides in these materials.The draft regulations will be presented and the way of their derivation will be reviewed (authors)

  1. Evaluation of impact limiter performance during end-on and slapdown drop tests of a one-third scale model storage/transport cask system

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Bronowski, D.R.; Uncapher, W.L.; Attaway, S.W.; Bateman, V.I.; Carne, T.G.; Gregory, D.L.; Huerta, M.

    1990-12-01

    This report describes drop testing of a one-third scale model shipping cask system. Two casks were designed and fabricated by Transnuclear, Inc., to ship spent fuel from the former Nuclear Fuel Services West Valley reprocessing facility in New York to the Idaho National Engineering Laboratory for a long-term spent fuel dry storage demonstration project. As part of the NRC's regulatory certification process, one-third scale model tests were performed to obtain experimental data on impact limiter performance during impact testing. The objectives of the testing program were to (1) obtain deceleration and displacement information for the cask and impact limiter system, (2) obtain dynamic force-displacement data for the impact limiters, (3) verify the integrity of the impact limiter retention system, and (4) examine the crush behavior of the limiters. Two 30-ft (9-m) drop tests were conducted on a mass model of the cask body and scaled balsa and redwood-filled impact limiters. This report describes the results of both tests in terms of measured decelerations, posttest deformation measurements, and the general structural response of the system. 3 refs., 32 figs

  2. Limit of detection for the determination of Pt in biological material by RNAA using electrolytic separation of gold

    International Nuclear Information System (INIS)

    Xilei, L.; Heydorn, K.; Rietz, B.

    1992-01-01

    Neutron activation analysis based on the 199 Au indicator for platinum requires the separation of gold at high radiochemical purity. The limit of detection is strongly affected by the presence of gold; with a gold content of 50 pg/g, irradiating for 5 days at 5*10 13 n/cm 2 is needed to achieve a limit of detection of approximately 30 pg/g. In this case the nuclear interference from gold will exceeded the level of platium by several orders of magnitude and has to be determined with exceedingly high precision. Preliminary results for SRM 1577 Bovine Liver with 95% yield gave consistent results for Au, but Pt could not be detected. (author) 23 refs.; 3 figs.; 4 tabs

  3. Technological changes, new materials, and their impact on the demand for minerals

    International Nuclear Information System (INIS)

    Rogich, D.G.

    1991-01-01

    Almost all mineral commodities compete in an international market, and changing technologies and preferences can impact this materials market to either increase or decrease the demand for specific minerals. This paper presents information on the changes we are seeing in materials usage in the United States, some specific examples of market penetration and methods to evaluate this, and some preliminary data on worldwide trends. Traditionally, evaluating the viability of a mineral venture involves the estimation of anticipated costs, production rates, mine life, and discount rates. These estimated costs are then compared with current and expected future prices to see if the necessary return on investment is likely to be generated. Additionally, an examination of the current, and expected future competition in the market is certainly of interest since an assessment of where the operation's costs fall in relation to the total world supply determines how far demand/prices can fall before stronger operations can supply the whole market. Feedstock price has been the traditional measure in the minerals community, and most producers think of themselves as suppliers of particular commodities in competition with other similar suppliers. However, this approach must be altered when we seek to evaluate how individual commodities compete in a market where substitution is expanding

  4. Salt content impact on the unsaturated property of bentonite-sand buffer backfilling materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Zhang Huyuan, E-mail: p1314lvp@yahoo.com.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Jia Lingyan; Cui Suli [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer SWCC and infiltration process of bentonite-sand mixtures is researched. Black-Right-Pointing-Pointer The k{sub u} of bentonite-sand mixtures was evaluated as the buffer backfilling materials. Black-Right-Pointing-Pointer Salt content impacting on the unsaturated property of bentonite-sand materials is small. - Abstract: Bentonite mixed with sand is often considered as possible engineered barrier in deep high-level radioactive waste disposal in China. In the present work, the vapor transfer technique and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k{sub u}) of bentonite-sand mixtures (B/S) effected by salt content. Results show, the water-holding capacity and k{sub u} increase slightly with the concentration of Na{sup +} in pore liquid increasing from 0 g/L to 12 g/L, similar with the solution concentration of Beishan groundwater in China. Salt content in the laboratory produced only one order of magnitude increase in k{sub u}, which is the 'safe' value. The different pore liquid concentrations used in this study led to small differences in thickness of diffuse double layer of bentonite in mixtures, this might explain why some differences have been found in final values of k{sub u}.

  5. Environmental impact and recovery at two dumping sites for dredged material in the North Sea

    International Nuclear Information System (INIS)

    Stronkhorst, J.; Ariese, F.; Hattum, B. van; Postma, J.F.; Kluijver, M. de; Besten, P.J. den; Bergman, M.J.N.; Daan, R.; Murk, A.J.; Vethaak, A.D.

    2003-01-01

    Marine benthic resources near dumping sites are adversely affected by physical disturbances, but a causal link to contaminant damage could not be found. - The environmental impact and recovery associated with the long and uninterrupted disposal of large volumes of moderately contaminated dredged material from the port of Rotterdam was studied at nearby dumping sites in the North Sea. Observations were made on sediment contamination, ecotoxicity, biomarker responses and benthic community changes shortly after dumping at the 'North' site had ceased and at the start of disposal at the new dumping site 'Northwest'. During the period of dumping, very few benthic invertebrates were found at the North site. Concentrations of cadmium, mercury, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and tributyltin (TBT) in the fine sediment fraction ( 3 of moderately contaminated dredged material had been dumped at the new dumping site Northwest, the species richness and abundance of benthic invertebrates declined over an area extending about 1-2 km eastwards. This correlated with a shift in sediment texture from sand to silt. The contamination of the fine sediment fraction at the Northwest location doubled. It is concluded that marine benthic resources at and around the dumping sites have been adversely affected by physical disturbance (burial, smothering). However, no causal link could be established with sediment-associated contaminants from the dredged spoils

  6. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  7. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Charley [Argonne National Lab. (ANL), Argonne, IL (United States); Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Cheng [Argonne National Lab. (ANL), Argonne, IL (United States); Cheng, Jing-Jy [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  8. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  9. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Wuttig, M; Siegrist, T

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb 2 Te 3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  10. The potential impact of ozone on materials in the U.K.

