WorldWideScience

Sample records for immunofluorescence microscopy detected

  1. Epidermis area detection for immunofluorescence microscopy

    Science.gov (United States)

    Dovganich, Andrey; Krylov, Andrey; Nasonov, Andrey; Makhneva, Natalia

    2018-04-01

    We propose a novel image segmentation method for immunofluorescence microscopy images of skin tissue for the diagnosis of various skin diseases. The segmentation is based on machine learning algorithms. The feature vector is filled by three groups of features: statistical features, Laws' texture energy measures and local binary patterns. The images are preprocessed for better learning. Different machine learning algorithms have been used and the best results have been obtained with random forest algorithm. We use the proposed method to detect the epidermis region as a part of pemphigus diagnosis system.

  2. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    Science.gov (United States)

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  3. Evaluation of immunofluorescence microscopy and enzyme-linked immunosorbent assay in detection of Cryptosporidium and Giardia infections in asymptomatic dogs

    DEFF Research Database (Denmark)

    Rimhanen-Finne, R.; Enemark, Heidi L.; Kolehmainen, J.

    2007-01-01

    The performance of immunofluorescence microscopy (IF) and enzyme-linked immunosorbent assay (ELISA) in canine feces was evaluated. IF and Cryptosporidium ELISA detected 10(5) oocysts/g, while the detection limit for Giardia ELISA was 10(4) cysts/g. The Cryptosporidium ELISA showed 94% specificity...... zoonotic character of Cryptosporidium and Giardia infections in 150 asymptomatic Finnish dogs from the Helsinki area were studied. The overall proportion of dogs positive for Cryptosporidium was 5% (7/150) and that for Giardia 5% (8/150). In dogs...

  4. Comparison of electron microscopy, enzyme-linked immunosorbent assay, solid-phase radioimmunoassay, and indirect immunofluorescence for detection of human rotavirus antigen in faeces

    Energy Technology Data Exchange (ETDEWEB)

    Birch, C J; Lehmann, N I; Hawker, A J; Marshall, J A; Gust, I D [Fairfield Hospital for Communicable Diseases, Victoria (Australia). Virology Dept.

    1979-07-01

    Four techniques were compared for their practicability, speed, and sensitivity for the detection of human rotavirus. Radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) were found to be the most sensitive means of identifying rotavirus and, once processed, up to 40 specimens could be examined daily. Electron microscopy, although less sensitive than these techniques, had the advantage of being able to detect other viral agents present in faecal extracts. Indirect immunofluorescence failed to detect rotavirus as often as the other three methods. In laboratories where routine examination of faecal specimens from patients with gastroenteritis is required, ELISA and RIA are useful alternatives to electron microscopy.

  5. Comparison of electron microscopy, enzyme-linked immunosorbent assay, solid-phase radioimmunoassay, and indirect immunofluorescence for detection of human rotavirus antigen in faeces

    International Nuclear Information System (INIS)

    Birch, C.J.; Lehmann, N.I.; Hawker, A.J.; Marshall, J.A.; Gust, I.D.

    1979-01-01

    Four techniques were compared for their practicability, speed, and sensitivity for the detection of human rotavirus. Radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) were found to be the most sensitive means of identifying rotavirus and, once processed, up to 40 specimens could be examined daily. Electron microscopy, although less sensitive than these techniques, had the advantage of being able to detect other viral agents present in faecal extracts. Indirect immunofluorescence failed to detect rotavirus as often as the other three methods. In laboratories where routine examination of faecal specimens from patients with gastroenteritis is required, ELISA and RIA are useful alternatives to electron microscopy. (author)

  6. In situ detection of the activation of Rac1 and RalA small GTPases in mouse adipocytes by immunofluorescent microscopy following in vivo and ex vivo insulin stimulation.

    Science.gov (United States)

    Takenaka, Nobuyuki; Nihata, Yuma; Ueda, Sho; Satoh, Takaya

    2017-11-01

    Rac1 has been implicated in insulin-dependent glucose uptake by mechanisms involving plasma membrane translocation of the glucose transporter GLUT4 in skeletal muscle. Although the uptake of glucose is also stimulated by insulin in adipose tissue, the role for Rac1 in adipocyte insulin signaling remains controversial. As a step to reveal the role for Rac1 in adipocytes, we aimed to establish immunofluorescent microscopy to detect the intracellular distribution of activated Rac1. The epitope-tagged Rac1-binding domain of a Rac1-specific target was utilized as a probe that specifically recognizes the activated form of Rac1. Rac1 activation in response to ex vivo and in vivo insulin stimulations in primary adipocyte culture and mouse white adipose tissue, respectively, was successfully observed by immunofluorescent microscopy. These Rac1 activations were mediated by phosphoinositide 3-kinase. Another small GTPase RalA has also been implicated in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Similarly to Rac1, immunofluorescent microscopy using an activated RalA-specific polypeptide probe allowed us to detect intracellular distribution of insulin-activated RalA in adipocytes. These novel approaches to visualize the activation status of small GTPases in adipocytes will largely contribute to the understanding of signal transduction mechanisms particularly for insulin action. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The detection of Giardia muris and Giardia lamblia cysts by immunofluorescence in animal tissues and fecal samples subjected to cycles of freezing and thawing.

    Science.gov (United States)

    Erlandsen, S L; Sherlock, L A; Bemrick, W J

    1990-04-01

    The effects of freezing and thawing on the detection of selected Giardia spp. cysts were investigated using immunofluorescence, bright field microscopy, and low voltage scanning electron microscopy (SEM). Giardia muris cysts were obtained from either animal carcasses, fecal pellets, or isolated cyst preparations, whereas Giardia lamblia cysts were isolated from fecal samples. These samples were stained using an immunofluorescence technique after 1-3 freezing (-16 C) and thawing (20 C) cycles. Cysts were detected successfully by immunofluorescence in all samples. However, in those samples subjected to freeze-thawing, the cyst walls often became distorted and then were not detectable by bright field microscopy. Low voltage SEM demonstrated that the filaments in the distorted cyst wall underwent rearrangements of interfilament spacing. Quantitation of cyst recovery after freezing and thawing demonstrated that a substantial loss occurred after 1 cycle of alternating temperature when low concentrations of cysts were used, but not with high concentrations of cysts. Cyst recovery, after 3 freezing and thawing cycles, was dramatically lowered irrespective of the initial cyst concentration. These results demonstrated that immunofluorescence was an effective technique for the detection of Giardia spp. cysts in frozen samples and would suggest that freezing and thawing of fecal samples could prevent the detection of cysts when only bright field microscopy was employed.

  8. Immunofluorescence detection of pea protein in meat products.

    Science.gov (United States)

    Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka

    2016-08-01

    In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.

  9. EUROPattern Suite technology for computer-aided immunofluorescence microscopy in autoantibody diagnostics.

    Science.gov (United States)

    Krause, C; Ens, K; Fechner, K; Voigt, J; Fraune, J; Rohwäder, E; Hahn, M; Danckwardt, M; Feirer, C; Barth, E; Martinetz, T; Stöcker, W

    2015-04-01

    Antinuclear autoantibodies (ANA) are highly informative biomarkers in autoimmune diagnostics. The increasing demand for effective test systems, however, has led to the development of a confusingly large variety of different platforms. One of them, the indirect immunofluorescence (IIF), is regarded as the common gold standard for ANA screening, as described in a position statement by the American College of Rheumatology in 2009. Technological solutions have been developed aimed at standardization and automation of IIF to overcome methodological limitations and subjective bias in IIF interpretation. In this review, we present the EUROPattern Suite, a system for computer-aided immunofluorescence microscopy (CAIFM) including automated acquisition of digital images and evaluation of IIF results. The system was originally designed for ANA diagnostics on human epithelial cells, but its applications have been extended with the latest system update version 1.5 to the analysis of antineutrophil cytoplasmic antibodies (ANCA) and anti-dsDNA antibodies. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. A comparison of indirect immunofluorescence and electron microscopy for the diagnosis of some haemorrhagic viruses in cell cultures.

    Science.gov (United States)

    El Mekki, A A; van der Groen, G

    1981-09-01

    Yellow fever, dengue (types 1, 2 and 4), Chikungunya, Rift Valley fever, Ebola, Marburg, and Lassa viruses were inoculated into susceptible cell cultures and daily investigated by indirect immunofluorescence (IFA) and electron microscopy (EM) with a view to achieve an early detection-identification of these agents. Compared to the other cell lines tested (Vero, BHK-21 and Aedes albopictus), CV-1 cells were found to be more sensitive. Viral antigens were detected by IFA from a few hours post inoculation (CHIK and RVF) to a maximum of 3 days (YF and EBO). For most of the viruses studied, the cytopathic effect (CPE) commenced 2-3 days after the detection of viral antigens. Virus particles were detected by EM only in the case of EBO, MBG and LAS, before any CPE was observed in cell cultures.

  11. Indirect micro-immunofluorescence test for detecting type-specific antibodies to herpes simplex virus.

    Science.gov (United States)

    Forsey, T; Darougar, S

    1980-02-01

    A rapid indirect micro-immunofluorescence test capable of detecting and differentiating type-specific antibodies to herpes simplex virus is described. The test proved highly sensitive and, in 80 patients with active herpes ocular infection, antibody was detected in 94%. No anti-herpes antibody was detected in a control group of 20 patients with adenovirus infections. Testing of animal sera prepared against herpes simplex virus types 1 and 2 and of human sera from cases of ocular and genital herpes infections showed that the test can differentiate antibodies to the infecting serotypes. Specimens of whole blood, taken by fingerprick, and eye secretions, both collected on cellulose sponges, could be tested by indirect micro-immunofluorescence. Anti-herpes IgG, IgM, and IgA can also be detected.

  12. Improved detection of Pneumocystis carinii by an immunofluorescence technique using monoclonal antibodies

    DEFF Research Database (Denmark)

    Orholm, M; Holten-Andersen, W; Lundgren, Jens Dilling

    1990-01-01

    To assess whether a recently developed indirect immunofluorescent stain using monoclonal antibodies was more sensitive in detecting Pneumocystis carinii than the combination of Giemsa and methenamine silver nitrate stains which has routinely been used in the laboratory, 88 lavage fluid specimens...... silver nitrate and toluidine blue O. Immunofluorescence using the monoclonal antibodies from the NIH was significantly more sensitive than any other single staining method and than the combination of Giemsa and methenamine silver nitrate staining. The study also showed that the cytospin centrifuge...

  13. Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

    Directory of Open Access Journals (Sweden)

    Shinnosuke Inoue

    Full Text Available An occupationally safe (biosafe sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.

  14. Comparison of new immunofluorescence method for detection of soy protein in meat products with immunohistochemical, histochemical, and ELISA methods

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2014-01-01

    Full Text Available Soy proteins are commonly used in the food industry thanks to their technological properties. However, soy is, along with cow’s milk, eggs, wheat, peanuts, tree nuts, fish, crustaceans, and molluscs, responsible for around 90% of food allergies, and is also one of the foodstuffs that can cause anaphylaxis. The aim of this work was to compare the immunofluorescence method for the detection of soy protein in meat products purchased from the retail market with other microscopic methods (immunohistochemical and histochemical, with the ELISA reference method and with the confirmatory results. Within the research, 127 meat products purchased in the retail network were examined using the immunofluorescence method used for the detection of soy protein. The method was compared to Enzyme-Linked ImmunoSorbent Assay (ELISA, immunohistochemical, and histochemical methods. According to McNemar’s test, non-compliance between the immunofluorescence method and immunohistochemical method was low. In addition, a significant difference between the fluorescence method and ELISA (P P < 0.01 was found. The immunofluorescence method was also compared with confirmatory results. According to McNemar’s test, non-compliance between the immunofluorescence method and confirmatory results was low. The results showed the possibilities of this new method to detect the content of soy protein in meat products.

  15. Immunofluorescence detection of milk protein in meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2015-05-01

    Full Text Available Nowadays there are various vegetable protein additives intended for the manufacture of meat products in the food industry. These ingredients include both, plant-origin as well as animal-origin proteins. The most common vegetable additives include various types of flour, starch, fiber and plant protein. Among animal proteins, the most commonly used are plasma, collagen or milk protein. Milk protein is added to meat products due to its functional properties, such as emulsifying fats, improving the holding capacity of meat, improving juiciness, gel-forming capacity and affecting the taste of the product. Usage of these proteins, however, is currently limited by the effective legislation, not only in order to prevent consumer deception, but also because of their potential impact on consumers' health of. Thus, this issue has received considerable attention not only in the Czech Republic, but also globally. The main risk is the impossibility of selecting a suitable foodstuff for individuals with potential allergic reactions. The only option for allergic consumers to protect themselves is to strictly exclude the given allergen from their diet. Although the number of studies dealing with the reduction or loss of allergenicity is increasing, yet these practices are not common. Most of the population suffering from food allergies is thus still dependent on strict exclusion of foodstuffs causing adverse allergic reactions from their diet. Detection of allergens in foodstuffs is unfortunately quite difficult due to the fact that they occur in trace amounts and are often masked by different parts of the foodstuff. This research dealt with the detection of milk protein in meat products purchased in the market network of the Czech Republic, whereas declaration given by the manufacturer on the packaging for the small meat products purchased from the market was used to verify the detection of milk protein by the immunofluorescence method. 20 products were

  16. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways

    DEFF Research Database (Denmark)

    Vestergaard, Maj Linea; Awan, Aashir; Warzecha, Caroline Becker

    2016-01-01

    onto 16-well glass chambers, and continuing with the general IFM and qPCR anlysis. The techniques are illustrated with results on cellular localization of transcriptional factors and components of the Hedgehog, Wnt, PDGF, and TGFβ signaling pathways to primary cilia in stem cell maintenance......This chapter describes the procedures for immunofluorescence microscopy (IFM) and quantitative PCR (qPCR) analyses of human embryonic stem cells (hESCs) grown specifically under feeder-free conditions. A detailed protocol is provided outlining the steps from initially growing the cells, passaging...

  17. Development of immunofluorescence colony staining (IFC) for detection of Xanthomonas campestris pv. vesicatoria and Clavibacter michiganensis subsp michiganensis in tomato seeds

    NARCIS (Netherlands)

    Nemeth, J.; Vuurde, van J.W.L.

    2006-01-01

    Immunofluorescence colony-staining (IFC) is based on sample pour plating in combination with immunofluorescence staining for recognition of the target colony. IFC was optimised for detecting Xanthomonas campestris pv. vesicatoria (Xcv) and Clavibacter michiganensis subsp. michiganensis (Cmm) in

  18. Direct immunofluorescence for the diagnosis of legionellosis

    Directory of Open Access Journals (Sweden)

    David JM Haldane

    1993-01-01

    Full Text Available Culture and direct immunofluorescent microscopy (DFA results for Legionella pneumophila were reviewed over a two-year period. In the first year, a positive result was defined as having at least one morphologically typical fluorescing organism. In the second year, a positive was defined as at least five typical fluorescing organisms. Despite these stricter criteria and other measures to reduce the possibility of reagent contamination, there was no statistically significant difference in the sensitivity or specificity of the DFA in the two years for sputa, deep specimens or overall. Of 37 sputum specimens from infected patients, 16 were positive on DFA. Thirty-two of 38 positive patients were detected by sputum culture. DFA can provide rapid diagnostic information but cannot be used to rule out the diagnosis. Sputum is a useful specimen for the initial laboratory investigation of patients with legionellosis.

  19. Estimation of antibodies to human cytomegalovirus by immunofluorescence and radioimmunoassay

    International Nuclear Information System (INIS)

    Jankowski, M.; Gut, W.; Nawrocka, E.

    1980-01-01

    The 125 I labelled IgG fraction against rabbit IgG of goat origin was employed for the detection of CMV IgG and IgM antibodies in the double indirect radioimmunoassay. The results were compared with those obtained in complement fixation, indirect immunofluorescence and anti-complement immunofluorescence tests. The application of labelled anti-fc antisera, instead of antisera against whole IgG in the tests for detection of specific CMV IgG antibody resulted in increased sensitivity of radioimmunoassay and reduction of non-specific cytoplasmatic reactions in preparations stained by indirect immunofluorescence. The absorption of sera with protein A rich staphylococci and aggregates to immunoglobulin eliminated unwanted secondary IgM staining caused by rheumatoid factors both in indirect immunofluorescence and radioimmunoassay tests for CMV antibodies. (author)

  20. Pattern of glomerular diseases in oman: A study based on light microscopy and immunofluorescence

    Directory of Open Access Journals (Sweden)

    Nasar Yousuf Alwahaibi

    2013-01-01

    Full Text Available Light microscopy and immunofluorescence play an important part in the final diagnosis of renal biopsy. The aim of this study was to analyze the pattern of various glomerular diseases in Oman. A total of 424 renal biopsies were retrospectively analyzed at the Sultan Qaboos University Hospital between 1999 and 2010. Focal and segmental glomerulosclerosis (FSGS, minimal change disease (MCD, membranous glomerulopathy (MGN and IgA nephropathy were the most common primary glomerular diseases encountered, accounting for 21.2%, 17%, 12.3% and 8.3%, respectively, of all cases. Lupus nephritis was the most common secondary glomerular disease and was the most prevalent among all biopsies, accounting for 30.4% of all biopsies. Amyloidosis was seen in only two cases. The presence of fluorescein isothiocyanatefibrin in all renal cases was low when compared with IgG, IgA, IgM, C3 and C1q markers. In conclusion, based on the findings of this study, lupus nephritis was the most common of all glomerular diseases and FSGS was the most common primary glomerular disease. The importance of fluorescein isothiocyanate-fibrin in the diagnosis of renal biopsy needs to be further investigated.

  1. Application of indirect immunofluorescent test with an improved HEp-2 substrate tranfected with human Ro60/SSA autoantigens

    International Nuclear Information System (INIS)

    Lv Liangjing; Chen Shunle; Gu Yueying; Shen Nan; Bao Chunde; Wang Yuan; Xue Feng; Ye Peng; Yu Chongzhao

    2006-01-01

    To develop an improved substrate for indirect immunofluorescent test (IIF) to detect anti-Ro/SSA autoantibodies, the human 60-kDa Ro/SSA autoantigens (Ro60) cDNAs were obtained from placental cDNA library using PCR and were cloned into the mammalian expression vectorpEGFP-C1. Then the recombinant plasmids were transfected into HEp-2 cells. We con- firmed the overexpression, localization and antigenicity of fusion proteins in transfected cells by means of fluorescence microscopy, immunoblotting and IIF. HEp-2 and HEp-Ro60 was analyzed by IIF using a panel of 10 precipitinpositive anti-Ro human sera simultaneously. Stable expression of Ro60-GFP (green fluorescent protein) fusion proteins maintained ten more generations. And Ro60-GFP kept the antigenicity of Ro and had its own characteristic immunofluorescent pattern in HEp-Ro60 cells. The transfectants dramatically increased the sensitivity of IIF testing (a mean increase of 6.7-fold in endpoint titer, P<0.01). Eight (8/10) positive an- ti-Ro sera showed characteristic immunofluorescent pattern on HEp-Ro60, including two sera which were antinuclear antibodies (ANA) negative on untransfected HEp-2. IIF-ANA in all healthy sera were negative on HEp-Ro60. As a kind of new substrate of IIF, the Ro60 transfectants can be used to detect anti-Ro antibodies. In addition, transfected HEp-2 cells kept the immunofluorescent property of HEp-2 cells in IIF-ANA tests and could be employed as substrate for the routine IIF-ANA detection. The method improved the sensitivity of IIF-ANA. (authors)

  2. Double-label immunofluorescence method for simultaneous detection of adenovirus and herpes simplex virus from the eye.

    Science.gov (United States)

    Walpita, P; Darougar, S

    1989-07-01

    The development and application of a double-label immunofluorescence method which has the potential to screen for single or dual infections from any site, in single shell vial cultures, is described. In this study, a total of 1,141 ocular specimens were inoculated in shell vials, centrifuged at 15,000 X g for 1 h, incubated at 37 degrees C for 48 h, and fixed in methanol at room temperature for 15 min. The virus inclusions were detected by staining with a double-label indirect immunofluorescence procedure using mixtures of appropriate first antibodies, followed by fluorescein- and rhodamine-conjugated second antibodies. Each specimen was also inoculated in parallel by the conventional virus isolation method. The sensitivity and specificity of the double-label shell vial procedure were comparable to those with the conventional method, and the former test took only 48 h to complete. The test offers a rapid and simple single-vial procedure which allows for individual or simultaneous detection of multiple pathogens. It results in savings in time and cost over the conventional virus isolation method and other shell vial procedures.

  3. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    International Nuclear Information System (INIS)

    Decho, Alan W; Beckman, Erin M; Chandler, G Thomas; Kawaguchi, Tomohiro

    2008-01-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae

  4. Role of direct immunofluorescence in the diagnosis of glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Archana C Buch

    2015-01-01

    Full Text Available Background: Immunofluorescence microscopy is a vital tool for the diagnosis of glomerular diseases. This study was carried out to study patterns of glomerulonephritis (GN and to record the sensitivity of direct immunofluorescence (DIF in renal lesions. The DIF findings were correlated with clinical and histopathology findings and discrepancies were analyzed. Materials and Methods: The cross-sectional analytical study was conducted during the period July 2011 to July 2013 at a tertiary care Hospital, Department of Pathology. A total of 75 renal biopsies were received for routine and immunofluorescence studies in which histopathology and clinical data were reviewed and analyzed. Results: The sensitivity of DIF was 87.9% and specificity was 70.5%. The maximum number of cases were seen in the age group 41-50 years. The pattern of GN by DIF was minimal change disease (MCD in 24%, IgA nephropathy in 13%, focal segmental glomerulosclerosis in 9% and membranoproliferative glomerulonephritis in 8% of the cases. Twelve histopathologically proven cases of GN were negative on DIF. One case of MCD on histopathology was diagnosed as IgM nephropathy based on DIF. Conclusion: Direct immunofluorescence forms an important diagnostic tool in reaching the exact diagnosis in various types of GN presenting with overlapping clinical and histomorphological features.

  5. Quantum Dot Immunocytochemical Localization of Somatostatin in Somatostatinoma by Widefield Epifluorescence, Super-resolution Light, and Immunoelectron Microscopy

    Science.gov (United States)

    Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon

    2012-01-01

    Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862

  6. Quantum dot immunocytochemical localization of somatostatin in somatostatinoma by Widefield Epifluorescence, super-resolution light, and immunoelectron microscopy.

    Science.gov (United States)

    Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon

    2012-11-01

    Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.

  7. An expert protocol for immunofluorescent detection of calcium channels in tsA-201 cells.

    Science.gov (United States)

    Koch, Peter; Herzig, Stefan; Matthes, Jan

    Pore-forming subunits of voltage gated calcium channels (VGCC) are large membrane proteins (260kDa) containing 24 transmembrane domains. Despite transfection with viral promoter driven vectors, biochemical analysis of VGCC is often hampered by rather low expression levels in heterologous systems rendering VGCC challenging targets. Especially in immunofluorescent detection, calcium channels are demanding proteins. We provide an expert step-by-step protocol with adapted conditions for handling procedures (tsA-201 cell culture, transient transfection, incubation time and temperature at 28°C or 37°C and immunostaining) to address the L-type calcium-channel pore Ca v 1.2 in an immunofluorescent approach. We performed immunocytochemical analysis of Ca v 1.2 expression at single-cell level in combination with detection of different markers for cellular organelles. We show confluency levels and shapes of tsA-201 cells at different time points during an experiment. Our experiments reveal sufficient levels of Ca v 1.2 protein and a correct Ca v 1.2 expression pattern in polygonal shaped cells already 12h after transfection. A sequence of elaborated protocol modifications allows subcellular localization analysis of Ca v 1.2 in an immunocytochemical approach. We provide a protocol that may be used to achieve insights into physiological and pathophysiological processes involving voltage gated calcium channels. Our protocol may be used for expression analysis of other challenging proteins and efficient overexpression may be exploited in related biochemical techniques requiring immunolabels. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Immunofluorescent detection in the ovary of host antibodies against a secretory ferritin injected into female Haemaphysalis longicornis ticks.

    Science.gov (United States)

    Galay, Remil Linggatong; Matsuo, Tomohide; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Kusakisako, Kodai; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2018-04-01

    Due to the continuous threat of ticks and tick-borne diseases to human and animal health worldwide, and the drawbacks of chemical acaricide application, many researchers are exploring vaccination as an alternative tick control method. Earlier studies have shown that host antibodies can circulate in the ticks, but it has not been confirmed whether these antibodies can be passed on to the eggs. We previously reported that ticks infesting rabbits immunized with a recombinant secretory ferritin of Haemaphysalis longicornis (HlFER2) had reduced egg production and hatching. Here we attempted to detect the presence of antibodies against HlFER2 in the ovary and eggs of female ticks through immunofluorescent visualization. Purified anti-HlFER2 antibodies or rabbit IgG for control was directly injected to engorged female H. longicornis. Ovaries and eggs after oviposition were collected and prepared for an indirect immunofluorescent antibody test. Positive fluorescence was detected in ovaries one day post-injection of anti-HlFER2 antibodies. Through silencing of Hlfer2 gene, we also determined whether the injected antibodies can specifically bind to native HlFER2. Immunofluorescence was observed in the oocytes of dsLuciferase control ticks injected with anti-HlFER2 antibodies, but not in the oocytes of Hlfer2-silenced ticks also injected with anti-HlFER2 antibodies. Our current findings suggest that host antibodies can be passed on to the oocytes, which is significant in formulating a vaccine that can disrupt tick reproduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Use of commercially available rabbit monoclonal antibodies for immunofluorescence double staining

    DEFF Research Database (Denmark)

    Bzorek, M.; Stamp, I.M.; Frederiksen, L.

    2008-01-01

    Immunohistochemistry, that is, the use of polyclonal and monoclonal antibodies to detect cell and tissue antigens at a microscopical level is a powerful tool for both research and diagnostic purposes. Especially in the field of hematologic disease, there is often a need to detect several antigens...... synchronously, and we report here a fast and easy technique for demonstrating more than 1 antigen in 1 slide using immunofluorescence. We have used commercially available rabbit monoclonal antibodies (Cyclin D1, CD3, CD5, CD23, etc.) paired with mouse monoclonal antibodies (CD7, CD20, CD79a, Pax-5, etc.......) for double immunofluorescence labeling on paraffin-embedded tissue sections. Commercially available rabbit monoclonal antibodies in combination with mouse monoclonal antibodies proved useful in double immunofluorescence labeling on paraffin-embedded tissue, and all combinations used yielded excellent results...

  10. Immunofluorescence

    International Nuclear Information System (INIS)

    Bongertz, V.; Castro, B.G.

    1990-01-01

    The advantages of the immunofluorescence assay (IFA) that allowing the specific 'in situ' localization of the antigen-antibody interaction, of paramount importance when complex antigenic preparations, such as for instance tissue sections, are studied. (L.M.J.) [pt

  11. Nail unit in collagen vascular diseases: A clinical, histopathological and direct immunofluorescence study

    Directory of Open Access Journals (Sweden)

    Nabil P

    2006-01-01

    Full Text Available Background: Abnormalities of the nail unit are common in patients with connective tissue diseases. Clinical examination of the nail unit, coupled with biopsy of proximal nail fold offers an additional advantage in the diagnosis. Purpose: Our aim was to record clinical changes of the nail unit in connective tissue diseases and to study the histopathological (both H and E and periodic acid Schiff and direct immunofluorescence (DIF findings of nail-fold biopsy. Materials and Methods: Thirty-eight confirmed cases connective tissue diseases attending skin OPD were enrolled in the study. After detailed clinical examination of the nail unit, a crescentric biopsy was taken from the proximal nail fold (PNF. Histopathological and DIF studies were was carried out. Findings: Nail changes could be demonstrated in 65% connective tissue diseases. Specific histopathological (H and E and immunofluorescence findings were also encountered in many patients. Conclusion: Clinical examination of the nail unit offers additional clue in the diagnosis of connective tissue diseases. Though DIF of PNF biopsy is useful in the diagnosis, it is not an ideal site for H and E study, as the yield is very low. Limitations: Lack of adequate comparison group and non-utilization of capillary microscopy for the detection of nail fold capillary abnormalities.

  12. A Unique Immunofluorescence Protocol to Detect Protein Expression in Vascular Tissues: Tacking a Long Standing Pathological Hitch

    Directory of Open Access Journals (Sweden)

    Puneet GANDHI

    2018-01-01

    Full Text Available Objective: Autofluorescence induced interference is one of the major drawbacks in immunofluorescence analysis of formalin-fixed paraffin-embedded tissues, as it decreases the signal-to-noise ratio of specific labeling. Apart from aldehyde-fixation induced artifacts; collagen and elastin, red blood cells and endogenous fluorescent pigment lipofuscin are prime sources of autofluorescence in vascular and aging tissues. We describe herein, an optimized indirect-immunofluorescence method for archival formalin-fixed paraffin-embedded tissues tissues and cryo sections, using a combination of 3-reagents in a specific order, to achieve optimal fluorescence signals and imaging. Material and Method: Human telomerase reverse transcriptase, a protein implicated as a proliferation marker, was chosen relevant to its expression in solid tumors along with 3 other intracellular proteins exhibiting nuclear and/or cytoplasmic expression. Staining was performed on 10 glioma tissue sections along with 5 of their cryo sections, 5 sections each of hepatocellular, lung, papillary-thyroid and renal cell carcinoma, with 10 non-malignant brain tissue samples serving as control. Specimens were imaged using epifluorescence microscopy, followed by software-based quantification of fluorescence signals for statistical analysis and validation. Results: We observed that the combined application of sodium-borohydride followed by crystal violet before antigen retrieval and a Sudan black B treatment after secondary antibody application proved to be most efficacious for masking autofluorescence/non-specific background in vascular tissues. Conclusion: This unique trio-methodology provides quantifiable observations with maximized fluorescence signal intensity of the target protein for longer retention time of the signal even after prolonged storage. The results can be extrapolated to other human tissues for different protein targets.

  13. Confocal fluorescence microscopy in a murine model of microdissection testicular sperm extraction to improve sperm retrieval.

    Science.gov (United States)

    Smith, Ryan P; Lowe, Greg J; Kavoussi, Parviz K; Steers, William D; Costabile, Raymond A; Herr, John C; Shetty, Jagathpala; Lysiak, Jeffrey J

    2012-05-01

    Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules. After establishing the feasibility of fiberoptic confocal fluorescent microscopy to identify antibody labeled sperm in vivo C57/B6 mice underwent intraperitoneal injection of busulfan to induce azoospermia. During spermatogenesis reestablishment at approximately 16 weeks the mice were anesthetized and the testes were delivered through a low midline incision. Fluorescein isothiocyanate labeled antibody to intra-acrosomal protein Hs-14 was injected retrograde into a single murine rete testis. The testes were imaged in vivo with fiberoptic confocal fluorescent microscopy and sperm foci were detected. The respective seminiferous tubules were excised and squash prepared for immunofluorescence microscopy. Sperm foci were identified in the testis injected with fluorescently tagged antibody by in vivo fiberoptic confocal fluorescence microscopy. The contralateral control testis of each mouse showed no specific signal. Immunofluorescence microscopy of the excised tubules provided morphological confirmation of the presence of labeled sperm with an absence in controls. Findings were consistent in the feasibility portion of the study and in the busulfan model of nonobstructive azoospermia. Fiberoptic confocal fluorescent microscopy was feasible during microdissection testicular sperm extraction in an azoospermic mouse model to identify fluorescently labeled sperm in vivo. Translation to the clinical setting could decrease operative time and improve the sperm harvest rate. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Characterization of pars intermedia connections in amphibians by biocytin tract tracing and immunofluorescence aided by confocal microscopy

    NARCIS (Netherlands)

    Jansen, K; Fabro, C; Artero, C; Feuilloley, M; Vaudry, H; Fasolo, A; Franzoni, MF

    Biocytin, recently introduced in neuroanatomical studies, was used as a retrograde tract tracer in combination with immunofluorescence in order to analyse the neurochemical characters of some central neuronal projections to the pars intermedia in two amphibian species, the anuran Rana esculenta and

  15. [Laboratory diagnosis of genital herpes--direct immunofluorescence method].

    Science.gov (United States)

    Majewska, Anna; Romejko-Wolniewicz, Ewa; Zareba-Szczudlik, Julia; Kilijańczyk, Marek; Gajewska, Małgorzata; Młynarczyk, Grazyna

    2013-07-01

    Aim of the study was to determine clinical usefulness of direct immunofluorescence method in the laboratory diagnosis of genital herpes in women. Overall 187 anogenital swabs were collected from 120 women. Using a dacron-tipped applicator 83 swabs were collected from women suspected of genital herpes and 104 from patients with no signs of genital infection. All samples were tested using cell culture (Vero cell line) and then direct immunofluorescence method (DIF) for the identification of antigens of herpes simplex viruses: HSV-1 and HSV-2. Characteristic cytopathic effect (CPE), indicative of alphaherpesvirus infection, was observed in 43.4% of cultures with clinical specimens collected from women with suspected genital herpes and in 29.8% of cultures of clinical specimens taken from patients with no clinical symptoms of genital herpes. Herpes simplex viruses were determined in 73 samples by direct immunofluorescence method after amplification of the virus in cell culture. The DIF test confirmed the diagnosis based on the microscopic CPE observation in 85%. In 15% of samples (taken from pregnant women without clinical signs of infection) we reported positive immunofluorescence in the absence of CPE. The frequency of antigen detection was statistically significantly higher in samples that were positive by culture study (chi-square test with Yates's correction, p genital herpes in swabs taken from the vestibule of the vagina and the vulva. However, there was no statistically significant difference in the frequency of detection of Herpes Simplex Virus antigens in specimens from different parts of the genital tract in both groups of women (chi-square test, p > 0.05). In our study HHV-1 was the main causative agent of genital herpes. The growing worldwide prevalence of genital herpes, challenges with the clinical diagnosis, and availability of effective antiviral therapy are the main reasons for a growing interest in rapid, proper laboratory diagnosis of infected

  16. Detection of viral infection by immunofluorescence in formalin-fixed tissues, pretreated with trypsin

    Directory of Open Access Journals (Sweden)

    O. M. Barth

    1988-06-01

    Full Text Available The presence of viral antigen in sections from formalin-fixed and paraffin-embedded human tissues was demonstrated by trypsin digestion followed by direct or indirect immunofluorescence. The specimens may be used for retrospective diagnosis. The immunofluorescence technique has to be adapted to the suspected virus infection on the basis of previous histopathology study. Variations of trypsin concentration time and temperature of incubation, expose different viral antigens and have to be previously tested for each unknown system. For measles virus detection in lung a stronger digestion has to be applied as compared to adenovirus or respiratory disease viruses in the same tisue. Flavivirus in liver tissue needs a weaker digestion. The reproducibility of the method makes it useful as a routine technique in diagnosis of virus infection.A presença de antígeno viral em cortes de tecidos humanos fixados em formol e emblocados em parafina foi demonstrada pela digestão com tripsina foi demonstrada pela ingestão com tripsina seguida de imunofluorescência direta ou indireta. Os espécimens podem ser utilizados para diagnoses retrospectivas. A técnica da imunofluorescência deve ser adaptada à infecção viral suspeita segundo diagnosie histopatológica prévia. Os parâmetros para a digestão do tecido pela tripsina, relacionados à concentração, duração de atuação e temperatura, expõem diferentes antígenos virais e devem ser previamente testados para cada sistema a ser estabelecido. Uma digestão mais intensa deve ser aplicada para a detecção do vírus do sarampo em tecido pulmonar do que para adenovírus ou vírus respiratório sincicial no mesmo tecido. Por outro lado, o vírus da febre amarela em tecido de fígado necessita de uma digestão mais fraca.

  17. Practical application of immunofluorescence for the detection of bacterial contaminants during vinification

    Directory of Open Access Journals (Sweden)

    Marielle Bouix

    1997-03-01

    Full Text Available This study presents a rapid and specific microscopie technique for detecting and identifying populations of lactic acid bacteria in musts, wines, and inoculum starter cultures. Through the use of fluorescent antibodies, this procedure can be performed in less than two hours, and it is effective with Leuconostoc, Pediococcus and Lactobacillus concentrations as small as 102 cells/ml. Implementation of this technique will assist winemakers in controlling malolactic fermentations and in preventing lactic acid bacterial spoilage.

  18. Comparison of immunofluorescence investigations and a new anti-DNA-antibody radioimmunoassay for the diagnosis of connective tissue diseases

    International Nuclear Information System (INIS)

    Neumeier, D.; Vogt, W.; Knedel, M.

    1976-01-01

    The procedure of determining the anti-DNA antibody activity is simplified by high-molecular double strand DNA labelled with 125 I. Cases of suspected connective tissue disease should first be examined by immunofluorescence microscopy, since this method can detect a wider spectrum of diseases with similar symptoms. For a differential diagnosis of SLE, the anti-DNA antibody activity is then investigated by a radioimmunoassay. When assessing the antibody activity, the following criteria should be kept in mind: - Findings of less than 10 units/ml serum do not indicate pathological changes, - Higher antibody activities up to 35 units/ml serum may occur in SLE patients but are also possible in other ANA positive diseases with similar symptoms, - Activities over 35 units/ml serum are nearly always a sign of SLE. (orig./GSE) [de

  19. Comparison of immunofluorescence investigations and a new anti-DNA-antibody radioimmunoassay for the diagnosis of connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, D; Vogt, W; Knedel, M

    1976-01-01

    The procedure of determining the anti-DNA antibody activity is simplified by high-molecular double strand DNA labelled with /sup 125/I. Cases of suspected connective tissue disease should first be examined by immunofluorescence microscopy, since this method can detect a wider spectrum of diseases with similar symptoms. For a differential diagnosis of SLE, the anti-DNA antibody activity is then investigated by a radioimmunoassay. When assessing the antibody activity, the following criteria should be kept in mind: - Findings of less than 10 units/ml serum do not indicate pathological changes, - Higher antibody activities up to 35 units/ml serum may occur in SLE patients but are also possible in other ANA positive diseases with similar symptoms, - Activities over 35 units/ml serum are nearly always a sign of SLE.

  20. A review of cellphone microscopy for disease detection.

    Science.gov (United States)

    Dendere, R; Myburg, N; Douglas, T S

    2015-12-01

    The expansion in global cellphone network coverage coupled with advances in cellphone imaging capabilities present an opportunity for the advancement of cellphone microscopy as a low-cost alternative to conventional microscopy for disease detection in resource-limited regions. The development of cellphone microscopy has also benefitted from the availability of low-cost miniature microscope components such as low-power light-emitting diodes and ball lenses. As a result, researchers are developing hardware and software techniques that would enable such microscopes to produce high-resolution, diagnostic-quality images. This approach may lead to more widespread delivery of diagnostic services in resource-limited areas where there is a shortage of the skilled labour required for conventional microscopy and where prevalence of infectious and other diseases is still high. In this paper, we review current techniques, clinical applications and challenges faced in the field of cellphone microscopy. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. Use of a Granulocyte Immunofluorescence Assay Designed for Humans for Detection of Antineutrophil Cytoplasmic Antibodies in Dogs with Chronic Enteropathies.

    Science.gov (United States)

    Florey, J; Viall, A; Streu, S; DiMuro, V; Riddle, A; Kirk, J; Perazzotti, L; Affeldt, K; Wagner, R; Vaden, S; Harris, T; Allenspach, K

    2017-07-01

    Perinuclear antineutrophil cytoplasmic antibodies (pANCA) previously have been shown to be serum markers in dogs with chronic enteropathies, with dogs that have food-responsive disease (FRD) having higher frequencies of seropositivity than dogs with steroid-responsive disease (SRD). The indirect immunofluorescence (IIF) assay used in previous publications is time-consuming to perform, with low interobserver agreement. We hypothesized that a commercially available granulocyte IIF assay designed for humans could be used to detect perinuclear antineutrophil cytoplasmic antibodies in dogs. Forty-four dogs with FRD, 20 dogs with SRD, 20 control dogs, and 38 soft-coated wheaten terrier (SCWT) or SCWT-cross dogs. A granulocyte assay designed for humans was used to detect pANCA, cANCA, and antinuclear antibodies (ANA), as well as antibodies against proteinase-3 protein (PR-3) and myeloperoxidase protein (MPO) in archived serum samples. Sensitivity of the granulocyte assay to predict FRD in dogs was 0.61 (95% confidence interval (CI), 0.45, 0.75), and specificity was 1.00 (95% CI, 0.91, 1.00). A significant association was identified between positive pANCA or cANCA result and diagnosis of FRD (P < 0.0001). Agreement between the two assays to detect ANCA in the same serum samples from SCWT with protein-losing enteropathy/protein-losing nephropathy (PLE/PLN) was substantial (kappa, 0.77; 95% CI, 0.53, 1.00). Eight ANCA-positive cases were positive for MPO or PR-3 antibodies. The granulocyte immunofluorescence assay used in our pilot study was easy and quick to perform. Agreement with the previously published method was good. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Comparison of enzyme-linked immunosorbent assay, radioimmunoassay, complement fixation, anticomplement immunofluorescence and passive haemaglutination techniques for detecting cytomegalovirus IgG antibody

    Energy Technology Data Exchange (ETDEWEB)

    Booth, J C; Hannington, G; Bakir, T M.F.; Stern, H; Kangro, H; Griffiths, P D; Heath, R B [Saint George' s Hospital Medical School, London (UK); Saint Bartholomew' s Hospital, London (UK))

    1982-12-01

    The radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) techniques were found to be comparable in sensitivity and specificity for detecting cytomegalovirus IgG antibody, and 10 to 100 times more sensitive than complement-fixation (CF), anticomplement immunofluorescence (ACIF) and passive haemagglutination (PHA). In screening tests for antibody, the frequency of false-positive and -negative results was 0.6% for RIA and ELISA, 1.5% for CF, 1.6% for ACIF and 3.6% for PHA. PHA was the least satisfactory test, largely because of technical problems.

  3. Construction of iron-polymer-graphene nanocomposites with low nonspecific adsorption and strong quenching ability for competitive immunofluorescent detection of biomarkers in GM crops.

    Science.gov (United States)

    Yin, Kaifei; Liu, Anran; Shangguan, Li; Mi, Li; Liu, Xu; Liu, Yuanjian; Zhao, Yuewu; Li, Ying; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-04-15

    We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  5. Immunofluorescent staining of nuclear antigen in lymphoid cells transformed by Herpesvirus papio (HVP).

    Science.gov (United States)

    Schmitz, H

    1981-01-01

    An improved fixation method for antigen detection in lymphoblastoid cells is described. Herpesvirus papio nuclear antigen (HUPNA) could be stained in several transformed lymphoid cell lines by anti-complement immunofluorescence (ACIF). Antibody to HUPNA was detected in many human sera containing antibodies to Epstein-Barr virus capsid and nuclear antigen (EBNA). Rheumatoid arthritis sera showed a high incidence of both anti-EBNA and anti-HUPNA antibodies.

  6. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    Science.gov (United States)

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  7. Detection of laser damage by Raman microscopy

    International Nuclear Information System (INIS)

    Fauchet, P.M.; Campbell, I.H.; Adar, F.

    1988-01-01

    The authors demonstrate that Raman miroscopy is a sensitive and quantitative tool to detect and characterize laser-induced damage in solids. After damage is induced with single or multiple high power laser pulses, a Raman microprobe maps the surface of the sample with one micron spatial resolution. By performing accurate measurements of the Stokes line, the authors have been able to measure stress, strain and crystallinity in various samples which had been exposed to high intensity pulses. These results are compared to those obtained using conventional tools such as Nomarski microscopy. Major advantages of Raman microscopy include sensitivity to subtle structural modifications and the fact that it gives quantitative measurements

  8. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  9. Human cryptosporidiosis: detection of specific antibodies in the serum by an indirect immunofluorescence

    Directory of Open Access Journals (Sweden)

    Braz Lúcia M.A.

    1996-01-01

    Full Text Available Cryptosporidium sp., a coccidian parasite usually found in the faeces of cattle, has been recently implicated as an agent of human intestinal disease, mainly in immunocompromised patients. In the study realized, by an indirect immunofluorescence technique, specific immunoglobulins (IgG and IgM have been demonstrated in human serum against Cryptosporidium oocysts. Purified oocysts were used as antigens in the indirect immunofluorecence assay. After analyzing this test in sera from selected groups of patients, the frequency of both specific IgG and IgM of immunocompetent children who were excreting oocysts in their faeces was 62% and in children with negative excretion of oocysts was 20% and 40%, respectively. In adults infected with the human immunodeficiency virus (HIV and who were excreting Cryptosporidium in their stools, the frequency was 57% for IgG but only 2% for IgM. Twenty three percent of immunocompromised adults with not determined excretion of oocysts in their stools had anti-Cryptosporidium IgG in their sera. Children infected with human immunodeficiency virus had no IgM and only 14% had IgG detectable in their sera. The indirect immunoflorescence assay, when used with other parasitological techniques appears to be useful for retrospective population studies and for diagnosis of acute infection. The humoral immune response of HIV positive patients to this protozoan agent needs clarification.

