WorldWideScience

Sample records for immunosuppressive tumor microenvironment

  1. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2018-02-01

    Full Text Available Experimental evidence indicates that mesenchymal stromal cells (MSCs may regulate tumor microenvironment (TME. It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial–mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC.

  2. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment

    International Nuclear Information System (INIS)

    Chanmee, Theerawut; Ontong, Pawared; Konno, Kenjiro; Itano, Naoki

    2014-01-01

    During tumor progression, circulating monocytes and macrophages are actively recruited into tumors where they alter the tumor microenvironment to accelerate tumor progression. Macrophages shift their functional phenotypes in response to various microenvironmental signals generated from tumor and stromal cells. Based on their function, macrophages are divided broadly into two categories: classical M1 and alternative M2 macrophages. The M1 macrophage is involved in the inflammatory response, pathogen clearance, and antitumor immunity. In contrast, the M2 macrophage influences an anti-inflammatory response, wound healing, and pro-tumorigenic properties. Tumor-associated macrophages (TAMs) closely resemble the M2-polarized macrophages and are critical modulators of the tumor microenvironment. Clinicopathological studies have suggested that TAM accumulation in tumors correlates with a poor clinical outcome. Consistent with that evidence, experimental and animal studies have supported the notion that TAMs can provide a favorable microenvironment to promote tumor development and progression. In this review article, we present an overview of mechanisms responsible for TAM recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy

  3. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Chanmee, Theerawut [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Ontong, Pawared [Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Konno, Kenjiro [Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Itano, Naoki, E-mail: itanon@cc.kyoto-su.ac.jp [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan)

    2014-08-13

    During tumor progression, circulating monocytes and macrophages are actively recruited into tumors where they alter the tumor microenvironment to accelerate tumor progression. Macrophages shift their functional phenotypes in response to various microenvironmental signals generated from tumor and stromal cells. Based on their function, macrophages are divided broadly into two categories: classical M1 and alternative M2 macrophages. The M1 macrophage is involved in the inflammatory response, pathogen clearance, and antitumor immunity. In contrast, the M2 macrophage influences an anti-inflammatory response, wound healing, and pro-tumorigenic properties. Tumor-associated macrophages (TAMs) closely resemble the M2-polarized macrophages and are critical modulators of the tumor microenvironment. Clinicopathological studies have suggested that TAM accumulation in tumors correlates with a poor clinical outcome. Consistent with that evidence, experimental and animal studies have supported the notion that TAMs can provide a favorable microenvironment to promote tumor development and progression. In this review article, we present an overview of mechanisms responsible for TAM recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy.

  4. T Cell Intrinsic USP15 Deficiency Promotes Excessive IFN-γ Production and an Immunosuppressive Tumor Microenvironment in MCA-Induced Fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2015-12-01

    Full Text Available USP15 is a deubiquitinase that negatively regulates activation of naive CD4+ T cells and generation of IFN-γ-producing T helper 1 (Th1 cells. USP15 deficiency in mice promotes antitumor T cell responses in a transplantable cancer model; however, it has remained unclear how deregulated T cell activation impacts primary tumor development during the prolonged interplay between tumors and the immune system. Here, we find that the USP15-deficient mice are hypersensitive to methylcholantrene (MCA-induced fibrosarcomas. Excessive IFN-γ production in USP15-deficient mice promotes expression of the immunosuppressive molecule PD-L1 and the chemokine CXCL12, causing accumulation of T-bet+ regulatory T cells and CD11b+Gr-1+ myeloid-derived suppressor cells at tumor site. Mixed bone marrow adoptive transfer studies further reveals a T cell-intrinsic role for USP15 in regulating IFN-γ production and tumor development. These findings suggest that T cell intrinsic USP15 deficiency causes excessive production of IFN-γ, which promotes an immunosuppressive tumor microenvironment during MCA-induced primary tumorigenesis.

  5. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression

    Directory of Open Access Journals (Sweden)

    Viktor Fleming

    2018-03-01

    Full Text Available The immune system has many sophisticated mechanisms to balance an extensive immune response. Distinct immunosuppressive cells could protect from excessive tissue damage and autoimmune disorders. Tumor cells take an advantage of those immunosuppressive mechanisms and establish a strongly immunosuppressive tumor microenvironment (TME, which inhibits antitumor immune responses, supporting the disease progression. Myeloid-derived suppressor cells (MDSC play a crucial role in this immunosuppressive TME. Those cells represent a heterogeneous population of immature myeloid cells with a strong immunosuppressive potential. They inhibit an antitumor reactivity of T cells and NK cells. Furthermore, they promote angiogenesis, establish pre-metastatic niches, and recruit other immunosuppressive cells such as regulatory T cells. Accumulating evidences demonstrated that the enrichment and activation of MDSC correlated with tumor progression, recurrence, and negative clinical outcome. In the last few years, various preclinical studies and clinical trials targeting MDSC showed promising results. In this review, we discuss different therapeutic approaches on MDSC targeting to overcome immunosuppressive TME and enhance the efficiency of current tumor immunotherapies.

  6. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells

    Science.gov (United States)

    Xiao, Peng; Wan, Xiaopeng; Cui, Bijun; Liu, Yang; Qiu, Chenyang; Rong, Jiabing; Zheng, Mingzhu; Song, Yinjing; Chen, Luoquan; He, Jia; Tan, Qinchun; Wang, Xiaojia; Shao, Xiying; Liu, Yuhua; Cao, Xuetao; Wang, Qingqing

    2016-01-01

    ABSTRACT Tumor-induced, myeloid-derived suppressor cells (MDSCs)-mediated immune dysfunction is an important mechanism that leads to tumor immune escape and the inefficacy of cancer immunotherapy. Importantly, tumor-infiltrating MDSCs have much stronger ability compared to MDSCs in the periphery. However, the mechanisms that tumor microenvironment induces the accumulation and function of MDSCs are poorly understood. Here, we report that Interleukin-33 (IL-33) – a cytokine which can be abundantly released in tumor tissues both in 4T1-bearing mice and breast cancer patients, is crucial for facilitating the expansion of MDSCs. IL-33 in tumor microenvironment reduces the apoptosis and sustains the survival of MDSCs through induction of autocrine secretion of GM-CSF, which forms a positive amplifying loop for MDSC accumulation. This is in conjunction with IL-33-driven induction of arginase-1 expression and activation of NF-κB and MAPK signaling in MDSCs which augments their immunosuppressive ability, and histone modifications were involved in IL-33 signaling in MDSCs. In ST2−/− mice, the defect of IL-33 signaling in MDSCs attenuates the immunosuppressive and pro-tumoral capacity of MDSCs. Our results identify IL-33 as a critical mediator that contributes to the abnormal expansion and enhanced immunosuppressive function of MDSCs within tumor microenvironment, which can be potentially targeted to reverse MDSC-mediated tumor immune evasion. PMID:26942079

  7. Effect of the Premalignant and Tumor Microenvironment on Immune Cell Cytokine Production in Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Sara D. [Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425 (United States); De Costa, Anna-Maria A. [Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425 (United States); Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 (United States); Young, M. Rita I., E-mail: rita.young@va.gov [Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425 (United States); Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 (United States); Medical Research Service (151), Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401 (United States)

    2014-04-02

    Head and neck squamous cell carcinoma (HNSCC) is marked by immunosuppression, a state in which the established tumor escapes immune attack. However, the impact of the premalignant and tumor microenvironments on immune reactivity has yet to be elucidated. The purpose of this study was to determine how soluble mediators from cells established from carcinogen-induced oral premalignant lesions and HNSCC modulate immune cell cytokine production. It was found that premalignant cells secrete significantly increased levels of G-CSF, RANTES, MCP-1, and PGE{sub 2} compared to HNSCC cells. Splenocytes incubated with premalignant supernatant secreted significantly increased levels of Th1-, Th2-, and Th17-associated cytokines compared to splenocytes incubated with HNSCC supernatant. These studies demonstrate that whereas the premalignant microenvironment elicits proinflammatory cytokine production, the tumor microenvironment is significantly less immune stimulatory and may contribute to immunosuppression in established HNSCC.

  8. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  9. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment.

    Science.gov (United States)

    Ito, Koichi; Stannard, Kimberley; Gabutero, Elwyn; Clark, Amanda M; Neo, Shi-Yong; Onturk, Selda; Blanchard, Helen; Ralph, Stephen J

    2012-12-01

    The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.

  10. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Adriana Albini

    2018-04-01

    Full Text Available The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.

  11. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  12. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  13. Tumor microenvironment: Sanctuary of the devil.

    Science.gov (United States)

    Hui, Lanlan; Chen, Ye

    2015-11-01

    Tumor cells constantly interact with the surrounding microenvironment. Increasing evidence indicates that targeting the tumor microenvironment could complement traditional treatment and improve therapeutic outcomes for these malignancies. In this paper, we review new insights into the tumor microenvironment, and summarize selected examples of the cross-talk between tumor cells and their microenvironment, which have enhanced our understanding of pathophysiology of the microenvironment. We believe that this rapidly moving field promises many more to come, and they will guide the rational design of combinational therapies for success in cancer eradication. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis.

    Science.gov (United States)

    Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi; Wang, Haoyu; Gagner, Jean-Pierre; Dolgalev, Igor; Placantonakis, Dimitris; Zagzag, David; Cimmino, Luisa; Snuderl, Matija; Lam, Raymond H W; Chen, Weiqiang

    2018-04-01

    Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-β1, and surface integrin (α v β 3 ) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (α v β 3 )-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (α v β 3 ) and cytokine receptor (TGFβ-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and

  15. Nocardia brasiliensis induces an immunosuppressive microenvironment that favors chronic infection in BALB/c mice.

    Science.gov (United States)

    Rosas-Taraco, Adrian G; Perez-Liñan, Amira R; Bocanegra-Ibarias, Paola; Perez-Rivera, Luz I; Salinas-Carmona, Mario C

    2012-07-01

    Nocardia brasiliensis is an intracellular microorganism and the most common etiologic agent of actinomycetoma in the Americas. Several intracellular pathogens induce an immunosuppressive microenvironment through increases in CD4+ Foxp3+ regulatory T cells (Treg), thus downregulating other T-cell subpopulations and assuring survival in the host. In this study, we determined whether N. brasiliensis modulates T-lymphocyte responses and their related cytokine profiles in a murine experimental model. We also examined the relationship between N. brasiliensis immunomodulation and pathogenesis and bacterial survival. In early infection, Th17/Tc17 cells were increased at day 3 (P 1 log) was also observed (P brasiliensis modulates the immune system to induce an immunosuppressive microenvironment that benefits its survival during the chronic stage of infection.

  16. Silica-induced Chronic Inflammation Promotes Lung Carcinogenesis in the Context of an Immunosuppressive Microenvironment

    Directory of Open Access Journals (Sweden)

    Javier Freire

    2013-08-01

    Full Text Available The association between inflammation and lung tumor development has been clearly demonstrated. However, little is known concerning the molecular events preceding the development of lung cancer. In this study, we characterize a chemically induced lung cancer mouse model in which lung cancer developed in the presence of silicotic chronic inflammation. Silica-induced lung inflammation increased the incidence and multiplicity of lung cancer in mice treated with N-nitrosodimethylamine, a carcinogen found in tobacco smoke. Histologic and molecular analysis revealed that concomitant chronic inflammation contributed to lung tumorigenesis through induction of preneoplastic changes in lung epithelial cells. In addition, silica-mediated inflammation generated an immunosuppressive microenvironment in which we observed increased expression of programmed cell death protein 1 (PD-1, transforming growth factor-β1, monocyte chemotactic protein 1 (MCP-1, lymphocyte-activation gene 3 (LAG3, and forkhead box P3 (FOXP3, as well as the presence of regulatory T cells. Finally, the K-RAS mutational profile of the tumors changed from Q61R to G12D mutations in the inflammatory milieu. In summary, we describe some of the early molecular changes associated to lung carcinogenesis in a chronic inflammatory microenvironment and provide novel information concerning the mechanisms underlying the formation and the fate of preneoplastic lesions in the silicotic lung.

  17. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.

    Science.gov (United States)

    Zhang, Bo; Shi, Wei; Jiang, Ting; Wang, Lanting; Mei, Heng; Lu, Heng; Hu, Yu; Pang, Zhiqing

    2016-09-20

    Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment.

  18. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-12-01

    Full Text Available Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.

  19. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Science.gov (United States)

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  20. The PCa Tumor Microenvironment.

    Science.gov (United States)

    Sottnik, Joseph L; Zhang, Jian; Macoska, Jill A; Keller, Evan T

    2011-12-01

    The tumor microenvironment (TME) is a very complex niche that consists of multiple cell types, supportive matrix and soluble factors. Cells in the TME consist of both host cells that are present at tumor site at the onset of tumor growth and cells that are recruited in either response to tumor- or host-derived factors. PCa (PCa) thrives on crosstalk between tumor cells and the TME. Crosstalk results in an orchestrated evolution of both the tumor and microenvironment as the tumor progresses. The TME reacts to PCa-produced soluble factors as well as direct interaction with PCa cells. In return, the TME produces soluble factors, structural support and direct contact interactions that influence the establishment and progression of PCa. In this review, we focus on the host side of the equation to provide a foundation for understanding how different aspects of the TME contribute to PCa progression. We discuss immune effector cells, specialized niches, such as the vascular and bone marrow, and several key protein factors that mediate host effects on PCa. This discussion highlights the concept that the TME offers a potentially very fertile target for PCa therapy.

  1. Commensal bacteria modulate the tumor microenvironment.

    Science.gov (United States)

    Poutahidis, Theofilos; Erdman, Susan E

    2016-09-28

    It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Tumor Biology and Microenvironment Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research in this area seeks to understand the role of tumor cells and the tumor microenvironment (TME) in driving cancer initiation, progression, maintenance and recurrence.

  3. Tumor microenvironment indoctrination: an emerging hallmark of cancer.

    Science.gov (United States)

    Goetz, Jacky G

    2012-01-01

    Nastiness of cancer does not only reside in the corruption of cancer cells by genetic aberrations that drive their sustained proliferative power--the roots of malignancy--but also in its aptitude to reciprocally sculpt its surrounding environment and cellular stromal ecosystem, in such a way that the corrupted tumor microenvironment becomes a full pro-tumorigenic entity. Such a contribution had been appreciated three decades ago already, with the discovery of tumor angiogenesis and extracellular matrix remodeling. Nevertheless, the recent emergence of the tumor microenvironment as the critical determinant in cancer biology is paralleled by the promising therapeutic potential it carries, opening alternate routes to fight cancer. The study of the tumor microenvironment recruited numerous lead-scientists over the years, with distinct perspectives, and some of them have kindly accepted to contribute to the elaboration of this special issue entitled Tumor microenvironment indoctrination: An emerging hallmark of cancer.

  4. Biological stoichiometry in tumor micro-environments.

    Directory of Open Access Journals (Sweden)

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  5. MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment.

    Science.gov (United States)

    Mukherjee, P; Ginardi, A R; Madsen, C S; Tinder, T L; Jacobs, F; Parker, J; Agrawal, B; Longenecker, B M; Gendler, S J

    2001-01-01

    Pancreatic cancer is a highly aggressive, treatment refractory disease and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas over-express altered forms of a tumor-associated antigen, MUC1 (an epithelial mucin glycoprotein), which is a target for immunotherapy. Using a clinically relevant mouse model of pancreas cancer that demonstrates peripheral and central tolerance to human MUC1 and develops spontaneous tumors of the pancreas, we have previously reported the presence of functionally active, low affinity, MUC1-specific precursor cytotoxic T cells (pCTLs). Hypothesis for this study is that MUC1-based immunization may enhance the low level MUC1-specific immunity that may lead to an effective anti-tumor response. Data demonstrate that MUC1 peptide-based immunization elicits mature MUC1-specific CTLs in the peripheral lymphoid organs. The mature CTLs secrete IFN-gamma and are cytolytic against MUC1-expressing tumor cells in vitro. However, active CTLs that infiltrate the pancreas tumor microenvironment become cytolytically anergic and are tolerized to MUC1 antigen, allowing the tumor to grow. We demonstrate that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation. The pancreas tumor cells secrete immunosuppressive cytokines, including IL-10 and TGF-beta that are partly responsible for the down-regulation of CTL activity. In addition, they down-regulate their MHC class I molecules to avoid immune recognition. CD4+ CD25+ T regulatory cells, which secrete IL-10, were also found in the tumor environment. Together these data indicate the use of several immune evasion mechanisms by tumor cells to evade CTL killing. Thus altering the tumor microenvironment to make it more conducive to CTL killing may be key in developing a successful anti-cancer immunotherapy.

  6. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  7. Intra-adrenal murine TH-MYCN neuroblastoma tumors grow more aggressive and exhibit a distinct tumor microenvironment relative to their subcutaneous equivalents.

    Science.gov (United States)

    Kroesen, Michiel; Brok, Ingrid C; Reijnen, Daphne; van Hout-Kuijer, Maaike A; Zeelenberg, Ingrid S; Den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J

    2015-05-01

    In around half of the patients with neuroblastoma (NBL), the primary tumor is located in one of the adrenal glands. We have previously reported on a transplantable TH-MYCN model of subcutaneous (SC) growing NBL in C57Bl/6 mice for immunological studies. In this report, we describe an orthotopic TH-MYCN transplantable model where the tumor cells were injected intra-adrenally (IA) by microsurgery. Strikingly, 9464D cells grew out much faster in IA tumors compared to the subcutis. Tumors were infiltrated by equal numbers of lymphocytes and myeloid cells. Within the myeloid cell population, however, tumor-infiltrating macrophages were more abundant in IA tumors compared to SC tumors and expressed lower levels of MHC class II, indicative of a more immunosuppressive phenotype. Using 9464D cells stably expressing firefly luciferase, enhanced IA tumor growth could be confirmed using bioluminescence. Collectively, these data show that the orthotopic IA localization of TH-MYCN cells impacts the NBL tumor microenvironment, resulting in a more stringent NBL model to study novel immunotherapeutic approaches for NBL.

  8. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    Science.gov (United States)

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  9. Targeting the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, P.A.; Lee, G.Y.; Bissell, M.J.

    2006-11-07

    Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the 'druggable' targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.

  10. Lysyl Oxidase and the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Tong-Hong Wang

    2016-12-01

    Full Text Available The lysyl oxidase (LOX family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM. Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.

  11. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

    Science.gov (United States)

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M; Dallaglio, Katiuscia

    2015-01-01

    Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.

  12. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma

    Science.gov (United States)

    Frederick, Dennie Tompers; Piris, Adriano; Cogdill, Alexandria P.; Cooper, Zachary A.; Lezcano, Cecilia; Ferrone, Cristina R.; Mitra, Devarati; Boni, Andrea; Newton, Lindsay P.; Liu, Chengwen; Peng, Weiyi; Sullivan, Ryan J; Lawrence, Donald P.; Hodi, F. Stephen; Overwijk, Willem W.; Lizée, Gregory; Murphy, George F.; Hwu, Patrick; Flaherty, Keith T.; Fisher, David E.; Wargo, Jennifer A.

    2013-01-01

    Purpose To evaluate the effects BRAF inhibition on the tumor microenvironment in patients with metastatic melanoma. Experimental Design Thirty-five biopsies were collected from 16 patients with metastatic melanoma pretreatment (day 0) and at 10-14 days after initiation of treatment with either BRAF inhibitor alone (vemurafenib) or BRAF + MEK inhibition (dabrafenib + trametinib), and were also taken at time of progression. Biopsies were analyzed for melanoma antigens, T cell markers, and immunomodulatory cytokines. Results Treatment with either BRAF inhibitor alone or BRAF + MEK inhibitor was associated with an increased expression of melanoma antigens and an increase in CD8+ T cell infiltrate. This was also associated with a decrease in immunosuppressive cytokines (IL-6 & IL-8) and an increase in markers of T cell cytotoxicity. Interestingly, expression of exhaustion markers TIM-3 and PD1 and the immunosuppressive ligand PDL1 were increased on treatment. A decrease in melanoma antigen expression and CD8 T cell infiltrate was noted at time of progression on BRAF inhibitor alone, and was reversed with combined BRAF and MEK inhibition. Conclusions Together, this data suggests that treatment with BRAF inhibition enhances melanoma antigen expression and facilitates T cell cytotoxicity and a more favorable tumor microenvironment, providing support for potential synergy of BRAF-targeted therapy and immunotherapy. Interestingly, markers of T cell exhaustion and the immunosuppressive ligand PDL1 are also increased with BRAF inhibition, further implying that immune checkpoint blockade may be critical in augmenting responses to BRAF-targeted therapy in patients with melanoma. PMID:23307859

  13. A study for radiation-related tumor microenvironment

    International Nuclear Information System (INIS)

    Son, Young Sook; Hong, Seok Il; Kim, Young Soon; Jin Yong Jae; Lee, Tae Hee; Chung, Eun Kyung; Yi, Jae Yeun; Park, Myung Jin; Kim, Yun Young; Kang, Sin Keun

    1999-04-01

    In this study, we attempted to elucidate the mechanism involved in radiation-induced modification and changes of biological factors and physicochemical factors of tumor microenvironment and develop techniques and agents for the modification of tumor microenvironment which is favorable for efficient radio-cancer therapy based on our basic study. We established in vitro tumor invasion and angiogenesis model, elucidated the importance of MMPs activation and the MMPs/TIMPs complex in the invasive transition of tumor. Furthermore we showed the signaling pathway for MMPs induction through EGF receptor and TGF beta 1 stimulated E-M transition. We also established primary culture of human endothelial cells and tubule forming condition which is utilized for the detection of novel angiogenic factors. We also identified hypoxia induced signaling pathway and showed that GBE improved blood perfusion which may increase the effectiveness of radio-cancer therapy

  14. A study for radiation-related tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young Sook; Hong, Seok Il; Kim, Young Soon; Jin Yong Jae; Lee, Tae Hee; Chung, Eun Kyung; Yi, Jae Yeun; Park, Myung Jin; Kim, Yun Young; Kang, Sin Keun

    1999-04-01

    In this study, we attempted to elucidate the mechanism involved in radiation-induced modification and changes of biological factors and physicochemical factors of tumor microenvironment and develop techniques and agents for the modification of tumor microenvironment which is favorable for efficient radio-cancer therapy based on our basic study. We established in vitro tumor invasion and angiogenesis model, elucidated the importance of MMPs activation and the MMPs/TIMPs complex in the invasive transition of tumor. Furthermore we showed the signaling pathway for MMPs induction through EGF receptor and TGF beta 1 stimulated E-M transition. We also established primary culture of human endothelial cells and tubule forming condition which is utilized for the detection of novel angiogenic factors. We also identified hypoxia induced signaling pathway and showed that GBE improved blood perfusion which may increase the effectiveness of radio-cancer therapy.

  15. CCL2 is critical for immunosuppression to promote cancer metastasis.

    Science.gov (United States)

    Kudo-Saito, Chie; Shirako, Hiromi; Ohike, Misa; Tsukamoto, Nobuo; Kawakami, Yutaka

    2013-04-01

    We previously found that cancer metastasis is accelerated by immunosuppression during Snail-induced epithelial-to-mesenchymal transition (EMT). However, the molecular mechanism still remained unclear. Here, we demonstrate that CCL2 is a critical determinant for both tumor metastasis and immunosuppression induced by Snail(+) tumor cells. CCL2 is significantly upregulated in various human tumor cells accompanied by Snail expression induced by snail transduction or TGFβ treatment. The Snail(+) tumor-derived CCL2 amplifies EMT events in other cells including Snail(-) tumor cells and epithelial cells within tumor microenvironment. CCL2 secondarily induces Lipocalin 2 (LCN2) in the Snail(+) tumor cells in an autocrine manner. CCL2 and LCN2 cooperatively generate immunoregulatory dendritic cells (DCreg) having suppressive activity accompanied by lowered expression of costimulatory molecules such as HLA-DR but increased expression of immunosuppressive molecules such as PD-L1 in human PBMCs. The CCL2/LCN2-induced DCreg cells subsequently induce immunosuppressive CD4(+)FOXP3(+) Treg cells, and finally impair tumor-specific CTL induction. In murine established tumor model, however, CCL2 blockade utilizing the specific siRNA or neutralizing mAb significantly inhibits Snail(+) tumor growth and metastasis following systemic induction of anti-tumor immune responses in host. These results suggest that CCL2 is more than a chemoattractant factor that is the significant effector molecule responsible for immune evasion of Snail(+) tumor cells. CCL2 would be an attractive target for treatment to eliminate cancer cells via amelioration of tumor metastasis and immunosuppression.

  16. Forging a link between oncogenic signaling and immunosuppression in melanoma.

    Science.gov (United States)

    Khalili, Jahan S; Hwu, Patrick; Lizée, Gregory

    2013-02-01

    Immunosuppressive tumor microenvironments limit the efficacy of T cell-based immunotherapy. We have recently demonstrated that the inhibition of BRAF V600E with vemurafenib relieves interleukin-1 (IL-1)-induced T-cell suppression as mediated by melanoma tumor associated fibroblasts (TAFs). These results suggest that inhibitors of the MAPK pathway in combination with T cell-based immunotherapies may induce long-lasting and durable responses.

  17. Probing the tumor microenvironment: collection and induction

    Science.gov (United States)

    Williams, James K.; Padgen, Michael R.; Wang, Yarong; Entenberg, David; Gertler, Frank; Condeelis, John S.; Castracane, James

    2012-03-01

    The Nano Intravital Device, or NANIVID, is under development as an optically transparent, implantable tool to study the tumor microenvironment. Two etched glass substrates are sealed using a thin polymer membrane to create a reservoir with a single outlet. This reservoir is loaded with a hydrogel blend that contains growth factors or other chemicals to be delivered to the tumor microenvironment. When the device is implanted in the tumor, the hydrogel will swell and release these entrapped molecules, forming a gradient. Validation of the device has been performed in vitro using epidermal growth factor (EGF) and MenaINV, a highly invasive, rat mammary adenocarcinoma cell line. In both 2-D and 3-D environments, cells migrated toward the gradient of EGF released from the device. The chorioallantoic membrane (CAM) of White Leghorn chicken eggs is being utilized to grow xenograft tumors that will be used for ex vivo cell collection. Device optimization is being performed for in vivo use as a tool to collect the invasive cell population. Preliminary cell collection experiments in vivo were performed using a mouse model of breast cancer. As a second application, the device is being explored as a delivery vehicle for chemicals that induce controlled changes in the tumor microenvironment. H2O2 was loaded in the device and generated intracellular reactive oxygen species (ROS) in cells near the device outlet. In the future, other induction targets will be explored, including hypoglycemia and the manipulation of extracellular matrix stiffness.

  18. Influence of the Tumor Microenvironment on Cancer Cells Metabolic Reprogramming

    Directory of Open Access Journals (Sweden)

    Victoire Gouirand

    2018-04-01

    Full Text Available As with castles, tumor cells are fortified by surrounding non-malignant cells, such as cancer-associated fibroblasts, immune cells, but also nerve fibers and extracellular matrix. In most cancers, this fortification creates a considerable solid pressure which limits oxygen and nutrient delivery to the tumor cells and causes a hypoxic and nutritional stress. Consequently, tumor cells have to adapt their metabolism to survive and proliferate in this harsh microenvironment. To satisfy their need in energy and biomass, tumor cells develop new capacities to benefit from metabolites of the microenvironment, either by their uptake through the macropinocytosis process or through metabolite transporters, or by a cross-talk with stromal cells and capture of extracellular vesicles that are released by the neighboring cells. However, the microenvironments of primary tumor and metastatic niches differ tremendously in their cellular/acellular components and available nutrients. Therefore, cancer cells must develop a metabolic flexibility conferring on them the ability to satisfy their biomass and energetic demands at both primary and metastasis sites. In this review, we propose a brief overview of how proliferating cancer cells take advantage of their surrounding microenvironment to satisfy their high metabolic demand at both primary and metastasis sites.

  19. Targeting Autophagy in the Tumor Microenvironment: New Challenges and Opportunities for Regulating Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Bassam Janji

    2018-04-01

    Full Text Available Cancer cells evolve in the tumor microenvironment, which is now well established as an integral part of the tumor and a determinant player in cancer cell adaptation and resistance to anti-cancer therapies. Despite the remarkable and fairly rapid progress over the past two decades regarding our understanding of the role of the tumor microenvironment in cancer development, its precise contribution to cancer resistance is still fragmented. This is mainly related to the complexity of the “tumor ecosystem” and the diversity of the stromal cell types that constitute the tumor microenvironment. Emerging data indicate that several factors, such as hypoxic stress, activate a plethora of resistance mechanisms, including autophagy, in tumor cells. Hypoxia-induced autophagy in the tumor microenvironment also activates several tumor escape mechanisms, which effectively counteract anti-tumor immune responses mediated by natural killer and cytotoxic T lymphocytes. Therefore, strategies aiming at targeting autophagy in cancer cells in combination with other therapeutic strategies have inspired significant interest to overcome immunological tolerance and promote tumor regression. However, a number of obstacles still hamper the application of autophagy inhibitors in clinics. First, the lack of selectivity of the current pharmacological inhibitors of autophagy makes difficult to draw a clear statement about its effective contribution in cancer. Second, autophagy has been also described as an important mechanism in tumor cells involved in presentation of antigens to T cells. Third, there is a circumstantial evidence that autophagy activation in some innate immune cells may support the maturation of these cells, and it is required for their anti-tumor activity. In this review, we will address these aspects and discuss our current knowledge on the benefits and the drawbacks of targeting autophagy in the context of anti-tumor immunity. We believe that it is

  20. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes.

    Science.gov (United States)

    Yan, Lisa; Da Silva, Diane M; Verma, Bhavna; Gray, Andrew; Brand, Heike E; Skeate, Joseph G; Porras, Tania B; Kanodia, Shreya; Kast, W Martin

    2015-02-15

    LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown to activate immune cells and result in tumor regression in a virally-induced tumor model, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration toward an anti-tumoral milieu, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Real Time PCR was used to evaluate expression of forced LIGHT and other immunoregulatory genes in prostate tumors samples. For in vivo studies, adenovirus encoding murine LIGHT was injected intratumorally into TRAMP-C2 prostate cancer cell tumor bearing mice. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor-specific lymphocytes were quantified via ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. LIGHT expression peaked within 48 hr of infection, recruited effector T cells that recognized mouse prostate stem cell antigen (PSCA) into the tumor microenvironment, and inhibited infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated

  1. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    Science.gov (United States)

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-01-01

    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches. PMID:26054597

  2. Initiative action of tumor-associated macrophage during tumor metastasis

    Directory of Open Access Journals (Sweden)

    Saroj Singh

    2017-06-01

    In this review article, we present an overview of mechanisms responsible for TAMs recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. We describe the interplay between Th17 cells and other immune cells in the tumor microenvironment, and we assess both the potential antitumorigenic and pro-tumorigenic activities of Th17 cells and their associated cytokines. Understanding the nature of Th17 cell responses in the tumor microenvironment will be important for the design of more efficacious cancer immunotherapies. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy.

  3. Hypoxia alters the physical properties of the tumor microenvironment

    Science.gov (United States)

    Gilkes, Daniele

    Of all the deaths attributed to cancer, 90% are due to metastasis, or the spread of cancer cells from a primary tumor to distant organs, and treatments that prevent or cure metastasis remain elusive. Emerging data indicate that low oxygen states within a tumor, termed hypoxia, can alter the chemical and physical parameters of the extracellular matrix (ECM), or scaffold of the tumor tissue. These changes generate a microenvironment that may be more conducive for promoting metastasis. During tumor evolution, changes in the composition and the overall content of the ECM reflect both its biophysical and biological properties and these strongly influence the cells properties, such as cellular proliferation and cell motility. The talk will cover how hypoxia arises within normal tissue and also in tumors. We will cover the role of hypoxia in collagen biogenesis which influences compositional changes to the tumor microenvironment and discuss how these changes lead to a stiffer tumor stroma. The challenges in determining the influence of chemical versus physical cues on cancer progression will also be considered.

  4. Remodeling the blood–brain barrier microenvironment by natural products for brain tumor therapy

    Institute of Scientific and Technical Information of China (English)

    Xiao Zhao; Rujing Chen; Mei Liu; Jianfang Feng; Jun Chen; Kaili Hu

    2017-01-01

    Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%–30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system(CNS) damage which endangers the patients’ lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood–brain barrier(BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix(ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.

  5. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  6. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    Science.gov (United States)

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  7. Molecular imaging of the tumor microenvironment for precision medicine and theranostics.

    Science.gov (United States)

    Penet, Marie-France; Krishnamachary, Balaji; Chen, Zhihang; Jin, Jiefu; Bhujwalla, Zaver M

    2014-01-01

    Morbidity and mortality from cancer and their associated conditions and treatments continue to extract a heavy social and economic global burden despite the transformative advances in science and technology in the twenty-first century. In fact, cancer incidence and mortality are expected to reach pandemic proportions by 2025, and costs of managing cancer will escalate to trillions of dollars. The inability to establish effective cancer treatments arises from the complexity of conditions that exist within tumors, the plasticity and adaptability of cancer cells coupled with their ability to escape immune surveillance, and the co-opted stromal cells and microenvironment that assist cancer cells in survival. Stromal cells, although destroyed together with cancer cells, have an ever-replenishing source that can assist in resurrecting tumors from any residual cancer cells that may survive treatment. The tumor microenvironment landscape is a continually changing landscape, with spatial and temporal heterogeneities that impact and influence cancer treatment outcome. Importantly, the changing landscape of the tumor microenvironment can be exploited for precision medicine and theranostics. Molecular and functional imaging can play important roles in shaping and selecting treatments to match this landscape. Our purpose in this review is to examine the roles of molecular and functional imaging, within the context of the tumor microenvironment, and the feasibility of their applications for precision medicine and theranostics in humans. © 2014 Elsevier Inc. All rights reserved.

  8. Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target

    Science.gov (United States)

    2016-06-01

    AWARD NUMBER: W81XWH-14-1-0107 TITLE: Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target PRINCIPAL...AND SUBTITLE Tumor Microenvironment Gene Signature as a 5a. CONTRACT NUMBER W81XWH-14-1-0107 Prognostic Classifier and Therapeutic Target 5b...gene signature that correlates with poor survival in ovarian cancer patients. We are refining this gene signature to develop biomarkers for the

  9. A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer

    Directory of Open Access Journals (Sweden)

    Wenbo Yao

    2017-08-01

    Full Text Available Hepatocellular carcinoma (HCC is a common malignant tumor in the digestive tract with limited therapeutic choices. Although sorafenib, an orally administered multikinase inhibitor, has produced survival benefits for patients with advanced HCC, favorable clinical outcomes are limited due to individual differences and resistance. The application of immunotherapy, a promising approach for HCC is urgently needed. Macrophage infiltration, mediated by the CCL2/CCR2 axis, is a potential immunotherapeutic target. Here, we report that a natural product from Abies georgei, named 747 and related in structure to kaempferol, exhibits sensitivity and selectivity as a CCR2 antagonist. The specificity of 747 on CCR2 was demonstrated via calcium flux, the binding domain of CCR2 was identified in an extracellular loop by chimera binding assay, and in vivo antagonistic activity of 747 was confirmed through a thioglycollate-induced peritonitis model. In animals, 747 elevated the number of CD8+ T cells in tumors via blocking tumor-infiltrating macrophage-mediated immunosuppression and inhibited orthotopic and subcutaneous tumor growth in a CD8+ T cell-dependent manner. Further, 747 enhanced the therapeutic efficacy of low-dose sorafenib without obvious toxicity, through elevating the numbers of intra-tumoral CD8+ T cells and increasing death of tumor cells. Thus, we have discovered a natural CCR2 antagonist and have provided a new perspective on development of this antagonist for treatment of HCC. In mouse models of HCC, 747 enhanced the tumor immunosuppressive microenvironment and potentiated the therapeutic effect of sorafenib, indicating that the combination of an immunomodulator with a chemotherapeutic drug could be a new approach for treating HCC.

  10. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-12-01

    Full Text Available Introduction: The dysregulation of pH by cancerous cells of solid tumors is able to create a unique milieu that is in favor of progression, invasion and metastasis as well as chemo-/immuno-resistance traits of solid tumors. Bioelements involved in pH dysregulation provide new set of oncotargets, inhibition of which may result in better clinical outcome. Methods: To study the impacts of pH dysregulation, we investigated the tumor development and progression in relation with Warburg effect, glycolysis and formation of aberrant tumor microenvironment. Results: The upregulation of glucose transporter GLUT-1 and several enzymes involve in glycolysis exacerbates this phenomenon. The accumulation of lactic acids in cancer cells provokes upregulation of several transport machineries (MCT-1, NHE-1, CA IX and H+ pump V-ATPase resulting in reinforced efflux of proton into extracellular fluid. This deviant event makes pH to be settled at 7.4 and 6.6 respectively in cancer cells cytoplasm and extracellular fluid within the tumor microenvironment, which in return triggers secretion of lysosomal components (various enzymes in acidic milieu with pH 5 into cytoplasm. All these anomalous phenomena make tumor microenvironment (TME to be exposed to cocktail of various enzymes with acidic pH, upon which extracellular matrix (ECM can be remodeled and even deformed, resulting in emergence of a complex viscose TME with high interstitial fluid pressure. Conclusion: It seems that pH dysregulation is able to remodel various physiologic functions and make solid tumors to become much more invasive and metastatic. It also can cause undesired resistance to chemotherapy and immunotherapy. Hence, cancer therapy needs to be reinforced using specific inhibitors of bioelements involved in pH dysregulation of TME in solid tumors.

  11. PC-3 prostate carcinoma cells release signal substances that influence the migratory activity of cells in the tumor's microenvironment

    Directory of Open Access Journals (Sweden)

    Zänker Kurt S

    2010-07-01

    Full Text Available Abstract Background Tumor cells interact with the cells of the microenvironment not only by cell-cell-contacts but also by the release of signal substances. These substances are known to induce tumor vascularization, especially under hypoxic conditions, but are also supposed to provoke other processes such as tumor innervation and inflammatory conditions. Inflammation is mediated by two organ systems, the neuroendocrine system and the immune system. Therefore, we investigated the influence of substances released by PC-3 human prostate carcinoma cells on SH-SY5Y neuroblastoma cells as well as neutrophil granulocytes and cytotoxic T lymphocytes, especially with regard to their migratory activity. Results PC-3 cells express several cytokines and growth factors including vascular endothelial growth factors, fibroblast growth factors, interleukins and neurotrophic factors. SH-SY5Y cells are impaired in their migratory activity by PC-3 cell culture supernatant, but orientate chemotactically towards the source. Neutrophil granulocytes increase their locomotory activity only in response to cell culture supernantant of hypoxic but not of normoxic PC-3 cells. In contrast, cytotoxic T lymphocytes do not change their migratory activity in response to either culture supernatant, but increase their cytotoxicity, whereas supernatant of normoxic PC-3 cells leads to a stronger increase than that of hypoxic PC-3 cells. Conclusions PC-3 cells release several signal substances that influence the behavior of the cells in the tumor's microenvironment, whereas no clear pattern towards proinflammatory or immunosuppressive conditions can be seen.

  12. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice.

    Science.gov (United States)

    Tagliamonte, Maria; Petrizzo, Annacarmen; Napolitano, Maria; Luciano, Antonio; Rea, Domenica; Barbieri, Antonio; Arra, Claudio; Maiolino, Piera; Tornesello, Marialina; Ciliberto, Gennaro; Buonaguro, Franco M; Buonaguro, Luigi

    2016-02-24

    The tumor immunosuppressive microenvironment represents a major obstacle to an effective tumor-specific cellular immune response. In the present study, the counterbalance effect of a novel metronomic chemotherapy protocol on such an immunosuppressive microenvironment was evaluated in a mouse model upon sub-cutaneous ectopic implantation of B16 melanoma cells. The chemotherapy consisted of a novel multi-drug cocktail including taxanes and alkylating agents, administered in a daily metronomic fashion. The newly designed strategy was shown to be safe, well tolerated and significantly efficacious. Treated animals showed a remarkable delay in tumor growth and prolonged survival as compared to control group. Such an effect was directly correlated with CD4(+) T cell reduction and CD8(+) T cell increase. Furthermore, a significant reduction in the percentage of both CD25(+)FoxP3(+) and CD25(+)CD127(low) regulatory T cell population was found both in the spleens and in the tumor lesions. Finally, the metronomic chemotherapy induced an intrinsic CD8(+) T cell response specific to B16 naturally expressed Trp2 TAA. The novel multi-drug daily metronomic chemotherapy evaluated in the present study was very effective in counterbalancing the immunosuppressive tumor microenvironment. Consequently, the intrinsic anti-tumor T cell immunity could exert its function, targeting specific TAA and significantly containing tumor growth. Overall, the results show that this represents a promising adjuvant approach to significantly enhance efficacy of intrinsic or vaccine-elicited tumor-specific cellular immunity.

  13. Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0163 TITLE: Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer ...Prostate Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Feng Yang, Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: fyang@bcm.edu...W81XWH-13-1-0163 " Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer " Introduction AR signaling

  14. Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling.

    Science.gov (United States)

    Xie, Di; Zhu, Shasha; Bai, Li

    2016-12-01

    Cellular metabolism has been shown to regulate differentiation and function of immune cells. Tumor associated immune cells undergo phenotypic and functional alterations due to the change of cellular metabolism in tumor microenvironments. NKT cells are good candidates for immunotherapies against tumors and have been used in several clinical trials. However, the influences of tumor microenvironments on NKT cell functions remain unclear. In our studies, lactic acid in tumor microenvironments inhibited IFNγ and IL4 productions from NKT cells, and more profound influence on IFNγ was observed. By adjusting the pH of culture medium we further showed that, dysfunction of NKT cells could simply be induced by low extracellular pH. Moreover, low extracellular pH inhibited NKT cell functions by inhibiting mammalian target of rapamycin (mTOR) signaling and nuclear translocation of promyelocytic leukemia zinc-finger (PLZF). Together, our results suggest that tumor acidic microenvironments could interfere with NKT cell functions through metabolic controls.

  15. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hyuk, E-mail: jhkim@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Robinson, Sally [Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Sharkey, Leslie C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); O' Brien, Timothy D. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Dickerson, Erin B. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Modiano, Jaime F., E-mail: modiano@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States)

    2014-04-15

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated

  16. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    International Nuclear Information System (INIS)

    Kim, Jong-Hyuk; Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C.; Robinson, Sally; Sharkey, Leslie C.; O'Brien, Timothy D.; Dickerson, Erin B.; Modiano, Jaime F.

    2014-01-01

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated

  17. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment

    OpenAIRE

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion...

  18. Decreased decorin expression in the tumor microenvironment

    International Nuclear Information System (INIS)

    Bozoky, Benedek; Savchenko, Andrii; Guven, Hayrettin; Ponten, Fredrik; Klein, George; Szekely, Laszlo

    2014-01-01

    Decorin is a small leucine-rich proteoglycan, synthesized and deposited by fibroblasts in the stroma where it binds to collagen I. It sequesters several growth factors and antagonizes numerous members of the receptor tyrosine kinase family. In experimental murine systems, it acted as a potent tumor suppressor. Examining the Human Protein Atlas online database of immunostained tissue samples we have surveyed decorin expression in silico in several different tumor types, comparing them with corresponding normal tissues. We found that decorin is abundantly secreted and deposited in normal connective tissue but its expression is consistently decreased in the tumor microenvironment. We developed a software to quantitate the difference in expression. The presence of two closely related proteoglycans in the newly formed tumor stroma indicated that the decreased decorin expression was not caused by the delay in proteoglycan deposition in the newly formed connective tissue surrounding the tumor

  19. Tumor microenvironment in invasive lobular carcinoma: possible therapeutic targets.

    Science.gov (United States)

    Nakagawa, Saki; Miki, Yasuhiro; Miyashita, Minoru; Hata, Shuko; Takahashi, Yayoi; Rai, Yoshiaki; Sagara, Yasuaki; Ohi, Yasuyo; Hirakawa, Hisashi; Tamaki, Kentaro; Ishida, Takanori; Watanabe, Mika; Suzuki, Takashi; Ohuchi, Noriaki; Sasano, Hironobu

    2016-01-01

    Invasive ductal and lobular carcinomas (IDC and ILC) are the two most common histological types of breast cancer, and have been considered to develop from terminal duct lobular unit but their molecular, pathological, and clinical features are markedly different between them. These differences could be due to different mechanisms of carcinogenesis and tumor microenvironment, especially cancer-associated fibroblasts (CAFs) but little has been explored in this aspect. Therefore, in this study, we evaluated the status of angiogenesis, maturation of intratumoral microvessels, and proliferation of CAFs using immunohistochemistry and PCR array analysis to explore the differences of tumor microenvironment between ILC and IDC. We studied grade- and age-matched, luminal-like ILC and IDC. We immunolocalized CD34 and αSMA for an evaluation of CAFs and CD31, Vasohibin-1, a specific marker of proliferative endothelial cells and nestin, a marker of pericytes for studying the status of proliferation and maturation of intratumoral microvessel. We also performed PCR array analysis to evaluate angiogenic factors in tumor stromal components. The number of CAFs, microvessel density, and vasohibin-1/CD31 positive ratio were all significantly higher in ILC than IDC but nestin immunoreactivity in intratumoral microvessel was significantly lower in ILC. These results did indicate that proliferation of CAFs and endothelial cells was more pronounced in ILC than IDC but newly formed microvessels were less mature than those in IDC. PCR array analysis also revealed that IGF-1 expression was higher in ILC than IDC. This is the first study to demonstrate the differences of tumor microenvironment including CAFs and proliferation and maturation of intratumoral vessels between ILC and IDC.

  20. Trabectedin and Plitidepsin: Drugs from the Sea that Strike the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Carlos M. Galmarini

    2014-01-01

    Full Text Available The prevailing paradigm states that cancer cells acquire multiple genetic mutations in oncogenes or tumor suppressor genes whose respective activation/up-regulation or loss of function serve to impart aberrant properties, such as hyperproliferation or inhibition of cell death. However, a tumor is now considered as an organ-like structure, a complex system composed of multiple cell types (e.g., tumor cells, inflammatory cells, endothelial cells, fibroblasts, etc. all embedded in an inflammatory stroma. All these components influence each other in a complex and dynamic cross-talk, leading to tumor cell survival and progression. As the microenvironment has such a crucial role in tumor pathophysiology, it represents an attractive target for cancer therapy. In this review, we describe the mechanism of action of trabectedin and plitidepsin as an example of how these specific drugs of marine origin elicit their antitumor activity not only by targeting tumor cells but also the tumor microenvironment.

  1. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    Science.gov (United States)

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  2. 3D tumor tissue analogs and their orthotopic implants for understanding tumor-targeting of microenvironment-responsive nanosized chemotherapy and radiation.

    Science.gov (United States)

    Sethi, Pallavi; Jyoti, Amar; Swindell, Elden P; Chan, Ryan; Langner, Ulrich W; Feddock, Jonathan M; Nagarajan, Radhakrishnan; O'Halloran, Thomas V; Upreti, Meenakshi

    2015-11-01

    An appropriate representation of the tumor microenvironment in tumor models can have a pronounced impact on directing combinatorial treatment strategies and cancer nanotherapeutics. The present study develops a novel 3D co-culture spheroid model (3D TNBC) incorporating tumor cells, endothelial cells and fibroblasts as color-coded murine tumor tissue analogs (TTA) to better represent the tumor milieu of triple negative breast cancer in vitro. Implantation of TTA orthotopically in nude mice, resulted in enhanced growth and aggressive metastasis to ectopic sites. Subsequently, the utility of the model is demonstrated for preferential targeting of irradiated tumor endothelial cells via radiation-induced stromal enrichment of galectin-1 using anginex conjugated nanoparticles (nanobins) carrying arsenic trioxide and cisplatin. Demonstration of a multimodal nanotherapeutic system and inclusion of the biological response to radiation using an in vitro/in vivo tumor model incorporating characteristics of tumor microenvironment presents an advance in preclinical evaluation of existing and novel cancer nanotherapies. Existing in-vivo tumor models are established by implanting tumor cells into nude mice. Here, the authors described their approach 3D spheres containing tumor cells, enodothelial cells and fibroblasts. This would mimic tumor micro-environment more realistically. This interesting 3D model should reflect more accurately tumor response to various drugs and would enable the design of new treatment modalities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Pulmonary emphysema and tumor microenvironment in primary lung cancer.

    Science.gov (United States)

    Murakami, Junichi; Ueda, Kazuhiro; Sano, Fumiho; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-02-01

    To clarify the relationship between the presence of pulmonary emphysema and tumor microenvironment and their significance for the clinicopathologic aggressiveness of non-small cell lung cancer. The subjects included 48 patients with completely resected and pathologically confirmed stage I non-small cell lung cancer. Quantitative computed tomography was used to diagnose pulmonary emphysema, and immunohistochemical staining was performed to evaluate the matrix metalloproteinase (MMP) expression status in the intratumoral stromal cells as well as the microvessel density (MVD). Positive MMP-9 staining in the intratumoral stromal cells was confirmed in 17 (35%) of the 48 tumors. These 17 tumors were associated with a high MVD, frequent lymphovascular invasion, a high proliferative activity, and high postoperative recurrence rate (all, P pulmonary emphysema (P = 0.02). Lung cancers arising from pulmonary emphysema were also associated with a high MVD, proliferative activity, and postoperative recurrence rate (all, P < 0.05). The MMP-9 expression in intratumoral stromal cells is associated with the clinicopathologic aggressiveness of lung cancer and is predominantly identified in tumors arising in emphysematous lungs. Further studies regarding the biological links between the intratumoral and extratumoral microenvironment will help to explain why lung cancers originating in emphysematous lung tissues are associated with a poor prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    International Nuclear Information System (INIS)

    Hamm, Christopher A; Wang, Deli; Malchenko, Sergey; Fatima Bonaldo, Maria de; Casavant, Thomas L; Hendrix, Mary JC; Soares, Marcelo B; Stevens, Jeff W; Xie, Hehuang; Vanin, Elio F; Morcuende, Jose A; Abdulkawy, Hakeem; Seftor, Elisabeth A; Sredni, Simone T; Bischof, Jared M

    2010-01-01

    Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC) - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that thymosin-β4 may have a role in chondrosarcoma metastasis

  5. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Directory of Open Access Journals (Sweden)

    Hamm Christopher A

    2010-09-01

    Full Text Available Abstract Background Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. Methods To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. Results The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. Conclusion This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that

  6. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Jacob L. Albritton

    2017-01-01

    Full Text Available Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies.

  7. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments.

    Science.gov (United States)

    Albritton, Jacob L; Miller, Jordan S

    2017-01-01

    Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. © 2017. Published by The Company of Biologists Ltd.

  8. Combined Effects of Pericytes in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Aline Lopes Ribeiro

    2015-01-01

    Full Text Available Pericytes are multipotent perivascular cells whose involvement in vasculature development is well established. Evidences in the literature also suggest that pericytes display immune properties and that these cells may serve as an in vivo reservoir of stem cells, contributing to the regeneration of diverse tissues. Pericytes are also capable of tumor homing and are important cellular components of the tumor microenvironment (TME. In this review, we highlight the contribution of pericytes to some classical hallmarks of cancer, namely, tumor angiogenesis, growth, metastasis, and evasion of immune destruction, and discuss how collectively these hallmarks could be tackled by therapies targeting pericytes, providing a rationale for cancer drugs aiming at the TME.

  9. Metastasis in context : modeling the tumor microenvironment with cancer-on-a-chip approaches

    NARCIS (Netherlands)

    Sleeboom, Jelle J.F.; Amirabadi, Hossein Eslami; Nair, Poornima; Sahlgren, Cecilia M.; Den Toonder, Jaap M.J.

    2018-01-01

    Most cancer deaths are not caused by the primary tumor, but by secondary tumors formed through metastasis, a complex and poorly understood process. Cues from the tumor microenvironment, such as the biochemical composition, cellular population, extracellular matrix, and tissue (fluid) mechanics, have

  10. Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells

    Science.gov (United States)

    Chen, Eunice Y.; Hodge, Sasson; Tai, Katherine; Hou, Huagang; Khan, Nadeem; Hoopes, P. Jack; Samkoe, Kimberley S.