    Science.gov (United States)

    Lee, David S.; Holland, Michael R.; Falla, Norman

    Recent reports have highlighted the potential damage caused to a range of media, including materials, by ozone (O 3). The limited data available indicate significant damage to rubber products and surface coatings but either insignificant or unquantifiable damage to textiles and other polymeric materials at the range of atmospheric concentrations encountered in the U.K. Materials in the indoor environment have been excluded from economic analyses. Legislation was put in place in 1993 in the U.K. in order to reduce NO x (NO x = NO + NO 2) and VOC (volatile organic compounds) emissions from motor vehicles which is likely to result in reduced peak O 3 episodes but increased average levels of O 3 in urban areas which may result in increased damage to materials. A detailed assessment of the costs of O 3 damage to materials is not currently possible because of insufficient information on relevant dose-response functions and the stock at risk. Alternative methods were thus adopted to determine the potential scale of the problem. Scaling of U.S. estimates made in the late 1960s provides a range for the U.K. of £170 million-£345 million yr -1 in current terms. This includes damage to surface coatings and elastomers, and the cost of antiozonant protection applied to rubber goods. Independent estimates were made of the costs of protecting rubber goods in the U.K. These were based on the size of the antiozonant market, and provide cost ranges of £25 million-£63 million yr -1 to manufacturers and £25 million-£189 million yr -1 to consumers. The only rubber goods for which a damage estimate (not including protection costs) could be made were tyres, using data from the U.S.A. and information on annual tyre sales in the U.K. A range of £0-£4 million yr -1 was estimated. The cost of damage to other rubber goods could not be quantified because of a lack of data on both the stock at risk and exposure-response functions. The effect of O 3 on the costs of repainting were

  11. Geo-microbiological reactivity of iron materials: impact on geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Esnault, L.

    2010-01-01

    This thesis sought to describe the dynamic concept of a viable and sustainable microbiological activity under deep geological disposal conditions and to assess its impact on containment properties and storage components. Thus, in this study, a model based on the bacterial ferric reduction was chosen for its sustainability criteria in the system and its ability to alter the materials in storage conditions. The main results of this work demonstrated the capability of the environment to stand the iron-reducing bacterial activity and the conditions of its development in the deep clay environments. The bio-availability of structural Fe (III) in clay minerals and iron oxides produced during the process of metal corrosion was clearly demonstrated. In this system, the corrosion appears to be a positive factor on bacterial activities by producing an energy source, hydrogen. The iron-reducing bacterial activities can lead to a resumption of metallic corrosion through the consumption of iron oxides in the passive film. The direct consequence would be a reduction of the lifetime of metal containers. In the case of ferric clay minerals, the consequences of such an activity are such that they can have an impact on the overall porous structure both in terms of chemical reactivity of the materials or physical behavior of the clayey barrier. One of the most significant results is the crystallization of new clay phases at very low temperatures, below 40 C, highlighting the influence of the anaerobic microbial activity in the mineralogical transformations of clay minerals. Furthermore, these experiments also allowed to visualize, for the first time, a mechanism of bacterial respiration at distance, this increases the field of the availability of essential elements as Fe 3+ for bacterial growth in extreme environment. In conclusion, these results clearly showed the impact of the microbiological factor on the reactivity of clay and metal minerals, while relying on control parameters on

  12. Material revolution, and analysis of its impacts on the industry and technology of the next generation; Zairyo kakumei to jisedai sangyo gijutsu eno impact bunseki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    This paper discusses possibility of advanced materials from seeds and expectations from needs; and also describes consistency between the seeds and needs, and possible impacts of these materials on the industry and technology of the next generation. Chapter 1 presents the promising results and eventual possibilities, based on the basic studies, of the advanced materials, e.g., fine ceramics, highly functional polymers, new alloys and composite materials. Chapter 2 analyzes the properties and functions attainable by these materials, and expected applicable areas; investigates their technical and economical possibilities; and also investigates their ripple effects on the technology and economy. Chapter 3 investigates the current situations of the demands in the automobile, chemical plant and energy areas, and problems involved in development of these materials for these areas. Chapter 4 investigates the measures to promote consistency between the seeds and needs of these materials, and impacts of these advanced materials on the related techniques, related industries and industrial structures. Chapter 5 summarizes the problems and measures narrowed down in Chapters 1 to 4 comprehensively for the above areas; and the measures to be taken by the private sector, and cooperation by the industrial, government and academic circles. (NEDO)

  13. Non-proliferation of nuclear weapons and nuclear security. Overview of safeguards requirements for States with limited nuclear material and activities

    International Nuclear Information System (INIS)

    Lodding, J.; Ribeiro, B.

    2006-06-01

    This booklet provides an overview of safeguards obligations that apply to States which are parties to the Nuclear Non-Proliferation Treaty (NPT) that have no nuclear facilities and only limited quantities of nuclear material. Most State parties to the NPT have no nuclear facilities and only limited quantities of nuclear material. For such States, safeguards implementation is expected to be simple and straightforward. This booklet provides an overview of the safeguards obligations that apply to such States. It is hoped that a better understanding of these requirements will facilitate the conclusion and implementation of safeguards agreements and additional protocols, and thereby contribute to the strengthening of the IAEA?s safeguards system and of collective security

  14. Non-proliferation of nuclear weapons and nuclear security. Overview of Safeguards requirements for States with limited nuclear material and activities

    International Nuclear Information System (INIS)

    Lodding, J.; Ribeiro, B.

    2006-06-01

    This booklet provides an overview of safeguards obligations that apply to States which are parties to the Nuclear Non-Proliferation Treaty (NPT) that have no nuclear facilities and only limited quantities of nuclear material. Most State parties to the NPT have no nuclear facilities and only limited quantities of nuclear material. For such States, safeguards implementation is expected to be simple and straightforward. This booklet provides an overview of the safeguards obligations that apply to such States. It is hoped that a better understanding of these requirements will facilitate the conclusion and implementation of safeguards agreements and additional protocols, and thereby contribute to the strengthening of the IAEA?s safeguards system and of collective security

  15. Natural penetrating radiation inside silicate dwellings in Chengdu and recommendation on permissible limits for radioactivity of building material made of silicate cinders

    International Nuclear Information System (INIS)

