WorldWideScience

Sample records for immunofluorescence microscopy detected

  1. Epidermis area detection for immunofluorescence microscopy

    Science.gov (United States)

    Dovganich, Andrey; Krylov, Andrey; Nasonov, Andrey; Makhneva, Natalia

    2018-04-01

    We propose a novel image segmentation method for immunofluorescence microscopy images of skin tissue for the diagnosis of various skin diseases. The segmentation is based on machine learning algorithms. The feature vector is filled by three groups of features: statistical features, Laws' texture energy measures and local binary patterns. The images are preprocessed for better learning. Different machine learning algorithms have been used and the best results have been obtained with random forest algorithm. We use the proposed method to detect the epidermis region as a part of pemphigus diagnosis system.

  2. Evaluation of immunofluorescence microscopy and enzyme-linked immunosorbent assay in detection of Cryptosporidium and Giardia infections in asymptomatic dogs

    DEFF Research Database (Denmark)

    Rimhanen-Finne, R.; Enemark, Heidi L.; Kolehmainen, J.

    2007-01-01

    The performance of immunofluorescence microscopy (IF) and enzyme-linked immunosorbent assay (ELISA) in canine feces was evaluated. IF and Cryptosporidium ELISA detected 10(5) oocysts/g, while the detection limit for Giardia ELISA was 10(4) cysts/g. The Cryptosporidium ELISA showed 94% specificity...... zoonotic character of Cryptosporidium and Giardia infections in 150 asymptomatic Finnish dogs from the Helsinki area were studied. The overall proportion of dogs positive for Cryptosporidium was 5% (7/150) and that for Giardia 5% (8/150). In dogs...

  3. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    Science.gov (United States)

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Comparison of electron microscopy, enzyme-linked immunosorbent assay, solid-phase radioimmunoassay, and indirect immunofluorescence for detection of human rotavirus antigen in faeces

    Energy Technology Data Exchange (ETDEWEB)

    Birch, C J; Lehmann, N I; Hawker, A J; Marshall, J A; Gust, I D [Fairfield Hospital for Communicable Diseases, Victoria (Australia). Virology Dept.

    1979-07-01

    Four techniques were compared for their practicability, speed, and sensitivity for the detection of human rotavirus. Radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) were found to be the most sensitive means of identifying rotavirus and, once processed, up to 40 specimens could be examined daily. Electron microscopy, although less sensitive than these techniques, had the advantage of being able to detect other viral agents present in faecal extracts. Indirect immunofluorescence failed to detect rotavirus as often as the other three methods. In laboratories where routine examination of faecal specimens from patients with gastroenteritis is required, ELISA and RIA are useful alternatives to electron microscopy.

  5. Comparison of electron microscopy, enzyme-linked immunosorbent assay, solid-phase radioimmunoassay, and indirect immunofluorescence for detection of human rotavirus antigen in faeces

    International Nuclear Information System (INIS)

    Birch, C.J.; Lehmann, N.I.; Hawker, A.J.; Marshall, J.A.; Gust, I.D.

    1979-01-01

    Four techniques were compared for their practicability, speed, and sensitivity for the detection of human rotavirus. Radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) were found to be the most sensitive means of identifying rotavirus and, once processed, up to 40 specimens could be examined daily. Electron microscopy, although less sensitive than these techniques, had the advantage of being able to detect other viral agents present in faecal extracts. Indirect immunofluorescence failed to detect rotavirus as often as the other three methods. In laboratories where routine examination of faecal specimens from patients with gastroenteritis is required, ELISA and RIA are useful alternatives to electron microscopy. (author)

  6. Immunofluorescence

    International Nuclear Information System (INIS)

    Bongertz, V.; Castro, B.G.

    1990-01-01

    The advantages of the immunofluorescence assay (IFA) that allowing the specific 'in situ' localization of the antigen-antibody interaction, of paramount importance when complex antigenic preparations, such as for instance tissue sections, are studied. (L.M.J.) [pt

  7. In situ detection of the activation of Rac1 and RalA small GTPases in mouse adipocytes by immunofluorescent microscopy following in vivo and ex vivo insulin stimulation.