    2013-02-01

    Survival of head and neck cancer patients has not improved in several decades despite advances in diagnostic and therapeutic techniques. Tumor hypoxia in head and neck cancers is a critical factor that leads to poor prognosis, resistance to radiation and chemotherapies, and increased metastatic potential. Magnetic nanoparticle hyperthermia (mNPHT) is a promising therapy for hypoxic tumors because nanoparticles (NP) can be directly injected into, or targeted to, hypoxic tumor cells and exposed to alternating magnetic fields (AMF) to induce hyperthermia. Magnetic NPHT can improve therapeutic effectiveness by two modes of action: 1) direct killing of hypoxic tumor cells; and 2) increase in tumor oxygenation, which has the potential to make the tumor more susceptible to adjuvant therapies such as radiation and chemotherapy. Prior studies in breast cancer cells demonstrated that a hypoxic microenvironment diminished NP uptake in vitro; however, mNPHT with intratumoral NP injection in hypoxic tumors increased tumor oxygenation and delayed tumor growth. In this study, head and neck squamous cell carcinoma (HNSCC) cell lines were incubated in normoxic, hypoxic, and hyperoxic conditions with iron oxide NP for 4-72 hours. After incubation, the cells were analyzed for iron uptake by mass spectrometry, Prussian blue staining, and electron microscopy. In contrast to breast cancer cells, uptake of NPs was increased in hypoxic microenvironments as compared to normoxic conditions in HNSCC cells. In future studies, we will confirm the effect of the oxygen microenvironment on NP uptake and efficacy of mNPHT both in vitro and in vivo.

  11. Inflammatory models drastically alter tumor growth and the immune microenvironment in hepatocellular carcinoma.

    Science.gov (United States)

    Markowitz, Geoffrey J; Michelotti, Gregory A; Diehl, Anna Mae; Wang, Xiao-Fan

    2015-04-01

    Initiation and progression of hepatocellular carcinoma (HCC) is intimately associated with a chronically diseased liver tissue. This diseased liver tissue background is a drastically different microenvironment from the healthy liver, especially with regard to immune cell prevalence and presence of mediators of immune function. To better understand the consequences of liver disease on tumor growth and the interplay with its microenvironment, we utilized two standard methods of fibrosis induction and orthotopic implantation of tumors into the inflamed and fibrotic liver to mimic the liver condition in human HCC patients. Compared to non-diseased controls, tumor growth was significantly enhanced under fibrotic conditions. The immune cells that infiltrated the tumors were also drastically different, with decreased numbers of natural killer cells but greatly increased numbers of immune-suppressive CD11b + Gr1 hi myeloid cells in both models of fibrosis. In addition, there were model-specific differences: Increased numbers of CD11b + myeloid cells and CD4 + CD25 + T cells were found in tumors in the bile duct ligation model but not in the carbon tetrachloride model. Induction of fibrosis altered the cytokine production of implanted tumor cells, which could have farreaching consequences on the immune infiltrate and its functionality. Taken together, this work demonstrates that the combination of fibrosis induction with orthotopic tumor implantation results in a markedly different tumor microenvironment and tumor growth kinetics, emphasizing the necessity for more accurate modeling of HCC progression in mice, which takes into account the drastic changes in the tissue caused by chronic liver disease.

  12. Effect of Irradiation on Tumor Microenvironment and Bone Marrow Cell Migration in a Preclinical Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Jonathan L. [Department of Biological Sciences, Oakland University, Rochester, Michigan (United States); Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States); Krueger, Sarah A.; Hanna, Alaa [Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States); Raffel, Thomas R. [Department of Biological Sciences, Oakland University, Rochester, Michigan (United States); Wilson, George D. [Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States); Madlambayan, Gerard J. [Department of Biological Sciences, Oakland University, Rochester, Michigan (United States); Marples, Brian, E-mail: Brian.Marples@beaumont.edu [Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States)

    2016-09-01

    Purpose: To characterize the tumor microenvironment after standard radiation therapy (SRT) and pulsed radiation therapy (PRT) in Lewis lung carcinoma (LLC) allografts. Methods and Materials: Subcutaneous LLC tumors were established in C57BL/6 mice. Standard RT or PRT was given at 2 Gy/d for a total dose of 20 Gy using a 5 days on, 2 days off schedule to mimic clinical delivery. Radiation-induced tumor microenvironment changes were examined after treatment using flow cytometry and antibody-specific histopathology. Normal tissue effects were measured using noninvasive {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography after naïve animals were given whole-lung irradiation to 40 Gy in 4 weeks using the same 2-Gy/d regimens. Results: Over the 2 weeks of therapy, PRT was more effective than SRT at reducing tumor growth rate (0.31 ± 0.02 mm{sup 3}/d and 0.55 ± 0.04 mm{sup 3}/d, respectively; P<.007). Histopathology showed a significant comparative reduction in the levels of Ki-67 (14.5% ± 3%), hypoxia (10% ± 3.5%), vascular endothelial growth factor (2.3% ± 1%), and stromal-derived factor-1α (2.5% ± 1.4%), as well as a concomitant decrease in CD45{sup +} bone marrow–derived cell (BMDC) migration (7.8% ± 2.2%) after PRT. The addition of AMD3100 also decreased CD45{sup +} BMDC migration in treated tumors (0.6% ± 0.1%). Higher vessel density was observed in treated tumors. No differences were observed in normal lung tissue after PRT or SRT. Conclusions: Pulsed RT–treated tumors exhibited slower growth and reduced hypoxia. Pulsed RT eliminated initiation of supportive mechanisms utilized by tumors in low oxygen microenvironments, including angiogenesis and recruitment of BMDCs.

  13. Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance

    Institute of Scientific and Technical Information of China (English)

    Tianjian Yu; Genhong Di

    2017-01-01

    Breast cancer has been shown to live in the tumor microenvironment,which consists of not only breast cancer cells themselves but also a significant amount of pathophysiologically altered surrounding stroma and cells.Diverse components of the breast cancer microenvironment,such as suppressive immune cells,re-programmed fibroblast cells,altered extracellular matrix (ECM) and certain soluble factors,synergistically impede an effective anti-tumor response and promote breast cancer progression and metastasis.Among these components,stromal cells in the breast cancer microenvironment are characterized by molecular alterations and aberrant signaling pathways,whereas the ECM features biochemical and biomechanical changes.However,triple-negative breast cancer (TNBC),the most aggressive subtype of this disease that lacks effective therapies available for other subtypes,is considered to feature a unique microenvironment distinct from that of other subtypes,especially compared to Luminal A subtype.Because these changes are now considered to significantly impact breast cancer development and progression,these unique alterations may serve as promising prognostic factors of clinical outcome or potential therapeutic targets for the treatment of TNBC.In this review,we focus on the composition of the TNBC microenvironment,concomitant distinct biological alteration,specific interplay between various cell types and TNBC cells,and the prognostic implications of these findings.

  14. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2016-11-01

    Full Text Available The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells’ growth and expansion can influence neighboring cells’ behavior, leading to a modulation of mesenchymal stromal cell (MSC activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT, a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.

  15. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters

    Science.gov (United States)

    Li, Xiaofeng; Yu, Xiaozhou; Dai, Dong; Song, Xiuyu; Xu, Wengui

    2016-01-01

    Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment. PMID:27009812

  16. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Luís Henrique Corrêa

    2017-09-01

    Full Text Available Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs, which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.

  17. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment.

    Science.gov (United States)

    Bianchi, G; Vuerich, M; Pellegatti, P; Marimpietri, D; Emionite, L; Marigo, I; Bronte, V; Di Virgilio, F; Pistoia, V; Raffaghello, L

    2014-03-20

    Tumor microenvironment of solid tumors is characterized by a strikingly high concentration of adenosine and ATP. Physiological significance of this biochemical feature is unknown, but it has been suggested that it may affect infiltrating immune cell responses and tumor progression. There is increasing awareness that many of the effects of extracellular ATP on tumor and inflammatory cells are mediated by the P2X7 receptor (P2X7R). Aim of this study was to investigate whether: (i) extracellular ATP is a component of neuroblastoma (NB) microenvironment, (ii) myeloid-derived suppressor cells (MDSCs) express functional P2X7R and (iii) the ATP/P2X7R axis modulates MDSC functions. Our results show that extracellular ATP was detected in NB microenvironment in amounts that increased in parallel with tumor progression. The percentage of CD11b(+)/Gr-1(+) cells was higher in NB-bearing mice compared with healthy animals. Within the CD11b/Gr-1(+) population, monocytic MDSCs (M-MDSCs) produced higher levels of reactive oxygen species (ROS), arginase-1 (ARG-1), transforming growth factor-β1 (TGF-β1) and stimulated more potently in vivo tumor growth, as compared with granulocytic MDSCs (G-MDSCs). P2X7R of M-MDSCs was localized at the plasma membrane, coupled to increased functionality, upregulation of ARG-1, TGF-β1 and ROS. Quite surprisingly, the P2X7R in primary MDSCs as well as in the MSC-1 and MSC-2 lines was uncoupled from cytotoxicity. This study describes a novel scenario in which MDSC immunosuppressive functions are modulated by the ATP-enriched tumor microenvironment.

  18. The Immunomodulatory Effects of Mesenchymal Stem Cell Polarization within the Tumor Microenvironment Niche

    Directory of Open Access Journals (Sweden)

    Cosette M. Rivera-Cruz

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs represent a promising tool for cell therapy, particularly for their antitumor effects. This cell population can be isolated from multiple tissue sources and also display an innate ability to home to areas of inflammation, such as tumors. Upon entry into the tumor microenvironment niche, MSCs promote or inhibit tumor progression by various mechanisms, largely through the release of soluble factors. These factors can be immunomodulatory by activating or inhibiting both the adaptive and innate immune responses. The mechanisms by which MSCs modulate the immune response are not well understood. Because of this, the relationship between MSCs and immune cells within the tumor microenvironment niche continues to be an active area of research in order to help explain the apparent contradictory findings currently available in the literature. The ongoing research aims to enhance the potential of MSCs in future therapeutic applications.

  19. Novel "Elements" of Immune Suppression within the Tumor Microenvironment.

    Science.gov (United States)

    Gurusamy, Devikala; Clever, David; Eil, Robert; Restifo, Nicholas P

    2017-06-01

    Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression

    Directory of Open Access Journals (Sweden)

    James B. McCarthy

    2018-05-01

    Full Text Available This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA. Cancer-associated fibroblasts (CAFs are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT. The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs also form heterotypic clusters with circulating tumor cells (CTC, which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.

  1. Emerging Roles for Eosinophils in the Tumor Microenvironment.

    Science.gov (United States)

    Reichman, Hadar; Karo-Atar, Danielle; Munitz, Ariel

    2016-11-01

    Eosinophils are evolutionary conserved cells largely studied in the context of allergy. Although eosinophils were first described in tumors more than 120 years ago, their roles in cancer are often overlooked. This is puzzling given their potent immune modulatory, cytotoxic, and/or tissue repair capabilities, and recent studies demonstrating key roles for eosinophils in contexts far beyond their 'classical' field (e.g., metabolism, thermogenesis, and tissue regeneration). Recent data suggest that this frequently ignored cell is emerging as a potent immune effector and immune modulator in the tumor microenvironment. This review discusses the relevance of eosinophils to tumorigenesis and the potential to harness their function in cancer therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma

    Directory of Open Access Journals (Sweden)

    Abir Mondal

    2017-07-01

    Full Text Available Diffuse gliomas are lethal tumors of the central nervous system (CNS characterized by infiltrative growth, aggressive nature, and therapeutic resistance. The recent 2016 WHO classification for CNS tumors categorizes diffuse glioma into two major types that include IDH wild-type glioblastoma, which is the predominant type and IDH-mutant glioblastoma, which is less common and displays better prognosis. Recent studies suggest presence of a distinct cell population with stem cell features termed as glioma stem cells (GSCs to be causal in driving tumor growth in glioblastoma. The presence of a stem and progenitor population possibly makes glioblastoma highly heterogeneous. Significantly, tumor growth is driven by interaction of cells residing within the tumor with the surrounding milieu termed as the tumor microenvironment. It comprises of various cell types such as endothelial cells, secreted factors, and the surrounding extracellular matrix, which altogether help perpetuate the proliferation of GSCs. One of the important mediators critical to the cross talk is extracellular vesicles (EVs. These nano-sized vesicles play important roles in intercellular communication by transporting bioactive molecules into the surrounding milieu, thereby altering cellular functions and/or reprogramming recipient cells. With the growing information on the contribution of EVs in modulation of the tumor microenvironment, it is important to determine their role in both supporting as well as promoting tumor growth in glioma. In this review, we provide a comprehensive overview of the role of EVs in tumor progression and glioma pathogenesis.

  3. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.

    Science.gov (United States)

    Ge, Haitao; Mu, Luyan; Jin, Linchun; Yang, Changlin; Chang, Yifan Emily; Long, Yu; DeLeon, Gabriel; Deleyrolle, Loic; Mitchell, Duane A; Kubilis, Paul S; Lu, Dunyue; Qi, Jiping; Gu, Yunhe; Lin, Zhiguo; Huang, Jianping

    2017-10-01

    Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM. © 2017 UICC.

  4. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.

    Science.gov (United States)

    Ozcelikkale, Altug; Moon, Hye-Ran; Linnes, Michael; Han, Bumsoo

    2017-09-01

    Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  5. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  6. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment

    DEFF Research Database (Denmark)

    Noël, Agnès; Gutiérrez-Fernández, Ana; Sounni, Nor Eddine

    2012-01-01

    Processes such as cell proliferation, angiogenesis, apoptosis, or invasion are strongly influenced by the surrounding microenvironment of the tumor. Therefore, the ability to change these surroundings represents an important property through which tumor cells are able to acquire specific functions....... Despite the pro-tumorigenic function of certain metalloproteinases, recent studies have shown that other members of these families, such as MMP8 or MMP11, have a protective role against tumor growth and metastasis in animal models. These studies have been further expanded by large-scale genomic analysis...

  7. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    2009-11-01

    Full Text Available Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  8. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Science.gov (United States)

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  9. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    Science.gov (United States)

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  10. Impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. Introduction of a multiinstitutional research project

    International Nuclear Information System (INIS)

    Zips, D.; Petersen, C.; Adam, M.; Molls, M.; Philbrook, C.; Flentje, M.; Haase, A.; Schmitt, P.; Mueller-Klieser, W.; Thews, O.; Walenta, S.; Baumann, M.

    2004-01-01

    Background: recent developments in imaging technology and tumor biology have led to new techniques to detect hypoxia and related alterations of the metabolic microenvironment in tumors. However, whether these new methods can predict radiobiological hypoxia and outcome after fractionated radiotherapy still awaits experimental evaluation. Material and methods: the present article will introduce a multiinstitutional research project addressing the impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. The four laboratories involved are situated at the universities of Dresden, Mainz, Munich and Wuerzburg, Germany. Results: the joint scientific project started to collect data obtained on a set of ten different human tumor xenografts growing in nude mice by applying various imaging techniques to detect tumor hypoxia and related parameters of the metabolic microenvironment. These techniques include magnetic resonance imaging and spectroscopy, metabolic mapping with quantitative bioluminescence and single-photon imaging, histological multiparameter analysis of biochemical hypoxia, perfusion and vasculature, and immunohistochemistry of factors related to angiogenesis, invasion and metastasis. To evaluate the different methods, baseline functional radiobiological data including radiobiological hypoxic fraction and outcome after fractionated irradiation will be determined. Conclusion: besides increasing our understanding of tumor biology, the project will focus on new, clinically applicable strategies for microenvironment profiling and will help to identify those patients that might benefit from targeted interventions to improve tumor oxygenation. (orig.)

  11. Natural Compounds Regulate Glycolysis in Hypoxic Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jian-Li Gao

    2015-01-01

    Full Text Available In the early twentieth century, Otto Heinrich Warburg described an elevated rate of glycolysis occurring in cancer cells, even in the presence of atmospheric oxygen (the Warburg effect. Recently it became a therapeutically interesting strategy and is considered as an emerging hallmark of cancer. Hypoxia inducible factor-1 (HIF-1 is one of the key transcription factors that play major roles in tumor glycolysis and could directly trigger Warburg effect. Thus, how to inhibit HIF-1-depended Warburg effect to assist the cancer therapy is becoming a hot issue in cancer research. In fact, HIF-1 upregulates the glucose transporters (GLUT and induces the expression of glycolytic enzymes, such as hexokinase, pyruvate kinase, and lactate dehydrogenase. So small molecules of natural origin used as GLUT, hexokinase, or pyruvate kinase isoform M2 inhibitors could represent a major challenge in the field of cancer treatment. These compounds aim to suppress tumor hypoxia induced glycolysis process to suppress the cell energy metabolism or enhance the susceptibility of tumor cells to radio- and chemotherapy. In this review, we highlight the role of natural compounds in regulating tumor glycolysis, with a main focus on the glycolysis under hypoxic tumor microenvironment.

  12. Inorganic Arsenic?Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell?Conditioned Media Model

    OpenAIRE

    Shearer, Joseph J.; Wold, Eric A.; Umbaugh, Charles S.; Lichti, Cheryl F.; Nilsson, Carol L.; Figueiredo, Marxa L.

    2015-01-01

    Background: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal?epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer. Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored. Our objective was to elucidate...

  13. The “Trojan Horse” Approach to Tumor Immunotherapy: Targeting the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Delia Nelson

    2014-01-01

    Full Text Available Most anticancer therapies including immunotherapies are given systemically; yet therapies given directly into tumors may be more effective, particularly those that overcome natural suppressive factors in the tumor microenvironment. The “Trojan Horse” approach of intratumoural delivery aims to promote immune-mediated destruction by inducing microenvironmental changes within the tumour at the same time as avoiding the systemic toxicity that is often associated with more “full frontal” treatments such as transfer of large numbers of laboratory-expanded tumor-specific cytotoxic T lymphocytes or large intravenous doses of cytokine. Numerous studies have demonstrated that intratumoural therapy has the capacity to minimizing local suppression, inducing sufficient “dangerous” tumor cell death to cross-prime strong immune responses, and rending tumor blood vessels amenable to immune cell traffic to induce effector cell changes in secondary lymphoid organs. However, the key to its success is the design of a sound rational approach based on evidence. There is compelling preclinical data for local immunotherapy approaches in tumor immunology. This review summarises how immune events within a tumour can be modified by local approaches, how this can affect systemic antitumor immunity such that distal sites are attacked, and what approaches have been proven most successful so far in animals and patients.

  14. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy.

    Science.gov (United States)

    Tsang, Yuk-Wah; Huang, Cheng-Chung; Yang, Kai-Lin; Chi, Mau-Shin; Chiang, Hsin-Chien; Wang, Yu-Shan; Andocs, Gabor; Szasz, Andras; Li, Wen-Tyng; Chi, Kwan-Hwa

    2015-10-15

    The treatment of intratumoral dentritic cells (DCs) commonly fails because it cannot evoke immunity in a poor tumor microenvironment (TME). Modulated electro-hyperthermia (mEHT, trade-name: oncothermia) represents a significant technological advancement in the hyperthermia field, allowing the autofocusing of electromagnetic power on a cell membrane to generate massive apoptosis. This approach turns local immunogenic cancer cell death (apoptosis) into a systemic anti-tumor immune response and may be implemented by treatment with intratumoral DCs. The CT26 murine colorectal cancer model was used in this investigation. The inhibition of growth of the tumor and the systemic anti-tumor immune response were measured. The tumor was heated to a core temperature of 42 °C for 30 min. The matured synergetic DCs were intratumorally injected 24 h following mEHT was applied. mEHT induced significant apoptosis and enhanced the release of heat shock protein70 (Hsp70) in CT26 tumors. Treatment with mEHT-DCs significantly inhibited CT26 tumor growth, relative to DCs alone or mEHT alone. The secondary tumor protection effect upon rechallenging was observed in mice that were treated with mEHT-DCs. Immunohistochemical staining of CD45 and F4/80 revealed that mEHT-DC treatment increased the number of leukocytes and macrophages. Most interestingly, mEHT also induced infiltrations of eosinophil, which has recently been reported to be an orchestrator of a specific T cell response. Cytotoxic T cell assay and ELISpot assay revealed a tumor-specific T cell activity. This study demonstrated that mEHT induces tumor cell apoptosis and enhances the release of Hsp70 from heated tumor cells, unlike conventional hyperthermia. mEHT can create a favorable tumor microenvironment for an immunological chain reaction that improves the success rate of intratumoral DC immunotherapy.

  15. Magnetic Resonance Spectroscopic Imaging of Tumor Metabolic Markers for Cancer Diagnosis, Metabolic Phenotyping, and Characterization of Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Qiuhong He

    2004-01-01

    Full Text Available Cancer cells display heterogeneous genetic characteristics, depending on the tumor dynamic microenvironment. Abnormal tumor vasculature and poor tissue oxygenation generate a fraction of hypoxic tumor cells that have selective advantages in metastasis and invasion and often resist chemo- and radiation therapies. The genetic alterations acquired by tumors modify their biochemical pathways, which results in abnormal tumor metabolism. An elevation in glycolysis known as the “Warburg effect” and changes in lipid synthesis and oxidation occur. Magnetic resonance spectroscopy (MRS has been used to study tumor metabolism in preclinical animal models and in clinical research on human breast, brain, and prostate cancers. This technique can identify specific genetic and metabolic changes that occur in malignant tumors. Therefore, the metabolic markers, detectable by MRS, not only provide information on biochemical changes but also define different metabolic tumor phenotypes. When combined with the contrast-enhanced Magnetic Resonance Imaging (MRI, which has a high sensitivity for cancer diagnosis, in vivo magnetic resonance spectroscopic imaging (MRSI improves the diagnostic specificity of malignant human cancers and is becoming an important clinical tool for cancer management and care. This article reviews the MRSI techniques as molecular imaging methods to detect and quantify metabolic changes in various tumor tissue types, especially in extracranial tumor tissues that contain high concentrations of fat. MRI/MRSI methods have been used to characterize tumor microenvironments in terms of blood volume and vessel permeability. Measurements of tissue oxygenation and glycolytic rates by MRS also are described to illustrate the capability of the MR technology in probing molecular information non-invasively in tumor tissues and its important potential for studying molecular mechanisms of human cancers in physiological conditions.

  16. Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment.

    Science.gov (United States)

    Guzman-Rojas, Liliana; Rangel, Roberto; Salameh, Ahmad; Edwards, Julianna K; Dondossola, Eleonora; Kim, Yun-Gon; Saghatelian, Alan; Giordano, Ricardo J; Kolonin, Mikhail G; Staquicini, Fernanda I; Koivunen, Erkki; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2012-01-31

    Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.

  17. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Joana Maia

    2018-02-01

    Full Text Available Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased, ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.

  18. Acidity generated by the tumor microenvironment drives local invasion.

    Science.gov (United States)

    Estrella, Veronica; Chen, Tingan; Lloyd, Mark; Wojtkowiak, Jonathan; Cornnell, Heather H; Ibrahim-Hashim, Arig; Bailey, Kate; Balagurunathan, Yoganand; Rothberg, Jennifer M; Sloane, Bonnie F; Johnson, Joseph; Gatenby, Robert A; Gillies, Robert J

    2013-03-01

    The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H(+) diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium-hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524-35. ©2012 AACR. ©2012 AACR.

  19. Immune Suppression in Tumors as a Surmountable Obstacle to Clinical Efficacy of Cancer Vaccines

    International Nuclear Information System (INIS)

    Wieërs, Grégoire; Demotte, Nathalie; Godelaine, Danièle; Bruggen, Pierre van der

    2011-01-01

    Human tumors are usually not spontaneously eliminated by the immune system and therapeutic vaccination of cancer patients with defined antigens is followed by tumor regressions only in a small minority of the patients. The poor vaccination effectiveness could be explained by an immunosuppressive tumor microenvironment. Because T cells that infiltrate tumor metastases have an impaired ability to lyse target cells or to secrete cytokine, many researchers are trying to decipher the underlying immunosuppressive mechanisms. We will review these here, in particular those considered as potential therapeutic targets. A special attention will be given to galectins, a family of carbohydrate binding proteins. These lectins have often been implicated in inflammation and cancer and may be useful targets for the development of new anti-cancer therapies

  20. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy

    International Nuclear Information System (INIS)

    Tsang, Yuk-Wah; Huang, Cheng-Chung; Yang, Kai-Lin; Chi, Mau-Shin; Chiang, Hsin-Chien; Wang, Yu-Shan; Andocs, Gabor; Szasz, Andras; Li, Wen-Tyng; Chi, Kwan-Hwa

    2015-01-01

    The treatment of intratumoral dentritic cells (DCs) commonly fails because it cannot evoke immunity in a poor tumor microenvironment (TME). Modulated electro-hyperthermia (mEHT, trade-name: oncothermia) represents a significant technological advancement in the hyperthermia field, allowing the autofocusing of electromagnetic power on a cell membrane to generate massive apoptosis. This approach turns local immunogenic cancer cell death (apoptosis) into a systemic anti-tumor immune response and may be implemented by treatment with intratumoral DCs. The CT26 murine colorectal cancer model was used in this investigation. The inhibition of growth of the tumor and the systemic anti-tumor immune response were measured. The tumor was heated to a core temperature of 42 °C for 30 min. The matured synergetic DCs were intratumorally injected 24 h following mEHT was applied. mEHT induced significant apoptosis and enhanced the release of heat shock protein70 (Hsp70) in CT26 tumors. Treatment with mEHT-DCs significantly inhibited CT26 tumor growth, relative to DCs alone or mEHT alone. The secondary tumor protection effect upon rechallenging was observed in mice that were treated with mEHT-DCs. Immunohistochemical staining of CD45 and F4/80 revealed that mEHT-DC treatment increased the number of leukocytes and macrophages. Most interestingly, mEHT also induced infiltrations of eosinophil, which has recently been reported to be an orchestrator of a specific T cell response. Cytotoxic T cell assay and ELISpot assay revealed a tumor-specific T cell activity. This study demonstrated that mEHT induces tumor cell apoptosis and enhances the release of Hsp70 from heated tumor cells, unlike conventional hyperthermia. mEHT can create a favorable tumor microenvironment for an immunological chain reaction that improves the success rate of intratumoral DC immunotherapy. The online version of this article (doi:10.1186/s12885-015-1690-2) contains supplementary material, which is available to

  1. Targeting Angiogenesis and Tumor Microenvironment in Metastatic Colorectal Cancer: Role of Aflibercept

    Directory of Open Access Journals (Sweden)

    Guido Giordano

    2014-01-01

    Full Text Available In the last decades, we have progressively observed an improvement in therapeutic options for metastatic colorectal cancer (mCRC treatment with a progressive prolongation of survival. mCRC prognosis still remains poor with low percentage of 5-year survival. Targeted agents have improved results obtained with standard chemotherapy. Angiogenesis plays a crucial role in colorectal cancer growth, proliferation, and metastasization and it has been investigated as a potential target for mCRC treatment. Accordingly, novel antiangiogenic targeted agents bevacizumab, regorafenib, and aflibercept have been approved for mCRC treatment as the result of several phase III randomized trials. The development of a tumor permissive microenvironment via the aberrant expression by tumor cells of paracrine factors alters the tumor-stroma interactions inducing an expansion of proangiogenic signals. Recently, the VELOUR study showed that addition of aflibercept to FOLFIRI regimen as a second-line therapy for mCRC improved significantly OS, PFS, and RR. This molecule represents a valid second-line therapeutic option and its peculiar ability to interfere with placental growth factor (PlGF/vascular endothelial growth factor receptor 1 (VEGFR1 axis makes it effective in targeting angiogenesis, inflammatory cells and in overcoming resistances to anti-angiogenic first-line treatment. Here, we discuss about Aflibercept peculiar ability to interfere with tumor microenvironment and angiogenic pathway.

  2. Metabolomics of the tumor microenvironment in pediatric acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Stefano Tiziani

    Full Text Available The tumor microenvironment is emerging as an important therapeutic target. Most studies, however, are focused on the protein components, and relatively little is known of how the microenvironmental metabolome might influence tumor survival. In this study, we examined the metabolic profiles of paired bone marrow (BM and peripheral blood (PB samples from 10 children with acute lymphoblastic leukemia (ALL. BM and PB samples from the same patient were collected at the time of diagnosis and after 29 days of induction therapy, at which point all patients were in remission. We employed two analytical platforms, high-resolution magnetic resonance spectroscopy and gas chromatography-mass spectrometry, to identify and quantify 102 metabolites in the BM and PB. Standard ALL therapy, which includes l-asparaginase, completely removed circulating asparagine, but not glutamine. Statistical analyses of metabolite correlations and network reconstructions showed that the untreated BM microenvironment was characterized by a significant network-level signature: a cluster of highly correlated lipids and metabolites involved in lipid metabolism (p<0.006. In contrast, the strongest correlations in the BM upon remission were observed among amino acid metabolites and derivatives (p<9.2 × 10(-10. This study provides evidence that metabolic characterization of the cancer niche could generate new hypotheses for the development of cancer therapies.

  3. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments.

    Science.gov (United States)

    Nwe, Kido; Huang, Ching-Hui; Tsourkas, Andrew

    2013-10-24

    Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.

  4. Plasticity of gamma delta T cells: impact on the anti-tumor response

    Directory of Open Access Journals (Sweden)

    Virginie eLafont

    2014-12-01

    Full Text Available The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of gamma and delta chains (gamma delta T cells are of particular interest. gamma delta T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary and prostate cancer directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating gamma delta T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that gamma delta T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating gamma deltaT cells could exert an immunosuppressive activity by negatively regulating DC maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to gamma delta T cells and promote their differentiation into gamma delta T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of gamma delta T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying gamma delta T cell expansion, differentiation and recruitment in the tumor microenvironment.

  5. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M.; Hao, Hongying

    2016-01-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  6. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.

    Science.gov (United States)

    Taylor, Sophie; Spugnini, Enrico Pierluigi; Assaraf, Yehuda G; Azzarito, Tommaso; Rauch, Cyril; Fais, Stefano

    2015-11-01

    Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide

  7. Oncogenic driver genes and the inflammatory microenvironment dictate liver tumor phenotype

    DEFF Research Database (Denmark)

    Matter, Matthias S; Marquardt, Jens U; Andersen, Jesper B

    2016-01-01

    The majority of hepatocellular carcinoma (HCC) develops in the background of chronic liver inflammation caused by viral hepatitis and alcoholic or non-alcoholic steatohepatitis. However, the impact of different types of chronic inflammatory microenvironments on the phenotypes of tumors generated...... with transcriptome profiles from human HCCs further demonstrated that AKT-CAT tumors generated in the context of chronic liver inflammation showed enrichment of poor prognosis gene sets or decrease of good prognosis gene sets. In contrast, DDC had a more subtle effect on AKT-NRAS(G12V) tumors and primarily enhanced...... by distinct oncogenes is largely unresolved. To address this issue, we generated murine liver tumors by constitutively active AKT-1 (AKT) and β-catenin (CAT) followed by induction of chronic liver inflammation by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and carbon tetrachloride (CCl4 ). Also...

  8. Tumor Microenvironment and Immune Effects of Antineoplastic Therapy in Lymphoproliferative Syndromes

    Science.gov (United States)

    Álvaro, Tomás; de la Cruz-Merino, Luis; Henao-Carrasco, Fernando; Villar Rodríguez, José Luis; Vicente Baz, David; Codes Manuel de Villena, Manuel; Provencio, Mariano

    2010-01-01

    Lymphomas represent a wide group of heterogenic diseases with different biological and clinical behavior. The underlying microenvironment-specific composition seems to play an essential role in this scenario, harboring the ability to develop successful immune responses or, on the contrary, leading to immune evasion and even promotion of tumor growth. Depending on surrounding lymphoid infiltrates, lymphomas may have different prognosis. Moreover, recent evidences have emerged that confer a significant impact of main lymphoma's treatment over microenvironment, with clinical consequences. In this review, we summarize these concepts from a pathological and clinical perspective. Also, the state of the art of lymphoma's anti-idiotype vaccine development is revised, highlighting the situations where this strategy has proven to be successful and eventual clues to obtain better results in the future. PMID:20814546

  9. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment.

    Science.gov (United States)

    Thiolloy, Sophie; Edwards, James R; Fingleton, Barbara; Rifkin, Daniel B; Matrisian, Lynn M; Lynch, Conor C

    2012-01-01

    Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment. To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays). Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.

  10. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment.

    Directory of Open Access Journals (Sweden)

    Sophie Thiolloy

    Full Text Available Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment.To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry. Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry. Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1 the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay; and 2 that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays.Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.

  11. Taming dendritic cells with TIM-3: Another immunosuppressive strategy by tumors

    Science.gov (United States)

    Patel, Jaina; Bozeman, Erica N.; Selvaraj, Periasamy

    2013-01-01

    The identification of TIM-3 expression on tumor associated dendritic cells (TADCs) provides insight into another aspect of tumor-mediated immunosuppression. The role of TIM-3 has been well characterized on tumor-infiltrating T cells, however its role on TADCs was not previously known. The current paper demonstrated that TIM-3 was predominantly expressed by TADCs and its interaction with the nuclear protein HMGB1 suppressed nucleic acid mediated activation of an effective antitumor immune response. The authors were able to show that TIM-3 interaction with HMGB1 prevented the localization of nucleic acids into endosomal vesicles. Furthermore, chemotherapy was found to be more effective in anti-TIM-3 mAb treated mice or mice depleted of all DCs which indicated that significant role played by TADCs inhibiting tumor regression. Taken together, these findings identify TIM-3 as a potential target for inducing antitumor immunity in conjunction with DNA vaccines and/or immunogenic chemotherapy in clinical settings. PMID:23240746

  12. TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors.

    Science.gov (United States)

    Ibberson, Mark; Bron, Sylvian; Guex, Nicolas; Faes-van't Hull, Eveline; Ifticene-Treboux, Assia; Henry, Luc; Lehr, Hans-Anton; Delaloye, Jean-François; Coukos, George; Xenarios, Ioannis; Doucey, Marie-Agnès

    2013-07-01

    Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. ©2013 AACR.

  13. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interactions by ibrutinib – findings from an investigator initiated phase 2 study

    Science.gov (United States)

    Niemann, Carsten U.; Herman, Sarah E. M.; Maric, Irina; Gomez-Rodriguez, Julio; Biancotto, Angelique; Chang, Betty Y.; Martyr, Sabrina; Stetler-Stevenson, Maryalice; Yuan, Constance; Calvo, Katherine R.; Braylan, Raul C.; Valdez, Janet; Lee, Yuh Shan; Wong, Deanna H.; Jones, Jade; Sun, Clare C. L.; Marti, Gerald E.; Farooqui, Mohammed Z.; Wiestner, Adrian

    2016-01-01

    Purpose Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental interactions for proliferation and survival that are at least partially mediated through B cell receptor (BCR) signaling. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, disrupts BCR signaling and leads to the egress of tumor cells from the microenvironment. While the on-target effects on CLL cells are well defined, the impact on the microenvironment is less well studied. We therefore sought to characterize the in vivo effects of ibrutinib on the tumor microenvironment. Experimental Design Patients received single agent ibrutinib on an investigator-initiated phase 2 trial. Serial blood and tissue samples were collected pre-treatment and during treatment. Changes in cytokine levels, cellular subsets and microenvironmental interactions were assessed. Results Serum levels of key chemokines and inflammatory cytokines decreased significantly in patients on ibrutinib. Further, ibrutinib treatment decreased circulating tumor cells and overall T cell numbers. Most notably, a reduced frequency of the Th17 subset of CD4+ T cells was observed concurrent with reduced activation markers and expression of PD-1 on T cells. Consistent with direct inhibition of T cells, ibrutinib inhibited Th17 differentiation of murine CD4+ T cells in vitro. Lastly, in the bone marrow microenvironment, we found that ibrutinib disaggregated the interactions of macrophages and CLL cells, inhibited secretion of CXCL13 and decreased the chemoattraction of CLL cells. Conclusions In conjunction with inhibition of BCR signaling, these changes in the tumor microenvironment likely contribute to the anti-tumor activity of ibrutinib and may impact the efficacy of immunotherapeutic strategies in patients with CLL. PMID:26660519

  14. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment.

    Science.gov (United States)

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Veiseh, Omid; Park, James O; Disis, Mary L; Zhang, Miqin

    2010-08-01

    Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a three-dimensional (3D) chitosan-alginate (CA) scaffold to serve as an extracellular matrix that promotes the conversion of cultured cancer cells to a more malignant in vivo-like phenotype. Human U-87 MG and U-118 MG glioma cells and rat C6 glioma cells were chosen for the study. In vitro tumor cell proliferation and secretion of factors that promote tumor malignancy, including VEGF, MMP-2, fibronectin, and laminin, were assessed. The scaffolds pre-cultured with U-87 MG and C6 cells were then implanted into nude mice to evaluate tumor growth and blood vessel recruitment compared to the standard 2D cell culture and 3D Matrigel matrix xenograft controls. Our results indicate that while the behavior of C6 cells showed minimal differences due to their highly malignant and invasive nature, U-87 MG and U-118 MG cells exhibited notably higher malignancy when cultured in CA scaffolds. CA scaffolds provide a 3D microenvironment for glioma cells that is more representative of the in vivo tumor, thus can serve as a more effective platform for development and study of anticancer therapeutics. This unique CA scaffold platform may offer a valuable alternative strategy to the time-consuming and costly animal studies for a wide variety of experimental designs. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Enduring epigenetic landmarks define the cancer microenvironment

    Science.gov (United States)

    Pidsley, Ruth; Lawrence, Mitchell G.; Zotenko, Elena; Niranjan, Birunthi; Statham, Aaron; Song, Jenny; Chabanon, Roman M.; Qu, Wenjia; Wang, Hong; Richards, Michelle; Nair, Shalima S.; Armstrong, Nicola J.; Nim, Hieu T.; Papargiris, Melissa; Balanathan, Preetika; French, Hugh; Peters, Timothy; Norden, Sam; Ryan, Andrew; Pedersen, John; Kench, James; Daly, Roger J.; Horvath, Lisa G.; Stricker, Phillip; Frydenberg, Mark; Taylor, Renea A.; Stirzaker, Clare; Risbridger, Gail P.; Clark, Susan J.

    2018-01-01

    The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples. PMID:29650553

  16. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hamid R. Mirzaei

    2017-12-01

    Full Text Available Adoptive cellular immunotherapy (ACT employing engineered T lymphocytes expressing chimeric antigen receptors (CARs has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.

  17. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells.

    Science.gov (United States)

    Baghdadi, Muhammad; Wada, Haruka; Nakanishi, Sayaka; Abe, Hirotake; Han, Nanumi; Putra, Wira Eka; Endo, Daisuke; Watari, Hidemichi; Sakuragi, Noriaki; Hida, Yasuhiro; Kaga, Kichizo; Miyagi, Yohei; Yokose, Tomoyuki; Takano, Atsushi; Daigo, Yataro; Seino, Ken-Ichiro

    2016-10-15

    The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance local immunosuppression and to promote the survival of chemoresistant cancer cells by activating AKT signaling. Targeting IL34 in chemoresistant tumors resulted in a remarkable inhibition of tumor growth when accompanied with chemotherapy. Our results define a pathogenic role for IL34 in mediating immunosuppression and chemoresistance and identify it as a tractable target for anticancer therapy. Cancer Res; 76(20); 6030-42. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  19. Inorganic Arsenic–Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell–Conditioned Media Model

    Science.gov (United States)

    Shearer, Joseph J.; Wold, Eric A.; Umbaugh, Charles S.; Lichti, Cheryl F.; Nilsson, Carol L.; Figueiredo, Marxa L.

    2015-01-01

    Background: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal–epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer. Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored. Our objective was to elucidate molecular mechanisms of iAs-induced changes to stromal signaling by an enriched prostate tumor microenvironment cell population, adipose-derived mesenchymal stem/stromal cells (ASCs). Results: ASC-conditioned media (CM) collected after 1 week of iAs exposure increased prostate cancer cell viability, whereas CM from ASCs that received no iAs exposure decreased cell viability. Cytokine array analysis suggested changes to cytokine signaling associated with iAs exposure. Subsequent proteomic analysis suggested a concentration-dependent alteration to the HMOX1/THBS1/TGFβ signaling pathway by iAs. These results were validated by quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) and Western blotting, confirming a concentration-dependent increase in HMOX1 and a decrease in THBS1 expression in ASC following iAs exposure. Subsequently, we used a TGFβ pathway reporter construct to confirm a decrease in stromal TGFβ signaling in ASC following iAs exposure. Conclusions: Our results suggest a concentration-dependent alteration of stromal signaling: specifically, attenuation of stromal-mediated TGFβ signaling following exposure to iAs. Our results indicate iAs may enhance prostate cancer cell viability through a previously unreported stromal-based mechanism. These findings indicate that the stroma may mediate the effects of iAs in tumor progression, which may have future therapeutic implications. Citation: Shearer JJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL

  20. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interactions by ibrutinib - findings from an investigator initiated phase 2 study

    DEFF Research Database (Denmark)

    Niemann, Carsten U; Herman, Sarah E M; Maric, Irina

    2016-01-01

    PURPOSE: Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental interactions for proliferation and survival that are at least partially mediated through B cell receptor (BCR) signaling. Ibrutinib, a Bruton's tyrosine kinase inhibitor, disrupts BCR signaling and leads to the egress...... of tumor cells from the microenvironment. While the on-target effects on CLL cells are well defined, the impact on the microenvironment is less well studied. We therefore sought to characterize the in vivo effects of ibrutinib on the tumor microenvironment. EXPERIMENTAL DESIGN: Patients received single...... agent ibrutinib on an investigator-initiated phase 2 trial. Serial blood and tissue samples were collected pre-treatment and during treatment. Changes in cytokine levels, cellular subsets and microenvironmental interactions were assessed. RESULTS: Serum levels of key chemokines and inflammatory...

  1. Disruption of in vivo Chronic Lymphocytic Leukemia Tumor-Microenvironment Interactions by Ibrutinib--Findings from an Investigator-Initiated Phase II Study.

    Science.gov (United States)

    Niemann, Carsten U; Herman, Sarah E M; Maric, Irina; Gomez-Rodriguez, Julio; Biancotto, Angelique; Chang, Betty Y; Martyr, Sabrina; Stetler-Stevenson, Maryalice; Yuan, Constance M; Calvo, Katherine R; Braylan, Raul C; Valdez, Janet; Lee, Yuh Shan; Wong, Deanna H; Jones, Jade; Sun, Clare; Marti, Gerald E; Farooqui, Mohammed Z H; Wiestner, Adrian

    2016-04-01

    Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental interactions for proliferation and survival that are at least partially mediated through B-cell receptor (BCR) signaling. Ibrutinib, a Bruton tyrosine kinase inhibitor, disrupts BCR signaling and leads to the egress of tumor cells from the microenvironment. Although the on-target effects on CLL cells are well defined, the impact on the microenvironment is less well studied. We therefore sought to characterize the in vivo effects of ibrutinib on the tumor microenvironment. Patients received single-agent ibrutinib on an investigator-initiated phase II trial. Serial blood and tissue samples were collected pretreatment and during treatment. Changes in cytokine levels, cellular subsets, and microenvironmental interactions were assessed. Serum levels of key chemokines and inflammatory cytokines decreased significantly in patients on ibrutinib. Furthermore, ibrutinib treatment decreased circulating tumor cells and overall T-cell numbers. Most notably, a reduced frequency of the Th17 subset of CD4(+)T cells was observed concurrent with reduced expression of activation markers and PD-1 on T cells. Consistent with direct inhibition of T cells, ibrutinib inhibited Th17 differentiation of murine CD4(+)T cells in vitro Finally, in the bone marrow microenvironment, we found that ibrutinib disaggregated the interactions of macrophages and CLL cells, inhibited secretion of CXCL13, and decreased the chemoattraction of CLL cells. In conjunction with inhibition of BCR signaling, these changes in the tumor microenvironment likely contribute to the antitumor activity of ibrutinib and may impact the efficacy of immunotherapeutic strategies in patients with CLL. See related commentary by Bachireddy and Wu, p. 1547. ©2015 American Association for Cancer Research.

  2. Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: Implications for therapeutic targeting strategies.

    Science.gov (United States)

    Shariatpanahi, Seyed Peyman; Shariatpanahi, Seyed Pooya; Madjidzadeh, Keivan; Hassan, Moustapha; Abedi-Valugerdi, Manuchehr

    2018-04-07

    Myeloid-derived suppressor cells (MDSCs) belong to immature myeloid cells that are generated and accumulated during the tumor development. MDSCs strongly suppress the anti-tumor immunity and provide conditions for tumor progression and metastasis. In this study, we present a mathematical model based on ordinary differential equations (ODE) to describe tumor-induced immunosuppression caused by MDSCs. The model consists of four equations and incorporates tumor cells, cytotoxic T cells (CTLs), natural killer (NK) cells and MDSCs. We also provide simulation models that evaluate or predict the effects of anti-MDSC drugs (e.g., l-arginine and 5-Fluorouracil (5-FU)) on the tumor growth and the restoration of anti-tumor immunity. The simulated results obtained using our model were in good agreement with the corresponding experimental findings on the expansion of splenic MDSCs, immunosuppressive effects of these cells at the tumor site and effectiveness of l-arginine and 5-FU on the re-establishment of antitumor immunity. Regarding this latter issue, our predictive simulation results demonstrated that intermittent therapy with low-dose 5-FU alone could eradicate the tumors irrespective of their origins and types. Furthermore, at the time of tumor eradication, the number of CTLs prevailed over that of cancer cells and the number of splenic MDSCs returned to the normal levels. Finally, our predictive simulation results also showed that the addition of l-arginine supplementation to the intermittent 5-FU therapy reduced the time of the tumor eradication and the number of iterations for 5-FU treatment. Thus, the present mathematical model provides important implications for designing new therapeutic strategies that aim to restore antitumor immunity by targeting MDSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment.

    Science.gov (United States)

    Lee, Ji Yoon; Han, A-Reum; Lee, Sung-Eun; Min, Woo-Sung; Kim, Hee-Je

    2016-05-01

    Podoplanin+ cells are indispensable in the tumor microenvironment. Increasing evidence suggests that podoplanin may support the growth and metastasis of solid tumors; however, to the best of our knowledge no studies have determined whether or not podoplanin serves a supportive role in acute myeloid leukemia (AML). The effects of co‑culture with podoplanin+ cells on the cellular activities of the leukemic cells, such as apoptosis and cell proliferation, in addition to the expression of podoplanin in leukemic cells, were investigated. Due to the fact that genetic abnormalities are the primary cause of leukemogenesis, the overexpression of the fibromyalgia‑like tyrosine kinase‑3 gene in colony forming units was also examined following cell sorting. Podoplanin+ cells were found to play a protective role against apoptosis in leukemic cells and to promote cell proliferation. Tumor‑associated antigens, including Wilms' tumor gene 1 and survivin, were increased when leukemic cells were co‑cultured with podoplanin+ cells. In combination, the present results also suggest that podoplanin+ cells can function as stromal cells for blast cell retention in the AML tumor microenvironment.

  4. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory/immunosuppressive

  5. A model of tumor architecture and spatial interactions with tumor microenvironment in breast carcinoma

    Science.gov (United States)

    Ben Cheikh, Bassem; Bor-Angelier, Catherine; Racoceanu, Daniel

    2017-03-01

    Breast carcinomas are cancers that arise from the epithelial cells of the breast, which are the cells that line the lobules and the lactiferous ducts. Breast carcinoma is the most common type of breast cancer and can be divided into different subtypes based on architectural features and growth patterns, recognized during a histopathological examination. Tumor microenvironment (TME) is the cellular environment in which tumor cells develop. Being composed of various cell types having different biological roles, TME is recognized as playing an important role in the progression of the disease. The architectural heterogeneity in breast carcinomas and the spatial interactions with TME are, to date, not well understood. Developing a spatial model of tumor architecture and spatial interactions with TME can advance our understanding of tumor heterogeneity. Furthermore, generating histological synthetic datasets can contribute to validating, and comparing analytical methods that are used in digital pathology. In this work, we propose a modeling method that applies to different breast carcinoma subtypes and TME spatial distributions based on mathematical morphology. The model is based on a few morphological parameters that give access to a large spectrum of breast tumor architectures and are able to differentiate in-situ ductal carcinomas (DCIS) and histological subtypes of invasive carcinomas such as ductal (IDC) and lobular carcinoma (ILC). In addition, a part of the parameters of the model controls the spatial distribution of TME relative to the tumor. The validation of the model has been performed by comparing morphological features between real and simulated images.

  6. Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment

    DEFF Research Database (Denmark)

    Celis, Julio E; Gromov, Pavel; Cabezón, Teresa

    2004-01-01

    of biomarkers, the tumor interstitial fluid (TIF) that perfuses the breast tumor microenvironment. We collected TIFs from small pieces of freshly dissected invasive breast carcinomas and analyzed them by two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption....../ionization time-of-flight mass spectrometry, Western immunoblotting, as well as by cytokine-specific antibody arrays. This approach provided for the first time a snapshot of the protein components of the TIF, which we show consists of more than one thousand proteins--either secreted, shed by membrane vesicles...... synthesis, energy metabolism, oxidative stress, the actin cytoskeleton assembly, protein folding, and transport. As expected, the TIF contained several classical serum proteins. Considering that the protein composition of the TIF reflects the physiological and pathological state of the tissue, it should...

  7. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  8. Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment.

    Science.gov (United States)

    Mahlbacher, Grace; Curtis, Louis T; Lowengrub, John; Frieboes, Hermann B

    2018-01-30

    Immuno-oncotherapy has emerged as a promising means to target cancer. In particular, therapeutic manipulation of tumor-associated macrophages holds promise due to their various and sometimes opposing roles in tumor progression. It is established that M1-type macrophages suppress tumor progression while M2-types support it. Recently, Tie2-expressing macrophages (TEM) have been identified as a distinct sub-population influencing tumor angiogenesis and vascular remodeling as well as monocyte differentiation. This study develops a modeling framework to evaluate macrophage interactions with the tumor microenvironment, enabling assessment of how these interactions may affect tumor progression. M1, M2, and Tie2 expressing variants are integrated into a model of tumor growth representing a metastatic lesion in a highly vascularized organ, such as the liver. Behaviors simulated include M1 release of nitric oxide (NO), M2 release of growth-promoting factors, and TEM facilitation of angiogenesis via Angiopoietin-2 and promotion of monocyte differentiation into M2 via IL-10. The results show that M2 presence leads to larger tumor growth regardless of TEM effects, implying that immunotherapeutic strategies that lead to TEM ablation may fail to restrain growth when the M2 represents a sizeable population. As TEM pro-tumor effects are less pronounced and on a longer time scale than M1-driven tumor inhibition, a more nuanced approach to influence monocyte differentiation taking into account the tumor state (e.g., under chemotherapy) may be desirable. The results highlight the dynamic interaction of macrophages within a growing tumor, and, further, establish the initial feasibility of a mathematical framework that could longer term help to optimize cancer immunotherapy.

  9. Taming dendritic cells with TIM-3: another immunosuppressive strategy used by tumors.

    Science.gov (United States)

    Patel, Jaina; Bozeman, Erica N; Selvaraj, Periasamy

    2012-12-01

    Evaluation of: Chiba S, Baghdadi M, Akiba H et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 13, 832-842 (2012). The identification of TIM-3 expression on tumor-associated dendritic cells (TADCs) provides insight into another aspect of tumor-mediated immunosuppression. The role of TIM-3 has been well characterized on tumor-infiltrating T cells; however, its role on TADCs was not previously known. The current paper demonstrated that TIM-3 was predominantly expressed by TADCs and its interaction with the nuclear protein HMGB1 suppressed nucleic acid-mediated activation of an effective antitumor immune response. The authors were able to show that TIM-3 interaction with HMGB1 prevented the localization of nucleic acids into endosomal vesicles. Furthermore, chemotherapy was found to be more effective in anti-TIM-3 monoclonal antibody-treated mice or mice depleted of all DCs, which indicated that a significant role is played by TADCs in inhibiting tumor regression. Taken together, these findings identify TIM-3 as a potential target for inducing antitumor immunity in conjunction with DNA vaccines and/or immunogenic chemotherapy in clinical settings.