    Li Guangzao

    1984-01-01

    This paper reports the results of external exposure rate of penetrating radiation inside silicate dwellings in Chengdu. The average exposure rate was 24.3+-3.5 R/h. It was evidently higher than of red brick dwellings. The average effective equivalent of the population in silicate dwellings was 123.4+-10.4 mrem/y and the average additional dose was 29.5+-12.5 mrem/y. The permissible limits recommended for silicate building material would be 6 pCi/g, 7 pCi/g and 102 pCi/g for 226 Ra, 232 Th and 40 K, respectively. The total activity must fulfill the formula of Csub(Ra)/6 + Csub(Th)/7 + Csub(k)/102 1. Under ordinary condition the exposure rate (10+background) R/h of penetrating radiation from the surface of dry building material might be taken as the permissible limit for dwellings and other public buildings

  16. Lifetime limitations of ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts

    International Nuclear Information System (INIS)

    Czaplewski, David A; Nordquist, Christopher D; Dyck, Christopher W; Patrizi, Gary A; Kraus, Garth M; Cowan, William D

    2012-01-01

    We present lifetime limitations and failure analysis of many packaged RF MEMS ohmic contacting switches with Au–Au, Au–Ir, and Au–Pt contact materials operating with 100 µN of contact force per contact in hermetically sealed glass wall packages. All metals were tested using the same switch design in a controlled environment to provide a comparison between the performance of the different materials and their corresponding failure mechanisms. The switch lifetimes of the different contact materials varied from several hundred cycles to 200 million cycles with different mechanisms causing failures for different contact materials. Switches with Au–Au contacts failed due to adhesion when thoroughly cleaned while switches with dissimilar metal contacts (Au–Ir and Au–Pt) operated without adhesion failures but failed due to carbon accumulation on the contacts even in a clean, packaged environment as a result of the catalytic behavior of the contact materials. Switch lifetimes correlated inversely with catalytic behavior of the contact metals. The data suggests the path to increase switch lifetime is to use favorable catalytic materials as contacts, design switches with higher contact forces to break through any residual contamination, and use cleaner, probably smaller, packages. (paper)

  17. Features of energy impact on a billet material when cutting with outstripping plastic deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available In the last decades the so-called combined machining methods based on parallel, serial or parallelserial combination of different types of energy impacts on the billet are designed and developed. Combination of two or more sources of external energy in one method of machining can be directed to the solution of different technological tasks, such as: improvement of a basic method to enhance technicaland-economic and technological indicators of machining, expansion of technological capabilities of the method, increase of reliability and stability of technological process to produce details, etc. Besides, the combined methods of machining are considered as one of the means, which enables reducing the number of operations in technological process, allows the growth of workforce productivity.When developing the combined technologies, one of the main scientific tasks is to define the general regularities of interaction and mutual influence of the energy fluxes brought to the zone of machining. The result of such mutual influence becomes apparent from the forming technological parameters of machining and determines the most rational operating conditions of technological process.In the context of conducted in BMSTU researches on the combined cutting method with outstripping plastic deformation (OPD the mutual influence of the energetic components of machining has been quantitatively assessed. The paper shows a direct relationship between the rational ratio of the two types of the mechanical energy brought in the machining zone, the machining conditions, and the optimum operating conditions.The paper offers a physical model of chip formation when machining with OPD. The essence of model is that specific works spent on material deformation of a cut-off layer are quantitatively compared at usual cutting and at cutting with OPD. It is experimentally confirmed that the final strain-deformed material states of a cut-off layer, essentially, coincide in both

  18. The Science of Cost-Effective Materials Design - A Study in the Development of a High Strength, Impact Resistant Steel

    Science.gov (United States)

    Abrahams, Rachel

    2017-06-01

    Intermediate alloy steels are widely used in applications where both high strength and toughness are required for extreme/dynamic loading environments. Steels containing greater than 10% Ni-Co-Mo are amongst the highest strength martensitic steels, due to their high levels of solution strengthening, and preservation of toughness through nano-scaled secondary hardening, semi-coherent hcp-M2 C carbides. While these steels have high yield strengths (σy 0.2 % >1200 MPa) with high impact toughness values (CVN@-40 >30J), they are often cost-prohibitive due to the material and processing cost of nickel and cobalt. Early stage-I steels such as ES-1 (Eglin Steel) were developed in response to the high cost of nickel-cobalt steels and performed well in extreme shock environments due to the presence of analogous nano-scaled hcp-Fe2.4 C epsilon carbides. Unfortunately, the persistence of W-bearing carbides limited the use of ES-1 to relatively thin sections. In this study, we discuss the background and accelerated development cycle of AF96, an alternative Cr-Mo-Ni-Si stage-I temper steel using low-cost heuristic and Integrated Computational Materials Engineering (ICME)-assisted methods. The microstructure of AF96 was tailored to mimic that of ES-1, while reducing stability of detrimental phases and improving ease of processing in industrial environments. AF96 is amenable to casting and forging, deeply hardenable, and scalable to 100,000 kg melt quantities. When produced at the industrial scale, it was found that AF96 exhibits near-statistically identical mechanical properties to ES-1 at 50% of the cost.

  19. Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement

    KAUST Repository

    Carey, Graham H.

    2013-05-13

    Colloidal quantum dot photovoltaic devices have improved from initial, sub-1% solar power conversion efficiency to current record performance of over 7%. Rapid advances in materials processing and device physics have driven this impressive performance progress. The highest-efficiency approaches rely on a fabrication process that starts with nanocrystals in solution, initially capped with long organic molecules. This solution is deposited and the resultant film is treated using a solution containing a second, shorter capping ligand, leading to a cross-linked, non-redispersible, and dense layer. This procedure is repeated, leading to the widely employed layer-by-layer solid-state ligand exchange. We will review the properties and features of this process, and will also discuss innovative pathways to creating even higher-performing films and photovoltaic devices.

  20. Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement

    KAUST Repository

    Carey, Graham H.; Chou, Kang Wei; Yan, Buyi; Kirmani, Ahmad R.; Amassian, Aram; Sargent, Edward H.

    2013-01-01

    Colloidal quantum dot photovoltaic devices have improved from initial, sub-1% solar power conversion efficiency to current record performance of over 7%. Rapid advances in materials processing and device physics have driven this impressive performance progress. The highest-efficiency approaches rely on a fabrication process that starts with nanocrystals in solution, initially capped with long organic molecules. This solution is deposited and the resultant film is treated using a solution containing a second, shorter capping ligand, leading to a cross-linked, non-redispersible, and dense layer. This procedure is repeated, leading to the widely employed layer-by-layer solid-state ligand exchange. We will review the properties and features of this process, and will also discuss innovative pathways to creating even higher-performing films and photovoltaic devices.