  10. Diagnostic significance of colloid body deposition in direct immunofluorescence

    Directory of Open Access Journals (Sweden)

    Chularojanamontri Leena

    2010-01-01

    Full Text Available Background: Colloid bodies (CB in direct immunofluorescence (DIF studies are usually found in interface dermatitis. Furthermore, CB can be found in various skin diseases and even in normal skin. Aim: To evaluate the diagnostic value of CB deposits in DIF studies. Methods: From 1996-2007, data from 502 patients where DIF studies showed immunoreactants at CB were enrolled. The definite diagnoses of these patients were based on clinical, histopathological and immunofluorescent findings. The results of DIF studies were analyzed. Results: Immunoreactants at CB were detected in 44.4%, 43.8%, 4.2%, 3.8%, and 2.2% of interface dermatitis, vasculitis, autoimmune vesiculobullous disease, panniculitis, and scleroderma/morphea, respectively. The most common immunoreactant deposit of all diseases was Immunoglobulin M (IgM. Brighter intensity and higher quantity of CB was detected frequently in the group with interface dermatitis. Conclusions: Immunoreactant deposits at CB alone can be found in various diseases but a strong intensity and high quantity favor the diagnosis of interface dermatitis. CB plus dermoepidermal junction (DEJ deposits are more common in interface dermatitis than any other disease. Between lichen planus (LP and discoid lupus erythematosus (DLE, CB alone is more common in LP; whereas, CB plus DEJ and superficial blood vessel (SBV is more common in DLE. The most common pattern in both diseases is CB plus DEJ. The quantity and intensity of CB in LP is higher than in DLE.

  11. Microscopy outperformed in a comparison of five methods for detecting Trichomonas vaginalis in symptomatic women.

    Science.gov (United States)

    Nathan, B; Appiah, J; Saunders, P; Heron, D; Nichols, T; Brum, R; Alexander, S; Baraitser, P; Ison, C

    2015-03-01

    In the UK, despite its low sensitivity, wet mount microscopy is often the only method of detecting Trichomonas vaginalis infection. A study was conducted in symptomatic women to compare the performance of five methods for detecting T. vaginalis: an in-house polymerase chain reaction (PCR); Aptima T. vaginalis kit; OSOM ®Trichomonas Rapid Test; culture and microscopy. Symptomatic women underwent routine testing; microscopy and further swabs were taken for molecular testing, OSOM and culture. A true positive was defined as a sample that was positive for T. vaginalis by two or more different methods. Two hundred and forty-six women were recruited: 24 patients were positive for T. vaginalis by two or more different methods. Of these 24 patients, 21 patients were detected by real-time PCR (sensitivity 88%); 22 patients were detected by the Aptima T. vaginalis kit (sensitivity 92%); 22 patients were detected by OSOM (sensitivity 92%); nine were detected by wet mount microscopy (sensitivity 38%); and 21 were detected by culture (sensitivity 88%). Two patients were positive by just one method and were not considered true positives. All the other detection methods had a sensitivity to detect T. vaginalis that was significantly greater than wet mount microscopy, highlighting the number of cases that are routinely missed even in symptomatic women if microscopy is the only diagnostic method available. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method

    Science.gov (United States)

    Tabassum, Shahina; Al-Mahtab, Mamun; Nessa, Afzalun; Jahan, Munira; Shamim Kabir, Chowdhury Mohammad; Kamal, Mohammad; Cesar Aguilar, Julio

    2015-01-01

    Background Hepatitis B virus (HBV) infection has many faces. Precore and core promoter mutants resemble inactive carrier status. The identification of hepatitis B core antigen (HBcAg) in hepatocytes may have variable clinical significance. The present study was undertaken to detect HBcAg in chronic hepatitis B (CHB) patients and to assess the efficacy of detection system by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP). Materials and methods The study was done in 70 chronic HBV-infected patients. Out of 70 patients, eight (11.4%) were hepatitis B e antigen (HBeAg) positive and 62 (88.57%) were HBeAg negative. Hepatitis B core antigen was detected by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP) methods in liver tissue. Results All HBeAg positive patients expressed HBcAg by both IIF and IIP methods. Out of 62 patients with HBeAg-negative CHB, HBcAg was detected by IIF in 55 (88.7%) patients and by IIP in 51 (82.26%) patients. A positive relation among viral load and HBcAg detection was also found. This was more evident in the case of HBeAg negative patients and showed a positive relation with HBV DNA levels. Conclusion Hepatitis B core antigen can be detected using the IIF from formalin fixed paraffin block preparation and also by IIP method. This seems to reflect the magnitudes of HBV replication in CHB. How to cite this article Raihan R, Tabassum S, Al-Mahtab M, Nessa A, Jahan M, Kabir CMS, Kamal M, Aguilar JC. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method. Euroasian J Hepato-Gastroenterol 2015;5(1):7-10. PMID:29201677

  13. Automated Processing and Evaluation of Anti-Nuclear Antibody Indirect Immunofluorescence Testing.

    Science.gov (United States)

    Ricchiuti, Vincent; Adams, Joseph; Hardy, Donna J; Katayev, Alexander; Fleming, James K

    2018-01-01

    Indirect immunofluorescence (IIF) is considered by the American College of Rheumatology (ACR) and the international consensus on ANA patterns (ICAP) the gold standard for the screening of anti-nuclear antibodies (ANA). As conventional IIF is labor intensive, time-consuming, subjective, and poorly standardized, there have been ongoing efforts to improve the standardization of reagents and to develop automated platforms for assay incubation, microscopy, and evaluation. In this study, the workflow and performance characteristics of a fully automated ANA IIF system (Sprinter XL, EUROPattern Suite, IFA 40: HEp-20-10 cells) were compared to a manual approach using visual microscopy with a filter device for single-well titration and to technologist reading. The Sprinter/EUROPattern system enabled the processing of large daily workload cohorts in less than 8 h and the reduction of labor hands-on time by more than 4 h. Regarding the discrimination of positive from negative samples, the overall agreement of the EUROPattern software with technologist reading was higher (95.6%) than when compared to the current method (89.4%). Moreover, the software was consistent with technologist reading in 80.6-97.5% of patterns and 71.0-93.8% of titers. In conclusion, the Sprinter/EUROPattern system provides substantial labor savings and good concordance with technologist ANA IIF microscopy, thus increasing standardization, laboratory efficiency, and removing subjectivity.

  14. Automated Processing and Evaluation of Anti-Nuclear Antibody Indirect Immunofluorescence Testing

    Directory of Open Access Journals (Sweden)

    Vincent Ricchiuti

    2018-05-01

    Full Text Available Indirect immunofluorescence (IIF is considered by the American College of Rheumatology (ACR and the international consensus on ANA patterns (ICAP the gold standard for the screening of anti-nuclear antibodies (ANA. As conventional IIF is labor intensive, time-consuming, subjective, and poorly standardized, there have been ongoing efforts to improve the standardization of reagents and to develop automated platforms for assay incubation, microscopy, and evaluation. In this study, the workflow and performance characteristics of a fully automated ANA IIF system (Sprinter XL, EUROPattern Suite, IFA 40: HEp-20-10 cells were compared to a manual approach using visual microscopy with a filter device for single-well titration and to technologist reading. The Sprinter/EUROPattern system enabled the processing of large daily workload cohorts in less than 8 h and the reduction of labor hands-on time by more than 4 h. Regarding the discrimination of positive from negative samples, the overall agreement of the EUROPattern software with technologist reading was higher (95.6% than when compared to the current method (89.4%. Moreover, the software was consistent with technologist reading in 80.6–97.5% of patterns and 71.0–93.8% of titers. In conclusion, the Sprinter/EUROPattern system provides substantial labor savings and good concordance with technologist ANA IIF microscopy, thus increasing standardization, laboratory efficiency, and removing subjectivity.

  15. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  16. Ferritin protein imaging and detection by magnetic force microscopy.

    Science.gov (United States)

    Hsieh, Chiung-Wen; Zheng, Bin; Hsieh, Shuchen

    2010-03-14

    Magnetic force microscopy was used to image and detect ferritin proteins and the strength of the magnetic signal is discussed, revealing a large workable lift height between the magnetic tip and the ferritin sample.

  17. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy.

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2012-08-15

    A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.

  18. Sensor detection of parasite eggs and (oo-)cysts - possibilities and challenges

    DEFF Research Database (Denmark)

    Enemark, Heidi

    2015-01-01

    and cysts ((oo-)cysts) of the protozoan genera Cryptosporidium and Giardia are major causes of waterborne outbreaks of diarrhea. Methods for routine recovery and detection of waterborne Giardia and/or Cryptosporidium include filtration, immunomagnetic separation and detection by microscopy...... of immunofluorescence stained (oo-)cysts. These methods have low recovery rates, are time consuming, costly, and require well equipped laboratory facilities. Likewise, microscopy is the universal diagnostic method for detection of helminth eggs and protozoa in food and feed despite low sensitivity, difficulties...... system and ultrasound to obtain high recovery rates of apparently undamaged protozoa: 84.9% (Standard deviation (±) 4.8) for Giardia cysts and 70% (± 6.5) for Cryptosporidium oocysts. Ultrasound in the current system is tuned into a useful tool for enhanced elution of filtered (oo-)cysts. The combined...

  19. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    Science.gov (United States)

    Avti, Pramod K; Hu, Song; Favazza, Christopher; Mikos, Antonios G; Jansen, John A; Shroyer, Kenneth R; Wang, Lihong V; Sitharaman, Balaji

    2012-01-01

    In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  20. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    Directory of Open Access Journals (Sweden)

    Pramod K Avti

    Full Text Available In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM was investigated to detect, map, and quantify trace amounts [nanograms (ng to micrograms (µg] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds.Optical-resolution (OR and acoustic-resolution (AR--Photoacoustic microscopy (PAM was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR fluorescence microscopy.Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections.The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  1. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction.

    Science.gov (United States)

    Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip

    2017-11-27

    Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  2. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study.

    Science.gov (United States)

    Bradford, W. D.; Croker, B. P.; Tisher, C. C.

    1979-01-01

    The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676

  3. Performance evaluation of spot detection algorithms in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2012-10-01

    Full Text Available triggered the development of a highly sophisticated imaging tool known as fluorescence microscopy. This is used to visualise and study intracellular processes. The use of fluorescence microscopy and a specific staining method make biological molecules... was first used in astronomical applications [2] to detect isotropic objects, and was then introduced to biological applications [3]. Olivio-Marin[3] approached the problem of feature extraction based on undecimated wavelet representation of the image...

  4. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  5. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    Science.gov (United States)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  6. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    Science.gov (United States)

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  7. Evaluation of a Direct Immunofluorescent Assay and/or Conjunctival Cytology for Detection of Canine Distemper Virus Antigen.

    Science.gov (United States)

    Athanasiou, Labrini V; Kantere, Maria C; Kyriakis, Constantinos S; Pardali, Dimitra; Adamama Moraitou, Katerina; Polizopoulou, Zoe S

    2018-04-01

    Canine distemper is a common and potentially lethal multisystemic disease caused by the Canine distemper virus (CDV). We evaluated the diagnostic performance of direct immunofluorescent assay (FA) and cytology to detect CDV antigen in conjunctival cells compared with an established polymerase chain reaction (PCR) detection assay used as a gold standard for CDV diagnosis. Samples were collected from 57 young dogs presenting with central nervous system signs compatible with distemper disease. Exfoliative epithelial cells were collected from the right and left conjunctiva of each animal using nylon-bristled cytobrushes for cytology and cotton swabs for FA and PCR. For the direct FA, samples were stained with anti-CDV polyclonal antiserum conjugated to fluorescein isothiocyanate and imaged using a fluorescent microscope. Out of 57 dogs tested, 19 were PCR positive (15 positive in direct FA and 4 positive in cytology, including one that was negative by PCR), whereas 37 dogs were negative in all methods. A good agreement was observed between the FA and PCR, with a κ-value of 0.833 (95% CI: 0.678-0.989). Meanwhile, there was poor agreement between cytology and PCR (κ-value of 0.164; 95% CI: -0.045 to 0.373) and a fair agreement between FA and cytology (κ-value of 0.231; 95% CI: -0.026 to 0.487). Our results indicated a poor performance of cytology for the detection of CDV antigen. In contrast, FA is a 100% specific and an adequately sensitive assay (sensitivity: 78.95%, negative likelihood ratio: 0.21, 95% CI: 0.09-0.50) for antemortem diagnosis of canine distemper.

  8. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues.

    Science.gov (United States)

    Kajimura, Junko; Ito, Reiko; Manley, Nancy R; Hale, Laura P

    2016-02-01

    Performance of immunofluorescence staining on archival formalin-fixed paraffin-embedded human tissues is generally not considered to be feasible, primarily due to problems with tissue quality and autofluorescence. We report the development and application of procedures that allowed for the study of a unique archive of thymus tissues derived from autopsies of individuals exposed to atomic bomb radiation in Hiroshima, Japan in 1945. Multiple independent treatments were used to minimize autofluorescence and maximize fluorescent antibody signals. Treatments with NH3/EtOH and Sudan Black B were particularly useful in decreasing autofluorescent moieties present in the tissue. Deconvolution microscopy was used to further enhance the signal-to-noise ratios. Together, these techniques provide high-quality single- and dual-color fluorescent images with low background and high contrast from paraffin blocks of thymus tissue that were prepared up to 60 years ago. The resulting high-quality images allow the application of a variety of image analyses to thymus tissues that previously were not accessible. Whereas the procedures presented remain to be tested for other tissue types and archival conditions, the approach described may facilitate greater utilization of older paraffin block archives for modern immunofluorescence studies. © 2016 The Histochemical Society.

  9. Application of serum anticardiolipin antibody (ACA) determination with ELISA for detection of intra-uterine growth retardation (IUGR)

    International Nuclear Information System (INIS)

    Chen Wen; Zhong Jianhui; Shen Junnan

    2005-01-01

    Objective: To explore the interrelationship between presence of serum ACA and development of IUGR. Methods: Serum ACA contents were examined with ELISA in 5330 apparently normal pregnant women. The placentae in 16 pregnancies with IUGR and positive ACA were examined with immunofluorescence microscopy. Results: Among the 5330 pregnant women there were 144 with positive ACA (2.70%), in whom there were 22 IUGR cases (22/144, 15.28% ). The rate of IUGR in the remaining ACA negative women was only 1.77% (92/5186), the difference being very significant (P<0.01 ). ACA IgG was positive in 5 of the IUGR neonates, All the placental tissues examined with immunofluorescence microscopy showed positive immunoglobulin fluorescence antibody and complement discoloration. Conclusion: Positive ACA is one of the causative factors of development of IUGR and determination of ACA in pregnant women was helpful for early detection of IUGR. (authors)

  10. Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection, Quantification, and Characterization of Microbes

    Science.gov (United States)

    2015-11-16

    Approved for Public Release; Distribution Unlimited Final Report: 14.3 Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection...Fluroesence; Raman Spectroscopy; Microbiology REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO...14.3 Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection, Quantification, and Characterization of Microbes Report Title

  11. Confocal fluorescence microscopy for minimal-invasive tumor diagnosis

    International Nuclear Information System (INIS)

    Zenzinger, M.; Bille, J.

    2000-01-01

    The goal of the project ''stereotactic laser-neurosurgery'' is the development of a system for careful and minimal-invasive resection of brain tumors with ultrashort laser pulses through a thin probe. A confocal laser-scanning-microscope is integrated in the probe. In this paper, the simulation of its optical properties by a laboratory setup and the expansion by the ability for fluorescence microscopy are reported. For a valuation of the imaging properties, the point-spread-function in three dimensions and the axial depth-transfer-function were measured and thus, among other things, the resolving power and the capacity for depth discrimination were analysed. The microscope will enable intra-operative detection of tumor cells by the method of immunofluorescence. As a first model of the application in the brain, cell cultures, that fluorescein-labelled antibodies were bound to specifically, were used in this work. Due to the fluorescence signal, it was possible to detect and identify clearly the areas that had been marked in this manner, proving the suitability of the setup for minimal-invasive tumor diagnosis. (orig.)

  12. Indirect immunofluorescence staining of Chlamydia trachomatis inclusions in microculture plates with monoclonal antibodies.

    Science.gov (United States)

    Zapata, M; Chernesky, M; Mahony, J

    1984-06-01

    Indirect immunofluorescence (IF) staining, using a monoclonal antibody, detected two- to fourfold more inclusions than did iodine staining. Of 274 clinical specimens, 53 (19.3%) were positive by IF on passage 1 as compared with 33 (12%) by iodine staining (P less than 0.005). IF-stained inclusions in McCoy cells in the bottom of microculture wells were readily viewed with a long-focal-length objective at a magnification of 250 X.

  13. Indirect immunofluorescence staining of Chlamydia trachomatis inclusions in microculture plates with monoclonal antibodies.

    OpenAIRE

    Zapata, M; Chernesky, M; Mahony, J

    1984-01-01

    Indirect immunofluorescence (IF) staining, using a monoclonal antibody, detected two- to fourfold more inclusions than did iodine staining. Of 274 clinical specimens, 53 (19.3%) were positive by IF on passage 1 as compared with 33 (12%) by iodine staining (P less than 0.005). IF-stained inclusions in McCoy cells in the bottom of microculture wells were readily viewed with a long-focal-length objective at a magnification of 250 X.

  14. Original Approach for Automated Quantification of Antinuclear Autoantibodies by Indirect Immunofluorescence

    Directory of Open Access Journals (Sweden)

    Daniel Bertin

    2013-01-01

    Full Text Available Introduction. Indirect immunofluorescence (IIF is the gold standard method for the detection of antinuclear antibodies (ANA which are essential markers for the diagnosis of systemic autoimmune rheumatic diseases. For the discrimination of positive and negative samples, we propose here an original approach named Immunofluorescence for Computed Antinuclear antibody Rational Evaluation (ICARE based on the calculation of a fluorescence index (FI. Methods. We made comparison between FI and visual evaluations on 237 consecutive samples and on a cohort of 25 patients with SLE. Results. We obtained very good technical performance of FI (95% sensitivity, 98% specificity, and a kappa of 0.92, even in a subgroup of weakly positive samples. A significant correlation between quantification of FI and IIF ANA titers was found (Spearman's ρ=0.80, P<0.0001. Clinical performance of ICARE was validated on a cohort of patients with SLE corroborating the fact that FI could represent an attractive alternative for the evaluation of antibody titer. Conclusion. Our results represent a major step for automated quantification of IIF ANA, opening attractive perspectives such as rapid sample screening and laboratory standardization.

  15. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  16. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  17. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, D.M.; Morris, J.W. Jr.; Shaw, T.J.; Lee, Seungkyun; Clarke, John

    2002-01-01

    A 'Holy Grail' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  18. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, David; Morris Jr., J.W.; Shaw, T.J.; McDermott R.; Clarke, John

    2001-01-01

    A ''Holy Grail'' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  19. SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons.

    Directory of Open Access Journals (Sweden)

    Eric Danielson

    Full Text Available Continuous modification of the protein composition at synapses is a driving force for the plastic changes of synaptic strength, and provides the fundamental molecular mechanism of synaptic plasticity and information storage in the brain. Studying synaptic protein turnover is not only important for understanding learning and memory, but also has direct implication for understanding pathological conditions like aging, neurodegenerative diseases, and psychiatric disorders. Proteins involved in synaptic transmission and synaptic plasticity are typically concentrated at synapses of neurons and thus appear as puncta (clusters in immunofluorescence microscopy images. Quantitative measurement of the changes in puncta density, intensity, and sizes of specific proteins provide valuable information on their function in synaptic transmission, circuit development, synaptic plasticity, and synaptopathy. Unfortunately, puncta quantification is very labor intensive and time consuming. In this article, we describe a software tool designed for the rapid semi-automatic detection and quantification of synaptic protein puncta from 2D immunofluorescence images generated by confocal laser scanning microscopy. The software, dubbed as SynPAnal (for Synaptic Puncta Analysis, streamlines data quantification for puncta density and average intensity, thereby increases data analysis throughput compared to a manual method. SynPAnal is stand-alone software written using the JAVA programming language, and thus is portable and platform-free.

  20. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  1. Giardia and Cryptosporidium spp. dissemination during wastewater treatment and comparative detection via immunofluorescence assay (IFA), nested polymerase chain reaction (nested PCR) and loop mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Gallas-Lindemann, Carmen; Sotiriadou, Isaia; Plutzer, Judit; Noack, Michael J; Mahmoudi, Mohammad Reza; Karanis, Panagiotis

    2016-06-01

    Environmental water samples from the Lower Rhine area in Germany were investigated via immunofluorescence assays (IFAs), nested polymerase chain reaction (nested PCR) and loop-mediated isothermal amplification (LAMP) to detect the presence of Giardia spp. (n=185) and Cryptosporidium spp. (n=227). The samples were concentrated through filtration or flocculation, and oocysts were purified via centrifugation through a sucrose density gradient. For all samples, IFA was performed first, followed by DNA extraction for the nested PCR and LAMP assays. Giardia cysts were detected in 105 samples (56.8%) by IFA, 62 samples (33.5%) by nested PCR and 79 samples (42.7%) by LAMP. Cryptosporidium spp. were detected in 69 samples (30.4%) by IFA, 95 samples (41.9%) by nested PCR and 99 samples (43.6%) by LAMP. According to these results, the three detection methods are complementary for monitoring Giardia and Cryptosporidium in environmental waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quantitative immunofluorescence microscopy of renal glomeruli from mice exhibiting murien lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R H [Lawrence Livermore Lab., CA; Greenspan, J S; Moore, D II; Talal, N; Roubinian, J R

    1981-01-01

    Pathologic changes in renal glomeruli of mice with systemic murine lupus erythematosus were quantified using microfluorophotometry. Cryostat sections were taken from kidneys of affected mice, stained with fluorescein-conjugated anti-mouse immunoglobulin, and the extent of immune complex glomerulonephritis was determined. A subjective microscopic examination procedure, which has been used previously, was compared with quantitative microfluorophotometry and a close correlation between the results using each of the two methods was found. Since the microfluorometric procedure measures the total fluorescence per glomerulus, subjective microscopy must estimate that same quantity in a linear fashion. The present advance in measuring capability indicates good potential for rapid, quantitive measurements for further studies on systemic lupus erythematosus, and on other tissue sections stained with fluorescent antibodies.

  3. Early cell death detection with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    Full Text Available BACKGROUND: Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM dedicated to early and label-free detection of cell death. METHODS AND FINDINGS: We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability. CONCLUSIONS: The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death.

  4. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-10-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.

  5. An overview of the legislation and light microscopy for detection of processed animal proteins in feeds.

    Science.gov (United States)

    Liu, Xian; Han, Lujia; Veys, Pascal; Baeten, Vincent; Jiang, Xunpeng; Dardenne, Pierre

    2011-08-01

    From the first cases of bovine spongiform encephalopathy (BSE) among cattle in the United Kingdom in 1986, the route of infection of BSE is generally believed by means of feeds containing low level of processed animal proteins (PAPs). Therefore, many feed bans and alternative and complementary techniques were resulted for the BSE safeguards in the world. Now the feed bans are expected to develop into a "species to species" ban, which requires the corresponding species-specific identification methods. Currently, banned PAPs can be detected by various methods as light microscopy, polymerase chain reaction, enzyme-linked immunosorbent assay, near infrared spectroscopy, and near infrared microscopy. Light microscopy as described in the recent Commission Regulation EC/152/2009 is the only official method for the detection and characterization of PAPs in feed in the European Union. It is able to detect the presence of constituents of animal origin in feed at the level of 1 g/kg with hardly any false negative. Nevertheless, light microscopy has the limitation of lack of species specificity. This article presents a review of legislations on the use of PAPs in feedstuff, the detection details of animal proteins by light microscopy, and also presents and discusses the analysis procedure and expected development of the technique. Copyright © 2010 Wiley-Liss, Inc.

  6. DETECTION OF ANTIBODIES TO CANDIDA ALBICANS GERM TUBE BY IMMUNOFLUORESCENCE IN IMMUNOSUPPRESSED MICE WITH EXPERIMENTAL SYSTEMIC CANDIDIASIS

    Directory of Open Access Journals (Sweden)

    F. Zaini

    2007-07-01

    Full Text Available "nThe increasing incidence of systemic candidiasis, which parallels the use of invasive and immunosuppressive medical procedures, necessitates development of rapid and cost effective tests for diagnosis of systemic candidiasis. Therefore in this study 85 mice were first immunosuppressed by cyclophosphamide and then infected by Candida albicans NCPF 3153. Other 85 mice were employed as control. The case and control mice were bled and then autopsied. Hearts and kidneys were checked by direct, histopathological and cultural examination for systemic candidiasis. The 85 sera from histological proven cases and 85 control mice were adsorbed with heat killed blastospores of same strain of C. albicans. Anti-Candida albicans germ tube antibodies were detected by indirect immunofluorescence assay for diagnosis of invasive candidiasis in case and control mice. In addition, sera from 35 mice with proven cryptococcosis were also tested. While 84 mice with proven systemic candidiasis (100% had anti-germ tube antibodies, these antibodies were absent in all controls and mice with cryptococcosis. The specificity was 100%, indicating a high degree of discrimination was possible between systemic candidiasis and cryptococcosis in the mice studied. It must be concluded that anti-germ tube responses did not appear to be significantly reduced in immunocompromised mice.

  7. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    Science.gov (United States)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43- symmetric stretch vibrations at 959 cm-1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.

  8. Immunofluorescent determination of wheat protein in meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2014-02-01

    foodstuffs is relatively difficult because of the fact that they occur in trace amounts and are often masked by various parts of the product. This paper deals with detection of wheat protein in meat products bought in the retail network of the Czech Republic. Ten cooked meat products, especially types of sausages and soft salami which stated wheat protein in their composition, were examined. The samples were processed using the method of immunofluorescence and stained with Texas Red fluorochrome. The presence of wheat protein was demonstrated in all the examined meat products. From the results it follows that the method of immunofluorescence is suitable for detection of wheat protein in meat products. Normal 0 21 false false false CS JA X-NONE

  9. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.

  10. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    Science.gov (United States)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  11. The Fate of Inhaled Nanoparticles: Detection and Measurement by Enhanced Dark-field Microscopy.

    Science.gov (United States)

    Mercer, Robert R; Scabilloni, James F; Wang, Liying; Battelli, Lori A; Antonini, James M; Roberts, Jenny R; Qian, Yong; Sisler, Jennifer D; Castranova, Vincent; Porter, Dale W; Hubbs, Ann F

    2018-01-01

    Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles.

  12. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143

  13. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging.

    Science.gov (United States)

    Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco

    2017-05-04

    Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.

  14. Cell-based quantification of biomarkers from an ultra-fast microfluidic immunofluorescent staining: application to human breast cancer cell lines

    Science.gov (United States)

    Migliozzi, D.; Nguyen, H. T.; Gijs, M. A. M.

    2018-02-01

    Immunohistochemistry (IHC) is one of the main techniques currently used in the clinics for biomarker characterization. It consists in colorimetric labeling with specific antibodies followed by microscopy analysis. The results are then used for diagnosis and therapeutic targeting. Well-known drawbacks of such protocols are their limited accuracy and precision, which prevent the clinicians from having quantitative and robust IHC results. With our work, we combined rapid microfluidic immunofluorescent staining with efficient image-based cell segmentation and signal quantification to increase the robustness of both experimental and analytical protocols. The experimental protocol is very simple and based on fast-fluidic-exchange in a microfluidic chamber created on top of the formalin-fixed-paraffin-embedded (FFPE) slide by clamping it a silicon chip with a polydimethyl siloxane (PDMS) sealing ring. The image-processing protocol is based on enhancement and subsequent thresholding of the local contrast of the obtained fluorescence image. As a case study, given that the human epidermal growth factor receptor 2 (HER2) protein is often used as a biomarker for breast cancer, we applied our method to HER2+ and HER2- cell lines. We report very fast (5 minutes) immunofluorescence staining of both HER2 and cytokeratin (a marker used to define the tumor region) on FFPE slides. The image-processing program can segment cells correctly and give a cell-based quantitative immunofluorescent signal. With this method, we found a reproducible well-defined separation for the HER2-to-cytokeratin ratio for positive and negative control samples.

  15. Neuromyelitis optica immunoglobulin G in Chinese patients detected by immunofluorescence assay on a monkey brain substrate.

    Science.gov (United States)

    Long, Youming; Hu, Xueqiang; Peng, Fuhua; Lu, Zhengqi; Wang, Yuge; Yang, Yu; Qiu, Wei

    2012-01-01

    Serum neuromyelitis optica immunoglobulin G (NMO-IgG) is used as a biomarker to differentiate between neuromyelitis optica (NMO) and multiple sclerosis (MS). However, the original assay is expensive and complex and shows low sensitivity. Here, we investigated the potential of NMO-IgG detection using an indirect immunofluorescence (IIF) assay on monkey brains. NMO-IgG seroprevalence was determined in 168 samples by an IIF assay on a monkey brain substrate. The data were compared with those from a standard mouse brain IIF assay using McNemar and kappa tests. Thirty-one of 50 (62%) NMO patients, 7 of 18 (38.9%) longitudinally extensive transverse myelitis patients, 6 of 57 (10.5%) MS patients, and 5 of 10 (50%) optic neuritis patients were seropositive for NMO-IgG. None of the acute partial transverse myelitis patients (n = 3) or healthy controls (n = 20) was positive. Thus, the sensitivity of the test was 62% for the patients with clinically definite NMO. The specificity was 89.5%, considering the 57 MS patients as the control group. The modified IIF assay on monkey brains and the standard IIF assay based on mouse brains were not significantly different (McNemar test; p = 1.000). The two assays were concordant in 39 seropositive samples and 100 seronegative samples (kappa test; kappa = 0.592, p monkey brain assay was no better than the standard mouse brain IIF assay, we affirmed that NMO-IgG is a sensitive and specific biomarker to differentiate between NMO and MS. Copyright © 2011 S. Karger AG, Basel.

  16. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    Science.gov (United States)

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical

  17. Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy

    OpenAIRE

    Cason, Chevelle A.; Fabré, Thomas A.; Buhrlage, Andrew; Haik, Kristi L.; Bullen, Heather A.

    2012-01-01

    Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine) PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC) and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD = 2.5 × 10−13 moles). The biorecognition method is reproducible and shows high specificity and good accur...

  18. Application of a sepharose bead immunofluorescence assay and a solid-phase radioimmunoassay to the bovine leukemia virus system

    International Nuclear Information System (INIS)

    Fiebach, H.; Uckert, W.; Micheel, B.

    1982-01-01

    Several fluorescence assays with bovine leukemia virus (BLV) conjugated to activated Sepharose 4B were used for the detection of BLV and anti-BLV antibodies. These tests were compared with a solid-phase radioimmunoassay and found to be in the same sensitivity range. Sepharose bead immunofluorescence assay and solid-phase radioimmunoassay can be applied to the diagnosis of BLV infection in cattle. (author)

  19. Application of a sepharose bead immunofluorescence assay and a solid-phase radioimmunoassay to the bovine leukemia virus system

    Energy Technology Data Exchange (ETDEWEB)

    Fiebach, H.; Uckert, W.; Micheel, B. (Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Krebsforschung)

    Several fluorescence assays with bovine leukemia virus (BLV) conjugated to activated Sepharose 4B were used for the detection of BLV and anti-BLV antibodies. These tests were compared with a solid-phase radioimmunoassay and found to be in the same sensitivity range. Sepharose bead immunofluorescence assay and solid-phase radioimmunoassay can be applied to the diagnosis of BLV infection in cattle.

  20. In-line balanced detection stimulated Raman scattering microscopy

    KAUST Repository

    Crisafi, Francesco; Kumar, Vikas; Scopigno, Tullio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario

    2017-01-01

    We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

  1. In-line balanced detection stimulated Raman scattering microscopy

    KAUST Repository

    Crisafi, Francesco

    2017-08-31

    We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

  2. Detection of single quantum dots in model organisms with sheet illumination microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany); Wagner, Toni U. [Institute of Physiological Chemistry I, Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Harms, Gregory S., E-mail: gregory.harms@virchow.uni-wuerzburg.de [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany)

    2009-12-18

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 {mu}m. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  3. Detection of single quantum dots in model organisms with sheet illumination microscopy

    International Nuclear Information System (INIS)

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir; Wagner, Toni U.; Harms, Gregory S.

    2009-01-01

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 μm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  4. Immunofluorescence in multiple tissues utilizing serum from a patient affected by systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Piotr Brzezinski

    2012-01-01

    Full Text Available Introduction: Lupus erythematosus is a chronic, inflammatory autoimmune disease that can affect multiple organs. Lupus can affect many parts of the body, especially in systemic lupus erythematosus (SLE; affected tissues may include the joints, skin, kidneys, heart, lungs, blood vessels, and brain. Case report: A 46-year-old female presented with pruritus, photosensitivity and edema of the cheeks of about 2 years duration, and was evaluated by a dermatologist. On examination, multiple telangiectasias were present on the cheeks, with erythema, edema and a malar rash observed. A review of systems documented breathing difficulty and pleuitic pain, joint pain and joint edema, photosensitivity, cardiac dysrhythmia, and periodic pain in the back close to the kidneys. Methods: Skin biopsies for hematoxylin and eosin testing, as well for direct and indirect immunofluorescence were performed, in addition to multiple diagnostic blood tests, chest radiography and directed immunologic testing. Results: The blood testing showed elevated C-reactive protein. Direct and indirect immunofluorescence testing utilizing monkey esophagus, mouse and pig heart and kidney, normal human eyelid skin and veal brain demonstrated strong reactivity to several components of smooth muscle, nerves, blood vessels, skin basement membrane zone and sweat gland ducts and skin meibomian glands. Anti-endomysium antibodies were detected as well as others, especially using FITC conjugated Complement/C1q, FITC conjugated anti-human immunoglobulin IgG and FITC conjugated anti-human fibrinogen. Conclusions: We conclude that both direct and indirect immunofluorescence using several substrates can unveil previously undocumented autoantibodies in multiple organs in lupus erythematosus, and that these findings could be utilized to complement existing diagnostic testing for this disorder.

  5. Backscattering position detection for photonic force microscopy

    International Nuclear Information System (INIS)

    Volpe, Giovanni; Kozyreff, Gregory; Petrov, Dmitri

    2007-01-01

    An optically trapped particle is an extremely sensitive probe for the measurement of pico- and femto-Newton forces between the particle and its environment in microscopic systems (photonic force microscopy). A typical setup comprises an optical trap, which holds the probe, and a position sensing system, which uses the scattering of a beam illuminating the probe. Usually the position is accurately determined by measuring the deflection of the forward-scattered light transmitted through the probe. However, geometrical constraints may prevent access to this side of the trap, forcing one to make use of the backscattered light instead. A theory is presented together with numerical results that describes the use of the backscattered light for position detection. With a Mie-Debye approach, we compute the total (incident plus scattered) field and follow its evolution as it is collected by the condenser lenses and projected onto the position detectors and the responses of position sensitive detectors and quadrant photodetectors to the displacement of the probe in the optical trap, both in forward and backward configurations. We find out that in the case of backward detection, for both types of detectors the displacement sensitivity can change sign as a function of the probe size and is null for some critical sizes. In addition, we study the influence of the numerical aperture of the detection system, polarization, and the cross talk between position measurements in orthogonal directions. We finally discuss how these features should be taken into account in experimental designs

  6. GPCR Interaction: 151 [GRIPDB[Archive

    Lifescience Database Archive (English)

    Full Text Available hey are close enough to form hetero-oligomers. ... Immunofluorescence Microscopy, De...tection of the Phosphorylated MAPK, MAPK Assay, Inositol Phosphate Assay, Immunogold Electron Microscopy NP_001516.2 ...

  7. GPCR Interaction: 150 [GRIPDB[Archive

    Lifescience Database Archive (English)

    Full Text Available ey are close enough to form hetero-oligomers. ... Immunofluorescence Microscopy, Det...ection of the Phosphorylated MAPK, MAPK Assay, Inositol Phosphate Assay, Immunogold Electron Microscopy NP_057167.2 ...

  8. Digital Holographic Microscopy, a Method for Detection of Microorganisms in Plume Samples from Enceladus and Other Icy Worlds.

    Science.gov (United States)

    Bedrossian, Manuel; Lindensmith, Chris; Nadeau, Jay L

    2017-09-01

    Detection of extant microbial life on Earth and elsewhere in the Solar System requires the ability to identify and enumerate micrometer-scale, essentially featureless cells. On Earth, bacteria are usually enumerated by culture plating or epifluorescence microscopy. Culture plates require long incubation times and can only count culturable strains, and epifluorescence microscopy requires extensive staining and concentration of the sample and instrumentation that is not readily miniaturized for space. Digital holographic microscopy (DHM) represents an alternative technique with no moving parts and higher throughput than traditional microscopy, making it potentially useful in space for detection of extant microorganisms provided that sufficient numbers of cells can be collected. Because sample collection is expected to be the limiting factor for space missions, especially to outer planets, it is important to quantify the limits of detection of any proposed technique for extant life detection. Here we use both laboratory and field samples to measure the limits of detection of an off-axis digital holographic microscope (DHM). A statistical model is used to estimate any instrument's probability of detection at various bacterial concentrations based on the optical performance characteristics of the instrument, as well as estimate the confidence interval of detection. This statistical model agrees well with the limit of detection of 10 3 cells/mL that was found experimentally with laboratory samples. In environmental samples, active cells were immediately evident at concentrations of 10 4 cells/mL. Published estimates of cell densities for Enceladus plumes yield up to 10 4 cells/mL, which are well within the off-axis DHM's limits of detection to confidence intervals greater than or equal to 95%, assuming sufficient sample volumes can be collected. The quantitative phase imaging provided by DHM allowed minerals to be distinguished from cells. Off-axis DHM's ability for

  9. Auditing smear microscopy results according to time to detection using the BACTEC™ MGIT™ TB system.

    Science.gov (United States)

    Elsaghier, A A F

    2015-09-01

    Smear microscopy is a rapid method for the identification of the most infectious patients with mycobacterial infection. Suboptimal smear microscopy may significantly compromise or delay patient isolation and contact tracing. A stringent method for auditing mycobacterial smear results is thus needed. This article proposes an auditing tool based on time to detection (TTD) of culture-positive samples using the automated BACTEC™ MGIT™ 960 TB system. In our study, sputum samples subjected to liquefaction and concentration before staining with a TTD of ≤ 13 days using the BACTEC system should be positive on smear microscopy.

  10. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.

    Science.gov (United States)

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young's double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space (Dk-CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes.

  11. Parallel detecting super-resolution microscopy using correlation based image restoration

    Science.gov (United States)

    Yu, Zhongzhi; Liu, Shaocong; Zhu, Dazhao; Kuang, Cuifang; Liu, Xu

    2017-12-01

    A novel approach to achieve the image restoration is proposed in which each detector's relative position in the detector array is no longer a necessity. We can identify each detector's relative location by extracting a certain area from one of the detector's image and scanning it on other detectors' images. According to this location, we can generate the point spread functions (PSF) for each detector and perform deconvolution for image restoration. Equipped with this method, the microscope with discretionally designed detector array can be easily constructed without the concern of exact relative locations of detectors. The simulated results and experimental results show the total improvement in resolution with a factor of 1.7 compared to conventional confocal fluorescence microscopy. With the significant enhancement in resolution and easiness for application of this method, this novel method should have potential for a wide range of application in fluorescence microscopy based on parallel detecting.

  12. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses

    Science.gov (United States)

    Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan

    2013-03-01

    The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.

  13. Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images.

    Science.gov (United States)

    Basset, Antoine; Boulanger, Jérôme; Salamero, Jean; Bouthemy, Patrick; Kervrann, Charles

    2015-11-01

    Accurately detecting subcellular particles in fluorescence microscopy is of primary interest for further quantitative analysis such as counting, tracking, or classification. Our primary goal is to segment vesicles likely to share nearly the same size in fluorescence microscopy images. Our method termed adaptive thresholding of Laplacian of Gaussian (LoG) images with autoselected scale (ATLAS) automatically selects the optimal scale corresponding to the most frequent spot size in the image. Four criteria are proposed and compared to determine the optimal scale in a scale-space framework. Then, the segmentation stage amounts to thresholding the LoG of the intensity image. In contrast to other methods, the threshold is locally adapted given a probability of false alarm (PFA) specified by the user for the whole set of images to be processed. The local threshold is automatically derived from the PFA value and local image statistics estimated in a window whose size is not a critical parameter. We also propose a new data set for benchmarking, consisting of six collections of one hundred images each, which exploits backgrounds extracted from real microscopy images. We have carried out an extensive comparative evaluation on several data sets with ground-truth, which demonstrates that ATLAS outperforms existing methods. ATLAS does not need any fine parameter tuning and requires very low computation time. Convincing results are also reported on real total internal reflection fluorescence microscopy images.

  14. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    Science.gov (United States)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  15. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    Science.gov (United States)

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  16. Decoupled illumination detection in light sheet microscopy for fast volumetric imaging

    OpenAIRE

    Olarte, Omar; Andilla, Jordi; Artigas García, David; Loza-Alvarez, Pablo

    2015-01-01

    Current microscopy demands the visualization of large three-dimensional samples with increased sensitivity, higher resolution, and faster speed. Several imaging techniques based on widefield, point-scanning, and light-sheet strategies have been designed to tackle some of these demands. Although successful, all these require the illuminated volumes to be tightly coupled with the detection optics to accomplish efficient optical sectioning. Here, we break this paradigm and produce optical sectio...

  17. Ultrasonic force microscopy: detection and imaging of ultra-thin molecular domains.

    Science.gov (United States)

    Dinelli, Franco; Albonetti, Cristiano; Kolosov, Oleg V

    2011-03-01

    The analysis of the formation of ultra-thin organic films is a very important issue. In fact, it is known that the properties of organic light emitting diodes and field effect transistors are strongly affected by the early growth stages. For instance, in the case of sexithiophene, the presence of domains made of molecules with the backbone parallel to the substrate surface has been indirectly evidenced by photoluminescence spectroscopy and confocal microscopy. On the contrary, conventional scanning force microscopy both in contact and intermittent contact modes have failed to detect such domains. In this paper, we show that Ultrasonic Force Microscopy (UFM), sensitive to nanomechanical properties, allows one to directly identify the structure of sub-monolayer thick films. Sexithiophene flat domains have been imaged for the first time with nanometer scale spatial resolution. A comparison with lateral force and intermittent contact modes has been carried out in order to explain the origins of the UFM contrast and its advantages. In particular, it indicates that UFM is highly suitable for investigations where high sensitivity to material properties, low specimen damage and high spatial resolution are required. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Direct immunofluorescence of normal skin in rheumatoid arthritis.

    Science.gov (United States)

    Fitzgerald, O M; Barnes, L; Woods, R; McHugh, L; Barry, C; O'Loughlin, S

    1985-11-01

    The clinical significance of previously described immunoglobulin and complement deposition in the superficial dermal vessel walls of patients with rheumatoid arthritis is unknown. In the present study, skin biopsies were obtained from the normal forearm and buttock of 48 unselected patients with rheumatoid arthritis and were examined by direct immunofluorescence (IF) for the presence of immunoglobulin (IgG,A,M) and complement (C3) in the vessel walls. Deposits of C3, IgM or IgG were detected in 10 patients. Five patients had deposits at the forearm sample alone, four patients had deposits at both biopsy sites, while one patient was positive at the buttock alone. Clinical features were similar in patients with and without vessel IF. However, patients with IF were significantly more seropositive with lower levels of complement and raised levels of serum IgA and IgM. There was also an increased level of circulating IgG immune complexes in these patients. Further analysis following exclusion of seronegative patients revealed similar results. This study suggests that the presence of vessel IF identifies a subgroup of patients who have evidence of more severe immunological disturbance.

  19. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  20. Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images.

    Science.gov (United States)

    Dabbah, M A; Graham, J; Petropoulos, I; Tavakoli, M; Malik, R A

    2010-01-01

    Corneal Confocal Microscopy (CCM) imaging is a non-invasive surrogate of detecting, quantifying and monitoring diabetic peripheral neuropathy. This paper presents an automated method for detecting nerve-fibres from CCM images using a dual-model detection algorithm and compares the performance to well-established texture and feature detection methods. The algorithm comprises two separate models, one for the background and another for the foreground (nerve-fibres), which work interactively. Our evaluation shows significant improvement (p approximately 0) in both error rate and signal-to-noise ratio of this model over the competitor methods. The automatic method is also evaluated in comparison with manual ground truth analysis in assessing diabetic neuropathy on the basis of nerve-fibre length, and shows a strong correlation (r = 0.92). Both analyses significantly separate diabetic patients from control subjects (p approximately 0).