  10. Targeting tumor-associated macrophages by anti-tumor Chinese materia medica.

    Science.gov (United States)

    Pu, Wei-Ling; Sun, Li-Kang; Gao, Xiu-Mei; Rüegg, Curzio; Cuendet, Muriel; Hottiger, Micheal O; Zhou, Kun; Miao, Lin; Zhang, Yun-Sha; Gebauer, Margaret

    2017-10-01

    Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy.

  11. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  12. Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer

    Directory of Open Access Journals (Sweden)

    Belzile O

    2018-01-01

    Full Text Available Olivier Belzile,1 Xianming Huang,2,3 Jian Gong,2,3 Jay Carlson,2,3 Alan J Schroit,1 Rolf A Brekken,1 Bruce D Freimark2,3 1Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 2Department of Preclinical Research, 3Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA Abstract: Phosphatidylserine (PS is a negatively charged phospholipid in all eukaryotic cells that is actively sequestered to the inner leaflet of the cell membrane. Exposure of PS on apoptotic cells is a normal physiological process that triggers their rapid removal by phagocytic engulfment under noninflammatory conditions via receptors primarily expressed on immune cells. PS is aberrantly exposed in the tumor microenvironment and contributes to the overall immunosuppressive signals that antagonize the development of local and systemic antitumor immune responses. PS-mediated immunosuppression in the tumor microenvironment is further exacerbated by chemotherapy and radiation treatments that result in increased levels of PS on dying cells and necrotic tissue. Antibodies targeting PS localize to tumors and block PS-mediated immunosuppression. Targeting exposed PS in the tumor microenvironment may be a novel approach to enhance immune responses to cancer. Keywords: immunosuppression, tumor microenvironment, immunotherapy, imaging, phosphatidylserine, bavituximab

  13. Bioinspired Hydrogels to Engineer Cancer Microenvironments.

    Science.gov (United States)

    Park, Kyung Min; Lewis, Daniel; Gerecht, Sharon

    2017-06-21

    Recent research has demonstrated that tumor microenvironments play pivotal roles in tumor development and metastasis through various physical, chemical, and biological factors, including extracellular matrix (ECM) composition, matrix remodeling, oxygen tension, pH, cytokines, and matrix stiffness. An emerging trend in cancer research involves the creation of engineered three-dimensional tumor models using bioinspired hydrogels that accurately recapitulate the native tumor microenvironment. With recent advances in materials engineering, many researchers are developing engineered tumor models, which are promising platforms for the study of cancer biology and for screening of therapeutic agents for better clinical outcomes. In this review, we discuss the development and use of polymeric hydrogel materials to engineer native tumor ECMs for cancer research, focusing on emerging technologies in cancer engineering that aim to accelerate clinical outcomes.

  14. Multimodal imaging of lung cancer and its microenvironment (Conference Presentation)

    Science.gov (United States)

    Hariri, Lida P.; Niederst, Matthew J.; Mulvey, Hillary; Adams, David C.; Hu, Haichuan; Chico Calero, Isabel; Szabari, Margit V.; Vakoc, Benjamin J.; Hasan, Tayyaba; Bouma, Brett E.; Engelman, Jeffrey A.; Suter, Melissa J.

    2016-03-01

    Despite significant advances in targeted therapies for lung cancer, nearly all patients develop drug resistance within 6-12 months and prognosis remains poor. Developing drug resistance is a progressive process that involves tumor cells and their microenvironment. We hypothesize that microenvironment factors alter tumor growth and response to targeted therapy. We conducted in vitro studies in human EGFR-mutant lung carcinoma cells, and demonstrated that factors secreted from lung fibroblasts results in increased tumor cell survival during targeted therapy with EGFR inhibitor, gefitinib. We also demonstrated that increased environment stiffness results in increased tumor survival during gefitinib therapy. In order to test our hypothesis in vivo, we developed a multimodal optical imaging protocol for preclinical intravital imaging in mouse models to assess tumor and its microenvironment over time. We have successfully conducted multimodal imaging of dorsal skinfold chamber (DSC) window mice implanted with GFP-labeled human EGFR mutant lung carcinoma cells and visualized changes in tumor development and microenvironment facets over time. Multimodal imaging included structural OCT to assess tumor viability and necrosis, polarization-sensitive OCT to measure tissue birefringence for collagen/fibroblast detection, and Doppler OCT to assess tumor vasculature. Confocal imaging was also performed for high-resolution visualization of EGFR-mutant lung cancer cells labeled with GFP, and was coregistered with OCT. Our results demonstrated that stromal support and vascular growth are essential to tumor progression. Multimodal imaging is a useful tool to assess tumor and its microenvironment over time.

  15. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Fabian Flores-Borja

    2016-01-01

    Full Text Available Our knowledge and understanding of the tumor microenvironment (TME have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC. Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies.

  16. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    Science.gov (United States)

    Irshad, Sheeba; Gordon, Peter; Wong, Felix; Sheriff, Ibrahim; Tutt, Andrew; Ng, Tony

    2016-01-01

    Our knowledge and understanding of the tumor microenvironment (TME) have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC). Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies. PMID:27882334

  17. Ovarian tumor attachment, invasion and vascularization reflect unique microenvironments in the peritoneum:Insights from xenograft and mathematical models

    Directory of Open Access Journals (Sweden)

    Mara P. Steinkamp

    2013-05-01

    Full Text Available Ovarian cancer relapse is often characterized by metastatic spread throughout the peritoneal cavity with tumors attached to multiple organs. In this study, interaction of ovarian tumor cells with the peritoneal tumor microenvironment was evaluated in a xenograft model based on intraperitoneal injection of fluorescent SKOV3.ip1 ovarian cancer cells. Intra-vital microscopy of mixed GFP-RFP cell populations injected into the peritoneum demonstrated that tumor cells aggregate and attach as mixed spheroids, emphasizing the importance of homotypic adhesion in tumor formation. Electron microscopy provided high resolution structural information about local attachment sites. Experimental measurements from the mouse model were used to build a three-dimensional cellular Potts ovarian tumor model (OvTM that examines ovarian tumor cell attachment, chemotaxis, growth and vascularization. OvTM simulations provide insight into the relative influence of tumor cell-cell adhesion, oxygen availability, and local architecture on tumor growth and morphology. Notably, tumors on the mesentery, omentum or spleen readily invade the open architecture, while tumors attached to the gut encounter barriers that restrict invasion and instead rapidly expand into the peritoneal space. Simulations suggest that rapid neovascularization of SKOV3.ip1 tumors is triggered by constitutive release of angiogenic factors in the absence of hypoxia. This research highlights the importance of cellular adhesion and tumor microenvironment in the seeding of secondary ovarian tumors on diverse organs within the peritoneal cavity. Results of the OvTM simulations indicate that invasion is strongly influenced by features underlying the mesothelial lining at different sites, but is also affected by local production of chemotactic factors. The integrated in vivo mouse model and computer simulations provide a unique platform for evaluating targeted therapies for ovarian cancer relapse.

  18. The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors

    Science.gov (United States)

    Bellone, Matteo; Calcinotto, Arianna; Filipazzi, Paola; De Milito, Angelo; Fais, Stefano; Rivoltini, Licia

    2013-01-01

    We have recently reported that lowering the pH to values that are frequently detected in tumors causes reversible anergy in both human and mouse CD8+ T lymphocytes in vitro. The same occurs in vivo, in the tumor microenvironment and the administration of proton pump inhibitors, which buffer tumor acidity, can revert T-cell anergy and increase the efficacy of immunotherapy. PMID:23483769

  19. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    International Nuclear Information System (INIS)

    Espagnolle, Nicolas; Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques; Agnel, Magali; Kerbelec, Erwan; Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine

    2014-01-01

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80 − ); (ii) “immuno-incompetent” macrophages (F4/80 high /CD86 neg /MHCII Low ) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80 Low /CD86 + /MHCII High ). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80 High populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80 low ). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor

  20. Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System.

    Science.gov (United States)

    Duan, Haifeng

    2018-05-22

    The accumulation of mutated somatic cells due to the incompetency of body's immune system may lead to tumor onset. Therefore, enhancing the ability of the system to eliminate such cells should be the core of tumor therapy. The intrinsic antitumor immunity is triggered by tumor-specific antigens (TSA) or TSA-sensitized dendritic cells (DC). Once initiated, specific anti-tumor antibodies are produced and tumor-specific killer immune cells, including cytotoxic T lymphocytes (CTL), NK cells, and macrophages, are raised or induced. Several strategies may enhance antitumor action of immune system, such as supplying tumor-targeted antibody, activating T cells, enhancing the activity and tumor recognition of NK cells, promoting tumor-targeted phagocytosis of macrophages, and eliminating the immunosuppressive myeloid-derived suppressor cells (MDSCs) and Treg cells. Apart from the immune system, the removal of tumor burden still needs to be assisted by drugs, surgery or radiation. And the body's internal environment and tumor microenvironment should be improved to recover immune cell function and prevent tumor growth. Multiple microenvironment modulatory therapies may be applied, including addressing hypoxia and oxidative stress, correcting metabolic disorders, and controlling chronic inflammation. Finally, to cure tumor and prevent tumor recurrence, repairing or supporting therapy that consist of tissue repair and nutritional supplement should be applied properly. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.

    Science.gov (United States)

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-03-07

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.

  2. Engineering Breast Cancer Microenvironments and 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Jorge A. Belgodere

    2018-05-01

    Full Text Available The extracellular matrix (ECM is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D, physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1 biochemical factors modulating breast cancer cell-ECM interactions and (2 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments.

  3. Systemic inflammation, nutritional status and tumor immune microenvironment determine outcome of resected non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Marco Alifano

    Full Text Available BACKGROUND: Hypothesizing that nutritional status, systemic inflammation and tumoral immune microenvironment play a role as determinants of lung cancer evolution, the purpose of this study was to assess their respective impact on long-term survival in resected non-small cell lung cancers (NSCLC. METHODS AND FINDINGS: Clinical, pathological and laboratory data of 303 patients surgically treated for NSCLC were retrospectively analyzed. C-reactive protein (CRP and prealbumin levels were recorded, and tumoral infiltration by CD8+ lymphocytes and mature dendritic cells was assessed. We observed that factors related to nutritional status, systemic inflammation and tumoral immune microenvironment were correlated; significant correlations were also found between these factors and other relevant clinical-pathological parameters. With respect to outcome, at univariate analysis we found statistically significant associations between survival and the following variables: Karnofsky index, American Society of Anesthesiologists (ASA class, CRP levels, prealbumin concentrations, extent of resection, pathologic stage, pT and pN parameters, presence of vascular emboli, and tumoral infiltration by either CD8+ lymphocytes or mature dendritic cells and, among adenocarcinoma type, tumor grade (all p285 mg/L prealbumin levels and high (>96/mm2 CD8+ cell count had a 5-year survival rate of 80% [60.9-91.1] as compared to 18% [7.9-35.6] in patients with an opposite pattern of values. When stages I-II were considered alone, the prognostic significance of these factors was even more pronounced. CONCLUSIONS: Our data show that nutrition, systemic inflammation and tumoral immune contexture are prognostic determinants that, taken together, may predict outcome.

  4. Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation.

    Science.gov (United States)

    Liu, Zhuang; Zhang, Shengjian; Lin, Han; Zhao, Menglong; Yao, Heliang; Zhang, Linlin; Peng, Weijun; Chen, Yu

    2018-02-01

    The fabrication of functional nanoparticles with unique ultra-sensitivity to endogenous tumor microenvironment (TME) is of great significance for their improved theranostic performance and easy excretion out of the body, which has not been realized among diverse nano-sized photothermal agents for photothermal therapy (PTT) of tumor. In this work, we report on the synthesis of 2D ultrathin MnO 2 nanosheets for highly efficient PTT against tumor with ultra-sensitivity to endogenous TME. These ultrathin 2D MnO 2 nanosheets show the intriguing characteristic of disintegration and releasing of Mn 2+ in response to the mild acidic condition and elevated reducing microenvironment of TME, which has successfully realized the pH- and reducing-responsive T 1 -weighted magnetic resonance imaging of tumor. Importantly, the high PTT efficiency of 2D MnO 2 nanosheets responsive to exogenous NIR irradiation has been systematically demonstrated both in vitro and in vivo for suppressing the tumor growth. This first report on the exploring of TME-sensitive photothermal agents with concurrent diagnostic and therapeutic (theranostic) functions significantly broadens the biomedical application of 2D functional biomaterials, which also promotes the further potential clinical translations of nano-sized photothermal agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  6. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2013-11-15

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  7. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    International Nuclear Information System (INIS)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra

    2013-01-01

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  8. SPHINGOSINE-1 PHOSPHATE: A NEW MODULATOR OF IMMUNE PLASTICITY IN THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Yamila I Rodriguez

    2016-10-01

    Full Text Available In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P in both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review we will focus on the role of S1P in cancer with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells and hypoxic response.

  9. The Microenvironment in Gliomas: Phenotypic Expressions

    Directory of Open Access Journals (Sweden)

    Davide Schiffer

    2015-12-01

    Full Text Available The microenvironment of malignant gliomas is described according to its definition in the literature. Beside tumor cells, a series of stromal cells (microglia/macrophages, pericytes, fibroblasts, endothelial cells, normal and reactive astrocytes represents the cell component, whereas a complex network of molecular signaling represents the functional component. Its most evident expressions are perivascular and perinecrotic niches that are believed to be the site of tumor stem cells or progenitors in the tumor. Phenotypically, both niches are not easily recognizable; here, they are described together with a critical revision of their concept. As for perinecrotic niches, an alternative interpretation is given about their origin that regards the tumor stem cells as the residue of those that populated hyperproliferating areas in which necroses develop. This is based on the concept that the stem-like is a status and not a cell type, depending on the microenvironment that regulates a conversion of tumor non-stem cells and tumor stem cells through a cell reprogramming.

  10. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Espagnolle, Nicolas [UMR5273 INSERM U1031/CNRS/EFS StromaLab, Toulouse 31432 (France); Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France); Agnel, Magali; Kerbelec, Erwan [Molecular Biology Unit, Biologics Department, Sanofi, Vitry-sur-Seine 94400 (France); Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine, E-mail: antoine.alam@sanofi.com [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France)

    2014-02-28

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80{sup −}); (ii) “immuno-incompetent” macrophages (F4/80{sup high}/CD86{sup neg}/MHCII{sup Low}) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80{sup Low}/CD86{sup +}/MHCII{sup High}). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80{sup High} populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80{sup low}). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  11. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment

    International Nuclear Information System (INIS)

    Rattigan, Yanique I.; Patel, Brijesh B.; Ackerstaff, Ellen; Sukenick, George; Koutcher, Jason A.; Glod, John W.

    2012-01-01

    Human mesenchymal stem cells (hMSCs) are bone marrow-derived stromal cells, which play a role in tumor progression. We have shown earlier that breast cancer cells secrete higher levels of interleukin-6 (IL-6) under hypoxia, leading to the recruitment of hMSCs towards hypoxic tumor cells. We found that (i) MDA-MB-231 cells secrete significantly higher levels of lactate (3-fold more) under hypoxia (1% O 2 ) than under 20% O 2 and (ii) lactate recruits hMSCs towards tumor cells by activating signaling pathways to enhance migration. The mRNA and protein expression of functional MCT1 in hMSCs is increased in response to lactate exposure. Thus, we hypothesized that hMSCs and stromal carcinoma associated fibroblasts (CAFs) in the tumor microenvironment have the capacity to take up lactate expelled from tumor cells and use it as a source of energy. Our 13 C NMR spectroscopic measurements indicate that 13 C-lactate is converted to 13 C-alpha ketoglutarate in hMSCs and CAFs supporting this hypothesis. To our knowledge this is the first in vitro model system demonstrating that hMSCs and CAFs can utilize lactate produced by tumor cells.

  12. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.

    Science.gov (United States)

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-10-27

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives.

  13. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles.

    Science.gov (United States)

    Behling, Katja; Maguire, William F; Di Gialleonardo, Valentina; Heeb, Lukas E M; Hassan, Iman F; Veach, Darren R; Keshari, Kayvan R; Gutin, Philip H; Scheinberg, David A; McDevitt, Michael R

    2016-11-01

    Tumors escape antiangiogenic therapy by activation of proangiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We previously investigated targeted α-particle therapy with 225 Ac-E4G10 as an antivascular approach and showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here, we investigated changes in tumor vascular morphology and functionality caused by 225 Ac-E4G10. We investigated remodeling of the tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4-kBq dose of 225 Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphologic changes in the tumor blood-brain barrier microenvironment. Multicolor flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted MR imaged functional changes in the tumor vascular network. The mechanism of drug action is a combination of remodeling of the glioblastoma vascular microenvironment, relief of edema, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis were lessened, resulting in increased perfusion and reduced diffusion. Pharmacologic uptake of dasatinib into tumor was enhanced after α-particle therapy. Targeted antivascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of platelet-derived growth factor-driven glioblastoma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.

    Science.gov (United States)

    Brancato, Virginia; Garziano, Alessandro; Gioiella, Filomena; Urciuolo, Francesco; Imparato, Giorgia; Panzetta, Valeria; Fusco, Sabato; Netti, Paolo A

    2017-01-01

    We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor

  15. WE-E-BRE-12: Tumor Microenvironment Dynamics Following Radiation

    International Nuclear Information System (INIS)

    Campos, D; Niles, D; Adamson, E; Torres, A; Kissick, M; Eliceiri, K; Kimple, R

    2014-01-01

    Purpose: This work aims to understand the radiation-induced interplay between tumor oxygenation and metabolic activity. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Using patient-derived xenografts of head and neck cancer we assessed tumor oxygenation via fiber-optic probe monitored hemoglobin saturation and Blood Oxygen Level Dependent (BOLD) MRI. Measurements were taken before and after a 10 Gy dose of radiation. Changes in metabolic activity were measured via Fluorescence Lifetime IMaging (FLIM) with the appropriate controls following a 10 Gy dose of radiation. FLIM can non-invasively monitor changes in fluorescence in response to the microenvironment including being able to detect free and bound states of the intrinsically fluorescent metabolite NADH (Nicotinamide Adenine Dinucleotide). With this information FLIM can accurately quantify the metabolic state of cells that have been radiated. To model the observed changes, a two-compartment, source-sink simulation relating hemoglobin saturation and metabolic activity was performed using MATLAB. Results: Hemoglobin saturation as measured by interstitial probe and BOLD-MRI decreased by 30% within 15 minutes following radiation. FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways. Simulation of radiation-induced alterations in tumor oxygenation demonstrated that these changes can be the result of changes in either vasculature or metabolic activity. Conclusion: Radiation induces significant changes in hemoglobin saturation and metabolic activity. These alterations occur on time scales approximately the duration of common radiation treatments. Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response

  16. Enhanced Suppressive Activity of Regulatory T Cells in the Microenvironment of Malignant Pleural Effusions

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2018-01-01

    Full Text Available Cancer metastatic spread to serous cavity causes malignant pleural effusions (MPEs, indicating dismal prognosis. Tumor microenvironment can implement suppressive activity on host immune responses. Thus, we investigated the prevalence of Tregs and the relationship between them and TGF-β and IL-10 concentrations and measured expression of FOXP3, CTLA-4, CD28, and GITR genes, as well as protein expression of selected genes in benign effusions and MPEs. The percentage of Tregs was determined by means of multicolor flow cytometry system. TGF-β and IL-10 concentrations were measured using human TGF-β1 and IL-10 ELISA kit. Relative mRNA expression of studied genes was analyzed by real-time PCR. The frequency of Tregs was significantly higher in MPEs compared to benign effusions; however, the level of TGF-β and IL-10 in analyzed groups was comparable, and no correlation between concentrations of TGF-β and IL-10 and percentage of Tregs was observed. Relative mRNA expression of all the genes was higher in CD4+CD25+ compared to CD4+CD25− cells. In CD4+CD25+ cells from MPEs, relative mRNA expression of FOXP3, CTLA-4, and CD28 genes was significantly higher than in benign effusions; however, the level of CD4+CD25+CTLA-4+ cells in analyzed groups showed no significant differences. We found numerous genes correlations in an entire CD4+CD25+ cell subset and CD4+CD25+ cells from MPEs. Enhanced suppressive activity of Tregs is observed in the microenvironment of MPEs. Understanding of relations between cellular and cytokine immunosuppressive factors in tumor microenvironment may determine success of anticancer response.

  17. Microenvironment around tumors and their radiation sensitivity. The possibility of molecular target for radiation sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Tetsuo; Ishikawa, Hitoshi [Gunma Univ., Maebashi (Japan). School of Medicine; Mitsuhashi, Norio [Tokyo Women' s Medical Coll. (Japan)

    2001-12-01

    There have been scarce studies concerning the effect of microenvironment around tumors on their radiation sensitivity and this review describes the influence of environmental factors of cell adhesion, growth factors, cytokines, hypoxia and angiogenesis on the sensitivity and response to radiation and on the signal transduction to consider the possibility of molecular target for radiation sensitization. Cell-cell adhesion and cell-matrix interaction in response to radiation may have a role in inducing apoptotic process like anti-apoptotic or pro-apoptotic one. Growth factors and cytokines can affect the tumor response to radiation in more extent than p53 gene status since apoptosis induction is not always an indication of radiation sensitivity in many tumors clinically encountered. Radiation sensitivity is low in tumor cells under hypoxic conditions and it is important to know the relationship between those hypoxic cell response and angiogenesis by factors like HIF (hypoxia-inducible factor)-1. Molecular targets for radiation sensitization are now under development and both basic and clinical studies are important for future application of those sensitizing agents for the radiotherapy of tumors. (K.H.)

  18. Microenvironment around tumors and their radiation sensitivity. The possibility of molecular target for radiation sensitization

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Ishikawa, Hitoshi

    2001-01-01

    There have been scarce studies concerning the effect of microenvironment around tumors on their radiation sensitivity and this review describes the influence of environmental factors of cell adhesion, growth factors, cytokines, hypoxia and angiogenesis on the sensitivity and response to radiation and on the signal transduction to consider the possibility of molecular target for radiation sensitization. Cell-cell adhesion and cell-matrix interaction in response to radiation may have a role in inducing apoptotic process like anti-apoptotic or pro-apoptotic one. Growth factors and cytokines can affect the tumor response to radiation in more extent than p53 gene status since apoptosis induction is not always an indication of radiation sensitivity in many tumors clinically encountered. Radiation sensitivity is low in tumor cells under hypoxic conditions and it is important to know the relationship between those hypoxic cell response and angiogenesis by factors like HIF (hypoxia-inducible factor)-1. Molecular targets for radiation sensitization are now under development and both basic and clinical studies are important for future application of those sensitizing agents for the radiotherapy of tumors. (K.H.)

  19. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Rattigan, Yanique I.; Patel, Brijesh B. [Graduate School of Biomedical Sciences, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901 (United States); Department of Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901 (United States); Ackerstaff, Ellen [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Sukenick, George [Molecular Pharmacology and Chemistry Research Program, Sloan-Kettering Institute, 415 E 68th Street, New York, NY 10065 (United States); Koutcher, Jason A. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Glod, John W. [Graduate School of Biomedical Sciences, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901 (United States); Department of Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901 (United States); Department of Pediatric Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901 (United States); and others

    2012-02-15

    Human mesenchymal stem cells (hMSCs) are bone marrow-derived stromal cells, which play a role in tumor progression. We have shown earlier that breast cancer cells secrete higher levels of interleukin-6 (IL-6) under hypoxia, leading to the recruitment of hMSCs towards hypoxic tumor cells. We found that (i) MDA-MB-231 cells secrete significantly higher levels of lactate (3-fold more) under hypoxia (1% O{sub 2}) than under 20% O{sub 2} and (ii) lactate recruits hMSCs towards tumor cells by activating signaling pathways to enhance migration. The mRNA and protein expression of functional MCT1 in hMSCs is increased in response to lactate exposure. Thus, we hypothesized that hMSCs and stromal carcinoma associated fibroblasts (CAFs) in the tumor microenvironment have the capacity to take up lactate expelled from tumor cells and use it as a source of energy. Our {sup 13}C NMR spectroscopic measurements indicate that {sup 13}C-lactate is converted to {sup 13}C-alpha ketoglutarate in hMSCs and CAFs supporting this hypothesis. To our knowledge this is the first in vitro model system demonstrating that hMSCs and CAFs can utilize lactate produced by tumor cells.

  20. Demodex canis regulates cholinergic system mediated immunosuppressive pathways in canine demodicosis.

    Science.gov (United States)

    Kumari, P; Nigam, R; Singh, A; Nakade, U P; Sharma, A; Garg, S K; Singh, S K

    2017-09-01

    Demodex canis infestation in dogs remains one of the main challenges in veterinary dermatology. The exact pathogenesis of canine demodicosis is unknown but an aberration in immune status is considered very significant. No studies have underpinned the nexus between induction of demodicosis and neural immunosuppressive pathways so far. We have evaluated the involvement of cholinergic pathways in association with cytokines regulation as an insight into the immuno-pathogenesis of canine demodicosis in the present study. Remarkable elevations in circulatory immunosuppressive cytokine interleukin-10 and cholinesterase activity were observed in dogs with demodicosis. Simultaneously, remarkable reduction in circulatory pro-inflammatory cytokine tumour necrosis factor-alpha level was observed in dogs with demodicosis. Findings of the present study evidently suggest that Demodex mites might be affecting the cholinergic pathways to induce immunosuppression in their host and then proliferate incessantly in skin microenvironment to cause demodicosis.

  1. Polarization of ILC2s in Peripheral Blood Might Contribute to Immunosuppressive Microenvironment in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Qingli Bie

    2014-01-01

    Full Text Available Newly identified nuocytes or group 2 innate lymphoid cells (ILC2s play an important role in Th2 cell mediated immunity such as protective immune responses to helminth parasites, allergic asthma, and chronic rhinosinusitis. However, the contributions of ILC2s in the occurrence and development of cancer remain unknown. Our previous study found that there was a predominant Th2 phenotype in patients with gastric cancer. In this study, the ILC2s related genes or molecules in PBMC from patients with gastric cancer were measured, and the potential correlation between them was analyzed. The expression levels of RORα, GATA3, T1/ST2, IL-17RB, CRTH2, IL-33, IL-5, and IL-4 mRNA were significantly increased in patients, but no significant changes were found in ICOS, CD45, and IL-13 expression, and there was a positive correlation between RORα or IL-13 and other related factors, such as ICOS and CD45. The increased frequency of ILC2s was also found in PBMC of patients by flow cytometry. In addition, the mRNA of Arg1 and iNOS were also significantly increased in patients. These results suggested that there are polarized ILC2s in gastric cancer patients which might contribute to immunosuppressive microenvironment and closely related to the upregulation of MDSCs and M2 macrophages.

  2. Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors.

    Science.gov (United States)

    Faes, Seraina; Duval, Adrian P; Planche, Anne; Uldry, Emilie; Santoro, Tania; Pythoud, Catherine; Stehle, Jean-Christophe; Horlbeck, Janine; Letovanec, Igor; Riggi, Nicolo; Demartines, Nicolas; Dormond, Olivier

    2016-12-05

    Blocking the mechanistic target of rapamycin complex-1 (mTORC1) with chemical inhibitors such as rapamycin has shown limited clinical efficacy in cancer. The tumor microenvironment is characterized by an acidic pH which interferes with cancer therapies. The consequences of acidity on the anti-cancer efficacy of mTORC1 inhibitors have not been characterized and are thus the focus of our study. Cancer cell lines were treated with rapamycin in acidic or physiological conditions and cell proliferation was investigated. The effect of acidity on mTORC1 activity was determined by Western blot. The anticancer efficacy of rapamycin in combination with sodium bicarbonate to increase the intratumoral pH was tested in two different mouse models and compared to rapamycin treatment alone. Histological analysis was performed on tumor samples to evaluate proliferation, apoptosis and necrosis. Exposing cancer cells to acidic pH in vitro significantly reduced the anti-proliferative effect of rapamycin. At the molecular level, acidity significantly decreased mTORC1 activity, suggesting that cancer cell proliferation is independent of mTORC1 in acidic conditions. In contrast, the activation of mitogen-activated protein kinase (MAPK) or AKT were not affected by acidity, and blocking MAPK or AKT with a chemical inhibitor maintained an anti-proliferative effect at low pH. In tumor mouse models, the use of sodium bicarbonate increased mTORC1 activity in cancer cells and potentiated the anti-cancer efficacy of rapamycin. Combining sodium bicarbonate with rapamycin resulted in increased tumor necrosis, increased cancer cell apoptosis and decreased cancer cell proliferation as compared to single treatment. Taken together, these results emphasize the inefficacy of mTORC1 inhibitors in acidic conditions. They further highlight the potential of combining sodium bicarbonate with mTORC1 inhibitors to improve their anti-tumoral efficacy.

  3. Systemic increased immune response to Nocardia brasiliensis co-exists with local immunosuppressive microenvironment.

    Science.gov (United States)

    Salinas-Carmona, Mario Cesar; Rosas-Taraco, Adrian Geovanni; Welsh, Oliverio

    2012-10-01

    Human diseases produced by pathogenic actinomycetes are increasing because they may be present as opportunistic infections. Some of these microbes cause systemic infections associated with immunosuppressive conditions, such as chemotherapy for cancer, immunosuppressive therapy for transplant, autoimmune conditions, and AIDS; while others usually cause localized infection in immunocompetent individuals. Other factors related to this increase in incidence are: antibiotic resistance, not well defined taxonomy, and a delay in isolation and identification of the offending microbe. Examples of these infections are systemic disease and brain abscesses produced by Nocardia asteroides or the located disease by Nocardia brasiliensis, named actinomycetoma. During the Pathogenic Actinomycetes Symposium of the 16th International Symposium on Biology of Actinomycetes (ISBA), held in Puerto Vallarta, Mexico, several authors presented recent research on the mechanisms by which N. brasiliensis modulates the immune system to survive in the host and advances in medical treatment of human actinomycetoma. Antibiotics and antimicrobials that are effective against severe actinomycetoma infections with an excellent therapeutic outcome and experimental studies of drugs that show promising bacterial inhibition in vivo and in vitro were presented. Here we demonstrate a systemic strong acquired immune response in humans and experimental mice at the same time of a local dominance of anti inflammatory cytokines environment. The pathogenic mechanisms of some actinomycetes include generation of an immunosuppressive micro environment to evade the protective immune response. This information will be helpful in understanding pathogenesis and to design new drugs for treatment of actinomycetoma.

  4. Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2013-01-01

    Full Text Available Despite recent progresses in cancer therapy and increased knowledge in cancer biology, ovarian cancer remains a challenging condition. Among the latest concepts developed in cancer biology, cancer stem cells and the role of microenvironment in tumor progression seem to be related. Indeed, cancer stem cells have been described in several solid tumors including ovarian cancers. These particular cells have the ability to self-renew and reconstitute a heterogeneous tumor. They are characterized by specific surface markers and display resistance to therapeutic regimens. During development, specific molecular cues from the tumor microenvironment can play a role in maintaining and expanding stemness of cancer cells. The tumor stroma contains several compartments: cellular component, cytokine network, and extracellular matrix. These different compartments interact to form a permissive niche for the cancer stem cells. Understanding the molecular cues underlying this crosstalk will allow the design of new therapeutic regimens targeting the niche. In this paper, we will discuss the mechanisms implicated in the interaction between ovarian cancer stem cells and their microenvironment.

  5. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  6. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a “Watch-and-Wait” Approach to Cancer

    Science.gov (United States)

    Li, Shengwen Calvin; Vu, Long T.; Luo, Jane Jianying; Zhong, Jiang F.; Li, Zhongjun; Dethlefs, Brent A; Loudon, William G.; Kabeer, Mustafa H.

    2017-01-01

    Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open up new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME-driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cell-specific manner. Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a “watch-and-wait” approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology – a balance that needs to be maintained for the “watch-and-wait” approach to cancer. Thus, this review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application. PMID:28270089

  7. Endostatin induces proliferation of oral carcinoma cells but its effect on invasion is modified by the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Alahuhta, Ilkka [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Aikio, Mari [Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu (Finland); Oulu Center for Cell-Matrix Research, University of Oulu (Finland); Väyrynen, Otto; Nurmenniemi, Sini [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Suojanen, Juho [Department of Oral and Maxillo-facial Diseases, University of Helsinki, Helsinki University Central Hospital (Finland); Teppo, Susanna [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Pihlajaniemi, Taina; Heljasvaara, Ritva [Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu (Finland); Oulu Center for Cell-Matrix Research, University of Oulu (Finland); Salo, Tuula [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Department of Oral and Maxillo-facial Diseases, University of Helsinki, Helsinki University Central Hospital (Finland); Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, Sao Paolo (Brazil); Nyberg, Pia, E-mail: pia.nyberg@oulu.fi [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland)

    2015-08-01

    The turnover of extracellular matrix liberates various cryptic molecules with novel biological activities. Endostatin is an endogenous angiogenesis inhibitor that is derived from the non-collagenous domain of collagen XVIII. Although there are a large number of studies on its anti-tumor effects, the molecular mechanisms are not yet completely understood, and the reasons why endostatin has not been successful in clinical trials are unclear. Research has mostly focused on its anti-angiogenic effect in tumors. Here, we aimed to elucidate how endostatin affects the behavior of aggressive tongue HSC-3 carcinoma cells that were transfected to overproduce endostatin. Endostatin inhibited the invasion of HSC-3 cells in a 3D collagen–fibroblast model. However, it had no effect on invasion in a human myoma organotypic model, which lacks vital fibroblasts. Recombinant endostatin was able to reduce the Transwell migration of normal fibroblasts, but had no effect on carcinoma associated fibroblasts. Surprisingly, endostatin increased the proliferation and decreased the apoptosis of cancer cells in organotypic models. Also subcutaneous tumors overproducing endostatin grew bigger, but showed less local invasion in nude mice xenografts. We conclude that endostatin affects directly to HSC-3 cells increasing their proliferation, but its net effect on cancer invasion seem to depend on the cellular composition and interactions of tumor microenvironment. - Highlights: • Endostatin affects not only angiogenesis, but also carcinoma cells and fibroblasts. • Endostatin increased carcinoma cell proliferation, but decreased 3D invasion. • The invasion inhibitory effect was sensitive to the microenvironment composition. • Fibroblasts may be a factor regulating the fluctuating roles of endostatin.

  8. Differential immune microenvironments and response to immune checkpoint blockade amongst molecular subtypes of murine medulloblastoma

    Science.gov (United States)

    Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.

    2016-01-01

    PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194

  9. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    Science.gov (United States)

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  10. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  11. Microenvironmental independence associated with tumor progression.

    Science.gov (United States)

    Anderson, Alexander R A; Hassanein, Mohamed; Branch, Kevin M; Lu, Jenny; Lobdell, Nichole A; Maier, Julie; Basanta, David; Weidow, Brandy; Narasanna, Archana; Arteaga, Carlos L; Reynolds, Albert B; Quaranta, Vito; Estrada, Lourdes; Weaver, Alissa M

    2009-11-15

    Tumor-microenvironment interactions are increasingly recognized to influence tumor progression. To understand the competitive dynamics of tumor cells in diverse microenvironments, we experimentally parameterized a hybrid discrete-continuum mathematical model with phenotypic trait data from a set of related mammary cell lines with normal, transformed, or tumorigenic properties. Surprisingly, in a resource-rich microenvironment, with few limitations on proliferation or migration, transformed (but not tumorigenic) cells were most successful and outcompeted other cell types in heterogeneous tumor simulations. Conversely, constrained microenvironments with limitations on space and/or growth factors gave a selective advantage to phenotypes derived from tumorigenic cell lines. Analysis of the relative performance of each phenotype in constrained versus unconstrained microenvironments revealed that, although all cell types grew more slowly in resource-constrained microenvironments, the most aggressive cells were least affected by microenvironmental constraints. A game theory model testing the relationship between microenvironment resource availability and competitive cellular dynamics supports the concept that microenvironmental independence is an advantageous cellular trait in resource-limited microenvironments.

  12. [Prostate cancer microenvironment: Its structure, functions and therapeutic applications].

    Science.gov (United States)

    Lorion, R; Bladou, F; Spatz, A; van Kempen, L; Irani, J

    2016-06-01

    In the field of prostate cancer there is a growing tendency for more and more studies to emphasise the predominant role of the zone situated between the tumour and the host: the tumour microenvironment. The aim of this article is to describe the structure and the functions of the prostate cancer microenvironment as well as the principal treatments that are being applied to it. PubMed and ScienceDirect databases have been interrogated using the association of keywords "tumour microenvironment" and "neoplasm therapy" along with "microenvironnement tumoral" and "traitements". Of the 593 articles initially found, 50 were finally included. The tumour microenvironment principally includes host elements that are diverted from their primary functions and encourage the development of the tumour. In it we find immunity cells, support tissue as well as vascular and lymphatic neovascularization. Highlighting the major role played by this microenvironment has led to the development of specific treatments, notably antiangiogenic therapy and immunotherapy. The tumour microenvironment, the tumour and the host influence themselves mutually and create a variable situation over time. Improvement of the knowledge of the prostate cancer microenvironment gradually enables us to pass from an approach centred on the tumour to a broader approach to the whole tumoral ecosystem. This enabled the emergence of new treatments whose place in the therapeutic arsenal still need to be found. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment

    Directory of Open Access Journals (Sweden)

    Clément eRicard

    2014-02-01

    Full Text Available The majority of intravital studies on brain tumor in living animal so far rely on dual color imaging. We describe here a multiphoton imaging protocol to dynamically characterize the interactions between six cellular components in a living mouse. We applied this methodology to a clinically relevant glioblastoma multiforme (GBM model designed in reporter mice with targeted cell populations labeled by fluorescent proteins of different colors. This model permitted us to make non-invasive longitudinal and multi-scale observations of cell-to-cell interactions. We provide examples of such 5D (x,y,z,t,color images acquired on a daily basis from volumes of interest, covering most of the mouse parietal cortex at subcellular resolution. Spectral deconvolution allowed us to accurately separate of each cell population as well as some components of the extracellular matrix. The technique represents a powerful tool for investigating how tumor progression is influenced by the interactions of tumor cells with host cells and the extracellular matrix micro-environment. It will be especially valuable for evaluating neuro-oncological drug efficacy and target specificity. The imaging protocol provided here can be easily translated to other mouse models of neuropathologies, and should also be of fundamental interest for investigations in other areas of systems biology.

  14. Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment.

    Science.gov (United States)

    Ricard, Clément; Debarbieux, Franck Christian

    2014-01-01

    The majority of intravital studies on brain tumor in living animal so far rely on dual color imaging. We describe here a multiphoton imaging protocol to dynamically characterize the interactions between six cellular components in a living mouse. We applied this methodology to a clinically relevant glioblastoma multiforme (GBM) model designed in reporter mice with targeted cell populations labeled by fluorescent proteins of different colors. This model permitted us to make non-invasive longitudinal and multi-scale observations of cell-to-cell interactions. We provide examples of such 5D (x,y,z,t,color) images acquired on a daily basis from volumes of interest, covering most of the mouse parietal cortex at subcellular resolution. Spectral deconvolution allowed us to accurately separate each cell population as well as some components of the extracellular matrix. The technique represents a powerful tool for investigating how tumor progression is influenced by the interactions of tumor cells with host cells and the extracellular matrix micro-environment. It will be especially valuable for evaluating neuro-oncological drug efficacy and target specificity. The imaging protocol provided here can be easily translated to other mouse models of neuropathologies, and should also be of fundamental interest for investigations in other areas of systems biology.

  15. Breast cancer by proxy: Can the microenvironment be both the cause and consequence?

    Energy Technology Data Exchange (ETDEWEB)

    Ronnov-Jessen, Lone; Bissell, Mina J

    2008-11-16

    Breast cancer is one of the most clear-cut examples of a solid tumor in which systemic cues play a decisive part in its development. The breast tissue is constantly subjected to changes in hormone levels and modifications in the microenvironment. This scenario is even more striking during tumor development because of the dramatic loss or aberration of basement membrane (BM) and myoepithelial cells and the gain of peritumoral myofibroblasts. We suggest that the microenvironment, defined here as all components of the mammary gland other than luminal and/or tumor epithelial cells, might be instrumental in maintaining organ integrity and in promoting, and at times even initiating, breast cancer development. As such, the tumor microenvironment and its constituents, alone or in combination, might serve as promising targets for therapy.

  16. Preliminary Study on the Effect of Adipocytes on the Biological Behaviors of
Lung Adenocarcinoma A549 Cells in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Hang ZHANG

    2018-05-01

    Full Text Available Background and objective Adipocytes in the tumor microenvironment may provide the metabolic fuel or signal transduction through media and other means to promote a variety of malignant proliferation and invasion, of tumor cells, but their role in lung cancer progression is still unclear. The purpose of this study was to investigate the effect of adipocytes on lung cancer cell biology. Methods 3T3-L1 pre-adipocytes were induced into mature adipocytes. The cell morphology was observed by microscopy and Oil Red O staining. MTT assay, colony formation assay, wound-healing and Transwell methods were used to detect lung cancer cell proliferation, migration and invasion ability. The content of triglyceride in cells was determined by colorimetry. Results The morphology of lung adenocarcinoma A549 cells became more slender after co-culture with mature adipocytes, and the proliferation and cloning ability were significantly enhanced (P<0.05. In addition, mature adipocytes can also promote the migration ability (P<0.05, invasion ability (P<0.01 and accumulation of intracellular lipid (P<0.05 of A549 cells. Conclusion These findings suggested that adipocytes in tumor microenvironment can promote the proliferation, migration and invasion of lung adenocarcinoma A549 cells, which may be related to lipid metabolism.

  17. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment.

    Science.gov (United States)

    Stodden, G R; Lindberg, M E; King, M L; Paquet, M; MacLean, J A; Mann, J L; DeMayo, F J; Lydon, J P; Hayashi, K

    2015-05-07

    Type II endometrial carcinomas (ECs) are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. As TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1(d/d)Trp53(d/d)) clearly demonstrate architectural features characteristic of type II ECs, including focal areas of papillary differentiation, protruding cytoplasm into the lumen (hobnailing) and severe nuclear atypia at 6 months of age. Further, Cdh1(d/d)Trp53(d/d) tumors in 12-month-old mice were highly aggressive, and metastasized to nearby and distant organs within the peritoneal cavity, such as abdominal lymph nodes, mesentery and peri-intestinal adipose tissues, demonstrating that tumorigenesis in this model proceeds through the universally recognized morphological intermediates associated with type II endometrial neoplasia. We also observed abundant cell proliferation and complex angiogenesis in the uteri of Cdh1(d/d)Trp53(d/d) mice. Our microarray analysis found that most of the genes differentially regulated in the uteri of Cdh1(d/d)Trp53(d/d) mice were involved in inflammatory responses. CD163 and Arg1, markers for tumor-associated macrophages, were also detected and increased in the uteri of Cdh1(d/d)Trp53(d/d) mice, suggesting that an inflammatory tumor microenvironment with immune cell recruitment is augmenting tumor development in Cdh1(d/d)Trp53(d/d) uteri. Further, inflammatory mediators secreted from CDH1-negative, TP53 mutant endometrial cancer cells induced normal macrophages to express inflammatory-related genes through activation of nuclear factor-κB signaling. These results indicate that absence of CDH1 and TP53 in endometrial cells initiates chronic inflammation, promotes tumor microenvironment development following the recruitment of macrophages

  18. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Catarina Roma-Rodrigues

    2017-01-01

    Full Text Available Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  19. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R

    2017-01-14

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  20. Tumor Macroenvironment and Metabolism

    OpenAIRE

    Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S.; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-01-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organ...

  1. Targets in the microenvironment of rectal cancer : A focus on angiogenic growth factors and chemokines

    NARCIS (Netherlands)

    Tamas, Karin Rita

    2015-01-01

    Cancer cells interact with each other, and with cells of the tumor microenvironment. This coincides with the production of numerous soluble factors which can stimulate cancer cell growth and migration. In addition the tumor microenvironment can facilitate cancer cells to escape the effect of

  2. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  3. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.

    Science.gov (United States)

    Zhang, Bing-Lan; Qin, Di-Yuan; Mo, Ze-Ming; Li, Yi; Wei, Wei; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-04-01

    Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.

  4. Cancer immunotherapy by immunosuppression

    Directory of Open Access Journals (Sweden)

    Prehn Liisa M

    2010-12-01

    Full Text Available Abstract We have previously suggested that the stimulatory effect of a weak immune reaction on tumor growth may be necessary for the growth of incipient tumors. In the present paper, we enlarge upon and extend that idea by collecting evidence in the literature bearing upon this new hypothesis that a growing cancer, whether in man or mouse, is throughout its lifespan, probably growing and progressing because of continued immune stimulation by a weak immune reaction. We also suggest that prolonged immunosuppression might interfere with progression and thus be an aid to therapy. While most of the considerable evidence that supports the hypothesis comes from observations of experimental mouse tumors, there is suggestive evidence that human tumors may behave in much the same way, and as far as we can ascertain, there is no present evidence that necessarily refutes the hypothesis.

  5. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward.

    Science.gov (United States)

    Li, Jian; Li, Wenwen; Huang, Kejia; Zhang, Yang; Kupfer, Gary; Zhao, Qi

    2018-02-13

    Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.

  6. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity—Suppression of Tumor Immunity in the Intestine

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.

  7. Cancer-Associated Fibroblasts from lung tumors maintain their immuno-suppressive abilities after high-dose irradiation

    Directory of Open Access Journals (Sweden)

    Laia eGorchs

    2015-05-01

    Full Text Available Accumulating evidence supports the notion that high-dose (>5 Gy radiotherapy (RT regimens are triggering stronger pro-immunogenic effects than standard low-dose (2 Gy regimens. However, the effects of RT on certain immunoregulatory elements in tumors remain unexplored. In this study we have investigated the effects of high-dose irradiation (HD-RT on the immunomodulating functions of cancer-associated fibroblasts (CAFs. Primary CAF cultures were established from lung cancer specimens derived from patients diagnosed for non-small cell lung cancer. Irradiated and non-irradiated CAFs were examined for immunomodulation in experiments with peripheral blood mononuclear cells from random, healthy donors. Regulation of lymphocytes behavior was checked by lymphocyte proliferation assays, lymphocyte migration assays and T-cell cytokine production. Additionally, CAF-secreted immuno-regulatory factors were studied by multiplex protein arrays, ELISAs and by LC-MS/MS proteomics. In all functional assays we observed a powerful immuno-suppressive effect exerted by CAF-conditioned medium on activated T-cells (p>0,001, and this effect was sustained after a single radiation dose of 18 Gy. Relevant immuno-suppressive molecules such as prostaglandin E2, interleukin-6 and -10, or transforming growth factor-β were found in CAF conditioned medium, but their secretion was unchanged after irradiation. Finally, immunogenic cell death responses in CAFs were studied by exploring the release of high motility group box-1 and ATP. Both alarmins remained undetectable before and after irradiation. In conclusion, CAFs play a powerful immuno-suppressive effect over activated T-cells, and this effect remains unchanged after HD-RT. Importantly, CAFs do not switch on immunogenic cell death responses after exposure to HD-RT.

  8. Thioredoxin induces Tregs to generate an immunotolerant tumor microenvironment in metastatic melanoma

    Science.gov (United States)

    Wang, Xiaogang; Dong, Haisheng; Li, Qi; Li, Yingxian; Hong, An

    2015-01-01

    Metastatic melanoma is a highly aggressive cancer that is very difficult to treat. Additionally, the antitumor immune reaction of melanoma is still unclear. Here we demonstrate an association between the expression and secretion of the antioxidant protein thioredoxin (TRX) and increasing tumor stage and metastasis in melanoma. To elucidate the role of TRX in melanoma, we assessed the correlation of TRX expression with different disease parameters in melanoma. We also examined the in vitro and in vivo effects of modulating TRX levels in melanoma cells using various methods of TRX depletion and augmentation. We further explored the effects of TRX on the cytokine milieu and the ability of TRX to regulate the proportion and specific activities of T-cell populations. We demonstrate that TRX expression correlates with Treg representation in clinical samples and, that modulation of TRX influences the induction of Tregs and the generation of an immunotolerant cytokine profile in mouse serum. Using a murine metastatic melanoma model, we identified a tumor immunoevasion mechanism whereby melanoma cell-secreted TRX enhances Treg infiltration. TRX displays chemotactic effects in recruiting Tregs, stimulates the conversion of conventional T cells to Tregs, and confers survival advantage to Tregs in the tumor microenvironment. In turn, this increase of Tregs generates immunotolerance in tissues and therefore decreases antitumor immune reactions. These results elucidate a mechanism by which TRX promotes metastatic melanoma in part through Treg recruitment to inhibit T-cell antitumor effects and suggest that TRX antibody may be useful in the clinic as a therapy against melanoma. PMID:26405597

  9. Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment

    Directory of Open Access Journals (Sweden)

    Sundary Sormendi

    2018-01-01

    Full Text Available Low oxygen tension or hypoxia is a determining factor in the course of many different processes in animals, including when tissue expansion and cellular metabolism result in high oxygen demands that exceed its supply. This is mainly happening when cells actively proliferate and the proliferating mass becomes distant from the blood vessels, such as in growing tumors. Metabolic alterations in response to hypoxia can be triggered in a direct manner, such as the switch from oxidative phosphorylation to glycolysis or inhibition of fatty acid desaturation. However, as the modulated action of hypoxia-inducible factors or the oxygen sensors (prolyl hydroxylase domain-containing enzymes can also lead to changes in enzyme expression, these metabolic changes can also be indirect. With this review, we want to summarize our current knowledge of the hypoxia-induced changes in metabolism during cancer development, how they are affected in the tumor cells and in the cells of the microenvironment, most prominently in immune cells.

  10. Immune Microenvironment in Colorectal Cancer: A New Hallmark to Change Old Paradigms

    OpenAIRE

    de la Cruz-Merino, Luis; Henao Carrasco, Fernando; Vicente Baz, David; Nogales Fernández, Esteban; Reina Zoilo, Juan José; Codes Manuel de Villena, Manuel; Pulido, Enrique Grande

    2011-01-01

    Impact of immune microenvironment in prognosis of solid tumors has been extensively studied in the last few years. Specifically in colorectal carcinoma, increased knowledge of the immune events around these tumors and their relation with clinical outcomes have led to consider immune microenvironment as one of the most important prognostic factors in this disease. In this review we will summarize and update the current knowledge with respect to this intriguing and complex new hallmark of cance...

  11. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy.

    Science.gov (United States)

    Joubert, Nicolas; Denevault-Sabourin, Caroline; Bryden, Francesca; Viaud-Massuard, Marie-Claude

    2017-12-15

    The design of innovative anticancer chemotherapies with superior antitumor efficacy and reduced toxicity continues to be a challenging endeavor. Recently, the success of Adcetris ® and Kadcyla ® made antibody-drug conjugates (ADCs) serious contenders to reach the envied status of Paul Ehrlich's "magic bullet". However, ADCs classically target overexpressed and internalizing antigens at the surface of cancer cells, and in solid tumors are associated with poor tumor penetration, insufficient targeting in heterogeneous tumors, and appearance of several resistance mechanisms. In this context, alternative non-internalizing ADCs and prodrugs have been developed to circumvent these limitations, in which the drug can be selectively released by an extracellular stimulus in the tumor microenvironment. Each strategy and method of activation will be discussed as potential alternatives to internalizing ADCs for cancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Immune infiltrates as predictive markers of survival in pancreatic cancer patients

    Directory of Open Access Journals (Sweden)

    Maria Pia eProtti

    2013-08-01

    Full Text Available Pancreatic cancer is a devastating disease with dismal prognosis. The tumor microenvironment is composed by multiple cell types, molecular factors and extracellular matrix forming a strong desmoplastic reaction, which is a hallmark of the disease. A complex cross-talk between tumor cells and the stroma exists with reciprocal influence that dictates tumor progression and ultimately the clinical outcome. In this context, tumor infiltrating immune cells through secretion of chemokine and cytokines exert an important regulatory role. Here we review the correlation between the immune infiltrates, evaluated on tumor samples of pancreatic cancer patients underwent surgical resection, and disease free and/or overall survival after surgery. Specifically, we focus on tumor infiltrating lymphocytes, mast cells and macrophages that all contribute to a Th2-type inflammatory and immunosuppressive microenvironment. In these patients tumor immune infiltrates not only do not contribute to disease eradication but rather the features of Th2-type inflammation and immunosuppression is significantly associated with more rapid disease progression and reduced survival.