  1. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact.

    Science.gov (United States)

    Sohn, Hojoon; Aero, Abebech D; Menzies, Dick; Behr, Marcel; Schwartzman, Kevin; Alvarez, Gonzalo G; Dan, Andrei; McIntosh, Fiona; Pai, Madhukar; Denkinger, Claudia M

    2014-04-01

    Xpert MTB/RIF, the first automated molecular test for tuberculosis, is transforming the diagnostic landscape in low-income countries. However, little information is available on its performance in low-incidence, high-resource countries. We evaluated the accuracy of Xpert in a university hospital tuberculosis clinic in Montreal, Canada, for the detection of pulmonary tuberculosis on induced sputum samples, using mycobacterial cultures as the reference standard. We also assessed the potential reduction in time to diagnosis and treatment initiation. We enrolled 502 consecutive patients who presented for evaluation of possible active tuberculosis (most with abnormal chest radiographs, only 18% symptomatic). Twenty-five subjects were identified to have active tuberculosis by culture. Xpert had a sensitivity of 46% (95% confidence interval [CI], 26%-67%) and specificity of 100% (95% CI, 99%-100%) for detection of Mycobacterium tuberculosis. Sensitivity was 86% (95% CI, 42%-100%) in the 7 subjects with smear-positive results, and 28% (95% CI, 10%-56%) in the remaining subjects with smear-negative, culture-positive results; in this latter group, positive Xpert results were obtained a median 12 days before culture results. Subjects with positive cultures but negative Xpert results had minimal disease: 11 of 13 had no symptoms on presentation, and mean time to positive liquid culture results was 28 days (95% CI, 25-47 days) compared with 14 days (95% CI, 8-21 days) in Xpert/culture-positive cases. Our findings suggest limited potential impact of Xpert testing in high-resource, low-incidence ambulatory settings due to lower sensitivity in the context of less extensive disease, and limited potential to expedite diagnosis beyond what is achieved with the existing, well-performing diagnostic algorithm.

  2. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    Science.gov (United States)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was

  3. Comparison of the impact of scaler material composition on polished titanium implant abutment surfaces.

    Science.gov (United States)

    Hasturk, Hatice; Nguyen, Daniel Huy; Sherzai, Homa; Song, Xiaoping; Soukos, Nikos; Bidlack, Felicitas B; Van Dyke, Thomas E

    2013-08-01

    The purpose of this study was to compare the impact of the removal of biofilm with hand scalers of different material composition on the surface of implant abutments by assessing the surface topography and residual plaque after scaling using scanning electron microscopy (SEM). Titanium implant analogs from 3 manufacturers (Straumann USA LLC, Andover, Maine, Nobel BioCare USA LLC, Yorba Linda, Cali, Astra Tech Implant Systems, Dentsply, Mölndal, Sweden) were mounted in stone in plastic vials individually with authentic prosthetic abutments. Plaque samples were collected from a healthy volunteer, inoculated into growth medium and incubated with the abutments anaerobically for 1 week. A blinded, calibrated hygienist performed scaling to remove the biofilm using 6 implant scalers (in triplicate), 1 scaler for 1 abutment. The abutments were mounted on an imaging stand and processed for SEM. Images were captured in 3 randomly designated areas of interest on each abutment. Analysis of the implant polished abutment surface and plaque area measurements were performed using ImageJ image analysis software. Surface alterations were characterized by the number, length, depth and the width of the scratches observed. Glass filled resin scalers resulted in significantly more and longer scratches on all 3 abutment types compared to other scalers, while unfilled resin scalers resulted in the least surface change (p abutments with regard to plaque removal. The impact of scalers on implant abutment surfaces varies between abutment types presumably due to different surface characteristics with no apparent advantage of one abutment type over the other with regard to resistance to surface damage. Unfilled resin was found consistently to be the least damaging to abutment surfaces, although all scalers of all compositions caused detectable surface changes to polished surfaces of implant abutments.

  4. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

    2014-05-07

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

  5. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    Directory of Open Access Journals (Sweden)

    Pan Ji

    Full Text Available A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing. To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10 had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.

  6. Impact modelling of naturally occurring radioactive materials (NORM) in the environment

    International Nuclear Information System (INIS)

    Olyslaegers, G.

    2009-01-01

    Remediation of sites contaminated by Naturally Occurring Radioactive Materials (NORM) is a current issue in many countries world wide. These materials could arise from many types of industries such as mining and milling of uranium, thorium and other metals, phosphate industry, coal mining and combustion, oil and gas industry, abandoned radium and thorium extraction facilities. Waste products originating from these industries need to be managed in a proper way. In recent years, new radiation protection legislation, growing awareness of radiation risks at some sites and public perception have created the necessity to develop remediation strategies for those sites. These strategies can be based on the exploration of hypothetical scenarios, where different exposure pathways are screened. The Belgian Nuclear Research Centre SCK-CEN has been involved in an international comparison exercise under the IAEA EMRAS programme where the radiological impact of a hypothetical NORM waste dump site and the effect of corrective actions had to be assessed. The outcome of different radiological assessment models was compared. The waste dump (surface 1 km 2 , 10 m deep, containing 1 Bq g -1 of 238 U in secular equilibrium with her daughters) is located above an aquifer which can be contaminated by the waste due to percolation of rain water. The waste dump is either uncovered or covered by a 2 m thick layer, with an erosion rate of 0.1 mm y -1 and an effective porosity of 0.2. The dose, resulting from living on top and at 200 m distance from the border of the waste dump was to be calculated

  7. A computer program for calculation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. III

    International Nuclear Information System (INIS)

    Hansen, F.Y.

    1978-01-01

    This program calculates the final pair distribution functions of non-crystalline materials on the basis of the experimental structure factor as calculated in part I and the parameters of the small distance part of the pair distribution function as calculated in part II. In this way, truncation error may be eliminated from the final pair distribution function. The calculations with this program depend on the results of calculations with the programs described in parts I and II. The final pair distribution function is calculated by a Fourier transform of a combination of an experimental structure factor and a model structure factor. The storage requirement depends on the number of data points in the structure factor, the number of data points in the final pair distribution function and the number of peaks necessary to resolve the small distance part of the pair distribution function. In the present set-up a storage requirement is set to 8860 words which is estimated to be satisfactory for a large number of cases. (Auth.)