  1. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    Directory of Open Access Journals (Sweden)

    St-Pierre Tim G

    2009-05-01

    Full Text Available Abstract Background The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sensitivity of a technique based on the use of commercially available magnetic fractionation columns with those for thick blood film microscopy and reverse transcriptase polymerase chain reaction (RT-PCR methods. Methods Gametocyte detection in six series of dilutions of cultured P. falciparum parasites with known gametocytaemia was conducted using magnetic fractionation, thick blood film, and RT-PCR techniques. Results The preparations obtained by the magnetic fractionation method were of thin film quality allowing easy gametocyte identification by light microscopy. Magnetic fractionation had a higher sensitivity and approximately two orders of magnitude better limit of detection than thick blood film microscopy. Gametocytes were also more readily detectable on the magnetically fractionated preparations. Magnetic fractionation had a similar limit of detection to that of RT-PCR. Conclusion Magnetic fractionation is a highly sensitive and convenient method for gametocyte detection in comparison with the standard thick blood film and RT-PCR methods, and could readily be adapted to field application.

  2. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    Science.gov (United States)

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  3. Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.

    Science.gov (United States)

    Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi

    2018-06-01

    A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.

  4. Fibrinogen Demonstration in Oral Lichen Planus: An Immunofluorescence Study on Archival Tissues.

    Science.gov (United States)

    Shirol, Pallavi D; Naik, Veena; Kale, Alka

    2015-10-01

    Lichen planus is a premalignant condition with minimal diagnostic aids. This study is an attempt to use paraffin embedded sections of lichen planus with immunofluorescein stain and to evaluate the immunofluorescent sections to establish pattern of fibrinogen deposition. Thirty-five paraffin embedded sections of old and new cases of oral lichen planus (study group) and five normal oral mucosa (control group) were chosen. Two sections of each (H & E) case were taken, one was stained with hematoxylin and eosin and another with fluorescein isothiocynate conjugate (FITC) polyclonal rabbit antibody against fibrinogen. Fluorescent findings were examined with a fluorescent microscope. A high statistical significant correlation was found in respect to fluorescence positivity, intensity of fluorescence and distribution of fluorescence each with p < 0.0001 and fluorescence at blood vessel walls (p = 0.0003). This study suggested that paraffin embedded sections can be successfully used in direct immunofluorescence staining in routine set up where only formalin fixed tissues are received. Paraffin embedded sections can be successfully used in direct immunofluorescence staining when only formalin fixed tissues are received.

  5. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis.

    Science.gov (United States)

    Litster, A L; Pogranichniy, R; Lin, T-L

    2013-11-01

    The antemortem diagnosis of feline infectious peritonitis (FIP) remains challenging in clinical practice, since current testing methods have suboptimal diagnostic accuracy. Immunohistochemical testing of biopsy specimens and postmortem examination are the standard diagnostic methods, although direct immunofluorescence (DIF) testing to detect feline coronavirus in macrophages in effusion specimens has been reported to have 100% specificity and has been recommended as an antemortem confirmatory test. The aim of this study was to compare the results of DIF testing in antemortem feline effusions with postmortem results using field samples. Effusion specimens were collected antemortem from 17 cats and tested by DIF, followed by postmortem examination. Histopathological examination of specimens collected at postmortem confirmed FIP in 10/17 cases and ruled out FIP out in 7/17 cases. Antemortem DIF testing was positive in all 10 cases confirmed as FIP at postmortem examination. In the seven cats where FIP was ruled out at postmortem examination, DIF was negative in five cases and positive in the remaining two cases. The calculated sensitivity of DIF testing was 100% and the specificity was 71.4%. Duplicate effusion specimens from eight cats that were initially DIF positive were stored refrigerated (4 °C) or at room temperature (22-25 °C) and subjected to serial DIF testing to determine the duration of positive results. DIF-positive specimens stored at both temperatures retained their positive status for at least 2 days. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Diagnóstico de criptosporidiose em amostras fecais de bezerros por imunofluorescência direta e microscopia de contraste de fase Diagnosis of cryptosporidiosis in fecal samples of calves using direct immunofluorescence and phase contrast microscopy

    Directory of Open Access Journals (Sweden)

    Weslen Fabricio Pires Teixeira

    2011-06-01

    Full Text Available O presente estudo teve como objetivo comparar as técnicas de imunofluorescência direta (IFD e a microscopia de contraste de fase em solução de Sheather (MCF, para detecção de oocistos de Cryptosporidium spp. em amostras fecais de bezerros. A determinação dos limiares detecção da IFD e da MCF foi realizada utilizando cinco alíquotas de uma amostra fecal de bezerro, comprovadamente negativa para Cryptosporidium spp., adicionadas com diferentes quantidades de oocistos de Cryptosporidium parvum. Ao exame das 5 alíquotas, a IFD e a MCF apresentaram, respectivamente, limiares de detecção de 3,3x104 (duas alíquotas positivas e 3,3x105 oocistos (1 alíquota positiva por grama de fezes. Foram também realizadas a comparação entre a positividade obtida e uma análise semiquantitativa do número de oocistos observados por campo de microscopia, em ambos os métodos, em 300 amostras fecais de bezerros. Entre as 300 amostras, 19,7% (59/300 foram positivas pela IFD, com diferença estatisticamente significante (P=0,0098 quando comparada com a positividade obtida pela MCF, que foi de 11,7% (35/300. As amostras positivas foram submetidas à reação em cadeia da polimerase para amplificação de fragmentos da subunidade 18S do rRNA, com posterior sequenciamento dos fragmentos amplificados, o que permitiu a identificação de Cryptosporidium andersoni em 11,9% (7/59 e de C.parvum em 88,1% (52/59 das amostras. Os resultados observados comprovam que a IFD foi mais eficiente que a MCF para detecção de oocistos de Cryptosporidium spp. em amostras fecais de bezerros.This study aimed to compare the direct immunofluorescence assay (DIF and the phase contrast microscopy in Sheather solution (PCM for detection of Cryptosporidium oocysts in fecal samples from calves. The determination of the thresholds of detection of DIF and PCM was performed using five aliquots of a fecal sample from a calf negative for Cryptosporidium spp. oocysts, spiked with

  7. Indirect immunofluorescence assay for the simultaneous detection of antibodies against clinically important old and new world hantaviruses.

    Directory of Open Access Journals (Sweden)

    Sabine Lederer

    Full Text Available In order to detect serum antibodies against clinically important Old and New World hantaviruses simultaneously, multiparametric indirect immunofluorescence assays (IFAs based on biochip mosaics were developed. Each of the mosaic substrates consisted of cells infected with one of the virus types Hantaan (HTNV, Puumala (PUUV, Seoul (SEOV, Saaremaa (SAAV, Dobrava (DOBV, Sin Nombre (SNV or Andes (ANDV. For assay evaluation, serum IgG and IgM antibodies were analyzed using 184 laboratory-confirmed hantavirus-positive sera collected at six diagnostic centers from patients actively or previously infected with the following hantavirus serotypes: PUUV (Finland, n=97; SEOV (China, n=5; DOBV (Romania, n=7; SNV (Canada, n=23; ANDV (Argentina and Chile, n=52. The control panel comprised 89 sera from healthy blood donors. According to the reference tests, all 184 patient samples were seropositive for hantavirus-specific IgG (n=177; 96% and/or IgM (n=131; 72%, while all control samples were tested negative. In the multiparametric IFA applied in this study, 183 (99% of the patient sera were IgG and 131 (71% IgM positive (accordance with the reference tests: IgG, 96%; IgM, 93%. Overall IFA sensitivity for combined IgG and IgM analysis amounted to 100% for all serotypes, except for SNV (96%. Of the 89 control sera, 2 (2% showed IgG reactivity against the HTNV substrate, but not against any other hantavirus. Due to the high cross-reactivity of hantaviral nucleocapsid proteins, endpoint titrations were conducted, allowing serotype determination in >90% of PUUV- and ANDV-infected patients. Thus, multiparametric IFA enables highly sensitive and specific serological diagnosis of hantavirus infections and can be used to differentiate PUUV and ANDV infection from infections with Murinae-borne hantaviruses (e.g. DOBV and SEOV.

  8. Detection of Lipid-Rich Prostate Circulating Tumour Cells with Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Mitra, Ranjana; Chao, Olivia; Urasaki, Yasuyo; Goodman, Oscar B; Le, Thuc T

    2012-01-01

    Circulating tumour cells (CTC) are an important indicator of metastasis and associated with a poor prognosis. Detection sensitivity and specificity of CTC in the peripheral blood of metastatic cancer patient remain a technical challenge. Coherent anti-Stokes Raman scattering (CARS) microscopy was employed to examine the lipid content of CTC isolated from the peripheral blood of metastatic prostate cancer patients. CARS microscopy was also employed to evaluate lipid uptake and mobilization kinetics of a metastatic human prostate cancer cell line. One hundred CTC from eight metastatic prostate cancer patients exhibited strong CARS signal which arose from intracellular lipid. In contrast, leukocytes exhibited weak CARS signal which arose mostly from cellular membrane. On average, CARS signal intensity of prostate CTC was 7-fold higher than that of leukocytes (P<0.0000001). When incubated with human plasma, C4-2 metastatic human prostate cancer cells exhibited rapid lipid uptake kinetics and slow lipid mobilization kinetics. Higher expression of lipid transport proteins in C4-2 cells compared to non-transformed RWPE-1 and non-malignant BPH-1 prostate epithelial cells further indicated strong affinity for lipid of metastatic prostate cancer cells. Intracellular lipid could serve as a biomarker for prostate CTC which could be sensitively detected with CARS microscopy in a label-free manner. Strong affinity for lipid by metastatic prostate cancer cells could be used to improve detection sensitivity and therapeutic targeting of prostate CTC

  9. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Kalle, W.H.J.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, Jan; de Grooth, B.G.; van Hulst, N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single

  10. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    NARCIS (Netherlands)

    Avti, P.K.; Hu, S.; Favazza, C.; Mikos, A.G.; Jansen, J.A.; Shroyer, K.R.; Wang, L.V.; Sitharaman, B.

    2012-01-01

    AIMS: In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (microg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies

  11. [Application of Immunohistochemistry and Immunofluorescence Staining in Detection of Phospholipase A2 Receptor on Paraffin Section of Renal Biopsy Tissue].

    Science.gov (United States)

    Dong, Hong-rui; Wang, Yan-yan; Wang, Guo-qin; Sun, Li-jun; Cheng, Hong; Chen, Yi-pu

    2015-10-01

    To evaluate the application of immunohistochemistry and fluorescence staining method in the detection of phospholipase A2 receptor (PLA2R) on paraffin section of renal biopsy tissue,and to find an accurate and fast method for the detection of PLA2R in renal tissue. The PLA2R of 193 cases were detected by immunohistochemical staining,and the antigen was repaired by the method of high pressure cooker (HPC) hot repair plus trypsin repair. The 193 samples including 139 cases of idiopathic membranous nephropathy (IMN), 15 cases of membranous lupus nephritis, 8 cases of hepatitis B virus associated membranous nephropathy, 18 cases of IgA nephropathy, and 13 cases of minimal change diseases. To compare the dyeing effects, 22 paraffin sections of renal biopsy tissue of IMN cases with positive PLA2R were stained by using 4 different. of antigen repairing,which included HPC hot repair, HPC hot repair plus trypsin repair, water bath heat repair, and water bath heat repair plus trypsin repair. To compare the dyeing effects, 15 paraffin sections of renal biopsy tissue of IMN cases with positive PLA2R were stained by using 3 different. of antigen repairing,which included water bath heat repair plus trypsin repair, protease K digestion repair, and pepsin digestion repair. In 193 cases, the positive rate of PLA2R in IMN cases was 90.6% (126/139), and the other 54 patients without IMN were negative. Twenty-two IMN patients were positive for PLA2R by using the HPC heat repair plus trypsin repaire or the water bath heat repair plus trypsin repair;while only a few cases of 22 IMN cases were positive by using the HPC hot repair alone or water bath heat repair alone. Fifteen IMN patients were positive for PLA2R by using water bath heat repair plus trypsin repair,protease K digestion repair,and pepsin digestion repair, but the distribution of positive deposits and the background were different. PLA2R immunohistochemical staining can effectively identify IMN and secondary MN. For

  12. Detection of membrane-bound and soluble antigens by magnetic levitation

    DEFF Research Database (Denmark)

    Andersen, Mikkel Schou; Howard, Emily; Lu, Shulin

    2017-01-01

    blood cell-bound Epstein-Barr viral particles, and soluble IL-6, and validate the results by flow cytometry and immunofluorescence microscopy performed in parallel. Additionally, employing an inexpensive, single lens, manual focus, wifi-enabled camera, we extend the portability of our method for its...

  13. Characterisation of L-Type Amino Acid Transporter 1 (LAT1 Expression in Human Skeletal Muscle by Immunofluorescent Microscopy

    Directory of Open Access Journals (Sweden)

    Nathan Hodson

    2017-12-01

    Full Text Available The branch chain amino acid leucine is a potent stimulator of protein synthesis in skeletal muscle. Leucine rapidly enters the cell via the L-Type Amino Acid Transporter 1 (LAT1; however, little is known regarding the localisation and distribution of this transporter in human skeletal muscle. Therefore, we applied immunofluorescence staining approaches to visualise LAT1 in wild type (WT and LAT1 muscle-specific knockout (mKO mice, in addition to basal human skeletal muscle samples. LAT1 positive staining was visually greater in WT muscles compared to mKO muscle. In human skeletal muscle, positive LAT1 staining was noted close to the sarcolemmal membrane (dystrophin positive staining, with a greater staining intensity for LAT1 observed in the sarcoplasmic regions of type II fibres (those not stained positively for myosin heavy-chain 1, Type II—25.07 ± 5.93, Type I—13.71 ± 1.98, p < 0.01, suggesting a greater abundance of this protein in these fibres. Finally, we observed association with LAT1 and endothelial nitric oxide synthase (eNOS, suggesting LAT1 association close to the microvasculature. This is the first study to visualise the distribution and localisation of LAT1 in human skeletal muscle. As such, this approach provides a validated experimental platform to study the role and regulation of LAT1 in human skeletal muscle in response to various physiological and pathophysiological models.

  14. Comparative evaluations of the detection of antinuclear antibodies by means of various immunofluorescence techniques and by means of a radioimmunoassay under particular consideration of disseminated Lupus erythematodus

    International Nuclear Information System (INIS)

    Gemuend, R.

    1980-01-01

    On a group of 146 test persons (in 50 cases desseminated lupus erythematodus had been confirmed), for the first time comparative evaluations were made with four methods (A to D) under the application of a repurified fluorescinisothiocyanat FITC) serum, in order to detect antinuclear antibodies (ANA). The ANA detection was obtained by immunofluorescence (IFL) on frozen sections of mouse livers; by IFL on chicken erythrocytes smears, previously treated with hydrochloric acid; by IFL on ethanol-fixed flagellates Crithidia luciliae; and by the radioimmunoassay (RIA) of a test kit with reference sera. These two tests served to detect antibodies - with respect to negative DNA - which are of particular importance in lupous nephritis. A good correlation of both methods was proved by means of various statistic methods and by follow-up observations and examinations of the reference sera. Possible reasons responsible for the deviations, which were found between the two tests, are described. Of all 4 tests, RIA and IFL on Crithida resulted to be the most closely ones to the relevant laboratory values and reflect very evidently the activity of the desseminated lupus erethematodus. The particularly well correlation with the blood sedimentation rate, proteinuria and with the complement level becomes very obvious. The advantages and disadvantages of the applied methods are discussed and it is emphasized that at present the method of choice for the detection of DNA antibodies is the combined examination of the patient serum, both, in the IFL on Crithidia and in the RIA. (orig./MG) [de

  15. Detection of liver kidney microsomal type 1 antibody using molecularly based immunoassays.

    Science.gov (United States)

    Kerkar, N; Ma, Y; Davies, E T; Cheeseman, P; Mieli-Vergani, G; Vergani, D

    2002-12-01

    To assess the diagnostic value of two commercial molecularly based immunoassays detecting liver kidney microsomal type 1 antibody (LKM1). The performance of Varelisa and LKM1 enzyme linked immunosorbent assay (ELISA) was compared with immunofluorescence, and two validated research techniques-an in house ELISA and a radioligand assay measuring antibodies to P4502D6. Thirty serum samples from three patients with autoimmune hepatitis type 2 covering immunofluorescence titres of 1/10 to 1/10 240 and 55 LKM1 negative controls were tested. All 30 sera that were LKM1 positive by immunofluorescence were positive by the in house ELISA, the radioligand assay, and LKM1-ELISA, and 29 were also positive by Varelisa. None of the 55 sera negative for LKM1 by immunofluorescence was positive by the in house ELISA and radioligand assay, but one was positive by Varelisa and 14 were positive using the LKM1-ELISA. Agreement between immunofluorescence, the in house ELISA, the radioligand assay, and Varelisa was high (kappa > 0.8), and agreement between immunofluorescence and LKM1-ELISA was moderate (kappa = 0.63). The assay kit marketed as Varelisa allows accurate detection of LKM1.

  16. Multispectral detection of cutaneous lesions using spectroscopy and microscopy approaches

    Science.gov (United States)

    Borisova, E.; Genova-Hristova, Ts.; Troyanova, P.; Pavlova, E.; Terziev, I.; Semyachkina-Glushkovskaya, O.; Lomova, M.; Genina, E.; Stanciu, G.; Tranca, D.; Avramov, L.

    2018-02-01

    Autofluorescence, diffuse-reflectance and transmission spectral, and microscopic measurements were made on different cutaneous neoplastic lesions, namely basal cell carcinoma, squamous cell carcinoma, malignant melanoma, and dysplastic and benign lesions related. Spectroscopic measurements were made on ex vivo tissue samples, and confocal microscopy investigations were made on thin tissue slices. Fluorescence spectra obtained reveal statistically significant differences between the different benign, dysplastic and malignant lesions by the level of emission intensity, as well by spectral shape, which are fingerprints applicable for differentiation algorithms. In reflectance mode the most significant differences are related to the influence of skin pigments - melanin and hemoglobin. Transmission spectroscopy mode gave complementary optical properties information about the tissue samples investigated to that one of reflectance and absorption spectroscopy. Using autofluorescence detection of skin lesions we obtain very good diagnostic performance for distinguishing of nonmelanoma lesions. Using diffuse reflectance and transmission spectroscopy we obtain significant tool for pigmented pathologies differentiation, but it is a tool with moderate sensitivity for non-melanoma lesions detection. One could rapidly increase the diagnostic accuracy of the received combined "optical biopsy" method when several spectral detection techniques are applied in common algorithm for lesions' differentiation. Specific spectral features observed in each type of lesion investigated on micro and macro level would be presented and discussed. Correlation between the spectral data received and the microscopic features observed would be discussed in the report.

  17. Community detection for fluorescent lifetime microscopy image segmentation

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  18. Accuracy of molecular diagnostics in pemphigus and bullous pemphigoid: comparison of commercial and modified mosaic indirect immunofluorescence tests as well as enzyme-linked immunosorbent assays.

    Science.gov (United States)

    Gornowicz-Porowska, Justyna; Seraszek-Jaros, Agnieszka; Bowszyc-Dmochowska, Monika; Kaczmarek, Elżbieta; Pietkiewicz, Paweł; Bartkiewicz, Paweł; Dmochowski, Marian

    2017-02-01

    Pemphigus and bullous pemphigoid (BP) are identified by autoantibodies (abs) against desmoglein 1, 3 (DSG1/3) and BP180/BP230, respectively. A novel mosaic to indirect immunofluorescence (IIF) using purified BP180 recombinant proteins spotted on slide and transfected cells expressing BP230, DSG1, DSG3 is available. The commercial (IgG detection) and modified (IgG4 detection) mosaic for indirect immunofluorescence (IIFc - IIF commercial, IIFm - IIF modified) and IgG ELISAs were evaluated in pemphigus and bullous pemphigoid (BP) molecular diagnostics. To compare diagnostic accuracy of commercial (IgG detection) and modified (IgG4 detection) mosaic IIF assay and to examine the diagnostic value of ELISAs in relation to mosaic IIF in routine laboratory diagnostics of pemphigus and BP. Sera from 37 BP and 19 pemphigus patients were studied. Associations between tests were assessed using Fisher's exact test. There are associations between the positive/negative samples detected by IIFc with desmoglein1 (DSG1)/desmoglein3 (DSG3)/BP230 transfected cells and ELISAs and no association between anti-BP180 IgG detection by IIFc and ELISA. IIFm with DSG1 and DSG3 showed both 100% sensitivity and 100% and 78% specificity, respectively, and 100% and 83% positive predictive value in relation to IIFc. IIFm with BP230 had 87% specificity, 55% sensitivity, whereas IIFm with BP180 had a 100% sensitivity and 13% specificity in relation to IIFc. The IIFc with DSG1/DSG3/BP230 transfected cells, excluding BP180 spots, is an alternative method to ELISA in pemphigus/BP diagnostics. IgG4 antibodies, both pathogenically and diagnostically important, are inconsistently detectable with IIFm.

  19. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

    Directory of Open Access Journals (Sweden)

    Qu YG

    2014-12-01

    Full Text Available Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen41Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of ChinaBackground: Epidermal growth factor receptor (EGFR mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R have been developed, EGFR mutation detection by immunohistochemistry (IHC is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC, to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS.Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30; the specificity for both antibodies was 100.0% (26/26. IHC sensitivity was 80.0% (24/30 and the specificity was 92.31% (24/26. When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01. Excellent agreement was observed

  20. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool.

    Science.gov (United States)

    Mesquita, Flávio da Silva; Oliveira, Danielle Bruna Leal de; Crema, Daniela; Pinez, Célia Miranda Nunes; Colmanetti, Thaís Cristina; Thomazelli, Luciano Matsumia; Gilio, Alfredo Elias; Vieira, Sandra Elisabeth; Martinez, Marina Baquerizo; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    The aim of this study was to evaluate the QuickVue ® RSV Test Kit (QUIDEL Corp, CA, USA) as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue ® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. From 313 positive samples by immunofluorescence assays, 282 (90%) were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue ® RSV Test and viral load or specific strain. The QuickVue ® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. This study demonstrated that the QuickVue ® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  1. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool,

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    Full Text Available Abstract Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics.

  2. Diagnostic performance of direct wet mount microscopy in detecting intestinal helminths among pregnant women attending ante-natal care (ANC) in East Wollega, Oromia, Ethiopia.

    Science.gov (United States)

    Mengist, Hylemariam Mihiretie; Demeke, Gebreselassie; Zewdie, Olifan; Belew, Adugna

    2018-05-04

    The aim of this study was to evaluate the diagnostic performance of direct wet mount microscopy compared to formalin ether concentration (FEC) technique in detecting intestinal helminths in pregnant women. The total prevalence of intestinal helminths was 18.8% (70/372) by direct wet mount microscopy and 24.7% (92/372) by FEC technique (P  0.81) but they fairly agreed in detecting ova of Hymenolepis nana (Kappa = 0.39). Intestinal helminths were underdiagnosed and the total diagnostic performance of direct wet mount microscopy was significantly poor in detecting intestinal helminths as compared to FEC technique. Routine use of FEC method is recommended for the diagnosis of intestinal helminths in pregnant women.

  3. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2017-04-01

    Full Text Available Atomic force microscopy (AFM has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  4. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    Science.gov (United States)

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  5. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season.

    Science.gov (United States)

    Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J

    2011-07-01

    To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.

  6. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    Science.gov (United States)

    Wirth, Dennis; Smith, Thomas W.; Moser, Richard; Yaroslavsky, Anna N.

    2015-04-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml-1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.

  7. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    International Nuclear Information System (INIS)

    Wirth, Dennis; Yaroslavsky, Anna N; Smith, Thomas W; Moser, Richard

    2015-01-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml −1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors. (paper)

  8. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Miotke, Laura; Maity, Arindam; Ji, Hanlee

    2015-01-01

    BACKGROUND: Rapid reliable diagnostics of DNA mutations are highly desirable in research and clinical assays. Current development in this field goes simultaneously in two directions: 1) high-throughput methods, and 2) portable assays. Non-enzymatic approaches are attractive for both types...... 1000-fold above the potential detection limit. CONCLUSION: Overall, the novel assay we describe could become a new approach to rapid, reliable and enzyme-free diagnostics of cancer or other associated DNA targets. Importantly, stoichiometry of wild type and mutant targets is conserved in our assay...... of methods since they would allow rapid and relatively inexpensive detection of nucleic acids. Modern fluorescence microscopy is having a huge impact on detection of biomolecules at previously unachievable resolution. However, no straightforward methods to detect DNA in a non-enzymatic way using fluorescence...

  9. Ultrafast electron microscopy integrated with a direct electron detection camera.

    Science.gov (United States)

    Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon

    2017-07-01

    In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  10. Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin.

    Science.gov (United States)

    Dillinger, Stefan; Németh, Attila

    2016-01-01

    The nuclear distribution of eu- and heterochromatin is nonrandom, heterogeneous, and dynamic, which is mirrored by specific spatiotemporal arrangements of histone posttranslational modifications (PTMs). Here we describe a semiautomated method for the analysis of histone PTM localization patterns within the mammalian nucleus using confocal laser scanning microscope images of fixed, immunofluorescence stained cells as data source. The ImageJ-based process includes the segmentation of the nucleus, furthermore measurements of total fluorescence intensities, the heterogeneity of the staining, and the frequency of the brightest pixels in the region of interest (ROI). In the presented image analysis pipeline, the perinucleolar chromatin is selected as primary ROI, and the nuclear periphery as secondary ROI.

  11. Nested PCR detection of Plasmodium malariae from microscopy confirmed P. falciparum samples in endemic area of NE India.

    Science.gov (United States)

    Dhiman, Sunil; Goswami, Diganta; Kumar, Dinesh; Rabha, Bipul; Sharma, Dhirendra Kumar; Bhola, Rakesh Kumar; Baruah, Indra; Veer, Vijay

    2013-11-01

    The present study evaluates the performance of OptiMAL-IT test and nested PCR assay in detection of malaria parasites. A total of 76 randomly selected blood samples collected from two malaria endemic areas were tested for malaria parasites using microscopy and OptiMAL-IT test in the field. PCR assays were performed in the laboratory using DNA extracted from blood spots of the same samples collected on the FTA classic cards. Of the total of 61 field confirmed malaria positive samples, only 58 (95%) were detected positive using microscopy in the laboratory. Sensitivity, specificity, positive predictive value, negative predictive value and false discovery rate of OptiMal-IT in comparison to the microscopy were 93%, 83%, 95%, 79% and 5%, respectively. On the other hand, the sensitivity and specificity of PCR assay were 97% and 100%, respectively, whereas positive predictive value, negative predictive value and false discovery rate were 100%, 90% and 0%, respectively. The overall performance of OptiMal-IT and PCR assays for malaria diagnosis was 76% and 97%, respectively. PCR assay enabled the identification of infection with Plasmodium malariae Laveran, 1881 in four samples misidentified by microscopy and Plasmodium-specific antigen (PAN) identified by the OptiMAL-IT test. In addition to the standard methods, such PCR assay could be useful to obtain the real incidence of each malaria parasite species for epidemiological perspectives.

  12. Development of a new light collection and detection system optimized for ion beam induced fluorescence microscopy

    International Nuclear Information System (INIS)

    Vanga, Sudheer Kumar; Mi, Zhaohong; Koh, Long Cheng; Tao, Ye; Bettiol, Andrew A.; Watt, Frank

    2015-01-01

    Ion beam induced fluorescence microscopy is a new imaging technique which has the potential to achieve sub-50 nm spatial resolution fluorescence images. Currently the resolution of the technique has been limited to around 150 nm mainly because of inefficient collection and detection of emitted photons from the sample. To overcome this limitation, a new light collection system based on a custom made parabolic mirror is employed to enhance the fluorescence collection. The custom made mirror is designed so as to obtain both structural (scanning transmission ion microscopy) and ion beam induced fluorescence imaging simultaneously. The design and characterization of the parabolic mirror is discussed in detail

  13. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  14. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  15. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  16. Sensitivity of direct immunofluorescence in oral diseases. Study of 125 cases.

    Science.gov (United States)

    Sano, Susana Mariela; Quarracino, María Cecilia; Aguas, Silvia Cristina; González, Ernestina Jesús; Harada, Laura; Krupitzki, Hugo; Mordoh, Ana

    2008-05-01

    Direct immunofluorescence (DIF) is widely used for the diagnosis of bullous diseases and other autoimmune pathologies such as oral lichen planus. There is no evidence in the literature on how the following variants influence the detection rate of DIF: intraoral site chosen for the biopsy, perilesional locus or distant site from the clinical lesion, number of biopsies and instrument used. to determine if the following variants influenced the sensitivity (detection rate): intraoral site chosen for the biopsy, perilesional or distant site from the clinical lesion, number of biopsies and instrument used (punch or scalpel). A retrospective study was done at the Cátedra de Patología y Clínica Bucodental II at the Facultad de Odontología, Universidad de Buenos Aires; 136 clinical medical histories were revised for the period March 2000 - March 2005 corresponding to patients with clinical diagnosis of OLP and bullous diseases (vulgar pemphigus, bullous pemphigoid and cicatricial pemphigoid). DIF detection rate was 65.8% in patients with OLP, 66.7% in cicatricial pemphigoid patients, in bullous pemphigoid 55.6%, in pemphigus vulgaris 100%, and in those cases in which certain diagnosis could not be obtained, the DIF positivity rate was 45.5% (Pearson chi(2) (4)= 21.5398 Pr= 0.000). There was no statistically significant difference between the different sites of biopsy (Fisher exact test: 0.825). DIF detection rate in perilesional biopsies was 66.1% and in those distant from the site of clinical lesion was 64.7% (Pearson chi(2) v1)= 0.0073 Pr= 0.932. When the number of biopsies were incremented, DIF detection rate also incremented (Pearson chi(2) = 8.7247 Pr= 0.003). The biopsies taken with punch had a higher detection rate than those taken with scalpel (39.1% versus 71.7%) (Pearson chi(2) = 49.0522 Pr= 0.000). While not statistically significant, the tendency outlined in this study indicates there are intraoral regions in which the detection rate of the DIF technique is

  17. Accuracy of molecular diagnostics in pemphigus and bullous pemphigoid: comparison of commercial and modified mosaic indirect immunofluorescence tests as well as enzyme-linked immunosorbent assays

    Directory of Open Access Journals (Sweden)

    Justyna Gornowicz-Porowska

    2017-02-01

    Full Text Available Introduction : Pemphigus and bullous pemphigoid (BP are identified by autoantibodies (abs against desmoglein 1, 3 (DSG1/3 and BP180/BP230, respectively. A novel mosaic to indirect immunofluorescence (IIF using purified BP180 recombinant proteins spotted on slide and transfected cells expressing BP230, DSG1, DSG3 is available. The commercial (IgG detection and modified (IgG4 detection mosaic for indirect immunofluorescence (IIFc – IIF commercial, IIFm – IIF modified and IgG ELISAs were evaluated in pemphigus and bullous pemphigoid (BP molecular diagnostics. Aim : To compare diagnostic accuracy of commercial (IgG detection and modified (IgG4 detection mosaic IIF assay and to examine the diagnostic value of ELISAs in relation to mosaic IIF in routine laboratory diagnostics of pemphigus and BP. Material and methods : Sera from 37 BP and 19 pemphigus patients were studied. Associations between tests were assessed using Fisher’s exact test. Results: There are associations between the positive/negative samples detected by IIFc with desmoglein1 (DSG1/desmoglein3 (DSG3/BP230 transfected cells and ELISAs and no association between anti-BP180 IgG detection by IIFc and ELISA. IIFm with DSG1 and DSG3 showed both 100% sensitivity and 100% and 78% specificity, respectively, and 100% and 83% positive predictive value in relation to IIFc. IIFm with BP230 had 87% specificity, 55% sensitivity, whereas IIFm with BP180 had a 100% sensitivity and 13% specificity in relation to IIFc. Conclusions : The IIFc with DSG1/DSG3/BP230 transfected cells, excluding BP180 spots, is an alternative method to ELISA in pemphigus/BP diagnostics. IgG4 antibodies, both pathogenically and diagnostically important, are inconsistently detectable with IIFm.

  18. Comparison of microscopy, ELISA, and real-time PCR for detection of Giardia intestinalis in human stool specimens

    Science.gov (United States)

    Beyhan, Yunus Emre; Taş Cengiz, Zeynep

    2017-08-23

    Background/aim: This study included patients who had digestive system complaints between August 2015 and October 2015. The research was designed to compare conventional microscopy with an antigen detection ELISA kit and the TaqMan-based real-time PCR (RT-PCR) technique for detection of Giardia intestinalis in human stool specimens. Materials and methods: Samples were concentrated by formalin-ether sedimentation technique and microscopic examinations were carried out on wet mount slides. A commercially available ELISA kit (Giardia CELISA, Cellabs, Brookvale, Australia) was used for immunoassay. DNA was extracted from fecal samples of about 200 mg using the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany) and the LightCycler Nano system (Roche Diagnostics, Mannheim, Germany) was used for the TaqMan-based RT-PCR assay. Results: A total of 94 stool samples, 38 of them diagnosed positive (40.4%) and 56 of them diagnosed negative by microscopy, were selected for evaluation by antigen detection and molecular assays. The prevalence of G. intestinalis infection was found as 46.8% (n: 44) and 79.8% (n: 75) by ELISA and RT-PCR, respectively. RT-PCR revealed by far the highest positivity rate compared to the other two methods. The difference between these methods was found to be statistically significant (P PCR, the sensitivity and specificity of microscopy and ELISA were 50.7% and 100% and 53.3% and 79%, respectively. Conclusion: RT-PCR seems to be much more sensitive and beneficial for rapid and accurate diagnosis of G. intestinalis in human stools.

  19. Flow Cytometry Detection of Infectious Rotaviruses in Environmental and Clinical Samples

    Science.gov (United States)

    Abad, F. Xavier; Pintó, Rosa M.; Bosch, Albert

    1998-01-01

    A method for the detection of infectious human rotaviruses based on infection of CaCo-2 cells and detection of infected cells by indirect immunofluorescence and flow cytometry (IIF-FC) has been developed. The technique was validated by performing a seminested reverse transcription-PCR assay with sorted cell populations. The efficiency of the procedure has been compared with that of the standard method of infection of MA104 cells and ulterior detection by IIF and optical microscopy (IIF-OM) and with that of infection of MA104 cells and detection by IIF-FC. The limit of sensitivity for the detection of the cell-adapted strain Itor P13, expressed as the most probable number of cytopathogenic units, was established as 200 and 2 for MA104 and CaCo-2 cells, respectively, by the IIF-FC method. The ratio of infectious virus particles to total virus particles for a wild-type rotavirus was determined to be 1/2 × 106 and 1/2 × 104 for IIF-OM with MA104 cells and IIF-FC with CaCo-2 cells, respectively. The use of IIF-FC with CaCo-2 cells was tested with fecal and water samples and proved to be more effective than the standard procedure for rotavirus detection. PMID:9647805

  20. A Novel Tool for High-Throughput Screening of Granulocyte-Specific Antibodies Using the Automated Flow Cytometric Granulocyte Immunofluorescence Test (Flow-GIFT

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available Transfusion-related acute lung injury (TRALI is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT and granulocyte agglutination test (GAT were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti—HNA 3a, n = 3; anti—HNA-1b, n = 1 and GAT (anti—HNA-2a, n = 1. The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of

  1. A novel tool for high-throughput screening of granulocyte-specific antibodies using the automated flow cytometric granulocyte immunofluorescence test (Flow-GIFT).

    Science.gov (United States)

    Nguyen, Xuan Duc; Dengler, Thomas; Schulz-Linkholt, Monika; Klüter, Harald

    2011-02-03

    Transfusion-related acute lung injury (TRALI) is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT) has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT) and granulocyte agglutination test (GAT) were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti-HNA 3a, n = 3; anti-HNA-1b, n = 1) and GAT (anti-HNA-2a, n = 1). The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of blood products.

  2. Ultrafast electron microscopy integrated with a direct electron detection camera

    Directory of Open Access Journals (Sweden)

    Young Min Lee

    2017-07-01

    Full Text Available In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM, which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  3. Performance of LED fluorescence microscopy for the detection of ...

    African Journals Online (AJOL)

    Introduction: Ziehl-Neelsen (ZN) bright-field microscopy is time-consuming, with poor sensitivity, even under optimal conditions. Introduction of Primo Star iLED fluorescent microscopy (FM) may improve TB case finding at referral hospitals in Rwanda. The study aimed to determine the acceptability and effectiveness of iLED ...

  4. Detection of SiO2 nanoparticles in lung tissue by ToF-SIMS imaging and fluorescence microscopy.

    Science.gov (United States)

    Veith, Lothar; Vennemann, Antje; Breitenstein, Daniel; Engelhard, Carsten; Wiemann, Martin; Hagenhoff, Birgit

    2017-07-10

    The direct detection of nanoparticles in tissues at high spatial resolution is a current goal in nanotoxicology. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is widely used for the direct detection of inorganic and organic substances with high spatial resolution but its capability to detect nanoparticles in tissue sections is still insufficiently explored. To estimate the applicability of this technique for nanotoxicological questions, comparative studies with established techniques on the detection of nanoparticles can offer additional insights. Here, we compare ToF-SIMS imaging data with sub-micrometer spatial resolution to fluorescence microscopy imaging data to explore the usefulness of ToF-SIMS for the detection of nanoparticles in tissues. SiO 2 nanoparticles with a mean diameter of 25 nm, core-labelled with fluorescein isothiocyanate, were intratracheally instilled into rat lungs. Subsequently, imaging of lung cryosections was performed with ToF-SIMS and fluorescence microscopy. Nanoparticles were successfully detected with ToF-SIMS in 3D microanalysis mode based on the lateral distribution of SiO 3 - (m/z 75.96), which was co-localized with the distribution pattern that was obtained from nanoparticle fluorescence. In addition, the lateral distribution of protein (CN - , m/z 26.00) and phosphate based signals (PO 3 - , m/z 78.96) originating from the tissue material could be related to the SiO 3 - lateral distribution. In conclusion, ToF-SIMS is suitable to directly detect and laterally resolve SiO 2 nanomaterials in biological tissue at sufficient intensity levels. At the same time, information about the chemical environment of the nanoparticles in the lung tissue sections is obtained.

  5. Impact of transition from microscopy to molecular screening for detection of intestinal protozoa in Dutch patients.

    Science.gov (United States)

    Svraka-Latifovic, S; Bouter, S; Naus, H; Bakker, L J; Timmerman, C P; Dorigo-Zetsma, J W

    2014-11-01

    Detection of intestinal protozoa by PCR methods has been described as being sensitive and specific, and as improving the diagnostic yield. Here we present the outcome of the transition from microscopy to molecular screening for detection of a select group of intestinal protozoa in faeces in our laboratory. Introduction of molecular screening for intestinal protozoa resulted in higher sensitivity, reduced hands-on-time, reduced time-to-results, leading to improved diagnostic efficiency. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  6. Application of 125I-labelled soluble proteins in the histoautoradiographic detection of antigen and antibodies in the spleen of rabbits during primary immune response

    International Nuclear Information System (INIS)

    Rodak, L.

    1975-01-01

    An autoradiographic method for detecting soluble antigen (chicken serum albumin, CSA) and specific antibodies in the spleen of rabbits during a primary immune response is described. The method consists of incubating sections from the spleen with 125 I-labelled IgG 2 anti CSA (for demonstration of antigen) or with 125 I-labelled antigen (for demonstration of specific antibodies). This treatment of histological sections combines the advantages and principles of the immunofluorescence technique with the possibility of evaluating the exact localization of the proteins by light microscopy in preparations stained with haematoxylin or methyl green-pyronin. The sensitivity of detection is very high: both antigen and antibodies could be demonstrated in the spleen follicles for as long as 42 days after the primary intravenous injection

  7. Evaluation and Comparison of Enzyme Immunoassay (Eia and Acid Fast Staining with Confirmation by Immunofluorescent Antibody Assay for Detection of Cryptosporidium Species in Infants and Young Children.

    Directory of Open Access Journals (Sweden)

    D Dorostcar Moghaddam

    2005-01-01

    Full Text Available Introduction: Cryptosporidiosis is prevalent world wide, causing a variety of problems ranging from acute, self-limiting diarrhea to fatal cases in immunocompromised persons, particulary those with acquired immunodeficiency (AIDS. Diagnosis of Cryptosporidium is made by identification of oocysts in stool specimens. The detection is most commonly made by the acid-fast staining method followed by microscopic examination which has low specificity and sensitivity. Material and Methods: In the present study, we evaluated diagnostic utility of a commercially available enzyme immunoassay (EIA, which detects Cryptosporidium-Specific antigen (CSA in 204 unprocessed stool specimens obtained from patients less than 3 years of age. Results: When compared with the routine screening procedure applied in this field study (screening by acid-fast staining and microscopy after concentration of positive results by IFA, both sensitivity and specificity were 98%. Of the 139 specimens negative by microscopy, 13 (9.3% were positive by EIA, 11 of which were confirmed by inhibition with antibody to Cryptosporidia-specific antigen. Conclusion: The EIA is an important tool for identifying Cryptosporidium in fecal specimens in field studies since it is sensitive, specific, simple to use and unaffected by the presence of a preservative.

  8. Using immunoglobulin Y as an alternative antibody for the detection of hepatitis A virus in frozen liver sections

    Directory of Open Access Journals (Sweden)

    Gentil Arthur Bentes

    2015-06-01

    Full Text Available An increasing amount of research has been conducted on immunoglobulin Y (IgY because the use of IgY offers several advantages with respect to diagnostic testing, including its easy accessibility, low cost and translatability to large-scale production, in addition to the fact that it can be ethically produced. In a previous work, immunoglobulin was produced and purified from egg yolks (IgY reactive to hepatitis A virus (HAV antigens. In the present work, this anti-HAV-specific IgY was used in an indirect immunofluorescence assay to detect viral antigens in liver biopsies that were obtained from experimentally infected cynomolgus monkeys. Fields that were positive for HAV antigen were detected in liver sections using confocal microscopy. In conclusion, egg yolks from immunised hens may be a reliable source for antibody production, which can be employed for immunological studies.

  9. Performance of an ELISA and Indirect Immunofluorescence Assay in Serological Diagnosis of Zoonotic Cutaneous Leishmaniasis in Iran

    Directory of Open Access Journals (Sweden)

    Bahador Sarkari

    2014-01-01

    Full Text Available Serological assays have been extensively evaluated for diagnosis of visceral leishmaniasis (VL and considered as a routine method for diagnosis of VL while these methods are not properly evaluated for diagnosis of cutaneous leishmaniasis (CL. This study aimed to assess the performance of indirect immunofluorescent-antibody test (IFA and enzyme-linked immunosorbent assay (ELISA for serodiagnosis of cutaneous leishmaniasis in Iran. Sixty-one sera samples from parasitologically confirmed CL patients and 50 sera from healthy controls along with 50 sera from non-CL patients were collected. Antigen was prepared from promastigotes and amastigotes of Leishmania major. IFA was used to detect anti-Leishmania IgG while ELISA was used to detect anti-Leishmania IgM, total IgG, or IgG subclasses (IgG1 and 4. ELISA, for detection of total IgG and IgM, showed sensitivity of 83.6% and 84.7% and specificity of 62.7% and 54.6%, respectively. Sensitivity and specificity of ELISA for detecting IgG1 and IgG4 were 64%, 75% and 85%, 49%, respectively. Sensitivity and specificity of IFA were 91.6% and 81%. Conclusion. Findings of this study demonstrated that serological test, especially IFA, can be used for proper diagnosis of CL.

  10. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    Science.gov (United States)

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  11. Detection of Lawsonia intracellularis in formalin-fixed porcine intestinal tissue samples: comparison of immunofluorescence and in-situ hybridization, and evaluation of the effects of controlled autolysis.

    Science.gov (United States)

    Jensen, T K; Boesen, H T; Vigre, H; Boye, M

    2010-01-01

    Two methods, an immunofluorescence assay (IFA; with a Lawsonia intracellularis-specific monoclonal antibody) and fluorescent in-situ hybridization (FISH; with a specific oligonucleotide probe targeting 16S ribosomal RNA of the bacterium), were compared for their ability to detect L. intracellularis (the cause of porcine proliferative enteritis [PE]) in formalin-fixed samples of intestinal tissue. Of 69 intestinal samples with gross lesions of PE, 63 were positive by both FISH and IFA, but six were positive only by IFA. This indicated that the sensitivity of FISH was 91% that of IFA. However, both methods had a specificity of 100%. Fifty normal porcine intestines were negative by both tests. IFA was much less susceptible than FISH to the effects of autolysis. Thus, three of nine samples from pigs with PE were FISH-negative after being kept at 20 degrees C for 4 days, and seven were FISH negative after 2 weeks; after 4 weeks at this temperature, however, six of the nine samples were still IFA positive. After being kept at 4 degrees C for 12 weeks, the majority of samples (> or = 66%) were positive by both methods.