  13. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  14. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  15. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment

    Science.gov (United States)

    Deep, Gagan; Panigrahi, Gati K.

    2017-01-01

    Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, stemness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/β-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles “exosomes” in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes’ role has been reported in hypoxia-induced angiogenesis, stemness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways. PMID:27279239

  16. An Implantable Device for Manipulation of the in vivo Tumor Microenvironment

    Science.gov (United States)

    Williams, James K.

    In the past decade, it has become increasingly recognized that interactions between cancer cells and the tumor microenvironment (TME) regulate metastasis. One such interaction is the paracrine loop between macrophages and cancer cells which drives metastatic invasion in mammary tumors. Tumor associated macrophages release epidermal growth factor (EGF), a chemoattractant which induces the migration of cancer cells toward the blood vessels. The cancer cells reciprocate by releasing a macrophage chemoattractant, colony-stimulating factor 1 (CSF-1), resulting in the co-migration of both cell types and subsequent intravasation. In this work, a new technology has been developed for studying the mechanisms by which invasive tumor cells migrate in vivo toward gradients of EGF. Conventional in vitro methods used for studying tumor cell migration lack the complexity found in the TME and are therefore of limited relevance to in vivo metastasis. The Nano Intravital Device (NANIVID) has been designed as an implantable tool to manipulate the TME through the generation of soluble factor gradients. The NANIVID consists of two etched glass substrates, loaded with a hydrogel containing EGF, and sealed together using a polymer membrane. When implanted in vivo, the hydrogel will swell and release the entrapped EGF, forming a diffusion gradient in the tumor over many hours. The NANIVID design has been optimized for use with multiphoton-based intravital imaging, to monitor migration toward the device at single-cell resolution. Stabilization techniques have been developed to minimize imaging artifacts caused by breathing and specimen movement over the course of the experiment. The NANIVID has been validated in vivo using a mouse model of metastasis. When implanted in MDA-MB-231 xenograft tumors grown in SCID mice, chemotaxis of tumor cells was induced by the EGF gradient generated by the device. Cell motility parameters including velocity, directionality, and chemotactic index were

  17. Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor microenvironment.

    Science.gov (United States)

    Wu, Kaiming; Zhao, Zhenxian; Liu, Kuanzhi; Zhang, Jian; Li, Guanghua; Wang, Liang

    2017-07-03

    Long non-coding RNAs (LncRNAs) have been recently regarded as systemic regulators in multiple biologic processes including tumorigenesis. In this study, we observed the expression of lncRNA lnc-sox5 was significantly increased in colorectal cancer (CRC). Despite the CRC cell growth, cell cycle and cell apoptosis was not affected by lnc-sox5 knock-down, lnc-sox5 knock-down suppressed CRC cell migration and invasion. In addition, xenograft animal model suggested that lnc-sox5 knock-down significantly suppressed the CRC tumorigenesis. Our results also showed that the expression of indoleamine 2,3-dioxygenase 1 (IDO1) was significantly reduced by lnc-sox5 knock-down and therefore modulated the infiltration and cytotoxicity of CD3 + CD8 + T cells. Taken together, these results suggested that lnc-sox5 unbalances tumor microenvironment to regulate colorectal cancer progression.

  18. The expanding universe of regulatory T cell subsets in cancer.

    Science.gov (United States)

    Gajewski, Thomas F

    2007-08-01

    Evidence has indicated that failed antitumor immunity is dominated by immunosuppressive mechanisms within the tumor microenvironment. In this issue of Immunity, Peng et al. (2007) add to this list by describing tumor-infiltrating gammadelta T cells that have regulatory function.

  19. Noninvasive Multimodality Imaging of the Tumor Microenvironment: Registered Dynamic Magnetic Resonance Imaging and Positron Emission Tomography Studies of a Preclinical Tumor Model of Tumor Hypoxia

    Directory of Open Access Journals (Sweden)

    HyungJoon Cho

    2009-03-01

    Full Text Available In vivo knowledge of the spatial distribution of viable, necrotic, and hypoxic areas can provide prognostic information about the risk of developing metastases and regional radiation sensitivity and may be used potentially for localized dose escalation in radiation treatment. In this study, multimodality in vivo magnetic resonance imaging (MRI and positron emission tomography (PET imaging using stereotactic fiduciary markers in the Dunning R3327AT prostate tumor were performed, focusing on the relationship between dynamic contrast-enhanced (DCE MRI using Magnevist (Gd-DTPA and dynamic 18F-fluoromisonidazole (18F-Fmiso PET. The noninvasive measurements were verified using tumor tissue sections stained for hematoxylin/eosin and pimonidazole. To further validate the relationship between 18F-Fmiso and pimonidazole uptake, 18F digital autoradiography was performed on a selected tumor and compared with the corresponding pimonidazole-stained slices. The comparison of Akep values (kep = rate constant of movement of Gd-DTPA between the interstitial space and plasma and A = amplitude in the two-compartment model (Hoffmann U, Brix G, Knopp MV, Hess T and Lorenz WJ (1995. Magn Reson Med 33, 506– 514 derived from DCE-MRI studies and from early 18F-Fmiso uptake PET studies showed that tumor vasculature is a major determinant of early 18F-Fmiso uptake. A negative correlation between the spatial map of Akep and the slope map of late (last 1 hour of the dynamic PET scan 18F-Fmiso uptake was observed. The relationships between DCE-MRI and hematoxylin/eosin slices and between 18F-Fmiso PET and pimonidazole slices confirm the validity of MRI/PET measurements to image the tumor microenvironment and to identify regions of tumor necrosis, hypoxia, and well-perfused tissue.

  20. MYCN: from oncoprotein to tumor-associated antigen

    International Nuclear Information System (INIS)

    Pistoia, Vito; Morandi, Fabio; Pezzolo, Annalisa; Raffaghello, Lizzia; Prigione, Ignazia

    2012-01-01

    MYCN is a well-known oncogene over-expressed in different human malignancies including neuroblastoma (NB), rhabdomyosarcoma, medulloblastoma, astrocytoma, Wilms’ tumor, and small cell lung cancer. In the case of NB, MYCN amplification is an established biomarker of poor-prognosis. MYCN belongs to a family of transcription factors (the most important of which is C-MYC) that show a high degree of homology. Down-regulation of MYC protein expression leads to tumor regression in animal models, indicating that MYC proteins represent interesting therapeutic targets. Pre-requisites for a candidate tumor-associated antigen (TAA) to be targeted by immunotherapeutic approaches are the following, (i) expression should be tumor-restricted, (ii) the putative TAA should be up-regulated in cancer cells, and (iii) protein should be processed into immunogenic peptides capable of associating to major histocompatibility complex molecules with high affinity. Indeed, the MYCN protein is not expressed in human adult tissues and up-regulated variably in NB cells, and MYCN peptides capable of associating to HLA-A1 or HLA-A2 molecules with high affinity have been identified. Thus the MYCN protein qualifies as putative TAA in NB. Additional issues that determine the feasibility of targeting a putative TAA with cytotoxic T lymphocytes (CTLs) and will be here discussed are the following, (i) the inadequacy of tumor cells per se to act as antigen-presenting cells witnessed, in the case of NB cells, by the low to absent expression of HLA class I molecules, the lack of co-stimulatory molecules and multiple defects in the HLA class I related antigen processing machinery, and (ii) the immune evasion mechanisms operated by cancer cells to fool the host immune system, such as up-regulation of soluble immunosuppressive molecules (e.g., soluble MICA and HLA-G in the case of NB) or generation of immunosuppressive cells in the tumor microenvironment. A final issue that deserves consideration is the

  1. MYCN: From Oncoprotein To Tumor-Associated Antigen

    Directory of Open Access Journals (Sweden)

    Vito ePistoia

    2012-11-01

    Full Text Available MYCN is a well known oncogene overexpressed in different human malignancies including neuroblastoma, rhabdomyosarcoma, medulloblastoma, astrocytoma, Wilms’ tumor and small cell lung cancer. In the case of neuroblastoma (NB, MYCN amplification is an established biomarker of poor prognosis. MYCN belongs to a family of transcription factors (the most important of which is CMYC that show a high degree of homology. Downregulation of MYC protein expression leads to tumor regression in animal models, indicating that MYC proteins represent interesting therapeutic targets.Pre-requisites for a candidate tumor-associated antigen (TAA to be targeted by immunotherapeutic approaches are the following, i expression should be tumor-restricted, ii the putative TAA should be up-regulated in cancer cells and iii protein should be processed into immunogenic peptides capable of associating to MHC molecules with high affinity. Indeed, the MYCN protein is not expressed in human adult tissues and upregulated variably in NB cells, and MYCN peptides capable of associating to HLA-A1 or –A2 molecules with high affinity have been identified. Thus the MYCN protein qualifies as putative TAA in NB.Additional issues that determine the feasibility of targeting a putative TAA with cytotoxic T lymphocytes (CTL and will be here discussed are the following, i the inadequacy of tumor cells per se to act as antigen-presenting cells witnessed, in the case of NB cells, by the low to absent expression of HLA- class I molecules, the lack of costimulatory molecules and multiple defects in the HLA class I related antigen processing machinery, and ii the immune evasion mechanisms operated by cancer cells to fool the host immune system, such as up-regulation of soluble immunosuppressive molecules (e.g. soluble MICA and HLA-G in the case of NB or generation of immunosuppressive cells in the tumor microenvironment. A final issue that deserves consideration is the strategy used to generate

  2. MYCN: from oncoprotein to tumor-associated antigen

    Energy Technology Data Exchange (ETDEWEB)

    Pistoia, Vito; Morandi, Fabio; Pezzolo, Annalisa; Raffaghello, Lizzia; Prigione, Ignazia, E-mail: vitopistoia@ospedale-gaslini.ge.it [Laboratory of Oncology, Translational Research and Laboratory Medicine, G. Gaslini Institute, Genoa (Italy)

    2012-11-16

    MYCN is a well-known oncogene over-expressed in different human malignancies including neuroblastoma (NB), rhabdomyosarcoma, medulloblastoma, astrocytoma, Wilms’ tumor, and small cell lung cancer. In the case of NB, MYCN amplification is an established biomarker of poor-prognosis. MYCN belongs to a family of transcription factors (the most important of which is C-MYC) that show a high degree of homology. Down-regulation of MYC protein expression leads to tumor regression in animal models, indicating that MYC proteins represent interesting therapeutic targets. Pre-requisites for a candidate tumor-associated antigen (TAA) to be targeted by immunotherapeutic approaches are the following, (i) expression should be tumor-restricted, (ii) the putative TAA should be up-regulated in cancer cells, and (iii) protein should be processed into immunogenic peptides capable of associating to major histocompatibility complex molecules with high affinity. Indeed, the MYCN protein is not expressed in human adult tissues and up-regulated variably in NB cells, and MYCN peptides capable of associating to HLA-A1 or HLA-A2 molecules with high affinity have been identified. Thus the MYCN protein qualifies as putative TAA in NB. Additional issues that determine the feasibility of targeting a putative TAA with cytotoxic T lymphocytes (CTLs) and will be here discussed are the following, (i) the inadequacy of tumor cells per se to act as antigen-presenting cells witnessed, in the case of NB cells, by the low to absent expression of HLA class I molecules, the lack of co-stimulatory molecules and multiple defects in the HLA class I related antigen processing machinery, and (ii) the immune evasion mechanisms operated by cancer cells to fool the host immune system, such as up-regulation of soluble immunosuppressive molecules (e.g., soluble MICA and HLA-G in the case of NB) or generation of immunosuppressive cells in the tumor microenvironment. A final issue that deserves consideration is the

  3. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  4. SHMT2 drives glioma cell survival in the tumor microenvironment but imposes a dependence on glycine clearance

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P.; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard; Chudnovsky, Yakov; Pacold, Michael E.; Chen, Walter W.; Cantor, Jason R.; Shelton, Laura M.; Gui, Dan Y.; Kwon, Manjae; Ramkissoon, Shakti H.; Ligon, Keith L.; Kang, Seong Woo; Snuderl, Matija; Heiden, Matthew G. Vander; Sabatini, David M.

    2015-01-01

    SUMMARY Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumor microenvironment1–3. Here, we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischemic zones of gliomas. In human glioblastoma multiforme (GBM), mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumor regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumor environment, but also renders these cells sensitive to glycine cleavage system inhibition. PMID:25855294

  5. Breast cancer by proxy: can the microenvironment be both the cause and consequence?

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Bissell, Mina J

    2009-01-01

    development because of the dramatic loss or aberration of basement membrane (BM) and myoepithelial cells and the gain of peritumoral myofibroblasts. We suggest that the microenvironment, defined here as all components of the mammary gland other than luminal and/or tumor epithelial cells, might be instrumental...... in maintaining organ integrity and in promoting, and at times even initiating, breast cancer development. As such, the tumor microenvironment and its constituents, alone or in combination, might serve as promising targets for therapy....

  6. Local iron homeostasis in the breast ductal carcinoma microenvironment

    International Nuclear Information System (INIS)

    Marques, Oriana; Porto, Graça; Rêma, Alexandra; Faria, Fátima; Cruz Paula, Arnaud; Gomez-Lazaro, Maria; Silva, Paula; Martins da Silva, Berta; Lopes, Carlos

    2016-01-01

    While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. We confirm previous results by showing that breast cancer epithelial cells present an ‘iron-utilization phenotype’ with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an ‘iron-donor’ phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context

  7. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma.

    Directory of Open Access Journals (Sweden)

    Subhasis Barik

    Full Text Available We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP. In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME. Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+ cells within CD8(+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.

  8. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  9. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?

    Directory of Open Access Journals (Sweden)

    Jessica Hoarau-Véchot

    2018-01-01

    Full Text Available An area that has come to be of tremendous interest in tumor research in the last decade is the role of the microenvironment in the biology of neoplastic diseases. The tumor microenvironment (TME comprises various cells that are collectively important for normal tissue homeostasis as well as tumor progression or regression. Seminal studies have demonstrated the role of the dialogue between cancer cells (at many sites and the cellular component of the microenvironment in tumor progression, metastasis, and resistance to treatment. Using an appropriate system of microenvironment and tumor culture is the first step towards a better understanding of the complex interaction between cancer cells and their surroundings. Three-dimensional (3D models have been widely described recently. However, while it is claimed that they can bridge the gap between in vitro and in vivo, it is sometimes hard to decipher their advantage or limitation compared to classical two-dimensional (2D cultures, especially given the broad number of techniques used. We present here a comprehensive review of the different 3D methods developed recently, and, secondly, we discuss the pros and cons of 3D culture compared to 2D when studying interactions between cancer cells and their microenvironment.

  10. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?

    Science.gov (United States)

    Hoarau-Véchot, Jessica; Rafii, Arash; Touboul, Cyril; Pasquier, Jennifer

    2018-01-18

    An area that has come to be of tremendous interest in tumor research in the last decade is the role of the microenvironment in the biology of neoplastic diseases. The tumor microenvironment (TME) comprises various cells that are collectively important for normal tissue homeostasis as well as tumor progression or regression. Seminal studies have demonstrated the role of the dialogue between cancer cells (at many sites) and the cellular component of the microenvironment in tumor progression, metastasis, and resistance to treatment. Using an appropriate system of microenvironment and tumor culture is the first step towards a better understanding of the complex interaction between cancer cells and their surroundings. Three-dimensional (3D) models have been widely described recently. However, while it is claimed that they can bridge the gap between in vitro and in vivo, it is sometimes hard to decipher their advantage or limitation compared to classical two-dimensional (2D) cultures, especially given the broad number of techniques used. We present here a comprehensive review of the different 3D methods developed recently, and, secondly, we discuss the pros and cons of 3D culture compared to 2D when studying interactions between cancer cells and their microenvironment.

  11. Microenvironments and Signaling Pathways Regulating Early Dissemination, Dormancy, and Metastasis

    Science.gov (United States)

    2016-09-01

    regulators of branching morphogenesis during mammary gland development 17,18, arguing that normal mammary epithelial cells cooperate with these innate ...CD45+CD11b+F4/80+ cells lacking lymphoid and granulocytic markers (Supplementary Fig.3B). viSNE plots 30 of myelo- monocytic cells (Fig.5A) showed that...cancer cells and how the microenvironment in these primary sites named P-TMEM (Primary Tumor Microenvironment of Metastases) contribute to early

  12. Immune microenvironment in colorectal cancer: a new hallmark to change old paradigms.

    Science.gov (United States)

    de la Cruz-Merino, Luis; Henao Carrasco, Fernando; Vicente Baz, David; Nogales Fernández, Esteban; Reina Zoilo, Juan José; Codes Manuel de Villena, Manuel; Pulido, Enrique Grande

    2011-01-01

    Impact of immune microenvironment in prognosis of solid tumors has been extensively studied in the last few years. Specifically in colorectal carcinoma, increased knowledge of the immune events around these tumors and their relation with clinical outcomes have led to consider immune microenvironment as one of the most important prognostic factors in this disease. In this review we will summarize and update the current knowledge with respect to this intriguing and complex new hallmark of cancer, paying special attention to infiltration by T-infiltrating lymphocytes and their subtypes in colorectal cancer, as well as its eventual clinical translation in terms of long-term prognosis. Finally, we suggest some possible investigational approaches based on combinatorial strategies to trigger and boost immune reaction against tumor cells.

  13. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis.

    Science.gov (United States)

    Kuss-Duerkop, Sharon K; Westrich, Joseph A; Pyeon, Dohun

    2018-02-13

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus-host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  14. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Sharon K. Kuss-Duerkop

    2018-02-01

    Full Text Available Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  15. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors.

    Science.gov (United States)

    Smith, Tyrel T; Moffett, Howell F; Stephan, Sirkka B; Opel, Cary F; Dumigan, Amy G; Jiang, Xiuyun; Pillarisetty, Venu G; Pillai, Smitha P S; Wittrup, K Dane; Stephan, Matthias T

    2017-06-01

    Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.

  16. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Directory of Open Access Journals (Sweden)

    Delfina Costa

    2018-05-01

    Full Text Available Mesenchymal stromal cells (MSC present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF] can exert immunosuppressive effects on T and natural killer (NK lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16. In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR; thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy.

  17. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Science.gov (United States)

    Costa, Delfina; Venè, Roberta; Benelli, Roberto; Romairone, Emanuele; Scabini, Stefano; Catellani, Silvia; Rebesco, Barbara; Mastracci, Luca; Grillo, Federica; Minghelli, Simona; Loiacono, Fabrizio; Zocchi, Maria Raffaella; Poggi, Alessandro

    2018-01-01

    Mesenchymal stromal cells (MSC) present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF)] can exert immunosuppressive effects on T and natural killer (NK) lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC) and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16). In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR); thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF) of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy. PMID:29910806

  18. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity.

    Science.gov (United States)

    Rausch, Matthew P; Sertil, Aparna Ranganathan

    2015-03-01

    The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.

  19. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    Science.gov (United States)

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. ©2011 AACR.

  20. Tumour-derived GM-CSF promotes granulocyte immunosuppression in mesothelioma patients.

    Science.gov (United States)

    Khanna, Swati; Graef, Suzanne; Mussai, Francis; Thomas, Anish; Wali, Neha; Yenidunya, Bahar Guliz; Yuan, Constance M; Morrow, Betsy; Zhang, Jingli; Korangy, Firouzeh; Greten, Tim F; Steinberg, Seth M; Stetler-Stevenson, Maryalice; Middleton, Gary; De Santo, Carmela; Hassan, Raffit

    2018-03-30

    The cross talk between tumour cells, myeloid cells, and T cells play a critical role in tumour pathogenesis and response to immunotherapies. Although the aetiology of mesothelioma is well understood the impact of mesothelioma on the surrounding immune microenvironment is less well studied. In this study the effect of the mesothelioma microenvironment on circulating and infiltrating granulocytes and T cells is investigated. Tumour and peripheral blood from mesothelioma patients were evaluated for presence of granulocytes, which were then tested for their T cell suppression. Co-cultures of granulocytes, mesothelioma cells, T cells were used to identify the mechanism of T cell inhibition. Analysis of tumours showed that the mesothelioma microenvironment is enriched in infiltrating granulocytes, which inhibit T cell proliferation and activation. Characterisation of the blood at diagnosis identified similar, circulating, immunosuppressive CD11b+CD15+HLADR- granulocytes at increased frequency compared to healthy controls. Culture of healthy-donor granulocytes with human mesothelioma cells showed that GM-CSF upregulates NOX2 expression and the release of Reactive Oxygen Species (ROS) from granulocytes, resulting in T cell suppression. Immunohistochemistry and transcriptomic analysis revealed that a majority of mesothelioma tumours express GM-CSF and that higher GM-CSF expression correlated with clinical progression. Blockade of GM-CSF with neutralising antibody, or ROS inhibition, restored T cell proliferation suggesting that targeting of GM-CSF could be of therapeutic benefit in these patients. Our study presents the mechanism behind the cross-talk between mesothelioma and the immune micro-environment and indicates that targeting GM-CSF could be a novel treatment strategy to augment immunotherapy. Copyright ©2018, American Association for Cancer Research.

  1. Brief Communication: Tissue-engineered Microenvironment Systems for Modeling Human Vasculature

    Science.gov (United States)

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2015-01-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain-barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a “parent” vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific endothelial cells (ECs) within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described

  2. Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors

    Directory of Open Access Journals (Sweden)

    Chuan Jin

    2014-01-01

    Full Text Available Adoptive T-cell therapy of cancer is a treatment strategy where T cells are isolated, activated, in some cases engineered, and expanded ex vivo before being reinfused to the patient. The most commonly used T-cell expansion methods are either anti-CD3/CD28 antibody beads or the “rapid expansion protocol” (REP, which utilizes OKT-3, interleukin (IL-2, and irradiated allogeneic feeder cells. However, REP-expanded or bead-expanded T cells are sensitive to the harsh tumor microenvironment and often short-lived after reinfusion. Here, we demonstrate that when irradiated and preactivated allosensitized allogeneic lymphocytes (ASALs are used as helper cells to license OKT3-armed allogeneic mature dendritic cells (DCs, together they expand target T cells of high quality. The ASAL/DC combination yields an enriched Th1-polarizing cytokine environment (interferon (IFN-γ, IL-12, IL-2 and optimal costimulatory signals for T-cell stimulation. When genetically engineered antitumor T cells were expanded by this coculture system, they showed better survival and cytotoxic efficacy under oxidative stress and immunosuppressive environment, as well as superior proliferative response during tumor cell killing compared to the REP protocol. Our result suggests a robust ex vivo method to expand T cells with improved quality for adoptive cancer immunotherapy.

  3. Impact of Microenvironment and Stem-Like Plasticity in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Raggi, Chiara; Invernizzi, Pietro; Andersen, Jesper Bøje

    2014-01-01

    or tumor microenvironment (TME) likely promotes initiation and progression of this malignancy contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA....

  4. The Immunological Impact of Chemotherapy on the Tumor Microenvironment of Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Takakura, Hiroaki; Domae, Shohei; Ono, Toshiro; Sasaki, Akira

    2017-06-01

     Anticancer drugs induce cell-cycle arrest and apoptosis not only in tumor cells, but also in immune cells. However, many preclinical and clinical findings show that some chemotherapeutic agents can improve the antitumor efficacy of immunotherapy. We immunohistochemically analyzed the degree of immune cell infiltration and the relevance of programmed cell death 1 ligand-1 (PD-L1) expression in surgically resected oral squamous cell carcinoma (OSCC) specimens from patients who had undergone pretreatment with certain chemotherapies and other patients without pretreatment. We divided the patients into the group of neoadjuvant chemotherapy (NAC) patients (n=8) and the nNAC (without NAC) patient group (n=10). We observed that NAC induced infiltrations of CD4, CD8 T cells and CD56 NK cells into the tumor microenvironment. Decreased numbers of Tregs and PD-1-positive cells were observed in the NAC group. No significant difference was observed in the degree of immune-cell infiltration between the patient groups except for CD56 NK cells in the stroma and PD-1 cells in cancer nests. Eighty percent of the nNAC specimens showed intermediate-to-strong PD-L1 protein expression, whereas 75% of the NAC specimens showed down-regulation of the PD-L1 protein, indicating the effectiveness of the chemotherapeutic treatment before surgery.

  5. Tumor microenvironment conditions alter Akt and Na+/H+ exchanger NHE1 expression in endothelial cells more than hypoxia alone

    DEFF Research Database (Denmark)

    Pedersen, Anna-Kathrine; Mendes Lopes de Melo, Joana; Mørup, Nina

    2017-01-01

    Background Chronic angiogenesis is a hallmark of most tumors and takes place in a hostile tumor microenvironment (TME) characterized by hypoxia, low nutrient and glucose levels, elevated lactate and low pH. Despite this, most studies addressing angiogenic signaling use hypoxia as a proxy for tumor...... cells, Akt1 most abundantly. Akt1 protein expression was reduced by TME yet unaffected by hypoxia, while Akt phosphorylation was increased by TME. The Akt loss was partly reversed by MCF-7 human breast cancer cell conditioned medium, suggesting that in vivo, the cancer cell secretome may compensate....../inhibition. Conclusions NHE1 and Akt are downregulated by TME conditions, more potently than by hypoxia alone. This inhibits endothelial cell migration and growth in a manner likely modulated by the cancer cell secretome....

  6. Dependence of FDG uptake on tumor microenvironment

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Ruan, Shutian; Carlin, Sean; Larson, Steven M.; Campa, Jose; Ling, C. Clifton; Humm, John L.

    2005-01-01

    Purpose: To investigate the factors affecting the 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in tumors at a microscopic level, by correlating it with tumor hypoxia, cellular proliferation, and blood perfusion. Methods and Materials: Nude mice bearing Dunning prostate tumors (R3327-AT) were injected with 18 F-FDG and pimonidazole, bromodeoxyuridine, and, 1 min before sacrifice, with Hoechst 33342. Selected tumor sections were imaged by phosphor plate autoradiography, while adjacent sections were used to obtain the images of the spatial distribution of Hoechst 33342, pimonidazole, and bromodeoxyuridine. The images were co-registered and analyzed on a pixel-by-pixel basis. Results: Statistical analysis of the data obtained from these tumors demonstrated that 18 F-FDG uptake was positively correlated with pimonidazole staining intensity in each data set studied. Correlation of FDG uptake with bromodeoxyuridine staining intensity was always negative. In addition, FDG uptake was always negatively correlated with the staining intensity of Hoechst 33342. Conclusions: For the Dunning prostate tumors studied, FDG uptake was always positively correlated with hypoxia and negatively correlated with both cellular proliferation and blood flow. Therefore, for the tumor model studied, higher FDG uptake is indicative of tumor hypoxia, but neither blood flow nor cellular proliferation

  7. Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Høgdall, Dan; Lewinska, Monika; Andersen, Jesper B

    2018-01-01

    connective tissue which surrounds and infiltrates the tumor epithelium. This desmoplastic environment presents a clinical challenge, limiting drug delivery and supporting the growth of the tumor mass. In this review we attempt to highlight key pathways involved in cell to cell communication between the tumor......Cholangiocarcinoma (CCA) is a dismal disease which often is diagnosed at a late stage where the tumor is locally advanced, metastatic, and, as a result, is associated with low resectability. The heterogeneity of this cancer type is a major reason why the majority of patients fail to respond...... to therapy, and surgery remains their only curative option. Among patients who undergo surgical intervention, such tumors typically recur in 50% of cases within 1year. Thus, CCA is among the most aggressive and chemoresistant malignancies. CCA is characterized by marked tumor reactive stroma, a fibrogenic...

  8. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...

  9. RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.

    Science.gov (United States)

    Fu, Jiaqi; Fernandez, Daniel; Ferrer, Marc; Titus, Steven A; Buehler, Eugen; Lal-Nag, Madhu A

    2017-06-01

    The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and immunosuppressive factors. Increasing evidence of stromally-derived signaling broadens the complexity of our understanding of the tumor microenvironment while stressing the importance of developing better models that reflect these interactions. Three-dimensional (3D) models may be more sensitive to certain gene-silencing events than 2D models because of their components of hypoxia, nutrient gradients, and increased dependence on cell-cell interactions and therefore are more representative of in vivo interactions. Colorectal cancer (CRC) and breast cancer (BC) models composed of epithelial cells only, deemed single-cell-type tumor spheroids (SCTS) and multi-cell-type tumor spheroids (MCTS), containing fibroblasts were developed for RNAi HTS in 384-well microplates with flat-bottom wells for 2D screening and round-bottom, ultra-low-attachment wells for 3D screening. We describe the development of a high-throughput assay platform that can assess physiologically relevant phenotypic differences between screening 2D versus 3D SCTS, 3D SCTS, and MCTS in the context of different cancer subtypes. This assay platform represents a paradigm shift in how we approach drug discovery that can reduce the attrition rate of drugs that enter the clinic.

  10. 肾移植术后并发恶性肿瘤患者免疫抑制剂方案的选择%The choice of the immunosuppressant for the patients of the malignant tumors after kidney transplantation

    Institute of Scientific and Technical Information of China (English)

    Haihao Wang; Weijie Zhang; Zhishui Chen; Qi Mei; Ke Ma

    2008-01-01

    Objective:To evaluate the efficacy and safety of the immunosuppressant treatment among 10 post-renal transplantation recipients with malignant tumors.Methods:Conversion to sirolimus (SRL) treatment was performed for 10 cases which had found malignant tumors after kidney transplantation.During the follow-up period,the recurrence and diffusion of the tumor,the renal function and rejection were monitored.Results:All these cases despite the death had been followed up for at least 1 year.9 cases had no recurrence and diffusion.1 case died due to the tumor diffusion 7 months after the drug conversion.1 case suffered once acute rejection 2 months after the drug conversion.This acute rejection had been inhibited by flushing dose MP.Conclusion:As a new immunosuppressant,SRL not only can prevent the generation of AR,but inhibit proliferation and development of malignant tumors in kidney transplantation recipients as well.

  11. The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells.

    Science.gov (United States)

    Castro-Vega, Luis Jaime; Jouravleva, Karina; Ortiz-Montero, Paola; Liu, Win-Yan; Galeano, Jorge Luis; Romero, Martha; Popova, Tatiana; Bacchetti, Silvia; Vernot, Jean Paul; Londoño-Vallejo, Arturo

    2015-10-01

    There is a well-established association between aging and the onset of metastasis. Although the mechanisms through which age impinges upon the malignant phenotype remain uncharacterized, the role of a senescent microenvironment has been emphasized. We reported previously that human epithelial cells that undergo telomere-driven chromosome instability (T-CIN) display global microRNA (miR) deregulation and develop migration and invasion capacities. Here, we show that post-crisis cells are not able to form tumors unless a senescent microenvironment is provided. The characterization of cell lines established from such tumors revealed that these cells have acquired cell autonomous tumorigenicity, giving rise to heterogeneous tumors. Further experiments demonstrate that explanted cells, while displaying differences in cell differentiation markers, are all endowed of enhanced stem cell properties including self-renewal and multilineage differentiation capacity. Treatments of T-CIN+ cells with senescence-conditioned media induce sphere formation exclusively in cells with senescence-associated tumorigenicity, a capacity that depends on miR-145 repression. These results indicate that the senescent microenvironment, while promoting further transdifferentiations in cells with genome instability, is able to propel the progression of premalignant cells towards a malignant, cell stem-like state. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A Novel Antagonist of the Immune Checkpoint Protein Adenosine A2a Receptor Restores Tumor-Infiltrating Lymphocyte Activity in the Context of the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Melanie Mediavilla-Varela

    2017-07-01

    Full Text Available BACKGROUND: Therapeutic strategies targeting immune checkpoint proteins have led to significant responses in patients with various tumor types. The success of these studies has led to the development of various antibodies/inhibitors for the different checkpoint proteins involved in immune evasion of the tumor. Adenosine present in high concentrations in the tumor microenvironment activates the immune checkpoint adenosine A2a receptor (A2aR, leading to the suppression of antitumor responses. Inhibition of this checkpoint has the potential to enhance antitumor T-cell responsiveness. METHODS: We developed a novel A2aR antagonist (PBF-509 and tested its antitumor response in vitro, in a mouse model, and in non-small cell lung cancer patient samples. RESULTS: Our studies showed that PBF-509 is highly specific to the A2aR as well as inhibitory of A2aR function in an in vitro model. In a mouse model, we found that lung metastasis was decreased after treatment with PBF-509 compared with its control. Furthermore, freshly resected tumor-infiltrating lymphocytes from lung cancer patients showed increased A2aR expression in CD4+ cells and variable expression in CD8+ cells. Ex vivo studies showed an increased responsiveness of human tumor-infiltrating lymphocytes when PBF-509 was combined with anti-PD-1 or anti-PD-L1. CONCLUSIONS: Our studies demonstrate that inhibition of the A2aR using the novel inhibitor PBF-509 could lead to novel immunotherapeutic strategies in non-small cell lung cancer.

  13. The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth

    OpenAIRE

    Han Zhipeng; Jing Yingying; Zhang Shanshan; Liu Yan; Shi Yufang; Wei Lixin

    2012-01-01

    Abstract Mesenchymal stem cells (MSCs) have acquired great interests for their potential use in the clinical therapy of many diseases because of their functions including multiple lineage differentiation, low immunogenicity and immunosuppression. Many studies suggest that MSCs are strongly immunosuppressive in vitro and in vivo. MSCs exert a profound inhibitory effect on the proliferation of T cells, B cells, dendritic cells and natural killer cells. In addition, several soluble factors have ...

  14. Targeting Gas6/TAM in cancer cells and tumor microenvironment.

    Science.gov (United States)

    Wu, Guiling; Ma, Zhiqiang; Cheng, Yicheng; Hu, Wei; Deng, Chao; Jiang, Shuai; Li, Tian; Chen, Fulin; Yang, Yang

    2018-01-31

    Growth arrest-specific 6, also known as Gas6, is a human gene encoding the Gas6 protein, which was originally found to be upregulated in growth-arrested fibroblasts. Gas6 is a member of the vitamin K-dependent family of proteins expressed in many human tissues and regulates several biological processes in cells, including proliferation, survival and migration, by binding to its receptors Tyro3, Axl and Mer (TAM). In recent years, the roles of Gas6/TAM signalling in cancer cells and the tumour microenvironment have been studied, and some progress has made in targeted therapy, providing new potential directions for future investigations of cancer treatment. In this review, we introduce the Gas6 and TAM receptors and describe their involvement in different cancers and discuss the roles of Gas6 in cancer cells, the tumour microenvironment and metastasis. Finally, we introduce recent studies on Gas6/TAM targeting in cancer therapy, which will assist in the experimental design of future analyses and increase the potential use of Gas6 as a therapeutic target for cancer.

  15. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  16. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.

    Science.gov (United States)

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-21

    To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P CD4 + T cells and TNM stage ( P cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.

  17. Merkel cell carcinoma in an immunosuppressed patient.

    Science.gov (United States)

    Góes, Heliana Freitas de Oliveira; Lima, Caren Dos Santos; Issa, Maria Cláudia de Almeida; Luz, Flávio Barbosa; Pantaleão, Luciana; Paixão, José Gabriel Miranda da

    2017-01-01

    Merkel cell carcinoma is an uncommon neuroendocrine carcinoma with a rising incidence and an aggressive behavior. It predominantly occurs in older patients, with onset occurring at a mean age of 75-80 years. Recognized risk factors are ultraviolet sunlight exposure, immunosuppression, and, more recently, Merkel cell polyomavirus. We report a case of Merkel cell carcinoma in a young HIV positive patient with Merkel Cell polyomavirus detected in the tumor.

  18. Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

    Science.gov (United States)

    Cortesi, Filippo; Delfanti, Gloria; Grilli, Andrea; Calcinotto, Arianna; Gorini, Francesca; Pucci, Ferdinando; Lucianò, Roberta; Grioni, Matteo; Recchia, Alessandra; Benigni, Fabio; Briganti, Alberto; Salonia, Andrea; De Palma, Michele; Bicciato, Silvio; Doglioni, Claudio; Bellone, Matteo; Casorati, Giulia; Dellabona, Paolo

    2018-03-13

    Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2 + , M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. DCE-MRI of patient-derived xenograft models of uterine cervix carcinoma: associations with parameters of the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Anette Hauge

    2017-11-01

    Full Text Available Abstract Background Abnormalities in the tumor microenvironment are associated with resistance to treatment, aggressive growth, and poor clinical outcome in patients with advanced cervical cancer. The potential of dynamic contrast-enhanced (DCE MRI to assess the microvascular density (MVD, interstitial fluid pressure (IFP, and hypoxic fraction of patient-derived cervical cancer xenografts was investigated in the present study. Methods Four patient-derived xenograft (PDX models of squamous cell carcinoma of the uterine cervix (BK-12, ED-15, HL-16, and LA-19 were subjected to Gd-DOTA-based DCE-MRI using a 7.05 T preclinical scanner. Parametric images of the volume transfer constant (K trans and the fractional distribution volume (v e of the contrast agent were produced by pharmacokinetic analyses utilizing the standard Tofts model. Whole tumor median values of the DCE-MRI parameters were compared with MVD and the fraction of hypoxic tumor tissue, as determined histologically, and IFP, as measured with a Millar catheter. Results Both on the PDX model level and the single tumor level, a significant inverse correlation was found between K trans and hypoxic fraction. The extent of hypoxia was also associated with the fraction of voxels with unphysiological v e values (v e > 1.0. None of the DCE-MRI parameters were related to MVD or IFP. Conclusions DCE-MRI may provide valuable information on the hypoxic fraction of squamous cell carcinoma of the uterine cervix, and thereby facilitate individualized patient management.

  20. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  1. Synthesis of 2-nitroimidazole-glycopeptide 68Ga-labeled for identification of areas of hypoxia in the tumor microenvironment

    International Nuclear Information System (INIS)

    Pérez Nario, Arian; Leiria Campo, Vanessa; Soares Bernardes, Emerson

    2016-01-01

    Introduction: Hypoxia is a pathological condition characterized by a reduction in oxygen delivery to a tissue or cell specific. It is estimated that 60% of solid tumors in advanced stages have areas of hypoxia and anoxia (almost complete absence of oxygen). It is now known that hypoxia in the tumor microenvironment is closely related to: 1) increased tumor aggressiveness; 2) increased relapse rate; 3) increased resistance to chemotherapy and radiotherapy; 4) poor prognosis of the disease. Therefore the use of non-invasive methods for the identification and quantification of areas of hypoxia in the tumor are extremely important for treating various types of cancers, allowing the use of individualized treatment strategies. Gallium-68 is a radionuclide widely used for positron emission tomography due to the availability of the generator 68 Ge / 68 Ga. With the aim of developing a new potential radiopharmaceutical 68 Ga-labeled for imaging hypoxia, it has been synthesized a new derivative of 2-nitroimidazole. Methods: The new glycopeptide derivative of 2-nitroimidazole was obtained by coupling the derivative of acetic acid 2-nitroimidazole with a glycopeptide obtained by solid phase synthesis, was subsequently conjugated with the chelating agent DOTA-NHS for labeling with the radionuclide 68 Ga . preparation and 68 Ga-labeled glycopeptide optimization marking with respect to solvent, time and temperature was made; also the radiochemical purity was assessed by reversed phase HPLC. Comparison with 18 F-FAZA, radiopharmaceutical used worldwide is also presented. Results: The new glycopeptide conjugate DOTA was conducted successfully synthesized and analyzed by mass spectrometry. Labeling with 68 Ga reached a maximum radiochemical purity of 96.6 ± 0.4% when 15μg glycopeptide was dissolved in 0.2 mL of acetonitrile, chloride 68Ga (5mCi) was evaporated to dryness and reconstituted in 0.1 mL of sterile water at room temperature, followed by heating to 95 ° C for 15 min. In

  2. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Eunice Yuen-Ting Lau

    2017-01-01

    Full Text Available Tumor consists of heterogeneous cancer cells including cancer stem cells (CSCs that can terminally differentiate into tumor bulk. Normal stem cells in normal organs regulate self-renewal within a stem cell niche. Likewise, accumulating evidence has also suggested that CSCs are maintained extrinsically within the tumor microenvironment, which includes both cellular and physical factors. Here, we review the significance of stromal cells, immune cells, extracellular matrix, tumor stiffness, and hypoxia in regulation of CSC plasticity and therapeutic resistance. With a better understanding of how CSC interacts with its niche, we are able to identify potential therapeutic targets for the development of more effective treatments against cancer.

  3. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments

    Science.gov (United States)

    Kwakwa, Kristin A.; Vanderburgh, Joseph P.; Guelcher, Scott A.

    2018-01-01

    Purpose of Review Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. Recent Findings 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. Summary 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes. PMID:28646444

  4. Optical imaging of tumor hypoxia dynamics

    Science.gov (United States)

    Palmer, Gregory M.; Fontanella, Andrew N.; Zhang, Guoqing; Hanna, Gabi; Fraser, Cassandra L.; Dewhirst, Mark W.

    2010-11-01

    The influence of the tumor microenvironment and hypoxia plays a significant role in determining cancer progression, treatment response, and treatment resistance. That the tumor microenvironment is highly heterogeneous with significant intratumor and intertumor variability presents a significant challenge in developing effective cancer therapies. Critical to understanding the role of the tumor microenvironment is the ability to dynamically quantify oxygen levels in the vasculature and tissue in order to elucidate the roles of oxygen supply and consumption, spatially and temporally. To this end, we describe the use of hyperspectral imaging to characterize hemoglobin absorption to quantify hemoglobin content and oxygen saturation, as well as dual emissive fluorescent/phosphorescent boron nanoparticles, which serve as ratiometric indicators of tissue oxygen tension. Applying these techniques to a window-chamber tumor model illustrates the role of fluctuations in hemoglobin saturation in driving changes in tissue oxygenation, the two being significantly correlated (r = 0.77). Finally, a green-fluorescence-protein reporter for hypoxia inducible factor-1 (HIF-1) provides an endpoint for hypoxic stress in the tumor, which is used to demonstrate a significant association between tumor hypoxia dynamics and HIF-1 activity in an in vivo demonstration of the technique.

  5. Biomimetic strategies for the glioblastoma microenvironment

    Science.gov (United States)

    Cha, Junghwa; Kim, Pilnam

    2017-12-01

    Glioblastoma multiforme (GBM) is a devastating type of tumor with high mortality, caused by extensive infiltration into adjacent tissue and rapid recurrence. Most therapies for GBM have focused on the cytotoxicity, and have not targeted GBM spread. However, there have been numerous attempts to improve therapy by addressing GBM invasion, through understanding and mimicking its behavior using three-dimensional (3D) experimental models. Compared with two-dimensional models and in vivo animal models, 3D GBM models can capture the invasive motility of glioma cells within a 3D environment comprising many cellular and non-cellular components. Based on tissue engineering techniques, GBM invasion has been investigated within a biologically relevant environment, from biophysical and biochemical perspectives, to clarify the pro-invasive factors of GBM. This review discusses the recent progress in techniques for modeling the microenvironments of GBM tissue and suggests future directions with respect to recreating the GBM microenvironment and preclinical applications.

  6. Targeting Hypoxia-Inducible Factor 1α in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment.

    Science.gov (United States)

    Nigim, Fares; Cavanaugh, Jill; Patel, Anoop P; Curry, William T; Esaki, Shin-ichi; Kasper, Ekkehard M; Chi, Andrew S; Louis, David N; Martuza, Robert L; Rabkin, Samuel D; Wakimoto, Hiroaki

    2015-07-01

    Tissue hypoxia and necrosis represent pathophysiologic and histologic hallmarks of glioblastoma (GBM). Although hypoxia inducible factor 1α (HIF-1α) plays crucial roles in the malignant phenotypes of GBM, developing HIF-1α-targeted agents has been hampered by the lack of a suitable preclinical model that recapitulates the complex biology of clinical GBM. We present a new GBM model, MGG123, which was established from a recurrent human GBM. Orthotopic xenografting of stem-like MGG123 cells reproducibly generated lethal tumors that were characterized by foci of palisading necrosis, hypervascularity, and robust stem cell marker expression. Perinecrotic neoplastic cells distinctively express HIF-1α and are proliferative in both xenografts and the patient tissue. The xenografts contain scattered hypoxic foci that were consistently greater than 50 μm distant from blood vessels, indicating intratumoral heterogeneity of oxygenation. Hypoxia enhanced HIF-1α expression in cultured MGG123 cells, which was abrogated by the HIF-1α inhibitors digoxin or ouabain. In vivo, treatment of orthotopic MGG123 xenografts with digoxin decreased HIF-1α expression, vascular endothelial growth factor mRNA levels, and CD34-positive vasculature within the tumors, and extended survival of mice bearing the aggressive MGG123 GBM. This preclinical tumor model faithfully recapitulates the GBM-relevant hypoxic microenvironment and stemness and is a suitable platform for studying disease biology and developing hypoxia-targeted agents.

  7. Carbonic anhydrase IX (CA IX) mediates tumor cell interactions with microenvironment

    Czech Academy of Sciences Publication Activity Database

    Závadová, Zuzana; Závada, Jan

    2005-01-01

    Roč. 13, č. 5 (2005), s. 977-982 ISSN 1021-335X R&D Projects: GA ČR(CZ) GA203/02/0405 Institutional research plan: CEZ:AV0Z50520514 Keywords : carbonic anhydrase IX * cell adhesion * microenvironment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.572, year: 2005

  8. TNF Receptor-2 Facilitates an Immunosuppressive Microenvironment in the Liver to Promote the Colonization and Growth of Hepatic Metastases

    DEFF Research Database (Denmark)

    Ham, Boram; Wang, Ni; D'Costa, Zarina

    2015-01-01

    Successful colonization by a cancer cell of a distant metastatic site requires immune escape in the new microenvironment. TNF signaling has been implicated broadly in the suppression of immune surveillance that prevents colonization at the metastatic site and therefore must be blocked. In this st......Successful colonization by a cancer cell of a distant metastatic site requires immune escape in the new microenvironment. TNF signaling has been implicated broadly in the suppression of immune surveillance that prevents colonization at the metastatic site and therefore must be blocked...... chemotherapy-naïve colon cancer patients confirmed the presence of CD33(+)HLA-DR(-)TNFR2(+) myeloid cells in the periphery of hepatic metastases. Overall, our findings implicate TNFR2 in supporting MDSC-mediated immune suppression and metastasis in the liver, suggesting the use of TNFR2 inhibitors...

  9. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Khamis, Z.I.; Sang, Q.A.; Sahab, Z.J.

    2012-01-01

    Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome

  10. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2012-01-01

    Full Text Available Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome.

  11. Tumor macroenvironment and metabolism.

    Science.gov (United States)

    Al-Zoughbi, Wael; Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-04-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Regulation of tumor invasion by interstitial fluid flow

    International Nuclear Information System (INIS)

    Shieh, Adrian C; Swartz, Melody A

    2011-01-01

    The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell–cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals

  13. Reprograming the Metastatic Microenvironment to Combat Disease Recurrence

    Science.gov (United States)

    2017-10-01

    0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...truly eliminate “residual disease” and prevent metastatic recurrence. We believe we have found a way to accomplish this by inhibiting colony- stimulating ...the bone microenvironment lead to pathological bone loss, which can stimulate tumor cell outgrowth. In addition to contributing to morbidity, this

  14. Tumor cell culture on collagen–chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies

    Directory of Open Access Journals (Sweden)

    Aziz Mahmoudzadeh

    2016-07-01

    Full Text Available Tumor cells naturally live in three-dimensional (3D microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen–chitosan scaffold compared with 2D plate cultures. Collagen–chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen–chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies.

  15. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    Science.gov (United States)

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  16. Liposome accumulation in irradiated tumors display important tumor and dose dependent differences

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; Fliedner, Frederikke Petrine; Henriksen, Jonas Rosager

    2018-01-01

    Radiation therapy may affect several important parameters in the tumor microenvironment and thereby influence the accumulation of liposomes by the enhanced permeability and retention (EPR)-effect. Here we investigate the effect of single dose radiation therapy on liposome tumor accumulation by PET...

  17. Cancer intravasation-on-a-chip : a LEGO house for tumors!

    NARCIS (Netherlands)

    Eslami Amirabadi, H.; Sahebali, Sh.; Miggiels, A.L.W.; Frimat, J.Ph.; Luttge, R.; den Toonder, J.

    2015-01-01

    The process where cancer cells leave the primary tumor and invade to the blood vessel. As shown in figure 1, intravasation is highly regulated by the micro-environment of the tumor. An important component of the micro-environment is the extracellular matrix (ECM) which can be seen as the building

  18. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    International Nuclear Information System (INIS)

    Salo, Tuula; Vered, Marilena; Bello, Ibrahim O.; Nyberg, Pia; Bitu, Carolina Cavalcante; Zlotogorski Hurvitz, Ayelet; Dayan, Dan

    2014-01-01

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental

  19. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Tuula, E-mail: Tuula.salo@oulu.fi [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Oulu University Central Hospital, Oulu (Finland); Institute of Dentistry, University of Helsinki, Helsinki (Finland); Vered, Marilena [Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan (Israel); Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Bello, Ibrahim O. [Department of Oral Medicine and Diagnostic Sciences, King Saud University, Riyadh (Saudi Arabia); Nyberg, Pia [Oulu University Central Hospital, Oulu (Finland); Bitu, Carolina Cavalcante [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Zlotogorski Hurvitz, Ayelet [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Beilinson Campus, Petah Tikva (Israel); Dayan, Dan [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-07-15

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental.

  20. Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy.

    Science.gov (United States)

    Han, Kai; Zhang, Jin; Zhang, Weiyun; Wang, Shibo; Xu, Luming; Zhang, Chi; Zhang, Xianzheng; Han, Heyou

    2017-03-28

    Geometrical shape of nanoparticles plays an important role in cellular internalization. However, the applicability in tumor selective therapeutics is still scarcely reported. In this article, we designed a tumor extracellular acidity-responsive chimeric peptide with geometrical shape switch for enhanced tumor internalization and photodynamic therapy. This chimeric peptide could self-assemble into spherical nanoparticles at physiological condition. While at tumor extracellular acidic microenvironment, chimeric peptide underwent detachment of acidity-sensitive 2,3-dimethylmaleic anhydride groups. The subsequent recovery of ionic complementarity between chimeric peptides resulted in formation of rod-like nanoparticles. Both in vitro and in vivo studies demonstrated that this acidity-triggered geometrical shape switch endowed chimeric peptide with accelerated internalization in tumor cells, prolonged accumulation in tumor tissue, enhanced photodynamic therapy, and minimal side effects. Our results suggested that fusing tumor microenvironment with geometrical shape switch should be a promising strategy for targeted drug delivery.

  1. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment

    Directory of Open Access Journals (Sweden)

    Daria S. Chulpanova

    2018-03-01

    Full Text Available Mesenchymal stem cells (MSCs are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs, which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.

  2. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    Science.gov (United States)

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  3. Deregulation of PPARβ/δ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment

    Science.gov (United States)

    Finkernagel, Florian; Lieber, Sonja; Schnitzer, Evelyn; Legrand, Nathalie; Schober, Yvonne; Nockher, W. Andreas; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Wagner, Uwe; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    The nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor associated with macrophage polarization. However, its function in tumor-associated macrophages (TAMs) has not been investigated to date. Here, we report the PPARβ/δ-regulated transcriptome and cistrome for TAMs from ovarian carcinoma patients. Comparison with monocyte-derived macrophages shows that the vast majority of direct PPARβ/δ target genes are upregulated in TAMs and largely refractory to synthetic agonists, but repressible by inverse agonists. Besides genes with metabolic functions, these include cell type-selective genes associated with immune regulation and tumor progression, e.g., LRP5, CD300A, MAP3K8 and ANGPTL4. This deregulation is not due to increased expression of PPARβ/δ or its enhanced recruitment to target genes. Instead, lipidomic analysis of malignancy-associated ascites revealed high concentrations of polyunsaturated fatty acids, in particular linoleic acid, acting as potent PPARβ/δ agonists in macrophages. These fatty acid ligands accumulate in lipid droplets in TAMs, thereby providing a reservoir of PPARβ/δ ligands. These observations suggest that the deregulation of PPARβ/δ target genes by ligands of the tumor microenvironment contributes to the pro-tumorigenic polarization of ovarian carcinoma TAMs. This conclusion is supported by the association of high ANGPTL4 expression with a shorter relapse-free survival in serous ovarian carcinoma. PMID:25968567

  4. Nanoparticles and direct immunosuppression

    Science.gov (United States)

    Ngobili, Terrika A

    2016-01-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  5. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis.