    Science.gov (United States)

    Takenaka, Nobuyuki; Nihata, Yuma; Ueda, Sho; Satoh, Takaya

    2017-11-01

    Rac1 has been implicated in insulin-dependent glucose uptake by mechanisms involving plasma membrane translocation of the glucose transporter GLUT4 in skeletal muscle. Although the uptake of glucose is also stimulated by insulin in adipose tissue, the role for Rac1 in adipocyte insulin signaling remains controversial. As a step to reveal the role for Rac1 in adipocytes, we aimed to establish immunofluorescent microscopy to detect the intracellular distribution of activated Rac1. The epitope-tagged Rac1-binding domain of a Rac1-specific target was utilized as a probe that specifically recognizes the activated form of Rac1. Rac1 activation in response to ex vivo and in vivo insulin stimulations in primary adipocyte culture and mouse white adipose tissue, respectively, was successfully observed by immunofluorescent microscopy. These Rac1 activations were mediated by phosphoinositide 3-kinase. Another small GTPase RalA has also been implicated in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Similarly to Rac1, immunofluorescent microscopy using an activated RalA-specific polypeptide probe allowed us to detect intracellular distribution of insulin-activated RalA in adipocytes. These novel approaches to visualize the activation status of small GTPases in adipocytes will largely contribute to the understanding of signal transduction mechanisms particularly for insulin action. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Immunofluorescence detection of pea protein in meat products.

    Science.gov (United States)

    Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka

    2016-08-01

    In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.

  9. Immunofluorescence detection of milk protein in meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2015-05-01

    Full Text Available Nowadays there are various vegetable protein additives intended for the manufacture of meat products in the food industry. These ingredients include both, plant-origin as well as animal-origin proteins. The most common vegetable additives include various types of flour, starch, fiber and plant protein. Among animal proteins, the most commonly used are plasma, collagen or milk protein. Milk protein is added to meat products due to its functional properties, such as emulsifying fats, improving the holding capacity of meat, improving juiciness, gel-forming capacity and affecting the taste of the product. Usage of these proteins, however, is currently limited by the effective legislation, not only in order to prevent consumer deception, but also because of their potential impact on consumers' health of. Thus, this issue has received considerable attention not only in the Czech Republic, but also globally. The main risk is the impossibility of selecting a suitable foodstuff for individuals with potential allergic reactions. The only option for allergic consumers to protect themselves is to strictly exclude the given allergen from their diet. Although the number of studies dealing with the reduction or loss of allergenicity is increasing, yet these practices are not common. Most of the population suffering from food allergies is thus still dependent on strict exclusion of foodstuffs causing adverse allergic reactions from their diet. Detection of allergens in foodstuffs is unfortunately quite difficult due to the fact that they occur in trace amounts and are often masked by different parts of the foodstuff. This research dealt with the detection of milk protein in meat products purchased in the market network of the Czech Republic, whereas declaration given by the manufacturer on the packaging for the small meat products purchased from the market was used to verify the detection of milk protein by the immunofluorescence method. 20 products were

  10. A comparison of indirect immunofluorescence and electron microscopy for the diagnosis of some haemorrhagic viruses in cell cultures.

    Science.gov (United States)

    El Mekki, A A; van der Groen, G

    1981-09-01

    Yellow fever, dengue (types 1, 2 and 4), Chikungunya, Rift Valley fever, Ebola, Marburg, and Lassa viruses were inoculated into susceptible cell cultures and daily investigated by indirect immunofluorescence (IFA) and electron microscopy (EM) with a view to achieve an early detection-identification of these agents. Compared to the other cell lines tested (Vero, BHK-21 and Aedes albopictus), CV-1 cells were found to be more sensitive. Viral antigens were detected by IFA from a few hours post inoculation (CHIK and RVF) to a maximum of 3 days (YF and EBO). For most of the viruses studied, the cytopathic effect (CPE) commenced 2-3 days after the detection of viral antigens. Virus particles were detected by EM only in the case of EBO, MBG and LAS, before any CPE was observed in cell cultures.

  11. EUROPattern Suite technology for computer-aided immunofluorescence microscopy in autoantibody diagnostics.

    Science.gov (United States)

    Krause, C; Ens, K; Fechner, K; Voigt, J; Fraune, J; Rohwäder, E; Hahn, M; Danckwardt, M; Feirer, C; Barth, E; Martinetz, T; Stöcker, W

    2015-04-01

    Antinuclear autoantibodies (ANA) are highly informative biomarkers in autoimmune diagnostics. The increasing demand for effective test systems, however, has led to the development of a confusingly large variety of different platforms. One of them, the indirect immunofluorescence (IIF), is regarded as the common gold standard for ANA screening, as described in a position statement by the American College of Rheumatology in 2009. Technological solutions have been developed aimed at standardization and automation of IIF to overcome methodological limitations and subjective bias in IIF interpretation. In this review, we present the EUROPattern Suite, a system for computer-aided immunofluorescence microscopy (CAIFM) including automated acquisition of digital images and evaluation of IIF results. The system was originally designed for ANA diagnostics on human epithelial cells, but its applications have been extended with the latest system update version 1.5 to the analysis of antineutrophil cytoplasmic antibodies (ANCA) and anti-dsDNA antibodies. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Pattern of glomerular diseases in oman: A study based on light microscopy and immunofluorescence