  12. Validation of commercially available sphingosine kinase 2 antibodies for use in immunoblotting, immunoprecipitation and immunofluorescence [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Heidi A. Neubauer

    2017-03-01

    Full Text Available Sphingosine kinase 2 (SK2 is a ubiquitously expressed lipid kinase that has important, albeit complex and poorly understood, roles in regulating cell survival and cell death. In addition to being able to promote cell cycle arrest and apoptosis under certain conditions, it has recently been shown that SK2 can promote neoplastic transformation and tumorigenesis in vivo. Therefore, well validated and reliable tools are required to study and better understand the true functions of SK2. Here, we compare two commercially available SK2 antibodies: a rabbit polyclonal antibody from Proteintech that recognizes amino acids 266-618 of human SK2a, and a rabbit polyclonal antibody from ECM Biosciences that recognizes amino acids 36-52 of human SK2a. We examine the performance of these antibodies for use in immunoblotting, immunoprecipitation and immunofluorescence staining of endogenous SK2, using human HEK293 and HeLa cell lines, as well as mouse embryonic fibroblasts (MEFs. Furthermore, we assess the specificity of these antibodies to the target protein through the use of siRNA-mediated SK2 knockdown and SK2 knockout (Sphk2-/- MEFs. Our results demonstrate that the Proteintech anti-SK2 antibody reproducibly displayed superior sensitivity and selectivity towards SK2 in immunoblot analyses, while the ECM Biosciences anti-SK2 antibody was reproducibly superior for SK2 immunoprecipitation and detection by immunofluorescence staining. Notably, both antibodies produced non-specific bands and staining in the MEFs, which was not observed with the human cell lines. Therefore, we conclude that the Proteintech SK2 antibody is a valuable reagent for use in immunoblot analyses, and the ECM Biosciences SK2 antibody is a useful tool for SK2 immunoprecipitation and immunofluorescence staining, at least in the human cell lines employed in this study.

  13. Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission

    Directory of Open Access Journals (Sweden)

    Zborowski Maciej

    2008-04-01

    Full Text Available Abstract Background Aggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG. Methods and findings Individuals with Plasmodium falciparum malaria symptoms (n = 55 provided samples for conventional blood smear (CBS and magnetic deposition microscopy (MDM diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. Plasmodium falciparum parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13, trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01, schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08 and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002 parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively. Conclusion MDM increased detection sensitivity of P. falciparum-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.

  14. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    International Nuclear Information System (INIS)

    Hong Xia; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai

    2009-01-01

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  15. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hong Xia [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry, Jilin University, Changchun 130023 (China)], E-mail: xiahong@nenu.edu.cn; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai [College of Chemistry, Jilin University, Changchun 130023 (China)

    2009-09-15

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  16. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance

    Directory of Open Access Journals (Sweden)

    Ralevski Filip

    2009-12-01

    Full Text Available Abstract Background Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. Materials and methods A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR, and two rapid diagnostic immuno-chromatographic tests (ICT in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. Results QPCR is the most analytically sensitive method (sensitivity 99.41%, followed by CARESTART (sensitivity 88.24%, and BINAXNOW (sensitivity 86.47% for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746 in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more

  17. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    Science.gov (United States)

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  18. Anti-human neutrophil antigen-1a, -1b, and -2 antibodies in neonates and children with immune neutropenias analyzed by extracted granulocyte antigen immunofluorescence assay.

    Science.gov (United States)

    Onodera, Rie; Kurita, Emi; Taniguchi, Kikuyo; Karakawa, Shuhei; Okada, Satoshi; Kihara, Hirotaka; Fujii, Teruhisa; Kobayashi, Masao

    2017-11-01

    Anti-human neutrophil antigen (HNA) antibodies have been implicated in the development of neonatal alloimmune neutropenia (NAN) and autoimmune neutropenia (AIN). There are many conventional assay methods that detect anti-HNA antibodies. However, a method to measure multiple samples and detect several anti-HNA antibodies simultaneously is needed. We developed a new method, the extracted granulocyte antigen immunofluorescence assay (EGIFA), to analyze anti-HNA-1a, -1b, and -2 antibodies in sera. The results obtained by EGIFA were evaluated in comparison with those from several standard assay methods. Anti-HNA antibodies in serum samples from nine familial cases with suspected NAN (n = 19) and children with suspected AIN (n = 88) were also measured by EGIFA. The evaluation of nine serum samples with anti-HNA antibodies suggested that EGIFA demonstrated equivalent specificity and superior sensitivity to monoclonal antibody-specific immobilization of granulocyte antigens and had comparable sensitivity to the granulocyte indirect immunofluorescence test. EGIFA successfully detected anti-HNA-1a or -1b antibodies in seven of nine familial cases with suspected NAN. EGIFA detected anti-HNA antibodies in 40.9% of children with suspected AIN. Among them, isolated anti-HNA-1a or -1b antibody was detected in 4.5 or 12.5% of children, respectively, and anti-HNA-2 antibody was identified in 3.4% of children. The 30.8% (16 of 52) of children negative for anti-HNA antibody by EGIFA were positive for anti-HLA antibody. EGIFA facilitated the measurement of anti-HNA-1a, -1b, and/or -2 antibodies in sera. The prompt measurement of anti-HNA antibodies will improve the diagnosis and clinical management of patients with suspected NAN or AIN. © 2017 AABB.

  19. Detecting onset of chain scission and crosslinking of γ-ray irradiated elastomer surfaces using frictional force microscopy

    International Nuclear Information System (INIS)

    Banerjee, S; Sinha, N K; Gayathri, N; Ponraju, D; Dash, S; Tyagi, A K; Raj, Baldev

    2007-01-01

    We report here that atomic force microscopy (AFM) in frictional force mode can be used to detect the onset of chain scission and crosslinking in polymeric and macromolecular samples upon irradiation. A systematic investigation to detect chain scission and crosslinking of two elastomers (1) ethylene-propylene-diene monomer rubber and (2) fluorocarbon rubber, upon γ-ray irradiation has been carried out using frictional force microscopy (FFM). From the AFM results we observed that both the elastomers show a systematic smoothening of its surfaces, as the γ-ray dose rate increases. However, the frictional property studied using FFM of the sample surfaces show an initial increase and then a decrease as a function of dose rate. This behaviour of increase in its frictional property has been attributed to the onset of chain scission, and the subsequent decrease in friction has been attributed to the onset of crosslinking of the polymer chains. The evaluated qualitative and semi-quantitative changes observed in the overall frictional property as a function of the γ-ray dose rate for the two elastomers are presented in this paper

  20. Detecting onset of chain scission and crosslinking of {gamma}-ray irradiated elastomer surfaces using frictional force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Sinha, N K [Innovative Design Engineering and Synthesis Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Gayathri, N [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Ponraju, D [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Dash, S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Tyagi, A K [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Raj, Baldev [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India)

    2007-02-07

    We report here that atomic force microscopy (AFM) in frictional force mode can be used to detect the onset of chain scission and crosslinking in polymeric and macromolecular samples upon irradiation. A systematic investigation to detect chain scission and crosslinking of two elastomers (1) ethylene-propylene-diene monomer rubber and (2) fluorocarbon rubber, upon {gamma}-ray irradiation has been carried out using frictional force microscopy (FFM). From the AFM results we observed that both the elastomers show a systematic smoothening of its surfaces, as the {gamma}-ray dose rate increases. However, the frictional property studied using FFM of the sample surfaces show an initial increase and then a decrease as a function of dose rate. This behaviour of increase in its frictional property has been attributed to the onset of chain scission, and the subsequent decrease in friction has been attributed to the onset of crosslinking of the polymer chains. The evaluated qualitative and semi-quantitative changes observed in the overall frictional property as a function of the {gamma}-ray dose rate for the two elastomers are presented in this paper.

  1. Kelvin probe force microscopy from single charge detection to device characterization

    CERN Document Server

    Glatzel, Thilo

    2018-01-01

    This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors’ previous volume “Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces,” presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.

  2. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    Science.gov (United States)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  3. Detection of serum antitrichomonal antibodies in urogenital trichomoniasis by immunofluorescence.

    Directory of Open Access Journals (Sweden)

    Bhatt R

    1992-04-01

    Full Text Available Trichomonas vaginalis is a frequently encountered genital pathogen in both males and females. In females, vaginitis due to this parasite is one of the most common manifestation. The indirect fluorescent technique (IFA test was carried out to detect antitrichomonal antibodies in 370 female patients using whole cell antigen. Seventy one (19.18% gave positive reaction for either of the class IgG, IgM and IgA antibodies. The level of the IgG class antibodies was found to be higher i.e. 58 (81.69% than IgM 11 (15.27% antibodies, which may be suggestive of past infection or a prolonged manifestation by the organisms.

  4. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections.

    Directory of Open Access Journals (Sweden)

    Sandrine Prost

    Full Text Available The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family. Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705, Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches.

  5. A novel method for in Situ detection of hydrolyzable casein fragments in a cheese matrix by antibody phage display technique and CLSM

    DEFF Research Database (Denmark)

    Duan, Zhi; Brüggemann, Dagmar Adeline; Siegumfeldt, Henrik

    2009-01-01

    three small synthetic peptides of the alpha(s1)-casein sequence. These peptides traverse enzymatic cleavage sites of casein during cheese ripening. The specificity of the generated anti-peptide antibodies was determined by ELISA and Western blot. Finally, an immunofluorescent labeling protocol......A novel method to monitor in situ hydrolyzable casein fragments during cheese ripening by using immunofluorescent labeling and confocal laser scanning microscopy (CLSM) was developed. Monoclonal single chain variable fragments of antibody (scFvs) were generated by antibody phage display toward...

  6. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    OpenAIRE

    Karl, Stephan; Davis, Timothy ME; St-Pierre, Tim G

    2009-01-01

    Abstract Background The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sens...

  7. Analysis of incomplete excisions of basal-cell carcinomas after breadloaf microscopy compared with 3D-microscopy: a prospective randomized and blinded study.

    Science.gov (United States)

    Boehringer, Alexandra; Adam, Patrick; Schnabl, Saskia; Häfner, Hans-Martin; Breuninger, Helmut

    2015-08-01

    Basal-cell carcinomas may show irregular, asymmetric subclinical growth. This study analyzed the efficacy of 'breadloaf' microscopy (serial sectioning) and three-dimensional (3D) microscopy in detecting positive tumor margins. Two hundred eighty-three (283) tumors (51.2%) were put into the breadloaf microscopy group; 270 tumors (48.8%) into the 3D microscopy group. The position of any detected tumor outgrowths was identified in clock face fashion. The time required for cutting and embedding the specimens and the examination of the microscopic slides was measured. Patient/tumor characteristics and surgical margins did not differ significantly. Tumor outgrowths at the excision margin were found in 62 of 283 cases (21.9%) in the breadloaf microscopy group and in 115 of 270 cases (42.6%) in the 3D microscopy group, constituting a highly significant difference (p < 0.001). This difference held true with incomplete excision of fibrosing (infiltrative/sclerosing/morpheaform) tumors [32.9% in the breadloaf microscopy group and 57.5% in the 3D microscopy group (p = 0.003)] and also with solid (nodular) tumors [16.1 and 34.2%, respectively (p < 0.001)]. The mean overall examination time required showed no important difference. In summary, for detection of tumor outgrowths, 3D microscopy has almost twice the sensitivity of breadloaf microscopy, particularly in the situation of aggressive/infiltrative carcinomas. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Detection of oxidative hair treatment using fluorescence microscopy.

    Science.gov (United States)

    Witt, Silvana; Wunder, Cora; Paulke, Alexander; Verhoff, Marcel A; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2016-08-01

    In assessing abstinence from drug or alcohol abuse, hair analysis plays an important role. Cosmetic hair treatment influences the content of deposited drugs which is not always detectable during analysis. Since oxidation of melanin leads to an increase in fluorescence, a microscopic method was developed to distinguish natural from cosmetically treated hair. For validation, natural hair samples were treated with different types of cosmetics and inspected by fluorescence microscopy. Hair samples from 20 volunteers with documented cosmetic treatment and as a proof of concept 100 hair samples from forensic cases were analyzed by this method. Apart from autofluorescence with excitation at 365 nm, no obvious fluorescence was observed in untreated hair samples. Tinting and a natural plant product had no influence on fluorescence, but dyeing procedures including oxidation led to a marked increase in fluorescence. Proof of cosmetic treatment was achieved in hair samples from the 20 volunteers. In 100 forensic cases, 13 samples were characterized as oxidatively treated, which was in accordance with the respective disclosure except for one case where treatment was not admitted. This fluorescence microscopic procedure proved to be fast, easy, and reliable to identify oxidatively treated hair samples, which must be considered especially in evaluating cases of negative drug results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. DETECTION OF THE ICHTHYOTOXIC DINOFLAGELLATE GYRODINIUM (CF) AUREOLUM AND MORPHOLOGICALLY RELATED GYMNODINIUM SPECIES USING MONOCLONAL-ANTIBODIES - A SPECIFIC IMMUNOLOGICAL TOOL

    NARCIS (Netherlands)

    VRIELING, EG; PEPERZAK, L; GIESKES, WWC; VEENHUIS, M

    Sixteen monoclonal antibodies which recognize different cell surface antigens of the ichthyotoxic marine dinoflagellate Gyrodinium cf. aureolum were prepared and characterized for use in identification by both immunofluorescence microscopy and flow cytometry. Based on the labeling results obtained

  10. A direct view by immunofluorescent comet assay (IFCA) of DNA damage induced by nicking and cutting enzymes, ionizing (137)Cs radiation, UV-A laser microbeam irradiation and the radiomimetic drug bleomycin.

    Science.gov (United States)

    Grigaravicius, Paulius; Rapp, Alexander; Greulich, Karl Otto

    2009-03-01

    In DNA repair research, DNA damage is induced by different agents, depending on the technical facilities of the investigating researchers. A quantitative comparison of different investigations is therefore often difficult. By using a modified variant of the neutral comet assay, where the histone H1 is detected by immunofluorescence [immunofluorescent comet assay (IFCA)], we achieve previously unprecedented resolution in the detection of fragmented chromatin and show that trillions of ultraviolet A photons (of a few eV), billions of bleomycin (BLM) molecules and thousands of gamma quanta (of 662 keV) generate, in first order, similar damage in the chromatin of HeLa cells. A somewhat more detailed inspection shows that the damage caused by 20 Gy ionizing radiation and by a single laser pulse of 10 microJ are comparable, while the damage caused by 12 microg/ml BLM depends highly on the individual cell. Taken together, this work provides a detailed view of DNA fragmentation induced by different treatments and allows comparing them to some extent, especially with respect to the neutral comet assay.

  11. Sensitivity and specificity of in situ proximity ligation for protein interaction analysis in a model of steatohepatitis with Mallory-Denk bodies.

    Directory of Open Access Journals (Sweden)

    Bernhard Zatloukal

    Full Text Available The in situ proximity ligation assay (isPLA is an increasingly used technology for in situ detection of protein interactions, post-translational modifications, and spatial relationships of antigens in cells and tissues, in general. In order to test its performance we compared isPLA with immunofluorescence microscopy by analyzing protein interactions in cytoplasmic protein aggregates, so-called Mallory Denk bodies (MDBs. These structures represent protein inclusions in hepatocytes typically found in human steatohepatitis and they can be generated in mice by feeding of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC. We investigated the colocalization of all three key MDB components, namely keratin 8 (K8, keratin 18 (K18, and p62 (sequestosome 1 by isPLA and immunofluorescence microscopy. Sensitivity and specificity of isPLA was assessed by using Krt8-/- and Krt18-/- mice as biological controls, along with a series of technical controls. isPLA signal visualization is a robust technology with excellent sensitivity and specificity. The biological relevance of signals generated critically depends on the performance of antibodies used, which requires careful testing of antibodies like in immunofluorescence microscopy. There is a clear advantage of isPLA in visualizing protein co-localization, particularly when antigens are present at markedly different concentrations. Furthermore, isPLA is superior to confocal microscopy with respect to spatial resolution of colocalizing antigens. Disadvantages compared to immunofluorescence are increased costs and longer duration of the laboratory protocol.

  12. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the

  13. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    International Nuclear Information System (INIS)

    Bosse, J. L.; Huey, B. D.; Tovee, P. D.; Kolosov, O. V.

    2014-01-01

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm 2 unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular

  14. Variability in the recognition of distinctive immunofluorescence patterns in different brands of HEp-2 cell slides

    Directory of Open Access Journals (Sweden)

    Alessandra Dellavance

    2013-06-01

    Full Text Available INTRODUCTION: Indirect immunofluorescence on HEp-2 cells is considered the gold standard for the detection of autoantibodies against cellular antigens. However, the culture conditions, cell fixation and permeabilization processes interfere directly in the preservation and spatial distribution of antigens. Therefore, one can assume that certain peculiarities in the processing of cellular substrate may affect the recognition of indirect immunofluorescence patterns associated with several autoantibodies. OBJECTIVE: To evaluate a panel of serum samples representing nuclear, nucleolar, cytoplasmic, mitotic apparatus, and chromosome plate patterns on HEp-2 cell substrates from different suppliers. MATERIALS AND METHODS: Seven blinded observers, independent from the three selected reference centers, evaluated 17 samples yielding different nuclear, nucleolar, cytoplasmic and mitotic apparatus patterns on HEp-2 cell slides from eight different brands. The slides were coded to maintain confidentiality of both brands and participating centers. RESULTS: The 17 HEp-2 cell patterns were identified on most substrates. Nonetheless, some slides showed deficit in the expression of several patterns: nuclear coarse speckled/U1-ribonucleoprotein associated with antibodies against RNP (U1RNP, centromeric protein F (CENP-F, proliferating cell nuclear antigen (PCNA, cytoplasmic fine speckled associated with anti-Jo-1 antibodies (histidyl synthetase, nuclear mitotic apparatus protein 1 (NuMA-1 and nuclear mitotic apparatus protein 2 (NuMA-2. CONCLUSION: Despite the overall good quality of the assessed HEp-2 substrates, there was considerable inconsistency in results among different commercial substrates. The variations may be due to the evaluated batches, hence generalizations cannot be made as to the respective brands. It is recommended that each new batch or new brand be tested with a panel of reference sera representing the various patterns.

  15. Radiation dose determines the method for quantification of DNA double strand breaks

    International Nuclear Information System (INIS)

    Bulat, Tanja; Keta, Olitija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra; Todorović, Danijela

    2016-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. (author)

  16. Radiation dose determines the method for quantification of DNA double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bulat, Tanja; Keta, Olitija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra [University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade (Serbia); Todorović, Danijela, E-mail: dtodorovic@medf.kg.ac.rs [University of Kragujevac, Faculty of Medical Sciences, Kragujevac (Serbia)

    2016-03-15

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. (author)

  17. BLIND TRIALS EVALUATING IN VITRO INFECTIVITY OF CRYPTOSPORIDIUM PARVUM OOCYSTS USING CELL CULTURE IMMUNOFLUORESCENCE

    Science.gov (United States)

    An optimized cell culture-immunofluorescence (IFA) procedure, using the HCT-8 cell line, was evaluated in 'blind' trials to determine the sensitivity and reproducibility for measuring infectivity of flow cytometry prepared inocula of C. parvum oocysts. In separate trials, suspens...

  18. Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging.

    Science.gov (United States)

    Nyström, Sofie; Bäck, Marcus; Nilsson, K Peter R; Hammarström, Per

    2017-10-20

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive β-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  19. A sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual fibers in samples from patients with duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Chantal Beekman

    Full Text Available Duchenne muscular dystrophy (DMD is characterized by the absence or reduced levels of dystrophin expression on the inner surface of the sarcolemmal membrane of muscle fibers. Clinical development of therapeutic approaches aiming to increase dystrophin levels requires sensitive and reproducible measurement of differences in dystrophin expression in muscle biopsies of treated patients with DMD. This, however, poses a technical challenge due to intra- and inter-donor variance in the occurrence of revertant fibers and low trace dystrophin expression throughout the biopsies. We have developed an immunofluorescence and semi-automated image analysis method that measures the sarcolemmal dystrophin intensity per individual fiber for the entire fiber population in a muscle biopsy. Cross-sections of muscle co-stained for dystrophin and spectrin have been imaged by confocal microscopy, and image analysis was performed using Definiens software. Dystrophin intensity has been measured in the sarcolemmal mask of spectrin for each individual muscle fiber and multiple membrane intensity parameters (mean, maximum, quantiles per fiber were calculated. A histogram can depict the distribution of dystrophin intensities for the fiber population in the biopsy. This method was tested by measuring dystrophin in DMD, Becker muscular dystrophy, and healthy muscle samples. Analysis of duplicate or quadruplicate sections of DMD biopsies on the same or multiple days, by different operators, or using different antibodies, was shown to be objective and reproducible (inter-assay precision, CV 2-17% and intra-assay precision, CV 2-10%. Moreover, the method was sufficiently sensitive to detect consistently small differences in dystrophin between two biopsies from a patient with DMD before and after treatment with an investigational compound.

  20. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  1. Quantum Dots-Based Immunofluorescent Imaging of Stromal Fibroblasts Caveolin-1 and Light Chain 3B Expression and Identification of Their Clinical Significance in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    2012-10-01

    Full Text Available Caveolin-1 (Cav-1 expression deficiency and autophagy in tumor stromal fibroblasts (hereafter fibroblasts are involved in tumor proliferation and progression, particularly in breast and prostate cancer. The aim of this study was to detect the expression of fibroblastic Cav-1 and LC3B, markers of autophagy, in gastric cancer (GC and to analyze their clinical significances. Furthermore, because Epstein-Barr virus (EBV-associated GC (EBVaGC is a unique subtype of GC; we compared the differential expression of fibroblastic Cav-1 and LC3B in EBVaGC and non-EBVaGC. Quantum dots (QDs-based immunofluorescence histochemistry was used to examine the expression of fibroblastic Cav-1 and LC3B in 118 cases of GC with adequate stroma. QDs-based double immunofluorescence labeling was performed to detect the coexpression of Cav-1 and LC3B proteins. EBV-encoded small RNA was detected by QDs-based fluorescence in situ hybridization to identify EBVaGC. Multivariate analysis indicated that low fibroblastic Cav-1 level was an independent prognosticator (p = 0.029 that predicted poorer survival of GC patients. Positive fibroblastic LC3B was correlated with lower invasion (p = 0.032 and was positively associated with Cav-1 expression (r = 0.432, p < 0.001. EBV infection did not affect fibroblastic Cav-1 and LC3B expression. In conclusion, positive fibroblastic LC3B correlates with lower invasion, and low expression of fibroblastic Cav-1 is a novel predictor of poor GC prognosis.

  2. Longitudinal study of the indirect immunofluorescence and complement fixation tests for diagnosis of chagas' disease in immunosuppressed patients submitted to renal transplantation

    Directory of Open Access Journals (Sweden)

    José Fernando de Castro Figueiredo

    1993-12-01

    Full Text Available Clinical and serological follow-up of 7 patients submitted to renal transplantation and presenting positive serological reactions to Chagas 'disease before immunossupression did not show significant changes in indirect immunofluorescence and complement fixation titres for Chagas ' disease, or signs and symptoms indicating exacerbation of the disease during follow- up. In addition, 18 of 66 recipients of renal transplants considered to be non-chagasic before immunosuppression showed at least one positive result to the indirect immunofluorescence test for Chagas ' disease during the study period. The results suggest that the immunosuppression State induced in chagasic patients submitted to renal transplant did notpromoted exacerbation of the chronic infection in these patients and not interfere with the serological response of chronic chagasics, thus permitting the use of these serologic reactions for diagnostic purposes in these cases. However, the positive results ofthe indirect immunofluorescence test in non- chagasic patients indicate the needforjudicious interpretation ofthe indirect immunofluorescence test for the diagnosis of Chagas' disease in renal transplanted patients.

  3. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    International Nuclear Information System (INIS)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-01-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations

  4. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, Ireneusz [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany); Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław (Poland); Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  5. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  6. Comparison of Real Time Polymerase Chain Reaction with Microscopy and Antigen Detection Assay for the Diagnosis of Malaria

    International Nuclear Information System (INIS)

    Khan, S. A.; Ahmed, S.; Khan, F. A.; Shamshad, G. U.; Joyia, Z.; Mushahid, N.; Saeed, S.

    2013-01-01

    Objective: To determine the sensitivity of a real time polymerase chain reaction (PCR) for malaria diagnosis and to compare its accuracy with microscopy and an antigen based rapid diagnostic test (OptiMal). Study Design: Cross-sectional analytical study. Place and Duration of Study: Military Hospital, Armed Forces Institute of Transfusion and Armed Forces Institute of Pathology, Rawalpindi, from July to December 2011. Methodology: Venous blood samples of 300 clinically suspected patients of malaria were tested for malaria parasite by microscopy and OptiMal; and malaria parasite index was calculated for the positive samples. Plasmodium genus specific real time PCR was performed on all specimens, targeting small subunit rRNA gene. Diagnostic accuracy of three tests was compared and cost analysis was done. Results: Out of 300 patients, malaria parasite was detected in 110, 106 and 123 patients by microscopy, OptiMAL and PCR respectively. Real time PCR was 100% sensitive while microscopy and OptiMal had sensitivity of 89.4% and 86.2% respectively. All methods were 100% specific. The cost per test was calculated to be 0.2, 2.75 and 3.30 US dollar by microscopy, OptiMal and PCR respectively, excluding the once capital cost on PCR equipment. Conclusion: Genus specific real time PCR for the diagnosis of malaria was successfully established as a highly sensitive and affordable technology that should be incorporated in the diagnostic algorithm in this country. (author)

  7. Multi-modality photoacoustic tomography, ultrasound, and light sheet microscopy for volumetric tumor margin detection

    Science.gov (United States)

    Sangha, Gurneet S.; Hu, Bihe; Bolus, Daniel; Wang, Mei; Skidmore, Shelby J.; Sholl, Andrew B.; Brown, J. Quincy; Goergen, Craig J.

    2018-02-01

    Current methods for breast tumor margin detection are invasive, time consuming, and typically result in a reoperative rate of over 25%. This marks a clear clinical need to develop improved tools to intraoperatively differentiate negative versus positive tumor margins. Here, we utilize photoacoustic tomography (PAT), ultrasound (US), and inverted Selective Plane Illumination Microscopy (iSPIM) to assess breast tumor margins in eight human breast biopsies. Our PAT/US system consists of a tunable Nd:YAG laser (NT 300, EKSPLA) coupled with a 40MHz central frequency US probe (Vevo2100, FUJIFILM Visual Sonics). This system allows for the delivery of 10Hz, 5ns pulses with fluence of 40mJ/cm2 to the tissue with PAT and US axial resolutions of 125μm and 40μm, respectively. For this study, we used a linear stepper motor to acquire volumetric PAT/US images of the breast biopsies using 1100nm light to identify bloodrich "tumor" regions and 1210nm light to identify lipid-rich "healthy" regions. iSPIM (Applied Scientific Instrumentation) is an advanced microscopy technique with lateral resolution of 1.5μm and axial resolution of 7μm. We used 488nm laser excitation and acridine orange as a general comprehensive histology stain. Our results show that PAT/US can be used to identify lipid-rich regions, dense areas of arterioles and arteries, and other internal structures such as ducts. iSPIM images correlate well with histopathology slides and can verify nuclear features, cell type and density, stromal features, and microcalcifications. Together, this multimodality approach has the potential to improve tumor margin detection with a high degree of sensitivity and specificity.

  8. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  9. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    Science.gov (United States)

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  11. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium.

    Science.gov (United States)

    Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan

    2017-06-01

    Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep

  12. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  13. Development of polyclonal antibodies for the detection of ...

    African Journals Online (AJOL)

    2013-09-11

    month-old male New Zealand rabbits were immunized using .... Immunofluorescence analysis of anti-rHuEPO pAb in CHO cells transfected with pTARGET/EPO. ... erythropoietin gene doping: detection strategies in the genomic era.

  14. [Immunofluorescence assay with Crithidia luciliae for the detection of anti-DNA antibodies. Atypical images and their relationship with Chagas' disease and leishmaniasis].

    Science.gov (United States)

    Griemberg, Gloria; Ferrarotti, Nidia F; Svibel, Graciela; Ravelli, Maria R; Taranto, Nestor J; Malchiodi, Emilio L; Pizzimenti, Maria C

    2006-01-01

    Anti-native DNA antibodies can be detected by indirect immunofluorescence assay with Crithidia luciliae, displaying an annular image due to a kinetoplast containing double stranded DNA. Other structures such as membrane, flagellum and basal corpuscle can be stained as well, showing what is called atypical fluorescent images. As C. luciliae belongs to the Trypanosomatidae family, which include the human pathogens Trypanosoma cruzi and Leishmania spp., it was considered that these atypical images could be caused by cross-reactions. Serological studies for Chagas' disease were performed in 105 serum samples displaying atypical images. Sixty four percent of the samples from non endemic and 78.3% from endemic areas for Chagas' disease showed fluorescence in both, membrane and flagellum (joint image). Fifty samples from normal blood donors and 57 samples from patients with conective tissue diseases were tested with C. luciliae. None of them presented the joint image except for two patients with lupus who were also chagasic. In addition, 54 samples from chagasic patients were studied and all of them presented the joint image. We also studied 46 samples from patients with leishmaniasis from whom 28 were coinfected with T. cruzi. The joint image was observed in 88.0% of the samples with leishmaniasis and in 89.3% of the co-infected samples. The results suggest that C. luciliae could be used as an economical, and of low risk, alternative substrate for the serological diagnosis of Chagas' disease, even though it does not discriminate for Leishmania spp. infection. This study also suggests that whenever atypical images are observed in C. luciliae during the search for anti-DNA antibodies, it would be convenient to submit the patient to clinical and serological tests for the diagnosis of leishmaniosis and Chagas' disease.

  15. Invited Review Article: Pump-probe microscopy

    Science.gov (United States)

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  16. Invited Review Article: Pump-probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Martin C., E-mail: Martin.Fischer@duke.edu; Wilson, Jesse W.; Robles, Francisco E. [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Warren, Warren S. [Departments of Chemistry, Biomedical Engineering, Physics, and Radiology, Duke University, Durham, North Carolina 27708 (United States)

    2016-03-15

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  17. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy

    Science.gov (United States)

    Risco, Cristina; Sanmartín-Conesa, Eva; Tzeng, Wen-Pin; Frey, Teryl K.; Seybold, Volker; de Groot, Raoul J.

    2012-01-01

    Summary More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell’s interior are lagging behind. We describe a novel approach, metal-tagging TEM (METTEM) that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before. PMID:22579245

  18. Comparison between optical techniques and confocal microscopy for defect detection on thin wires

    International Nuclear Information System (INIS)

    Siegmann, Philip; Sanchez-Brea, Luis Miguel; Martinez-Anton, Juan Carlos; Bernabeu, Eusebio

    2004-01-01

    Conventional microscopy techniques, such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal microscopy (CM) are not suitable for on-line surface inspection of fine metallic wires. In the recent years, some optical techniques have been developed to be used for those tasks. However, they need a rigorous validation. In this work, we have used confocal microscopy to obtain the topography z(x,y) of wires with longitudinal defects, such as dielines. The topography has been used to predict the light scattered by the wire. These simulations have been compared with experimental results, showing a good agreement

  19. High-throughput label-free detection of aggregate platelets with optofluidic time-stretch microscopy (Conference Presentation)

    Science.gov (United States)

    Jiang, Yiyue; Lei, Cheng; Yasumoto, Atsushi; Ito, Takuro; Guo, Baoshan; Kobayashi, Hirofumi; Ozeki, Yasuyuki; Yatomi, Yutaka; Goda, Keisuke

    2017-02-01

    According to WHO, approximately 10 million new cases of thrombotic disorders are diagnosed worldwide every year. In the U.S. and Europe, their related diseases kill more people than those from AIDS, prostate cancer, breast cancer and motor vehicle accidents combined. Although thrombotic disorders, especially arterial ones, mainly result from enhanced platelet aggregability in the vascular system, visual detection of platelet aggregates in vivo is not employed in clinical settings. Here we present a high-throughput label-free platelet aggregate detection method, aiming at the diagnosis and monitoring of thrombotic disorders in clinical settings. With optofluidic time-stretch microscopy with a spatial resolution of 780 nm and an ultrahigh linear scanning rate of 75 MHz, it is capable of detecting aggregated platelets in lysed blood which flows through a hydrodynamic-focusing microfluidic device at a high throughput of 10,000 particles/s. With digital image processing and statistical analysis, we are able to distinguish them from single platelets and other blood cells via morphological features. The detection results are compared with results of fluorescence-based detection (which is slow and inaccurate, but established). Our results indicate that the method holds promise for real-time, low-cost, label-free, and minimally invasive detection of platelet aggregates, which is potentially applicable to detection of platelet aggregates in vivo and to the diagnosis and monitoring of thrombotic disorders in clinical settings. This technique, if introduced clinically, may provide important clinical information in addition to that obtained by conventional techniques for thrombotic disorder diagnosis, including ex vivo platelet aggregation tests.

  20. Rapid analysis and exploration of fluorescence microscopy images.

    Science.gov (United States)

    Pavie, Benjamin; Rajaram, Satwik; Ouyang, Austin; Altschuler, Jason M; Steininger, Robert J; Wu, Lani F; Altschuler, Steven J

    2014-03-19

    Despite rapid advances in high-throughput microscopy, quantitative image-based assays still pose significant challenges. While a variety of specialized image analysis tools are available, most traditional image-analysis-based workflows have steep learning curves (for fine tuning of analysis parameters) and result in long turnaround times between imaging and analysis. In particular, cell segmentation, the process of identifying individual cells in an image, is a major bottleneck in this regard. Here we present an alternate, cell-segmentation-free workflow based on PhenoRipper, an open-source software platform designed for the rapid analysis and exploration of microscopy images. The pipeline presented here is optimized for immunofluorescence microscopy images of cell cultures and requires minimal user intervention. Within half an hour, PhenoRipper can analyze data from a typical 96-well experiment and generate image profiles. Users can then visually explore their data, perform quality control on their experiment, ensure response to perturbations and check reproducibility of replicates. This facilitates a rapid feedback cycle between analysis and experiment, which is crucial during assay optimization. This protocol is useful not just as a first pass analysis for quality control, but also may be used as an end-to-end solution, especially for screening. The workflow described here scales to large data sets such as those generated by high-throughput screens, and has been shown to group experimental conditions by phenotype accurately over a wide range of biological systems. The PhenoBrowser interface provides an intuitive framework to explore the phenotypic space and relate image properties to biological annotations. Taken together, the protocol described here will lower the barriers to adopting quantitative analysis of image based screens.

  1. Fluorescent nanoscale detection of biotin-streptavidin interaction using near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Park, Hyun Kyu; Chung, Bong Hyun; Gokarna, Anisha; Hulme, John P; Park, Hyun Gyu

    2008-01-01

    We describe a nanoscale strategy for detecting biotin-streptavidin binding using near-field scanning optical microscopy (NSOM) that exploits the fluorescence properties of single polydiacetylene (PDA) liposomes. NSOM is more useful to observe nanomaterials having optical properties with the help of topological information. We synthesized amine-terminated 10,12-pentacosadiynoic acid (PCDA) monomer (PCDA-NH 2 ) and used this derivatized monomer to prepare PCDA liposomes. PCDA-NH 2 liposomes were immobilized on an aldehyde-functionalized glass surface followed by photopolymerization by using a 254 nm light source. To measure the biotin-streptavidin binding, we conjugated photoactivatable biotin to immobilized PCDA-NH 2 liposomes by UV irradiation (365 nm) and subsequently allowed them to interact with streptavidin. We analyzed the fluorescence using a fluorescence scanner and observed single liposomes using NSOM. The average height and NSOM signal observed in a single liposome after binding were ∼31.3 to 8.5 ± 0.5 nm and 0.37 to 0.16 ± 0.6 kHz, respectively. This approach, which has the advantage of not requiring a fluorescent label, could prove highly beneficial for single molecule detection technology

  2. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay.

    Science.gov (United States)

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M

    2011-10-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin.

  3. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  4. Fidelity imaging for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sayan, E-mail: ghos0087@umn.edu; Salapaka, Murti, E-mail: murtis@umn.edu [Nanodynamics Systems Laboratory, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  5. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    Science.gov (United States)

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  6. Nucleocytoplasmic shuttling: the ins and outs of quantitative imaging.

    Science.gov (United States)

    Molenaar, Chris; Weeks, Kate L

    2018-05-17

    Nucleocytoplasmic protein shuttling is integral to the transmission of signals between the nucleus and the cytoplasm. The nuclear/cytoplasmic distribution of proteins of interest can be determined via fluorescence microscopy, following labelling of the target protein with fluorophore-conjugated antibodies (immunofluorescence) or by tagging the target protein with an autofluorescent protein, such as green fluorescent protein (GFP). The latter enables live cell imaging, a powerful approach that precludes many of the artefacts associated with indirect immunofluorescence in fixed cells. In this review, we discuss important considerations for the design and implementation of fluorescence microscopy experiments to quantify the nuclear/cytoplasmic distribution of a protein of interest. We summarise the pros and cons of detecting endogenous proteins in fixed cells by immunofluorescence and ectopically-expressed fluorescent fusion proteins in living cells. We discuss the suitability of widefield fluorescence microscopy and of 2D, 3D and 4D imaging by confocal microscopy for different applications, and describe two different methods for quantifying the nuclear/cytoplasmic distribution of a protein of interest from the fluorescent signal. Finally, we discuss the importance of eliminating sources of bias and subjectivity during image acquisition and post-imaging analyses. This is critical for the accurate and reliable quantification of nucleocytoplasmic shuttling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Surface-biofunctionalized multicore/shell CdTe@SiO2 composite particles for immunofluorescence assay

    Science.gov (United States)

    Jing, Lihong; Li, Yilin; Ding, Ke; Qiao, Ruirui; Rogach, Andrey L.; Gao, Mingyuan

    2011-12-01

    Strongly fluorescent multicore/shell structured CdTe@SiO2 composite particles of ~ 50 nm were synthesized via the reverse microemulsion method by using CdTe quantum dots co-stabilized by thioglycolic acid and thioglycerol. The optical stability of the CdTe@SiO2 composite particles in a wide pH range, under prolonged UV irradiation in pure water, or in different types of physiological buffers was systematically investigated. Towards immunofluorescence assay, both poly(ethylene glycol) (PEG) and carboxyl residues were simultaneously grafted on the surface of the silanol-terminated CdTe@SiO2 composite particles upon further reactions with silane reagents bearing a PEG segment and carboxyl group, respectively, in order to suppress the nonspecific interactions of the silica particles with proteins and meanwhile introduce reactive moieties to the fluorescent particles. Agarose gel electrophoresis, dynamic light scattering and conventional optical spectroscopy were combined to investigate the effectiveness of the surface modifications. Via the surface carboxyl residue, various antibodies were covalently conjugated to the fluorescent particles and the resultant fluorescent probes were used in detecting cancer cells through both direct fluorescent antibody and indirect fluorescent antibody assays, respectively.

  8. Validate or falsify: Lessons learned from a microscopy method claimed to be useful for detecting Borrelia and Babesia organisms in human blood.

    Science.gov (United States)

    Aase, Audun; Hajdusek, Ondrej; Øines, Øivind; Quarsten, Hanne; Wilhelmsson, Peter; Herstad, Tove K; Kjelland, Vivian; Sima, Radek; Jalovecka, Marie; Lindgren, Per-Eric; Aaberge, Ingeborg S

    2016-01-01

    A modified microscopy protocol (the LM-method) was used to demonstrate what was interpreted as Borrelia spirochetes and later also Babesia sp., in peripheral blood from patients. The method gained much publicity, but was not validated prior to publication, which became the purpose of this study using appropriate scientific methodology, including a control group. Blood from 21 patients previously interpreted as positive for Borrelia and/or Babesia infection by the LM-method and 41 healthy controls without known history of tick bite were collected, blinded and analysed for these pathogens by microscopy in two laboratories by the LM-method and conventional method, respectively, by PCR methods in five laboratories and by serology in one laboratory. Microscopy by the LM-method identified structures claimed to be Borrelia- and/or Babesia in 66% of the blood samples of the patient group and in 85% in the healthy control group. Microscopy by the conventional method for Babesia only did not identify Babesia in any samples. PCR analysis detected Borrelia DNA in one sample of the patient group and in eight samples of the control group; whereas Babesia DNA was not detected in any of the blood samples using molecular methods. The structures interpreted as Borrelia and Babesia by the LM-method could not be verified by PCR. The method was, thus, falsified. This study underlines the importance of doing proper test validation before new or modified assays are introduced.

  9. Comparison between immunomagnetic separation, coupled with immunofluorescence, and the techniques of Faust et al. and of Lutz for the diagnosis of Giardia lamblia cysts in human feces

    Directory of Open Access Journals (Sweden)

    Souza Doris Sobral Marques

    2003-01-01

    Full Text Available In the present study, the performance of Immunomagnetic Separation technique, coupled with Immunofluorescence (IMS-IFA, was compared with the FAUST et al. and Lutz parasitological techniques for the detection of Giardia lamblia cysts in human feces. One hundred and twenty-seven samples were evaluated by the three techniques at the same time showing a rate of cyst detection of 27.5% by IMS-IFA and 15.7% by both Faust et al. and Lutz techniques. Data analysis showed a higher sensitivity of IMS-IFA for the detection of G. lamblia cysts in comparison with the techniques of FAUST et al. and Lutz. The use of this methodology as a routine procedure enables the processing of many samples simultaneously, in order to increase recovery rate of G. lamblia cysts and reduce the time of sample storage.

  10. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Science.gov (United States)

    Corte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.

    2016-05-01

    Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ˜1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  11. Single spin stochastic optical reconstruction microscopy

    OpenAIRE

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single quantum emitters by combined optical microscopy and spin resonance techniques. To this end we utilize nitrogen-vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers we are able to simultaneously perform sub diffraction-limit imaging and optically detected spin resonance (ODMR)...

  12. Optical detection of ultrasound using an apertureless near-field scanning optical microscopy system

    Science.gov (United States)

    Ahn, Phillip; Zhang, Zhen; Sun, Cheng; Balogun, Oluwaseyi

    2013-01-01

    Laser ultrasonics techniques are power approaches for non-contact generation and detection of high frequency ultrasound on a local scale. In these techniques, optical diffraction limits the spatial information that can be accessed from a measurement. In order to improve the lateral spatial resolution, we incorporate an apertureless near-field scanning optical microscope (aNSOM) into laser ultrasonics setup for local detection of laser generated ultrasound. The aNSOM technique relies on the measurement of a weak backscattered near-field light intensity resulting from the oblique illumination of a nanoscale probe-tip positioned close to a sample surface. We enhance the optical near-field intensity by coupling light to surface plasmon polaritons (SPPs) on the shaft of an atomic force microscopy (AFM) cantilever. The SPPs propagate down the AFM shaft, localize at the tip apex, and are backscattered to the far-field when the separation distance between the probe tip and the sample surface is comparable to the probe-tip radius. The backscattered near-field intensity is dynamically modulated when an ultrasonic wave arrives at the sample surface leading to a transient change in the tip-sample separation distance. We present experimental results detailing measurement of broadband and narrowband laser generated ultrasound in solids with frequencies reaching up to 180 MHz range.

  13. A SIMULTANEOUS MULTI-PROBE DETECTION LABEL-FREE OPTICAL-RESOLUTION PHOTOACOUSTIC MICROSCOPY TECHNIQUE BASED ON MICROCAVITY TRANSDUCER

    Directory of Open Access Journals (Sweden)

    YONGBO WU

    2013-07-01

    Full Text Available We demonstrate the feasibility of simultaneous multi-probe detection for an optical-resolution photoacoustic microscopy (OR-PAM system. OR-PAM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth. OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules. However, given the inadequate absorption of some biomolecules, detection sensitivity at the same incident intensity requires improvement. In this study, a modulated continuous wave with power density less than 3 mW/cm2 (1/4 of the ANSI safety limit excited the weak photoacoustic (PA signals of biological cells. A microcavity transducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid; air pressure variation is inversely proportional to cavity volume at the same temperature increase. Considering that a PA wave expands in various directions, detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio. Therefore, we employ four detectors to acquire tiny PA signals simultaneously. Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.

  14. Combination of atomic force microscopy and mass spectrometry for the detection of target protein in the serum samples of children with autism spectrum disorders

    Science.gov (United States)

    Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.