    Science.gov (United States)

    Maletzki, Claudia; Beyrich, Franziska; Hühns, Maja; Klar, Ernst; Linnebacher, Michael

    2016-08-16

    Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT).All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors' natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line.Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases.

  6. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses

    Directory of Open Access Journals (Sweden)

    Alexandre Morrot

    2018-03-01

    Full Text Available The tumor microenvironment (TME is composed by cellular and non-cellular components. Examples include the following: (i bone marrow-derived inflammatory cells, (ii fibroblasts, (iii blood vessels, (iv immune cells, and (v extracellular matrix components. In most cases, this combination of components may result in an inhospitable environment, in which a significant retrenchment in nutrients and oxygen considerably disturbs cell metabolism. Cancer cells are characterized by an enhanced uptake and utilization of glucose, a phenomenon described by Otto Warburg over 90 years ago. One of the main products of this reprogrammed cell metabolism is lactate. “Lactagenic” or lactate-producing cancer cells are characterized by their immunomodulatory properties, since lactate, the end product of the aerobic glycolysis, besides acting as an inducer of cellular signaling phenomena to influence cellular fate, might also play a role as an immunosuppressive metabolite. Over the last 10 years, it has been well accepted that in the TME, the lactate secreted by transformed cells is able to compromise the function and/or assembly of an effective immune response against tumors. Herein, we will discuss recent advances regarding the deleterious effect of high concentrations of lactate on the tumor-infiltrating immune cells, which might characterize an innovative way of understanding the tumor-immune privilege.

  7. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.

    Science.gov (United States)

    Martinez-Outschoorn, Ubaldo; Sotgia, Federica; Lisanti, Michael P

    2014-04-01

    metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression. Copyright © 2014. Published by Elsevier Inc.

  8. The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade

    Directory of Open Access Journals (Sweden)

    David A. Schaer

    2018-03-01

    Full Text Available Summary: Abemaciclib, an inhibitor of cyclin dependent kinases 4 and 6 (CDK4/6, has recently been approved for the treatment of hormone receptor-positive breast cancer. In this study, we use murine syngeneic tumor models and in vitro assays to investigate the impact of abemaciclib on T cells, the tumor immune microenvironment and the ability to combine with anti-PD-L1 blockade. Abemaciclib monotherapy resulted in tumor growth delay that was associated with an increased T cell inflammatory signature in tumors. Combination with anti-PD-L1 therapy led to complete tumor regressions and immunological memory, accompanied by enhanced antigen presentation, a T cell inflamed phenotype, and enhanced cell cycle control. In vitro, treatment with abemaciclib resulted in increased activation of human T cells and upregulated expression of antigen presentation genes in MCF-7 breast cancer cells. These data collectively support the clinical investigation of the combination of abemaciclib with agents such as anti-PD-L1 that modulate T cell anti-tumor immunity. : Schaer, Beckmann et al. describe unique immune-modulating properties of abemaciclib that include upregulation of antigen presentation on tumor cells and increased T cell activation. These activities synergize with anti-PD-L1 therapy to further enhance immune activation, including macrophage and DC antigen presentation, and also lead to a reciprocal increase in abemaciclib-dependent cell cycle gene regulation. Keywords: CDK4/6, abemaciclib, PD-1, PD-L1, combination immunotherapy, cancer

  9. Iron Handling in Tumor-Associated Macrophages—Is There a New Role for Lipocalin-2?

    Directory of Open Access Journals (Sweden)

    Michaela Jung

    2017-09-01

    Full Text Available Carcinogenesis is a multistep process. Besides somatic mutations in tumor cells, stroma-associated immunity is a major regulator of tumor growth. Tumor cells produce and secrete diverse mediators to create a local microenvironment that supports their own survival and growth. It is becoming apparent that iron acquisition, storage, and release in tumor cells is different from healthy counterparts. It is also appreciated that macrophages in the tumor microenvironment acquire a tumor-supportive, anti-inflammatory phenotype that promotes tumor cell proliferation, angiogenesis, and metastasis. Apparently, this behavior is attributed, at least in part, to the ability of macrophages to support tumor cells with iron. Polarization of macrophages by apoptotic tumor cells shifts the profile of genes involved in iron metabolism from an iron sequestering to an iron-release phenotype. Iron release from macrophages is supposed to be facilitated by ferroportin. However, lipid mediators such as sphingosine-1-phosphate, released form apoptotic tumor cells, upregulate lipocalin-2 (Lcn-2 in macrophages. This protein is known to bind siderophore-complexed iron and thus, may participate in iron transport in the tumor microenvironment. We describe how macrophages handle iron in the tumor microenvironment, discuss the relevance of an iron-release macrophage phenotype for tumor progression, and propose a new role for Lcn-2 in tumor-associated macrophages.

  10. Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment

    Directory of Open Access Journals (Sweden)

    Franco-Molina MA

    2016-01-01

    and decreased in tumors derived from B16F10.1 cells. Similar data were obtained from spleen cells. These results suggest that, in melanomas, Foxp3 partly induces tumor growth by modifying the immune system at the local and peripheral level, shifting the environment toward an immunosuppressive profile. Therapies incorporating this transcription factor could be strategies for cancer treatment. Keywords: melanoma, Foxp3, cancer, T-regulatory cells

  11. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui; Yang, Jinfeng; Xing, Wenjing; Dong, Yucui [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China); Ren, Huan, E-mail: renhuan@ems.hrbmu.edu.cn [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China)

    2016-02-05

    Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered by EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. - Highlights: • Nuclear translocation of EGFRvIII contributes to GBM cell apoptotic resistance by hypoxia. • Nuclear ERK1/2 facilitates EGFRvIII in hypoxia resistance. • EGFRvIII nuclear translocation is not dependent on ERK1/2.

  12. Overview of Methods Able to Overcome Impediments to tumor Drug Delivery with Special Attention to Tumor Interstitial Fluid.

    Directory of Open Access Journals (Sweden)

    Gianfranco eBaronzio

    2015-07-01

    Full Text Available Every drug used to treat cancer (chemotherapeutics, immunologic, monoclonal antibodies, nanoparticles, radionuclides must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells they must overcome a number of impediments created by the tumor microenvironment, beginning with tumor interstitial fluid pressure (TIFP and a multifactorial increase in composition of the extracellular matrix (ECM. A primary modifier of tumor microenvironment is hypoxia, which increases the production of growth factors such as vascular endothelial growth factor (VEGF and platelet-derived growth factor (PDGF. These growth factors released by both tumor cells and bone marrow recruited myeloid cells (MDS, form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass [tumor interstitial fluid (TIF], ultimately creating an increased pressure (TIFP. Fibroblasts are also up-regulated by the tumor microenvironment, and deposit fibers that further augment the density of the extracellular matrix (ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and decreasing ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview we will describe all the methods (drugs, nutraceuticals, physical methods of treatment able to lower TIFP and to modify ECM that can be used for increasing drug concentration within the tumor tissue.

  13. Microenvironment Determinants of Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Zhang Chenyu

    2011-02-01

    Full Text Available Abstract Metastasis accounts for 90% of cancer-related mortality. Brain metastases generally present during the late stages in the natural history of cancer progression. Recent advances in cancer treatment and management have resulted in better control of systemic disease metastatic to organs other than the brain and improved patient survival. However, patients who experience recurrent disease manifest an increasing number of brain metastases, which are usually refractory to therapies. To meet the new challenges of controlling brain metastasis, the research community has been tackling the problem with novel experimental models and research tools, which have led to an improved understanding of brain metastasis. The time-tested "seed-and-soil" hypothesis of metastasis indicates that successful outgrowth of deadly metastatic tumors depends on permissible interactions between the metastatic cancer cells and the site-specific microenvironment in the host organs. Consistently, recent studies indicate that the brain, the major component of the central nervous system, has unique physiological features that can determine the outcome of metastatic tumor growth. The current review summarizes recent discoveries on these tumor-brain interactions, and the potential clinical implications these novel findings could have for the better treatment of patients with brain metastasis.

  14. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Energy Technology Data Exchange (ETDEWEB)

    Goffart, Nicolas [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Kroonen, Jérôme [Human Genetics, CHU and University of Liège, Liège 4000 (Belgium); The T& P Bohnenn Laboratory for Neuro-Oncology, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht 3556 (Netherlands); Rogister, Bernard, E-mail: Bernard.Register@ulg.ac.be [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Department of Neurology, CHU and University of Liège, Liège 4000 (Belgium); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège 4000 (Belgium)

    2013-08-14

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  15. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    International Nuclear Information System (INIS)

    Goffart, Nicolas; Kroonen, Jérôme; Rogister, Bernard

    2013-01-01

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology

  16. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Directory of Open Access Journals (Sweden)

    Nicolas Goffart

    2013-08-01

    Full Text Available Glioblastoma multiforme (GBM, WHO grade IV is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  17. COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems

    Science.gov (United States)

    Katoh, Hiroshi; Hosono, Kanako; Ito, Yoshiya; Suzuki, Tatsunori; Ogawa, Yasufumi; Kubo, Hidefumi; Kamata, Hiroki; Mishima, Toshiaki; Tamaki, Hideaki; Sakagami, Hiroyuki; Sugimoto, Yukihiko; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2010-01-01

    Bone marrow (BM)–derived hematopoietic cells, which are major components of tumor stroma, determine the tumor microenvironment and regulate tumor phenotypes. Cyclooxygenase (COX)−2 and endogenous prostaglandins are important determinants for tumor growth and tumor-associated angiogenesis; however, their contributions to stromal formation and angiogenesis remain unclear. In this study, we observed that Lewis lung carcinoma cells implanted in wild-type mice formed a tumor mass with extensive stromal formation that was markedly suppressed by COX-2 inhibition, which reduced the recruitment of BM cells. Notably, COX-2 inhibition attenuated CXCL12/CXCR4 expression as well as expression of several other chemokines. Indeed, in a Matrigel model, prostaglandin (PG) E2 enhanced stromal formation and CXCL12/CXCR4 expression. In addition, a COX-2 inhibitor suppressed stromal formation and reduced expression of CXCL12/CXCR4 and a fibroblast marker (S100A4) in a micropore chamber model. Moreover, stromal formation after tumor implantation was suppressed in EP3−/− mice and EP4−/− mice, in which stromal expression of CXCL12/CXCR4 and S100A4 was reduced. The EP3 or EP4 knockout suppressed S100A4+ fibroblasts, CXCL12+, and/or CXCR4+ stromal cells as well. Immunofluorescent analyses revealed that CXCL12+CXCR4+S100A4+ fibroblasts mainly comprised stromal cells and most of these were recruited from the BM. Additionally, either EP3- or EP4-specific agonists stimulated CXCL12 expression by fibroblasts in vitro. The present results address the novel activities of COX-2/PGE2-EP3/EP4 signaling that modulate tumor biology and show that CXCL12/CXCR4 axis may play a crucial role in tumor stromal formation and angiogenesis under the control of prostaglandins. PMID:20110411

  18. In Vivo EPR Assessment of pH, pO2, Redox Status, and Concentrations of Phosphate and Glutathione in the Tumor Microenvironment.

    Science.gov (United States)

    Bobko, Andrey A; Eubank, Timothy D; Driesschaert, Benoit; Khramtsov, Valery V

    2018-03-16

    This protocol demonstrates the capability of low-field electron paramagnetic resonance (EPR)-based techniques in combination with functional paramagnetic probes to provide quantitative information on the chemical tumor microenvironment (TME), including pO2, pH, redox status, concentrations of interstitial inorganic phosphate (Pi), and intracellular glutathione (GSH). In particular, an application of a recently developed soluble multifunctional trityl probe provides unsurpassed opportunity for in vivo concurrent measurements of pH, pO2 and Pi in Extracellular space (HOPE probe). The measurements of three parameters using a single probe allow for their correlation analyses independent of probe distribution and time of the measurements.

  19. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Nicolas Espagnolle

    2017-04-01

    Full Text Available Summary: Mesenchymal stromal cells (MSCs sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1MФ and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens different perspectives for MSC-based cell therapy. : Mesenchymal stromal cells (MSCs are promising for cell-based therapy in inflammatory disorders by switching off the immune response. Varin and colleagues demonstrate that MSCs and inflammatory macrophages communicate via an unconventional but functional interaction that strongly increases the immunosuppressive capacities of MSCs. This new communication between the innate immune system and MSCs opens new perspectives for MSC-based cell therapy. Keywords: macrophages, bone marrow mesenchymal stromal cells, functional interaction, CD54, immunosuppression, indoleamine 2,3-dioxygenase, cell therapy

  20. Genetic variation in the immunosuppression pathway genes and breast cancer: a pooled analysis of 42,510 cases and 40,577 controls from the Breast

    OpenAIRE

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B; Behrens, Sabine; Goode, Ellen L; Bolla, Manjeet K; Dennis, Joe; Dunning, Alison Margaret; Easton, Douglas Frederick; Wang, Qin; Benitez, Javier; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien

    2015-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate g...

  1. Hepatitis B virus reactivation during immunosuppressive therapy: Appropriate risk stratification

    OpenAIRE

    Seto, Wai-Kay

    2015-01-01

    Our understanding of hepatitis B virus (HBV) reactivation during immunosuppresive therapy has increased remarkably during recent years. HBV reactivation in hepatitis B surface antigen (HBsAg)-positive individuals has been well-described in certain immunosuppressive regimens, including therapies containing corticosteroids, anthracyclines, rituximab, antibody to tumor necrosis factor (anti-TNF) and hematopoietic stem cell transplantation (HSCT). HBV reactivation could also occur in HBsAg-negati...

  2. Tumor Acidity as Evolutionary Spite

    International Nuclear Information System (INIS)

    Alfarouk, Khalid O.; Muddathir, Abdel Khalig; Shayoub, Mohammed E. A.

    2011-01-01

    Most cancer cells shift their metabolic pathway from a metabolism reflecting the Pasteur-effect into one reflecting the Warburg-effect. This shift creates an acidic microenvironment around the tumor and becomes the driving force for a positive carcinogenesis feedback loop. As a consequence of tumor acidity, the tumor microenvironment encourages a selection of certain cell phenotypes that are able to survive in this caustic environment to the detriment of other cell types. This selection can be described by a process which can be modeled upon spite: the tumor cells reduce their own fitness by making an acidic environment, but this reduces the fitness of their competitors to an even greater extent. Moreover, the environment is an important dimension that further drives this spite process. Thus, diminishing the selective environment most probably interferes with the spite process. Such interference has been recently utilized in cancer treatment

  3. Neem leaf glycoprotein optimizes effector and regulatory functions within tumor microenvironment to intervene therapeutically the growth of B16 melanoma in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Subhasis Barik

    2015-01-01

    Full Text Available Therapy with neem leaf glycoprotein (NLGP inhibits murine B16-melanoma in vivo and improves survivability. Studies on tumor-microenvironment (TME from NLGP treated mice (NLGP-TME suggests that anti-tumor effect is directly associated with enhanced CD8+T cell activity, dominance of type 1 cytokines/chemokine network with downregulation of suppressive cellular functions. NLGP-TME educated CD8+T cells showed higher perforin and granzymeB expression with greater in vitro cytotoxicity against B16 melanoma. These CD8+T cells showed proportionally lower FasR expression, denotes prevention from activation induced cell death by NLGP. Accumulated evidences strongly suggest NLGP influenced normalized TME allows CD8+T cells to perform optimally to inhibit melanoma growth.

  4. Immunosuppressive strategies and management

    Institute of Scientific and Technical Information of China (English)

    Shi-hui PAN

    2008-01-01

    Advances in immunosuppressive therapy have significantly improved short-term allograft and patient survival.However,chronic allograft failure,antibody mediated rejection,recurrent diseases and immunosuppressive drug associated adverse effects remain serious barriers to long-term survival and quality of life.New immunosuppressive agents and protocols are being evaluated to combat these problems.Importantly,clinicians must work to manage post-transplant complications and avoid complex medication regimens,which will potentiate drug interactions and non.compliance.Different organs have different immunogenicities and each recipient has a unique clinical and immunologic profile.The clinician must recognize these variations and customize the immunosuppressive regimens and treatment protocols based on the individual condition.The general principles of an individualized immunosuppressive protocol should take the following factors into account:organ type,donor and recipient characteristics,quality of the donor organ,recipienVs medical history,recipient's undedying disease,immunologic risk for acute rejection,potential co-morbidity related to immunosuppression,significant druginteractions,medication costs and patient compliance.In addition,the combination of immunosuppressive drugs must have a pharmacologic rationale to achieve the desired goal of suppressing the individual's immune system to render the patient tolerant to the allograft while minimizing co-morbidities.For the past few years,many clinical strategies have been applied in an attempt to improve graft survival or to reduce immunsuppressants induced side-effects.Specific protocols include steroid or CNI avoidance,minimization or withdraw,desensitization,and treatment for antibody mediated rejection,disease specific,and pediatric specific.The short-term outcomes from these different strategies are promising but the long-term results remain to be determined.Unfortunately,current immunosuppressive agents or strategies

  5. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    International Nuclear Information System (INIS)

    De Veirman, Kim; Rao, Luigia; De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Frassanito, Maria Antonia; Di Marzo, Lucia; Vacca, Angelo; Vanderkerken, Karin

    2014-01-01

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease

  6. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    De Veirman, Kim, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Rao, Luigia [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Van Riet, Ivan [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels 1090 (Belgium); Frassanito, Maria Antonia [Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Medical School, Bari I-70124 (Italy); Di Marzo, Lucia; Vacca, Angelo [Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); Vanderkerken, Karin, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium)

    2014-06-27

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.

  7. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.

    Science.gov (United States)

    Netea-Maier, Romana T; Smit, Johannes W A; Netea, Mihai G

    2018-01-28

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production of lactate, nitric oxide, reactive oxygen species, prostaglandins and other byproducts of arachidonic acid metabolism that influence both the composition of the inflammatory microenvironment and the function of the tumor-associated macrophages (TAMs). In response to cues present in the TME, among which products of altered tumor cell metabolism, TAMs are also required to reprogram their metabolism, with activation of glycolysis, fatty acid synthesis and altered nitrogen cycle metabolism. These changes result in functional reprogramming of TAMs which includes changes in the production of cytokines and angiogenetic factors, and contribute to the tumor progression and metastasis. Understanding the metabolic changes governing the intricate relationship between the tumor cells and the TAMs represents an essential step towards developing novel therapeutic approaches targeting the metabolic reprogramming of the immune cells to potentiate their tumoricidal potential and to circumvent therapy resistance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Hepatitis B virus reactivation during immunosuppressive therapy: Appropriate risk stratification.

    Science.gov (United States)

    Seto, Wai-Kay

    2015-04-28

    Our understanding of hepatitis B virus (HBV) reactivation during immunosuppresive therapy has increased remarkably during recent years. HBV reactivation in hepatitis B surface antigen (HBsAg)-positive individuals has been well-described in certain immunosuppressive regimens, including therapies containing corticosteroids, anthracyclines, rituximab, antibody to tumor necrosis factor (anti-TNF) and hematopoietic stem cell transplantation (HSCT). HBV reactivation could also occur in HBsAg-negative, antibody to hepatitis B core antigen (anti-HBc) positive individuals during therapies containing rituximab, anti-TNF or HSCT.For HBsAg-positive patients, prophylactic antiviral therapy is proven to the effective in preventing HBV reactivation. Recent evidence also demonstrated entecavir to be more effective than lamivudine in this aspect. For HBsAg-negative, anti-HBc positive individuals, the risk of reactivations differs with the type of immunosuppression. For rituximab, a prospective study demonstrated the 2-year cumulative risk of reactivation to be 41.5%, but prospective data is still lacking for other immunosupressive regimes. The optimal management in preventing HBV reactivation would involve appropriate risk stratification for different immunosuppressive regimes in both HBsAg-positive and HBsAg-negative, anti-HBc positive individuals.

  9. Intravital imaging of plasticity during tumor growth and metastasis

    NARCIS (Netherlands)

    Zomer, Anoek

    2015-01-01

    Most tumors consist of a heterogeneous mixture of genetically and epigenetically distinct tumor cells. In addition, tumors display regional differences in the tumor microenvironment comprising non-transformed cell types such as immune cells and non-cellular factors including growth factors and the

  10. Immunosuppressants

    Science.gov (United States)

    ... Brain Death HIV and Kidney Transplantation/Donation Incompatible Blood Types and Paired Exchange Programs Knowing Your Immunosuppressive (anti-rejection) Medications Organ and Tissue Donation The National Kidney ...

  11. Coupled Hybrid Continuum-Discrete Model of Tumor Angiogenesis and Growth.

    Directory of Open Access Journals (Sweden)

    Jie Lyu

    Full Text Available The processes governing tumor growth and angiogenesis are codependent. To study the relationship between them, we proposed a coupled hybrid continuum-discrete model. In this model, tumor cells, their microenvironment (extracellular matrixes, matrix-degrading enzymes, and tumor angiogenic factors, and their network of blood vessels, described by a series of discrete points, were considered. The results of numerical simulation reveal the process of tumor growth and the change in microenvironment from avascular to vascular stage, indicating that the network of blood vessels develops gradually as the tumor grows. Our findings also reveal that a tumor is divided into three regions: necrotic, semi-necrotic, and well-vascularized. The results agree well with the previous relevant studies and physiological facts, and this model represents a platform for further investigations of tumor therapy.

  12. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  13. [The development of novel tumor targeting delivery strategy].

    Science.gov (United States)

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    Tumor is one of the most serious threats for human being. Although many anti-tumor drugs are approved for clinical use, the treatment outcome is still modest because of the poor tumor targeting efficiency and low accumulation in tumor. Therefore, it is important to deliver anti-tumor drug into tumor efficiently, elevate drug concentration in tumor tissues and reduce the drug distribution in normal tissues. And it has been one of the most attractive directions of pharmaceutical academy and industry. Many kinds of strategies, especially various nanoparticulated drug delivery systems, have been developed to address the critical points of complex tumor microenvironment, which are partially or mostly satisfied for tumor treatment. In this paper, we carefully reviewed the novel targeting delivery strategies developed in recent years. The most powerful method is passive targeting delivery based on the enhanced permeability and retention(EPR) effect, and most commercial nanomedicines are based on the EPR effect. However, the high permeability and retention require different particle sizes, thus several kinds of size-changeable nanoparticles are developed, such as size reducible particles and assemble particles, to satisfy the controversial requirement for particle size and enhance both tumor retention and penetration. Surface charge reversible nanoparticles also shows a high efficiency because the anionic charge in blood circulation and normal organs decrease the unintended internalization. The charge can change into positive in tumor microenvironment, facilitating drug uptake by tumor cells. Additionally, tumor microenvironment responsive drug release is important to decrease drug side effect, and many strategies are developed, such as p H sensitive release and enzyme sensitive release. Except the responsive nanoparticles, shaping tumor microenvironment could attenuate the barriers in drug delivery, for example, decreasing tumor collagen intensity and normalizing tumor

  14. Synergistic tumor microenvironment targeting and blood-brain barrier penetration via a pH-responsive dual-ligand strategy for enhanced breast cancer and brain metastasis therapy.

    Science.gov (United States)

    Li, Man; Shi, Kairong; Tang, Xian; Wei, Jiaojie; Cun, Xingli; Long, Yang; Zhang, Zhirong; He, Qin

    2018-05-22

    Cancer associated fibroblasts (CAFs) which shape the tumor microenvironment (TME) and the presence of blood brain barrier (BBB) remain great challenges in targeting breast cancer and its brain metastasis. Herein, we reported a strategy using PTX-loaded liposome co-modified with acid-cleavable folic acid (FA) and BBB transmigrating cell penetrating peptide dNP2 peptide (cFd-Lip/PTX) for enhanced delivery to orthotopic breast cancer and its brain metastasis. Compared with single ligand or non-cleavable Fd modified liposomes, cFd-Lip exhibited synergistic TME targeting and BBB transmigration. Moreover, upon arrival at the TME, the acid-cleavable cFd-Lip/PTX showed sensitive cleavage of FA, which reduced the hindrance effect and maximized the function of both FA and dNP2 peptide. Consequently, efficient targeting of folate receptor (FR)-positive tumor cells and FR-negative CAFs was achieved, leading to enhanced anti-tumor activity. This strategy provides a feasible approach to the cascade targeting of TME and BBB transmigration in orthotopic and metastatic cancer treatment. Copyright © 2018. Published by Elsevier Inc.

  15. Expression of membrane anchored cytokines and B7-1 alters tumor microenvironment and induces protective antitumor immunity in a murine breast cancer model.

    Science.gov (United States)

    Bozeman, Erica N; Cimino-Mathews, Ashley; Machiah, Deepa K; Patel, Jaina M; Krishnamoorthy, Arun; Tien, Linda; Shashidharamurthy, Rangaiah; Selvaraj, Periasamy

    2013-05-07

    Many studies have shown that the systemic administration of cytokines or vaccination with cytokine-secreting tumors augments an antitumor immune response that can result in eradication of tumors. However, these approaches are hampered by the risk of systemic toxicity induced by soluble cytokines. In this study, we have evaluated the efficacy of 4TO7, a highly tumorigenic murine mammary tumor cell line, expressing glycosyl phosphatidylinositol (GPI)-anchored form of cytokine molecules alone or in combination with the costimulatory molecule B7-1 as a model for potential cell or membrane-based breast cancer vaccines. We observed that the GPI-anchored cytokines expressed on the surface of tumor cells greatly reduced the overall tumorigenicity of the 4TO7 tumor cells following direct live cell challenge as evidenced by transient tumor growth and complete regression within 30 days post challenge. Tumors co-expressing B7-1 and GPI-IL-12 grew the least and for the shortest duration, suggesting that this combination of immunostimulatory molecules is most potent. Protective immune responses were also observed following secondary tumor challenge. Further, the 4TO7-B7-1/GPI-IL-2 and 4TO7-B7-1/GPI-IL-12 transfectants were capable of inducing regression of a wild-type tumor growing at a distant site in a concomitant tumor challenge model, suggesting the tumor immunity elicited by the transfectants can act systemically and inhibit the tumor growth at a distant site. Additionally, when used as irradiated whole cell vaccines, 4TO7-B7-1/GPI-IL-12 led to a significant inhibition in tumor growth of day 7 established tumors. Lastly, we observed a significant decrease in the prevalence of myeloid-derived suppressor cells and regulatory T-cells in the tumor microenvironment on day 7 post challenge with 4TO7-B7-1/GPI-IL-12 cells, which provides mechanistic insight into antitumor efficacy of the tumor-cell membrane expressed IL-12. These studies have implications in designing membrane

  16. The role of STAT3 in leading the crosstalk between human cancers and the immune system.

    Science.gov (United States)

    Wang, Yu; Shen, Yicheng; Wang, Sinan; Shen, Qiang; Zhou, Xuan

    2018-02-28

    The development and progression of human cancers are continuously and dynamically regulated by intrinsic and extrinsic factors. As a converging point of multiple oncogenic pathways, signal transducer and activator of transcription 3 (STAT3) is constitutively activated both in tumor cells and tumor-infiltrated immune cells. Activated STAT3 persistently triggers tumor progression through direct regulation of oncogenic gene expression. Apart from its oncogenic role in regulating gene expression in tumor cells, STAT3 also paves the way for human cancer growth through immunosuppression. Activated STAT3 in immune cells results in inhibition of immune mediators and promotion of immunosuppressive factors. Therefore, STAT3 modulates the interaction between tumor cells and host immunity. Accumulating evidence suggests that targeting STAT3 may enhance anti-cancer immune responses and rescue the suppressed immunologic microenvironment in tumors. Taken together, STAT3 has emerged as a promising target in cancer immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  18. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma

    Directory of Open Access Journals (Sweden)

    Hamid Omid

    2011-11-01

    Full Text Available Abstract Background Ipilimumab, a fully human monoclonal antibody that blocks cytotoxic T-lymphocyte antigen-4, has demonstrated an improvement in overall survival in two phase III trials of patients with advanced melanoma. The primary objective of the current trial was to prospectively explore candidate biomarkers from the tumor microenvironment for associations with clinical response to ipilimumab. Methods In this randomized, double-blind, phase II biomarker study (ClinicalTrials.gov NCT00261365, 82 pretreated or treatment-naïve patients with unresectable stage III/IV melanoma were induced with 3 or 10 mg/kg ipilimumab every 3 weeks for 4 doses; at Week 24, patients could receive maintenance doses every 12 weeks. Efficacy was evaluated per modified World Health Organization response criteria and safety was assessed continuously. Candidate biomarkers were evaluated in tumor biopsies collected pretreatment and 24 to 72 hours after the second ipilimumab dose. Polymorphisms in immune-related genes were also evaluated. Results Objective response rate, response patterns, and safety were consistent with previous trials of ipilimumab in melanoma. No associations between genetic polymorphisms and clinical activity were observed. Immunohistochemistry and histology on tumor biopsies revealed significant associations between clinical activity and high baseline expression of FoxP3 (p = 0.014 and indoleamine 2,3-dioxygenase (p = 0.012, and between clinical activity and increase in tumor-infiltrating lymphocytes (TILs between baseline and 3 weeks after start of treatment (p = 0.005. Microarray analysis of mRNA from tumor samples taken pretreatment and post-treatment demonstrated significant increases in expression of several immune-related genes, and decreases in expression of genes implicated in cancer and melanoma. Conclusions Baseline expression of immune-related tumor biomarkers and a post-treatment increase in TILs may be positively associated with

  19. Imaging Tumor Necrosis with Ferumoxytol.

    Directory of Open Access Journals (Sweden)

    Maryam Aghighi

    Full Text Available Ultra-small superparamagnetic iron oxide nanoparticles (USPIO are promising contrast agents for magnetic resonance imaging (MRI. USPIO mediated proton relaxation rate enhancement is strongly dependent on compartmentalization of the agent and can vary depending on their intracellular or extracellular location in the tumor microenvironment. We compared the T1- and T2-enhancement pattern of intracellular and extracellular USPIO in mouse models of cancer and pilot data from patients. A better understanding of these MR signal effects will enable non-invasive characterizations of the composition of the tumor microenvironment.Six 4T1 and six MMTV-PyMT mammary tumors were grown in mice and imaged with ferumoxytol-enhanced MRI. R1 relaxation rates were calculated for different tumor types and different tumor areas and compared with histology. The transendothelial leakage rate of ferumoxytol was obtained by our measured relaxivity of ferumoxytol and compared between different tumor types, using a t-test. Additionally, 3 patients with malignant sarcomas were imaged with ferumoxytol-enhanced MRI. T1- and T2-enhancement patterns were compared with histopathology in a descriptive manner as a proof of concept for clinical translation of our observations.4T1 tumors showed central areas of high signal on T1 and low signal on T2 weighted MR images, which corresponded to extracellular nanoparticles in a necrotic core on histopathology. MMTV-PyMT tumors showed little change on T1 but decreased signal on T2 weighted images, which correlated to compartmentalized nanoparticles in tumor associated macrophages. Only 4T1 tumors demonstrated significantly increased R1 relaxation rates of the tumor core compared to the tumor periphery (p<0.001. Transendothelial USPIO leakage was significantly higher for 4T1 tumors (3.4±0.9x10-3 mL/min/100cm3 compared to MMTV-PyMT tumors (1.0±0.9x10-3 mL/min/100 cm3. Likewise, ferumoxytol imaging in patients showed similar findings with

  20. PI3-kinase γ promotes Rap1a-mediated activation of myeloid cell integrin α4β1, leading to tumor inflammation and growth.

    Directory of Open Access Journals (Sweden)

    Michael C Schmid

    Full Text Available Tumor inflammation, the recruitment of myeloid lineage cells into the tumor microenvironment, promotes angiogenesis, immunosuppression and metastasis. CD11b+Gr1lo monocytic lineage cells and CD11b+Gr1hi granulocytic lineage cells are recruited from the circulation by tumor-derived chemoattractants, which stimulate PI3-kinase γ (PI3Kγ-mediated integrin α4 activation and extravasation. We show here that PI3Kγ activates PLCγ, leading to RasGrp/CalDAG-GEF-I&II mediated, Rap1a-dependent activation of integrin α4β1, extravasation of monocytes and granulocytes, and inflammation-associated tumor progression. Genetic depletion of PLCγ, CalDAG-GEFI or II, Rap1a, or the Rap1 effector RIAM was sufficient to prevent integrin α4 activation by chemoattractants or activated PI3Kγ (p110γCAAX, while activated Rap (RapV12 promoted constitutive integrin activation and cell adhesion that could only be blocked by inhibition of RIAM or integrin α4β1. Similar to blockade of PI3Kγ or integrin α4β1, blockade of Rap1a suppressed both the recruitment of monocytes and granulocytes to tumors and tumor progression. These results demonstrate critical roles for a PI3Kγ-Rap1a-dependent pathway in integrin activation during tumor inflammation and suggest novel avenues for cancer therapy.

  1. Tumor and Stromal-Based Contributions to Head and Neck Squamous Cell Carcinoma Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Markwell, Steven M.; Weed, Scott A., E-mail: scweed@hsc.wvu.edu [Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 (United States)

    2015-02-27

    Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.

  2. Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    DuFort, Christopher C; DelGiorno, Kathleen E; Hingorani, Sunil R

    2016-06-01

    The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. The inflammatory milieu within the pancreatic cancer microenvironment correlates with clinicopathologic parameters, chemoresistance and survival

    International Nuclear Information System (INIS)

    Delitto, Daniel; Black, Brian S.; Sorenson, Heather L.; Knowlton, Andrea E.; Thomas, Ryan M.; Sarosi, George A.; Moldawer, Lyle L.; Behrns, Kevin E.; Liu, Chen; George, Thomas J.; Trevino, Jose G.; Wallet, Shannon M.; Hughes, Steven J.

    2015-01-01

    The tumor microenvironment impacts pancreatic cancer (PC) development, progression and metastasis. How intratumoral inflammatory mediators modulate this biology remains poorly understood. We hypothesized that the inflammatory milieu within the PC microenvironment would correlate with clinicopathologic findings and survival. Pancreatic specimens from normal pancreas (n = 6), chronic pancreatitis (n = 9) and pancreatic adenocarcinoma (n = 36) were homogenized immediately upon resection. Homogenates were subjected to multiplex analysis of 41 inflammatory mediators. Twenty-three mediators were significantly elevated in adenocarcinoma specimens compared to nonmalignant controls. Increased intratumoral IL-8 concentrations associated with larger tumors (P = .045) and poor differentiation (P = .038); the administration of neoadjuvant chemotherapy associated with reduced IL-8 concentrations (P = .003). Neoadjuvant therapy was also associated with elevated concentrations of Flt-3 L (P = .005). Elevated levels of pro-inflammatory cytokines IL-1β (P = .017) and TNFα (P = .033) were associated with a poor histopathologic response to neoadjuvant therapy. Elevated concentrations of G-CSF (P = .016) and PDGF-AA (P = .012) correlated with reduced overall survival. Conversely, elevated concentrations of FGF-2 (P = .038), TNFα (P = .031) and MIP-1α (P = .036) were associated with prolonged survival. The pancreatic cancer microenvironment harbors a unique inflammatory milieu with potential diagnostic and prognostic value

  4. Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ.

    Science.gov (United States)

    Dobbs, Jessica L; Shin, Dongsuk; Krishnamurthy, Savitri; Kuerer, Henry; Yang, Wei; Richards-Kortum, Rebecca

    2016-09-01

    Adipose tissue is a dynamic organ that provides endocrine, inflammatory and angiogenic factors, which can assist breast carcinoma cells with invasion and metastasis. Previous studies have shown that adipocytes adjacent to carcinoma, known as cancer-associated adipocytes, undergo extensive changes that correspond to an "activated phenotype," such as reduced size relative to adipocytes in non-neoplastic breast tissue. Optical imaging provides a tool that can be used to characterize adipocyte morphology and other features of the tumor microenvironment. In this study, we used confocal fluorescence microscopy to acquire images of freshly excised breast tissue stained topically with proflavine. We developed a computerized algorithm to identify and quantitatively measure phenotypic properties of adipocytes located adjacent to and far from normal collagen, ductal carcinoma in situ and invasive ductal carcinoma. Adipocytes were measured in confocal fluorescence images of fresh breast tissue collected from 22 patients. Results show that adipocytes adjacent to neoplastic tissue margins have significantly smaller area compared to adipocytes far from the margins of neoplastic lesions and compared to adipocytes adjacent to non-neoplastic collagenous stroma. These findings suggest that confocal microscopic images can be utilized to evaluate phenotypic properties of adipocytes in breast stroma which may be useful in defining alterations in microenvironment that may aid in the development and progression of neoplastic lesions. © 2016 UICC.

  5. Tumor suppressor maspin as a modulator of host immune response to cancer

    Directory of Open Access Journals (Sweden)

    Sijana H. Dzinic

    2015-10-01

    Full Text Available Despite the promising clinical outcome, the primary challenge of the curative cancer immunotherapy is to overcome the dichotomy of the immune response: tumor-evoked immunostimulatory versus tumor-induced immunosuppressive. The goal needs to be two-fold, to re-establish sustainable antitumor-cancer immunity and to eliminate immunosuppression. The successful elimination of cancer cells by immunosurveillance requires the antigenic presentation of the tumor cells or tumor-associated antigens and the expression of immunostimulatory cytokines and chemokines by cancer and immune cells. Tumors are heterogeneous and as such, some of the tumor cells are thought to have stem cell characteristics that enable them to suppress or desensitize the host immunity due to acquired epigenetic changes. A central mechanism underlying tumor epigenetic instability is the increased histone deacetylase (HDAC-mediated repression of HDAC-target genes regulating homeostasis and differentiation. It was noted that pharmacological HDAC inhibitors are not effective in eliminating tumor cells partly because they may induce immunosuppression. We have shown that epithelial-specific tumor suppressor maspin, an ovalbumin-like non-inhibitory serine protease inhibitor, reprograms tumor cells toward better differentiated phenotypes by inhibiting HDAC1. Recently, we uncovered a novel function of maspin in directing host immunity towards tumor elimination. In this review, we discuss the maspin and maspin/HDAC1 interplay in tumor biology and immunology. We propose that maspin based therapies may eradicate cancer.

  6. Imaging probe for tumor malignancy

    Science.gov (United States)

    Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Hiraoka, Hasahiro

    2009-02-01

    Solid tumors possess unique microenvironments that are exposed to chronic hypoxic conditions ("tumor hypoxia"). Although more than half a century has passed since it was suggested that tumor hypoxia correlated with poor treatment outcomes and contributed to cancer recurrence, a fundamental solution to this problem has yet to be found. Hypoxia-inducible factor (HIF-1) is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes whose functions are strongly associated with malignant alteration of the entire tumor. The cellular changes induced by HIF-1 are extremely important targets of cancer therapy, particularly in therapy against refractory cancers. Imaging of the HIF-1-active microenvironment is therefore important for cancer therapy. To image HIF-1activity in vivo, we developed a PTD-ODD fusion protein, POHA, which was uniquely labeled with near-infrared fluorescent dye at the C-terminal. POHA has two functional domains: protein transduction domain (PTD) and VHL-mediated protein destruction motif in oxygen-dependent degradation (ODD) domain of the alpha subunit of HIF-1 (HIF-1α). It can therefore be delivered to the entire body and remain stabilized in the HIF-1-active cells. When it was intravenously injected into tumor-bearing mice, a tumor-specific fluorescence signal was detected in the tumor 6 h after the injection. These results suggest that POHA can be used an imaging probe for tumor malignancy.

  7. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  8. IL-33 activates tumor stroma to promote intestinal polyposis.

    Science.gov (United States)

    Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D

    2015-05-12

    Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.

  9. [Multi-channel promotion of lung cancer progress by bone marrow derived mesenchymal stem cells in tumor microenvironment].

    Science.gov (United States)

    Luo, D; Hu, S Y; Liu, G X

    2018-02-23

    Objective: To observe the growth and metastasis of lung cancer promoted by bone marrow derived mesenchymal stem cells (BMSCs) in tumor microenvironment and investigate the underlined mechanisms. Methods: Specific chemotaxis of BMSCs towards lung cancer was observed, and the tumor growth and metastasis were assessed in vivo . Furthermore, CD34 expression determined by immunohistochemistry was used to assess the microvessel density (MVD), and the expressions of GFP and α-SMA determined by immunofluorescence were used to detect the BMSCs derived mesenchymal cells. We investigated the effect of BMSCs on migration, invasion of lung cancer cells including A549 and H446 cells by using scratch assays and Transwell Assay in vitro. We also explored the effect of BMSCs on epithelial mesenchymal transition of A549 and H446 cells by observing the phenotype transition and E-Cadherin protein expression detected by Western blot. At last, we screened the potentially key soluble factors by enzyme linked immunosorbent assay (ELISA). Results: In NOD mice, labeled BMSCs injected via tail vein were special chemotaxis to tumor cells, and promoted the tumor growth [the time of tumor formation in A549+ BMSCs and A549 alone was (5.0±1.5) days and (10.0±3.6) days, respectively, P cell carcinoma and promoted the migration and invasion of lung cancer cells (the A of cells in the migrated lower chambers of A549+ BMSCs and A549 alone was 1.9±0.2 and 1.1±0.1, respectively, P cells in the migrated lower chambers of H446+ BMSCs and H446 alone was 1.9±0.3 and 0.9±0.2, respectively, P cell shape was longer and sharper, the intercellular junctions were reduced and the relative expression level of E-Cadherin protein in A549 co-cultured with BMDCs was 0.36, significantly down-regulated when compared to 0.55 of A549 alone ( P cells alone ( P <0.05). The concentration of IL-6 in the conditional medium of BMSCs, A549 co-cultured with BMSCs and H446 co-cultured with BMSCs was 910.5, 957.2, and 963

  10. TNF Counterbalances the Emergence of M2 Tumor Macrophages

    Directory of Open Access Journals (Sweden)

    Franz Kratochvill

    2015-09-01

    Full Text Available Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.

  11. PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast.

    Science.gov (United States)

    Thompson, Elizabeth D; Taube, Janis M; Asch-Kendrick, Rebecca J; Ogurtsova, Aleksandra; Xu, Haiying; Sharma, Rajni; Meeker, Alan; Argani, Pedram; Emens, Leisha A; Cimino-Mathews, Ashley

    2017-11-01

    Tumor-infiltrating lymphocytes and immune checkpoint proteins such as PD-L1 are potential prognostic factors and therapeutic targets in breast cancer. Most studies characterizing the breast tumor immune microenvironment have focused on ductal carcinomas. Here we investigate the tumor microenvironment of primary invasive lobular carcinomas. Previously constructed tissue microarrays of 47 lobular carcinomas were labeled by immunohistochemistry for PD-L1, CD8, CD20, and FoxP3. The stromal immune infiltrate density was qualitatively scored as a percentage of tumor area: 1+ (50%). The average immune cell subtype per high-power field was quantitatively scored. The percentage PD-L1 labeling on tumor-infiltrating lymphocytes was scored as none, focal (lobular carcinomas contained PD-L1 + tumor-infiltrating lymphocytes with the majority showing 1+ immune infiltrates with focal-moderate PD-L1 labeling. PD-L1 was expressed by tumor cells in 17% of lobular carcinomas. In contrast to ductal carcinomas, there was no correlation between the immune infiltrate density, the PD-L1 expression by lobular carcinoma cells, tumor grade, or the expression of estrogen receptor or human epidermal growth factor receptor-2. However, both the tumor-infiltrating lymphocyte density and the average CD8 + T-cell counts correlated with immune cell PD-L1 status (P=0.004 and 0.03, respectively). Similar to breast ductal carcinomas, PD-L1 + lobular breast carcinomas had higher numbers of PD-L1 + tumor-infiltrating lymphocytes (63%) than PD-L1 - lobular carcinomas (23%; P=0.04). These data show that a subset of primary breast lobular carcinomas both express PD-L1 on tumor cells and contain PD-L1 + tumor-infiltrating lymphocytes, suggesting the possibility of both constitutive and adaptive PD-L1 expression. Together, these results support immunotherapy as a potential treatment for a subset of patients with primary invasive lobular breast carcinomas.

  12. Tumor inherent interferons: Impact on immune reactivity and immunotherapy.

    Science.gov (United States)

    Brockwell, Natasha K; Parker, Belinda S

    2018-04-19

    Immunotherapy has revolutionized cancer treatment, with sustained responses to immune checkpoint inhibitors reported in a number of malignancies. Such therapeutics are now being trialed in aggressive or advanced cancers that are heavily reliant on untargeted therapies, such as triple negative breast cancer. However, responses have been underwhelming to date and are very difficult to predict, leading to an inability to accurately weigh up the benefit-to-risk ratio for their implementation. The tumor immune microenvironment has been closely linked to immunotherapeutic response, with superior responses observed in patients with T cell-inflamed or 'hot' tumors. One class of cytokines, the type I interferons, are a major dictator of tumor immune infiltration and activation. Tumor cell inherent interferon signaling dramatically influences the immune microenvironment and the expression of immune checkpoint proteins, hence regulators and targets of this pathway are candidate biomarkers of immunotherapeutic response. In support of a link between IFN signaling and immunotherapeutic response, the combination of type I interferon inducers with checkpoint immunotherapy has recently been demonstrated critical for a sustained anti-tumor response in aggressive breast cancer models. Here we review evidence that links type I interferons with a hot tumor immune microenvironment, response to checkpoint inhibitors and reduced risk of metastasis that supports their use as biomarkers and therapeutics in oncology. Copyright © 2018. Published by Elsevier Ltd.

  13. Chimeric antigen receptor T cell therapy in pancreatic cancer: from research to practice.

    Science.gov (United States)

    Jindal, Vishal; Arora, Ena; Masab, Muhammad; Gupta, Sorab

    2018-05-04

    Chimeric antigen receptor (CAR) T cell therapy is genetically engineered tumor antigen-specific anticancer immunotherapy, which after showing great success in hematological malignancies is currently being tried in advanced solid tumors like pancreatic cancer. Immunosuppressive tumor microenvironment and dense fibrous stroma are some of the limitation in the success of this novel therapy. However, genetic modifications and combination therapy is the topic of the research to improve its efficacy. In this article, we summarize the current state of knowledge, limitations, and future prospects for CAR T cell therapy in pancreatic cancer.

  14. The orthotopic xenotransplant of human glioblastoma successfully recapitulates glioblastoma-microenvironment interactions in a non-immunosuppressed mouse model.

    Science.gov (United States)

    Garcia, Celina; Dubois, Luiz Gustavo; Xavier, Anna Lenice; Geraldo, Luiz Henrique; da Fonseca, Anna Carolina Carvalho; Correia, Ana Helena; Meirelles, Fernanda; Ventura, Grasiella; Romão, Luciana; Canedo, Nathalie Henriques Silva; de Souza, Jorge Marcondes; de Menezes, João Ricardo Lacerda; Moura-Neto, Vivaldo; Tovar-Moll, Fernanda; Lima, Flavia Regina Souza

    2014-12-08

    Glioblastoma (GBM) is the most common primary brain tumor and the most aggressive glial tumor. This tumor is highly heterogeneous, angiogenic, and insensitive to radio- and chemotherapy. Here we have investigated the progression of GBM produced by the injection of human GBM cells into the brain parenchyma of immunocompetent mice. Xenotransplanted animals were submitted to magnetic resonance imaging (MRI) and histopathological analyses. Our data show that two weeks after injection, the produced tumor presents histopathological characteristics recommended by World Health Organization for the diagnosis of GBM in humans. The tumor was able to produce reactive gliosis in the adjacent parenchyma, angiogenesis, an intense recruitment of macrophage and microglial cells, and presence of necrosis regions. Besides, MRI showed that tumor mass had enhanced contrast, suggesting a blood-brain barrier disruption. This study demonstrated that the xenografted tumor in mouse brain parenchyma develops in a very similar manner to those found in patients affected by GBM and can be used to better understand the biology of GBM as well as testing potential therapies.

  15. Metastasis genetics, epigenetics, and the tumor microenvironment

    Science.gov (United States)

    KISS1 is a member of a family of genes known as metastasis suppressors, defined by their ability to block metastasis without blocking primary tumor development and growth. KISS1 re-expression in multiple metastatic cell lines of diverse cellular origin suppresses metastasis; yet, still allows comple...

  16. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    Science.gov (United States)

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  17. Immunosuppression in Graves' ophthalmopathy

    International Nuclear Information System (INIS)

    Tian Rong; Kuang Anren; Qin Weishi; Zhang Huimin

    2000-01-01

    Objective: Graves' ophthalmopathy (GO) is a disease that seriously threatens the health of patients. But up to now, no optimal therapies have been established. Immunosuppressive treatment is usually used in the management of GO, but they may cause side effects. Recently, 99 Tc-MDP, commercially named 'Yun Ke', is used in the management of autoimmune disease. Therefore, a randomized trial was done to compare the values in the treatment of GO with between Yun Ke and immunosuppression. Methods: 42 consecutive patients with moderate or severe GO were randomly assigned to receive either Yun Ke therapy or immunosuppressive therapy. The degree of ocular involvement and responses to the treatment were evaluated by numerical scoring (ophthalmopathy index, OI) and clinical assessment. Therapy outcome was assessed 4 months after the start of treatment by the change in the highest NOSPECS class and OI. Data analysis was performed with the SPASS statistic software. Chi-square test was used to compare percentages, logistic regression was performed to identify which variables might correlated with the treatment outcome. Results: The remarkably effective outcome was observed in 14 (67%) cases in immunosuppression treated group and 13 (62%) cases in Yun Ke treated group. There were no significant differences in the degree of improvements in ocular involvements. There was a marked decrease of thyroid antibody titres in both groups. The variables found to correlated significantly with treatment outcome were thyroid antibody titres and GO activity. Side effects were more frequent and severe during immunosuppressive therapy. No side effects were found during Yun Ke treatment. Conclusion: Yun Ke and immunosuppression appeared to be equally effective in the management of GO, but Yun Ke is safer for patients during treatment

  18. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Vlková, Veronika; Bieblová, Jana; Šímová, Jana; Paračková, Zuzana; Pajtasz-Piasecka, E.; Rossowska, J.; Reiniš, Milan

    2014-01-01

    Roč. 95, č. 5 (2014), s. 743-753 ISSN 0741-5400 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GAP301/10/2174 Institutional support: RVO:68378050 Keywords : arginase-1 * immunosuppression * microenvironment Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 4.289, year: 2014

  19. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Vlková, Veronika; Bieblová, Jana; Šímová, Jana; Paračková, Zuzana; Pajtasz-Piasecka, E.; Rossowska, J.; Reiniš, Milan

    2014-01-01

    Roč. 95, č. 5 (2014), s. 743-753 ISSN 0741-5400 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GAP301/10/2174 Institutional support: RVO:68378050 Keywords : arginase-1 * immunosuppression * microenvironment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.289, year: 2014

  20. Cycling hypoxia: A key feature of the tumor microenvironment.

    Science.gov (United States)

    Michiels, Carine; Tellier, Céline; Feron, Olivier

    2016-08-01

    A compelling body of evidence indicates that most human solid tumors contain hypoxic areas. Hypoxia is the consequence not only of the chaotic proliferation of cancer cells that places them at distance from the nearest capillary but also of the abnormal structure of the new vasculature network resulting in transient blood flow. Hence two types of hypoxia are observed in tumors: chronic and cycling (intermittent) hypoxia. Most of the current work aims at understanding the role of chronic hypoxia in tumor growth, response to treatment and metastasis. Only recently, cycling hypoxia, with spatial and temporal fluctuations in oxygen levels, has emerged as another key feature of the tumor environment that triggers different responses in comparison to chronic hypoxia. Either type of hypoxia is associated with distinct effects not only in cancer cells but also in stromal cells. In particular, cycling hypoxia has been demonstrated to favor, to a higher extent than chronic hypoxia, angiogenesis, resistance to anti-cancer treatments, intratumoral inflammation and tumor metastasis. These review details these effects as well as the signaling pathway it triggers to switch on specific transcriptomic programs. Understanding the signaling pathways through which cycling hypoxia induces these processes that support the development of an aggressive cancer could convey to the emergence of promising new cancer treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mapping In Vivo Tumor Oxygenation within Viable Tumor by 19F-MRI and Multispectral Analysis

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2013-11-01

    Full Text Available Quantifying oxygenation in viable tumor remains a major obstacle toward a better understanding of the tumor microenvironment and improving treatment strategies. Current techniques are often complicated by tumor heterogeneity. Herein, a novel in vivo approach that combines 19F magnetic resonance imaging (19F-MRIR1 mapping with diffusionbased multispectral (MS analysis is introduced. This approach restricts the partial pressure of oxygen (pO2 measurements to viable tumor, the tissue of therapeutic interest. The technique exhibited sufficient sensitivity to detect a breathing gas challenge in a xenograft tumor model, and the hypoxic region measured by MS 19F-MRI was strongly correlated with histologic estimates of hypoxia. This approach was then applied to address the effects of antivascular agents on tumor oxygenation, which is a research question that is still under debate. The technique was used to monitor longitudinal pO2 changes in response to an antibody to vascular endothelial growth factor (B20.4.1.1 and a selective dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor (GDC-0980. GDC-0980 reduced viable tumor pO2 during a 3-day treatment period, and a significant reduction was also produced by B20.4.1.1. Overall, this method provides an unprecedented view of viable tumor pO2 and contributes to a greater understanding of the effects of antivascular therapies on the tumor's microenvironment.