  8. Survival of organic materials in hypervelocity impacts of ice on sand, ice, and water in the laboratory.

    Science.gov (United States)

    Burchell, Mark J; Bowden, Stephen A; Cole, Michael; Price, Mark C; Parnell, John

    2014-06-01

    The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ~2 and ~4 km s(-1) at targets that included water ice, water, and sand. This involved shock pressures in the range of 2-12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s(-1) and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies.

  9. On determination of limit of effective dose for living bodies concerning control areas of nuclear law material mines

    International Nuclear Information System (INIS)

    1977-01-01

    The Notification is based on the prescriptions of the Safety Regulation of Metal Mines. The permissible levels of effective dose for living bodies and others concerning control areas are defined as follows: the effective dose of external radiation for living bodies should be less than 30 millirems in a consecutive week; the concentrations of radioactive substances in the air or in the water possibly drunk by men are specified respectively for Rn 220, Rn 222, Th and U; the densities of such substances on the surfaces of things contaminated by such elements in refineries should be less than 10 micro-micro-curies per centi-meter 2 , etc. Such permissible levels in residential quarters are defined as follows: the effective dose of external radiation for living bodies should be less than 10 millirems in a consecutive week; the concentrations of radioactive substances in the air or in the water possibly drunk by men are specified respectively for Rn 220, Rn 222, Th and U, etc. The permissible exposure dose for miners working regularly in control areas should be less than 3 rems in three consecutive months. The permissible limit of accumulated dose should be less than the figure, in the unit of rem, which is obtained by multiplying the figure of age of the miner concerned minus 18 by 5. (Okada, K.)

  10. Environmental impacts of construction materials. A report on the contribution of construction materials to greenhouse gas emissions of construction; Rakennusmateriaalien ympaeristoevaikutukset. Selvitys rakennusmateriaalien vaikutuksesta rakentamisen kasvihuonekaasupaeaestoeihin, tiivistelmaeraportti

    Energy Technology Data Exchange (ETDEWEB)

    Ruuska, A.; Haekkinen, T.; Vares, S.; Korhonen, M.-R.; Myllymaa, T.

    2013-05-15

    As the energy performance of new construction improves and the related greenhouse gas (GHG) emissions diminish the carbon footprint of construction materials becomes more important. One objective in the current government's programme is to take into account construction materials and products in the energy performance assessment of buildings. At the request of the Ministry of the Environment, VTT Technical Research Centre of Finland and the Finnish Environment Institute analysed, through a case study, the significance of the environmental impacts of construction materials. The aim was to develop preliminary recommendations for guiding construction. The case study calculated the overall GHG emissions from the materials used in an apartment building over its life cycle and estimated the range of emissions. In addition, the amount of construction waste was assessed, as was the effects of waste management and waste utilisation processes on GHG emissions. This report presents a summary of the results. According to this case study, GHG emissions can vary in typical multi-storey residential buildings within the range of 1 to 2.2 or 1 to 3.9 when the site foundation work also taken into account. The study shows that the construction materials and related processes contribute significantly to the GHG emissions of a building over its life cycle. In fact the level of significance is of the same order as the heating of spaces in an A-class energy performance building. The efficient recycling of materials can contribute to reductions in GHG emissions. The study showed that the estimated benefit was 9 % of the total life-cycle emissions. In the future, specific assessments of different types of waste could look at opportunities for the recycling and reuse of critical materials. Plastics and wood are especially important waste components. Future research topics include improving the use of recycled materials, collecting information on user experiences and enhancing quality

  11. The biological impacts of ingested radioactive materials on the pale grass blue butterfly

    Science.gov (United States)

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M.

    2014-05-01

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  12. The biological impacts of ingested radioactive materials on the pale grass blue butterfly.

    Science.gov (United States)

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M

    2014-05-15

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  13. Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact

    International Nuclear Information System (INIS)

    Yang, Y.; Brammer, J.G.; Wright, D.G.; Scott, J.A.; Serrano, C.; Bridgwater, A.V.

    2017-01-01

    Highlights: • Performance of the Pyrolysis and CHP systems is studied and evaluated. • Overall CHP efficiency of the 1000 kg/h Pyro-CHP system is 42.5%. • Levelised Energy Cost is high, but the optimistic scenario is potentially profitable. • Life-cycle GHG analysis shows strong positive environmental benefits. - Abstract: Combined heat and power from the intermediate pyrolysis of biomass materials offers flexible, on-demand renewable energy with some significant advantages over other renewable routes. To maximise the deployment of this technology an understanding of the dynamics and sensitivities of such a system is required. In the present work the system performance, economics and life-cycle environmental impact is analysed with the aid of the process simulation software Aspen Plus. Under the base conditions for the UK, such schemes are not currently economically competitive with energy and char products produced from conventional means. However, under certain scenarios as modelled using a sensitivity analysis this technology can compete and can therefore potentially contribute to the energy and resource sustainability of the economy, particularly in on-site applications with low-value waste feedstocks. The major areas for potential performance improvement are in reactor cost reductions, the reliable use of waste feedstocks and a high value end use for the char by-product from pyrolysis.

  14. Hypervelocity Impact Testing of Materials for Additive Construction: Applications on Earth, the Moon, and Mars

    Science.gov (United States)

    Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John

    2017-01-01

    Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.

  15. THE IMPACT OF THE SURFACE MORPHOLOGY ON ENERGY CHARACTERISTICS OF NANOPOROUS CARBON MATERIAL

    Directory of Open Access Journals (Sweden)

    B.K. Ostafiychuk

    2014-05-01

    Full Text Available The impact of nanoporous carbon material (PCM morphology on its electrochemical behavior in aqueous electrolyte has been studied. The optimum concentration of aqueous lithium sulfate which provides the maximum specific energy characteristics of capacitor-type systems C/Li2SO4/C is determined. Capacitive parameters of electrochemical capacitors (EC in aqueous so­lutions of lithium, sodium and potassium sulfate which have different molar ratio have been stu­died by comparative analysis. Cyclic voltammograms at different scan rates show that the PCM ca­pacitive behavior in three electrolytes increases in the following order Li2SO4

  16. Study of the radiological impact of the construction materials in Argentina

    International Nuclear Information System (INIS)

    Quintana, E.; Serdeiro, G.; Fernandez, J.; Ciallella, H.