    2017-10-01

    Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.

  15. Comparison of Assays for Sensitive and Reproducible Detection of Cell Culture-Infectious Cryptosporidium parvum and Cryptosporidium hominis in Drinking Water

    Science.gov (United States)

    Di Giovanni, George D.; Rochelle, Paul A.

    2012-01-01

    This study compared the three most commonly used assays for detecting Cryptosporidium sp. infections in cell culture: immunofluorescent antibody and microscopy assay (IFA), PCR targeting Cryptosporidium sp.-specific DNA, and reverse transcriptase PCR (RT-PCR) targeting Cryptosporidium sp.-specific mRNA. Monolayers of HCT-8 cells, grown in 8-well chamber slides or 96-well plates, were inoculated with a variety of viable and inactivated oocysts to assess assay performance. All assays detected infection with low doses of flow cytometry-enumerated Cryptosporidium parvum oocysts, including infection with one oocyst and three oocysts. All methods also detected infection with Cryptosporidium hominis. The RT-PCR assay, IFA, and PCR assay detected infection in 23%, 25%, and 51% of monolayers inoculated with three C. parvum oocysts and 10%, 9%, and 16% of monolayers inoculated with one oocyst, respectively. The PCR assay was the most sensitive, but it had the highest frequency of false positives with mock-infected cells and inactivated oocysts. IFA was the only infection detection assay that did not produce false positives with mock-infected monolayers. IFA was also the only assay that detected infections in all experiments with spiked oocysts recovered from Envirochek capsules following filtration of 1,000 liters of treated water. Consequently, cell culture with IFA detection is the most appropriate method for routine and sensitive detection of infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. PMID:22038611

  16. Immunophenotype of leukemic blasts with small peroxidase-positive granules detected by electron microscopy.

    Science.gov (United States)

    Vainchenker, W; Villeval, J L; Tabilio, A; Matamis, H; Karianakis, G; Guichard, J; Henri, A; Vernant, J P; Rochant, H; Breton-Gorius, J

    1988-05-01

    Forty-three cases of undifferentiated leukemias by light microscopy examination were diagnosed as acute myeloblastic leukemias by ultrastructural revelation of peroxidase and were subsequently studied by immunological markers. In 41 of these cases, blasts were labeled by at least one of the antimyeloid MoAbs (My 7, My 9, and 80H5). An antimyeloperoxidase polyclonal antibody was used in 23 cases and was clearly positive in 11 of them, while cytochemistry by light microscopy was negative. These myeloblasts were frequently mixed with a minority of blasts from other lineages especially promegakaryoblasts. It is noteworthy that in 6 cases myeloid and lymphoid markers (E rosette receptor, common acute lymphoblastic leukemia antigen (cALLA), CD 9, CD 19 antigens (anti-B4 MoAb] were detected on a fraction of blast cells, suggesting a bilineage leukemia. However, in double labeling experiments, blasts with myeloperoxidase coexpressed lymphoid and myeloid markers including cALLA and CD 19 antigen. In one case, blasts had a typical non-B, non-T acute lymphoblastic leukemia phenotype (HLA-DR, CD 9, CD 19, cALLA positive) without staining by any of the antimyeloid MoAbs. However, 70% of the blasts were labeled by the antimyeloperoxidase antibody and expressed peroxidase-positive granules at ultrastructural level. In conclusion, most of the AML undiagnosed by optical cytochemistry are identified by antimyeloid antibodies. Some of these cases are also stained by some antilymphoid MoAbs. Use of antibodies against myeloperoxidase may improve the diagnosis of difficult cases of acute myeloblastic leukemia.

  17. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  18. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan

    2017-01-01

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  19. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    Science.gov (United States)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  20. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Directory of Open Access Journals (Sweden)

    H. Corte-León

    2016-05-01

    Full Text Available Hybrid ferromagnetic(Py/non-magnetic metal(Au junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM with a magnetic bead (MB attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  1. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  2. Detection of malaria parasites by microscopy and rapid diagnostic ...

    African Journals Online (AJOL)

    The effectiveness of Rapid Diagnostic Test Kit (RDT) was compared with microscopy for the evaluation of malaria infection in children and pregnant women attending two selected health facilities in Lagos State, south-western, Nigeria. A total of 482 patients comprising 252 pregnant women (mean age: 26.86±4.46 years) ...

  3. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry.

    Science.gov (United States)

    Mascuch, Samantha J; Moree, Wilna J; Hsu, Cheng-Chih; Turner, Gregory G; Cheng, Tina L; Blehert, David S; Kilpatrick, A Marm; Frick, Winifred F; Meehan, Michael J; Dorrestein, Pieter C; Gerwick, Lena

    2015-01-01

    White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.

  4. Correlation between dipstick urinalysis and urine sediment microscopy in detecting haematuria among children with sickle cell anaemia in steady state in Ilorin, Nigeria.

    Science.gov (United States)

    Anigilaje, Emmanuel Ademola; Adedoyin, Olanrewaju Timothy

    2013-01-01

    Haematuria is one of the clinical manifestations of sickle cell nephropathy. Although dipstick urinalysis detects haemoglobin and by extension haematuria; it does not confirm haematuria. Urine sediment microscopy confirms haematuria and constitutes a non-invasive "renal biopsy". The need to correlate dipstick urinalysis and urine sediment microscopy findings becomes important because of the cheapness, quickness and simplicity of the former procedure. Dipstick urinalysis and urine sediment microscopy were carried (both on first contact and a month after) among consecutive steady state sickle cell anaemia children attending sickle cell clinic at the University of Ilorin Teaching Hospital between October 2004 and July 2005. A total of 75 sickle cell anemia children aged between 1-17 years met the inclusion criteria. Haematuria was found in 12 children (16.0%) and persistent haematuria in 10 children 13.3%. Age and gender did not have significant relationship with haematuria both at first contact (p values 0.087 and 0.654 respectively) and at follow-up (p values 0.075 and 0.630 respectively). Eumorphic haematuria was confirmed in all the children with persistent haematuria with Pearson correlation +0.623 and significant p value of 0.000. The study has revealed a direct significant correlation for haematuria detected on dipstick urinalysis and at urine sediment microscopy. It may therefore be inferred that dipstick urinalysis is an easy and readily available tool for the screening of haematuria among children with sickle cell anaemia and should therefore be done routinely at the sickle cell clinics.

  5. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  6. Machine learning approach for single molecule localisation microscopy.

    Science.gov (United States)

    Colabrese, Silvia; Castello, Marco; Vicidomini, Giuseppe; Del Bue, Alessio

    2018-04-01

    Single molecule localisation (SML) microscopy is a fundamental tool for biological discoveries; it provides sub-diffraction spatial resolution images by detecting and localizing "all" the fluorescent molecules labeling the structure of interest. For this reason, the effective resolution of SML microscopy strictly depends on the algorithm used to detect and localize the single molecules from the series of microscopy frames. To adapt to the different imaging conditions that can occur in a SML experiment, all current localisation algorithms request, from the microscopy users, the choice of different parameters. This choice is not always easy and their wrong selection can lead to poor performance. Here we overcome this weakness with the use of machine learning. We propose a parameter-free pipeline for SML learning based on support vector machine (SVM). This strategy requires a short supervised training that consists in selecting by the user few fluorescent molecules (∼ 10-20) from the frames under analysis. The algorithm has been extensively tested on both synthetic and real acquisitions. Results are qualitatively and quantitatively consistent with the state of the art in SML microscopy and demonstrate that the introduction of machine learning can lead to a new class of algorithms competitive and conceived from the user point of view.

  7. A quantum dot-immunofluorescent labeling method to investigate the interactions between a crinivirus and its whitefly vector

    Directory of Open Access Journals (Sweden)

    James C. K. Ng

    2013-04-01

    Full Text Available Successful vector-mediated plant virus transmission entails an intricate but poorly understood interplay of interactions among virus, vector, and plant. The complexity of interactions requires continually improving/evaluating tools and methods for investigating the determinants that are central to mediating virus transmission. A recent study using an organic fluorophore (Alexa Fluor-based immunofluorescent localization assay demonstrated that specific retention of Lettuce infectious yellows virus (LIYV virions in the anterior foregut or cibarium of its whitefly vector is required for virus transmission. Continuous exposure of organic fluorophore to high excitation light intensity can result in diminished or loss of signals, potentially confounding the identification of important interactions associated with virus transmission. This limitation can be circumvented by incorporation of photostable fluorescent nanocrystals, such as quantum dots (QDs, into the assay. We have developed and evaluated a QD-immunofluorescent labeling method for the in vitro and in situ localization of LIYV virions based on the recognition specificity of streptavidin-conjugated QD605 (S-QD605 for biotin-conjugated anti-LIYV IgG (B-αIgG. IgG biotinylation was verified in a blot overlay assay by probing SDS-PAGE separated B-αIgG with S-QD605. Immunoblot analyses of LIYV using B-αIgG and S-QD605 resulted in a virus detection limit comparable to that of DAS-ELISA. In membrane feeding experiments, QD signals were observed in the anterior foregut or cibarium of virion-fed whitefly vectors but absent in those of virion-fed whitefly non-vectors. Specific virion retention in whitefly vectors corresponded with successful virus transmission. A fluorescence photobleaching assay of viruliferous whiteflies fed B-αIgG and S-QD605 vs. those fed anti-LIYV IgG and Alexa Fluor 488-conjugated IgG revealed that QD signal was stable and deteriorated ∼7 to 8 fold slower than that of Alexa

  8. Complexes of DNA with fluorescent dyes are effective reagents for detection of autoimmune antibodies

    DEFF Research Database (Denmark)

    Domljanovic, Ivana; Carstens, Annika; Okholm, Anders

    2017-01-01

    as targets for these antibodies. This is done in a simple, rapid and specific immunofluorescence assay. Specifically, employing 3D nanostructures (DNA origami), we present a new approach in the detection and study of human antibodies to DNA. We demonstrate the detection of anti-DNA antibodies...

  9. Confocal Cornea Microscopy Detects Involvement of Corneal Nerve Fibers in a Patient with Light-Chain Amyloid Neuropathy Caused by Multiple Myeloma: A Case Report

    Directory of Open Access Journals (Sweden)

    Dietrich Sturm

    2016-06-01

    Full Text Available Changes in the subbasal corneal plexus detected by confocal cornea microscopy (CCM have been described for various types of neuropathy. An involvement of these nerves within light-chain (AL amyloid neuropathy (a rare cause of polyneuropathy has never been shown. Here, we report on a case of a patient suffering from neuropathy caused by AL amyloidosis and underlying multiple myeloma. Small-fiber damage was detected by CCM.

  10. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients

    Institute of Scientific and Technical Information of China (English)

    Miao Li; Weiheng Su; Jie Wang; Francesco Pisani; Antonio Frigeri; Tonghui Ma

    2013-01-01

    In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica.

  11. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients.

    Science.gov (United States)

    Li, Miao; Su, Weiheng; Wang, Jie; Pisani, Francesco; Frigeri, Antonio; Ma, Tonghui

    2013-03-15

    In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica.

  12. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients★

    Science.gov (United States)

    Li, Miao; Su, Weiheng; Wang, Jie; Pisani, Francesco; Frigeri, Antonio; Ma, Tonghui

    2013-01-01

    In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica. PMID:25206717

  13. Automated seeding-based nuclei segmentation in nonlinear optical microscopy.

    Science.gov (United States)

    Medyukhina, Anna; Meyer, Tobias; Heuke, Sandro; Vogler, Nadine; Dietzek, Benjamin; Popp, Jürgen

    2013-10-01

    Nonlinear optical (NLO) microscopy based, e.g., on coherent anti-Stokes Raman scattering (CARS) or two-photon-excited fluorescence (TPEF) is a fast label-free imaging technique, with a great potential for biomedical applications. However, NLO microscopy as a diagnostic tool is still in its infancy; there is a lack of robust and durable nuclei segmentation methods capable of accurate image processing in cases of variable image contrast, nuclear density, and type of investigated tissue. Nonetheless, such algorithms specifically adapted to NLO microscopy present one prerequisite for the technology to be routinely used, e.g., in pathology or intraoperatively for surgical guidance. In this paper, we compare the applicability of different seeding and boundary detection methods to NLO microscopic images in order to develop an optimal seeding-based approach capable of accurate segmentation of both TPEF and CARS images. Among different methods, the Laplacian of Gaussian filter showed the best accuracy for the seeding of the image, while a modified seeded watershed segmentation was the most accurate in the task of boundary detection. The resulting combination of these methods followed by the verification of the detected nuclei performs high average sensitivity and specificity when applied to various types of NLO microscopy images.

  14. Taeniasis caused by Taenia saginata in Gianyar town and Taenia solium in Karangasem villages of Bali, Indonesia, 2011-2016: How to detect tapeworm carriers, anamnesis or microscopy?

    Science.gov (United States)

    Swastika, Kadek; Wandra, Toni; Dharmawan, Nyoman Sadra; Sudarmaja, I Made; Saragih, John Master; Diarthini, Luh Putu Eka; Ariwati, Luh; Damayanti, Putu Ayu Asri; Laksemi, Dewa Ayu Agus Sri; Kapti, Nengah; Sutisna, Putu; Yanagida, Tetsuya; Ito, Akira

    2017-10-01

    From January 2011 until September 2016, screening of taeniasis carriers was carried out in a town in Gianyar District (Taenia saginata) and in villages which consisted of several Banjars (the smallest community units) on the eastern slope of Mt. Agung, Karangasem District (Taenia solium) in Bali, Indonesia. Fecal samples from all community members who chose to participate were examined microscopically for detection of taeniid eggs each person completedwith a questionnaire to determine if they had seen whitish, noodle-like proglottids (anamnesis) in their feces. Members with egg positive feces, and those with anamnesis, were treated with niclosamide (Yomesan ® , Bayer). A total of 39T. saginata tapeworm carriers were confirmed in Gianyar after deworming based on anamnesis (100%, 39/39). Only three of them (3/39, 7.7%) and 3/173 participants (1.7%) were identified by fecal microscopy. In contrast, 20T. solium carriers including one migrated to Gianyar were confirmed from 12 patients with eggs in their feces and from another 8 persons of 12 persons suspected to be infected due anamnesis only (8/12,66.7%) in Karangasem. The majority of carriers (12/20, 60.0%) identified by microscopy included 4 (33.3%) and 8 (66.7%) carriers confirmed microscopically with and without anamnesis, respectively. The prevalence rate was 12/1090 (1.10%) of participants. The results indicate that anamnesis is reliable for detection of T. saginata carriers, whereas it is not so reliable for detection of T. solium taeniasis (8/12, 66.7%) and that microscopy is more informative than anamnesis for T. solium. Eggs were detected more frequently in T. solium carriers (4/12, 33.3%) than in patients infected with T. saginata (3/39, 7.7%). T. solium carriers have so far been confirmed from nine of 13 Banjars examined in Karangasem. This study reveals that anamnesis is highly useful for screening of T. saginata carriers, whereas microscopy is a more valuable tool for detection of T. solium carriers

  15. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  16. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  17. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry

    Science.gov (United States)

    Mascuch, Samantha J.; Moree, Wilna J.; Cheng-Chih Hsu, Cheng-Chih; Turner, Gregory G.; Cheng, Tina L.; Blehert, David S.; Kilpatrick, A. Marm; Frick, Winifred F.; Meehan, Michael J.; Dorrestein, Pieter C.; Gerwick, Lena

    2015-01-01

    White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.

  18. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Samantha J Mascuch

    Full Text Available White-nose syndrome (WNS caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.

  19. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    Directory of Open Access Journals (Sweden)

    Nino Guy Cassuto

    2016-01-01

    Full Text Available Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p<10-6, OR = 2.4; and p<0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.

  20. Atomic-scale nanoindentation: detection and identification of single glide events in three dimensions by force microscopy

    International Nuclear Information System (INIS)

    Egberts, P; Bennewitz, R

    2011-01-01

    Indentation experiments on the nanometre scale have been performed by means of atomic force microscopy in ultra-high vacuum on KBr(100) surfaces. The surfaces yield in the form of discrete surface displacements with a typical length scale of 1 A. These surface displacements are detected in both normal and lateral directions. Measurement of the lateral tip displacement requires a load-dependent calibration due to the load dependence of the effective lateral compliance. Correlation of the lateral and normal displacements for each glide event allow identification of the activated slip system. The results are discussed in terms of the resolved shear stress in indentation experiments and of typical results in atomistic simulations of nanometre-scale indentation.

  1. Antibodies to UV irradiated DNA: the monitoring of DNA damage by ELISA and indirect immunofluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wani, A A; Gibson-D' Ambrosio, R E; D' Ambrosio, S M [Ohio State Univ., Columbus (USA). Dept. of Radiology

    1984-10-01

    The enzyme-linked immunosorbant assay (ELISA) was modified to (1) characterize antibodies raised in rabbits against UV-irradiated single-stranded DNA (UVssDNA) complexed with methylated BSA and (2) directly detect pyrimidine dimers in irradiated DNA. The antisera specifically bound to UVssDNA, UVpoly(dT) and to a limited extent to UVdsDNA and UVpoly(dC). Fifty per cent of the maximum antibody binding was observed at a 1-5000 dilution against UVssDNA. Binding to ssDNA and poly(dT) was observed only at much higher concentrations of antibody, whereas no binding to double stranded DNA (dsDNA) was observed. The extent of binding of the antibody was dependent on the UV dose to DNA and the concentration of antigen immobilized on the plate. The ability of various irradiated molecules, DNA, homopolymers and linkers to act as inhibitors of antibody binding establishes that the antigenic determinants are mainly thymine homodimers with lower affinity for cytosine dimers. Potential usefulness of the antibodies to directly quantitate pyrimidine dimers in cells exposed to UV radiation was determined by indirect immunofluorescence. Flow cytometric analysis of immunostained human lymphocytes irradiated with 254 nm radiation indicated that greater than 50% of the population had significantly higher fluorescent intensity than unirradiated cells.

  2. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    Science.gov (United States)

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  3. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  4. Immunofluorescence-based screening identifies germ cell associated microRNA 302 as an antagonist to p63 expression

    DEFF Research Database (Denmark)

    Scheel, Andreas Hans Joachim; Beyer, Ulrike; Agami, Reuven

    2009-01-01

    The tumor suppressor homologue p63 is required for proper skin and limb development, but specific isoforms of it also act as a "guardian of the germline." To gain insight into the regulation of p63 expression, we performed immunofluorescence-based screening assays. Using a large collection of micro...

  5. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  6. Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Torsten Bölke

    2014-11-01

    Full Text Available Intravital 2-photon microscopy of mucosal membranes across which nanoparticles enter the organism typically generates noisy images. Because the noise results from the random statistics of only very few photons detected per pixel, it cannot be avoided by technical means. Fluorescent nanoparticles contained in the tissue may be represented by a few bright pixels which closely resemble the noise structure. We here present a data-adaptive method for digital denoising of datasets obtained by 2-photon microscopy. The algorithm exploits both local and non-local redundancy of the underlying ground-truth signal to reduce noise. Our approach automatically adapts the strength of noise suppression in a data-adaptive way by using a Bayesian network. The results show that the specific adaption to both signal and noise characteristics improves the preservation of fine structures such as nanoparticles while less artefacts were produced as compared to reference algorithms. Our method is applicable to other imaging modalities as well, provided the specific noise characteristics are known and taken into account.

  7. Observation of self-assembled fluorescent beads by scanning near-field optical microscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Jo, W.; Kim, Min-Gon; Kyu Park, Hyun; Hyun Chung, Bong

    2006-01-01

    Optical response and topography of fluorescent latex beads both on flat self-assembled monolayer and on a micron-patterned surface with poly(dimethylsiloxane) are studied. Scanning near-field optical microscopy and atomic force microscopy were utilized together for detecting fluorescence and imaging topography of the patterned latex beads, respectively. As a result, the micro-patterned latex beads where a specific chemical binding occurred show a strong signal, whereas no signals are observed in the case of nonspecific binding. With fluorescein isothiocyanate (FITC), it is convenient to measure fluorescence signal from the patterned beads allowing us to monitor the small balls of fluorescent latex

  8. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    OpenAIRE

    Malika M.A.; Majchrzak K.; Braszczyńska-Malik K.N.

    2013-01-01

    Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

  9. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    Science.gov (United States)

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  10. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Rufeng Li

    2017-11-01

    Full Text Available This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1 Gaussian filtering to remove the noise of overall fluorescent targets, (2 a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3 an red maximizing inter-class variance thresholding method (OTSU to segment the enhanced image for getting the binary map of the overall micro-droplets, (4 a circular Hough transform (CHT method to detect overall micro-droplets and (5 an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  11. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  12. Rapid Detection and Enumeration of Giardia lamblia Cysts in Water Samples by Immunomagnetic Separation and Flow Cytometric Analysis ▿ †

    Science.gov (United States)

    Keserue, Hans-Anton; Füchslin, Hans Peter; Egli, Thomas

    2011-01-01

    Giardia lamblia is an important waterborne pathogen and is among the most common intestinal parasites of humans worldwide. Its fecal-oral transmission leads to the presence of cysts of this pathogen in the environment, and so far, quantitative rapid screening methods are not available for various matrices, such as surface waters, wastewater, or food. Thus, it is necessary to establish methods that enable reliable rapid detection of a single cyst in 10 to 100 liters of drinking water. Conventional detection relies on cyst concentration, isolation, and confirmation by immunofluorescence microscopy (IFM), resulting in low recoveries and high detection limits. Many different immunomagnetic separation (IMS) procedures have been developed for separation and cyst purification, so far with variable but high losses of cysts. A method was developed that requires less than 100 min and consists of filtration, resuspension, IMS, and flow cytometric (FCM) detection. MACS MicroBeads were used for IMS, and a reliable flow cytometric detection approach was established employing 3 different parameters for discrimination from background signals, i.e., green and red fluorescence (resulting from the distinct pattern emitted by the fluorescein dye) and sideward scatter for size discrimination. With spiked samples, recoveries exceeding 90% were obtained, and false-positive results were never encountered for negative samples. Additionally, the method was applicable to naturally occurring cysts in wastewater and has the potential to be automated. PMID:21685159

  13. Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy.

    Directory of Open Access Journals (Sweden)

    Masahito Asada

    Full Text Available BACKGROUND: Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed "gliding motility". However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs, and gliding motility has so far not been observed in the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. CONCLUSIONS/SIGNIFICANCE: This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding.

  14. Dual-color immunofluorescent labeling with quantum dots of the diabetes-associated proteins aldose reductase and Toll-like receptor 4 in the kidneys of diabetic rats

    Directory of Open Access Journals (Sweden)

    Liu XM

    2015-05-01

    sensitivity and specificity for the detection of biomarkers in cells and tissues, but also is a valuable supplement of immunohistochemistry. The QD-based multiplexed imaging technology provides a new insight into the mechanistic study of the correlation among biological factors as well as having potential applications in the diagnosis and treatment of diseases. Keywords: diabetic nephropathy, TLR4, immunofluorescence, immunohistochemistry

  15. High-resolution magnetic resonance imaging of rotator cuff tears using a microscopy coil. Noninvasive detection without intraarticular contrast material

    International Nuclear Information System (INIS)

    Hitachi, Shin; Takase, Kei; Higano, Shuichi; Takahashi, Shoki; Tanaka, Minoru; Tojo, Yuichi; Tabata, Shiro; Majima, Kazuhiro

    2011-01-01

    The aim of this study was to evaluate the feasibility of high-resolution magnetic resonance imaging (MRI) using a microscopy coil for the diagnosis of rotator cuff tears by comparing the method to conventional MRI and MRI arthrography. A total of 68 shoulders were prospectively studied using a 1.5-T MRI unit. Conventional MRI scans were obtained with a surface coil and high-resolution MRI scans with a microscopy coil. MRI arthrography was performed in 28 shoulders using a surface coil. MRI evaluation of tears of rotator cuff tendons was compared with arthroscopic findings and surgical results. The surgery revealed 40 full-thickness tears, 13 partial-thickness tears, and 15 intact cuffs. In all, 35 (88%) full-thickness tears were correctly diagnosed on conventional MRI and 40 (100%) on high-resolution MRI. MR arthrography delineated 11 of 12 (92%) full-thickness tears. Altogether, 5 (38%) of the partial-thickness tears were detected on conventional MRI, and 12 (92%) were clearly demonstrated on high-resolution MRI. MRI arthrography depicted three (60%) of five partial-thickness tears. High-resolution MRI showed higher sensitivity than conventional MRI (P<0.05) and had values equivalent to those of MRI arthrography for diagnosing partial-thickness tears. High-resolution MRI with a microscopy coil is a feasible, noninvasive technique for diagnosing rotator cuff tears. (author)

  16. Detection of Chlamydia in postmortal formalin-fixed tissue

    DEFF Research Database (Denmark)

    Lundemose, AG; Lundemose, JB; Birkelund, Svend

    1989-01-01

    A procedure to detect Chlamydia in postmortal formalin-fixed tissue is described. Monoclonal antibodies against a genus specific chlamydia epitope were used in immunofluorescence to detect chlamydia inclusions in formalin-fixed tissue sections. Lung sections from chlamydia-infected mice were....... Background and non-specific fluorescence were reduced by treating the tissue sections with trypsin, rabbit serum and Evans blue counterstain. Besides giving an exact diagnosis at autopsy, the method provides the possibility of determining the occurrence of chlamydia infections in various tissues, based...

  17. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.

    Science.gov (United States)

    Barizuddin, Syed; Balakrishnan, Baskar; Stringer, R Cody; Dweik, Majed

    2015-08-01

    A method combining immunomagnetic separation and fluorescent sensing was developed to detect Escherichia coli (E. coli) O104:H4. The antibody specific to E. coli O104:H4 was immobilized on protein A-coated magnetic beads. This protein-A-anti E. coli O104:H4 complex was used to bind Fluorescein IsoThioCyanate (FITC) labeled E. coli O104:H4 antigen (whole cell) on it. The goal was to achieve a fluorescently detectable protein-A-anti E. coli O104:H4-E. coli O104:H4 complex on the magnetic beads. Fluorescent microscopy was used to image the magnetic beads. The resulting fluorescence on the beads was due to the FITC labeled antigen binding on the protein-A-anti E. coli O104:H4 immobilized magnetic beads. This visually proves the antigen-antibody binding. The fluorescent imaging results were obtained in 2 h if the minimum available bacteria in the sample were at least 10(5) CFU/ml. If no fluorescence was observed on the magnetic beads during fluorescent imaging, it indicates the bacterial concentration in the sample to be too low for it to have bound to the magnetic beads and hence no detection was possible. To detect bacterial concentration less than 10(5) CFU/ml in the sample, an additional step was required for detection. The magnetic bead complex was added to the LST-MUG (lauryl sulfate tryptose-4-methylumbelliferyl-β-D-glucuronide), a signaling reporter. The E. coli O104:H4 grows in LST-MUG and releases β-glucuronidase enzyme. This enzyme cleaves the MUG substrate that produces 4-methylumbelliferone, a highly fluorescent species. This fluorescence was detected using a spectrofluorometer. The emission peak in the fluorescent spectrum was found to be at 450 nm. The lower and upper detection range for this LST-MUG assay was found to be 2.05×10(5)-4.09×10(8) CFU/ml. The results for the LST-MUG assay for concentrations below 10(5) CFU/ml were ascertained in 8h. The advantages of this technique include the specific detection of bacteria without an enrichment step and

  18. Correlation of antinuclear antibody immunofluorescence patterns with immune profile using line immunoassay in the Indian scenario

    Directory of Open Access Journals (Sweden)

    Sebastian Wendy

    2010-07-01

    Full Text Available Background: Immunity status, individual response to disease and types of antibodies produced are well known to vary from person to person, place to place and probably from population to population. A broad spectrum of specific auto antibodies that have so far been associated with specific rheumatic diseases, as noted in Western literature, has been well taken as a reference standard all over the world. There is neither research work nor any data correlating the auto antibodies and their antinuclear antibody (ANA patterns with the immunoprofile in the Indian population to date. Aims: To understand a definite association between ANA patterns and specific antibodies in the serum in the Indian study population and to document similarities / differences with the West. Settings and Design: This prospective and retrospective double blind study was undertaken on the South Indian population referred for ANA testing by Indirect Immunofluorescence method and by immunoline methods. Materials and Methods: Serum samples of patients from a random South Indian population who sought medical help for rheumatic disease were subjected for ANA testing by indirect immunofluorescence (IIF method and line immunoassay during the study period of 27 months. Serum samples were processed in dilution of 1:100 using HEp - 2010 / liver biochip (Monkey (EUROIMMUN AG. The serum samples which were further processed for line immunoassay were treated in 1:100 dilution on nylon strips coated with recombinant and purified antigens as discrete lines with plastic backing (EUROIMMUN AG coated with antigens nRNP / Sm, Sm, SSA, Ro-52, SSB, Scl-70, PM-Scl, PCNA, Jo-1, CENP-B, dsDNA, nucleosomes, histones, ribosomal protein-P, anti-mitochondrial antibodies (AMA-M2 along with a control band. The analysis was done by comparing the intensity of the reaction with positive control line by image analysis. Results: The antinuclear antibody indirect immunofluorescence (ANA - IIF patterns obtained

  19. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Malika M.A.

    2013-03-01

    Full Text Available Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

  20. Flexible digital signal processing architecture for narrowband and spread-spectrum lock-in detection in multiphoton microscopy and time-resolved spectroscopy.

    Science.gov (United States)

    Wilson, Jesse W; Park, Jong Kang; Warren, Warren S; Fischer, Martin C

    2015-03-01

    The lock-in amplifier is a critical component in many different types of experiments, because of its ability to reduce spurious or environmental noise components by restricting detection to a single frequency and phase. One example application is pump-probe microscopy, a multiphoton technique that leverages excited-state dynamics for imaging contrast. With this application in mind, we present here the design and implementation of a high-speed lock-in amplifier on the field-programmable gate array (FPGA) coprocessor of a data acquisition board. The most important advantage is the inherent ability to filter signals based on more complex modulation patterns. As an example, we use the flexibility of the FPGA approach to enable a novel pump-probe detection scheme based on spread-spectrum communications techniques.

  1. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Liangxuan Zhang

    2016-01-01

    Full Text Available Multiple myeloma (MM remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease management and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluorescence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6 as a readout for PI3K/AKT pathway activation. Clinical feasibility of the assay was established by testing blood samples from a small cohort of patients, where we detected populations of both CD138 pos and CD138 neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

  2. Microscopy as a diagnostic tool in pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Ritu Singhal

    2015-01-01

    Full Text Available Tuberculosis continues to cast a huge impact on humanity with its high incidence and mortality, especially in developing countries. For tuberculosis case detection, microscopy continues to be indispensible, given its low cost, rapidity, simplicity of procedure and high specificity. Modifications have attempted to improve the sensitivity of microscopy which include: concentration methods such as centrifugation, N-acetyl cysteine–sodium hydroxide, bleach, ammonium sulfate or chitin. Furthermore, classical Ziehl–Neelsen (ZN staining has been subjected to varying carbol fuchsin concentrations or replaced by Kinyoun staining, fluorescent microscopy or immune-fluorescence. Currently, light emitting diode fluorescence is recognizably the most plausible method as an alternative to ZN staining.

  3. Single-spin stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-10-14

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub-diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.

  4. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.

    Science.gov (United States)

    Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J

    2018-04-03

    The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

  5. SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT).

    Science.gov (United States)

    Rieti, S; Manni, V; Lisi, A; Giuliani, L; Sacco, D; D'Emilia, E; Cricenti, A; Generosi, R; Luce, M; Grimaldi, S

    2004-01-01

    In this study we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker beta4 integrin, which revealed an increase of beta4 integrin segregation in the cell membrane of 50-Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.

  6. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul

    2013-08-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.

  7. In vivo confocal microscopy of conjunctiva-associated lymphoid tissue in healthy humans.

    Science.gov (United States)

    Agnifili, Luca; Mastropasqua, Rodolfo; Fasanella, Vincenzo; Di Staso, Silvio; Mastropasqua, Alessandra; Brescia, Lorenza; Mastropasqua, Leonardo

    2014-07-29

    To investigate modifications with aging of the presence, distribution and morphologic features of conjunctiva-associated lymphoid tissue (CALT) in healthy human subjects using laser scanning in vivo confocal microscopy (IVCM). A total of 108 (age range, 17-75 years) subjects were enrolled. In vivo confocal microscopy of the tarsal and bulbar conjunctiva, and impression cytology (IC) with CD3 (intra-epithelial T-lymphocytes) and CD20 (intra-epithelial B-lymphocytes) antibody immunofluorescence staining were performed. The main outcomes were subepithelial lymphocyte density (LyD), follicular density (FD), and follicular area (FA). The secondary outcomes were follicular reflectivity (FR), and lymphocyte density (FLyD), and CD3 and CD20 positivity. Conjunctiva-associated lymphoid tissue was observed in all subjects (97% only superior and 3% in both superior and inferior tarsum). Lymphocyte density ranged from 7.8 to 165.8 cells/mm(2) (46.42 [18.37]; mean [SD]), FD from 0.5 to 19.4 follicles/mm(2) (5.3 [3.6]), and FA from 1110 to 96,280 mm(2) (26,440 [26,280]). All three parameters showed a highly significant inverse cubic relationship with age (P lymphoid structures. These modifications may account for the decrease of mucosal immune response and increase of ocular surface diseases in the elderly. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. A molecular method for typing Herpes simplex virus isolates as an alternative to immunofluorescence methods

    Directory of Open Access Journals (Sweden)

    Abraham A

    2009-01-01

    Full Text Available Background: Typing of Herpes simplex virus (HSV isolates is required to identify the virus isolated in culture. The methods available for this include antigen detection by immunofluorescence (IF assays and polymerase chain reaction (PCR. This study was undertaken to standardize a molecular method for typing of HSV and compare it with a commercial IF reagent for typing. Objectives: To compare a molecular method for typing HSV isolates with a monoclonal antibody (MAb based IF test. Study design : This cross-sectional study utilized four reference strains and 42 HSV isolates obtained from patients between September 1998 and September 2004. These were subjected to testing using an MAb-based IF test and a PCR that detects the polymerase ( pol gene of HSV isolates. Results: The observed agreement of the MAb IF assay with the pol PCR was 95.7%. Fifty four point eight percent (23/42 of isolates tested by IF typing were found to be HSV-1, 40.5% (17/42 were HSV-2, and two (4.8% were untypable using the MAb IF assay. The two untypable isolates were found to be HSV-2 using the pol PCR. In addition, the cost per PCR test for typing is estimated to be around Rs 1,300 (USD 30, whereas the cost per MAb IF test is about Rs 1,500 (USD 35 including all overheads (reagents, instruments, personnel time, and consumables. Conclusion: The pol PCR is a cheaper and more easily reproducible method for typing HSV isolates as compared to the IF test. It could replace the IF-based method for routine typing of HSV isolates as availability of PCR machines (thermal cyclers is now more widespread than fluorescence microscopes in a country like India.

  9. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses.

    Directory of Open Access Journals (Sweden)

    George G Daaboul

    Full Text Available Light microscopy is a powerful tool in the detection and analysis of parasites, fungi, and prokaryotes, but has been challenging to use for the detection of individual virus particles. Unlabeled virus particles are too small to be visualized using standard visible light microscopy. Characterization of virus particles is typically performed using higher resolution approaches such as electron microscopy or atomic force microscopy. These approaches require purification of virions away from their normal millieu, requiring significant levels of expertise, and can only enumerate small numbers of particles per field of view. Here, we utilize a visible light imaging approach called Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS that allows automated counting and sizing of thousands of individual virions. Virions are captured directly from complex solutions onto a silicon chip and then detected using a reflectance interference imaging modality. We show that the use of different imaging wavelengths allows the visualization of a multitude of virus particles. Using Violet/UV illumination, the SP-IRIS technique is able to detect individual flavivirus particles (~40 nm, while green light illumination is capable of identifying and discriminating between vesicular stomatitis virus and vaccinia virus (~360 nm. Strikingly, the technology allows the clear identification of filamentous infectious ebolavirus particles and virus-like particles. The ability to differentiate and quantify unlabeled virus particles extends the usefulness of traditional light microscopy and can be embodied in a straightforward benchtop approach allowing widespread applications ranging from rapid detection in biological fluids to analysis of virus-like particles for vaccine development and production.

  10. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovana M B Veronezi

    Full Text Available Valproic acid (VPA, a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC immunofluorescence signals and Fourier transform-infrared (FT-IR microspectroscopy centered on spectral regions related to the vibration of-CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for-CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than-CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.

  11. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  12. Mode of centriole duplication and distribution

    OpenAIRE

    1990-01-01

    Centriole stability and distribution during the mammalian cell cycle was studied by microinjecting biotinylated tubulin into early G1 cells and analyzing the pattern of incorporation into centrioles. Cells were extracted and cold treated to depolymerize labile microtubules, allowing the fluorescent microscopic visualization of the stable centrioles. The ability to detect single centrioles was confirmed by use of correlative electron microscopy. Indirect hapten and immunofluorescent labeling o...

  13. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Science.gov (United States)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-06-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a

  14. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice

    2017-06-14

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  15. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-01-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  16. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Ceylan Koydemir Hatice

    2017-06-01

    Full Text Available Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond

  17. RT-PCR for detection of all seven genotypes of Lyssavirus genus.

    Science.gov (United States)

    Vázquez-Morón, S; Avellón, A; Echevarría, J E

    2006-08-01

    The Lyssavirus genus includes seven species or genotypes named 1-7. Rabies genotypes correlate with geographical distribution and specific hosts. Co-circulation of different lyssaviruses, imported cases, and the presence of unknown viruses, such as Aravan, Khujand, Irkut and West Caucasian Bat Virus, make it necessary to use generic methods able to detect all lyssaviruses. Primer sequences were chosen from conserved regions in all genotypes in order to optimise a generic RT-PCR. Serial dilutions of 12 RNA extracts from all seven Lyssavirus genotypes were examined to compare the sensitivity of the RT-PCR standardised in this study with a published RT-PCR optimised for EBLV1 detection and capable of amplifying RNA from all seven lyssaviruses. All seven genotypes were detected by both RT-PCRs, however, the sensitivity was higher with the new version of the test. Twenty samples submitted for rabies diagnosis were tested by the new RT-PCR. Eight out of 20 samples from six dogs, one horse and one bat were found positive, in agreement with immunofluorescence results. Seven samples from terrestrial mammals were genotype 1 and one from a bat was genotype 5. In conclusion, this method can be used to complement immunofluorescence for the diagnosis of rabies, enabling the detection of unexpected lyssaviruses during rabies surveillance.

  18. Active Pixel Sensors for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Denes, P. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: pdenes@lbl.gov; Bussat, J.-M. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lee, Z.; Radmillovic, V. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2007-09-01

    The technology used for monolithic CMOS imagers, popular for cell phone cameras and other photographic applications, has been explored for charged particle tracking by the high-energy physics community for several years. This technology also lends itself to certain imaging detector applications in electron microscopy. We have been developing such detectors for several years at Lawrence Berkeley National Laboratory, and we and others have shown that this technology can offer excellent point-spread function, direct detection and high readout speed. In this paper, we describe some of the design constraints peculiar to electron microscopy and summarize where such detectors could play a useful role.

  19. Proximal design for a multimodality endoscope with multiphoton microscopy, optical coherence microscopy and visual modalities

    Science.gov (United States)

    Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.

    2018-02-01

    A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.

  20. Research and application on imaging technology of line structure light based on confocal microscopy

    Science.gov (United States)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  1. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  2. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  3. Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy

    Science.gov (United States)

    Schermelleh, Lothar; Carlton, Peter M.; Haase, Sebastian; Shao, Lin; Winoto, Lukman; Kner, Peter; Burke, Brian; Cardoso, M. Cristina; Agard, David A.; Gustafsson, Mats G. L.; Leonhardt, Heinrich; Sedat, John W.

    2010-01-01

    Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light. PMID:18535242

  4. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  5. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    International Nuclear Information System (INIS)

    Ali, Esam M.A.; Edwards, Howell G.M.; Hargreaves, Michael D.; Scowen, Ian J.

    2008-01-01

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material

  6. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    International Nuclear Information System (INIS)

    Pham, Son; Tabarin, Thibault; Garvey, Megan; Pade, Corinna; Rossy, Jérémie; Monaghan, Paul; Hyatt, Alex; Böcking, Till; Leis, Andrew; Gaus, Katharina; Mak, Johnson

    2015-01-01

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  7. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  8. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  9. IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis.

    Science.gov (United States)

    Rodríguez-Arribas, Mario; Pizarro-Estrella, Elisa; Gómez-Sánchez, Rubén; Yakhine-Diop, S M S; Gragera-Hidalgo, Antonio; Cristo, Alejandro; Bravo-San Pedro, Jose M; González-Polo, Rosa A; Fuentes, José M

    2016-04-01

    Most laboratories interested in autophagy use different imaging software for managing and analyzing heterogeneous parameters in immunofluorescence experiments (e.g., LC3-puncta quantification and determination of the number and size of lysosomes). One solution would be software that works on a user's laptop or workstation that can access all image settings and provide quick and easy-to-use analysis of data. Thus, we have designed and implemented an application called IFDOTMETER, which can run on all major operating systems because it has been programmed using JAVA (Sun Microsystems). Briefly, IFDOTMETER software has been created to quantify a variety of biological hallmarks, including mitochondrial morphology and nuclear condensation. The program interface is intuitive and user-friendly, making it useful for users not familiar with computer handling. By setting previously defined parameters, the software can automatically analyze a large number of images without the supervision of the researcher. Once analysis is complete, the results are stored in a spreadsheet. Using software for high-throughput cell image analysis offers researchers the possibility of performing comprehensive and precise analysis of a high number of images in an automated manner, making this routine task easier. © 2015 Society for Laboratory Automation and Screening.

  10. Systemic lupus erythematosus and the Crithidia luciliae immunofluorescent test

    International Nuclear Information System (INIS)

    Whitehouse, I.J.; Fehr, K.; Wagenhaeuser, F.J.

    1983-01-01

    A comparative study of the Crithidia luciliae immunofluorescence (CL-IF) assay and an adapted Farr radioimmunoassay (RIA), for the measurement of antibodies to native deoxyribonucleic acid, was performed using forty-two sera from patients with systematic lupus erythematosus (SLE) and another forty-two from patients with rheumatoid arthritis. Both assays were specific for SLE. The CL-IF assay was statistically significantly more sensitive than the adapted RIA assay. This significant difference was due to greater sensitivity of the CL-IF assay in the cases of sera from patients with SLE of slight activity. Additional advantages of the CL-IF assay were its use to classify the immunoglobulin types of the antibodies (most commonly IgG or IgM) and to measure complement-fixing antibodies to native deoxyribonucleic acid; it affords a simple method of selecting and following SLE patients at risk of developing severe renal disease. These advantages plus the simplicity and inexpensiveness of the CL-IF assay make it a useful tool, especially for use in small laboratories, for the study of antibodies to native deoxyribonucleic acid in patients with SLE. (orig.) [de

  11. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  12. Semi-automated relative quantification of cell culture contamination with mycoplasma by Photoshop-based image analysis on immunofluorescence preparations.

    Science.gov (United States)

    Kumar, Ashok; Yerneni, Lakshmana K

    2009-01-01

    Mycoplasma contamination in cell culture is a serious setback for the cell-culturist. The experiments undertaken using contaminated cell cultures are known to yield unreliable or false results due to various morphological, biochemical and genetic effects. Earlier surveys revealed incidences of mycoplasma contamination in cell cultures to range from 15 to 80%. Out of a vast array of methods for detecting mycoplasma in cell culture, the cytological methods directly demonstrate the contaminating organism present in association with the cultured cells. In this investigation, we report the adoption of a cytological immunofluorescence assay (IFA), in an attempt to obtain a semi-automated relative quantification of contamination by employing the user-friendly Photoshop-based image analysis. The study performed on 77 cell cultures randomly collected from various laboratories revealed mycoplasma contamination in 18 cell cultures simultaneously by IFA and Hoechst DNA fluorochrome staining methods. It was observed that the Photoshop-based image analysis on IFA stained slides was very valuable as a sensitive tool in providing quantitative assessment on the extent of contamination both per se and in comparison to cellularity of cell cultures. The technique could be useful in estimating the efficacy of anti-mycoplasma agents during decontaminating measures.

  13. Probing graphene defects and estimating graphene quality with optical microscopy

    International Nuclear Information System (INIS)

    Lai, Shen; Kyu Jang, Sung; Jae Song, Young; Lee, Sungjoo

    2014-01-01

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality

  14. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy

    Science.gov (United States)

    Mauzeroll, Janine; Bard, Allen J.; Owhadian, Omeed; Monks, Terrence J.