  2. Immunosuppressant-Associated Neurotoxicity Responding to Olanzapine

    Directory of Open Access Journals (Sweden)

    James A. Bourgeois

    2014-01-01

    Full Text Available Immunosuppressants, particularly tacrolimus, can induce neurotoxicity in solid organ transplantation cases. A lower clinical threshold to switch from tacrolimus to another immunosuppressant agent has been a common approach to reverse this neurotoxicity. However, immunosuppressant switch may place the graft at risk, and, in some cases, continuation of the same treatment protocol may be necessary. We report a case of immunosuppressant-associated neurotoxicity with prominent neuropsychiatric manifestation and describe psychiatric intervention with olanzapine that led to clinical improvement while continuing tacrolimus maintenance.

  3. The microbiome modulates the tumor macroenvironment.

    Science.gov (United States)

    Erdman, Susan E; Poutahidis, Theofilos

    2014-01-01

    Earlier investigations of the tumor microenvironment unveiled systemic networks presenting novel therapeutic opportunities. It has been recently shown that gut microbes modulate whole host immune and neuroendocrine factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. These findings establish a new paradigm of holobiont therapeutic engineering in emerging tumor macroenvironments.

  4. Recent discoveries concerning the tumor - mesenchymal stem cell interactions.

    Science.gov (United States)

    Lazennec, Gwendal; Lam, Paula Y

    2016-12-01

    Tumor microenvironment plays a crucial role in coordination with cancer cells in the establishment, growth and dissemination of the tumor. Among cells of the microenvironment, mesenchymal stem cells (MSCs) and their ability to evolve into cancer associated fibroblasts (CAFs) have recently generated a major interest in the field. Numerous studies have described the potential pro- or anti-tumorigenic action of MSCs. The goal of this review is to synthesize recent and emerging discoveries concerning the mechanisms by which MSCs can be attracted to tumor sites, how they can generate CAFs and by which way MSCs are able to modulate the growth, response to treatments, angiogenesis, invasion and metastasis of tumors. The understanding of the role of MSCs in tumor development has potential and clinical applications in terms of cancer management. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance

    Directory of Open Access Journals (Sweden)

    Alessia Fidoamore

    2016-01-01

    Full Text Available Among all solid tumors, the high-grade glioma appears to be the most vascularized one. In fact, “microvascular hyperplasia” is a hallmark of GBM. An altered vascular network determines irregular blood flow, so that tumor cells spread rapidly beyond the diffusion distance of oxygen in the tissue, with the consequent formation of hypoxic or anoxic areas, where the bulk of glioblastoma stem cells (GSCs reside. The response to this event is the induction of angiogenesis, a process mediated by hypoxia inducible factors. However, this new capillary network is not efficient in maintaining a proper oxygen supply to the tumor mass, thereby causing an oxygen gradient within the neoplastic zone. This microenvironment helps GSCs to remain in a “quiescent” state preserving their potential to proliferate and differentiate, thus protecting them by the effects of chemo- and radiotherapy. Recent evidences suggest that responses of glioblastoma to standard therapies are determined by the microenvironment of the niche, where the GSCs reside, allowing a variety of mechanisms that contribute to the chemo- and radioresistance, by preserving GSCs. It is, therefore, crucial to investigate the components/factors of the niche in order to formulate new adjuvant therapies rendering more efficiently the gold standard therapies for this neoplasm.

  6. The multifaceted role of the microenvironment in liver metastasis

    DEFF Research Database (Denmark)

    Van den Eynden, Gert G; Majeed, Ali W; Illemann, Martin

    2013-01-01

    arriving in the liver via the bloodstream encounter the microenvironment of the hepatic sinusoid. The interactions of the tumor cells with hepatic sinusoidal and extrasinusoidal cells (endothelial, Kupffer, stellate, and inflammatory cells) determine their fate. The sinusoidal cells can have a dual role......The liver is host to many metastatic cancers, particularly colorectal cancer, for which the last 2 decades have seen major advances in diagnosis and treatment. The liver is a vital organ, and the extent of its involvement with metastatic disease is a major determinant of survival. Metastatic cells...... arrested and survived the initial onslaught, tumors can grow within the liver in 3 distinct patterns, reflecting differing host responses, mechanisms of vascularization, and proteolytic activity. This review aims to present current knowledge of the interactions between the host liver cells and the invading...

  7. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship

    NARCIS (Netherlands)

    Netea-Maier, R.T.; Smit, J.W.A.; Netea, M.G.

    2018-01-01

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production

  8. Clinical aspects of immunosuppression in poultry.

    Science.gov (United States)

    Hoerr, Frederic J

    2010-03-01

    Chickens, turkeys, and other poultry in a production environment can be exposed to stressors and infectious diseases that impair innate and acquired immunity, erode general health and welfare, and diminish genetic and nutritional potential for efficient production. Innate immunity can be affected by stressful physiologic events related to hatching and to environmental factors during the first week of life. Exposure to environmental ammonia, foodborne mycotoxins, and suboptimal nutrition can diminish innate immunity. Infectious bursal disease (IBD), chicken infectious anemia (CIA), and Marek's disease (MD) are major infectious diseases that increase susceptibility to viral, bacterial, and parasitic diseases and interfere with acquired vaccinal immunity. A shared feature is lymphocytolytic infection capable of suppressing both humoral and cell-mediated immune functions. Enteric viral infections can be accompanied by atrophic and depleted lymphoid organs, but the immunosuppressive features are modestly characterized. Some reoviruses cause atrophy of lymphoid organs and replicate in blood monocytes. Enteric parvoviruses of chickens and turkeys merit further study for immunosuppression. Hemorrhagic enteritis of turkeys has immunosuppressive features similar to IBD. Other virulent fowl adenoviruses have immunosuppressive capabilities. Newcastle disease can damage lymphoid tissues and macrophages. Avian pneumovirus infections impair the mucociliary functions of the upper respiratory tract and augment deeper bacterial infections. Recognition of immunosuppression involves detection of specific diseases using diagnostic tests such as serology, etiologic agent detection, and pathology. Broader measurements of immunosuppression by combined noninfectious and infectious causes have not found general application. Microarray technology to detect genetic expression of immunologic mediators and receptors offers potential advances but is currently at the developmental state. Control

  9. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    International Nuclear Information System (INIS)

    Mori, Kazumasa; Hiroi, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2011-01-01

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163 + cells were significantly increased based on the pathological grade. CD163 + cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163 + cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4 + and CD8 + T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163 + TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC

  10. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazumasa [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Hiroi, Miki [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Shimada, Jun [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Ohmori, Yoshihiro, E-mail: ohmori@dent.meikai.ac.jp [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan)

    2011-09-28

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163{sup +} cells were significantly increased based on the pathological grade. CD163{sup +} cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163{sup +} cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4{sup +} and CD8{sup +} T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163{sup +} TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC.

  11. aPKC-ι/P-Sp1/Snail signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma.

    Science.gov (United States)

    Qian, Yawei; Yao, Wei; Yang, Tao; Yang, Yan; Liu, Yan; Shen, Qi; Zhang, Jian; Qi, Weipeng; Wang, Jianming

    2017-10-01

    Cholangiocarcinoma (CCA) is a highly malignant bile duct cancer that tends to invade and metastasize early. The epithelial-mesenchymal transition (EMT) has been implicated in cancer cell invasion and metastasis, as well as in cancer cell evasion of host immunity. In this study, we investigated the interaction between atypical protein kinase C-iota (aPKC-ι) and Snail in the regulation of EMT and its relationship to CCA immunosuppression. Our results demonstrated that aPKC-ι, Snail, and infiltrated immunosuppressive cells were significantly up-regulated in CCA tumor tissues and linked to poor prognosis. aPKC-ι induced EMT and immunosuppression by regulating Snail in vitro and in vivo, although aPKC-ι did not directly interact with Snail in coimmunoprecipitation experiments. To further clarify the molecular interaction between aPKC-ι and Snail in relation to EMT, quantitative iTRAQ-based phosphoproteomic analysis and liquid chromatography-tandem mass spectrometry were conducted to identify the substrates of aPKC-ι-dependent phosphorylation. Combined with coimmunoprecipitation, we showed that specificity protein 1 (Sp1) was directly phosphorylated by aPKC-ι on Ser59 (P-Sp1). Both Sp1 and P-Sp1 were up-regulated in CCA tumor tissues and associated with clinicopathological features and poor prognosis in CCA patients. Moreover, using chromatin immunoprecipitation assays, we found that P-Sp1 regulated Snail expression by increasing Sp1 binding to the Snail promoter. P-Sp1 also regulated aPKC-ι/Snail-induced EMT-like changes and immunosuppression in CCA cells. Our findings further indicated that CCA cells with EMT-like features appear to generate immunosuppressive natural T regulatory-like cluster of differentiation 4-positive (CD4 + )CD25 - cells rather than to increase CD4 + CD25 + natural T regulatory cells, in part by mediating T regulatory-inducible cytokines such as transforming growth factor β1 and interleukin 2. These results demonstrate that a

  12. Visualizing the effect of tumor microenvironments on radiation-induced cell kinetics in multicellular spheroids consisting of HeLa cells

    International Nuclear Information System (INIS)

    Kaida, Atsushi; Miura, Masahiko

    2013-01-01

    Highlights: •We visualized radiation-induced cell kinetics in spheroids. •HeLa-Fucci cells were used for detection of cell-cycle changes. •Radiation-induced G2 arrest was prolonged in the spheroid. •The inner and outer cell fractions behaved differently. -- Abstract: In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ∼500 μm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 μm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions

  13. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation.

    Science.gov (United States)

    Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard

    2018-02-01

    Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  15. Tumor interstitial fluid - a treasure trove of cancer biomarkers.

    Science.gov (United States)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J; Timmermans-Wielenga, Vera; Talman, Mai-Lis; Serizawa, Reza R; Moreira, José M A

    2013-11-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secretion, non-classical secretion, secretion via exosomes and membrane protein shedding. Consequently, the interstitial aqueous phase of solid tumors is a highly promising resource for the discovery of molecules associated with pathological changes in tissues. Firstly, it allows one to delve deeper into the regulatory mechanisms and functions of secretion-related processes in tumor development. Secondly, the anomalous secretion of molecules that is innate to tumors and the tumor microenvironment, being associated with cancer progression, offers a valuable source for biomarker discovery and possible targets for therapeutic intervention. Here we provide an overview of the features of tumor-associated interstitial fluids, based on recent and updated information obtained mainly from our studies of breast cancer. Data from the study of interstitial fluids recovered from several other types of cancer are also discussed. This article is a part of a Special Issue entitled: The Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars

    2010-01-01

    an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...... the reader will gain: The review focuses on strategies that exploit characteristic features of solid tumors, such as abnormal vasculature, overexpression of receptors and enzymes, as well as acidic and thiolytic characteristics of the tumor microenvironment. Take home message: It is concluded that the design...

  17. Changes in the gene expression of co-cultured human fibroblast cells and osteosarcoma cells: the role of microenvironment.

    Science.gov (United States)

    Salvatore, Viviana; Focaroli, Stefano; Teti, Gabriella; Mazzotti, Antonio; Falconi, Mirella

    2015-10-06

    The progression of malignant tumors does not depend exclusively on the autonomous properties of cancer cells; it is also influenced by tumor stroma reactivity and is under strict microenvironmental control. By themselves, stromal cells are not malignant, and they maintain normal tissue structure and function. However, through intercellular interactions or by paracrine secretions from cancer cells, normal stromal cells acquire abnormal phenotypes that sustain cancer cell growth and tumor progression. In their dysfunctional state, fibroblast and immune cells produce chemokines and growth factors that stimulate cancer cell growth and invasion. In our previous work, we established an in vitro model based on a monolayer co-culture system of healthy human fibroblasts (HFs) and human osteosarcoma cells (the MG-63 cell line) that simulates the microenvironment of tumor cells and healthy cells. The coexistence between MG-63 cells and HFs allowed us to identify the YKL-40 protein as the main marker for verifying the influence of tumor cells grown in contact with healthy cells. In this study, we evaluated the interactions of HFs and MG-63 cells in a transwell co-culture system over 24 h, 48 h, 72 h, and 96 h. We analyzed the contributions of these populations to the tumor microenvironment during cancer progression, as measured by multiple markers. We examined the effect of siRNA knockdown of YKL-40 by tracking the subsequent changes in gene expression within the co-culture. We validated the expression of several genes, focusing on those involved in cancer cell invasion, inflammatory responses, and angiogenesis: TNF alpha, IL-6, MMP-1, MMP-9, and VEGF. We compared the results to those from a transwell co-culture without the YKL-40 knockdown. In a pro-inflammatory environment promoted by TNF alpha and IL-6, siRNA knockdown of YKL-40 caused a down-regulation of VEGF and MMP-1 expression in HFs. These findings demonstrated that the tumor microenvironment has an influence on the

  18. BONE TUMOR ENVIRONMENT AS POTENTIAL THERAPEUTIC TARGET IN EWING SARCOMA

    Directory of Open Access Journals (Sweden)

    Françoise eREDINI

    2015-12-01

    Full Text Available Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, ES is an aggressive, rapidly fatal malignancy that mainly develops in osseous sites (85%, but also in extraskeletal soft tissue. It spreads naturally to the lungs, bones and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption is responsible for the clinical features of bone tumors including pain, vertebral collapse and spinal cord compression. Based on the vicious cycle concept of tumor cells and bone resorbing cells, drugs which target osteoclasts may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable niche for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing Sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates (BPs or drugs blocking the pro-resorbing cytokine Receptor Activator of NF-kappa B Ligand (RANKL. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  19. Regulation of tumor progression and metastasis by bone marrow-derived microenvironments

    DEFF Research Database (Denmark)

    El Rayes, Tina; Gao, Dingcheng; Altorki, Nasser K.

    2017-01-01

    Activating mutations in driver oncogenes and loss-of-function mutations in tumor suppressor genes contribute to tumor progression and metastasis. Accordingly, therapies targeting key tumor cell-intrinsic signaling pathways are being used in clinical trials, and some have met FDA approval. However...

  20. Immunosuppressive drugs and fertility.

    Science.gov (United States)

    Leroy, Clara; Rigot, Jean-Marc; Leroy, Maryse; Decanter, Christine; Le Mapihan, Kristell; Parent, Anne-Sophie; Le Guillou, Anne-Claire; Yakoub-Agha, Ibrahim; Dharancy, Sébastien; Noel, Christian; Vantyghem, Marie-Christine

    2015-10-21

    Immunosuppressive drugs are used in the treatment of inflammatory and autoimmune diseases, as well as in transplantation. Frequently prescribed in young people, these treatments may have deleterious effects on fertility, pregnancy outcomes and the unborn child. This review aims to summarize the main gonadal side effects of immunosuppressants, to detail the effects on fertility and pregnancy of each class of drug, and to provide recommendations on the management of patients who are seen prior to starting or who are already receiving immunosuppressive treatment, allowing them in due course to bear children. The recommendations for use are established with a rather low level of proof, which needs to be taken into account in the patient management. Methotrexate, mycophenolate, and le- and teri-flunomide, cyclophosphamide, mitoxanthrone are contraindicated if pregnancy is desired due to their teratogenic effects, as well as gonadotoxic effects in the case of cyclophosphamide. Anti-TNF-alpha and mTOR-inhibitors are to be used cautiously if pregnancy is desired, since experience using these drugs is still relatively scarce. Azathioprine, glucocorticoids, mesalazine, anticalcineurins such as cyclosporine and tacrolimus, ß-interferon, glatiramer-acetate and chloroquine can be used during pregnancy, bearing in mind however that side effects may still occur. Experience is limited concerning natalizumab, fingolimod, dimethyl-fumarate and induction treatments. Conclusion: At the time of prescription, patients must be informed of the possible consequences of immunosuppressants on fertility and of the need for contraception. Pregnancy must be planned and the treatment modified if necessary in a pre-conception time period adapted to the half-life of the drug, imperatively in relation with the prescriber of the immunosuppressive drugs.

  1. Old-School Chemotherapy in Immunotherapeutic Combination in Cancer, A Low-cost Drug Repurposed.

    Science.gov (United States)

    Abu Eid, Rasha; Razavi, Ghazaleh Shoja E; Mkrtichyan, Mikayel; Janik, John; Khleif, Samir N

    2016-05-01

    Cancer immunotherapy has proven to be a potent treatment modality. Although often successful in generating antitumor immune responses, cancer immunotherapy is frequently hindered by tumor immune-escape mechanisms. Among immunosuppressive strategies within the tumor microenvironment, suppressive immune regulatory cells play a key role in promoting tumor progression through inhibiting the effector arm of the immune response. Targeting these suppressive cells can greatly enhance antitumor immune therapies, hence augmenting a highly effective therapeutic antitumor response. Several approaches are being tested to enhance the effector arm of the immune system while simultaneously inhibiting the suppressor arm. Some of these approaches are none other than traditional drugs repurposed as immune modulators. Cyclophosphamide, an old-school chemotherapeutic agent used across a wide range of malignancies, was found to be a potent immune modulator that targets suppressive regulatory immune cells within the tumor microenvironment while enhancing effector cells. Preclinical and clinical findings have confirmed the ability of low doses of cyclophosphamide to selectively deplete regulatory T cells while enhancing effector and memory cytotoxic T cells within the tumor microenvironment. These immune effects translate to suppressed tumor growth and enhanced survival, evidence of antitumor therapeutic efficacy. This article discusses the reincarnation of cyclophosphamide as an immune modulator that augments novel immunotherapeutic approaches. Cancer Immunol Res; 4(5); 377-82. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Radiolabeled Probes Targeting Hypoxia-Inducible Factor-1-Active Tumor Microenvironments

    Directory of Open Access Journals (Sweden)

    Masashi Ueda

    2014-01-01

    Full Text Available Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1 expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α, which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of 18F-FDG or 18F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.

  3. Effect of fractalkine, IP-10 and different signal pathway inhibitors on NK cells in the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Zhao-zhen WU

    2015-07-01

    Full Text Available Objective To investigate the inducing effects of chemokines [fractalkine (FKN, IP-10] and different signal pathway inhibitors on NK cells in the tumor microenvironment (TME. Methods Immunohistochemistry was performed using antibodies for CD56 and DAP10 respectively on human breast carcinoma. Murine macrophages (RAW 264.7 and breast cancer cells (4T1 were co-cultivated at a 1:4 ratio to imitate the TME with NK cells (KY-1 set as the object. RT-PCR was used to determine the mRNA expressions of CD16, NKG2D and NK1.1, and the content of CD107a in the supernatants was determined by ELISA. 10ng/ml FKN and 10ng/ml IP-10 were added into the TME, NK1.1+CD16+KY-1 cells were counted with flow cytometry, migration and adhesion assays were used to assess the related function of KY-1 cells. 4T1 cells were incubated in 10nmol/L of rapamycin, 30μmol/L of LY294002, 500ng/μl of andrographolide and 2mmol/L of wortmannin, the 4T1 tumor supernatants (TSNs were harvested separately and used to incubate RAW 264.7 for 48h, then the expressions of Rae1α and H60a mRNA in 4T1, RAW 264.7 and their mixture were determined by RT-PCR. Results The related indicators of KY-1 cells such as NK1.1+ number, chemotaxis rate, and adhesion function decreased obviously in TME, and the above indices increased after the addition of FKN and IP-10, and some signal pathway inhibitors indirectly promoted NK cells' function in TME, and among them rapamycin was the most efficient one (P<0.05. Conclusion FKN and IP-10 may up-regulate the number and function of NK cells in TME, and rapamycin can promote NK cells' killing function by inducing high expression of NKG2DLs (Rae1, H60a on tumor cells. DOI: 10.11855/j.issn.0577-7402.2015.07.07

  4. Dissecting Time- from Tumor-Related Gene Expression Variability in Bilateral Breast Cancer

    Directory of Open Access Journals (Sweden)

    Maurizio Callari

    2018-01-01

    Full Text Available Metachronous (MBC and synchronous bilateral breast tumors (SBC are mostly distinct primaries, whereas paired primaries and their local recurrences (LRC share a common origin. Intra-pair gene expression variability in MBC, SBC, and LRC derives from time/tumor microenvironment-related and tumor genetic background-related factors and pairs represents an ideal model for trying to dissect tumor-related from microenvironment-related variability. Pairs of tumors derived from women with SBC (n = 18, MBC (n = 11, and LRC (n = 10 undergoing local-regional treatment were profiled for gene expression; similarity between pairs was measured using an intraclass correlation coefficient (ICC computed for each gene and compared using analysis of variance (ANOVA. When considering biologically unselected genes, the highest correlations were found for primaries and paired LRC, and the lowest for MBC pairs. By instead limiting the analysis to the breast cancer intrinsic genes, correlations between primaries and paired LRC were enhanced, while lower similarities were observed for SBC and MBC. Focusing on stromal-related genes, the ICC values decreased for MBC and were significantly different from SBC. These findings indicate that it is possible to dissect intra-pair gene expression variability into components that are associated with genetic origin or with time and microenvironment by using specific gene subsets.

  5. Immunosuppressive drugs and fertility

    OpenAIRE

    Leroy, Clara; Rigot, Jean-Marc; Leroy, Maryse; Decanter, Christine; Le Mapihan, Kristell; Parent, Anne-Sophie; Le Guillou, Anne-Claire; Yakoub-Agha, Ibrahim; Dharancy, Sébastien; Noel, Christian; Vantyghem, Marie-Christine

    2015-01-01

    Immunosuppressive drugs are used in the treatment of inflammatory and autoimmune diseases, as well as in transplantation. Frequently prescribed in young people, these treatments may have deleterious effects on fertility, pregnancy outcomes and the unborn child. This review aims to summarize the main gonadal side effects of immunosuppressants, to detail the effects on fertility and pregnancy of each class of drug, and to provide recommendations on the management of patients who are seen prior ...

  6. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine.

    Science.gov (United States)

    Ogino, Shuji; Fuchs, Charles S; Giovannucci, Edward

    2012-07-01

    Cancers are complex multifactorial diseases. For centuries, conventional organ-based classification system (i.e., breast cancer, lung cancer, colon cancer, colorectal cancer, prostate cancer, lymphoma, leukemia, and so on) has been utilized. Recently, molecular diagnostics has become an essential component in clinical decision-making. However, tumor evolution and behavior cannot accurately be predicted, despite numerous research studies reporting promising tumor biomarkers. To advance molecular diagnostics, a better understanding of intratumor and intertumor heterogeneity is essential. Tumor cells interact with the extracellular matrix and host non-neoplastic cells in the tumor microenvironment, which is influenced by genomic variation, hormones, and dietary, lifestyle and environmental exposures, implicated by molecular pathological epidemiology. Essentially, each tumor possesses its own unique characteristics in terms of molecular make-up, tumor microenvironment and interactomes within and between neoplastic and host cells. Starting from the unique tumor concept and paradigm, we can better classify tumors by molecular methods, and move closer toward personalized cancer medicine and prevention.

  7. The external microenvironment of healing skin wounds

    DEFF Research Database (Denmark)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...

  8. PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer

    Science.gov (United States)

    Yang, Yinhui; Bai, Yang; He, Yundong; Zhao, Yu; Chen, Jiaxiang; Ma, Linlin; Pan, Yunqian; Hinten, Michael; Zhang, Jun; Karnes, R. Jeffrey; Kohli, Manish; Westendorf, Jennifer J.; Li, Benyi; Zhu, Runzhi; Huang, Haojie; Xu, Wanhai

    2018-01-01

    Purpose Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR)reactivation and anti-androgen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design The effect of components of the AKT-RUNX2-osteocalcin (OCN)-GPRC6A-CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human PCa cell lines. Pten knockout mice were employed to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo. Results We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null PCa cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo. Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null PCa including CRPC. PMID:29167276

  9. Radiolabeling of VEGF165 with 99mTc to evaluate VEGFR expression in tumor angiogenesis.

    Science.gov (United States)

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D; Szkudlinski, Mariusz W; Agostinelli, Enzo; Dierckx, Rudi A J O; Signore, Alberto

    2017-06-01

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool to noninvasively image tumor lesions and evaluate the efficacy of anti-angiogenic drugs that block the VEGFR pathway. Aim of the present study was to radiolabel the human VEGF165 analogue with 99mTechnetium (99mTc) and to evaluate the expression of VEGFR in both cancer and endothelial cells in the tumor microenvironment. 99mTc-VEGF showed in vitro binding to HUVEC cells and in vivo to xenograft tumors in mice (ARO, K1 and HT29). By comparing in vivo data with immunohistochemical analysis of excised tumors we found an inverse correlation between 99mTc-VEGF165 uptake and VEGF histologically detected, but a positive correlation with VEGF receptor expression (VEGFR1). Results of our studies indicate that endogenous VEGF production by cancer cells and other cells of tumor microenvironment should be taken in consideration when performing scintigraphy with radiolabeled VEGF, because of possible false negative results due to saturation of VEGFRs.

  10. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment.

    Science.gov (United States)

    Zhang, Jingying; Zhang, Qi; Lou, Yu; Fu, Qihan; Chen, Qi; Wei, Tao; Yang, Jiaqi; Tang, Jinlong; Wang, Jianxin; Chen, Yiwen; Zhang, Xiaoyu; Zhang, Jian; Bai, Xueli; Liang, Tingbo

    2018-05-01

    The development and progression of hepatocellular carcinoma (HCC) are dependent on its local microenvironment. Hypoxia and inflammation are two critical factors that shape the HCC microenvironment; however, the interplay between the two factors and the involvement of cancer cells under such conditions remain poorly understood. We found that tumor-associated macrophages, the primary proinflammatory cells within tumors, secreted more interleukin 1β (IL-1β) under moderate hypoxic conditions due to increased stability of hypoxia inducible factor 1α (HIF-1α). Under persistent and severe hypoxia, we found that the necrotic debris of HCC cells induced potent IL-1β release by tumor-associated macrophages with an M2 phenotype. We further confirmed that the necrotic debris-induced IL-1β secretion was mediated through Toll-like receptor 4/TIR domain-containing adapter-inducing interferon-β/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in a similar, but not identical, fashion to lipopolysaccharide-induced inflammation. Using mass spectrometry, we identified a group of proteins with O-linked glycosylation to be responsible for the necrotic debris-induced IL-1β secretion. Following the increase of IL-1β in the local microenvironment, the synthesis of HIF-1α was up-regulated by IL-1β in HCC cells through cyclooxygenase-2. The epithelial-mesenchymal transition of HCC cells was enhanced by overexpression of HIF-1α. We further showed that IL-1β promoted HCC metastasis in mouse models and was predictive of poor prognosis in HCC patients. Our findings revealed an HIF-1α/IL-1β signaling loop between cancer cells and tumor-associated macrophages in a hypoxic microenvironment, resulting in cancer cell epithelial-mesenchymal transition and metastasis; more importantly, our results suggest a potential role of an anti-inflammatory strategy in HCC treatment. (Hepatology 2018;67:1872-1889). © 2017 by the American Association for the Study of Liver

  11. Bioprinting the Cancer Microenvironment.

    Science.gov (United States)

    Zhang, Yu Shrike; Duchamp, Margaux; Oklu, Rahmi; Ellisen, Leif W; Langer, Robert; Khademhosseini, Ali

    2016-10-10

    Cancer is intrinsically complex, comprising both heterogeneous cellular compositions and microenvironmental cues. During the various stages of cancer initiation, development, and metastasis, cell-cell interactions (involving vascular and immune cells besides cancerous cells) as well as cell-extracellular matrix (ECM) interactions (e.g., alteration in stiffness and composition of the surrounding matrix) play major roles. Conventional cancer models both two- and three-dimensional (2D and 3D) present numerous limitations as they lack good vascularization and cannot mimic the complexity of tumors, thereby restricting their use as biomimetic models for applications such as drug screening and fundamental cancer biology studies. Bioprinting as an emerging biofabrication platform enables the creation of high-resolution 3D structures and has been extensively used in the past decade to model multiple organs and diseases. More recently, this versatile technique has further found its application in studying cancer genesis, growth, metastasis, and drug responses through creation of accurate models that recreate the complexity of the cancer microenvironment. In this review we will focus first on cancer biology and limitations with current cancer models. We then detail the current bioprinting strategies including the selection of bioinks for capturing the properties of the tumor matrices, after which we discuss bioprinting of vascular structures that are critical toward construction of complex 3D cancer organoids. We finally conclude with current literature on bioprinted cancer models and propose future perspectives.

  12. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis

    International Nuclear Information System (INIS)

    Li, Rong; Zhang, Xu; Zhang, Zhuo; Zhang, Xiao; Ran, Bing; Wu, Jianbo; Ren, Meiping; Chen, Ni; Luo, Mao; Deng, Xin; Xia, Jiyi; Yu, Guang; Liu, Jinbo; He, Bing

    2014-01-01

    Platelets play a fundamental role in maintaining hemostasis and have been shown to participate in hematogenous dissemination of tumor cells. Abundant platelets were detected in the tumor microenvironment outside of the blood vessel, thus, platelet -tumor cell interaction outside of the bloodstream may play a role in regulating primary tumor growth and metastasis initiation. However, it is unclear that platelet depletion affects tumor vessel structure and dynamics. Using thrombocytopenia induction in two different tumor-bearing mouse models, tumor tissues were performed by Westernblotting and immunohistochemical staining. Vascular permeability was evaluated by determination of intratumoral Evans blue and Miles vascular permeability assay. Furthermore, microdialysis was used to examining the intratumoral extracellular angiogenic growth factors (VEGF, TGF-β) by ELISA. Platelet depletion showed no change in tumor growth and reduced lung metastasis. Platelet depletion led to reduced tumor hypoxia and Met receptor activation and was associated with a decreased release of MMP-2, 9, PAI-1, VEGF, and TGF-β. Tumor vessels in platelet-depleted mice showed impaired vessel density and maturation. Our findings demonstrate that platelets within the primary tumor microenvironment play a critical role in the induction of vascular permeability and initiation of tumor metastasis

  13. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    International Nuclear Information System (INIS)

    Miettinen, Johanna A.; Pietilae, Mika; Salonen, Riikka J.; Ohlmeier, Steffen; Ylitalo, Kari; Huikuri, Heikki V.; Lehenkari, Petri

    2011-01-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity.

  14. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Pietilae, Mika [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Salonen, Riikka J. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Ohlmeier, Steffen [Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Ylitalo, Kari; Huikuri, Heikki V. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland)

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  15. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Saptak Banerjee

    Full Text Available We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.

  16. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.

    Science.gov (United States)

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the "vicious cycle" concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable "niche" for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  17. Preparation and Evaluation of 99mTc-labeled anti-CD11b Antibody Targeting Inflammatory Microenvironment for Colon Cancer Imaging.

    Science.gov (United States)

    Cheng, Dengfeng; Zou, Weihong; Li, Xiao; Xiu, Yan; Tan, Hui; Shi, Hongcheng; Yang, Xiangdong

    2015-06-01

    CD11b, an active constituent of innate immune response highly expressed in myeloid-derived suppressor cells (MDSCs), can be used as a marker of inflammatory microenvironment, particularly in tumor tissues. In this research, we aimed to fabricate a (99m)Tc-labeled anti-CD11b antibody as a probe for CD11b(+) myeloid cells in colon cancer imaging with single-photon emission computed tomography (SPECT). In situ murine colon tumor model was established in histidine decarboxylase knockout (Hdc(-/-)) mice by chemicals induction. (99m)Tc-labeled anti-CD11b was obtained with labeling yields of over 30% and radiochemical purity of over 95%. Micro-SPECT/CT scans were performed at 6 h post injection to investigate biodistributions and targeting of the probe. In situ colonic neoplasma as small as 3 mm diameters was clearly identified by imaging; after dissection of the animal, anti-CD11b immunofluorescence staining was performed to identify infiltration of CD11b+ MDSCs in microenvironment of colonic neoplasms. In addition, the images displayed intense signal from bone marrow and spleen, which indicated the origin and migration of CD11b(+) MDSCs in vivo, and these results were further proved by flow cytometry analysis. Therefore, (99m)Tc-labeled anti-CD11b SPECT displayed the potential to facilitate the diagnosis of colon tumor in very early stage via detection of inflammatory microenvironment. © 2014 John Wiley & Sons A/S.

  18. Induction immunosuppressive therapies in renal transplantation.

    Science.gov (United States)

    Gabardi, Steven; Martin, Spencer T; Roberts, Keri L; Grafals, Monica

    2011-02-01

    Induction immunosuppressive therapies for patients undergoing renal transplantation are reviewed. The goal of induction therapy is to prevent acute rejection during the early posttransplantation period by providing a high degree of immunosuppression at the time of transplantation. Induction therapy is often considered essential to optimize outcomes, particularly in patients at high risk for poor short-term outcomes. All of the induction immunosuppressive agents currently used are biological agents and are either monoclonal (muromonab-CD3, daclizumab, basiliximab, alemtuzumab) or polyclonal (antithymocyte globulin [equine] or antithymocyte globulin [rabbit]) antibodies. Although antithymocyte globulin (rabbit) is not labeled for induction therapy, it is used for this purpose more than any other agent. Basiliximab is not considered as potent an immunosuppressive agent but has a much more favorable adverse-effect profile compared with antithymocyte globulin (rabbit) and is most commonly used in patients at low risk for acute rejection. Rituximab is being studied for use as induction therapy but to date has not demonstrated any significant benefits over placebo. While head-to-head data are available comparing most induction agents, the final decision on the most appropriate induction therapy for a transplant recipient is highly dependent on preexisting medical conditions, donor characteristics, and the maintenance immunosuppressive regimen to be used. No standard induction immunosuppressive regimen exists for patients undergoing renal transplantation. Antithymocyte globulin (rabbit) is the most commonly used agent, whereas basiliximab appears safer. The choice of regimen depends on the preferences of clinicians and institutions.

  19. Targeting Pancreatic Ductal Adenocarcinoma Acidic Microenvironment

    Science.gov (United States)

    Cruz-Monserrate, Zobeida; Roland, Christina L.; Deng, Defeng; Arumugam, Thiruvengadam; Moshnikova, Anna; Andreev, Oleg A.; Reshetnyak, Yana K.; Logsdon, Craig D.

    2014-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA, accounting for ~40,000 deaths annually. The dismal prognosis for PDAC is largely due to its late diagnosis. Currently, the most sensitive diagnosis of PDAC requires invasive procedures, such as endoscopic ultrasonography, which has inherent risks and accuracy that is highly operator dependent. Here we took advantage of a general characteristic of solid tumors, the acidic microenvironment that is generated as a by-product of metabolism, to develop a novel approach of using pH (Low) Insertion Peptides (pHLIPs) for imaging of PDAC. We show that fluorescently labeled pHLIPs can localize and specifically detect PDAC in human xenografts as well as PDAC and PanIN lesions in genetically engineered mouse models. This novel approach may improve detection, differential diagnosis and staging of PDAC.

  20. Renal transplantation-related risk factors for the development of uterine adenomatoid tumors.

    Science.gov (United States)

    Mizutani, Teruyuki; Yamamuro, Osamu; Kato, Noriko; Hayashi, Kazumasa; Chaya, Junya; Goto, Norihiko; Tsuzuki, Toyonori

    2016-08-01

    •We analyzed the epidemiological factors for clinical manifestations of uterine adenomatoid tumors.•Renal transplantation with immunosuppression therapy is risk factor for the development of uterine adenomatoid tumors.•The length of time on dialysis is risk factor for the development of uterine adenomatoid tumors.

  1. Immunomodulator, immunosuppression of radiation and immune reconstruction

    International Nuclear Information System (INIS)

    Mao Jianping; Fang Jing; Zhou Ying; Cui Yufang; Jiang Zhujun; Du Li; Ma Qiong

    2010-01-01

    There is a refined and complicated regulatory network between immune cells, and between immune cells and secretory factors. The immune system is kept in a homeostasis and equilibrium by positive activation and negative inhibition. In recent years, the mechanisms of immunosuppression in depth for successful allograft transplantation were studied, and many immunosuppressants and immunosuppressive drugs have been developed for clinical use. Most of them are targeting T cell receptors and three kinds of singnal pathways. The receptors of the immunosuppression were either found highly expressed in immune cells after irradiation. To relieve the suppression by regulating the receptors could help the immune reconstruction out of radiation damage. Many new immunoenhancers have been discovered to improve the immune system function for radiation by Toll-like receptors. The search for new immunoenhancers and agents for relieving immunosuppression is of great importance to immune construction for radiation sickness. (authors)

  2. Choline-Deficient-Diet-Induced Fatty Liver Is a Metastasis-Resistant Microenvironment.

    Science.gov (United States)

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kosuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-07-01

    Fatty liver disease is increasing in the developed and developing world. Liver metastasis from malignant lymphoma in the fatty liver is poorly understood. In a previous report, we developed color-coded imaging of the tumor microenvironment (TME) of the murine EL4-RFP malignant lymphoma during metastasis, including the lung. In the present report, we investigated the potential and microenvironment of the fatty liver induced by a choline-deficient diet as a metastatic site in this mouse lymphoma model. C57BL/6-GFP transgenic mice were fed with a choline-deficient diet in order to establish a fatty liver model. EL4-RFP cells were injected in the spleen of normal mice and fatty-liver mice. Metastases in mice with fatty liver or normal liver were imaged with the Olympus SZX7 microscope and the Olympus FV1000 confocal microscope. Metastases of EL4-RFP were observed in the liver, ascites and bone marrow. Primary tumors were imaged in the spleen at the injection site. The fewest metastases were observed in the fatty liver. In addition, the fewest cancer-associated fibroblasts (CAFs) were observed in the fatty liver. The relative metastatic resistance of the fatty liver may be due to the reduced number of CAFs in the fatty livers. The mechanism of the effect of the choline-deficient diet is discussed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  4. Digesting a Path Forward: The Utility of Collagenase Tumor Treatment for Improved Drug Delivery.

    Science.gov (United States)

    Dolor, Aaron; Szoka, Francis C

    2018-06-04

    Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.

  5. Epigenetic silencing of CYP24 in the tumor microenvironment

    Science.gov (United States)

    Johnson, Candace S.; Chung, Ivy; Trump, Donald L.

    2010-01-01

    Calcitriol (1,25 dihydroxycholecalciferol) has significant antitumor activity in vitro and in vivo in a number of tumor model systems. We developed a system for isolation of fresh endothelial cells from tumors and Matrigel environments which demonstrate that CYP24, the catabolic enzyme involved in vitamin D signaling, is epigenetically silenced selectively in tumor-derived endothelial cells (TDEC). TDEC maintain phenotypic characteristics which are distinct from endothelial cells isolated from normal tissues and from Matrigel plugs (MDEC). In TDEC, calcitriol induces G0/G1 arrest, modulates p27 and p21, and induces apoptotic cell death and decreases P-Erk and P-Akt. In contrast, endothelial cells isolated from normal tissues and MDEC are unresponsive to calcitriol-mediated anti-proliferative effects despite intact signaling through the vitamin D receptor (VDR). In TDEC, which is sensitive to calcitriol, the CYP24 promoter is hypermethylated in two CpG island regions located at the 5′end; this hypermethylation may contribute to gene silencing of CYP24. The extent of methylation in these two regions is significantly less in MDEC. Lastly, treatment of TDEC with a DNA methyltransferase inhibitor restores calcitriol-mediated induction of CYP24 and resistance to calcitriol. These data suggest that epigenetic silencing of CYP24 modulates cellular responses to calcitriol. PMID:20304059

  6. The intestinal microenvironment in sepsis.

    Science.gov (United States)

    Fay, Katherine T; Ford, Mandy L; Coopersmith, Craig M

    2017-10-01

    The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients. Published by Elsevier B.V.

  7. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization

    International Nuclear Information System (INIS)

    Jang, Ji-Young; Lee, Jong-Kuen; Jeon, Yoon-Kyung; Kim, Chul-Woo

    2013-01-01

    Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-κB. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells. Epigallocatechin gallate (EGCG) has well known anti-tumor effects; however, no data are available on the influence of EGCG on communication with cancer cells and TAM. Murine breast cancer cell lines, 4T1, was used for in vivo and ex vivo studies. Exosome was extracted from EGCG-treated 4T1 cells, and the change of miRNAs was screened using microarray. Tumor cells or TAM isolated from murine tumor graft were incubated with exosomes derived from EGCG-treated and/or miR-16 inhibitor-transfected 4T1 cells. Chemokines for monocytes (CSF-1 and CCL-2), cytokines both with high (IL-6 and TGF-β) and low (TNF-α) expression in M2 macrophages, and molecules in NF-κB pathway (IKKα and Iκ-B) were evaluated by RT-qPCR or western blot. EGCG suppressed tumor growth in murine breast cancer model, which was associated with decreased TAM and M2 macrophage infiltration. Expression of chemokine for monocytes (CSF-1 and CCL-2) were low in tumor cells from EGCG-treated mice, and cytokines of TAM was skewed from M2- into M1-like phenotype by EGCG as evidenced by decreased IL-6 and TGF-β and increased TNF-α. Ex vivo incubation of isolated tumor cells with EGCG inhibited the CSF-1 and CCL-2 expression. Ex vivo incubation of TAM with exosomes from EGCG-treated 4T1 cells led to IKKα suppression and concomitant I-κB accumulation; increase of IL-6 and TGF-β; and, decrease of TNF-α. EGCG up-regulated miR-16 in 4T1 cells and in the exosomes. Treatment of tumor cells or TAM with exosomes derived from EGCG-treated and miR-16-knock-downed 4T1 cells restored the above effects on chemokines, cytokines, and NF-κB pathway elicited by EGCG-treated exosomes. Our data demonstrate that EGCG up-regulates miR-16 in

  8. Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Hongbo ZOU

    2016-11-01

    Full Text Available As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.

  9. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  10. The oncogenic potential of three different 7, 12-dimethylbenz (a)anthracene transformed C3H/10T1/2 cell clones at various passages and the importance of the mode of immunosuppression

    International Nuclear Information System (INIS)

    Saxholm, H.J.K.

    1979-01-01

    The oncogenic potential of C3H/10T1/2 cells which were transformed in vitro with 7,12-dimethylbenz(a)anthracene is reported. The ability of the cells to grow as malignant tumors in syngeneic immunosuppressed mice was used as parameter for oncogenic potential. Cells of types I, II and III were assayed at several dosage levels, i.e., 10 4 , 10 5 or 10 6 cells per inoculum, with or without immunosuppression by antithymocyte serum globulin fraction. The studies were performed in several strains of host animals, i.e., male and female syngeneic C3H mice supplied by the National Cancer Institute, C3H mice supplied by Charles River and nude, athymic female mice. Morphological transformation preceded oncological transformation, and type I cells could not be established as tumors. Type II and type III cells developed oncogenic potential only after several passages in culture. Oncogenic potential was pronounced in the type III cells, and less strongly expressed in type II cells. Also tested were different methods of immunosuppression of the animal against the expression of the oncogenic potential of DMBA transformed C3H/10T1/2 cells from type II and III clones. Immunosuppression by antithymocyte serum globulin fraction was an effective method of preparing the syngeneic host so that cells with a low oncogenic potential would grow as tumors, whereas total body irradiation was not effective. For cells with a high oncogenic potential both ways of immunosuppression were sufficient. Admixing lethally irradiated cells in the cell inoculum slightly enhanced the tumor development from cells with low oncogenic potential and such addition was clearly effective for cells with a higher oncogenic potential, both for the antibody-treated and for the irradiated series. The findings were reproducible. The study stresses the importance of immunosuppression by antithymocyte globulins for detecting in vitro transformed weakly oncogenic cells. (author)

  11. Tumor mutational load and immune parameters across metastatic Renal Cell Carcinoma (mRCC) risk groups

    Science.gov (United States)

    de Velasco, Guillermo; Miao, Diana; Voss, Martin H.; Hakimi, A. Ari; Hsieh, James J.; Tannir, Nizar M.; Tamboli, Pheroze; Appleman, Leonard J.; Rathmell, W. Kimryn; Van Allen, Eliezer M.; Choueiri, Toni K.

    2016-01-01

    Patients with metastatic renal cell carcinoma (mRCC) have better overall survival when treated with nivolumab, a cancer immunotherapy that targets the immune checkpoint inhibitor programmed cell death 1 (PD-1), rather than everolimus (a chemical inhibitor of mTOR and immunosuppressant). Poor-risk mRCC patients treated with nivolumab seemed to experience the greatest overall survival benefit, compared to patients with favorable or intermediate-risk, in an analysis of the CheckMate-025 trial subgroup of the Memorial Sloan Kettering Cancer Center (MSKCC) prognostic risk groups. Here we explore whether tumor mutational load and RNA expression of specific immune parameters could be segregated by prognostic MSKCC risk strata and explain the survival seen in the poor-risk group. We queried whole exome transcriptome data in RCC patients (n = 54) included in The Cancer Genome Atlas that ultimately developed metastatic disease or were diagnosed with metastatic disease at presentation and did not receive immune checkpoint inhibitors. Nonsynonymous mutational load did not differ significantly by MSKCC risk group, nor was the expression of cytolytic genes –granzyme A and perforin – or selected immune checkpoint molecules different across MSKCC risk groups. In conclusion, this analysis found that mutational load and expression of markers of an active tumor microenvironment did not correlate with MSKCC risk prognostic classification in mRCC. PMID:27538576

  12. CXCR7 maintains osteosarcoma invasion after CXCR4 suppression in bone marrow microenvironment.

    Science.gov (United States)

    Han, Yan; Wu, Chunlei; Wang, Jing; Liu, Na

    2017-05-01

    The major cause of death in osteosarcoma is the invasion and metastasis. Better understanding of the molecular mechanism of osteosarcoma invasion is essential in developing effective tumor-suppressive therapies. Interaction between chemokine receptors plays a crucial role in regulating osteosarcoma invasion. Here, we investigated the relationship between CXCR7 and CXCR4 in osteosarcoma invasion induced by bone marrow microenvironment. Human bone marrow mesenchymal stem cells were co-cultured with osteosarcoma cells to mimic actual bone marrow microenvironment. Osteosarcoma cell invasion and CXCL12/CXCR4 activation were observed within this co-culture model. Interestingly, in this co-culture model, osteosarcoma cell invasion was not inhibited by suppressing CXCR4 expression with neutralizing antibody or specific inhibitor AMD3100. Downstream signaling extracellular signal-regulated kinase and signal transducer and activator of transcription 3 were not significantly affected by CXCR4 inhibition. However, suppressing CXCR4 led to CXCR7 upregulation. Constitutive expression of CXCR7 could maintain osteosarcoma cell invasion when CXCR4 was suppressed. Simultaneously, inhibiting CXCR4 and CXCR7 compromised osteosarcoma invasion in co-culture system and suppressed extracellular signal-regulated kinase and signal transducer and activator of transcription 3 signals. Moreover, bone marrow microenvironment, not CXCL12 alone, is required for CXCR7 activation after CXCR4 suppression. Taken together, suppressing CXCR4 is not enough to impede osteosarcoma invasion in bone marrow microenvironment since CXCR7 is activated to sustain invasion. Therefore, inhibiting both CXCR4 and CXCR7 could be a promising strategy in controlling osteosarcoma invasion.

  13. Cellular characterization of the peritumoral edema zone in malignant brain tumors

    International Nuclear Information System (INIS)

    Engelhorn, T.; Schwarz, M.A.; Savaskan, N.E.

    2009-01-01

    Brain edema is a hallmark of human malignant brain tumors and contributes to the clinical course and outcome of brain tumor patients. The so-called perifocal edema or brain swelling imposes in T2-weighted MR scans as high intensity areas surrounding the bulk tumor mass. The mechanisms of this increased fluid attraction and the cellular composition of the microenvironment are only partially understood. In this study, we focus on imaging perifocal edema in orthotopically implanted gliomas in rodents and correlate perifocal edema with immunohistochemical markers. We identified that areas of perifocal edema not only include the tumor invasion zone, but also are associated with increased glial fibrillary acidic protein (GFAP) and aquaporin-4 expression surrounding the bulk tumor mass. Moreover, a high number of activated microglial cells expressing CD11b and macrophage migration inhibitory factor (MIF) accumulate at the tumor border. Thus, the area of perifocal edema is mainly dominated by reactive changes of vital brain tissue. These data corroborate that perifocal edema identified in T2-weighted MR scans are characterized with alterations in glial cell distribution and marker expression forming an inflammatory tumor microenvironment. (author)

  14. Generic immunosuppression in transplantation: current evidence and controversial issues.

    Science.gov (United States)

    El Hajj, Sandra; Kim, Miae; Phillips, Karen; Gabardi, Steven

    2015-05-01

    The overall success of organ transplantation in the 21st century has been predicated, in part, on the use of newer, more potent, and selective immunosuppressive agents. However, the high cost of lifelong immunosuppression represents a financial burden for many patients. In the past 15 years, regulatory agencies in Europe and America have approved several generic immunosuppressants. One concern is whether the conversion between innovator and generic immunosuppressants will prove to be problematic. This manuscript aims to compare and contrast the bioequivalence requirements among regulatory authorities in the USA, Europe, and Canada, evaluate published studies of generic immunosuppressants in transplant recipients, summarize consensus statements made by transplant organizations and discuss how to engage patients in discussion regarding the choice between innovator and generic immunosuppressants.

  15. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    International Nuclear Information System (INIS)

    Hindriksen, Sanne; Bijlsma, Maarten F.

    2012-01-01

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer

  16. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Shicheng Su; Ling Lin; Yunjie Zeng; Nengtai Ouyang; Xiuying Cui; Herui Yao; Fengxi Su; Jian-dong Huang; Judy Lieberman; Qiang Liu; Erwei Song; Jianyou Liao; Jiang Liu; Di Huang; Chonghua He; Fei Chen; LinBing Yang; Wei Wu; Jianing Chen

    2017-01-01

    The origin of tumor-infiltrating Tregs,critical mediators of tumor immunosuppression,is unclear.Here,we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires,while hardly overlap with circulating Tregs,suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs.Furthermore,the abundance of naive CD4+ T cells and Tregs is closely correlated,both indicating poor prognosis for breast cancer patients.Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCLl8-producing macrophages.Moreover,adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner.In human breast cancer xenografts in humanized mice,blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3,a CCL18 receptor,significantly reduces intratumoral Tregs and inhibits tumor progression.These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ.Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy.