    2006-01-01

    Some countries have established specific regulations on the radioactivity content of the construction materials (MC), while others are considering if its are necessary specific regulations. The purpose of limiting these radioactivity levels, it is to restrict the exposure to the radiation due to the natural or increased content of the natural radionuclides. All the used materials for the construction possess variable quantities of natural radionuclides. The materials derived of the rocks and soils contain mainly the radionuclides of the natural chains of the U-238 and of the Th-232 and the K-40 radionuclide. The Nuclear Regulatory Authority is carrying out studies of the concentration of Ra-226, Th-232 and K-40 in different MC with the final purpose of providing recommendations that apply its to control the levels of radioactivity of the same ones. However, it should be kept in mind that restrictions on the use of certain MC could have important economic, environmental or social consequences so much in the regional as national confines. Such consequences should be evaluated and considered together with the radioactivity levels when establishing recommendations or regulations. The exposure to the radiation coming from the MC can be divided in external and internal. The external exposure is caused by direct gamma irradiation, coming from the radioactive decay of the natural radionuclides. The internal irradiation is caused by the inhalation of Rn-222 (radon), Rn-220 (thoron) and its offspring. The radon is part of the decay series of the uranium that is present in the MC. The biggest source of radon production is undoubtedly the soil, but in some cases the MC can to produce an outstanding contribution. These can also be an important source of thoron production when they contain high concentrations of Thorium. In this work the results of the measurements of Ra-226, Th-232 and K-40 carried out in leader trademarks of cements and plasters of national origin that are

  17. Final environmental impact statement, interim management of nuclear materials, Savannah River Site, Aiken, South Carolina (DOE/EIS-0220)

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, A R

    1995-10-01

    This document evaluates the potential environmental impacts of alternatives for the stabilization of nuclear materials currently stored at various locations on the Savannah River Site (SRS). These materials remain from past defense-related production, testing, and other activities at the SRS and from chemical separations and related activities that DOE suspended in 1992. The EIS analyzes the following alternatives: Continuing Storage (No Action), Processing to Metal, Processing to Oxide, Blending Down to Low Enriched Uranium, Processing and Storage for Vitrification in the Defense Waste Processing Facility, Vitrification (F-Canyon), and Improving Storage. The preferred alternatives cover a combination of these in relation to the different types of material.

  18. 9β Polymorphism of the glucocorticoid receptor gene appears to have limited impact in patients with Addison's disease.

    Directory of Open Access Journals (Sweden)

    Ian Louis Ross

    Full Text Available BACKGROUND: Addison's disease (AD has been associated with an increased risk of cardiovascular disease. Glucocorticoid receptor polymorphisms that alter glucocorticoid sensitivity may influence metabolic and cardiovascular risk factors in patients with AD. The 9β polymorphism of the glucocorticoid receptor gene is associated with relative glucocorticoid resistance and has been reported to increase the risk of myocardial infarction in the elderly. We explored the impact of this polymorphism in patients with AD. MATERIALS AND METHODS: 147 patients with AD and 147 age, gender and ethnicity matched healthy controls were recruited. Blood was taken in a non-fasted state for plasma lipid determination, measurement of cardiovascular risk factors and DNA extraction. RESULTS: Genotype data for the 9β polymorphism was available for 139 patients and 146 controls. AD patients had a more atherogenic lipid profile characterized by an increase in the prevalence of small dense LDL (p = 0.003, increased triglycerides (p = 0.002, reduced HDLC (p<0.001 an elevated highly sensitive C-reactive protein (p = 0.01, compared with controls. The 9β polymorphism (at least one G allele was found in 28% of patients and controls respectively. After adjusting for age, gender, ethnicity, BMI and hydrocortisone dose per metre square of body surface area in patients, there were no significant metabolic associations with this polymorphism and hydrocortisone doses were not higher in patients with the polymorphism. CONCLUSIONS: This study did not identify any associations between the 9β polymorphism and cardiovascular risk factors or hydrocortisone dose and determination of this polymorphism is therefore unlikely to be of clinical benefit in the management of patients with AD.

  19. 9β Polymorphism of the Glucocorticoid Receptor Gene Appears to Have Limited Impact in Patients with Addison’s Disease

    Science.gov (United States)

    Ross, Ian Louis; Dandara, Collet; Swart, Marelize; Lacerda, Miguel; Schatz, Desmond; Blom, Dirk Jacobus

    2014-01-01

    Background Addison’s disease (AD) has been associated with an increased risk of cardiovascular disease. Glucocorticoid receptor polymorphisms that alter glucocorticoid sensitivity may influence metabolic and cardiovascular risk factors in patients with AD. The 9β polymorphism of the glucocorticoid receptor gene is associated with relative glucocorticoid resistance and has been reported to increase the risk of myocardial infarction in the elderly. We explored the impact of this polymorphism in patients with AD. Materials and Methods 147 patients with AD and 147 age, gender and ethnicity matched healthy controls were recruited. Blood was taken in a non-fasted state for plasma lipid determination, measurement of cardiovascular risk factors and DNA extraction. Results Genotype data for the 9β polymorphism was available for 139 patients and 146 controls. AD patients had a more atherogenic lipid profile characterized by an increase in the prevalence of small dense LDL (p = 0.003), increased triglycerides (p = 0.002), reduced HDLC (p<0.001) an elevated highly sensitive C-reactive protein (p = 0.01), compared with controls. The 9β polymorphism (at least one G allele) was found in 28% of patients and controls respectively. After adjusting for age, gender, ethnicity, BMI and hydrocortisone dose per metre square of body surface area in patients, there were no significant metabolic associations with this polymorphism and hydrocortisone doses were not higher in patients with the polymorphism. Conclusions This study did not identify any associations between the 9β polymorphism and cardiovascular risk factors or hydrocortisone dose and determination of this polymorphism is therefore unlikely to be of clinical benefit in the management of patients with AD. PMID:24466047