    2004-01-01

    The cytotoxicity of menadione on hepatocytes was studied by using the substrate generation/tip collection mode of scanning electrochemical microscopy by exposing the cells to menadione and detecting the menadione-S-glutathione conjugate (thiodione) that is formed during the cellular detoxication process and is exported from the cell by an ATP-dependent pump. This efflux was electrochemically detected and allowed scanning electrochemical microscopy monitoring and imaging of single cells and groups of highly confluent live cells. Based on a constant flux model, ≈6 × 106 molecules of thiodione per cell per second are exported from monolayer cultures of Hep G2 cells. PMID:15601769

  15. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  16. Direct single electron detection with a CMOS detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Henderson, R.; Pryddetch, M.; Allport, P.; Evans, A.

    2005-01-01

    We report the results of an investigation into the use of a monolithic active pixel sensor (MAPS) for electron microscopy. MAPS, designed originally for astronomers at the Rutherford Appleton Laboratories, was installed in a 120 kV electron microscope (Philips CM12) at the MRC Laboratory in Cambridge for tests which included recording single electrons at 40 and 120 keV, and measuring signal-to-noise ratio (SNR), spatial resolution and radiation sensitivity. Our results show that, due to the excellent SNR and resolution, it is possible to register single electrons. The radiation damage to the detector is apparent with low doses and gets progressively greater so that its lifetime is limited to 600,000-900,000 electrons/pixel (very approximately 10-15 krad). Provided this detector can be radiation hardened to reduce its radiation sensitivity several hundred fold and increased in size, it will provide excellent performance for all types of electron microscopy

  17. Multiplexed Immunofluorescence Reveals Potential PD-1/PD-L1 Pathway Vulnerabilities in Craniopharyngioma.

    Science.gov (United States)

    Coy, Shannon; Rashid, Rumana; Lin, Jia-Ren; Du, Ziming; Donson, Andrew M; Hankinson, Todd C; Foreman, Nicholas K; Manley, Peter E; Kieran, Mark W; Reardon, David A; Sorger, Peter K; Santagata, Sandro

    2018-03-02

    Craniopharyngiomas are neoplasms of the sellar/parasellar region that are classified into adamantinomatous (ACP) and papillary (PCP) subtypes. Surgical resection of craniopharyngiomas is challenging, and recurrence is common, frequently leading to profound morbidity. BRAF V600E mutations render PCP susceptible to BRAF/MEK inhibitors, but effective targeted therapies are needed for ACP. We explored the feasibility of targeting the PD-1/PD-L1 immune checkpoint pathway in ACP and PCP. We mapped and quantified PD-L1 and PD-1 expression in ACP and PCP resections using immunohistochemistry, immunofluorescence, and RNA in situ hybridization. We used tissue-based cyclic immunofluorescence (t-CyCIF) to map the spatial distribution of immune cells and characterize cell cycle and signaling pathways in ACP tumor cells which intrinsically express PD-1. All ACP (15±14% of cells, n=23, average±S.D.) and PCP (35±22% of cells, n=18) resections expressed PD-L1. In ACP, PD-L1 was predominantly expressed by tumor cells comprising the cyst-lining. In PCP, PD-L1 was highly-expressed by tumor cells surrounding the stromal fibrovascular cores. ACP also exhibited tumor cell-intrinsic PD-1 expression in whorled epithelial cells with nuclear-localized beta-catenin. These cells exhibited evidence of elevated mTOR and MAPK signaling. Profiling of immune populations in ACP and PCP showed a modest density of CD8+ T-cells. ACP exhibit PD-L1 expression in the tumor cyst-lining and intrinsic PD-1 expression in cells proposed to comprise an oncogenic stem-like population. In PCP, proliferative tumor cells express PD-L1 in a continuous band at the stromal-epithelial interface. Targeting PD-L1 and/or PD-1 in both subtypes of craniopharyngioma might therefore be an effective therapeutic strategy.

  18. Detection of amyloid in abdominal fat pad aspirates in early amyloidosis: Role of electron microscopy and Congo red stained cell block sections

    Directory of Open Access Journals (Sweden)

    Sumana Devata

    2011-01-01

    Full Text Available Background: Fine-needle aspiration biopsy (FNA of the abdominal fat pad is a minimally invasive procedure to demonstrate tissue deposits of amyloid. However, protocols to evaluate amyloid in fat pad aspirates are not standardized, especially for detecting scant amyloid in early disease. Materials and Methods: We studied abdominal fat pad aspirates from 33 randomly selected patients in whom subsequent tissue biopsy, autopsy, and/or medical history for confirmation of amyloidosis (AL were also available. All these cases were suspected to have early AL, but had negative results on abdominal fat pad aspirates evaluated by polarizing microscopy of Congo Red stained sections (CRPM. The results with CRPM between four reviewers were compared in 12 cases for studying inter observer reproducibility. 24 cases were also evaluated by ultrastructural study with electron microscopy (EM. Results: Nine of thirty-three (27% cases reported negative by polarizing microscopy had amyloidosis. Reanalysis of 12 mixed positive-negative cases, showed considerable inter-observer variability with frequent lack of agreement between four observers by CRPM alone (Cohen′s Kappa index of 0.1, 95% CI -0.1 to 0.36. EM showed amyloid in the walls of small blood vessels in fibroadipose tissue in four out of nine cases (44% with amyloidosis. Conclusion: In addition to poor inter-observer reproducibility, CRPM alone in cases with scant amyloid led to frequent false negative results (9 out of 9, 100%. For improved detection of AL, routine ultrastructural evaluation with EM of fat pad aspirates by evaluating at least 15 small blood vessels in the aspirated fibroadipose tissue is recommended. Given the high false negative rate for CRPM alone in early disease, routine reflex evaluation with EM is highly recommended to avert the invasive option of biopsying various organs in cases with high clinical suspicion for AL.

  19. Antibodies to cytoskeletal proteins as evidenced by immunofluorescence microscopy and radioimmunoassay

    International Nuclear Information System (INIS)

    Zugehoer, M.; Struy, H.; Morenz, J.

    1987-01-01

    In patients suffering from chronic hepatitis, collagenosis and infectious mononucleosis, resp., as well as in blood donors antibodies against cytoskeletal antigens such as actin, myosin, actinin, desmin, keratin, and tubulin were determined by radioimmunoassay

  20. Antibodies to cytoskeletal proteins as evidenced by immunofluorescence microscopy and radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zugehoer, M; Struy, H; Morenz, J

    1987-01-01

    In patients suffering from chronic hepatitis, collagenosis and infectious mononucleosis, resp., as well as in blood donors antibodies against cytoskeletal antigens such as actin, myosin, actinin, desmin, keratin, and tubulin were determined by radioimmunoassay.

  1. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    Science.gov (United States)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  2. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  3. Detection of antisalivary duct antibody from Sjoegren's syndrome by an autoradiographic method

    International Nuclear Information System (INIS)

    Cummings, N.A.; Tarpley, T.M. Jr.

    1978-01-01

    A new technique to detect anti-salivary duct antibody (ASDA) has been developed by using autoradiographic, rather than immunofluorescent methods. The antibody activity detected by autoradiography is probably classic ASDA. Both techniques may be consecutively performed on the same tissue section without attenuation of either. Some of the potential advantages of the radiolabelling of ASDA are pointed out, and a few preliminary experiments using the labelled antibody as a marker are presented. (Auth.)

  4. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells

    KAUST Repository

    Castagnetti, Francesco

    2017-06-13

    Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and agerelated muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration.

  5. GPCR Interaction: 25 [GRIPDB[Archive

    Lifescience Database Archive (English)

    Full Text Available e of A1R and P2Y1R colocalization was observed in cotransfected cells by double immunofluorescence experiments with confocal laser...2) and Myc-P2Y1R-Rluc was also observed in the co-transfected HEK293T cells by confocal laser microscopy. Th..., 12417330 Double immunofluorescence experiments, confocal laser microscopy Modified BRET NP_001041695.1 ...

  6. GPCR Interaction: 26 [GRIPDB[Archive

    Lifescience Database Archive (English)

    Full Text Available ree of A1R and P2Y1R colocalization was observed in cotransfected cells by double immunofluorescence experiments with confocal laser...P(2) and Myc-P2Y1R-Rluc was also observed in the co-transfected HEK293T cells by confocal laser microscopy. ...75, 12417330 Double immunofluorescence experiments, confocal laser microscopy Modified BRET NP_002554.1 ...

  7. Low cost automated whole smear microscopy screening system for detection of acid fast bacilli.

    Directory of Open Access Journals (Sweden)

    Yan Nei Law

    Full Text Available In countries with high tuberculosis (TB burden, there is urgent need for rapid, large-scale screening to detect smear-positive patients. We developed a computer-aided whole smear screening system that focuses in real-time, captures images and provides diagnostic grading, for both bright-field and fluorescence microscopy for detection of acid-fast-bacilli (AFB from respiratory specimens.To evaluate the performance of dual-mode screening system in AFB diagnostic algorithms on concentrated smears with auramine O (AO staining, as well as direct smears with AO and Ziehl-Neelsen (ZN staining, using mycobacterial culture results as gold standard.Adult patient sputum samples requesting for M. tuberculosis cultures were divided into three batches for staining: direct AO-stained, direct ZN-stained and concentrated smears AO-stained. All slides were graded by an experienced microscopist, in parallel with the automated whole smear screening system. Sensitivity and specificity of a TB diagnostic algorithm in using the screening system alone, and in combination with a microscopist, were evaluated.Of 488 direct AO-stained smears, 228 were culture positive. These yielded a sensitivity of 81.6% and specificity of 74.2%. Of 334 direct smears with ZN staining, 142 were culture positive, which gave a sensitivity of 70.4% and specificity of 76.6%. Of 505 concentrated smears with AO staining, 250 were culture positive, giving a sensitivity of 86.4% and specificity of 71.0%. To further improve performance, machine grading was confirmed by manual smear grading when the number of AFBs detected fell within an uncertainty range. These combined results gave significant improvement in specificity (AO-direct:85.4%; ZN-direct:85.4%; AO-concentrated:92.5% and slight improvement in sensitivity while requiring only limited manual workload.Our system achieved high sensitivity without substantially compromising specificity when compared to culture results. Significant improvement

  8. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    Science.gov (United States)

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

  9. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  10. Validation of a near infrared microscopy method for the detection of animal products in feedingstuffs: results of a collaborative study.

    Science.gov (United States)

    Boix, A; Fernández Pierna, J A; von Holst, C; Baeten, V

    2012-01-01

    The performance characteristics of a near infrared microscopy (NIRM) method, when applied to the detection of animal products in feedingstuffs, were determined via a collaborative study. The method delivers qualitative results in terms of the presence or absence of animal particles in feed and differentiates animal from vegetable feed ingredients on the basis of the evaluation of near infrared spectra obtained from individual particles present in the sample. The specificity ranged from 86% to 100%. The limit of detection obtained on the analysis of the sediment fraction, prepared as for the European official method, was 0.1% processed animal proteins (PAPs) in feed, since all laboratories correctly identified the positive samples. This limit has to be increased up to 2% for the analysis of samples which are not sedimented. The required sensitivity for the official control is therefore achieved in the analysis of the sediment fraction of the samples where the method can be applied for the detection of the presence of animal meal. Criteria for the classification of samples, when fewer than five spectra are found, as being of animal origin needs to be set up in order to harmonise the approach taken by the laboratories when applying NIRM for the detection of the presence of animal meal in feed.

  11. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  12. Fluctuation microscopy: a probe of medium range order

    International Nuclear Information System (INIS)

    Treacy, M M J; Gibson, J M; Fan, L; Paterson, D J; McNulty, I

    2005-01-01

    Fluctuation microscopy is a hybrid diffraction-imaging technique that detects medium range order in amorphous materials by examining spatial fluctuations in coherent scattering. These fluctuations appear as speckle in images and diffraction patterns. The volume of material contributing to the speckle is determined by the point-spread function (the resolution) of the imaging optics and the sample thickness. The spatial periodicities being probed are related to the diffraction vector. Statistical analysis of the speckle allows the random and non-random (ordered) contributions to be discriminated. The image resolution that gives the maximum speckle contrast, as determined by the normalized variance of the image intensity, is determined by the characteristic length scale of the ordering. Because medium range ordering length scales can extend out to about the tenth coordination shell, fluctuation microscopy tends to be a low image resolution technique. This review presents the kinematical scattering theory underpinning fluctuation microscopy and a description of fluctuation electron microscopy as it has been employed in the transmission electron microscope for studying amorphous materials. Recent results using soft x-rays for studying nanoscale materials are also presented. We summarize outstanding issues and point to possible future directions for fluctuation microscopy as a technique

  13. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  14. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    Science.gov (United States)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  15. Diagnosing Polyparasitism in a High-Prevalence Setting in Beira, Mozambique: Detection of Intestinal Parasites in Fecal Samples by Microscopy and Real-Time PCR.

    Directory of Open Access Journals (Sweden)

    Lynn Meurs

    2017-01-01

    Full Text Available Many different intestinal parasite species can co-occur in the same population. However, classic diagnostic tools can only frame a particular group of intestinal parasite species. Hence, one or two tests do not suffice to provide a complete picture of infecting parasite species in a given population. The present study investigated intestinal parasitic infections in Beira, Mozambique, i.e. in the informal settlement of Inhamudima. Diagnostic accuracy of five classical microscopy techniques and real-time PCR for the detection of a broad spectrum of parasites was compared.A cross-sectional population-based survey was performed. One stool sample per participant (n = 303 was examined by direct smear, formal-ether concentration (FEC, Kato smear, Baermann method, coproculture and real-time PCR. We found that virtually all people (96% harbored at least one helminth, and that almost half (49% harbored three helminths or more. Remarkably, Strongyloides stercoralis infections were widespread with a prevalence of 48%, and Ancylostoma spp. prevalence was higher than that of Necator americanus (25% versus 15%, the hookworm species that is often assumed to prevail in East-Africa. Among the microscopic techniques, FEC was able to detect the broadest spectrum of parasite species. However, FEC also missed a considerable number of infections, notably S. stercoralis, Schistosoma mansoni and G. intestinalis. PCR outperformed microscopy in terms of sensitivity and range of parasite species detected.We showed intestinal parasites-especially helminths-to be omnipresent in Inhamudima, Beira. However, it is a challenge to achieve high diagnostic sensitivity for all species. Classical techniques such as FEC are useful for the detection of some intestinal helminth species, but they lack sensitivity for other parasite species. PCR can detect intestinal parasites more accurately but is generally not feasible in resource-poor settings, at least not in peripheral labs. Hence

  16. Diagnosing Polyparasitism in a High-Prevalence Setting in Beira, Mozambique: Detection of Intestinal Parasites in Fecal Samples by Microscopy and Real-Time PCR.

    Science.gov (United States)

    Meurs, Lynn; Polderman, Anton M; Vinkeles Melchers, Natalie V S; Brienen, Eric A T; Verweij, Jaco J; Groosjohan, Bernhard; Mendes, Felisberto; Mechendura, Manito; Hepp, Dagmar H; Langenberg, Marijke C C; Edelenbosch, Rosanne; Polman, Katja; van Lieshout, Lisette

    2017-01-01

    Many different intestinal parasite species can co-occur in the same population. However, classic diagnostic tools can only frame a particular group of intestinal parasite species. Hence, one or two tests do not suffice to provide a complete picture of infecting parasite species in a given population. The present study investigated intestinal parasitic infections in Beira, Mozambique, i.e. in the informal settlement of Inhamudima. Diagnostic accuracy of five classical microscopy techniques and real-time PCR for the detection of a broad spectrum of parasites was compared. A cross-sectional population-based survey was performed. One stool sample per participant (n = 303) was examined by direct smear, formal-ether concentration (FEC), Kato smear, Baermann method, coproculture and real-time PCR. We found that virtually all people (96%) harbored at least one helminth, and that almost half (49%) harbored three helminths or more. Remarkably, Strongyloides stercoralis infections were widespread with a prevalence of 48%, and Ancylostoma spp. prevalence was higher than that of Necator americanus (25% versus 15%), the hookworm species that is often assumed to prevail in East-Africa. Among the microscopic techniques, FEC was able to detect the broadest spectrum of parasite species. However, FEC also missed a considerable number of infections, notably S. stercoralis, Schistosoma mansoni and G. intestinalis. PCR outperformed microscopy in terms of sensitivity and range of parasite species detected. We showed intestinal parasites-especially helminths-to be omnipresent in Inhamudima, Beira. However, it is a challenge to achieve high diagnostic sensitivity for all species. Classical techniques such as FEC are useful for the detection of some intestinal helminth species, but they lack sensitivity for other parasite species. PCR can detect intestinal parasites more accurately but is generally not feasible in resource-poor settings, at least not in peripheral labs. Hence, there is a

  17. Comparative determination of the rheumatic factor by means of agglutination, immunofluorescence and radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, L.; Storz, H.; Hein, G.; Schlenvoigt, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Bereich Medizin)

    1982-01-01

    The rheumatic factor (RF) was determined by means of agglutination, immunofluorescence (IF) test and radioimmunoassay (RIPEGA) in random groups of 56 patients with rheumatoid arthritis (RA), 13 patients with seronegative RA and 39 patients with psoriasis arthropathica. All three methods are of equal value with regard to the number of positive results. Further classification of seronegative patients, i.e. patients with a negative agglutination reaction and the clinical symptoms of RA is possible with the IF method and, above all, by means of RIPEGA. But because of the comprehensive test devices the two methods are only an alternative. Titer differences are attributed to the different indication principles and the immunological heterogeneity of RF. An improvement of the diagnosis of activity was not possible.

  18. Comparative determination of the rheumatic factor by means of agglutination, immunofluorescence and radioimmunoassay

    International Nuclear Information System (INIS)

    Jaeger, L.; Storz, H.; Hein, G.; Schlenvoigt, G.

    1982-01-01

    The rheumatic factor (RF) was determined by means of agglutination, immunofluorescence (IF) test and radioimmunoassay (RIPEGA) in random groups of 56 patients with rheumatoid arthritis (RA), 13 patients with seronegative RA and 39 patients with psoriasis arthropathica. All three methods are of equal value with regard to the number of positive results. Further classification of seronegative patients, i.e. patients with a negative agglutination reaction and the clinical symptoms of RA is possible with the IF method and, above all, by means of RIPEGA. But because of the comprehensive test devices the two methods are only an alternative. Titer differences are attributed to the different indication principles and the immunological heterogeneity of RF. An improvement of the diagnosis of activity was not possible. (author)

  19. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy

    DEFF Research Database (Denmark)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H

    2017-01-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analy...

  20. All-optical optoacoustic microscopy based on probe beam deflection technique

    OpenAIRE

    Maswadi, Saher M.; Ibey, Bennett L.; Roth, Caleb C.; Tsyboulski, Dmitri A.; Beier, Hope T.; Glickman, Randolph D.; Oraevsky, Alexander A.

    2016-01-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separa...

  1. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  2. Degradation of thin poly(lactic acid) films: Characterization by capacitance–voltage, atomic force microscopy, scanning electron microscopy and contact-angle measurements

    International Nuclear Information System (INIS)

    Schusser, S.; Menzel, S.; Bäcker, M.; Leinhos, M.; Poghossian, A.; Wagner, P.; Schöning, M.J.

    2013-01-01

    For the development of new biopolymers and implantable biomedical devices with predicted biodegradability, simple, non-destructive, fast and inexpensive techniques capable for real-time in situ testing of the degradation kinetics of polymers are highly appreciated. In this work, a capacitive field-effect electrolyte–insulator–semiconductor (EIS) sensor has been applied for real-time in situ monitoring of degradation of thin poly(D,L-lactic acid) (PDLLA) films over a long-time period of one month. Generally, the polymer-modified EIS (PMEIS) sensor is capable of detecting any changes in the bulk, surface and interface properties of the polymer (e.g., thickness, coverage, dielectric constant, surface potential) induced by degradation processes. The time-dependent capacitance–voltage (C–V) characteristics of PMEIS structures were used as an indicator of the polymer degradation. To accelerate the PDLLA degradation, experiments were performed in alkaline buffer solution of pH 10.6. The results of these degradation measurements with the EIS sensor were verified by the detection of lactic acid (product of the PDLLA degradation) in the degradation medium. In addition, the micro-structural and morphological changes of the polymer surface induced by the polymer degradation have been systematically studied by means of scanning-electron microscopy, atomic-force microscopy, optical microscopy, and contact-angle measurements

  3. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  4. Technical advances in the sectioning of dental tissue and of on-section cross-linked collagen detection in mineralized teeth.

    Science.gov (United States)

    Singhrao, Sim K; Sloan, Alastair J; Smith, Emma L; Archer, Charles W

    2010-08-01

    Immunohistochemical detection of cross-linked fibrillar collagens in mineralized tissues is much desired for exploring the mechanisms of biomineralization in health and disease. Mineralized teeth are impossible to section when embedded in conventional media, thus limiting on-section characterization of matrix proteins by immunohistochemistry. We hypothesized that by using an especially formulated acrylic resin suitable for mineralized dental tissues, not only sectioning of teeth would be possible, but also our recently developed immunofluorescence labeling technique would be amenable to fully calcified tissues for characterization of dentinal fibrillar collagens, which remains elusive. The hypothesis was tested on fixed rodent teeth embedded in Technovit 9100 New. It was possible to cut thin (1 mum) sections of mineralized teeth, and immunofluorescence characterization of cross-linked type I fibrillar collagen was selected due to its abundance in dentine. Decalcified samples of teeth embedded in paraffin wax were also used to compare immunolabeling from either method using the same immunoreagents in equivalent concentrations. In the decalcified tissue sections, type I collagen labeling in the dentine along the tubules was "patchy" and the signal in the predentine was very weak. However, enhanced signal in mineralized samples with type I collagen was detected not only in the predentine but also at the limit between intertubular dentine, within the elements of the enamel organ and subgingival stroma. This report offers advances in sectioning mineralized dental tissues and allows the application of immunofluorescence not only for on-section protein detection but importantly for detecting cross-linked fibrous collagens in both soft and mineralized tissue sections.

  5. Elucidating the Burden of HIV in Tissues Using Multiplexed Immunofluorescence and In Situ Hybridization: Methods for the Single-Cell Phenotypic Characterization of Cells Harboring HIV In Situ.

    Science.gov (United States)

    Vasquez, Joshua J; Hussien, Rajaa; Aguilar-Rodriguez, Brandon; Junger, Henrik; Dobi, Dejan; Henrich, Timothy J; Thanh, Cassandra; Gibson, Erica; Hogan, Louise E; McCune, Joseph; Hunt, Peter W; Stoddart, Cheryl A; Laszik, Zoltan G

    2018-02-01

    Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.

  6. Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders.

    Science.gov (United States)

    Westmoreland, D; Shaw, M; Grimes, W; Metcalf, D J; Burden, J J; Gomez, K; Knight, A E; Cutler, D F

    2016-04-01

    Many platelet functions are dependent on bioactive molecules released from their granules. Deficiencies of these granules in number, shape or content are associated with bleeding. The small size of these granules is such that imaging them for diagnosis has traditionally required electron microscopy. However, recently developed super-resolution microscopes provide sufficient spatial resolution to effectively image platelet granules. When combined with automated image analysis, these methods provide a quantitative, unbiased, rapidly acquired dataset that can readily and reliably reveal differences in platelet granules between individuals. To demonstrate the ability of structured illumination microscopy (SIM) to efficiently differentiate between healthy volunteers and three patients with Hermansky-Pudlak syndrome. Blood samples were taken from three patients with Hermansky-Pudlak syndrome and seven controls. Patients 1-3 have gene defects in HPS1, HPS6 and HPS5, respectively; all controls were healthy volunteers. Platelet-rich plasma was isolated from blood and the platelets fixed, stained for CD63 and processed for analysis by immunofluorescence microscopy, using a custom-built SIM microscope. SIM can successfully resolve CD63-positive structures in fixed platelets. A determination of the number of CD63-positive structures per platelet allowed us to conclude that each patient was significantly different from all of the controls with 99% confidence. A super-resolution imaging approach is effective and rapid in objectively differentiating between patients with a platelet bleeding disorder and healthy volunteers. CD63 is a useful marker for predicting Hermansky-Pudlak syndrome and could be used in the diagnosis of patients suspected of other platelet granule disorders. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  7. Detection of Melamine in Soybean Meal Using Near-Infrared Microscopy Imaging with Pure Component Spectra as the Evaluation Criteria

    Directory of Open Access Journals (Sweden)

    Zengling Yang

    2016-01-01

    Full Text Available Soybean meal was adulterated with melamine with the purpose of boosting the protein content for unlawful interests. In recent years, the near-infrared (NIR spectroscopy technique has been widely used for guaranteeing food and feed security for its fast, nondestructive, and pollution-free characteristics. However, there are problems with using near-infrared (NIR spectroscopy for detecting samples with low contaminant concentration because of instrument noise and sampling issues. In addition, methods based on NIR are indirect and depend on calibration models. NIR microscopy imaging offers the opportunity to investigate the chemical species present in food and feed at the microscale level (the minimum spot size is a few micrometers, thus avoiding the problem of the spectral features of contaminants being diluted by scanning. The aim of this work was to investigate the feasibility of using NIR microscopy imaging to identify melamine particles in soybean meal using only the pure component spectrum. The results presented indicate that using the classical least squares (CLS algorithm with the nonnegative least squares (NNLS algorithm, without needing first to develop a calibration model, could identify soybean meal that is both uncontaminated and contaminated with melamine particles at as low a level as 50 mg kg−1.

  8. Developments in contact X-ray microscopy in biomedical research

    International Nuclear Information System (INIS)

    Davies, R.L.; Flores, N.A.; Pye, J.K.

    1985-01-01

    Contact X-ray microscopy (microradiography) is a method of studying the microstructure of biological tissue. These techniques have been used to study the historadiological details of human breast tissue and sections of human ear ossicles. X-ray microscopy can also be used to demonstrate variations in structural densities seen in histological specimens including the detection of microcalcification. A modification of existing apparatus is described which has resulted in improved image-contrast and detail. The ability of X-rays to penetrate relatively thick sections of tissue makes it an ideal method for studying the morphology of biological structures, particularly in calcified tissue. The tissues may be further examined by conventional histology, elemental analysis, etc. The technique has a complementary role to alternative methods of tissue microscopy. (author)

  9. Imaging rat esophagus using combination of reflectance confocal and multiphoton microscopy

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Jiang, X S; Lu, K C; Xie, S S

    2008-01-01

    We combine reflectance confocal microscopy (RCM) with multiphoton microscopy (MPM) to image rat esophagus. The two imaging modalities allow detection of layered–resolved complementary information from esophagus. In the keratinizing layer, the keratinocytes boundaries can be characterized by RCM, while the keratinocytes cytoplasm (keratin) can be further imaged by multiphoton autofluorescence signal. In the epithelium, the epithelial cellular boundaries and nucleus can be detected by RCM, and MPM can be used for imaging epithelial cell cytoplasm and monitoring metabolic state of epithelium. In the stroma, multiphoton autofluorescence signal is used to image elastin and second harmonic generation signal is utilized to detect collagen, while RCM is used to determine the optical property of stroma. Overall, these results suggest that the combination of RCM and MPM has potential to provide more important and comprehensive information for early diagnosis of esophageal cancer

  10. Dictionary of Microscopy

    Science.gov (United States)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  11. Are the soft, liquid-like structures detected around bacteria by ambient dynamic atomic force microscopy capsules?

    Science.gov (United States)

    Méndez-Vilas, A; Labajos-Broncano, L; Perera-Núñez, J; González-Martín, M L

    2011-05-01

    High-resolution imaging of bacterial capsules by microscopy is of paramount importance in microbiology due to their role in pathogenesis. This is, however, quite a challenging task due to their delicate nature. In this context, recent reports have claimed successful exploitation of the capacity of atomic force microscopy (AFM) for imaging of extremely deformable (even liquid) surfaces under ambient conditions to detect bacterial capsules in the form of tiny amounts of liquid-like substances around bacteria. In order to further explore this supposed capacity of AFM, in this work, three staphylococcal strains have been scrutinized for the presence of capsules using such an AFM-based approach with a phosphate buffer and water as the suspending liquids. Similar results were obtained with the three strains. AFM showed the presence of liquid-like substances identical to those attributed to bacterial capsules in the previous literature. Extensive imaging and chemical analysis point out the central role of the suspending liquid (buffer) in the formation of these substances. The phenomenon has been reproduced even by using nonliving particles, a finding that refutes the biological origin of the liquid-like substances visualized around the cells. Deliquescence of major components of biological buffers, such as K(2)HPO(4), CaCl(2), or HEPES, is proposed as the fundamental mechanism of the formation of these ultrasmall liquid-like structures. Such an origin could explain the high similarity of our results obtained with three very different strains and also the high similarity of these results to others reported in the literature based on other bacteria and suspending liquids. Finally, possible biological/biomedical implications of the presence of these ultrasmall amounts of liquids wrapping microorganisms are discussed.

  12. Detection of antisalivary duct antibody from Sjögren's syndrome by an autoradiographic method.

    Science.gov (United States)

    Cummings, N A; Tarpley, T M

    1978-01-01

    A new technique to detect anti-salivary duct antibody (ASDA) has been developed by using autoradiographic, rather than immunofluorescent methods. The antibody activity detected by autoradiography is probably classic ASDA. Both techniques may be consecutively performed on the same tissue section without attenuation of either. Some of the potential advantages of the radiolabelling of ASDA are pointed out, and a few preliminary experiments using the labelled antibody as a marker are presented.

  13. Handheld optical coherence tomography-reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins

    Science.gov (United States)

    Iftimia, Nicusor; Yélamos, Oriol; Chen, Chih-Shan J.; Maguluri, Gopi; Cordova, Miguel A.; Sahu, Aditi; Park, Jesung; Fox, William; Alessi-Fox, Christi; Rajadhyaksha, Milind

    2017-07-01

    We present a hand-held implementation and preliminary evaluation of a combined optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) probe for detecting and delineating the margins of basal cell carcinomas (BCCs) in human skin in vivo. A standard OCT approach (spectrometer-based) with a central wavelength of 1310 nm and 0.11 numerical aperture (NA) was combined with a standard RCM approach (830-nm wavelength and 0.9 NA) into a common path hand-held probe. Cross-sectional OCT images and enface RCM images are simultaneously displayed, allowing for three-dimensional microscopic assessment of tumor morphology in real time. Depending on the subtype and depth of the BCC tumor and surrounding skin conditions, OCT and RCM imaging are able to complement each other, the strengths of each helping overcome the limitations of the other. Four representative cases are summarized, out of the 15 investigated in a preliminary pilot study, demonstrating how OCT and RCM imaging may be synergistically combined to more accurately detect BCCs and more completely delineate margins. Our preliminary results highlight the potential benefits of combining the two technologies within a single probe to potentially guide diagnosis as well as treatment of BCCs.

  14. Heavy-ion microscopy

    International Nuclear Information System (INIS)

    Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.

    1980-01-01

    This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included

  15. Influence of hydrocarbons on element detection in ion images by SIMS microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takaya, Kenichi; Okabe, Motonori; Sawataishi, Masaru; Yoshida, Toshiko

    2004-06-15

    Ion microscopy on fresh frozen cryostat sections, 5-10 {mu}m thick, is useful to determine the distribution of elements and low molecular organic compounds in the larger areas of the tissues. Fresh frozen cryostat sections of tree frog eyeball were examined. Secondary ion images of Na, Mg, Al, C{sub 2}H{sub 3}, K, Ca and C{sub 3}H{sub 5} were observed by ion microscopy (IMS-6f) using O{sub 2}{sup +} as the primary beam source at an energy of 15 keV. The primary beam current was 10{sup -10} A, the ion image magnification was varied from 300 to 1500 and the mass resolution was set between 300 and 3000. The areas of high intensity ion counts of the organic compounds generally showed low ion counts of elements. After long exposure to the primary ion beam, the intensity of the organic compound ions decreased, whereas the intensity of atomic ions of elements increased.

  16. Rapid diagnosis of malaria by fluorescent microscopy with light microscope and interface filter

    International Nuclear Information System (INIS)

    Hussain, I.; Tayyib, M.; Farooq, M.; Ahmed, N.

    2008-01-01

    The present study is planned to compare acridine orange (A.O) staining with Giemsa staining by using light microscopy with IF and also with fluorescent microscopy for detection of parasites in peripheral blood of patients suffering from clinically suspected cases of malaria. 200 patients with fever and shivering were included. General investigations like Hb, TLC and platelets were done by sysmex K-1000. Thin and thick blood films were made and stained according to protocol given i.e. by Giemsa and AO stains and slides were examined by different microscopes i.e. light microscope, light microscope with IFS and fluorescent microscope. Out of 200 subjects, 170 (85%) patients showed positive parasitaemia and 30 (15%) subjects were negative for malaria parasites. fib, TLC and platelets were reduced when comparing with MP negative cases. IFS microscope with acridine orange staining showed early detection of malaria parasites by counting fewer fields as compared to light microscopy with Giemsa stains. Time consumed for detection of parasites was also significantly reduced in IFS microscope by using AO stains. (author)

  17. Limits to magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Glover, Paul; Mansfield, Peter

    2002-01-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit. (author)

  18. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    Science.gov (United States)

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  19. Robust tumor morphometry in multispectral fluorescence microscopy

    Science.gov (United States)

    Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo

    2009-02-01

    Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.

  20. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  1. Comparison of Rapid Malaria Test and Laboratory Microscopy ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Blood samples collected from 272 volunteers in two communities of Bayelsa State in the Niger. Delta area were investigated for falciparum malaria parasite using the rapid test based on the detection of soluble antigen and laboratory microscopy test. The data showed that out of the 272 samples collected, ...

  2. Focal glomerular immune complex deposition: possible role of periglomerular fibrosis/atubular glomeruli.

    Science.gov (United States)

    Satoskar, Anjali A; Calomeni, Edward; Bott, Cherri; Nadasdy, Gyongyi M; Nadasdy, Tibor

    2009-02-01

    Consensus exists among renal pathologists that, in biopsies with immune complex glomerulonephritis, even a single glomerulus with open capillary loops may be sufficient for immunofluorescence and/or electron microscopy evaluation because immune complex deposition is a diffuse phenomenon. However, we have encountered renal biopsies with focal absence of immune complexes in glomeruli on either immunofluorescence or electron microscopy examination despite presence of open glomerular capillary loops. To evaluate renal biopsies with focal immune complex deposition and look for any subtle or unusual morphologic changes in the glomeruli (and in the biopsy in general). Native and transplant renal biopsies were reviewed. All biopsies had been triaged and processed according to our routine protocol for light microscopy, immunofluorescence, and electron microscopy examination. Of 2018 renal biopsies from December 2005 to December 2007, we found 10 such biopsies; 5 native and 5 transplant kidney biopsies. We found that the glomeruli with absent immune complex deposits had periglomerular fibrosis with open, albeit, wrinkled appearing capillary loops but no glomerular sclerosis. We hypothesize that these histologic features are indicative of nonfunctional glomeruli and may be associated with disconnection between the Bowman capsule and proximal tubule (atubular glomeruli). These glomeruli may not have effective filtration, despite some degree of circulation through the open capillary loops, and therefore are unable to accumulate immune complex deposits. If biopsies are small and only such glomeruli are available for immunofluorescence or electron microscopy examination, the absence of immune complex deposition in them should be evaluated carefully.

  3. Anti-double stranded DNA antibodies in systemic lupus erythematosus : Detection and clinical relevance of IgM-class antibodies

    NARCIS (Netherlands)

    Bootsma, H; Spronk, PE; Hummel, EJ; deBoer, G; terBorg, EJ; Limburg, PC; Kallenberg, CGM

    1996-01-01

    We determined the discriminative value of the Farr assay in comparison to ELISA and Crithidia luciliae immunofluorescence assay (IFT) for detecting anti-dsDNA antibodies as a diagnostic tool for systemic lupus erythematosus (SLE). Special attention was paid to the diagnostic significance of

  4. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy.

    Directory of Open Access Journals (Sweden)

    Maryam Ferdousi

    Full Text Available There are multiple neurological complications of cancer and its treatment. This study assessed the utility of the novel non-invasive ophthalmic technique of corneal confocal microscopy in identifying neuropathy in patients with upper gastrointestinal cancer before and after platinum based chemotherapy. In this study, 21 subjects with upper gastrointestinal (oesophageal or gastric cancer and 21 healthy control subjects underwent assessment of neuropathy using the neuropathy disability score, quantitative sensory testing for vibration perception threshold, warm and cold sensation thresholds, cold and heat induced pain thresholds, nerve conduction studies and corneal confocal microscopy. Patients with gastro-oesophageal cancer had higher heat induced pain (P = 0.04 and warm sensation (P = 0.03 thresholds with a significantly reduced sural sensory (P<0.01 and peroneal motor (P<0.01 nerve conduction velocity, corneal nerve fibre density (CNFD, nerve branch density (CNBD and nerve fibre length (CNFL (P<0.0001. Furthermore, CNFD correlated significantly with the time from presentation with symptoms to commencing chemotherapy (r = -0.54, P = 0.02, and CNFL (r = -0.8, P<0.0001 and CNBD (r = 0.63, P = 0.003 were related to the severity of lymph node involvement. After the 3rd cycle of chemotherapy, there was no change in any measure of neuropathy, except for a significant increase in CNFL (P = 0.003. Corneal confocal microscopy detects a small fibre neuropathy in this cohort of patients with upper gastrointestinal cancer, which was related to disease severity. Furthermore, the increase in CNFL after the chemotherapy may indicate nerve regeneration.

  5. Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Esteban, A. [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Horcas, I. [Nanotec Electronica S.L., Centro Empresarial Euronova 3, Ronda de Poniente 12, 28760 Tres Cantos, Madrid (Spain); Hernando-Perez, M. [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Ares, P. [Nanotec Electronica S.L., Centro Empresarial Euronova 3, Ronda de Poniente 12, 28760 Tres Cantos, Madrid (Spain); Perez-Berna, A.J.; San Martin, C.; Carrascosa, J.L. [Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, 28049 Madrid (Spain); Pablo, P.J. de [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Gomez-Herrero, J., E-mail: julio.gomez@uam.es [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-03-15

    Control and minimization of tip-sample interaction forces are imperative tasks to maximize the performance of atomic force microscopy. In particular, when imaging soft biological matter in liquids, the cantilever dragging force prevents identification of the tip-sample mechanical contact, resulting in deleterious interaction with the specimen. In this work we present an improved jumping mode procedure that allows detecting the tip-sample contact with high accuracy, thus minimizing the scanning forces ({approx}100 pN) during the approach cycles. To illustrate this method we report images of human adenovirus and T7 bacteriophage particles which are prone to uncontrolled modifications when using conventional jumping mode. -- Highlights: Black-Right-Pointing-Pointer Improvement in atomic force microscopy in buffer solution. Black-Right-Pointing-Pointer Peak force detection. Black-Right-Pointing-Pointer Subtracting the cantilever dragging force. Black-Right-Pointing-Pointer Forces in the 100 pN range. Black-Right-Pointing-Pointer Imaging of delicate viruses with atomic force microscopy.

  6. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jared M.; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo, E-mail: hwang.458@osu.edu

    2017-01-15

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga{sub 2}O{sub 3} and SrTiO{sub 3}, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra “ripples” at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20–40 mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. - Highlights: • A new electron microscopy technique that can visualize 3D position of point defect is proposed. • The technique relies on the electron de-channeling signals at low scattering angles. • The technique enables precise determination of the depth of vacancies and lighter impurity atoms.

  7. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...... erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes....

  8. Photobleaching correction in fluorescence microscopy images

    International Nuclear Information System (INIS)

    Vicente, Nathalie B; Diaz Zamboni, Javier E; Adur, Javier F; Paravani, Enrique V; Casco, Victor H

    2007-01-01

    Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique

  9. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Science.gov (United States)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  10. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter [Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands)

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  11. Automated detection of fluorescent cells in in-resin fluorescence sections for integrated light and electron microscopy.

    Science.gov (United States)

    Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M

    2018-04-26

    Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  12. Comparison of Rapid Diagnostic Tests and Microscopy for Malaria ...

    African Journals Online (AJOL)

    Presumptive treatment of malaria results in significant overuse of antimalarials. This study compared the diagnostic accuracy of Histidine Rich Protein II and plasmodium lactate dehydrogenase (pLDH)-based Rapid Kits( RDTs)and using expert microscopy as the gold standard for the detection of falciparum and ...

  13. Evaluation of In-Vacuum Imaging Plate Detector for X-Ray Diffraction Microscopy

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Takahashi, Yukio; Yamamoto, Masaki; Ishikawa, Tetsuya

    2007-01-01

    We performed evaluation tests of a newly developed in-vacuum imaging plate (IP) detector for x-ray diffraction microscopy. IP detectors have advantages over direct x-ray detection charge-coupled device (CCD) detectors, which have been commonly used in x-ray diffraction microscopy experiments, in the capabilities for a high photon count and for a wide area. The detector system contains two IPs to make measurement efficient by recording data with the one while reading or erasing the other. We compared speckled diffraction patterns of single particles taken with the IP and a direct x-ray detection CCD. The IP was inferior to the CCD in spatial resolution and in signal-to-noise ratio at a low photon count

  14. Scattering features for lung cancer detection in fibered confocal fluorescence microscopy images.

    Science.gov (United States)

    Rakotomamonjy, Alain; Petitjean, Caroline; Salaün, Mathieu; Thiberville, Luc

    2014-06-01

    To assess the feasibility of lung cancer diagnosis using fibered confocal fluorescence microscopy (FCFM) imaging technique and scattering features for pattern recognition. FCFM imaging technique is a new medical imaging technique for which interest has yet to be established for diagnosis. This paper addresses the problem of lung cancer detection using FCFM images and, as a first contribution, assesses the feasibility of computer-aided diagnosis through these images. Towards this aim, we have built a pattern recognition scheme which involves a feature extraction stage and a classification stage. The second contribution relies on the features used for discrimination. Indeed, we have employed the so-called scattering transform for extracting discriminative features, which are robust to small deformations in the images. We have also compared and combined these features with classical yet powerful features like local binary patterns (LBP) and their variants denoted as local quinary patterns (LQP). We show that scattering features yielded to better recognition performances than classical features like LBP and their LQP variants for the FCFM image classification problems. Another finding is that LBP-based and scattering-based features provide complementary discriminative information and, in some situations, we empirically establish that performance can be improved when jointly using LBP, LQP and scattering features. In this work we analyze the joint capability of FCFM images and scattering features for lung cancer diagnosis. The proposed method achieves a good recognition rate for such a diagnosis problem. It also performs well when used in conjunction with other features for other classical medical imaging classification problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Does dark field microscopy according to Enderlein allow for cancer diagnosis? A prospective study].

    Science.gov (United States)

    El-Safadi, Samer; Tinneberg, Hans-Rudolf; von Georgi, Richard; Münstedt, Karsten; Brück, Friede

    2005-06-01

    Dark field microscopy according to Enderlin claims to be able to detect forthcoming or beginning cancer at an early stage through minute abnormalities in the blood. In Germany and the USA, this method is used by an increasing number of physicians and health practitioners (non-medically qualified complementary practitioners), because this easy test seems to give important information about patients' health status. Can dark field microscopy reliably detect cancer? In the course of a prospective study on iridology, blood samples were drawn for dark field microscopy in 110 patients. A health practitioner with several years of training in the field carried out the examination without prior information about the patients. Out of 12 patients with present tumor metastasis as confirmed by radiological methods (CT, MRI or ultra-sound) 3 were correctly identified. Analysis of sensitivity (0.25), specificity (0.64), positive (0.09) and negative (0.85) predictive values revealed unsatisfactory results. Dark field micoroscopy does not seem to reliably detect the presence of cancer. Clinical use of the method can therefore not be recommended until future studies are conducted.

  16. Two-Photon Probes for Lysosomes and Mitochondria: Simultaneous Detection of Lysosomes and Mitochondria in Live Tissues by Dual-Color Two-Photon Microscopy Imaging.