  18. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer

    Science.gov (United States)

    Su, Shicheng; Liao, Jianyou; Liu, Jiang; Huang, Di; He, Chonghua; Chen, Fei; Yang, LinBing; Wu, Wei; Chen, Jianing; Lin, Ling; Zeng, Yunjie; Ouyang, Nengtai; Cui, Xiuying; Yao, Herui; Su, Fengxi; Huang, Jian-dong; Lieberman, Judy; Liu, Qiang; Song, Erwei

    2017-01-01

    The origin of tumor-infiltrating Tregs, critical mediators of tumor immunosuppression, is unclear. Here, we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires, while hardly overlap with circulating Tregs, suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs. Furthermore, the abundance of naive CD4+ T cells and Tregs is closely correlated, both indicating poor prognosis for breast cancer patients. Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCL18-producing macrophages. Moreover, adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner. In human breast cancer xenografts in humanized mice, blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3, a CCL18 receptor, significantly reduces intratumoral Tregs and inhibits tumor progression. These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ. Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy. PMID:28290464

  19. Current trends in immunosuppressive therapies for renal transplant recipients.

    Science.gov (United States)

    Lee, Ruth-Ann; Gabardi, Steven

    2012-11-15

    Current trends in immunosuppressive therapies for renal transplant recipients are reviewed. The common premise for immunosuppressive therapies in renal transplantation is to use multiple agents to work on different immunologic targets. The use of a multidrug regimen allows for pharmacologic activity at several key steps in the T-cell replication process and lower dosages of each individual agent, thereby producing fewer drug-related toxicities. In general, there are three stages of clinical immunosuppression: induction therapy, maintenance therapy, and treatment of an established acute rejection episode. Only immunosuppressive therapies used for maintenance therapy are discussed in detail in this review. The most common maintenance immunosuppressive agents can be divided into five classes: (1) the calcineurin inhibitors (CNIs) (cyclosporine and tacrolimus), (2) costimulation blockers (belatacept), (3) mammalian target of rapamycin inhibitors (sirolimus and everolimus), (4) antiproliferatives (azathioprine and mycophenolic acid derivatives), and (5) corticosteroids. Immunosuppressive regimens vary among transplantation centers but most often include a CNI and an adjuvant agent, with or without corticosteroids. Selection of appropriate immunosuppressive regimens should be patient specific, taking into account the medications' pharmacologic properties, adverse-event profile, and potential drug-drug interactions, as well as the patient's preexisting diseases, risk of rejection, and medication regimen. Advancements in transplant immunosuppression have resulted in a significant reduction in acute cellular rejection and a modest increase in long-term patient and graft survival. Because the optimal immunosuppression regimen is still unknown, immunosuppressant use should be influenced by institutional preference and tailored to the immunologic risk of the patient and adverse-effect profile of the drug.

  20. Chlorphenesin: an antigen-associated immunosuppressant.

    Science.gov (United States)

    Whang, H Y; Neter, E

    1970-07-01

    Chlorphenesin (3-p-chlorophenoxy-1,2-propanediol), when injected intravenously together with either of two common bacterial antigens, inhibits the antibody response of the rabbit. The antigens studied are those common to Enterobacteriaceae and to gram-positive bacteria. The immunosuppression is contingent upon incubation of chlorphenesin and antigen in vitro prior to administration, since separate injection of antigen and inhibitor or of mixtures without prior incubation yields undiminished antibody response. Chlorphenesin, as shown by hemagglutination-inhibition tests, does not alter the antigenic determinants, because antibody neutralization occurs in the presence or absence of the drug. The immunosuppressive effect is reversible, since precipitation of chlorphenesin at 4 C substantially restores immunogenicity. Animals immunized with antigen-drug mixtures, which fail to respond with significant antibody production, nonetheless are immunologically primed. It is concluded that chlorphenesin represents another example of antigen-associated immunosuppressants.

  1. Connective tissue of cervical carcinoma xenografts: associations with tumor hypoxia and interstitial fluid pressure and its assessment by DCE-MRI and DW-MRI.

    Science.gov (United States)

    Hompland, Tord; Ellingsen, Christine; Galappathi, Kanthi; Rofstad, Einar K

    2014-01-01

    Abstract Background. A high fraction of stroma in malignant tissues is associated with tumor progression, metastasis, and poor prognosis. Possible correlations between the stromal and physiologic microenvironments of tumors and the potential of dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) in quantification of the stromal microenvironment were investigated in this study. Material and methods. CK-160 cervical carcinoma xenografts were used as preclinical tumor model. A total of 43 tumors were included in the study, and of these tumors, 17 were used to search for correlations between the stromal and physiologic microenvironments, 11 were subjected to DCE-MRI, and 15 were subjected to DW-MRI. DCE-MRI and DW-MRI were carried out at 1.5 T with a clinical MR scanner and a slotted tube resonator transceiver coil constructed for mice. Fraction of connective tissue (CTFCol) and fraction of hypoxic tissue (HFPim) were determined by immunohistochemistry. A Millar SPC 320 catheter was used to measure tumor interstitial fluid pressure (IFP). Results. CTFCol showed a positive correlation to IFP and an inverse correlation to HFPim. The apparent diffusion coefficient assessed by DW-MRI was inversely correlated to CTFCol, whereas no correlation was found between DCE-MRI-derived parameters and CTFCol. Conclusion. DW-MRI is a potentially useful method for characterizing the stromal microenvironment of tumors.

  2. Understanding and Targeting Tumor Microenvironment in Prostate Cancer to Inhibit Tumor Progression and Castration Resistance

    Science.gov (United States)

    2016-10-01

    cancer-secreted chemokine to attract Cxcr2-expressing MDSCs and, correspondingly, pharmacological inhibition of Cxcr2 impeded tumor progression...impact of pharmacological inhibition of Cxcl5 and Cxcr2 on MDSCs using the transwell migration assay 26 . First, anti-Cxcl5 neutralizing antibody...and MRI . (B) Generation of the CPPSML chimera model. (C) Fluorescence microscopy and H&E image of snap frozen prostate tumor from chimera showing that

  3. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis

    Directory of Open Access Journals (Sweden)

    Giulia Fregni

    2018-03-01

    Full Text Available Metastasis is a multi-step process in which direct crosstalk between cancer cells and their microenvironment plays a key role. Here, we assessed the effect of paired tumor-associated and normal lung tissue mesenchymal stem cells (MSCs on the growth and dissemination of primary human lung carcinoma cells isolated from the same patients. We show that the tumor microenvironment modulates MSC gene expression and identify a four-gene MSC signature that is functionally implicated in promoting metastasis. We also demonstrate that tumor-associated MSCs induce the expression of genes associated with an aggressive phenotype in primary lung cancer cells and selectively promote their dissemination rather than local growth. Our observations provide insight into mechanisms by which the stroma promotes lung cancer metastasis. Keywords: Tumor-associated MSCs, lung cancer, metastasis, GREM1, LOXL2, ADAMTS12, ITGA11

  4. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Martin eAugsten

    2014-03-01

    Full Text Available Tumor- or cancer-associated fibroblasts (CAFs are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular ´polarization´, previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.

  5. Hypoxia Promotes Tumor Growth in Linking Angiogenesis to Immune Escape

    OpenAIRE

    Chouaib, Salem; Messai, Yosra; Couve, Sophie; Escudier, Bernard; Hasmim, Meriem; Noman, Muhammad Zaeem

    2012-01-01

    Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection. Tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that a...

  6. Merkel Cell Carcinoma in Immunosuppressed Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Janice E. [Mayo Clinic College of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (United States); Brewer, Jerry D., E-mail: brewer.jerry@mayo.edu [Department of Dermatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (United States)

    2014-06-27

    Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous malignancy. The infectivity of Merkel cell polyomavirus (MCPyV), an apparent agent in MCC development, may be exacerbated with impaired immune responses. This paper reviews relevant data regarding the role of immunosuppression in the development of MCC and describes modes of immunodeficient states. Because of the inherently low incidence rate of MCC, several case studies and series are also briefly mentioned to provide a more comprehensive summary of MCC in the setting of immunosuppression. We describe immunosuppressed patients who have experienced excessive UV radiation, organ transplantation, human immunodeficiency virus infection/AIDS, autoimmune diseases, and lymphoproliferative disorders. Iatrogenic forms of immunosuppression are also highlighted. Studies that quantify risks consistently report that individuals with a history of solid organ transplantation, autoimmune diseases, AIDS, and/or lymphoproliferative diseases have a significantly elevated risk of developing MCC. Overall, immunocompromised patients also appear to have an early onset and more aggressive course of MCC, with poorer outcomes. Recommendations for multidisciplinary approaches are proposed to effectively prevent and manage MCC in these patients.

  7. Merkel Cell Carcinoma in Immunosuppressed Patients

    International Nuclear Information System (INIS)

    Ma, Janice E.; Brewer, Jerry D.

    2014-01-01

    Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous malignancy. The infectivity of Merkel cell polyomavirus (MCPyV), an apparent agent in MCC development, may be exacerbated with impaired immune responses. This paper reviews relevant data regarding the role of immunosuppression in the development of MCC and describes modes of immunodeficient states. Because of the inherently low incidence rate of MCC, several case studies and series are also briefly mentioned to provide a more comprehensive summary of MCC in the setting of immunosuppression. We describe immunosuppressed patients who have experienced excessive UV radiation, organ transplantation, human immunodeficiency virus infection/AIDS, autoimmune diseases, and lymphoproliferative disorders. Iatrogenic forms of immunosuppression are also highlighted. Studies that quantify risks consistently report that individuals with a history of solid organ transplantation, autoimmune diseases, AIDS, and/or lymphoproliferative diseases have a significantly elevated risk of developing MCC. Overall, immunocompromised patients also appear to have an early onset and more aggressive course of MCC, with poorer outcomes. Recommendations for multidisciplinary approaches are proposed to effectively prevent and manage MCC in these patients

  8. Immune system and melanoma biology: a balance between immunosurveillance and immune escape.

    Science.gov (United States)

    Passarelli, Anna; Mannavola, Francesco; Stucci, Luigia Stefania; Tucci, Marco; Silvestris, Francesco

    2017-12-01

    Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of "targeted therapies" on tumor microenvironment for combination strategies.

  9. Influence of the neural microenvironment on prostate cancer.

    Science.gov (United States)

    Coarfa, Christian; Florentin, Diego; Putluri, NagiReddy; Ding, Yi; Au, Jason; He, Dandan; Ragheb, Ahmed; Frolov, Anna; Michailidis, George; Lee, MinJae; Kadmon, Dov; Miles, Brian; Smith, Christopher; Ittmann, Michael; Rowley, David; Sreekumar, Arun; Creighton, Chad J; Ayala, Gustavo

    2018-02-01

    Nerves are key factors in prostate cancer (PCa), but the functional role of innervation in prostate cancer is poorly understood. PCa induced neurogenesis and perineural invasion (PNI), are associated with aggressive disease. We denervated rodent prostates chemically and physically, before orthotopically implanting cancer cells. We also performed a human neoadjuvant clinical trial using botulinum toxin type A (Botox) and saline in the same patient, before prostatectomy. Bilateral denervation resulted in reduced tumor incidence and size in mice. Botox treatment in humans resulted in increased apoptosis of cancer cells in the Botox treated side. A similar denervation gene array profile was identified in tumors arising in denervated rodent prostates, in spinal cord injury patients and in the Botox treated side of patients. Denervation induced exhibited a signature gene profile, indicating translation and bioenergetic shutdown. Nerves also regulate basic cellular functions of non-neoplastic epithelial cells. Nerves play a role in the homeostasis of normal epithelial tissues and are involved in prostate cancer tumor survival. This study confirms that interactions between human cancer and nerves are essential to disease progression. This work may make a major impact in general cancer treatment strategies, as nerve/cancer interactions are likely important in other cancers as well. Targeting the neural microenvironment may represent a therapeutic approach for the treatment of human prostate cancer. © 2017 The Authors. The Prostate Published by Wiley Periodicals, Inc.

  10. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer

    International Nuclear Information System (INIS)

    Dayan, Dan; Salo, Tuula; Salo, Sirpa; Nyberg, Pia; Nurmenniemi, Sini; Costea, Daniela Elena; Vered, Marilena

    2012-01-01

    We characterized tumor microenvironment (TME) components of mobile tongue (MT) cancer patients in terms of overall inflammatory infiltrate, focusing on the protumorigenic/anti-inflammatory phenotypes and on cancer-associated fibroblasts (CAFs) in order to determine their interrelations and associations with clinical outcomes. In addition, by culturing tongue carcinoma cells (HSC-3) on a three-dimensional myoma organotypic model that mimics TME, we attempted to investigate the possible existence of a molecular crosstalk between cancer cells and TME components. Analysis of 64 cases of MT cancer patients revealed that the overall density of the inflammatory infiltrate was inversely correlated to the density of CAFs (P = 0.01), but that the cumulative density of the protumorigenic/anti-inflammatory phenotypes, including regulatory T cells (Tregs, Foxp3+), tumor-associated macrophages (TAM2, CD163+), and potentially Tregs-inducing immune cells (CD80+), was directly correlated with the density of CAFs (P = 0.01). The hazard ratio (HR) for recurrence in a TME rich in CD163+ Foxp3+ CD80+ was 2.9 (95% CI 1.03–8.6, P = 0.043 compared with low in CD163+ Foxp3+ CD80+). The HR for recurrence in a TME rich in CAFs was 4.1 (95% confidence interval [CI] 1.3–12.8, P = 0.012 compared with low in CAFs). In vitro studies showed cancer-derived exosomes, epithelial–mesenchymal transition process, fibroblast-to-CAF-like cell transdifferentiation, and reciprocal interrelations between different cytokines suggesting the presence of molecular crosstalk between cancer cells and TME components. Collectively, these results highlighted the emerging need of new therapies targeting this crosstalk between the cancer cells and TME components in MT cancer

  11. Mechanoregulatory tumor-stroma crosstalk in pancreatic cancer: Measurements of the effects of extracellular matrix mechanics on tumor growth behavior, and vice-versa, to inform therapeutics

    Science.gov (United States)

    Celli, Jonathan; Jones, Dustin; El-Hamidi, Hamid; Cramer, Gwendolyn; Hanna, William; Caide, Andrew; Jafari, Seyedehrojin

    The rheological properties of the extracellular matrix (ECM) have been shown to play key roles in regulating tumor growth behavior through mechanotranduction pathways. The role of the mechanical microenvironment may be particularly important tumors of the pancreas, noted for an abundance of rigid fibrotic stroma, implicated in therapeutic resistance. At the same time, cancer cells and their stromal partners (e.g. tumor associated fibroblasts) continually alter the mechanical microenvironment in response to extracellular physical and biochemical cues as part of a two-way mechanoregulatory dialog. Here, we describe experimental studies using 3D pancreatic cell cultures with customized mechanical properties, combined with optical microrheology to provide insight into tumor-driven matrix remodeling. Quantitative microscopy provides measurements of phenotypic changes accompanying systematic variation of ECM composition in collagen and laminin-rich basement membrane admixtures, while analysis of the trajectories of passive tracer particles embedded in ECM report dynamic changes in heterogeneity, microstructure and local shear modulus accompanying both ECM stiffening (fibrosis) processes, and ECM degradation near invading cells. We gratefully acknowledge funding from the National Cancer Institute, R00CA155045 (PI: Celli).

  12. Functional histology of tumors as a basis of molecular imaging

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.; Bussink, J.; Rijken, P.F.; Van Der Kogel, A.; Kaanders, J.H.

    2003-01-01

    The aim of this study was to characterize the various elements of the microenvironment and their interrelationships by quantitative image analysis. Tumor cell proliferation, hypoxia, and apoptosis are detected by immunohistochemical methods, and mapped in relation to the vasculature. This allows quantitative relationships to be measured in the context of tissue structure. Guided by e.g., gene expression profiles for hypoxia induced-genes, several molecular markers of tumor hypoxia were identified and are immunohistochemically detectable. We have thus far concentrated on the glucose transporters glut-1 and glut-3, as well as a pH-regulating enzyme, carbonic anhydrase IX. The extent and distribution of hypoxia is assessed by administering nitroimidazole-based markers such as pimonidazole, that can be detected immunohistochemically. Multiple hypoxia markers (CCI-103F, pimonidazole) can be used to study the effects of modifiers of perfusion or oxygenation on the distribution and dynamics of hypoxic cells in the same tumor. Proliferating cells are detected by thymidine analogues. Apoptotic cells are imaged by TUNEL and caspase-3 detection. In xenografted human tumors, examples of the use of quantitative imaging of hypoxia and proliferation are the study of reoxygenation after irradiation, or the investigation of the lifespan and dynamics of hypoxic cell populations over time. Perturbation of the microenvironment after cytotoxic treatments has been investigated by co-registration of the various markers, e.g. after treatment with the hypoxic cytotoxin tirapazamine. The combination of well-timed administration of external markers of hypoxia and proliferation with the detection of intrinsic molecular markers followed by quantitative image-registration yields a comprehensive view of the dynamics of the microenvironment in individual tumors

  13. Immunotherapy for the Treatment of Glioblastoma

    Science.gov (United States)

    Thomas, Alissa A.; Ernstoff, Marc S.; Fadul, Camilo E.

    2012-01-01

    Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma. PMID:22290259

  14. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling

    DEFF Research Database (Denmark)

    Barker, Holly E; Bird, Demelza; Lang, Georgina

    2013-01-01

    models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular....... Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of α...

  15. Increased risk of histologically defined cancer subtypes in human immunodeficiency virus-infected individuals: clues for possible immunosuppression-related or infectious etiology.

    Science.gov (United States)

    Shiels, Meredith S; Engels, Eric A

    2012-10-01

    Malignancies that occur in excess among human immunodeficiency virus (HIV)-infected individuals may be caused by immunosuppression or infections. Because histologically defined cancer subtypes have not been systematically evaluated, their risk was assessed among people with acquired immunodeficiency syndrome (AIDS). Analyses included 569,268 people with AIDS from the HIV/AIDS Cancer Match Study, a linkage of 15 US population-based HIV/AIDS and cancer registries during 1980 to 2007. Standardized incidence ratios (SIRs) were estimated to compare cancer risk in people with AIDS to the general population overall, and stratified by age, calendar period (a proxy of changing HIV therapies), and time since onset of AIDS (a proxy of immunosuppression). Sixteen individual cancer histologies or histology groupings manifested significantly elevated SIRs. Risks were most elevated for adult T cell leukemia/lymphoma (SIR = 11.3), neoplasms of histiocytes and accessory lymphoid cells (SIR = 10.7), giant cell carcinoma (SIR = 7.51), and leukemia not otherwise specified (SIR = 6.69). SIRs ranged from 1.4 to 4.6 for spindle cell carcinoma, bronchioloalveolar adenocarcinoma, adnexal and skin appendage neoplasms, sarcoma not otherwise specified, spindle cell sarcoma, leiomyosarcoma, mesothelioma, germ cell tumors, plasma cell tumors, immunoproliferative diseases, acute lymphocytic leukemia, and myeloid leukemias. For several of these cancer subtypes, significant declines in SIRs were observed across calendar periods (consistent with decreasing risk with improved HIV therapies) or increase in SIRs with time since onset of AIDS (ie, prolonged immunosuppression). The elevated risk of certain cancer subtypes in people with AIDS may point to an etiologic role of immunosuppression or infection. Future studies are needed to further investigate these associations and evaluate candidate infectious agents. Copyright © 2012 American Cancer Society.

  16. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T.

    Science.gov (United States)

    Yoon, Dok Hyun; Osborn, Mark J; Tolar, Jakub; Kim, Chong Jai

    2018-01-24

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  17. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts: Combination or Built-In CAR-T

    Directory of Open Access Journals (Sweden)

    Dok Hyun Yoon

    2018-01-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  18. Immunological Evasion in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Roxana Magaña-Maldonado

    2016-01-01

    Full Text Available Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.

  19. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells.

    Science.gov (United States)

    Shen, Haifa; Sun, Tong; Hoang, Hanh H; Burchfield, Jana S; Hamilton, Gillian F; Mittendorf, Elizabeth A; Ferrari, Mauro

    2017-12-01

    Cancer immunotherapy has become arguably the most promising advancement in cancer research and therapy in recent years. The efficacy of cancer immunotherapy is critically dependent on specific physiological and physical processes - collectively referred to as transport barriers - including the activation of T cells by antigen presenting cells, T cells migration to and penetration into the tumor microenvironment, and movement of nutrients and other immune cells through the tumor microenvironment. Nanotechnology-based approaches have great potential to help overcome these transport barriers. In this review, we discuss the ways that nanotechnology is being leveraged to improve the efficacy and potency of various cancer immunotherapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Shared liver-like transcriptional characteristics in liver metastases and corresponding primary colorectal tumors.

    Science.gov (United States)

    Cheng, Jun; Song, Xuekun; Ao, Lu; Chen, Rou; Chi, Meirong; Guo, You; Zhang, Jiahui; Li, Hongdong; Zhao, Wenyuan; Guo, Zheng; Wang, Xianlong

    2018-01-01

    Background & Aims : Primary tumors of colorectal carcinoma (CRC) with liver metastasis might gain some liver-specific characteristics to adapt the liver micro-environment. This study aims to reveal potential liver-like transcriptional characteristics associated with the liver metastasis in primary colorectal carcinoma. Methods: Among the genes up-regulated in normal liver tissues versus normal colorectal tissues, we identified "liver-specific" genes whose expression levels ranked among the bottom 10% ("unexpressed") of all measured genes in both normal colorectal tissues and primary colorectal tumors without metastasis. These liver-specific genes were investigated for their expressions in both the primary tumors and the corresponding liver metastases of seven primary CRC patients with liver metastasis using microdissected samples. Results: Among the 3958 genes detected to be up-regulated in normal liver tissues versus normal colorectal tissues, we identified 12 liver-specific genes and found two of them, ANGPTL3 and CFHR5 , were unexpressed in microdissected primary colorectal tumors without metastasis but expressed in both microdissected liver metastases and corresponding primary colorectal tumors (Fisher's exact test, P colorectal tumors may express some liver-specific genes which may help the tumor cells adapt the liver micro-environment.

  1. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment.

    Directory of Open Access Journals (Sweden)

    Shirly Sieh

    Full Text Available Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to

  2. Nanomedicine Strategies to Target Tumor-Associated Macrophages

    NARCIS (Netherlands)

    Binnemars-Postma, Karin A.; Storm, G; Prakash, Jai

    2017-01-01

    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are

  3. Nanomedicine strategies to target tumor-associated macrophages

    NARCIS (Netherlands)

    Binnemars-Postma, Karin; Storm, Gert; Prakash, Jai

    2017-01-01

    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are

  4. DNA released by leukemic cells contributes to the disruption of the bone marrow microenvironment

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marta; Karafiát, Vít; Pajer, Petr; Kluzáková, E.; Jarkovská, Karla; Peková, S.; Krutílková, L.; Dvořák, Michal

    2013-01-01

    Roč. 32, č. 44 (2013), s. 5201-5209 ISSN 0950-9232 R&D Projects: GA AV ČR KAN200520801; GA MŠk(CZ) LC06061; GA ČR GA204/06/1728; GA ČR GA301/09/1727 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 ; RVO:67985904 Keywords : acute leukemia * tumor microenvironment * extracellular nucleosomes * extracellular DNA * DNA damage response * cell death Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.559, year: 2013

  5. A targeted mutation within the feline leukemia virus (FeLV) envelope protein immunosuppressive domain to improve a canarypox virus-vectored FeLV vaccine.

    Science.gov (United States)

    Schlecht-Louf, Géraldine; Mangeney, Marianne; El-Garch, Hanane; Lacombe, Valérie; Poulet, Hervé; Heidmann, Thierry

    2014-01-01

    We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins that is critical for virus propagation in vivo. The envelope-mediated immunosuppression was assessed by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation (i) specifically abolishes immunosuppressive activity without affecting the "mechanical" function of the envelope protein and (ii) significantly enhances humoral and cellular immune responses elicited against the virus. The objective of this work was to study the immunosuppressive activity of the envelope protein (p15E) of feline leukemia virus (FeLV) and evaluate the effect of its abolition on the efficacy of a vaccine against FeLV. Here we demonstrate that the FeLV envelope protein is immunosuppressive in vivo and that this immunosuppressive activity can be "switched off" by targeted mutation of a specific amino acid. As a result of the introduction of the mutated envelope sequence into a previously well characterized canarypox virus-vectored vaccine (ALVAC-FeLV), the frequency of vaccine-induced FeLV-specific gamma interferon (IFN-γ)-producing cells was increased, whereas conversely, the frequency of vaccine-induced FeLV-specific interleukin-10 (IL-10)-producing cells was reduced. This shift in the IFN-γ/IL-10 response was associated with a higher efficacy of ALVAC-FeLV against FeLV infection. This study demonstrates that FeLV p15E is immunosuppressive in vivo, that the immunosuppressive domain of p15E can modulate the FeLV-specific immune response, and that the efficacy of FeLV vaccines can be enhanced by inhibiting the immunosuppressive activity of the IS domain through an appropriate mutation.

  6. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment.

    Science.gov (United States)

    Burns, Michael B; Montassier, Emmanuel; Abrahante, Juan; Priya, Sambhawa; Niccum, David E; Khoruts, Alexander; Starr, Timothy K; Knights, Dan; Blekhman, Ran

    2018-06-20

    Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction.

  7. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I.

    Science.gov (United States)

    Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen

    2011-11-15

    The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.

  8. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    oxygenation and subsequent radiation response of tumors. We surmise that these cells are preferentially stimulated to divide in the tumor microenvironment, thereby inducing the significant increase in tumor growth observed and that the use of injected BOECs could be a viable approach to modulate the tumor microenvironment for therapeutic gain. Conversely, agents or approaches to block their recruitment and integration of BOECs into primary or metastatic lesions may be an effective way to restrain cancer progression before or after other treatments are applied.

  9. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    oxygenation and subsequent radiation response of tumors. We surmise that these cells are preferentially stimulated to divide in the tumor microenvironment, thereby inducing the significant increase in tumor growth observed and that the use of injected BOECs could be a viable approach to modulate the tumor microenvironment for therapeutic gain. Conversely, agents or approaches to block their recruitment and integration of BOECs into primary or metastatic lesions may be an effective way to restrain cancer progression before or after other treatments are applied

  10. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer.

    Science.gov (United States)

    Daman, Zahra; Faghihi, Homa; Montazeri, Hamed

    2018-05-02

    Recently, salinomycin (SAL) has been reported to inhibit proliferation and induce apoptosis in various tumors. The aim of this study was to deliver SAL to orthotopic model of pancreatic cancer by the aid of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). The NPs were physico-chemically characterized and evaluated for cytotoxicity on luciferase-transduced AsPC-1 cells in vitro as well as implanted orthotopically into the pancreas of nude mice. SAL (3.5 mg/kg every other day) blocked tumor growth by 52% compared to the control group after 3 weeks of therapy. Western blotting of tumor protein extracts indicated that SAL treatment leads to up-regulation of E-cadherin, β-catenin, and transforming growth factor beta receptor (TGFβR) expressions in AsPC-1 orthotopic tumor. Noteworthy, immunofluorescence staining of adjacent tumor sections showed that treatment with SAL NPs cause significant apoptosis in the tumor cells rather than the stroma. Further investigations also revealed that TGFβR2 over-expression was induced in stroma cells after treatment with SAL NPs. These results highlight SAL-loaded PLGA NPs as a promising system for pancreatic cancer treatment, while the mechanistic questions need to be subsequently tested.

  11. Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy.

    Science.gov (United States)

    Siegler, Elizabeth Louise; Wang, Pin

    2018-05-01

    Cancer immunotherapy has enormous potential in inducing long-term remission in cancer patients, and chimeric antigen receptor (CAR)-engineered T cells have been largely successful in treating hematological malignancies in the clinic. CAR-T therapy has not been as effective in treating solid tumors, in part due to the immunosuppressive tumor microenvironment. Additionally, CAR-T therapy can cause dangerous side effects, including off-tumor toxicity, cytokine release syndrome, and neurotoxicity. Animal models of CAR-T therapy often fail to predict such adverse events and frequently overestimate the efficacy of the treatment. Nearly all preclinical CAR-T studies have been performed in mice, including syngeneic, xenograft, transgenic, and humanized mouse models. Recently, a few studies have used primate models to mimic clinical side effects better. To date, no single model perfectly recapitulates the human immune system and tumor microenvironment, and some models have revealed CAR-T limitations that were contradicted or missed entirely in other models. Careful model selection based on the primary goals of the study is a crucial step in evaluating CAR-T treatment. Advancements are being made in preclinical models, with the ultimate objective of providing safer, more effective CAR-T therapy to patients.

  12. Human embryo immune escape mechanisms rediscovered by the tumor.

    Science.gov (United States)

    Ridolfi, Laura; Petrini, Massimiliano; Fiammenghi, Laura; Riccobon, Angela; Ridolfi, Ruggero

    2009-01-01

    Towards the end of the 1990s, the two opposing theories on immunosurveillance and immunostimulation were extensively studied by researchers in an attempt to understand the complex mechanisms that regulate the relation between tumors and the host's immune system. Both theories probably have elements that would help us to comprehend how the host can induce anti-tumor clinical responses through stimulation of the immune system and which could also give us a deeper insight into the mechanisms of tumor immunosuppression. The model that most resembles the behavior of tumor cells in terms of growth, infiltration and suppression of the immune system of the environment in which they live is undoubtedly that of the embryonic cell. The fetus behaves like an allogenic transplant within the mother's body, using every means it has to escape from and defend itself against the mother's immune system. The majority of these mechanisms are the same as those found in tumor cells: antigenic loss, lack of expression of classic HLA-I molecules, production of immunosuppressive cytokines, induction of lack of expression of co-stimulatory molecules in antigen presenting cells, and induction of apoptosis in infiltrating lymphocytes, with activation of a type Th2 regulatory lymphocyte response. A careful and comparative study of key mechanisms capable of triggering tolerance or cytotoxicity in both embryonic and tumor cells could prove immensely valuable in designing new strategies for anti-tumor immunotherapy.

  13. Dynamic microenvironments: the fourth dimension.

    Science.gov (United States)

    Tibbitt, Mark W; Anseth, Kristi S

    2012-11-14

    The extracellular space, or cell microenvironment, choreographs cell behavior through myriad controlled signals, and aberrant cues can result in dysfunction and disease. For functional studies of human cell biology or expansion and delivery of cells for therapeutic purposes, scientists must decipher this intricate map of microenvironment biology and develop ways to mimic these functions in vitro. In this Perspective, we describe technologies for four-dimensional (4D) biology: cell-laden matrices engineered to recapitulate tissue and organ function in 3D space and over time.

  14. Optical microassembly platform for constructing reconfigurable microenvironment for biomedical studies

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Kelemen, Lóránd; Palima, Darwin

    2009-01-01

    Cellular development is highly influenced by the surrounding microenvironment. We propose user-reconfigurable microenvironments and bio-compatible scaffolds as an approach for understanding cellular development processes. We demonstrate a model platform for constructing versatile microenvironment...

  15. Genetic and modifying factors that determine the risk of brain tumors

    DEFF Research Database (Denmark)

    Montelli, Terezinha de Cresci Braga; Peraçoli, Maria Terezinha Serrão; Rogatto, Silvia Regina

    2011-01-01

    of tumor escape, CNS tumor immunology, immune defects that impair anti-tumor systemic immunity in brain tumor patients and local immuno-suppressive factors within CNS are also reviewed. New hope to treatment perspectives, as dendritic-cell-based vaccines is summarized too. Concluding, it seems well...... responses can alert immune system. However, it is necessary to clarify if individuals with both constitutional defects in immune functions and genetic instability have higher risk of developing brain tumors. Cytogenetic prospective studies and gene copy number variations analysis also must be performed...

  16. Radiolabeling of VEGF(165) with Tc-99m to evaluate VEGFR expression in tumor angiogenesis

    NARCIS (Netherlands)

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D.; Szkudlinski, Mariusz W.; Agostinelli, Enzo; Dierckx, Rudi A. J. O.; Signore, Alberto

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool

  17. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    Science.gov (United States)

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  18. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.

    Science.gov (United States)

    Liu, Yung-Chiang; Lee, I-Chi; Chen, Pin-Yuan

    2018-05-01

    Glioblastoma (GBM) is the most malignant primary brain tumor and contains tumorigenic cancer stem cells (CSCs), which support the progression of tumor growth. The selection of CSCs and facilitation of the brain tumor niches may assist the development of novel therapeutics for GBM. Herein, hydrogel materials composed of agarose and hydroxypropyl methyl cellulose (HMC) in different concentrations were established and compared to emulate brain tumor niches and CSC microenvironments within a label-free system. Human GBM cell line, U-87 MG, was cultured on a series of HMC-agarose based culture system. Cell aggregation and spheroids formation were investigated after 4 days of culture, and 2.5% HMC-agarose based culture system demonstrated the largest spheroids number and size. Moreover, CD133 marker expression of GBM cells after 6 days of culture in 2.5% HMC-agarose based culture system was 60%, relatively higher than the control group at only 15%. Additionally, cells on 2.5% HMC-agarose based culture system show the highest chemoresistance, even at the high dose of 500 µM temozolomide for 72 h, the live cell ratio was still > 80%. Furthermore, the results also indicate that the expression of ABCG2 gene was up-regulated after culture in 2.5% HMC-agarose based culture system. Therefore, our results demonstrated that biomimetic brain tumor microenvironment may regulate GBM cells towards the CSC phenotype and expression of CSC characteristics. The microenvironment selection and spheroids formation in HMC-agarose based culture system may provide a label-free CSC selection strategy and drug testing model for future biomedical applications.

  19. Association of Marek's Disease induced immunosuppression with activation of a novel regulatory T cells in chickens.

    Directory of Open Access Journals (Sweden)

    Angila Gurung

    2017-12-01

    Full Text Available Marek's Disease Virus (MDV is an alphaherpesvirus that infects chickens, transforms CD4+ T cells and causes deadly lymphomas. In addition, MDV induces immunosuppression early during infection by inducing cell death of the infected lymphocytes, and potentially due to activation of regulatory T (Treg-cells. Furthermore, immunosuppression also occurs during the transformation phase of the disease; however, it is still unknown how the disease can suppress immune response prior or after lymphoma formation. Here, we demonstrated that chicken TGF-beta+ Treg cells are found in different lymphoid tissues, with the highest levels found in the gut-associated lymphoid tissue (cecal tonsil: CT, fostering an immune-privileged microenvironment exerted by TGF-beta. Surprisingly, significantly higher frequencies of TGF-beta+ Treg cells are found in the spleens of MDV-susceptible chicken lines compared to the resistant line, suggesting an association between TGF-beta+ Treg cells and host susceptibility to lymphoma formation. Experimental infection with a virulent MDV elevated the levels of TGF-beta+ Treg cells in the lungs as early as 4 days post infection, and during the transformation phase of the disease in the spleens. In contrast to TGF-beta+ Treg cells, the levels of CD4+CD25+ T cells remained unchanged during the infection and transformation phase of the disease. Furthermore, our results demonstrate that the induction of TGF-beta+ Treg cells is associated with pathogenesis of the disease, as the vaccine strain of MDV did not induce TGF-beta+ Treg cells. Similar to human haematopoietic malignant cells, MDV-induced lymphoma cells expressed high levels of TGF-beta but very low levels of TGF-beta receptor I and II genes. The results confirm that COX-2/ PGE2 pathway is involved in immunosuppression induced by MDV-lymphoma cells. Taken together, our results revealed a novel TGF-beta+ Treg subset in chickens that is activated during MDV infection and tumour

  20. Prognostic and functional role of subtype-specific tumor-stroma interaction in breast cancer.

    Science.gov (United States)

    Merlino, Giuseppe; Miodini, Patrizia; Callari, Maurizio; D'Aiuto, Francesca; Cappelletti, Vera; Daidone, Maria Grazia

    2017-10-01

    None of the clinically relevant gene expression signatures available for breast cancer were specifically developed to capture the influence of the microenvironment on tumor cells. Here, we attempted to build subtype-specific signatures derived from an in vitro model reproducing tumor cell modifications after interaction with activated or normal stromal cells. Gene expression signatures derived from HER2+, luminal, and basal breast cancer cell lines (treated by normal fibroblasts or cancer-associated fibroblasts conditioned media) were evaluated in clinical tumors by in silico analysis on published gene expression profiles (GEPs). Patients were classified as microenvironment-positive (μENV+ve), that is, with tumors showing molecular profiles suggesting activation by the stroma, or microenvironment-negative (μENV-ve) based on correlation of their tumors' GEP with the respective subtype-specific signature. Patients with estrogen receptor alpha (ER)+/HER2-/μENV+ve tumors were characterized by 2.5-fold higher risk of developing distant metastases (HR = 2.546; 95% CI: 1.751-3.701, P = 9.84E-07), while μENV status did not affect, or only suggested the risk of distant metastases, in women with HER2+ (HR = 1.541; 95% CI: 0.788-3.012, P = 0.206) or ER-/HER2- tumors (HR = 1.894; 95% CI: 0.938-3.824; P = 0.0747), respectively. In ER+/HER2- tumors, the μENV status remained significantly associated with metastatic progression (HR = 2.098; CI: 1.214-3.624; P = 0.00791) in multivariable analysis including size, age, and Genomic Grade Index. Validity of our in vitro model was also supported by in vitro biological endpoints such as cell growth (MTT assay) and migration/invasion (Transwell assay). In vitro-derived gene signatures tracing the bidirectional interaction with cancer activated fibroblasts are subtype-specific and add independent prognostic information to classical prognostic variables in women with ER+/HER2- tumors. © 2017 The Authors. Published

  1. Association of time under immunosuppression and different immunosuppressive medication on periodontal parameters and selected bacteria of patients after solid organ transplantation.

    Science.gov (United States)

    Schmalz, G; Berisha, L; Wendorff, H; Widmer, F; Marcinkowski, A; Teschler, H; Sommerwerck, U; Haak, R; Kollmar, O; Ziebolz, D

    2018-05-01

    Aim of this study was to investigate the association of the time under immunosuppression and different immunosuppressive medication on periodontal parameters and selected periodontal pathogenic bacteria of immunosuppressed patients after solid organ transplantation (SOT). 169 Patients after SOT (lung, liver or kidney) were included and divided into subgroups according their time under (0-1, 1-3, 3-6, 6-10 and >10 years) and form of immunosuppression (Tacrolimus, Cyclosporine, Mycophenolate, Glucocorticoids, Sirolimus and monotherapy vs. combination). Periodontal probing depth (PPD) and clinical attachment loss (CAL) were assessed. Periodontal disease severity was classified as healthy/mild, moderate or severe periodontitis. Subgingival biofilm samples were investigated for eleven selected potentially periodontal pathogenic bacteria using polymerasechainreaction. The mean PPD and CAL as well as prevalence of Treponema denticola and Capnocytophaga species was shown to be different but heterogeneous depending on time under immunosuppression (pperiodontal condition compared to patients without Cyclosporine (pperiodontal and microbiological parameters of patients after SOT. Patients under Cyclosporine medication should receive increased attention. Differences in subgingival biofilm, but not in clinical parameters were found for Glucocorticoids, Mycophenolate and combination therapy, making the clinical relevance of this finding unclear.

  2. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P; Hedley, David W

    2016-06-07

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX).The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche.

  3. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Borsi, Enrica, E-mail: enrica.borsi2@unibo.it [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy); Perrone, Giulia [Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano (Italy); Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy)

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  4. Immunological Dysregulation in Multiple Myeloma Microenvironment

    OpenAIRE

    Romano, Alessandra; Conticello, Concetta; Cavalli, Maide; Vetro, Calogero; La Fauci, Alessia; Parrinello, Nunziatina Laura; Di Raimondo, Francesco

    2014-01-01

    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extr...

  5. Multichannel imaging to quantify four classes of pharmacokinetic distribution in tumors.

    Science.gov (United States)

    Bhatnagar, Sumit; Deschenes, Emily; Liao, Jianshan; Cilliers, Cornelius; Thurber, Greg M

    2014-10-01

    Low and heterogeneous delivery of drugs and imaging agents to tumors results in decreased efficacy and poor imaging results. Systemic delivery involves a complex interplay of drug properties and physiological factors, and heterogeneity in the tumor microenvironment makes predicting and overcoming these limitations exceptionally difficult. Theoretical models have indicated that there are four different classes of pharmacokinetic behavior in tissue, depending on the fundamental steps in distribution. In order to study these limiting behaviors, we used multichannel fluorescence microscopy and stitching of high-resolution images to examine the distribution of four agents in the same tumor microenvironment. A validated generic partial differential equation model with a graphical user interface was used to select fluorescent agents exhibiting these four classes of behavior, and the imaging results agreed with predictions. BODIPY-FL exhibited higher concentrations in tissue with high blood flow, cetuximab gave perivascular distribution limited by permeability, high plasma protein and target binding resulted in diffusion-limited distribution for Hoechst 33342, and Integrisense 680 was limited by the number of binding sites in the tissue. Together, the probes and simulations can be used to investigate distribution in other tumor models, predict tumor drug distribution profiles, and design and interpret in vivo experiments. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. The Receptor Tyrosine Kinase AXL in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Erinn B. Rankin

    2016-11-01

    Full Text Available The AXL receptor tyrosine kinase (AXL has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy.

  7. Cellular Activation of the Self-Quenched Fluorescent Reporter Probe in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alexei A. Bogdanov, Jr.

    2002-01-01

    Full Text Available The effect of intralysosomal proteolysis of near-infrared fluorescent (NIRF self-quenched macromolecular probe (PGC-Cy5.5 has been previously reported and used for tumor imaging. Here we demonstrate that proteolysis can be detected noninvasively in vivo at the cellular level. A codetection of GFP fluorescence (using two-photon excitation and NIRF was performed in tumor-bearing animals injected with PGC-Cy5.5. In vivo microscopy of tumor cells in subdermal tissue layers (up to 160 μm showed a strong Cy5.5 dequenching effect in GFP-negative cells. This observation was corroborated by flow cytometry, sorting, and reverse transcription polymerase chain reaction analysis of tumor-isolated cells. Both GFP-positive (81% total and GFP-negative (19% total populations contained Cy5.5-positive cells. The GFP-negative cells were confirmed to be host mouse cells by the absence of rat cathepsin mRNA signal. The subfraction of GFPnegative cells (2.5-3.0% had seven times higher NIRF intensity than the majority of GFP-positive or GFPnegative cells (372 and 55 AU, respectively. Highly NIRF-positive, FP-negative cells were CD45-and MAC3-positive. Our results indicate that: 1 intracellular proteolysis can be imaged in vivo at the cellular level using cathepsin-sensitive probes; 2 tumor-recruited cells of hematopoetic origin participate most actively in uptake and degradation of long-circulating macromolecular probes.

  8. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Laursen, Janne Marie; Zucker, Daniel

    2017-01-01

    Tumor immune escape is today recognized as an important cancer hallmark and is therefore a major focus area in cancer therapy. Monocytes and dendritic cells (DCs), which are central to creating a robust anti-tumor immune response and establishing an anti-tumorigenic microenvironment, are directly...... targeted by the tumor escape mechanisms to develop immunosuppressive phenotypes. Providing activated monocytes and DCs to the tumor tissue is therefore an attractive way to break the tumor-derived immune suppression and reinstate cancer immune surveillance. To activate monocytes and DCs with high...... as their immune activating potential in blood-derived monocytes, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). Monocytes and mDCs were targeted with high specificity over lymphocytes, and exhibited potent TLR7-specific secretion of the anti-cancer cytokines IL-12p70, IFN-α 2a, and IFN-γ. This delivery system...

  9. Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy

    Directory of Open Access Journals (Sweden)

    Marcin P Komorowski

    2016-01-01

    Full Text Available Ovarian cancer remains the most lethal gynecologic malignancy owing to late detection, intrinsic and acquired chemoresistance, and remarkable heterogeneity. Here, we explored approaches to inhibit metastatic growth of murine and human ovarian tumor variants resistant to paclitaxel and carboplatin by oncolytic vaccinia virus expressing a CXCR4 antagonist to target the CXCL12 chemokine/CXCR4 receptor signaling axis alone or in combination with doxorubicin. The resistant variants exhibited augmented expression of the hyaluronan receptor CD44 and CXCR4 along with elevated Akt and ERK1/2 activation and displayed an increased susceptibility to viral infection compared with the parental counterparts. The infected cultures were more sensitive to doxorubicin-mediated killing both in vitro and in tumor-challenged mice. Mechanistically, the combination treatment increased apoptosis and phagocytosis of tumor material by dendritic cells associated with induction of antitumor immunity. Targeting syngeneic tumors with this regimen increased intratumoral infiltration of antitumor CD8+ T cells. This was further enhanced by reducing the immunosuppressive network by the virally-delivered CXCR4 antagonist, which augmented antitumor immune responses and led to tumor-free survival. Our results define novel strategies for treatment of drug-resistant ovarian cancer that increase immunogenic cell death and reverse the immunosuppressive tumor microenvironment, culminating in antitumor immune responses that control metastatic tumor growth.

  10. Modulation of the tumor vasculature and oxygenation to improve therapy

    DEFF Research Database (Denmark)

    Siemann, Dietmar W; Horsman, Michael R

    2015-01-01

    The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient...... important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers...

  11. Migratory neighbors and distant invaders: tumor-associated niche cells

    Science.gov (United States)

    Wels, Jared; Kaplan, Rosandra N.; Rafii, Shahin; Lyden, David

    2008-01-01

    The cancer environment is comprised of tumor cells as well as a wide network of stromal and vascular cells participating in the cellular and molecular events necessary for invasion and metastasis. Tumor secretory factors can activate the migration of host cells, both near to and far from the primary tumor site, as well as promote the exodus of cells to distant tissues. Thus, the migration of stromal cells and tumor cells among specialized microenvironments takes place throughout tumor and metastatic progression, providing evidence for the systemic nature of a malignancy. Investigations of the tumor–stromal and stromal–stromal cross-talk involved in cellular migration in cancer may lead to the design of novel therapeutic strategies. PMID:18316475

  12. A tacrolimus-related immunosuppressant with reduced toxicity.

    Science.gov (United States)

    Dumont, F J; Koprak, S; Staruch, M J; Talento, A; Koo, G; DaSilva, C; Sinclair, P J; Wong, F; Woods, J; Barker, J; Pivnichny, J; Singer, I; Sigal, N H; Williamson, A R; Parsons, W H; Wyvratt, M

    1998-01-15

    Tacrolimus (FK506) has potent immunosuppressive properties reflecting its ability to block the transcription of lymphokine genes in activated T cells through formation of a complex with FK506 binding protein-12, which inhibits the phosphatase activity of calcineurin. The clinical usefulness of tacrolimus is limited, however, by severe adverse effects, including neurotoxicity and nephrotoxicity. Although this toxicity, like immunosuppression, appears mechanistically related to the calcineurin inhibitory action of the drug, a large chemistry effort has been devoted to search for tacrolimus analogs with reduced toxicity but preserved immunosuppressive activity that might have enhanced therapeutic utility. Here, we report on the identification of such an analog, which was synthetically derived from ascomycin (ASC), the C21 ethyl analog of tacrolimus, by introducing an indole group at the C32 position. The profile of biological activity of indolyl-ASC was characterized in rodent models of immunosuppression and toxicity. Indolyl-ASC was found to exhibit an immunosuppressive potency equivalent to that of tacrolimus in T-cell activation in vitro and in murine transplant models, even though indolyl-ASC bound about 10 times less to intracellular FK506 binding protein-12 than tacrolimus or ASC. Further evaluation of indolyl-ASC revealed that it is threefold less potent than tacrolimus in inducing hypothermia, a response that may reflect neurotoxicity, and in causing gastrointestinal transit alterations in mice. Moreover, indolyl-ASC was at least twofold less nephrotoxic than tacrolimus upon 3-week oral treatment in rats. Altogether, these data indicate a modest but definite improvement in the therapeutic index for indolyl-ASC compared with tacrolimus in rodent models.

  13. A Catalytic Role for Proangiogenic Marrow-Derived Cells in Tumor Neovascularization

    Science.gov (United States)

    Seandel, Marco; Butler, Jason; Lyden, David; Rafii, Shahin

    2010-01-01

    Small numbers of proangiogenic bone marrow-derived cells (BMDCs) can play pivotal roles in tumor progression. In this issue of Cancer Cell, two papers, utilizing different tumor angiogenesis models, both find that activated MMP-9 delivered by BMDCs modulates neovessel remodeling, thereby promoting tumor growth. The changes in microvascular anatomy induced by MMP-9-expressing BMDCs are strikingly different between the preirradiated tumor vascular bed model employed by Ahn and Brown and the invasive glioblastoma model utilized by Du et al., likely mirroring the complexity of the real tumor microenvironment and the intricacy of roles of different BMDC populations in mediating tumor neoangiogenesis. PMID:18328420

  14. [Clinical views from the forefront of immunosuppressive drugs].

    Science.gov (United States)

    Kobayashi, Eiji

    2005-11-01

    Recently, many immunosuppressants have been developed and some of them have already been introduced in clinical organ transplantation. With a new concept of immunoregulation, which focuses on prevention of rejection and over-immunosuppression, the latest protocol has been conducted. Chimeric or humanized antibodies targeting the lymphocyte surface molecule such as CD19, 20, 25, 40, and 52 are administrated in the induction phase, and calcineurin inhibitors (cyclosporin and tacrolimus) are used as key drugs. For tapering the doses of them, the combined application of anti-metabolic agents of azathioprine, mizoribine, or mycophenolate mofetil (MMF) has been proved effective. Lymphocyte forming drugs induce unique immunoregulation, targeting at sphingosine 1-phosphate (SlP) receptors. FTY720 is now in the procedure of clinical trial to compare with MMF. KRP203 is also a candidate for more specific SIP receptor agonist. In this issue, I reviewed the recent immunosuppressive strategy and focused on the advance of novel immunosuppressive drugs.

  15. Immunosuppressive agents are associated with peptic ulcer bleeding.

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Hasegawa, Rumiko; Shirai, Yoshinori; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2017-05-01

    Peptic ulcer bleeding can be fatal. Non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids and immunosuppressive agents are administered for long-term usage. The present study assessed the association between peptic ulcer bleeding and administration of NSAIDs, corticosteroids and immunosuppressive agents. Furthermore, the efficacy of lowering the risk of peptic ulcer bleeding with proton pump inhibitors (PPI) and histamine 2 receptor antagonists (H2RA) was evaluated. Medical records were retrospectively analyzed for patients subjected to an upper gastrointestinal (GI) endoscopy performed at the National Hospital Organization Shimoshizu Hospital (Yotsukaido, Japan) from October 2014 to September 2015. During this period, a total of 1,023 patients underwent an upper GI endoscopy. A total of 1,023 patients, including 431 males (age, 68.1±12.9 years) and 592 females (age, 66.4±12.3 years), who had been administered NSAIDs, corticosteroids, immunosuppressive agents, PPIs and H2RAs, were respectively enrolled. Endoscopic findings of the patients were reviewed and their data were statistically analyzed. Logistic regression analysis was used to determine the odds ratio of peptic ulcer bleeding for each medication; immunosuppressive agents had an odds ratio of 5.83, which was larger than that for NSAIDs (4.77). The Wald test was applied to confirm the correlation between immunosuppressive agents and peptic ulcer bleeding. Furthermore, χ 2 tests were applied to the correlation between peptic ulcer bleeding and administration of PPIs or H2RAs. Immunosuppressive agents had the largest χ 2 , and the P-value was 0.03. Administration of PPIs was significantly correlated with non-peptic ulcer bleeding (P=0.02); furthermore, a tendency toward non-peptic ulcer bleeding with administration of H2RA was indicated, but it was not statistically significant (P=0.12). In conclusion, immunosuppressive agents were correlated with peptic ulcer bleeding and PPIs were effective at

  16. Microenvironment-dependent phenotypic changes in a SCID mouse model for malignant mesothelioma

    Directory of Open Access Journals (Sweden)

    Eva eDarai-Ramqvist

    2013-08-01

    Full Text Available Background and Aims: Malignant mesothelioma is an aggressive, therapy-resistant tumor. Mesothelioma cells may assume an epithelioid or a sarcomatoid phenotype, and presence of sarcomatoid cells predicts poor prognosis. In this study, we investigated differentiation of mesothelioma cells in a xenograft model, where mesothelioma cells of both phenotypes were induced to form tumors in SCID mice. Methods: Xenografts were established and thoroughly characterized using a comprehensive immunohistochemical panel, array comparative genomic hybridization of chromosome 3, fluorescent in situ hybridization and electron microscopy.Results: Epithelioid and sarcomatoid cells gave rise to xenografts of similar epithelioid morphology. While sarcomatoid-derived xenografts had higher growth rates, the morphology and expression of differentiation-related markers was similar between xenografts derived from both phenotypes. Array comparative genomic hybridization showed a convergent genotype for both xenografts, resembling the original aggressive sarcomatoid cell sub-line.Conclusions: Human mesothelioma xenografts from sarcomatoid and epithelioid phenotypes converged to a similar differentiation state, and genetic analyses suggested that clonal selection in the mouse microenvironment was a major contributing factor. This thoroughly characterized animal model can be used for further studies of molecular events underlying tumor cell differentiation.