  20. Investigation of Ductile-to-Brittle Transition of RPV Materials by using the Pre-cracked Charpy Impact Data

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, Bong Sang; Hong, Jun Hwa

    2005-01-01

    Much recent work in the field of elastic-plastic fracture mechanics has been directed to developing a mechanics-based relationship between the onset of cleavage fracture in structural components and that of Charpy V-notch specimens. The assessing processes of the cracks located in the reactor pressure vessel (RPV) is described in the ASME code Sec. III, App. G and Sec. XI, App. A. The RTNDT obtained from the impact test using standard Charpy V-notch (CVN) specimens is used as a reference temperature to assess the integrity of RPV materials. The initial RTNDT, for the Linde 80 weld, was determined by the 67.8J Charpy impact energy instead of drop weight test. Generally, Linde 80 weld has low upper-shelf energy. The initial RTNDT obtained from the Charpy impact energy curve has been considered overly conservative. Recently, master curve method has been investigated to assess the integrity of RPV materials directly. The initial RTT0 obtained from the master curve method is considered more realistic than the initial RTNDT obtained from impact test for low upper-shelf fracture toughness RPV materials. In this research, the correlation of transition regions between the master curves and the Charpy impact energy curves was investigated using the dynamic fracture toughness curve and the impact energy curve obtained from the impact test of pre-cracked Charpy (PCC) specimens. For the low toughness RPV material the ductile-to-brittle transition corresponding to the static master curve was anticipated using the invested correlation

  1. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tatsuya [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Widder, Joachim; Dijk, Lisanne V. van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Takegawa, Hideki [Department of Radiation Oncology, Kansai Medical University Hirakata Hospital, Osaka (Japan); Koizumi, Masahiko; Takashina, Masaaki [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Saito, Anneyuko I. [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Korevaar, Erik W., E-mail: e.w.korevaar@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range

  2. Experimental and Theoretical Investigations of the Impact Localization of a Passive Smart Composite Plate Fabricated Using Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    M. M. S. Dezfouli

    2013-01-01

    Full Text Available Two passive smart composite plates are fabricated using one and two PZT patches that are cheaper than the PZT wafer. The composite plate is fabricated in low temperature through the hand lay-up method to avoid PZT patch decoupling and wire spoiling. The locus of the impact point is identified using the output voltage to identify the impact location using one sensor. The output voltages of the sensors are analyzed to identify the impact location using two sensors. The locations of the impacts are determined based on the crossing points of two circles and the origin of an intended Cartesian coordinate system that is concentric with one of the sensors. This study proposes the impact location identification of the passive smart composite using the low-cost PZT patch PIC155 instead of common embedded materials (wafer and element piezoelectric.

  3. Manual work in cold environments and its impact on selection of materials for protective gloves based on workplace observations.

    Science.gov (United States)

    Irzmańska, Emilia; Wójcik, Paulina; Adamus-Włodarczyk, Agnieszka

    2018-04-01

    This article presents a workplace observations on manual work in cold environments and its impact on the selection of materials for protective gloves. The workplace observations was conducted on 107 workers in 7 companies and involved measurements of the temperature of air and objects in the workplaces; in addition the type of surface and shape of the objects was determined. Laboratory tests were also carried out on 11 materials for protective gloves to be used in cold environments. Protective characteristics, including mechanical properties (wear, cut, tear, and puncture resistance), insulation properties (thermal resistance), functional parameters, and hygienic properties (resistance to surface wetting, material stiffness) were evaluated. Appropriate levels of performance and quality, corresponding to the protective and functional properties of the materials, were determined. Based on the results of manual work and laboratory tests, directions for the selection of materials for the construction of protective gloves were formulated with a view to improving work ergonomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of impact force attenuation by various combinations of hip protector and flooring material using a simplified fall-impact simulation device.

    Science.gov (United States)

    Li, Ning; Tsushima, Eiki; Tsushima, Hitoshi

    2013-04-05

    Use of hip protectors and compliant flooring has been recommended for preventing hip fracture due to falls. We aimed to identify the factors attenuating forces in falls by comparing and analyzing the impact forces occurring with various combinations of hip protectors and flooring materials. We designed a simplified pendulum device to simulate the impact force at the hip during falling. The impact force was measured on pressure-sensitive recording film under combined conditions of two kinds of hip protector (hard or soft shell) and three kinds of floor material (concrete, wooden, or tatami matting). We then calculated the percentage force attenuation under each test condition compared with the use of a concrete floor and no hip protector. All the tests using tatami matting reduced the impact to below the average fracture threshold of elderly people (3472N). A combination of tatami and soft hip protector provided the best attenuation (72.5%). Multiple regression analyses showed that use of tatami matting and a soft hip protector had the biggest force-attenuation effect. The soft hip protector gave better percentage force attenuation than did the hard one. Use of tatami matting as a flooring material could be an effective strategy for helping prevent hip fractures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The Impact of Differentiated Instructional Materials on English Language Learner (ELL) Students' Comprehension of Science Laboratory Tasks

    Science.gov (United States)

    Manavathu, Marian; Zhou, George

    2012-01-01

    Through a qualitative research design, this article investigates the impacts of differentiated laboratory instructional materials on English language learners' (ELLs) laboratory task comprehension. The factors affecting ELLs' science learning experiences are further explored. Data analysis reveals a greater degree of laboratory task comprehension…

  6. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  7. Monetary valorization of the sanitary and environmental impacts of a nuclear accident: synthesis of ''ExternE'' studies, interests and limits of complementary developments

    International Nuclear Information System (INIS)

    Schieber, C.; Schneider, Th.

    2002-09-01

    This document constitutes a synthesis of the various available methods for the monetary evaluation of the nuclear accidents impacts in order to reveal the already evaluated impacts, those which need complementary developments and those for which the monetary approach currently seems to come up against limits. It is based primarily on the approach realized by the ''ExternE'' project of the European Commission, consisting in the evaluation of the external costs of the nuclear energy industry. (A.L.B.)

  8. Inverse Limits

    CERN Document Server

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  9. Bone material strength index as measured by impact microindentation is altered in patients with acromegaly.