    Science.gov (United States)

    Lim, Chang Su; Hong, Seung Taek; Ryu, Seong Shick; Kang, Dong Eun; Cho, Bong Rae

    2015-10-01

    Novel two-photon (TP) probes were developed for lysosomes (PLT-yellow) and mitochondria (BMT-blue and PMT-yellow). These probes emitted strong TP-excited fluorescence in cells at widely separated wavelength regions and displayed high organelle selectivity, good cell permeability, low cytotoxicity, and pH insensitivity. The BMT-blue and PLT-yellow probes could be utilized to detect lysosomes and mitochondria simultaneously in live tissues by using dual-color two-photon microscopy, with minimum interference from each other. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. CLINICAL-EVALUATION OF A MODIFIED ELISA, USING PHOTOBIOTINYLATED DNA, FOR THE DETECTION OF ANTI-DNA ANTIBODIES

    NARCIS (Netherlands)

    HYLKEMA, MN; HUYGEN, H; KRAMERS, C; VANDERWAL, TJ; DEJONG, J; VANBRUGGEN, MCJ; SWAAK, AJG; BERDEN, JHM; SMEENK, RJT; Hylkema, Machteld

    1994-01-01

    The measurement of anti-dsDNA antibodies is important for the diagnosis and the follow-up of patients with systemic lupus erythematosus (SLE). For routine detection of anti-dsDNA, the Farr assay and the immunofluorescence technique (IFT) on Crithidia luciliae proved to be very useful. The anti-dsDNA

  18. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity

    International Nuclear Information System (INIS)

    Chen Chuang; Li Yan; Peng Jun; Xu Hao; Tang Hongwu; Zhang Zhiling; Pang Daiwen; Xia Heshun; Wu Qiongshui; Zeng Libo; Zhu Xiaobo

    2010-01-01

    Breast cancer (BC) is a heterogeneous tumor, and better understanding of its heterogeneity is essential to improving treatment effect. Quantum dot (QD)-based immunofluorescent nanotechnology (QD-IHC) for molecular pathology has potential advantages in delineating tumor heterogeneity. This potential is explored in this paper by QD-IHC imaging of HER2 and ER. BC heterogeneity can be displayed more clearly and sensitively by QD-IHC than conventional IHC in BC tissue microarrays. Furthermore, the simultaneous imaging of ER and HER2 might help understand their interactions during the process of evolution of heterogeneous BC.

  19. Study on pretreatment of FPS-1 in rats with hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Lin, Shiqing; Liu, Kexuan; Wu, Weikang; Chen, Chao; Wang, Zhi; Zhang, Xuanhong

    2009-01-01

    This study was designed to determine whether FPS-1, the water-soluble polysaccharide isolated from fuzi, protected against hepatic damage in hepatic ischemia-reperfusion injury in rats, and its mechanism. SD rats were subjected to 60 min of hepatic ischemia, followed by 120 min reperfusion. FPS-1 (160 mg/kg/day) was administered orally for 5 days before ischemia-reperfusion injury in treatment group. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin (ALB) were assayed to evaluate liver functions. Liver samples were taken for histological examination and determination of malondialdehyde (MDA), superoxide dismutase (SOD), that catalase (CAT) in liver. Na(+)-K(+)-ATPase and Ca(2+)-ATPase in mitochondria were measured with colorimetry method. Morphological changes were also investigated by using both light microscopy and electron microscopy (EM). In addition, apoptosis and oncosis were detected by Annexin V-FITC/PI immunofluorescent flow cytometry analysis. Serum AST and ALT levels were elevated in groups exposed to ischemia-reperfusion (p FPS-1 reversed all these biochemical parameters as well as histological alterations, evidently by increased SOD, CAT, reduced MDA and histological scores compared to the model group (p FPS-1 could attenuate the necrotic states by the detection of immunofluorescent flow cytometry analysis. Pretreatment with FPS-1 reduced hepatic ischemia-reperfusion injury through its potent antioxidative effects and attenuation of necrotic states.

  20. CCD-based thermoreflectance microscopy: principles and applications

    International Nuclear Information System (INIS)

    Farzaneh, M; Maize, K; Shakouri, A; Lueerssen, D; Summers, J A; Hudgings, Janice A; Mayer, P M; Ram, R J; Raad, P E; Pipe, K P

    2009-01-01

    CCD-based thermoreflectance microscopy has emerged as a high resolution, non-contact imaging technique for thermal profiling and performance and reliability analysis of numerous electronic and optoelectronic devices at the micro-scale. This thermography technique, which is based on measuring the relative change in reflectivity of the device surface as a function of change in temperature, provides high-resolution thermal images that are useful for hot spot detection and failure analysis, mapping of temperature distribution, measurement of thermal transient, optical characterization of photonic devices and measurement of thermal conductivity in thin films. In this paper we review the basic physical principle behind thermoreflectance as a thermography tool, discuss the experimental setup, resolutions achieved, signal processing procedures and calibration techniques, and review the current applications of CCD-based thermoreflectance microscopy in various devices. (topical review)

  1. X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy

    International Nuclear Information System (INIS)

    Fraile Rodriguez, A.; Nolting, F.; Bansmann, J.; Kleibert, A.; Heyderman, L.J.

    2007-01-01

    Photoemission electron microscopy (PEEM) was employed for X-ray imaging and absorption spectroscopy of individual cobalt nanoparticles as small as 8 nm grown using an arc ion cluster source. Using lithographic markers on the samples we were able to identify the same particles with PEEM and scanning electron microscopy. Significant variations in the shape of the X-ray absorption spectra between different cobalt particles were detected. Furthermore, our data suggest that distinctive spectral information about the individual particles, such as the quenching of oxide-related features and changes in the cobalt L 3 -edge intensity, cancel out and cannot be detected in the measurement over an ensemble of particles

  2. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    2017-05-01

    Full Text Available Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Resumo: Objetivo: Avaliar o teste QuickVue® RSV Test Kit (QUIDEL Corp, CA, EUA para o diagn

  3. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Science.gov (United States)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  4. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy

    NARCIS (Netherlands)

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-01-01

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to

  5. Original Research. Photoacoustic Microscopy in Dental Medicine

    Directory of Open Access Journals (Sweden)

    Stan Adrian Tudor

    2017-03-01

    Full Text Available Introduction: Photoacoustic microscopy, also known as optoacoustic imaging, is a comparatively new method of investigation in dental medicine, which uses a laser-generated ultrasound (short laser pulses to achieve images for interpretation. Photoacoustic microscopy can be used in a broad spectrum, from detecting tooth decay at its earliest stages to dental anatomy analysis. Material and methods: The energy emitted by the photoacoustic pulse is moderately absorbed by the target and exchanged into heat, leading to a local transitory temperature upsurge. The tension propagates and grows as ultrasonic waves, distinguished by the ultrasonic transducers which are planted apart from the tissue. The photoacoustic microscope has a tunable dye laser which passes through a condensing lens, an objective and ultimately an ultrasonic transducer attached to an acoustic lens to capture and receive information about the scanned probe from a sample moved on the X, Y dimensions. Results: The precise anatomy of layered concentric structures can be clearly observed in photoacoustic microscopy. The image value of the inner layer can be higher, indicating strong optical absorption, while the image value of the outer layer is lower, indicating weaker optical absorption. Meanwhile, the inner layer has the exact same size as the dentin structure and the outer layer has the exact same size as the enamel structure in this cross-section. Conclusions: The photoacoustic microscope (all-optical comes out to be a future and promising tool for detecting early-stage caries and lesions on the surface of the teeth, where micro-leakage occurs at the interface of tooth restoration, and also the anatomy of dental tissues.

  6. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  7. Bovine tuberculosis in South Darfur State, Sudan: an abattoir study based on microscopy and molecular detection methods.

    Science.gov (United States)

    Asil, El Tigani A; El Sanousi, Sulieman M; Gameel, Ahmed; El Beir, Haytham; Fathelrahman, Maha; Terab, Nasir M; Muaz, Magzoub A; Hamid, Mohamed E

    2013-02-01

    Bovine tuberculosis (BTB) is a widespread zoonosis in developing countries but has received little attention in many sub-Saharan African countries including Sudan and particularly in some parts such as Darfur states. This study aimed to detect bovine tuberculosis among caseous materials of cattle slaughtered in abattoirs in South Darfur State, Sudan by using microscopic and PCR-based methods. The study was a cross-sectional abattoir-based study which examined a total of 6,680 bovine carcasses for caseous lesions in South Darfur State between 2007 and 2009. Collected specimens were examined for the presence of acid-fast bacilli (AFB) by using microscopic and culture techniques. Isolated mycobacteria were identified by selected conventional cultural and biochemical tests in comparison to a single tube multiplex PCR (m-PCR) assay which detect Mycobacterium bovis-specific 168-bp amplicons. Of the total 6,680 slaughtered cattle examined in South Darfur, 400 (6 %) showed caseations restricted to lymph nodes (86.8 %) or generalized (13.2 %). Bovine tuberculosis was diagnosed in 12 (0.18 %), bovine farcy in 59 (0.88 %), unidentified mycobacteria in 6 (0.09 %), and missed or contaminated cultures in 7 (0.1 %). Out of 18 cultures with nonbranching acid-fast rods, 12 amplified unique 168-bp sequence specific for M. bovis and subsequently confirmed as M. bovis. With the exception of the reference M. tuberculosis strains, none of the remaining AFB amplified the 337-bp amplicon specific for M. tuberculosis. It could be concluded that bovine tuberculosis is prevalent among cattle in South Darfur representing 4.5 % from all slaughtered cattle with caseous lesions. The study sustains microscopy as a useful and accessible technique for detecting AFB. m-PCR assay proved to be valuable for confirmation of BTB and its differentiation from other related mycobacteriosis, notably bovine farcy.

  8. Detection of thrombocytic antibodies with the direct and indirect haemolysis inhibition test and the radioimmuno-Coombs test

    International Nuclear Information System (INIS)

    Mettenboerger, D.; Vith, E.

    1982-01-01

    Methods of application of the direct and indirect haemolysis inhibition test were studied in order to optimise the test parameters: The ultimate aim was to standardize the test method and compare its sensitivity in detecting various platelet antibodies with platelet indirect radioactive Coombs-test and the platelet immunofluorescence test. (orig.) [de

  9. [Standardized indirect immunofluorescence. Differentiation of mitochondrial, microsomal and ribosomal antibodies].

    Science.gov (United States)

    Storch, W

    1977-02-15

    By an extensive standardisation of the indirect immunofluorescence for the demonstration espeially of mitochondrial antibodies we succeeded in recognizing atypical fluorescence patterns and in describing their exact localisation. On the basis of absorption studies with mitochondrias, microsomas and ribosomas by comparative observation of sections of liver, stomach and kidneys of rats the preferred sort of reaction and the intensity of fluorescence of antibodies against mitochondria, microsomas and ribosomas were empirically established. Antimitochondrial antibodies react above all with the parietal cells of the stomach and the distal epithelia of the tubulus of the kidney. Antibodies against microsomas of liver and kidney are characterized by a brilliant diffuse cytoplasmatic fluorescence of the hepatocytes and by a comparatively weaker fluorescence of exclusively proximal tubuli of the kidneys of rats. Antibodies against ribosomas lead to a fluorescence especially of the main cells of the stomach. The differentiation of several cytoplasmatic antibodies is among others of interest for the diagnosis of certain autoimmune diseases. Although there are numerous still unclear findings and "overlap" phenomena the existence of high titre antibodies against mitochondrias speaks for a primarily biliary cirrhosis or a pseudo-LE-syndrome, the existence of antibodies against microsomas of kidney and liver of rats for a special form of a chronically active hepatitis and the existence of the very rare antibodies against ribosomas for an active lupus erythematodes disseminatus.

  10. Plasmodium spp. and Haemoproteus spp. infection in birds of the Brazilian Atlantic Forest detected by microscopy and polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Raquel Tostes

    2015-01-01

    Full Text Available In recent years haemosporidian infection by protozoa of the genus Plasmodium and Haemoproteus, has been considered one of the most important factors related to the extinction and/or population decline of several species of birds worldwide. In Brazil, despite the large avian biodiversity, few studies have been designed to detect this infection, especially among wild birds in captivity. Thus, the objective of this study was to analyze the prevalence of Plasmodium spp. and Haemoproteus spp. infection in wild birds in captivity in the Atlantic Forest of southeastern Brazil using microscopy and the polymerase chain reaction. Blood samples of 119 different species of birds kept in captivity at IBAMA during the period of July 2011 to July 2012 were collected. The parasite density was determined based only on readings of blood smears by light microscopy. The mean prevalence of Plasmodium spp. and Haemoproteus spp. infection obtained through the microscopic examination of blood smears and PCR were similar (83.19% and 81.3%, respectively, with Caracara plancus and Saltator similis being the most parasitized. The mean parasitemia determined by the microscopic counting of evolutionary forms of Plasmodium spp. and Haemoproteus spp. was 1.51%. The results obtained from this study reinforce the importance of the handling of captive birds, especially when they will be reintroduced into the wild.

  11. Quantification of photoacoustic microscopy images for ovarian cancer detection

    Science.gov (United States)

    Wang, Tianheng; Yang, Yi; Alqasemi, Umar; Kumavor, Patrick D.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2014-03-01

    In this paper, human ovarian tissues with malignant and benign features were imaged ex vivo by using an opticalresolution photoacoustic microscopy (OR-PAM) system. Several features were quantitatively extracted from PAM images to describe photoacoustic signal distributions and fluctuations. 106 PAM images from 18 human ovaries were classified by applying those extracted features to a logistic prediction model. 57 images from 9 ovaries were used as a training set to train the logistic model, and 49 images from another 9 ovaries were used to test our prediction model. We assumed that if one image from one malignant ovary was classified as malignant, it is sufficient to classify this ovary as malignant. For the training set, we achieved 100% sensitivity and 83.3% specificity; for testing set, we achieved 100% sensitivity and 66.7% specificity. These preliminary results demonstrate that PAM could be extremely valuable in assisting and guiding surgeons for in vivo evaluation of ovarian tissue.

  12. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  13. French Society of Microscopy, 10. conference; Societe Francaise des Microscopies, 10. colloque

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Penisson, J; Cremer, Ch; Susini, J; Kirklanda, A I; Rigneault, H; Renault, O; Bailly, A; Zagonel, L F; Barrett, N; Bogner, A; Gauthier, C; Jouneau, P H; Thollet, G; Fuchs, G; Basset, D; Deconihout, B; Vurpillot, F; Vella, A; Matthieu, G; Cadel, E; Bostel, A; Blavette, D; Baumeister, W; Usson, Y; Zaefferer, St; Laffont, L; Weyland, M; Thomas, J M; Midgley, P; Benlekbir, S; Epicier, Th; Diop, B N; Roux, St; Ou, M; Perriat, P; Bausach, M; Aouine, M; Berhault, G; Idrissi, H; Cottevieille, M; Jonic, S; Larquet, E; Svergun, D; Vannoni, M A; Boisset, N; Ersena, O; Werckmann, J; Ulhaq, C; Hirlimann, Ch; Tihay, F; Cuong, Pham-Huu; Crucifix, C; Schultz, P; Jornsanoha, P; Thollet, G; Masenelli-Varlot, K; Gauthier, C; Ludwig, W; King, A; Johnson, G; Gonzalves-Hoennicke, M; Reischig, P; Messaoudi, C; Ibrahim, R; Marco, S; Klie, R F; Zhao, Y; Yang, G; Zhu, Y; Hue, F; Hytch, M; Hartmann, J M; Bogumilowicz, Y; Claverie, A; Klein, H; Alloyeau, D; Ricolleau, C; Langlois, C; Le Bouar, Y; Loiseau, A; Colliex, C; Stephan, O; Kociak, M; Tence, M; Gloter, A; Imhoff, D; Walls, M; Nelayah, J; March, K; Couillard, M; Ailliot, C; Bertin, F; Cooper, D; Rivallin, P; Dumelie, N; Benhayoune, H; Balossier, G; Cheynet, M; Pokrant, S; Tichelaar, F; Rouviere, J L; Cooper, D; Truche, R; Chabli, A; Debili, M Y; Houdellier, F; Warot-Fonrose, B; Hytch, M J; Snoeck, E; Calmels, L; Serin, V; Schattschneider, P; Jacob, D; Cordier, P

    2007-07-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals.

  14. Proliferative, necrotizing and crescentic immune complex-mediated glomerulonephritis in a cat

    Directory of Open Access Journals (Sweden)

    Carolyn Gross

    2015-09-01

    Full Text Available Case Summary A 5-year-old cat was examined for vomiting and anorexia of 2 days’ duration. Azotemia, hyperphosphatemia and hypoalbuminemia were the main biochemical findings. Serial analyses of the urine revealed isosthenuria, proteinuria and eventual glucosuria. Hyperechoic perirenal fat was detected surrounding the right kidney by ultrasonography. Histopathologic evaluation of ante-mortem ultrasound-guided needle biopsies of the right kidney was consistent with proliferative, necrotizing and crescentic glomerulonephritis with fibrin thrombi, proteinaceous and red blood cell casts, and moderate multifocal chronic-active interstitial nephritis. Owing to a lack of clinical improvement, the cat was eventually euthanized. Post-mortem renal biopsies were processed for light microscopy, transmission electron microscopy and immunofluorescence. This revealed severe focal proliferative and necrotizing glomerulonephritis with cellular crescent formation, podocyte injury and secondary segmental sclerosis. Ultrastructural analysis revealed scattered electron-dense deposits in the mesangium, and immunofluorescence demonstrated positive granular staining for λ light chains, consistent with immune complex-mediated glomerulonephritis. Severe diffuse acute tubular epithelial injury and numerous red blood cell casts were also seen. Relevance and novel information To our knowledge, this is the first report of naturally occurring proliferative, necrotizing and crescentic immune complex glomerulonephritis in a cat.

  15. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).

    Science.gov (United States)

    Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K

    2017-06-28

    Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization

  16. Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Nocera, Tanya M; Agarwal, Gunjan; Chen Jun; Murray, Christopher B

    2012-01-01

    In recent years, superparamagnetic nanoparticles (SPNs) have become increasingly important in applications ranging from solid state memory devices to biomedical diagnostic and therapeutic tools. However, detection and characterization of the small and unstable magnetic moment of an SPN at the single particle level remains a challenge. Further, depending on their physical shape, crystalline structure or orientation, SPNs may also possess magnetic anisotropy, which can govern the extent to which their magnetic moments can align with an externally applied magnetic field. Here, we demonstrate how we can exploit the magnetic anisotropy of SPNs to enable uniform, highly-sensitive detection of single SPNs using magnetic force microscopy (MFM) in ambient air. Superconducting quantum interference device magnetometry and analytical transmission electron microscopy techniques are utilized to characterize the collective magnetic behavior, morphology and composition of the SPNs. Our results show how the consideration of magnetic anisotropy can enhance the ability of MFM to detect single SPNs at ambient room temperature with high force sensitivity and spatial resolution. (paper)

  17. Optical microscope illumination analysis using through-focus scanning optical microscopy.

    Science.gov (United States)

    Attota, Ravi Kiran; Park, Haesung

    2017-06-15

    Misalignment of the aperture diaphragm present in optical microscopes results in angular illumination asymmetry (ANILAS) at the sample plane. Here we show that through-focus propagation of ANILAS results in a lateral image shift with a focus position. This could lead to substantial errors in quantitative results for optical methods that use through-focus images such as three-dimensional nanoparticle tracking, confocal microscopy, and through-focus scanning optical microscopy (TSOM). A correlation exists between ANILAS and the slant in TSOM images. Hence, the slant in the TSOM image can be used to detect, analyze, and rectify the presence of ANILAS.

  18. Diagnosis of intestinal parasites in a rural community of Venezuela: Advantages and disadvantages of using microscopy or RT-PCR.

    Science.gov (United States)

    Incani, Renzo Nino; Ferrer, Elizabeth; Hoek, Denise; Ramak, Robbert; Roelfsema, Jeroen; Mughini-Gras, Lapo; Kortbeek, Titia; Pinelli, Elena

    2017-03-01

    A cross-sectional study was carried out to determine the prevalence and diagnostic performance of microscopy and real time PCR (RT-PCR) for 14 intestinal parasites in a Venezuelan rural community with a long history of persistent intestinal parasitic infections despite the implementation of regular anthelminthic treatments. A total of 228 participants were included in this study. A multiplex RT-PCR was used for the detection of Dientamoeba fragilis, Giardia intestinalis, Cryptosporidium sp. and a monoplex RT-PCR for Entamoeba histolytica. Furthermore, a multiplex PCR was performed for detection of Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. Combined microscopy-PCR revealed prevalences of 49.3% for A. lumbricoides, 10.1% for N. americanus (no A. duodenale was detected), 2.0% for S. stercoralis, 40.4% for D. fragilis, 35.1% for G. intestinalis, and 7.9% for E. histolytica/dispar. Significant increases in prevalence at PCR vs. microscopy were found for A. lumbricoides, G. intestinalis and D. fragilis. Other parasites detected by microscopy alone were Trichuris trichiura (25.7%), Enterobius vermicularis (3.4%), Blastocystis sp. (65.8%), and the non-pathogenic Entamoeba coli (28.9%), Entamoeba hartmanni (12.3%), Endolimax nana (19.7%) and Iodamoeba bütschlii (7.5%). Age- but no gender-related differences in prevalences were found for A. lumbricoides, T. trichiura, G. intestinalis, and E. histolytica/dispar. The persistently high prevalences of intestinal helminths are probably related to the high faecal pollution as also evidenced by the high prevalences of non-pathogenic intestinal protozoans. These results highlight the importance of using sensitive diagnostic techniques in combination with microscopy to better estimate the prevalence of intestinal parasites, especially in the case of D. fragilis trophozoites, which deteriorate very rapidly and would be missed by microscopy. In addition, the differentiation between

  19. An approach to spin-resolved molecular gas microscopy

    Science.gov (United States)

    Covey, Jacob P.; De Marco, Luigi; Acevedo, Óscar L.; Rey, Ana Maria; Ye, Jun

    2018-04-01

    Ultracold polar molecules are an ideal platform for studying many-body physics with long-range dipolar interactions. Experiments in this field have progressed enormously, and several groups are pursuing advanced apparatus for manipulation of molecules with electric fields as well as single-atom-resolved in situ detection. Such detection has become ubiquitous for atoms in optical lattices and tweezer arrays, but has yet to be demonstrated for ultracold polar molecules. Here we present a proposal for the implementation of site-resolved microscopy for polar molecules, and specifically discuss a technique for spin-resolved molecular detection. We use numerical simulation of spin dynamics of lattice-confined polar molecules to show how such a scheme would be of utility in a spin-diffusion experiment.

  20. Staining pattern classification of antinuclear autoantibodies based on block segmentation in indirect immunofluorescence images.

    Directory of Open Access Journals (Sweden)

    Jiaqian Li

    Full Text Available Indirect immunofluorescence based on HEp-2 cell substrate is the most commonly used staining method for antinuclear autoantibodies associated with different types of autoimmune pathologies. The aim of this paper is to design an automatic system to identify the staining patterns based on block segmentation compared to the cell segmentation most used in previous research. Various feature descriptors and classifiers are tested and compared in the classification of the staining pattern of blocks and it is found that the technique of the combination of the local binary pattern and the k-nearest neighbor algorithm achieve the best performance. Relying on the results of block pattern classification, experiments on the whole images show that classifier fusion rules are able to identify the staining patterns of the whole well (specimen image with a total accuracy of about 94.62%.

  1. Imaging of RNA in situ hybridization by atomic force microscopy

    NARCIS (Netherlands)

    Kalle, W.H.J.; Macville, M.V.E.; van de Corput, M.P.C.; de Grooth, B.G.; Tanke, H.J.; Raap, A.K.

    In this study we investigated the possibility of imaging internal cellular molecules after cytochemical detection with atomic force microscopy (AFM). To this end, rat 9G and HeLa cells were hybridized with haptenized probes for 28S ribosomal RNA, human elongation factor mRNA and cytomegalovirus

  2. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    International Nuclear Information System (INIS)

    Duman, M; Pfleger, M; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Ebner, A; Schuetz, G J; Hinterdorfer, P; Zhu, R; Mayer, B; Rankl, C; Moertelmaier, M; Kada, G; Kienberger, F; Salio, M; Shepherd, D; Polzella, P; Cerundolo, V; Dieudonne, M

    2010-01-01

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ∼ 25 to ∼ 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  3. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    Science.gov (United States)

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Duman, M; Pfleger, M; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Ebner, A; Schuetz, G J; Hinterdorfer, P [Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Zhu, R; Mayer, B [Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Rankl, C; Moertelmaier, M; Kada, G; Kienberger, F [Agilent Technologies Austria GmbH, Aubrunnerweg 11, A-4040 Linz (Austria); Salio, M; Shepherd, D; Polzella, P; Cerundolo, V [Cancer Research UK Tumor Immunology Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS (United Kingdom); Dieudonne, M, E-mail: ferry_kienberger@agilent.com [Agilent Technologies Belgium, Wingepark 51, Rotselaar, AN B-3110 (Belgium)

    2010-03-19

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on {alpha}-galactosylceramide ({alpha}GalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from {approx} 25 to {approx} 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  5. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  6. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection

    DEFF Research Database (Denmark)

    Ernstsen, Christina Lundgaard; Login, Frédéric H.; Jensen, Helene Halkjær

    2017-01-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacteria...

  7. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy

    Science.gov (United States)

    Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying

    2015-01-01

    AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718

  8. Label-free evaluation of hepatic microvesicular steatosis with multimodal coherent anti-Stokes Raman scattering microscopy.

    Directory of Open Access Journals (Sweden)

    Thuc T Le

    Full Text Available Hepatic microvesicular steatosis is a hallmark of drug-induced hepatotoxicity and early-stage fatty liver disease. Current histopathology techniques are inadequate for the clinical evaluation of hepatic microvesicular steatosis. In this paper, we explore the use of multimodal coherent anti-Stokes Raman scattering (CARS microscopy for the detection and characterization of hepatic microvesicular steatosis. We show that CARS microscopy is more sensitive than Oil Red O histology for the detection of microvesicular steatosis. Computer-assisted analysis of liver lipid level based on CARS signal intensity is consistent with triglyceride measurement using a standard biochemical assay. Most importantly, in a single measurement procedure on unprocessed and unstained liver tissues, multimodal CARS imaging provides a wealth of critical information including the detection of microvesicular steatosis and quantitation of liver lipid content, number and size of lipid droplets, and lipid unsaturation and packing order of lipid droplets. Such information can only be assessed by multiple different methods on processed and stained liver tissues or tissue extracts using current standard analytical techniques. Multimodal CARS microscopy also permits label-free identification of lipid-rich non-parenchymal cells. In addition, label-free and non-perturbative CARS imaging allow rapid screening of mitochondrial toxins-induced microvesicular steatosis in primary hepatocyte cultures. With its sensitivity and versatility, multimodal CARS microscopy should be a powerful tool for the clinical evaluation of hepatic microvesicular steatosis.

  9. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  10. Image formation and image analysis in electron microscopy

    International Nuclear Information System (INIS)

    Heel, M. van.

    1981-01-01

    This thesis covers various aspects of image formation and image analysis in electron microscopy. The imaging of relatively strong objects in partially coherent illumination, the coherence properties of thermionic emission sources and the detection of objects in quantum noise limited images are considered. IMAGIC, a fast, flexible and friendly image analysis software package is described. Intelligent averaging of molecular images is discussed. (C.F.)

  11. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    Science.gov (United States)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  12. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  13. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    M.A. Malik

    2013-01-01

    Full Text Available Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Ramanmicroscopy in the composites microstructure.

  14. Lactoferrin targets T cells in the small intestine

    DEFF Research Database (Denmark)

    Nielsen, Sanne Mie; Hansen, Gert Helge; Danielsen, E Michael

    2010-01-01

    BACKGROUND: Lactoferrin (Lf) belongs to the transferrin family of non-heme iron-binding proteins and is found in milk and mucosal secretions. Consequently, it is now considered a multifunctional protein mainly involved in both the innate and adaptive immune defenses of the organism against various...... explants of pig small intestine by immunofluorescence and immunogold microscopy. RESULTS: Lf rapidly bound to the brush border and subsequently appeared in punctae in the apical cytoplasm, indicating internalization into an endosomal compartment. Essentially, no labeling was detected elsewhere...

  15. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    Science.gov (United States)

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  16. Performance of microscopy and ELISA for diagnosing Giardia duodenalis infection in different pediatric groups.

    Science.gov (United States)

    Silva, Renata K N R; Pacheco, Flávia T F; Martins, Adson S; Menezes, Joelma F; Costa-Ribeiro, Hugo; Ribeiro, Tereza C M; Mattos, Ângela P; Oliveira, Ricardo R; Soares, Neci M; Teixeira, Márcia C A

    2016-12-01

    Techniques for Giardia diagnosis based on microscopy are usually applied as routine laboratory testing; however, they typically exhibit low sensitivity. This study aimed to evaluate Giardia duodenalis and other intestinal parasitic infections in different pediatric groups, with an emphasis on the comparison of Giardia diagnostic techniques. Feces from 824 children from different groups (diarrheic, malnourished, with cancer and from day care) were examined by microscopy and ELISA for Giardia, Cryptosporidium sp. and Entamoeba histolytica coproantigen detection. Giardia-positive samples from day-care children, identified by either microscopy or ELISA, were further tested by PCR targeting of the β-giardin and Gdh genes. Statistically significant differences (Psp. in diarrheic and malnourished groups; infections by Entamoeba histolytica were found only in children with diarrhea. Considering positivity for Giardia by at least one method, ELISA was found to be more sensitive than microscopy (97% versus 55%). To examine discrepancies among the diagnostic methods, 71 Giardia-positive stool samples from day-care children were tested by PCR; of these, DNA was amplified from 51 samples (77.4%). Concordance of positivity between microscopy and ELISA was found for 48 samples, with 43 confirmed by PCR. Parasite DNA was amplified from eleven of the 20 Giardia samples (55%) identified only by ELISA. This study shows the higher sensitivity of ELISA over microscopy for Giardia diagnosis when a single sample is analyzed and emphasizes the need for methods based on coproantigen detection to identify this parasite in diarrheic fecal samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  18. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    Hartsuiker, L.; van Es, P.; Petersen, W.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  19. Confocal microscopy as an early relapse marker for acanthamoeba keratitis.

    Science.gov (United States)

    Daas, Loay; Viestenz, Arne; Schnabel, Philipp Albert; Fries, Fabian N; Hager, Tobias; SzentmÁry, Nora; Seitz, Berthold

    2018-01-01

    Acanthameoba keratitis is a serious ophthalmological condition with a potentially vision-threatening prognosis. Early diagnosis and recognition of relapse, and the detection of persistent Acanthamoeba cysts, are essential for informing the prognosis and managing the condition. We suggest the use of in vivo confocal microscopy not only to identify the early signs of relapse after keratoplasty in patients with Acanthamoeba keratitis, but also as an additional follow-up tool after antimicrobial crosslinking. This study shows that in vivo confocal microscopy is, in experienced hands, a quick and reliable diagnostic tool. Clin. Anat. 31:60-63, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy

    Science.gov (United States)

    Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.

    1996-01-01

    Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.

  1. HEMORRHAGIC-FEVER VIRUS-INFECTIONS IN AN ISOLATED RAIN-FOREST AREA OF CENTRAL LIBERIA - LIMITATIONS OF THE INDIRECT IMMUNOFLUORESCENCE SLIDE TEST FOR ANTIBODY SCREENING IN AFRICA

    NARCIS (Netherlands)

    van der Waals, F. W.; Pomeroy, K. L.; Goudsmit, J.; Asher, D. M.; Gajdusek, D. C.

    1986-01-01

    Serum samples from 119 healthy individuals and 106 epilepsy patients inhabiting Grand Bassa County, Liberia, were tested for antibodies to hemorrhagic fever viruses (HFV) by indirect immunofluorescence. E6 Vero cells infected with Lassa fever virus (LAS), Rift Valley Fever virus (RVF), Congo

  2. Detection of dengue group viruses by fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Raquin Vincent

    2012-10-01

    Full Text Available Abstract Background Dengue fever (DF and dengue hemorrhagic fever (DHF represent a global challenge in public health. It is estimated that 50 to 100 million infections occur each year causing approximately 20,000 deaths that are usually linked to severe cases like DHF and dengue shock syndrome. The causative agent of DF is dengue virus (genus Flavivirus that comprises four distinct serotypes (DENV-1 to DENV-4. Fluorescence in situ hybridization (FISH has been used successfully to detect pathogenic agents, but has not been implemented in detecting DENV. To improve our understanding of DENV infection and dissemination in host tissues, we designed specific probes to detect DENV in FISH assays. Methods Oligonucleotide probes were designed to hybridize with RNA from the broadest range of DENV isolates belonging to the four serotypes, but not to the closest Flavivirus genomes. Three probes that fit the criteria defined for FISH experiments were selected, targeting both coding and non-coding regions of the DENV genome. These probes were tested in FISH assays against the dengue vector Aedes albopictus (Diptera: Culicidae. The FISH experiments were led in vitro using the C6/36 cell line, and in vivo against dissected salivary glands, with epifluorescence and confocal microscopy. Results The three 60-nt oligonucleotides probes DENV-Probe A, B and C cover a broad range of DENV isolates from the four serotypes. When the three probes were used together, specific fluorescent signals were observed in C6/36 infected with each DENV serotypes. No signal was detected in either cells infected with close Flavivirus members West Nile virus or yellow fever virus. The same protocol was used on salivary glands of Ae. albopictus fed with a DENV-2 infectious blood-meal which showed positive signals in the lateral lobes of infected samples, with no significant signal in uninfected mosquitoes. Conclusion Based on the FISH technique, we propose a way to design and use

  3. Detection of Rickettsia felis in Wild Mammals from Three Municipalities in Yucatan, Mexico.

    Science.gov (United States)

    Panti-May, Jesús Alonso; Torres-Castro, Marco; Hernández-Betancourt, Silvia; Dzul-Rosado, Karla; Zavala-Castro, Jorge; López-Avila, Karina; Tello-Martín, Raúl

    2015-09-01

    The aim of this study was to provide information of the occurrence of Rickettsia felis in wild mammals from three municipalities in Yucatan, Mexico. The reactivity of rodent serum to Rickettsia antigens was detected in 80.9% (17 of 21) samples using immunofluorescence assay. Polymerase chain reaction identified rickettsial DNA in spleens of 43.5% (10 of 23) rodents and 57.1% (4 of 7) opossums. The identification of the rickettsial DNA was confirmed as R. felis by restriction fragment length polymorphism and DNA sequencing. This study comprises the first report of R. felis detection in wild mammals in Yucatan.

  4. Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping

    Science.gov (United States)

    Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung

    2017-08-01

    Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.

  5. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-01-01

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal

  6. Aquaporin-4 autoantibodies in neuromyelitis optica spectrum disorders: comparison between tissue-based and cell-based indirect immunofluorescence assays

    Directory of Open Access Journals (Sweden)

    Chan Koon H

    2010-09-01

    Full Text Available Abstract Background Neuromyelitis optica spectrum disorders (NMOSD are severe central nervous system inflammatory demyelinating disorders (CNS IDD characterized by monophasic or relapsing, longitudinally extensive transverse myelitis (LETM and/or optic neuritis (ON. A significant proportion of NMOSD patients are seropositive for aquaporin-4 (AQP4 autoantibodies. We compared the AQP4 autoantibody detection rates of tissue-based indirect immunofluorescence assay (IIFA and cell-based IIFA. Methods Serum of Chinese CNS IDD patients were assayed for AQP4 autoantibodies by tissue-based IIFA using monkey cerebellum and cell-based IIFA using transfected HEK293 cells which express human AQP4 on their cell membranes. Results In total, 128 CNS IDD patients were studied. We found that 78% of NMO patients were seropositive for AQP4 autoantibodies by cell-based IIFA versus 61% by tissue-based IFA (p = 0.250, 75% of patients having relapsing myelitis (RM with LETM were seropositive by cell-based IIFA versus 50% by tissue-based IIFA (p = 0.250, and 33% of relapsing ON patients were seropositive by cell-based IIFA versus 22% by tissue-based IIFA (p = 1.000; however the differences were not statistically significant. All patients seropositive by tissue-based IIFA were also seropositive for AQP4 autoantibodies by cell-based IIFA. Among 29 NMOSD patients seropositive for AQP4 autoantibodies by cell-based IIFA, 20 (69% were seropositive by tissue-based IIFA. The 9 patients seropositive by cell-based IIFA while seronegative by tissue-based IIFA had NMO (3, RM with LETM (3, a single attack of LETM (1, relapsing ON (1 and a single ON attack (1. Among 23 NMO or RM patients seropositive for AQP4 autoantibodies by cell-based IIFA, comparison between those seropositive (n = 17 and seronegative (n = 6 by tissue-based IIFA revealed no differences in clinical and neuroradiological characteristics between the two groups. Conclusion Cell-based IIFA is slightly more sensitive

  7. A Novel High-Content Immunofluorescence Assay as a Tool to Identify at the Single Cell Level γ-Globin Inducing Compounds.

    Directory of Open Access Journals (Sweden)

    Marta Durlak

    Full Text Available The identification of drugs capable of reactivating γ-globin to ameliorate β-thalassemia and Sickle Cell anemia is still a challenge, as available γ-globin inducers still have limited clinical indications. High-throughput screenings (HTS aimed to identify new potentially therapeutic drugs require suitable first-step-screening methods combining the possibility to detect variation in the γ/β globin ratio with the robustness of a cell line. We took advantage of a K562 cell line variant expressing β-globin (β-K562 to set up a new multiplexed high-content immunofluorescence assay for the quantification of γ- and β-globin content at single-cell level. The assay was validated by using the known globin inducers hemin, hydroxyurea and butyric acid and further tested in a pilot screening that confirmed HDACs as targets for γ-globin induction (as proved by siRNA-mediated HDAC3 knockdown and by treatment with HDACs inhibitors entinostat and dacinostat and identified Heme-oxygenases as novel candidate targets for γ-globin induction. Indeed, Heme-oxygenase2 siRNA knockdown as well as its inhibition by Tin protoporphyrin-IX (TinPPIX greatly increased γ-globin expression. This result is particularly interesting as several metalloporphyrins have already been developed for clinical uses and could be tested (alone or in combination with other drugs to improve pharmacological γ-globin reactivation for the treatment of β-hemoglobinopathies.

  8. Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution.

    Science.gov (United States)

    Coates, Colin G; Denvir, Donal J; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2004-01-01

    The back-illuminated electron multiplying charge-coupled device (EMCCD) camera is having a profound influence on the field of low-light dynamic cellular microscopy, combining highest possible photon collection efficiency with the ability to virtually eliminate the readout noise detection limit. We report here the use of this camera, in 512 x 512 frame-transfer chip format at 10-MHz pixel readout speed, in optimizing a demanding ultra-low-light intracellular calcium flux microscopy setup. The arrangement employed includes a spinning confocal Nipkow disk, which, while facilitating the need to both generate images at very rapid frame rates and minimize background photons, yields very weak signals. The challenge for the camera lies not just in detecting as many of these scarce photons as possible, but also in operating at a frame rate that meets the temporal resolution requirements of many low-light microscopy approaches, a particular demand of smooth muscle calcium flux microscopy. Results presented illustrate both the significant sensitivity improvement offered by this technology over the previous standard in ultra-low-light CCD detection, the GenIII+intensified charge-coupled device (ICCD), and also portray the advanced temporal and spatial resolution capabilities of the EMCCD. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.

  9. A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ishikawa, R.; Sánchez-Santolino, G. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Lugg, N.R., E-mail: shibata@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2017-02-15

    Important properties of functional materials, such as ferroelectric shifts and octahedral distortions, are associated with displacements of the positions of lighter atoms in the unit cell. Annular bright-field scanning transmission electron microscopy is a good experimental method for investigating such phenomena due to its ability to image light and heavy atoms simultaneously. To map atomic positions at the required accuracy precise angular alignment of the sample with the microscope optical axis is necessary, since misalignment (tilt) of the specimen contributes to errors in position measurements of lighter elements in annular bright-field imaging. In this paper it is shown that it is possible to detect tilt with the aid of images recorded using a central bright-field detector placed within the inner radius of the annular bright-field detector. For a probe focus near the middle of the specimen the central bright-field image becomes especially sensitive to tilt and we demonstrate experimentally that misalignment can be detected with a precision of less than a milliradian, as we also confirm in simulation. Coma in the probe, an aberration that can be misidentified as tilt of the specimen, is also investigated and it is shown how the effects of coma and tilt can be differentiated. The effects of tilt may be offset to a large extent by shifting the diffraction plane detector an amount equivalent to the specimen tilt and we provide an experimental proof of principle of this using a segmented detector system. - Highlights: • Octahedral distortions are associated with displacements of lighter atoms. • Annular bright-field imaging is sensitive to light and heavy atoms simultaneously. • Mistilt of the specimen leads to errors in position measurements of lighter elements. • It is possible to detect tilt using images taken by a central bright-field detector. • Tilt may be offset by shifting the diffraction plane detector by an equivalent amount.

  10. Localization of proteins in paint cross-sections by scanning electrochemical microscopy as an alternative immunochemical detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Sciutto, Giorgia; Prati, Silvia [Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Via Guaccimanni 42, Ravenna 48121 (Italy); Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Mazzeo, Rocco, E-mail: rocco.mazzeo@unibo.it [Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Via Guaccimanni 42, Ravenna 48121 (Italy); Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Zangheri, Martina; Roda, Aldo; Bardini, Luca; Valenti, Giovanni; Rapino, Stefania [Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Marcaccio, Massimo, E-mail: massimo.marcaccio@unibo.it [Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy)

    2014-06-01

    Highlights: • Advanced immuno-electrochemical detection of proteins in paint samples by SECM. • Analysis performed directly on cross-section with high spatial resolution. • Identification of HRP catalytic activity for a selective location of analyte. • Satisfactory results were obtained for aged real samples. • The way forward for an extensive application of SECM in conservation science is shown. - Abstract: The qualitative identification of proteinaceous substances, as well as their location within a complex paint stratigraphy, is one of the most challenging issues in the characterization of painting materials. Nevertheless, information on paint components represent a crucial task for studies concerning both the ancient painting techniques adopted and the state of conservation, being fundamental investigations for the selection of appropriate conservation actions. The present research was aimed at developing a new detection approach for the immunochemical localization of ovalbumin in paint cross-sections based on the use of scanning electrochemical microscopy (SECM). The immunochemical analyses were performed using an anti-ovalbumin primary antibody and a secondary antibody labelled with horseradish peroxidase (HRP). SECM measurements were performed in feedback mode using benzoquinone (BQ)/hydroquinone (H{sub 2}Q) redox couple. In presence of hydrogen peroxide (H{sub 2}O{sub 2}), HRP catalyzes the re-oxidation of H{sub 2}Q to BQ and the increment of BQ concentration in correspondence of the target protein was detected by SECM through the electrochemical reduction of the regenerated BQ at the microelectrode. Indeed, the localization of ovalbumin was possible thanks to a clear discrimination of SECM currents, achieved by the comparison of the measurements recorded before and after H{sub 2}O{sub 2} administration, based on the HRP on/off approach. The method was evaluated both on samples from standard mocks-up and on a historical sample, collected from a

  11. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  12. Detection of Mycoplasma hyopneumoniae in Bronchoalveolar Lavage Fluids of Pigs by PCR

    Science.gov (United States)

    Baumeister, A. Katrin; Runge, Martin; Ganter, Martin; Feenstra, Anne A.; Delbeck, Friedrich; Kirchhoff, Helga

    1998-01-01

    In the present investigation we developed a method for the detection of Mycoplasma hyopneumoniae in bronchoalveolar lavage fluid (BALF) of pigs by PCR with a primer pair flanking a DNA fragment of 853 bp specific for M. hyopneumoniae. Several methods were tested to eliminate the amplification inhibitors present in BALFs. The best results were obtained by the extraction of the DNA from the BALFs. By the PCR performed with the extracted DNA, 102 CFU of M. hyopneumoniae could be detected in 1 ml of BALF from specific-pathogen-free swine experimentally inoculated with M. hyopneumoniae. DNA from 11 other mycoplasma species and 17 cell-walled bacterial species colonizing the respiratory tracts of pigs was not amplified. In a field study BALFs from 40 pigs from farms with a history of chronic pneumonia were tested for M. hyopneumoniae by cultivation and by PCR (i) with BALFs incubated in Friis medium and (ii) with DNA extracted from the BALFs. In addition, PCR was performed with postmortem lung washings from 19 of the 40 pigs, and immunofluorescence tests were carried out with sections of lungs from 18 of the 40 pigs. M. hyopneumoniae could not be detected in 18 of the 40 pigs by any of the five methods tested. The remaining 22 pigs showed a positive reaction by the PCR with DNA extracted from the BALFs and variable positive reactions by the other tests. A complete correspondence could be observed between the immunofluorescence test result and the result of PCR with DNA. The investigation shows that the PCR with DNA extracted from BALFs is a suitable technique for the sensitive and specific in vivo detection of M. hyopneumoniae. PMID:9650949

  13. Performance analysis of automated evaluation of Crithidia luciliae-based indirect immunofluorescence tests in a routine setting - strengths and weaknesses.