  17. Exosomes in Tumor Microenvironment Influence Cancer Progression and Metastasis

    OpenAIRE

    Kahlert, Christoph; Kalluri, Raghu

    2013-01-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50 – 100 nm. They can contain microRNAs, mRNAs, DNA fragments and proteins, which are shuttled from a donar cell to recipient cells. Many different cell types including immune cells, mesenchymal cells and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechani...

  18. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    Science.gov (United States)

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. mTOR at the Transmitting and Receiving Ends in Tumor Immunity.

    Science.gov (United States)

    Guri, Yakir; Nordmann, Thierry M; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.

  20. Immunosuppressive T-cell antibody induction for heart transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Møller, Christian H; Gustafsson, Finn

    2013-01-01

    Heart transplantation has become a valuable and well-accepted treatment option for end-stage heart failure. Rejection of the transplanted heart by the recipient's body is a risk to the success of the procedure, and life-long immunosuppression is necessary to avoid this. Clear evidence is required...... to identify the best, safest and most effective immunosuppressive treatment strategy for heart transplant recipients. To date, there is no consensus on the use of immunosuppressive antibodies against T-cells for induction after heart transplantation....

  1. Microenvironment-Centred Dynamics in Aggressive B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Matilde Cacciatore

    2012-01-01

    Full Text Available Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas.

  2. Cutaneous toxoplasmosis in an immunosuppressed dog

    Directory of Open Access Journals (Sweden)

    T.S. Oliveira

    2014-06-01

    Full Text Available A seven-year-old female spayed Schnauzer was presented with cutaneous ulcerated nodular lesions shortly after the beginning of an immunosuppressive treatment for immune-mediated hemolytic disease. Cytology was performed and a great number of neutrophils and banana-shaped organisms were observed. Biopsy showed a neutrophilic and histiocytic dermatitis and panniculitis with myriads of intralesional bradyzoites cysts and tachyzoites. PCR analysis was positive for Toxoplasma gondii and negative for Neospora caninum. Immunohistochemistry confirmed intralesional T. gondii antigens. This study reports a rare case of cutaneous toxoplasmosis in an immunosuppressed dog.

  3. From forest and agro-ecosystems to the microecosystems of the human body: what can landscape ecology tell us about tumor growth, metastasis, and treatment options?

    Science.gov (United States)

    Daoust, Simon P; Fahrig, Lenore; Martin, Amanda E; Thomas, Frédéric

    2013-01-01

    Cancer is now understood to be a process that follows Darwinian evolution. Heterogeneous populations of cancerous cells that make up the tumor inhabit the tissue 'microenvironment', where ecological interactions analogous to predation and competition for resources drive the somatic evolution of cancer. The tumor microenvironment plays a crucial role in the tumor genesis, development, and metastasis processes, as it creates the microenvironmental selection forces that ultimately determine the cellular characteristics that result in the greatest fitness. Here, we explore and offer new insights into the spatial aspects of tumor-microenvironment interactions through the application of landscape ecology theory to tumor growth and metastasis within the tissue microhabitat. We argue that small tissue microhabitats in combination with the spatial distribution of resources within these habitats could be important selective forces driving tumor invasiveness. We also contend that the compositional and configurational heterogeneity of components in the tissue microhabitat do not only influence resource availability and functional connectivity but also play a crucial role in facilitating metastasis and may serve to explain, at least in part, tissue tropism in certain cancers. This novel work provides a compelling argument for the necessity of taking into account the structure of the tissue microhabitat when investigating tumor progression.

  4. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.

    Science.gov (United States)

    Qian, Yuan; Qiao, Sha; Dai, Yanfeng; Xu, Guoqiang; Dai, Bolei; Lu, Lisen; Yu, Xiang; Luo, Qingming; Zhang, Zhihong

    2017-09-26

    Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8 + T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8 + T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.

  5. Dietary Chlorella vulgaris Ameliorates Altered Immunomodulatory Functions in Cyclophosphamide-Induced Immunosuppressive Mice

    Science.gov (United States)

    Cheng, Dai; Wan, Zhaodong; Zhang, Xinyu; Li, Jian; Li, He; Wang, Chunling

    2017-01-01

    Based on the well-known toxicity of cyclophosphamide (CYP) on the immune system, this research investigated the modulating effects of the long-term dietary Chlorella vulgaris (CV) supplementation on the immunosuppression induced by CYP in mice, in order to provide a novel dietary design to mitigate the side effects of CYP therapy. Control, CYP-treated, CYP + CV (6%), CYP + CV (12%) and CYP + CV (24%) were used for 6 weeks, CV supplement in diet recovered the significantly reduced immunological function in CYP treated mice. As CV may have a modulating function through the inducible expression of cytokines, we assayed the expressions of interleukin-2 (IL-2), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Our results suggested that CYP significantly reduced the lymphocytes proliferation and phagocytic activities of macrophages, and stimulated the production of IL-2, IL-12, TNF-α and IFN-γ and that this impairment has been successfully adjusted by CV supplementation. Treatment with the algae also enhanced the natural killer (NK) cells cytotoxicity, and ameliorate histological changes of the spleen in CYP-treated mice. Therefore, as we found in this study, a diet supplemented with whole CV has beneficial effects on CVP-induced immunosuppression, through its immunomodulatory potential. PMID:28684674

  6. Synthesis, Immunosuppressive Properties, and Mechanism of Action of a New Isoxazole Derivative

    Directory of Open Access Journals (Sweden)

    Marcin Mączyński

    2018-06-01

    Full Text Available This work describes the synthesis of a new series of isoxazole derivatives, their immunosuppressive properties, and the mechanism of action of a representative compound. A new series of N′-substituted derivatives of 5-amino-N,3-dimethyl-1,2-oxazole-4-carbohydrazide (MM1–MM10 was synthesized in reaction of 5-amino-N,3-dimethyl-1,2-oxazole-4-carbohydrazide with relevant carbonyl compounds. The isoxazole derivatives were tested in several in vitro models using human cells. The compounds inhibited phytohemagglutinin A (PHA-induced proliferation of peripheral blood mononuclear cells (PBMCs to various degrees. The toxicity of the compounds with regard to a reference A549 cell line was also differential. 5-amino-N′-(2,4-dihydroxyphenylmethylidene-N,3-dimethyl-1,2-oxazole-4-carbohydrazide (MM3 compound was selected for further investigation because of its lack of toxicity and because it had the strongest antiproliferative activity. The compound was shown to inhibit lipopolysaccharide (LPS-induced tumor necrosis factor (TNF α production in human whole blood cell cultures. In the model of Jurkat cells, MM3 elicited strong increases in the expression of caspases, Fas, and NF-κB1, indicating that a proapoptotic action may account for its immunosuppressive action in the studied models.

  7. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Directory of Open Access Journals (Sweden)

    Joel Saltz

    2018-04-01

    Full Text Available Summary: Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment. : Tumor-infiltrating lymphocytes (TILs were identified from standard pathology cancer images by a deep-learning-derived “computational stain” developed by Saltz et al. They processed 5,202 digital images from 13 cancer types. Resulting TIL maps were correlated with TCGA molecular data, relating TIL content to survival, tumor subtypes, and immune profiles. Keywords: digital pathology, immuno-oncology, machine learning, lymphocytes, tumor microenvironment, deep learning, tumor-infiltrating lymphocytes, artificial intelligence, bioinformatics, computer vision

  8. Peritoneal inflammation – A microenvironment for Epithelial Ovarian Cancer (EOC

    Directory of Open Access Journals (Sweden)

    Liu Jinsong

    2004-06-01

    Full Text Available Abstract Epithelial ovarian cancer (EOC is a significant cause of cancer related morbidity and mortality in women. Preferential involvement of peritoneal structures contributes to the overall poor outcome in EOC patients. Advances in biotechnology, such as cDNA microarray, are a product of the Human Genome Project and are beginning to provide fresh opportunities to understand the biology of EOC. In particular, it is now possible to examine in depth, at the molecular level, the complex relationship between the tumor itself and its surrounding microenvironment. This review focuses on the anatomy, physiology, and current immunobiologic research of peritoneal structures, and addresses certain potentially useful animal models. Changes in both the inflammatory and non-inflammatory cell compartments, as well as alterations to the extracellular matrix, appear to be signal events that contribute to the remodeling effects of the peritoneal stroma and surface epithelial cells on tumor growth and spread. These alterations may involve a number of proteins, including cytokines, chemokines, growth factors, either membrane or non-membrane bound, and integrins. Interactions between these molecules and molecular structures within the extracellular matrix, such as collagens and the proteoglycans, may contribute to a peritoneal mesothelial surface and stromal environment that is conducive to tumor cell proliferation and invasion. These alterations need to be examined and defined as possible prosnosticators and as therapeutic or diagnostic targets.

  9. Fibroblast Growth Factor-2 Enhances Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells without Diminishing Their Immunosuppressive Potential

    OpenAIRE

    Auletta, Jeffery J.; Zale, Elizabeth A.; Welter, Jean F.; Solchaga, Luis A.

    2011-01-01

    Allogeneic hematopoietic stem cell transplantation is the main curative therapy for many hematologic malignancies. Its potential relies on graft-versus-tumor effects which associate with graft-versus-host disease. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties that make them attractive therapeutic alternatives. We evaluated the in vitro immunosuppressive activity of medium conditioned by human MSCs from 5 donors expanded 13 passages with or without FGF-2. FGF-2 supplemen...

  10. Making microenvironments: A look into incorporating macromolecular crowding into in vitro experiments, to generate biomimetic microenvironments which are capable of directing cell function for tissue engineering applications.

    Science.gov (United States)

    Benny, Paula; Raghunath, Michael

    2017-01-01

    Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.

  11. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  12. Gene and miRNA expression signature of Lewis lung carcinoma LLC1 cells in extracellular matrix enriched microenvironment

    International Nuclear Information System (INIS)

    Stankevicius, Vaidotas; Vasauskas, Gintautas; Bulotiene, Danute; Butkyte, Stase; Jarmalaite, Sonata; Rotomskis, Ricardas; Suziedelis, Kestutis

    2016-01-01

    The extracellular matrix (ECM), one of the key components of tumor microenvironment, has a tremendous impact on cancer development and highly influences tumor cell features. ECM affects vital cellular functions such as cell differentiation, migration, survival and proliferation. Gene and protein expression levels are regulated in cell-ECM interaction dependent manner as well. The rate of unsuccessful clinical trials, based on cell culture research models lacking the ECM microenvironment, indicates the need for alternative models and determines the shift to three-dimensional (3D) laminin rich ECM models, better simulating tissue organization. Recognized advantages of 3D models suggest the development of new anticancer treatment strategies. This is among the most promising directions of 3D cell cultures application. However, detailed analysis at the molecular level of 2D/3D cell cultures and tumors in vivo is still needed to elucidate cellular pathways most promising for the development of targeted therapies. In order to elucidate which biological pathways are altered during microenvironmental shift we have analyzed whole genome mRNA and miRNA expression differences in LLC1 cells cultured in 2D or 3D culture conditions. In our study we used DNA microarrays for whole genome analysis of mRNA and miRNA expression differences in LLC1 cells cultivated in 2D or 3D culture conditions. Next, we indicated the most common enriched functional categories using KEGG pathway enrichment analysis. Finally, we validated the microarray data by quantitative PCR in LLC1 cells cultured under 2D or 3D conditions or LLC1 tumors implanted in experimental animals. Microarray gene expression analysis revealed that 1884 genes and 77 miRNAs were significantly altered in LLC1 cells after 48 h cell growth under 2D and ECM based 3D cell growth conditions. Pathway enrichment results indicated metabolic pathway, MAP kinase, cell adhesion and immune response as the most significantly altered

  13. Tumor Engineering: The Other Face of Tissue Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by 'applying principles of engineering and the life sciences toward the development of biological substitutes. Mortality figures and direct health care costs for cancer patients rival those of patients who experience organ failure. Cancer is the second leading cause of death in the United States (Source: American Cancer Society) and it is estimated that direct medical costs for cancer patients approach $100B yearly in the United States alone (Source: National Cancer Institute). In addition, any promising therapy that emerges from the laboratory costs roughly $1.7B to take from bench to bedside. Whereas we have indeed waged war on

  14. Radiostrontium-induced oncogenesis and the role of immunosuppression. Pt. 2

    International Nuclear Information System (INIS)

    Bierke, P.; Nilsson, A.

    1990-01-01

    The significance of depressed immune function for the development and progression of tumours induced by 90 Sr (mainly osteosarcomas and malignant lymphomas) was investigated in a series of experiments by comparing the tumour responses in normal mice with those in immunocompromised mice. The present paper (part II) reports on lympho-reticular (LR) and extraskeletal neoplastic lesions in male CBA/SU mice after exposure to different single doses of 90 Sr with or without additional immunosuppression by adult thymectomy (ATx) and/or prolonged antilymphocyteglobulin (ALG) treatment. Neoplastic lesions in bone were reported in part I. The status of the animal's immune system and responsive ability were examined in parallel experiments. The tumor yields were analysed in relation to the dosage of 90 Sr and the immunosuppressive treatments employed. Although the incidences and latency times of induced tumours were clearly dose-dependent, they were never significantly influenced by ATx/ALG treatments. Thus, no substantial support was gained for the theory that the immune system plays a controlling or modifying role in 90 Sr carcinogenesis. The results, which are in agreement with the bone tumour responses, suggest that 90 Sr induced tumours either do not express the antigens necessary for immune rejection or that the decline in immune responsiveness induced by ATx/ALG was of little consequence for tumour development and spread. The pathogenesis of 90 Sr induced malignant lymphomas (MLs) and their immunophenotypes are discussed. (orig.)

  15. Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer.

    Science.gov (United States)

    Aponte-López, Angélica; Fuentes-Pananá, Ezequiel M; Cortes-Muñoz, Daniel; Muñoz-Cruz, Samira

    2018-01-01

    Mast cells are unique tissue-resident immune cells that secrete a diverse array of biologically active compounds that can stimulate, modulate, or suppress the immune response. Although mounting evidence supports that mast cells are consistently infiltrating tumors, their role as either a driving or an opposite force for cancer progression is still controversial. Particularly, in breast cancer, their function is still under discussion. While some studies have shown a protective role, recent evidence indicates that mast cells enhance blood and lymphatic vessel formation. Interestingly, one of the most important components of the mast cell cargo, the serine protease tryptase, is a potent angiogenic factor, and elevated serum tryptase levels correlate with bad prognosis in breast cancer patients. Likewise, histamine is known to induce tumor cell proliferation and tumor growth. In agreement, mast cell depletion reduces the size of mammary tumors and metastasis in murine models that spontaneously develop breast cancer. In this review, we will discuss the evidence supporting protumoral and antitumoral roles of mast cells, emphasizing recent findings placing mast cells as important drivers of tumor progression, as well as the potential use of these cells or their mediators as therapeutic targets.

  16. Stromal Gene Expression and Function in Primary Breast Tumors that Metastasize to Bone Cancer

    Science.gov (United States)

    2006-07-01

    surrounding bone microenvironment were investigated by purifying endothelial cells from tumor-burdened and non-tumor burdened spines . 4T1...of Balb/c mice. Fresh resected tissue (normal fat pad, primary tumor tissue or the metastatic sites spine , femur and lung) was obtained and cell... Hedgehog signalling pathway: Lasp1, CREBBP/EP300 inhibitory protein 1 and FoxP1. Of interest as well are a number of differentially regulated ESTs

  17. Immunosuppressive effect of total lymphoid irradiation

    International Nuclear Information System (INIS)

    Bendel, V.; Medizinische Hochschule Hannover

    1981-01-01

    Contrary to the immunosuppression by means of wholebody irradiation which is known for a long while but connected with considerable side effects and risks, the total lymphoid irradiation (TLI) is a new possibility of immunosuppression the tolerance of which by man is known by virtue of long-standing experiences with the treatment of malignant lymphatic system diseases. In connexion with organ transplantations, TLI might possibly soon be important for the radiotherapeutist. In the experimentation on animals, the unspecific immunosuppression induced by TLI causes a prolonged survival time of allogeneic skin and organ grafts in certain mammals. Furthermore, a formation of blood chimeras combined with specific, permanent tolerance of organ grafts from the bone marrow donor can be caused by bone marrow transplantation after TLI. First experiences with man have been made. In the German literature, TLI has not been mentioned yet. In the present study, a summary is given on the Anglo-Saxon literature, and the first own experiments with regard to the problem of irradiation dose and transplantation interval are presented. (orig.) [de

  18. Dry Eye Management: Targeting the Ocular Surface Microenvironment

    Science.gov (United States)

    Zhang, Xiaobo; Jeyalatha M, Vimalin; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo

    2017-01-01

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment. PMID:28661456

  19. Dry Eye Management: Targeting the Ocular Surface Microenvironment.

    Science.gov (United States)

    Zhang, Xiaobo; M, Vimalin Jeyalatha; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo; Li, Wei

    2017-06-29

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.

  20. Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype.

    Science.gov (United States)

    Borgoni, Simone; Iannello, Andrea; Cutrupi, Santina; Allavena, Paola; D'Incalci, Maurizio; Novelli, Francesco; Cappello, Paola

    2018-01-01

    Pancreatic Ductal Adenocarcinoma (PDA) is characterized by a complex tumor microenvironment that supports its progression, aggressiveness and resistance to therapies. The delicate interplay between cancer and immune cells creates the conditions for PDA development, particularly due to the functional suppression of T cell anti-tumor effector activity. However, some of the mechanisms involved in this process are still poorly understood. In this study, we analyze whether the functional and epigenetic profile of T cells that infiltrate PDA is modulated by the microenvironment, and in particular by tumor-associated macrophages (TAMs). CD4 and CD8 T cells obtained from mice orthotopically injected with syngeneic PDA cells, and untreated or treated with Trabectedin, a cytotoxic drug that specifically targets TAMs, were sorted and analyzed by flow cytometry and characterized for their epigenetic profile. Assessment of cytokine production and the epigenetic profile of genes coding for IL10, T-bet and PD1 revealed that T cells that infiltrated PDA displayed activated Il10 promoter and repressed T-bet activity, in agreement with their regulatory phenotype (IL10 high /IFNγ low , PD1 high ). By contrast, in Trabectedin-treated mice, PDA-infiltrating T cells displayed repressed Il10 and Pdcd1 and activated T-bet promoter activity, in accordance with their anti-tumor effector phenotype (IL10 low /IFNγ high ), indicating a key role of TAMs in orchestrating functions of PDA-infiltrating T cells by modulating their epigenetic profile towards a pro-tumoral phenotype. These results suggest the targeting of TAMs as an efficient strategy to obtain an appropriate T cell anti-tumor immune response and open new potential combinations for PDA treatment.

  1. mTOR at the Transmitting and Receiving Ends in Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Yakir Guri

    2018-03-01

    Full Text Available Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.

  2. Nanopulse Stimulation (NPS Induces Tumor Ablation and Immunity in Orthotopic 4T1 Mouse Breast Cancer: A Review

    Directory of Open Access Journals (Sweden)

    Stephen J. Beebe

    2018-03-01

    Full Text Available Nanopulse Stimulation (NPS eliminates mouse and rat tumor types in several different animal models. NPS induces protective, vaccine-like effects after ablation of orthotopic rat N1-S1 hepatocellular carcinoma. Here we review some general concepts of NPS in the context of studies with mouse metastatic 4T1 mammary cancer showing that the postablation, vaccine-like effect is initiated by dynamic, multilayered immune mechanisms. NPS eliminates primary 4T1 tumors by inducing immunogenic, caspase-independent programmed cell death (PCD. With lower electric fields, like those peripheral to the primary treatment zone, NPS can activate dendritic cells (DCs. The activation of DCs by dead/dying cells leads to increases in memory effector and central memory T-lymphocytes in the blood and spleen. NPS also eliminates immunosuppressive cells in the tumor microenvironment and blood. Finally, NPS treatment of 4T1 breast cancer exhibits an abscopal effect and largely prevents spontaneous metastases to distant organs. NPS with fast rise–fall times and pulse durations near the plasma membrane charging time constant, which exhibits transient, high-frequency components (1/time = Hz, induce responses from mitochondria, endoplasmic reticulum, and nucleus. Such effects may be responsible for release of danger-associated molecular patterns, including ATP, calreticulin, and high mobility group box 1 (HMBG1 from 4T1-Luc cells to induce immunogenic cell death (ICD. This likely leads to immunity and the vaccine-like response. In this way, NPS acts as a unique onco-immunotherapy providing distinct therapeutic advantages showing possible clinical utility for breast cancers as well as for other malignancies.

  3. Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin.

    Directory of Open Access Journals (Sweden)

    Keita Saito

    Full Text Available Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII by electron paramagnetic resonance imaging (EPRI and magnetic resonance imaging (MRI to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500-750 mm(3 and measurements of tumor pO(2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO(2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO(2<10 mm Hg in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.

  4. CAR-T cells: the long and winding road to solid tumors.

    Science.gov (United States)

    D'Aloia, Maria Michela; Zizzari, Ilaria Grazia; Sacchetti, Benedetto; Pierelli, Luca; Alimandi, Maurizio

    2018-02-15

    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles.

  5. Development of a multi-scale and multi-modality imaging system to characterize tumours and their microenvironment in vivo

    Science.gov (United States)

    Rouffiac, Valérie; Ser-Leroux, Karine; Dugon, Emilie; Leguerney, Ingrid; Polrot, Mélanie; Robin, Sandra; Salomé-Desnoulez, Sophie; Ginefri, Jean-Christophe; Sebrié, Catherine; Laplace-Builhé, Corinne

    2015-03-01

    In vivo high-resolution imaging of tumor development is possible through dorsal skinfold chamber implantable on mice model. However, current intravital imaging systems are weakly tolerated along time by mice and do not allow multimodality imaging. Our project aims to develop a new chamber for: 1- long-term micro/macroscopic visualization of tumor (vascular and cellular compartments) and tissue microenvironment; and 2- multimodality imaging (photonic, MRI and sonography). Our new experimental device was patented in March 2014 and was primarily assessed on 75 mouse engrafted with 4T1-Luc tumor cell line, and validated in confocal and multiphoton imaging after staining the mice vasculature using Dextran 155KDa-TRITC or Dextran 2000kDa-FITC. Simultaneously, a universal stage was designed for optimal removal of respiratory and cardiac artifacts during microscopy assays. Experimental results from optical, ultrasound (Bmode and pulse subtraction mode) and MRI imaging (anatomic sequences) showed that our patented design, unlike commercial devices, improves longitudinal monitoring over several weeks (35 days on average against 12 for the commercial chamber) and allows for a better characterization of the early and late tissue alterations due to tumour development. We also demonstrated the compatibility for multimodality imaging and the increase of mice survival was by a factor of 2.9, with our new skinfold chamber. Current developments include: 1- defining new procedures for multi-labelling of cells and tissue (screening of fluorescent molecules and imaging protocols); 2- developing ultrasound and MRI imaging procedures with specific probes; 3- correlating optical/ultrasound/MRI data for a complete mapping of tumour development and microenvironment.

  6. Lymphoma: Immune Evasion Strategies

    International Nuclear Information System (INIS)

    Upadhyay, Ranjan; Hammerich, Linda; Peng, Paul; Brown, Brian; Merad, Miriam; Brody, Joshua D.

    2015-01-01

    While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care

  7. Lymphoma: Immune Evasion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ranjan; Hammerich, Linda; Peng, Paul [Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Brown, Brian [Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Merad, Miriam [Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Brody, Joshua D., E-mail: joshua.brody@mssm.edu [Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-04-30

    While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care.

  8. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth

    Science.gov (United States)

    Yin, Yuan; Cai, Xing; Chen, Xi; Liang, Hongwei; Zhang, Yujing; Li, Jing; Wang, Zuoyun; Chen, Xiulan; Zhang, Wen; Yokoyama, Seiji; Wang, Cheng; Li, Liang; Li, Limin; Hou, Dongxia; Dong, Lei; Xu, Tao; Hiroi, Takachika; Yang, Fuquan; Ji, Hongbin; Zhang, Junfeng; Zen, Ke; Zhang, Chen-Yu

    2014-01-01

    An increased population of CD4+CD25highFoxp3+ regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4+ T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion. PMID:25223704

  9. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry.

    Science.gov (United States)

    Kami, Kenjiro; Fujimori, Tamaki; Sato, Hajime; Sato, Mutsuko; Yamamoto, Hiroyuki; Ohashi, Yoshiaki; Sugiyama, Naoyuki; Ishihama, Yasushi; Onozuka, Hiroko; Ochiai, Atsushi; Esumi, Hiroyasu; Soga, Tomoyoshi; Tomita, Masaru

    2013-04-01

    Metabolic microenvironment of tumor cells is influenced by oncogenic signaling and tissue-specific metabolic demands, blood supply, and enzyme expression. To elucidate tumor-specific metabolism, we compared the metabolomics of normal and tumor tissues surgically resected pairwise from nine lung and seven prostate cancer patients, using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Phosphorylation levels of enzymes involved in central carbon metabolism were also quantified. Metabolomic profiles of lung and prostate tissues comprised 114 and 86 metabolites, respectively, and the profiles not only well distinguished tumor from normal tissues, but also squamous cell carcinoma from the other tumor types in lung cancer and poorly differentiated tumors from moderately differentiated tumors in prostate cancer. Concentrations of most amino acids, especially branched-chain amino acids, were significantly higher in tumor tissues, independent of organ type, but of essential amino acids were particularly higher in poorly differentiated than moderately differentiated prostate cancers. Organ-dependent differences were prominent at the levels of glycolytic and tricarboxylic acid cycle intermediates and associated energy status. Significantly high lactate concentrations and elevated activating phosphorylation levels of phosphofructokinase and pyruvate kinase in lung tumors confirmed hyperactive glycolysis. We highlighted the potential of CE-TOFMS-based metabolomics combined with phosphorylated enzyme analysis for understanding tissue-specific tumor microenvironments, which may lead to the development of more effective and specific anticancer therapeutics.

  10. Impact of MAPK Pathway Activation in BRAFV600 Melanoma on T Cell and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Patrick A. Ott

    2013-10-01

    Full Text Available Constitutive upregulation of the MAPK pathway by a BRAFV600 mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAFV600 mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAFV600E melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  11. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    Science.gov (United States)

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  12. Bioengineering Embryonic Stem Cell Microenvironments for the Study of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yubing Xie

    2011-11-01

    Full Text Available Breast cancer is the most prevalent disease amongst women worldwide and metastasis is the main cause of death due to breast cancer. Metastatic breast cancer cells and embryonic stem (ES cells display similar characteristics. However, unlike metastatic breast cancer cells, ES cells are nonmalignant. Furthermore, embryonic microenvironments have the potential to convert metastatic breast cancer cells into a less invasive phenotype. The creation of in vitro embryonic microenvironments will enable better understanding of ES cell-breast cancer cell interactions, help elucidate tumorigenesis, and lead to the restriction of breast cancer metastasis. In this article, we will present the characteristics of breast cancer cells and ES cells as well as their microenvironments, importance of embryonic microenvironments in inhibiting tumorigenesis, convergence of tumorigenic and embryonic signaling pathways, and state of the art in bioengineering embryonic microenvironments for breast cancer research. Additionally, the potential application of bioengineered embryonic microenvironments for the prevention and treatment of invasive breast cancer will be discussed.

  13. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  14. Absorbed dose in fibrotic microenvironment models employing Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zambrano Ramírez, O.D.; Rojas Calderón, E.L.; Azorín Vega, E.P.; Ferro Flores, G.; Martínez Caballero, E.

    2015-01-01

    The presence or absence of fibrosis and yet more, the multimeric and multivalent nature of the radiopharmaceutical have recently been reported to have an effect on the radiation absorbed dose in tumor microenvironment models. Fibroblast and myofibroblast cells produce the extracellular matrix by the secretion of proteins which provide structural and biochemical support to cells. The reactive and reparative mechanisms triggered during the inflammatory process causes the production and deposition of extracellular matrix proteins, the abnormal excessive growth of the connective tissue leads to fibrosis. In this work, microenvironment (either not fibrotic or fibrotic) models composed of seven spheres representing cancer cells of 10 μm in diameter each with a 5 μm diameter inner sphere (cell nucleus) were created in two distinct radiation transport codes (PENELOPE and MCNP). The purpose of creating these models was to determine the radiation absorbed dose in the nucleus of cancer cells, based on previously reported radiopharmaceutical retain (by HeLa cells) percentages of the 177 Lu-Tyr 3 -octreotate (monomeric) and 177 Lu-Tyr 3 -octreotate-AuNP (multimeric) radiopharmaceuticals. A comparison in the results between the PENELOPE and MCNP was done. We found a good agreement in the results of the codes. The percent difference between the increase percentages of the absorbed dose in the not fibrotic model with respect to the fibrotic model of the codes PENELOPE and MCNP was found to be under 1% for both radiopharmaceuticals. (authors)

  15. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium.

    Science.gov (United States)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B; Behrens, Sabine; Goode, Ellen L; Bolla, Manjeet K; Dennis, Joe; Dunning, Alison M; Easton, Douglas F; Wang, Qin; Benitez, Javier; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Fasching, Peter A; Haeberle, Lothar; Peto, Julian; Dos-Santos-Silva, Isabel; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marmé, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Nielsen, Sune F; Nordestgaard, Børge G; González-Neira, Anna; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Fagerholm, Rainer; Dörk, Thilo; Bogdanova, Natalia V; Mannermaa, Arto; Hartikainen, Jaana M; Van Dijck, Laurien; Smeets, Ann; Flesch-Janys, Dieter; Eilber, Ursula; Radice, Paolo; Peterlongo, Paolo; Couch, Fergus J; Hallberg, Emily; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Schumacher, Fredrick; Simard, Jacques; Goldberg, Mark S; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Winqvist, Robert; Grip, Mervi; Andrulis, Irene L; Glendon, Gord; García-Closas, Montserrat; Figueroa, Jonine; Czene, Kamila; Brand, Judith S; Darabi, Hatef; Eriksson, Mikael; Hall, Per; Li, Jingmei; Cox, Angela; Cross, Simon S; Pharoah, Paul D P; Shah, Mitul; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Ademuyiwa, Foluso; Ambrosone, Christine B; Swerdlow, Anthony; Jones, Michael; Chang-Claude, Jenny

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113 matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition to TGFBR2 and CCND1, IL5 and GM-CSF showed the strongest associations with overall breast cancer risk (p value = 1.0 × 10(-3) and 7.0 × 10(-3), respectively). Furthermore, STAT3 and IL5 but not GM-CSF were differentially expressed between breast tumor tissue and normal tissue (p value = 2.5 × 10(-3), 4.5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry.

  16. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    Science.gov (United States)

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  17. NANIVID: A New Research Tool for Tissue Microenvironment Studies

    Science.gov (United States)

    Raja, Waseem K.

    Metastatic tumors are heterogeneous in nature and composed of subpopulations of cells having various metastatic potentials. The time progression of a tumor creates a unique microenvironment to improve the invasion capabilities and survivability of cancer cells in different microenvironments. In the early stages of intravasation, cancer cells establish communication with other cell types through a paracrine loop and covers long distances by sensing growth factor gradients through extracellular matrices. Cellular migration both in vitro and in vivo is a complex process and to understand their motility in depth, sophisticated techniques are required to document and record events in real time. This study presents the design and optimization of a new versatile chemotaxis device called the NANIVID (NANo IntraVital Imaging Device), developed using advanced Nano/Micro fabrication techniques. The current version of this device has been demonstrated to form a stable (epidermal growth factor) EGF gradient in vitro (2D and 3D) while a miniaturized size of NANIVID is used as an implantable device for intravital studies of chemotaxis and to collect cells in vivo. The device is fabricated using microfabrication techniques in which two substrates are bonded together using a thin polymer layer creating a bonded device with one point source (approximately 150 im x 50 im) outlet. The main structures of the device consist of two transparent substrates: one having etched chambers and channel while the second consists of a microelectrode system to measure real time cell arrival inside the device. The chamber of the device is loaded with a growth factor reservoir consisting of hydrogel to sustain a steady release of growth factor into the surrounding environment for long periods of time and establishing a concentration gradient from the device. The focus of this study was to design and optimize the new device for cell chemotaxis studies in breast cancer cells in cell culture. Our results

  18. The use of matrigel has no influence on tumor development or PET imaging in FaDu human head and neck cancer xenografts

    DEFF Research Database (Denmark)

    Fliedner, Frederikke P.; Hansen, Anders Elias; Jorgensen, Jesper T.

    2016-01-01

    is currently available. This study evaluates the potential effect of matrigel use in a human head and neck cancer xenograft model (FaDu; hypopharyngeal carcinoma) in NMRI nude mice. The FaDu cell line was chosen based on its frequent use in studies of cancer imaging and tumor microenvironment. Methods: NMRI...... nude mice (n = 34) were divided into two groups and subcutaneously injected with FaDu cells in medium either including (+MG) or excluding matrigel (-MG). In sub study I seven mice from each group (+MG, n = 7; -MG, n = 7) were 18F-fluorodeoxyglucose (18F-FDG) PET/CT scanned on Day 5, 8, 12, 15, and 19...... for the FaDu xenograft model evaluated. Tumors in the -MG group displayed increased angiogenesis compared to the +MG tumors. No difference in 18F-FDG PET uptake for tumors of different groups was found. Based on these observations the influence of matrigel on tumor imaging and tumor microenvironment seems...

  19. Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ivan J Cohen

    2017-09-01

    Full Text Available Immunotherapy is revolutionizing cancer care across disciplines. The original success of immune checkpoint blockade in melanoma has already been translated to Food and Drug Administration–approved therapies in a number of other cancers, and a large number of clinical trials are underway in many other disease types, including breast cancer. Here, we review the basic requirements for a successful antitumor immune response, with a focus on the metabolic and physical barriers encountered by lymphocytes entering breast tumors. We also review recent clinical trials of immunotherapy in breast cancer and provide a number of interesting questions that will need to be answered for successful breast cancer immunotherapy.

  20. HER2-Targeted Polyinosine/Polycytosine Therapy Inhibits Tumor Growth and Modulates the Tumor Immune Microenvironment.

    Science.gov (United States)

    Zigler, Maya; Shir, Alexei; Joubran, Salim; Sagalov, Anna; Klein, Shoshana; Edinger, Nufar; Lau, Jeffrey; Yu, Shang-Fan; Mizraji, Gabriel; Globerson Levin, Anat; Sliwkowski, Mark X; Levitzki, Alexander

    2016-08-01

    The development of targeted therapies that affect multiple signaling pathways and stimulate antitumor immunity is greatly needed. About 20% of patients with breast cancer overexpress HER2. Small molecules and antibodies targeting HER2 convey some survival benefits; however, patients with advanced disease succumb to the disease under these treatment regimens, possibly because HER2 is not completely necessary for the survival of the targeted cancer cells. In the present study, we show that a polyinosine/polycytosine (pIC) HER2-homing chemical vector induced the demise of HER2-overexpressing breast cancer cells, including trastuzumab-resistant cells. Targeting pIC to the tumor evoked a number of cell-killing mechanisms, as well as strong bystander effects. These bystander mechanisms included type I IFN induction, immune cell recruitment, and activation. The HER2-targeted pIC strongly inhibited the growth of HER2-overexpressing tumors in immunocompetent mice. The data presented here could open additional avenues in the treatment of HER2-positive breast cancer. Cancer Immunol Res; 4(8); 688-97. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    Science.gov (United States)

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  2. Remodeling of Tumor Stroma and Response to Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Anna; Ganss, Ruth, E-mail: ganss@waimr.uwa.edu.au [Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Perth 6000 (Australia)

    2012-03-27

    Solid tumors are intrinsically resistant to therapy. Cancer progression occurs when tumor cells orchestrate responses from diverse stromal cell types such as blood vessels and their support cells, inflammatory cells, and fibroblasts; these cells collectively form the tumor microenvironment and provide direct support for tumor growth, but also evasion from cytotoxic, immune and radiation therapies. An indirect result of abnormal and leaky blood vessels in solid tumors is high interstitial fluid pressure, which reduces drug penetration, but also creates a hypoxic environment that further augments tumor cell growth and metastatic spread. Importantly however, studies during the last decade have shown that the tumor stroma, including the vasculature, can be modulated, or re-educated, to allow better delivery of chemotherapeutic drugs or enhance the efficiency of active immune therapy. Such remodeling of the tumor stroma using genetic, pharmacological and other therapeutic approaches not only enhances selective access into tumors but also reduces toxic side effects. This review focuses on recent novel concepts to modulate tumor stroma and thus locally increase therapeutic efficacy.

  3. Remodeling of Tumor Stroma and Response to Therapy

    International Nuclear Information System (INIS)

    Johansson, Anna; Ganss, Ruth

    2012-01-01

    Solid tumors are intrinsically resistant to therapy. Cancer progression occurs when tumor cells orchestrate responses from diverse stromal cell types such as blood vessels and their support cells, inflammatory cells, and fibroblasts; these cells collectively form the tumor microenvironment and provide direct support for tumor growth, but also evasion from cytotoxic, immune and radiation therapies. An indirect result of abnormal and leaky blood vessels in solid tumors is high interstitial fluid pressure, which reduces drug penetration, but also creates a hypoxic environment that further augments tumor cell growth and metastatic spread. Importantly however, studies during the last decade have shown that the tumor stroma, including the vasculature, can be modulated, or re-educated, to allow better delivery of chemotherapeutic drugs or enhance the efficiency of active immune therapy. Such remodeling of the tumor stroma using genetic, pharmacological and other therapeutic approaches not only enhances selective access into tumors but also reduces toxic side effects. This review focuses on recent novel concepts to modulate tumor stroma and thus locally increase therapeutic efficacy

  4. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  5. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  6. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells

    International Nuclear Information System (INIS)

    Theys, Jan; Jutten, Barry; Habets, Roger; Paesmans, Kim; Groot, Arjan J.; Lambin, Philippe; Wouters, Brad G.; Lammering, Guido; Vooijs, Marc

    2011-01-01

    Background and purpose: Hypoxia is a hallmark of solid cancers and associated with metastases and treatment failure. During tumor progression epithelial cells often acquire mesenchymal features, a phenomenon known as epithelial-to-mesenchymal transition (EMT). Intratumoral hypoxia has been linked to EMT induction. We hypothesized that signals from the tumor microenvironment such as growth factors and tumor oxygenation collaborate to promote EMT and thereby contribute to radioresistance. Materials and methods: Gene expression changes under hypoxia were analyzed using microarray and validated by qRT-PCR. Conversion of epithelial phenotype upon hypoxic exposure, TGFβ addition or oncogene activation was investigated by Western blot and immunofluorescence. Cell survival following ionizing radiation was assayed using clonogenic survival. Results: Upon hypoxia, TGFβ addition or EGFRvIII expression, MCF7, A549 and NMuMG epithelial cells acquired a spindle shape and lost cell-cell contacts. Expression of epithelial markers such as E-cadherin decreased, whereas mesenchymal markers such as vimentin and N-cadherin increased. Combining hypoxia with TGFβ or EGFRvIII expression, lead to more rapid and pronounced EMT-like phenotype. Interestingly, E-cadherin expression and the mesenchymal appearance were reversible upon reoxygenation. Mesenchymal conversion and E-cadherin loss were associated with radioresistance. Conclusions: Our findings describe a mechanism by which the tumor microenvironment may contribute to tumor radioresistance via E-cadherin loss and EMT.

  7. TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation.

    Science.gov (United States)

    Ni, Xiao Yan; Sui, Hua Xiu; Liu, Yao; Ke, Shi Zhong; Wang, Yi Nan; Gao, Feng Guang

    2012-08-01

    The effects of TGF-β on dendritic cells (DCs) on the tumor microenvironment are not well understood. We report, here, the establishment of an in vitro lung cancer microenvironment by co-incubation of seminaphtharhodafluor (SNARF) labeled Lewis lung cancer (LLC) cells, carboxyfluorescein succinimidyl ester (CFSE) labeled fibroblasts and 4-chloromethyl-7-hydroxycoumarin (CMHC) labeled DCs. Raw 264.7, EL4 and NCI-H446 cells were able to synthesize TGF-β which was determined by flow cyto-metry and western blotting, respectively. Furthermore, TGF-β efficiently increased regulatory T-cell (Treg) expansion and upregulated DC B7H1 and GITRL expression. TGF-β and the co-incubation of LLC cells, fibroblasts with DCs could augment the expression of B7H1 and GITRL molecules of DCs. The data presented here indicate that the B7H1 and GITRL molecules may play an important role in TGF-β-induced Treg expansion of lung cancer microenvironment.

  8. EBV-associated post-transplantation B-cell lymphoproliferative disorder following allogenic stem cell transplantation for acute lymphoblastic leukaemia: tumor regression after reduction of immunosuppression - a case report

    Directory of Open Access Journals (Sweden)

    Niedobitek Gerald

    2010-03-01

    Full Text Available Abstract Epstein-Barr virus (EBV-associated B-cell post-transplantation lymphoproliferative disorder (PTLD is a severe complication following stem cell transplantation. This is believed to occur as a result of iatrogenic immunosuppression leading to a relaxation of T-cell control of EBV infection and thus allowing viral reactivation and proliferation of EBV-infected B-lymphocytes. In support of this notion, reduction of immunosuppressive therapy may lead to regression of PTLD. We present a case of an 18-year-old male developing a monomorphic B-cell PTLD 2 months after receiving an allogenic stem cell transplant for acute lymphoblastic leukemia. Reduction of immunosuppressive therapy led to regression of lymphadenopathy. Nevertheless, the patient died 3 months afterwards due to extensive graft-vs.-host-disease and sepsis. As a diagnostic lymph node biopsy was performed only after reduction of immunosuppressive therapy, we are able to study the histopathological changes characterizing PTLD regression. We observed extensive apoptosis of blast cells, accompanied by an abundant infiltrate comprising predominantly CD8-positive, Granzyme B-positive T-cells. This observation supports the idea that regression of PTLD is mediated by cytotoxic T-cells and is in keeping with the observation that T-cell depletion, represents a major risk factor for the development of PTLD.

  9. Stromal-dependent tumor promotion by MIF family members.

    Science.gov (United States)

    Mitchell, Robert A; Yaddanapudi, Kavitha

    2014-12-01

    Solid tumors are composed of a heterogeneous population of cells that interact with each other and with soluble and insoluble factors that, when combined, strongly influence the relative proliferation, differentiation, motility, matrix remodeling, metabolism and microvessel density of malignant lesions. One family of soluble factors that is becoming increasingly associated with pro-tumoral phenotypes within tumor microenvironments is that of the migration inhibitory factor family which includes its namesake, MIF, and its only known family member, D-dopachrome tautomerase (D-DT). This review seeks to highlight our current understanding of the relative contributions of a variety of immune and non-immune tumor stromal cell populations and, within those contexts, will summarize the literature associated with MIF and/or D-DT. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. New Chimeric Antigen Receptor Design for Solid Tumors

    Directory of Open Access Journals (Sweden)

    Yuedi Wang

    2017-12-01

    Full Text Available In recent years, chimeric antigen receptor (CAR T-cell therapy has become popular in immunotherapy, particularly after its tremendous success in the treatment of lineage-restricted hematologic cancers. However, the application of CAR T-cell therapy for solid tumors has not reached its full potential because of the lack of specific tumor antigens and inhibitory factors in suppressive tumor microenvironment (TME (e.g., programmed death ligand-1, myeloid-derived suppressor cells, and transforming growth factor-β. In this review, we include some limitations in CAR design, such as tumor heterogeneity, indefinite spatial distance between CAR T-cell and its target cell, and suppressive TME. We also summarize some new approaches to overcome these hurdles, including targeting neoantigens and/or multiple antigens at once and depleting some inhibitory factors.

  11. Phenotypic and Functional Properties of Tumor-Infiltrating Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Gap Ryol Lee

    2017-01-01

    Full Text Available Regulatory T (Treg cells maintain immune homeostasis by suppressing excessive immune responses. Treg cells induce tolerance against self- and foreign antigens, thus preventing autoimmunity, allergy, graft rejection, and fetus rejection during pregnancy. However, Treg cells also infiltrate into tumors and inhibit antitumor immune responses, thus inhibiting anticancer therapy. Depleting whole Treg cell populations in the body to enhance anticancer treatments will produce deleterious autoimmune diseases. Therefore, understanding the precise nature of tumor-infiltrating Treg cells is essential for effectively targeting Treg cells in tumors. This review summarizes recent results relating to Treg cells in the tumor microenvironment, with particular emphasis on their accumulation, phenotypic, and functional properties, and targeting to enhance the efficacy of anticancer treatment.

  12. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells.

    Science.gov (United States)

    Ghosh, Tithi; Barik, Subhasis; Bhuniya, Avishek; Dhar, Jesmita; Dasgupta, Shayani; Ghosh, Sarbari; Sarkar, Madhurima; Guha, Ipsita; Sarkar, Koustav; Chakrabarti, Pinak; Saha, Bhaskar; Storkus, Walter J; Baral, Rathindranath; Bose, Anamika

    2016-11-01

    Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment. © 2016 UICC.

  13. Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies.

    Science.gov (United States)

    Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K; Mall, Christine; Zamora, Anthony E; Mirsoian, Annie; Chen, Mingyi; Kol, Amir; Shiao, Stephen L; Reddy, Abhinav; Perks, Julian R; T N Culp, William; Sparger, Ellen E; Canter, Robert J; Sckisel, Gail D; Murphy, William J

    2016-09-01

    Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. ADAMTS-1 Is Found in the Nuclei of Normal and Tumoral Breast Cells.

    Directory of Open Access Journals (Sweden)

    Suély V Silva

    Full Text Available Proteins secreted in the extracellular matrix microenvironment (ECM by tumor cells are involved in cell adhesion, motility, intercellular communication and invasion. The tumor microenvironment is expansively modified and remodeled by proteases, resulting in important changes in both cell-cell and cell-ECM interactions and in the generation of new signals from the cell surface. Metalloproteinases belonging to the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs family have been implicated in tissue remodeling events observed in cancer development, growth and progression. Here we investigated the subcellular localization of ADAMTS-1 in normal-like (MCF10-A and tumoral (MCF7 and MDA-MB-231 human breast cells. ADAMTS-1 is a secreted protease found in the extracellular matrix. However, in this study we show for the first time that ADAMTS-1 is also present in the nuclei and nucleoli of the three mammary cell lines studied here. Our findings indicate that ADAMTS-1 has proteolytic functions in the nucleus through its interaction with aggrecan substrate.

  15. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  16. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease.

    Science.gov (United States)

    Palacios, Florencia; Moreno, Pilar; Morande, Pablo; Abreu, Cecilia; Correa, Agustín; Porro, Valentina; Landoni, Ana Ines; Gabus, Raul; Giordano, Mirta; Dighiero, Guillermo; Pritsch, Otto; Oppezzo, Pablo

    2010-06-03

    Interaction of chronic lymphocytic leukemia (CLL) B cells with tissue microenvironment has been suggested to favor disease progression by promoting malignant B-cell growth. Previous work has shown expression in peripheral blood (PB) of CLL B cells of activation-induced cytidine deaminase (AID) among CLL patients with an unmutated (UM) profile of immunoglobulin genes and with ongoing class switch recombination (CSR) process. Because AID expression results from interaction with activated tissue microenvironment, we speculated whether the small subset with ongoing CSR is responsible for high levels of AID expression and could be derived from this particular microenvironment. In this work, we quantified AID expression and ongoing CSR in PB of 50 CLL patients and characterized the expression of different molecules related to microenvironment interaction. Our results show that among UM patients (1) high AID expression is restricted to the subpopulation of tumoral cells ongoing CSR; (2) this small subset expresses high levels of proliferation, antiapoptotic and progression markers (Ki-67, c-myc, Bcl-2, CD49d, and CCL3/4 chemokines). Overall, this work outlines the importance of a cellular subset in PB of UM CLL patients with a poor clinical outcome, high AID levels, and ongoing CSR, whose presence might be a hallmark of a recent contact with the microenvironment.

  17. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  18. The hypoxic tumor microenvironment and drug resistance against EGFR inhibitors: preclinical study in cetuximab-sensitive head and neck squamous cell carcinoma cell lines.

    Science.gov (United States)

    Boeckx, Carolien; Van den Bossche, Jolien; De Pauw, Ines; Peeters, Marc; Lardon, Filip; Baay, Marc; Wouters, An

    2015-06-02

    Increased expression of the epidermal growth factor receptor (EGFR) is observed in more than 90% of all head and neck squamous cell carcinomas (HNSCC). Therefore, EGFR has emerged as a promising therapeutic target. Nevertheless, drug resistance remains a major challenge and an important potential mechanism of drug resistance involves the hypoxic tumor microenvironment. Therefore, we investigated the cytotoxic effect of the EGFR-targeting agents cetuximab and erlotinib under normoxia versus hypoxia. Three cetuximab-sensitive HNSCC cell lines (SC263, LICR-HN2 and LICR-HN5) were treated with either cetuximab or erlotinib. Cells were incubated under normal or reduced oxygen conditions (<0.1% O2) for 24 or 72 h immediately after drug addition. Cell survival was assessed with the sulforhodamine B assay. Cetuximab and erlotinib established a dose-dependent growth inhibition under both normal and prolonged reduced oxygen conditions in all three HNSCC cell lines. However, a significantly increased sensitivity to cetuximab was observed in SC263 cells exposed to hypoxia for 72 h (p = 0.05), with IC50 values of 2.38 ± 0.59 nM, 0.64 ± 0.38 nM, and 0.10 ± 0.05 nM under normoxia, hypoxia for 24 h and hypoxia for 72 h, respectively. LICR-HN5 cells showed an increased sensitivity towards erlotinib when cells were incubated under hypoxia for 24 h (p = 0.05). Our results suggest that both EGFR-inhibitors cetuximab and erlotinib maintain their growth inhibitory effect under hypoxia. These results suggest that resistance to anti-EGFR therapy in HNSCC is probably not the result of hypoxic regions within the tumor and other mechanisms are involved.

  19. Magnetic resonance imaging of tumor oxygenation and metabolic profile

    DEFF Research Database (Denmark)

    Krishna, Murali C.; Matsumoto, Shingo; Saito, Keita

    2013-01-01

    The tumor microenvironment is distinct from normal tissue as a result of abnormal vascular network characterized by hypoxia, low pH, high interstitial fluid pressure and elevated glycolytic activity. This poses a barrier to treatments including radiation therapy and chemotherapy. Imaging methods...... spectroscopic imaging. Imaging pO2 in tumors is now a robust pre-clinical imaging modality with potential for implementation clinically. Pre-clinical studies and an initial clinical study with hyperpolarized metabolic MR have been successful and suggest that the method may be part of image-guided radiotherapy...

  20. A DTI Study to Probe Tumor Microstructure And Its Connection With Hypoxia

    OpenAIRE

    Majumdar, Shreyan; Kotecha, Mrignayani; Triplett, William; Epel, Boris; Halpern, Howard

    2014-01-01

    Solid tumors have chaotic organization of blood vessels, disruptive nerve paths and muscle fibers that result in a hostile and heterogeneous microenvironment. These tumor regions are often hypoxic and resistant to radiation therapy. The knowledge of partial pressure of oxygen concentration (pO2), in conjunction with the information about tissue organization, can predict tissue health and may eventually be used in combination with intensity-modulated radiation therapy (IMRT) for targeted destr...