    Science.gov (United States)

    Malgo, F; Hamdy, N A T; Rabelink, T J; Kroon, H M; Claessen, K M J A; Pereira, A M; Biermasz, N R; Appelman-Dijkstra, N M

    2017-03-01

    Acromegaly is a rare disease caused by excess growth hormone (GH) production by the pituitary adenoma. The skeletal complications of GH and IGF-1 excess include increased bone turnover, increased cortical bone mass and deteriorated microarchitecture of trabecular bone, associated with a high risk of vertebral fractures in the presence of relatively normal bone mineral density (BMD). We aimed to evaluate tissue-level properties of bone using impact microindentation (IMI) in well-controlled patients with acromegaly aged ≥18 years compared to 44 controls from the outpatient clinic of the Centre for Bone Quality. In this cross-sectional study, bone material strength index (BMSi) was measured in 48 acromegaly patients and 44 controls with impact microindentation using the osteoprobe. Mean age of acromegaly patients (54% male) was 60.2 years (range 37.9-76.5), and 60.5 years (range 39.8-78.6) in controls (50% male). Patients with acromegaly and control patients had comparable BMI (28.2 kg/m 2  ± 4.7 vs 26.6 kg/m 2  ± 4.3, P = 0.087) and comparable BMD at the lumbar spine (1.04 g/cm 2  ± 0.21 vs 1.03 g/cm 2  ± 0.13, P = 0.850) and at the femoral neck (0.84 g/cm 2  ± 0.16 vs 0.80 g/cm 2  ± 0.09, P = 0.246). BMSi was significantly lower in acromegaly patients than that in controls (79.4 ± 0.7 vs 83.2 ± 0.7; P acromegaly after reversal of long-term exposure to pathologically high GH and IGF-1 levels. Our findings also suggest that methods other than DXA should be considered to evaluate bone fragility in patients with acromegaly. © 2017 European Society of Endocrinology.

  10. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    International Nuclear Information System (INIS)

    Schmitt, Thorsten; Groot, Frank M. F. de; Rubensson, Jan-Erik

    2014-01-01

    Diffraction-limited storage rings will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size in resonant inelastic X-ray scattering (RIXS) experiments to new limits. In this article the types of improved soft X-ray RIXS studies that will become possible with these instrumental improvements are envisioned. The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned

  11. The economic and community impacts of closing Hanford's N Reactor and nuclear materials production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Belzer, D.B.; Nesse, R.J.; Schultz, R.W.; Stokowski, P.A.; Clark, D.C.

    1987-08-01

    This study discusses the negative economic impact on local cities and counties and the State of Washington of a permanent closure of nuclear materials production at the Hanford Site, located in the southeastern part of the state. The loss of nuclear materials production, the largest and most important of the five Department of Energy (DOE) missions at Hanford, could occur if Hanford's N Reactor is permanently closed and not replaced. The study provides estimates of statewide and local losses in jobs, income, and purchases from the private sector caused by such an event; it forecasts impacts on state and local government finances; and it describes certain local community and social impacts in the Tri-Cities (Richland, Kennewick, and Pasco) and surrounding communities. 33 refs., 8 figs., 22 tabs.

  12. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  13. Electrochemically Smart Bimetallic Materials Featuring Group 11 Metals: In-situ Conductive Network Generation and Its Impact on Cell Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther [Stony Brook Univ., NY (United States)

    2016-11-30

    Our results for this program “Electrochemically smart bimetallic materials featuring Group 11 metals: in-situ conductive matrix generation and its impact on battery capacity, power and reversibility” have been highly successful: 1) we demonstrated material structures which generated in-situ conductive networks through electrochemical activation with increases in conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully designed synthetic methodology for direct control of material properties including crystallite size and surface area which showed significant impact on electrochemical behavior.

  14. The cognitive impact of interactive design features for learning complex materials in medical education.

    Science.gov (United States)

    Song, Hyuksoon S; Pusic, Martin; Nick, Michael W; Sarpel, Umut; Plass, Jan L; Kalet, Adina L

    2014-02-01

    To identify the most effective way for medical students to interact with a browser-based learning module on the symptoms and neurological underpinnings of stroke syndromes, this study manipulated the way in which subjects interacted with a graphical model of the brain and examined the impact of functional changes on learning outcomes. It was hypothesized that behavioral interactions that were behaviorally more engaging and which required deeper consideration of the model would result in heightened cognitive interaction and better learning than those whose manipulation required less deliberate behavioral and cognitive processing. One hundred forty four students were randomly assigned to four conditions whose model controls incorporated features that required different levels of behavioral and cognitive interaction: Movie (low behavioral/low cognitive, n = 40), Slider (high behavioral/low cognitive, n = 36), Click (low behavioral/high cognitive, n = 30), and Drag (high behavioral/high cognitive, n = 38). Analysis of Covariates (ANCOVA) showed that students who received the treatments associated with lower cognitive interactivity (Movie and Slider) performed better on a transfer task than those receiving the module associated with high cognitive interactivity (Click and Drag, partial eta squared = .03). In addition, the students in the high cognitive interactivity conditions spent significantly more time on the stroke locator activity than other conditions (partial eta squared = .36). The results suggest that interaction with controls that were tightly coupled with the model and whose manipulation required deliberate consideration of the model's features may have overtaxed subjects' cognitive resources. Cognitive effort that facilitated manipulation of content, though directed at the model, may have resulted in extraneous cognitive load, impeding subjects in recognizing the deeper, global relationships in the materials. Instructional designers must, therefore, keep in

  15. Impact of verbal explanation and modified consent materials on orthodontic informed consent.

    Science.gov (United States)

    Carr, Kelly M; Fields, Henry W; Beck, F Michael; Kang, Edith Y; Kiyak, H Asuman; Pawlak, Caroline E; Firestone, Allen R

    2012-02-01

    Comprehension of informed consent information has been problematic. The purposes of this study were to evaluate the effectiveness of a shortened explanation of an established consent method and whether customized slide shows improve the understanding of the risks and limitations of orthodontic treatment. Slide shows for each of the 80 subject-parent pairs included the most common core elements, up to 4 patient-specific custom elements, and other general elements. Group A heard a presentation of the treatment plan and the informed consent. Group B did not hear the presentation of the informed consent. All subjects read the consent form, viewed the customized slide show, and completed an interview with structured questions, 2 literacy tests, and a questionnaire. The interviews were scored for the percentages of correct recall and comprehension responses. Three informed consent domains were examined: treatment, risk, and responsibility. These groups were compared with a previous study group, group C, which received the modified consent and the standard slide show. No significant differences existed between groups A, B, and C for any sociodemographic variables. Children in group A scored significantly higher than did those in group B on risk recall and in group C on overall comprehension, risk recall and comprehension, and general risks and limitations questions. Children in group B scored significantly higher than did those in group C on overall comprehension, treatment recall, and risk recall. Elements presented first in the slide show scored better than those presented later. This study suggested little advantage of a verbal review of the consent (except for patients for risk) when other means of review such as the customized slide show were included. Regression analysis suggested that patients understood best the elements presented first in the informed consent slide show. Consequently, the most important information should be presented first to pa