    Science.gov (United States)

    Hormann, Wymke; Hahn, Melanie; Gerlach, Stefan; Hochstrate, Nicola; Affeldt, Kai; Giesen, Joyce; Fechner, Kai; Damoiseaux, Jan G M C

    2017-11-27

    Antibodies directed against dsDNA are a highly specific diagnostic marker for the presence of systemic lupus erythematosus and of particular importance in its diagnosis. To assess anti-dsDNA antibodies, the Crithidia luciliae-based indirect immunofluorescence test (CLIFT) is one of the assays considered to be the best choice. To overcome the drawback of subjective result interpretation that inheres indirect immunofluorescence assays in general, automated systems have been introduced into the market during the last years. Among these systems is the EUROPattern Suite, an advanced automated fluorescence microscope equipped with different software packages, capable of automated pattern interpretation and result suggestion for ANA, ANCA and CLIFT analysis. We analyzed the performance of the EUROPattern Suite with its automated fluorescence interpretation for CLIFT in a routine setting, reflecting the everyday life of a diagnostic laboratory. Three hundred and twelve consecutive samples were collected, sent to the Central Diagnostic Laboratory of the Maastricht University Medical Centre with a request for anti-dsDNA analysis over a period of 7 months. Agreement between EUROPattern assay analysis and the visual read was 93.3%. Sensitivity and specificity were 94.1% and 93.2%, respectively. The EUROPattern Suite performed reliably and greatly supported result interpretation. Automated image acquisition is readily performed and automated image classification gives a reliable recommendation for assay evaluation to the operator. The EUROPattern Suite optimizes workflow and contributes to standardization between different operators or laboratories.

  14. New microscopy for nanoimaging

    CERN Document Server

    Kinjo, Y; Watanabe, M

    2002-01-01

    Two types of new microscopy, namely, X-ray contact microscopy (XRCM) in combination with atomic force microscopy (AFM) and X-ray projection microscopy (XRPM) using synchrotron radiation and zone plate optics were used to image the fine structures of human chromosomes. In the XRCM plus AFM system, location of X-ray images on a photoresist has become far easier than that with our previous method using transmission electron microscopy coupled with the replica method. In addition, the images obtained suggested that the conformation of chromatin fiber differs from the current textbook model regarding the architecture of a eukaryotic chromosome. X-ray images with high contrast of the specimens could be obtained with XRPM. The resolution of each microscopy was about 30 and 200-300 nm for XRCM plus AFM and XRPM, respectively. (author)

  15. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  16. Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination

    Science.gov (United States)

    Wolenski, Joseph S.; Julich, Doerthe

    2014-01-01

    Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy. PMID:24600334

  17. Automated quantitative cytological analysis using portable microfluidic microscopy.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultrafast photon counting applied to resonant scanning STED microscopy.

    Science.gov (United States)

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  19. Current mapping of low-energy (120 eV) helium and hydrogen irradiated tungsten by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Endo, Takashi [Nano-micro Materials Analysis Laboratory, Hokkaido University, Sapporo (Japan); Bi, Zhenghua; Yan, Weibin [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Ohnuki, Somei [Nano-micro Materials Analysis Laboratory, Hokkaido University, Sapporo (Japan); Yang, Qi; Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China)

    2017-04-01

    Both conductive atomic force microscopy (CAFM) and transmission electron microscopy have been used to characterize the defects or He bubbles in low-energy (120 eV) H and He irradiated tungsten (W). By a comparative study, we find that the current mapping from CAFM is very sensitive in the detection of nanometer-sized defects in low-energy H and He irradiated W. Our calculation confirms that the resistance change in H and He irradiated W is strongly affected by the distance between atomic force microscopy tip and defects/He bubbles. CAFM can accurately detect defects/He bubbles in the W surface layer, however, it is infeasible to measure them in the deep layer (>20 nm), especially due to the existence of defects in the surface layer.

  20. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R

    1988-01-01

    chondroitin sulfate proteoglycan is present in adult, neonatal, and/or fetal skin, and if present, its ultrastructural localization. Indirect immunofluorescence was performed on human adult, neonatal, and fetal skin. To detect the antigen, specimens were pretreated with chondroitinase ABC; absence of enzyme...... treatment served as negative control. Chondroitin sulfate proteoglycan was detectable in linear homogeneous array along the dermoepidermal junction and within vascular (and when present, adnexal) basement membranes in both adult and neonatal skin. In fetal skin, basement membrane staining was noted as early...... as 54 gestational days. Indirect immunoelectron microscopy and NaCl-split skin studies were performed to ultrastructurally localize the antigen; immune deposits were detectable within the lamina densa in chondroitinase-treated skin. These findings demonstrate that chondroitin sulfate proteoglycan...

  1. Spatial Mixture Modelling for Unobserved Point Processes: Examples in Immunofluorescence Histology.

    Science.gov (United States)

    Ji, Chunlin; Merl, Daniel; Kepler, Thomas B; West, Mike

    2009-12-04

    We discuss Bayesian modelling and computational methods in analysis of indirectly observed spatial point processes. The context involves noisy measurements on an underlying point process that provide indirect and noisy data on locations of point outcomes. We are interested in problems in which the spatial intensity function may be highly heterogenous, and so is modelled via flexible nonparametric Bayesian mixture models. Analysis aims to estimate the underlying intensity function and the abundance of realized but unobserved points. Our motivating applications involve immunological studies of multiple fluorescent intensity images in sections of lymphatic tissue where the point processes represent geographical configurations of cells. We are interested in estimating intensity functions and cell abundance for each of a series of such data sets to facilitate comparisons of outcomes at different times and with respect to differing experimental conditions. The analysis is heavily computational, utilizing recently introduced MCMC approaches for spatial point process mixtures and extending them to the broader new context here of unobserved outcomes. Further, our example applications are problems in which the individual objects of interest are not simply points, but rather small groups of pixels; this implies a need to work at an aggregate pixel region level and we develop the resulting novel methodology for this. Two examples with with immunofluorescence histology data demonstrate the models and computational methodology.

  2. Micro-fabricated mechanical sensors for lateral molecular-force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vicary, J.A., E-mail: james.vicary@bristol.ac.uk [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ulcinas, A. [Research Centre for Microsystems and Nanotechnology, Kaunas University of Technology, LT-51369 Kaunas (Lithuania); Hoerber, J.K.H.; Antognozzi, M. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Centre for Nanoscience and Quantum Information, University of Bristol, Tyndall Avenue, Bristol BS8 1FD (United Kingdom)

    2011-11-15

    Atomic force microscopy (AFM) has been very successful in measuring forces perpendicular to the sample plane. Here, we present the advantages of turning the AFM cantilever 90 Degree-Sign in order for it to be perpendicular to the sample. This rotation leads naturally to the detection of in-plane forces with some extra advantages with respect to the AFM orientation. In particular, the use of extremely small (1 {mu}m wide) and soft (k{approx_equal}10{sup -5} N/m) micro-fabricated cantilevers is demonstrated by recording their thermal power spectral density in ambient conditions and in liquid. These measurements lead to the complete characterisation of the sensors in terms of their stiffness and resonant frequency. Future applications, which will benefit from the use of this force microscopy technique, are also described. -- Highlights: Black-Right-Pointing-Pointer Micro-fabrication of ultra-soft silicon nitride sensors. Black-Right-Pointing-Pointer SEW detection system enables the use of extremely small cantilevers. Black-Right-Pointing-Pointer Choice of sensor geometry permits control of thermal excitations and axial rotations. Black-Right-Pointing-Pointer LMFM can be used in a force regime not previously associated with AFM.

  3. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  4. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy

    Science.gov (United States)

    Singam, Shashi K. R.; Motylewski, Jaroslaw; Monaco, Antonina; Gjorgievska, Elena; Bourgeois, Emilie; Nesládek, Milos; Giugliano, Michele; Goovaerts, Etienne

    2016-12-01

    Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static magnetic field (SMF). Here, we compare RMW- and SMF-induced contrast measurements over a wide range of optical excitation rates for fluorescent nanodiamonds (FNDs) and for NV centers shallowly buried under the (100)-oriented surface of a diamond single crystal (SC). Contrast levels are found to be systematically lower in the FNDs than in the SC. At low excitation rates, the RMW contrast initially rises to a maximum (up to 7% in FNDs and 13% in the SC) but then decreases steadily at higher intensities. Conversely, the SMF contrast increases from approximately 12% at low excitation rates to high values of 20% and 38% for the FNDs and SC, respectively. These observations are well described in a rate-equations model for the charged NV defect using parameters in good agreement with the literature. The SMF approach yields higher induced contrast in image collection under commonly applied optical excitation. Unlike the RMW method, there is no thermal load exerted on the aqueous media in biological samples in the SMF approach. We demonstrate imaging by SMF-induced contrast in neuronal cultures incorporating FNDs (i) in a setup for patch-clamp experiments in parallel with differential-interference-contrast microscopy, (ii) after a commonly used staining procedure as an illustration of the high selectivity against background fluorescence, and (iii) in a confocal fluorescence microscope in combination with bright-field microscopy.

  5. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  6. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.

    Science.gov (United States)

    Roundhill, E A; Burchill, S A

    2012-03-13

    Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; PMRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.

  7. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A. [School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lead, J.R., E-mail: jlead@mailbox.sc.edu [School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia 29208, SC (United States); Baalousha, M., E-mail: mbaalous@mailbox.sc.edu [Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia 29208, SC (United States)

    2015-12-15

    Improved detection and characterization of nanomaterials (NMs) in complex environmental media requires the development of novel sampling approaches to improve the detection limit to be close to environmentally realistic concentrations. Transmission electron microscopy (TEM) is an indispensable metrological tool in nanotechnology and environmental nanoscience due to its high spatial resolution and analytical capabilities when coupled to spectroscopic techniques. However, these capabilities are hampered by the conventional sample preparation methods, which suffer from low NM recovery. The current work presents a validated, fully quantitative sampling technique for TEM that overcomes conventional sample preparation shortcomings, and thus enables the use of TEM for measurement of particle number concentration and their detection in complex media at environmentally realistic concentrations. This sampling method is based on ultracentrifugation of NMs from suspension onto a poly-L-lysine (PLL) functionalized TEM grid, using active deposition (by ultracentrifugation) and retention (by PLL interactions with NM surface) of NMs on the substrate, enabling fully quantitative analysis. Similar analysis with AFM was satisfactory in simple media but the lack of chemical-selectivity of AFM limits its applicability for the detection of NMs in complex environmental samples. The sampling approach was validated using both citrate- and PVP-coated AuNMs in pure water, which demonstrated an even distribution of NM on the TEM grid and high NM recovery (80–100%) at environmentally relevant NM concentrations (ca. 0.20–100 μg L{sup −1}). The applicability of the sampling method to complex environmental samples was demonstrated by the quantification of particle number concentration of AuNMs in EPA soft water (with and without Suwannee River fulvic acid) and lake water. This sample preparation approach is also applicable to other types of NMs with some modifications (e.g. centrifugation

  8. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media

    International Nuclear Information System (INIS)

    Prasad, A.; Lead, J.R.; Baalousha, M.

    2015-01-01

    Improved detection and characterization of nanomaterials (NMs) in complex environmental media requires the development of novel sampling approaches to improve the detection limit to be close to environmentally realistic concentrations. Transmission electron microscopy (TEM) is an indispensable metrological tool in nanotechnology and environmental nanoscience due to its high spatial resolution and analytical capabilities when coupled to spectroscopic techniques. However, these capabilities are hampered by the conventional sample preparation methods, which suffer from low NM recovery. The current work presents a validated, fully quantitative sampling technique for TEM that overcomes conventional sample preparation shortcomings, and thus enables the use of TEM for measurement of particle number concentration and their detection in complex media at environmentally realistic concentrations. This sampling method is based on ultracentrifugation of NMs from suspension onto a poly-L-lysine (PLL) functionalized TEM grid, using active deposition (by ultracentrifugation) and retention (by PLL interactions with NM surface) of NMs on the substrate, enabling fully quantitative analysis. Similar analysis with AFM was satisfactory in simple media but the lack of chemical-selectivity of AFM limits its applicability for the detection of NMs in complex environmental samples. The sampling approach was validated using both citrate- and PVP-coated AuNMs in pure water, which demonstrated an even distribution of NM on the TEM grid and high NM recovery (80–100%) at environmentally relevant NM concentrations (ca. 0.20–100 μg L"−"1). The applicability of the sampling method to complex environmental samples was demonstrated by the quantification of particle number concentration of AuNMs in EPA soft water (with and without Suwannee River fulvic acid) and lake water. This sample preparation approach is also applicable to other types of NMs with some modifications (e.g. centrifugation

  9. Diagnostics of intestinal parasites in light microscopy among the population of children in eastern Afghanistan

    Directory of Open Access Journals (Sweden)

    Krzysztof Korzeniewski

    2016-09-01

    The variety of detected intestinal pathogens in examined children’s population has required the use of combination of multiple diagnostic methods in light microscopy, and finally improved the detection rates of intestinal parasites and helped eliminate infections with nematodes, cestodes, trematodes, and protozoa using appropriate treatment in the study population.

  10. Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy.

    Directory of Open Access Journals (Sweden)

    Rainer Kaufmann

    Full Text Available Tight Junctions (TJ regulate paracellular permeability of tissue barriers. Claudins (Cld form the backbone of TJ-strands. Pore-forming claudins determine the permeability for ions, whereas that for solutes and macromolecules is assumed to be crucially restricted by the strand morphology (i.e., density, branching and continuity. To investigate determinants of the morphology of TJ-strands we established a novel approach using localization microscopy.TJ-strands were reconstituted by stable transfection of HEK293 cells with the barrier-forming Cld3 or Cld5. Strands were investigated at cell-cell contacts by Spectral Position Determination Microscopy (SPDM, a method of localization microscopy using standard fluorophores. Extended TJ-networks of Cld3-YFP and Cld5-YFP were observed. For each network, 200,000 to 1,100,000 individual molecules were detected with a mean localization accuracy of ∼20 nm, yielding a mean structural resolution of ∼50 nm. Compared to conventional fluorescence microscopy, this strongly improved the visualization of strand networks and enabled quantitative morphometric analysis. Two populations of elliptic meshes (mean diameter <100 nm and 300-600 nm, respectively were revealed. For Cld5 the two populations were more separated than for Cld3. Discrimination of non-polymeric molecules and molecules within polymeric strands was achieved. For both subtypes of claudins the mean density of detected molecules was similar and estimated to be ∼24 times higher within the strands than outside the strands.The morphometry and single molecule information provided advances the mechanistic analysis of paracellular barriers. Applying this novel method to different TJ-proteins is expected to significantly improve the understanding of TJ on the molecular level.

  11. X-ray microscopy in Aarhus

    International Nuclear Information System (INIS)

    Uggerhoej, Erik; Abraham-Peskir, Joanna V.

    2000-01-01

    The Aarhus imaging soft X-ray microscope is now a busy multi-user facility. The optical set-up will be described and project highlights discussed. a) Metal-induced structural changes in whole cells in solution. The effects of aluminum, copper, nickel and zinc on protozoa investigated by using a combination of light microscopy, confocal scanning laser microscopy and X-ray microscopy. b) Botanical studies by X-ray microscopy used to compliment electron microscopy studies. c) Sludge morphology and iron precipitation in Danish freshwater plants by combining X-ray, scanning electron and transmission electron microscopy

  12. Fluorescence immunophenotyping and interphase cytogenetics (FICTION) detects BCL6 abnormalities, including gene amplification, in most cases of nodular lymphocyte-predominant Hodgkin lymphoma.

    Science.gov (United States)

    Bakhirev, Alexei G; Vasef, Mohammad A; Zhang, Qian-Yun; Reichard, Kaaren K; Czuchlewski, David R

    2014-04-01

    BCL6 translocations are a frequent finding in B-cell lymphomas of diverse subtypes, including some cases of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). However, reliable analysis of BCL6 rearrangements using fluorescence in situ hybridization is difficult in NLPHL because of the relative paucity of neoplastic cells. Combined immunofluorescence microscopy and fluorescence in situ hybridization, or fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms (FICTION), permits targeted analysis of neoplastic cells. To better define the spectrum of BCL6 abnormalities in NLPHL using FICTION analysis. We performed an optimized FICTION analysis of 24 lymph nodes, including 11 NLPHL, 5 follicular hyperplasia with prominent progressive transformation of germinal centers, and 8 follicular hyperplasia without progressive transformation of germinal centers. BCL6 rearrangement was identified in 5 of 11 cases of NLPHL (46%). In addition, BCL6 gene amplification, with large clusters of BCL6 signals in the absence of chromosome 3 aneuploidy, was detected in 3 of 11 cases of NLPHL (27%). One NLPHL showed extra copies of BCL6 present in conjunction with multiple copies of chromosome 3. Altogether, we detected BCL6 abnormalities in 9 of 11 cases of NLPHL (82%). None of the progressive transformation of germinal centers or follicular hyperplasia cases showed BCL6 abnormalities by FICTION. To our knowledge, this is the first report of BCL6 gene amplification in NLPHL. Our optimized protocol for FICTION permits detection of cytogenetic abnormalities in most NLPHL cases and may represent a useful ancillary diagnostic technique.

  13. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  14. Dew drops on spider web appearance: a newly named pattern of IgG4 deposition in pemphigus with direct immunofluorescence

    Directory of Open Access Journals (Sweden)

    Marian Dmochowski

    2017-08-01

    Full Text Available Novel appearances in cutaneous pathology as well as mucocutaneous clinical signs are being described which indicate that this is still an attractive area for exploration. The H + E histology terms of “decorated tomb stoning” and “undecorated tomb stoning”, advocated by some pathologists, are misleading and as such should be avoided. Here, an appearance of IgG4 pemphigus deposits examined cost-effectively with direct immunofluorescence and suggested to be called “dew drops on spider web” is depicted in depth.

  15. Quantitative fluorescence microscopy and image deconvolution.

    Science.gov (United States)

    Swedlow, Jason R

    2013-01-01

    Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used

  16. Scanning transmission ion microscopy on Fudan SPM facility

    International Nuclear Information System (INIS)

    Li Yongqiang; Shen Hao; Zheng Yi; Li Xinyi; Liu Bo; Satoh Takahiro

    2011-01-01

    In this paper, we report a novel measurement system based on the development of Fudan Scanning Proton Microscopy (SPM) facility. By using Si-PIN diode(Hamamatsu S1223-01) detector, scanning transmission ion microscopy (STIM) measurement system has been set up. It can provide density and structural images with high probing efficiency and non-destruction by utilizing the energy loss of high energy (MeV) and focused ions penetrating through a thin sample. STIM measurement is able to map the density distribution of organic elements which mostly compose biology materials, such information can not be detected by using conventional Be-windowed Si (Li) X-ray detector in Particle Induced X-ray Emission (PIXE) technique. The spatial resolution capability of STIM is higher than PIXE technique at same accelerator status. As a result of STIM measurement, Paramecium attached on the top of Kapton tube was measured by STIM. (authors)

  17. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  18. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry.

    Directory of Open Access Journals (Sweden)

    François Vromman

    Full Text Available Chlamydiae are obligate intracellular bacteria. These pathogens develop inside host cells through a biphasic cycle alternating between two morphologically distinct forms, the infectious elementary body and the replicative reticulate body. Recently, C. trachomatis strains stably expressing fluorescent proteins were obtained. The fluorochromes are expressed during the intracellular growth of the microbe, allowing bacterial visualization by fluorescence microscopy. Whether they are also present in the infectious form, the elementary body, to a detectable level has not been studied. Here, we show that a C. trachomatis strain transformed with a plasmid expressing the green fluorescent protein (GFP accumulates sufficient quantities of the probe in elementary bodies for detection by microscopy and flow cytometry. Adhesion of single bacteria was detected. The precise kinetics of bacterial entry were determined by microscopy using automated procedures. We show that during the intracellular replication phase, GFP is a convenient read-out for bacterial growth with several advantages over current methods. In particular, infection rates within a non-homogenous cell population are easily quantified. Finally, in spite of their small size, individual elementary bodies are detected by flow cytometers, allowing for direct enumeration of a bacterial preparation. In conclusion, GFP-expressing chlamydiae are suitable to monitor, in a quantitative manner, progression throughout the developmental cycle. This will facilitate the identification of the developmental steps targeted by anti-chlamydial drugs or host factors.

  19. Secretagogin is a novel marker for neuroendocrine differentiation

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Wagner, Ludwig; Brandt Sørensen, Flemming

    2005-01-01

    Our previous microarray-based studies identified secretagogin to be highly expressed in normal colon mucosa compared to basal expression in colon adenocarcinomas. The aim of this study was to analyze the differential expression of secretagogin in normal mucosa, adenocarcinomas, and neuroendocrine...... tumors. Western blotting, immunohistochemistry, immunofluorescence microscopy and ELISA were applied. Western blot analysis detected a 32-kDa secretagogin band in samples from normal mucosa. Immunohistochemical analyses on tissue specimens showed that secretagogin is exclusively expressed...... and adrenal gland. Secretagogin was detected in plasma from carcinoid patients with distant metastasis. Combined immunohistochemical analysis of secretagogin and FK506-binding protein 65, a protein de novo synthesized in adenocarcinomas, distinguished well-differentiated carcinoids, adenocarcinoids...

  20. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  1. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    Science.gov (United States)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  2. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    Science.gov (United States)

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Comparison of LED and Conventional Fluorescence Microscopy for Detection of Acid Fast Bacilli in a Low-Incidence Setting

    Science.gov (United States)

    Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina

    2011-01-01

    Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622

  4. Comparison of LED and conventional fluorescence microscopy for detection of acid fast bacilli in a low-incidence setting.

    Directory of Open Access Journals (Sweden)

    Jessica Minion

    Full Text Available INTRODUCTION: Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. METHODS: In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS. Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. RESULTS: There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. CONCLUSIONS: Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used.

  5. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...... microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  6. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    International Nuclear Information System (INIS)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 μm in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level

  7. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, Massimo, E-mail: M.Muratore@ed.ac.uk [Institute of Integrated Micro and Nano System, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JF (United Kingdom); Mitchell, Steve [Institute of Molecular Plant Science, School of Biological Science, The University of Edinburgh, Edinburgh EH9 3JF (United Kingdom); Waterfall, Martin [Institute of Immunology and Infection Research, School of Biological Science, The University of Edinburgh, Edinburgh EH9 3JT (United Kingdom)

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  8. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    International Nuclear Information System (INIS)

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-01-01

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy

  9. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.

    Science.gov (United States)

    Rizk, Aurélien; Paul, Grégory; Incardona, Pietro; Bugarski, Milica; Mansouri, Maysam; Niemann, Axel; Ziegler, Urs; Berger, Philipp; Sbalzarini, Ivo F

    2014-03-01

    Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.

  10. Photoacoustic microscopy of bilirubin in tissue phantoms

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2012-12-01

    Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.

  11. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    International Nuclear Information System (INIS)

    Miranda, Adelaide; De Beule, Pieter A. A.; Martins, Marco

    2015-01-01

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate

  12. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int [Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal); Martins, Marco [Nano-ICs Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal)

    2015-09-15

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.

  13. High-resolution photoluminescence electro-modulation microscopy by scanning lock-in

    Science.gov (United States)

    Koopman, W.; Muccini, M.; Toffanin, S.

    2018-04-01

    Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.

  14. Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, Lise-Lotte; Immerdal, Lissi

    2007-01-01

    explants. By immunofluorescence microscopy, fat absorption caused a translocation of IAP from the enterocyte brush border to the interior of the cell, whereas other brush-border enzymes were unaffected. By electron microscopy, the translocation occurred by a rapid (5 min) induction of endocytosis via...

  15. Local charge trapping in Ge nanoclustersdetected by Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, S.V., E-mail: kondr@univ.kiev.ua [Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601, Kyiv (Ukraine); Lysenko, V.S. [Institute of Semiconductor Physics, 41 Prospect Nauki, 03028, Kyiv (Ukraine); Kozyrev, Yu. N. [O.O. Chuiko Institute of Surface Chemistry, 17 GeneralaNaumova Str. 03164, Kiev (Ukraine); Kratzer, M. [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria); Storozhuk, D.P.; Iliash, S.A. [Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601, Kyiv (Ukraine); Czibula, C. [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria); Teichert, C., E-mail: teichert@unileoben.ac.at [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria)

    2016-12-15

    The understanding of local charge trapping on the nanoscale is crucial for the design of novel electronic devices and photodetectors based on SiGe nanoclusters (NCs). Here, the local spatial distribution of the surface potential of the Ge NCs was detected using Kelvin probe force microscopy (KPFM). Different surface potentials between Ge NCs and the wetting layer (WL) surface were detected at room temperature. Changes of the local contact potential differences (CPD) were studied after injection of electrons or holes into single Ge NCs on top of the Si layer using a conductive atomic force microscopy tip. The CPD image contrast was increased after electron injection by applying a forward bias to the n-tip/i-Ge NC/p-Si junction. Injecting holes into a single Ge NC was also accompanied by filling of two-dimensional states in the surrounding region, which is governed by leakage currents through WL or surface states and Coulomb charging effects. A long retention time of holes trapped by the Ge NC was found.

  16. Cytoplasmic Z-RNA

    International Nuclear Information System (INIS)

    Zarling, D.A.; Calhoun, C.J.; Hardin, C.C.; Zarling, A.H.

    1987-01-01

    Specific immunochemical probes for Z-RNA were generated and characterized to search for possible Z-RNA-like double helices in cells. Z-RNA was detected in the cytoplasm of fixed protozoan cells by immunofluorescence microscopy using these anti-Z-RNA IgCs. In contrast, autoimmune or experimentally elicited anti-DNA antibodies, specifically reactive with B-DNA or Z-DNA, stained the nuclei. Pre-or nonimmune IgGs did not bind to the cells. RNase A or T1 digestion eliminated anti-Z-RNA IgG binding to cytoplasmic determinants; however, DNase I or mung bean nuclease had no effect. Doxorubicin and ethidium bromide prevented anti-Z-RNA antibody binding; however, actinomycin D, which does not bind double-stranded RNA, did not. Anti-Z-RNA immunofluorescence was specifically blocked in competition assays by synthetic Z-RNA but not Z-DNA, A-RNA, or single-stranded RNAs. Thus, some cytoplasmic sequences in fixed cells exist in the left-handed Z-RNA conformation

  17. The use of fluorescence microscopy and image analysis for rapid detection of non-producing revertant cells of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002.

    Science.gov (United States)

    Schulze, Katja; Lang, Imke; Enke, Heike; Grohme, Diana; Frohme, Marcus

    2015-04-17

    Ethanol production via genetically engineered cyanobacteria is a promising solution for the production of biofuels. Through the introduction of a pyruvate decarboxylase and alcohol dehydrogenase direct ethanol production becomes possible within the cells. However, during cultivation genetic instability can lead to mutations and thus loss of ethanol production. Cells then revert back to the wild type phenotype. A method for a rapid and simple detection of these non-producing revertant cells in an ethanol producing cell population is an important quality control measure in order to predict genetic stability and the longevity of a producing culture. Several comparable cultivation experiments revealed a difference in the pigmentation for non-producing and producing cells: the accessory pigment phycocyanin (PC) is reduced in case of the ethanol producer, resulting in a yellowish appearance of the culture. Microarray and western blot studies of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002 confirmed this PC reduction on the level of RNA and protein. Based on these findings we developed a method for fluorescence microscopy in order to distinguish producing and non-producing cells with respect to their pigmentation phenotype. By applying a specific filter set the emitted fluorescence of a producer cell with a reduced PC content appeared orange. The emitted fluorescence of a non-producing cell with a wt pigmentation phenotype was detected in red, and dead cells in green. In an automated process multiple images of each sample were taken and analyzed with a plugin for the image analysis software ImageJ to identify dead (green), non-producing (red) and producing (orange) cells. The results of the presented validation experiments revealed a good identification with 98 % red cells in the wt sample and 90 % orange cells in the producer sample. The detected wt pigmentation phenotype (red cells) in the producer sample were either not fully induced yet (in 48 h induced

  18. Label-free detection of breast masses using multiphoton microscopy.

    Directory of Open Access Journals (Sweden)

    Xiufeng Wu

    Full Text Available Histopathology forms the gold standard for the diagnosis of breast cancer. Multiphoton microscopy (MPM has been proposed to be a potentially powerful adjunct to current histopathological techniques. A label-free imaging based on two- photon excited fluorescence and second-harmonic generation is developed for differentiating normal breast tissues, benign, as well as breast cancer tissues. Human breast biopsies (including human normal breast tissues, benign as well as breast cancer tissues that are first imaged (fresh, unfixed, and unstained with MPM and are then processed for routine H-E histopathology. Our results suggest that the MPM images, obtained from these unprocessed biopsies, can readily distinguish between benign lesions and breast cancers. In the tissues of breast cancers, MPM showed that the tumor cells displayed marked cellular and nuclear pleomorphism. The tumor cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, infiltrated into disrupted connective tissue, leading to the loss of second-harmonic generation signals. For breast cancer, MPM diagnosis was 100% correct because the tissues of breast cancers did not have second-harmonic generation signals in MPM imaging. On the contrary, in benign breast masses, second-harmonic generation signals could be seen easily in MPM imaging. These observations indicate that MPM could be an important potential tool to provide label-free noninvasive diagnostic impressions that can guide surgeon in biopsy and patient management.

  19. Comparative efficacy of antigen and antibody detection tests for human trichinellosis

    International Nuclear Information System (INIS)

    Ivanoska, D.; Cuperlovic, K.; Gamble, H.R.; Murrell, K.D.

    1989-01-01

    Sera collected from patients with suspected or confirmed exposure to Trichinella spiralis were tested for circulating parasite antigens and antiparasite antibodies. Using an immunoradiometric assay, excretory--secretory antigens from muscle-stage larvae of T. spiralis were detected in the sera of 47% of 62 patients with clinical trichinellosis and 13% of 39 patients without clinical signs but suspected of exposure to infected meat. In comparison, antibodies were detected using an indirect immunofluorescent test in the circulation of 100% of the 62 patients with clinical trichinellosis and 46% of the 39 patients with suspected exposure. The presence of antibodies specific to excretory-secretory products of T. spiralis muscle larvae was confirmed in the majority of the samples tested by a monoclonal antibody-based competitive inhibition assay. These results indicate that antibody detection is a more sensitive diagnostic method for human trichinellosis, but that antigen detection might be a useful confirmatory test because it is a direct demonstration of parasite products in the circulation

  20. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  1. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Detection of cyclobutane thymine dimers in DNA of human cells with monoclonal antibodies raised against a thymine dimer-containing tetranucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Roza, L; Wulp, K.J.M. van der; MacFarlane, S J; Lohman, P H.M.; Baan, R A

    1988-11-01

    A hybrid cell line (hybridoma) has been isolated after fusion between mouse-plasmacytoma cells and spleen cells from mice immunized with a thymine dimer-containing tetranucleotide coupled to a carrier protein. Monoclonal antibodies produced by this hybridoma were characterized by testing the effect of various inhibitors in a competitive enzyme-linked immunosorbent assay (ELISA). The antibodies have a high specificity for thymine dimers in single-stranded DNA or poly(dT), but do not bind UV-irradiated d(TpC)/sub 5/. Less binding is observed with short thymine dimer-containing sequences. In vitro treatment of UV-irradiated DNA with photoreactivating enzyme in the presence of light, or with Micrococcus luteus UV-endonuclease results in disappearance of antigenicity. Antibody-binding to DNA isolated from UV-irradiated human fibroblasts (at 254 nm) is linear with dose. Removal of thymine dimers in these cells during a post-irradiation incubation, as detected with the antibodies, is fast initially but the rate rapidly decreases (about 50% residual dimers at 20 h after 10 J/m/sup 2/). The induction of thymine dimers in human skin irradiated with low doses of UV-B, too, was demonstrated immunochemically, by ELISA as well as by quantitative immunofluorescence microscopy.

  3. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    Science.gov (United States)

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  4. Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy.

    Science.gov (United States)

    Grah, Joana Sarah; Harrington, Jennifer Alison; Koh, Siang Boon; Pike, Jeremy Andrew; Schreiner, Alexander; Burger, Martin; Schönlieb, Carola-Bibiane; Reichelt, Stefanie

    2017-02-15

    In this paper we propose a workflow to detect and track mitotic cells in time-lapse microscopy image sequences. In order to avoid the requirement for cell lines expressing fluorescent markers and the associated phototoxicity, phase contrast microscopy is often preferred over fluorescence microscopy in live-cell imaging. However, common specific image characteristics complicate image processing and impede use of standard methods. Nevertheless, automated analysis is desirable due to manual analysis being subjective, biased and extremely time-consuming for large data sets. Here, we present the following workflow based on mathematical imaging methods. In the first step, mitosis detection is performed by means of the circular Hough transform. The obtained circular contour subsequently serves as an initialisation for the tracking algorithm based on variational methods. It is sub-divided into two parts: in order to determine the beginning of the whole mitosis cycle, a backwards tracking procedure is performed. After that, the cell is tracked forwards in time until the end of mitosis. As a result, the average of mitosis duration and ratios of different cell fates (cell death, no division, division into two or more daughter cells) can be measured and statistics on cell morphologies can be obtained. All of the tools are featured in the user-friendly MATLAB®Graphical User Interface MitosisAnalyser. Copyright © 2017. Published by Elsevier Inc.

  5. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    Science.gov (United States)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  6. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    Science.gov (United States)

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  7. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  8. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    International Nuclear Information System (INIS)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J.; Purans, J.; Sammelselg, V.; Chevrier, J.; Huant, S.; Hamilton, B.; Saito, A.; Dhez, O.; Brocklesby, W.S.; Alvarez-Prado, L.M.; Kuzmin, A.; Pailharey, D.; Tonneau, D.; Chretien, P.; Cricenti, A.; DeWilde, Y.

    2005-01-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document

  9. Microscopy and Image Analysis.

    Science.gov (United States)

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Nanoscale observation of local bound charges of patterned protein arrays by scanning force microscopy

    International Nuclear Information System (INIS)

    Oh, Y J; Jo, W; Kim, S; Park, S; Kim, Y S

    2008-01-01

    A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 μm, and the 90 deg. rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 μm 2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection

  11. A novel assay for detecting antibodies to cytochrome P4502D6, the molecular target of liver kidney microsomal antibody type 1.

    Science.gov (United States)

    Kerkar, N; Ma, Y; Hussain, M; Muratori, L; Targett, C; Williams, R; Bianchi, F B; Mieli-Vergani, G; Vergani, D

    1999-03-04

    Liver Kidney Microsomal type 1 (LKM1) antibody, the diagnostic marker of autoimmune hepatitis type 2, is also found in a proportion of patients with hepatitis C virus infection (HCV). It is detected conventionally by the subjective immunofluorescence technique. Our aim was to establish a simple and objective enzyme-linked immunosorbent assay (ELISA) that measures antibodies to cytochrome P4502D6 (CYP2D6), the target of LKM1. An indirect ELISA using eukaryotically expressed CYP2D6 was designed. Absorbance values obtained against a reference microsomal preparation were subtracted from those obtained against a microsomal preparation over-expressing CYP2D6, thus removing the non-CYP2D6-specific reaction. Sera from 51 LKM1 positive patients (21 autoimmune hepatitis and 30 with HCV infection), 111 LKM1 negative patients with chronic liver disease (including 20 with HCV infection) and 43 healthy controls were tested. Of 51 patients positive by immunofluorescence, 48 were also positive by ELISA while all the 154 LKM1 negative subjects were also negative by ELISA. There was a high degree of association between IFL and ELISA as demonstrated by a kappa reliability value of 0.96. The absorbance values by ELISA correlated with immunofluorescence LKM1 titres both in autoimmune hepatitis (r = 0.74, p < 0.001) and HCV infection (r = 0.67, p < 0.001). The simple, objective ELISA described has the potential to replace the standard immunofluorescence technique.

  12. A Dual Microscopy-Based Assay To Assess Listeria monocytogenes Cellular Entry and Vacuolar Escape.

    Science.gov (United States)

    Quereda, Juan J; Pizarro-Cerdá, Javier; Balestrino, Damien; Bobard, Alexandre; Danckaert, Anne; Aulner, Nathalie; Shorte, Spencer; Enninga, Jost; Cossart, Pascale

    2016-01-01

    Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L. monocytogenes and Listeria innocua strains expressing a β-lactamase covalently attached to the bacterial cell wall. These strains were then incubated with HeLa cells containing the Förster resonance energy transfer (FRET) probe CCF4 in their cytoplasm. The CCF4 probe was cleaved by the bacterial surface β-lactamase only in cells inoculated with L. monocytogenes but not those inoculated with L. innocua, thereby demonstrating bacterial access to the host cytoplasm. Subsequently, we performed differential immunofluorescence staining to distinguish extracellular versus total bacterial populations in samples that were also analyzed by the FRET-based assay. With this two-step analysis, bacterial entry can be distinguished from vacuolar rupture in a single experiment. Our novel approach represents a powerful tool for identifying factors that determine the intracellular niche of L. monocytogenes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy.

    Science.gov (United States)

    Nie, Y T; Wu, Y; Fu, F M; Lian, Y E; Zhuo, S M; Wang, C; Chen, J X

    2015-04-01

    Multiphoton microscopy has become a novel biological imaging technique that allows cellular and subcellular microstructure imaging based on two-photon excited fluorescence and second harmonic generation. In this work, we used multiphoton microscopy to obtain the high-contrast images of human normal breast tissue and two main histologic types of fibroadenoma (intracanalicular, pericanalicular). Moreover, quantitative image analysis was performed to characterize the changes of collagen morphology (collagen content, collagen orientation). The results show that multiphoton microscopy combined with quantitative method has the ability to identify the characteristics of fibroadenoma including changes of the duct architecture and collagen morphology in stroma. With the advancement of multiphoton microscopy, we believe that the technique has great potential to be a real-time histopathological diagnostic tool for intraoperative detection of fibroadenoma in the future. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. International Multidisciplinary Microscopy Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet; InterM; INTERM2013

    2014-01-01

    The International Multidisciplinary Microscopy Congress (INTERM2013) was organized on October 10-13, 2013. The aim of the congress was to bring together scientists from various branches to discuss the latest advances in the field of microscopy. The contents of the congress have been broadened to a more "interdisciplinary" scope, so as to allow all scientists working on related subjects to participate and present their work. These proceedings include 39 peer-reviewed technical papers, submitted by leading academic and research institutions from over 12 countries and representing some of the most cutting-edge research available. The 39 papers are grouped into the following sections: - Applications of Microscopy in the Physical Sciences - Applications of Microscopy in the Biological Sciences

  15. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.

    Science.gov (United States)

    Mehfuz, R; Chowdhury, F A; Chau, K J

    2012-05-07

    We develop a technique that now enables surface plasmon polaritons (SPPs) coupled by nano-patterned slits in a metal film to be detected using conventional optical microscopy with standard objective lenses. The crux of this method is an ultra-thin polymer layer on the metal surface, whose thickness can be varied over a nanoscale range to enable controllable tuning of the SPP momentum. At an optimal layer thickness for which the SPP momentum matches the momentum of light emerging from the slit, the SPP coupling efficiency is enhanced about six times relative to that without the layer. The enhanced efficiency results in distinctive and bright plasmonic signatures near the slit visible by naked eye under an optical microscope. We demonstrate how this capability can be used for parallel measurement through a simple experiment in which the SPP propagation distance is extracted from a single microscope image of an illuminated array of nano-patterned slits on a metal surface. We also use optical microscopy to image the focal region of a plasmonic lens and obtain results consistent with a previously-reported results using near-field optical microscopy. Measurement of SPPs near a nano-slit using conventional and widely-available optical microscopy is an important step towards making nano-plasmonic device technology highly accessible and easy-to-use.

  16. Routinely used immunoassays do not detect circulating anti-GBM antibodies against native NC1 hexamer and EA epitope of the α3 chain of type IV collagen.

    Science.gov (United States)

    Clavarino, Giovanna; Gauthier, Arnaud; Hellmark, Thomas; Carron, Pierre-Louis; Giovannini, Diane; Colliard, Sophie; Dragon-Durey, Marie-Agnès; Segelmark, Mårten; Cesbron, Jean-Yves; Dumestre-Pérard, Chantal

    2018-04-12

    Detection of circulating anti-GBM antibodies has a key role for the diagnosis of Goodpasture syndrome but immunoassays using purified or recombinant alpha3(IV)NC1 as antigen do not recognize all anti-GBM antibodies. We show that anti-GBM antibodies directed against epitopes in their native conformation or cryptic epitopes are detected by indirect immunofluorescence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Variance in total levels of phospholipase C zeta (PLC-ζ) in human sperm may limit the applicability of quantitative immunofluorescent analysis as a diagnostic indicator of oocyte activation capability.

    Science.gov (United States)

    Kashir, Junaid; Jones, Celine; Mounce, Ginny; Ramadan, Walaa M; Lemmon, Bernadette; Heindryckx, Bjorn; de Sutter, Petra; Parrington, John; Turner, Karen; Child, Tim; McVeigh, Enda; Coward, Kevin

    2013-01-01

    To examine whether similar levels of phospholipase C zeta (PLC-ζ) protein are present in sperm from men whose ejaculates resulted in normal oocyte activation, and to examine whether a predominant pattern of PLC-ζ localization is linked to normal oocyte activation ability. Laboratory study. University laboratory. Control subjects (men with proven oocyte activation capacity; n = 16) and men whose sperm resulted in recurrent intracytoplasmic sperm injection failure (oocyte activation deficient [OAD]; n = 5). Quantitative immunofluorescent analysis of PLC-ζ protein in human sperm. Total levels of PLC-ζ fluorescence, proportions of sperm exhibiting PLC-ζ immunoreactivity, and proportions of PLC-ζ localization patterns in sperm from control and OAD men. Sperm from control subjects presented a significantly higher proportion of sperm exhibiting PLC-ζ immunofluorescence compared with infertile men diagnosed with OAD (82.6% and 27.4%, respectively). Total levels of PLC-ζ in sperm from individual control and OAD patients exhibited significant variance, with sperm from 10 out of 16 (62.5%) exhibiting levels similar to OAD samples. Predominant PLC-ζ localization patterns varied between control and OAD samples with no predictable or consistent pattern. The results indicate that sperm from control men exhibited significant variance in total levels of PLC-ζ protein, as well as significant variance in the predominant localization pattern. Such variance may hinder the diagnostic application of quantitative PLC-ζ immunofluorescent analysis. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Is PCR the Next Reference Standard for the Diagnosis of Schistosoma in Stool? A Comparison with Microscopy in Senegal and Kenya.

    NARCIS (Netherlands)

    Meurs, L.; Brienen, E.; Mbow, M.; Ochola, E.A,; Mboup, S.; Karanja, D.M.; Secor, W.E.; Polman, K.; Lieshout, L.

    2015-01-01

    Background The current reference test for the detection of S. mansoni in endemic areas is stool microscopy based on one or more Kato-Katz stool smears. However, stool microscopy has several shortcomings that greatly affect the efficacy of current schistosomiasis control programs. A highly specific

  19. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption

    OpenAIRE

    Santos, Carla Santana; Kowaltowski, Alicia J.; Bertotti, Mauro

    2017-01-01

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in ox...

  20. DNA double-strand breaks in blood lymphocytes induced by two-day 99mTc-MIBI myocardial perfusion scintigraphy.

    Science.gov (United States)

    Rief, Matthias; Hartmann, Lisa; Geisel, Dominik; Richter, Felicitas; Brenner, Winfried; Dewey, Marc

    2018-07-01

    To investigate DNA double-strand breaks (DSBs) in blood lymphocytes induced by two-day 99m Tc-MIBI myocardial perfusion scintigraphy (MPS) using y-H2AX immunofluorescence microscopy and to correlate the results with 99m Tc activity in blood samples. Eleven patients who underwent two-day MPS were included. DSB blood sampling was performed before and 5min, 1h and 24h after the first and second radiotracer injections. 99m Tc activity was measured in each blood sample. For immunofluorescence microscopy, distinct foci representing DSBs were quantified in lymphocytes after staining for the phosphorylated histone variant y-H2AX. The 99m Tc-MIBI activity measured on days one and two was similar (254±25 and 258±27 MBq; p=0.594). Compared with baseline DSB foci (0.09±0.05/cell), a significant increase was found at 5min (0.19±0.04/cell) and 1h (0.18±0.04/cell) after the first injection and at 5min and 1h after the second injection (0.21±0.03 and 0.19±0.04/cell, respectively; p=0.003 for both). At 24h after the first and second injections, the number of DSB foci had returned to baseline (0.06±0.02 and 0.12±0.05/cell, respectively). 99m Tc activity levels in peripheral blood samples correlated well with DSB counts (r=0.451). DSB counts reflect 99m Tc-MIBI activity after injection for two-day MPS, and might allow individual monitoring of biological effects of cardiac nuclear imaging. • Myocardial perfusion scintigraphy using 99m Tc induces time-dependent double-strand breaks (DSBs) • γ-H2AX immunofluorescence microscopy shows DSB as an early response to radiotracer injection • Activity measurements of 99m Tc correlate well with detected DSB • DSB foci induced by 99m Tc return to baseline 24h after radiotracer injection.