    Directory of Open Access Journals (Sweden)

    Nasar Yousuf Alwahaibi

    2013-01-01

    Full Text Available Light microscopy and immunofluorescence play an important part in the final diagnosis of renal biopsy. The aim of this study was to analyze the pattern of various glomerular diseases in Oman. A total of 424 renal biopsies were retrospectively analyzed at the Sultan Qaboos University Hospital between 1999 and 2010. Focal and segmental glomerulosclerosis (FSGS, minimal change disease (MCD, membranous glomerulopathy (MGN and IgA nephropathy were the most common primary glomerular diseases encountered, accounting for 21.2%, 17%, 12.3% and 8.3%, respectively, of all cases. Lupus nephritis was the most common secondary glomerular disease and was the most prevalent among all biopsies, accounting for 30.4% of all biopsies. Amyloidosis was seen in only two cases. The presence of fluorescein isothiocyanatefibrin in all renal cases was low when compared with IgG, IgA, IgM, C3 and C1q markers. In conclusion, based on the findings of this study, lupus nephritis was the most common of all glomerular diseases and FSGS was the most common primary glomerular disease. The importance of fluorescein isothiocyanate-fibrin in the diagnosis of renal biopsy needs to be further investigated.

  13. Detection of serum antitrichomonal antibodies in urogenital trichomoniasis by immunofluorescence.

    Directory of Open Access Journals (Sweden)

    Bhatt R

    1992-04-01

    Full Text Available Trichomonas vaginalis is a frequently encountered genital pathogen in both males and females. In females, vaginitis due to this parasite is one of the most common manifestation. The indirect fluorescent technique (IFA test was carried out to detect antitrichomonal antibodies in 370 female patients using whole cell antigen. Seventy one (19.18% gave positive reaction for either of the class IgG, IgM and IgA antibodies. The level of the IgG class antibodies was found to be higher i.e. 58 (81.69% than IgM 11 (15.27% antibodies, which may be suggestive of past infection or a prolonged manifestation by the organisms.

  14. Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

    Directory of Open Access Journals (Sweden)

    Shinnosuke Inoue

    Full Text Available An occupationally safe (biosafe sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.

  15. The detection of Giardia muris and Giardia lamblia cysts by immunofluorescence in animal tissues and fecal samples subjected to cycles of freezing and thawing.

    Science.gov (United States)

    Erlandsen, S L; Sherlock, L A; Bemrick, W J

    1990-04-01

    The effects of freezing and thawing on the detection of selected Giardia spp. cysts were investigated using immunofluorescence, bright field microscopy, and low voltage scanning electron microscopy (SEM). Giardia muris cysts were obtained from either animal carcasses, fecal pellets, or isolated cyst preparations, whereas Giardia lamblia cysts were isolated from fecal samples. These samples were stained using an immunofluorescence technique after 1-3 freezing (-16 C) and thawing (20 C) cycles. Cysts were detected successfully by immunofluorescence in all samples. However, in those samples subjected to freeze-thawing, the cyst walls often became distorted and then were not detectable by bright field microscopy. Low voltage SEM demonstrated that the filaments in the distorted cyst wall underwent rearrangements of interfilament spacing. Quantitation of cyst recovery after freezing and thawing demonstrated that a substantial loss occurred after 1 cycle of alternating temperature when low concentrations of cysts were used, but not with high concentrations of cysts. Cyst recovery, after 3 freezing and thawing cycles, was dramatically lowered irrespective of the initial cyst concentration. These results demonstrated that immunofluorescence was an effective technique for the detection of Giardia spp. cysts in frozen samples and would suggest that freezing and thawing of fecal samples could prevent the detection of cysts when only bright field microscopy was employed.

  16. Improved detection of Pneumocystis carinii by an immunofluorescence technique using monoclonal antibodies

    DEFF Research Database (Denmark)

    Orholm, M; Holten-Andersen, W; Lundgren, Jens Dilling

    1990-01-01

    To assess whether a recently developed indirect immunofluorescent stain using monoclonal antibodies was more sensitive in detecting Pneumocystis carinii than the combination of Giemsa and methenamine silver nitrate stains which has routinely been used in the laboratory, 88 lavage fluid specimens...... silver nitrate and toluidine blue O. Immunofluorescence using the monoclonal antibodies from the NIH was significantly more sensitive than any other single staining method and than the combination of Giemsa and methenamine silver nitrate staining. The study also showed that the cytospin centrifuge...

  17. Indirect micro-immunofluorescence test for detecting type-specific antibodies to herpes simplex virus.

    Science.gov (United States)

    Forsey, T; Darougar, S

    1980-02-01

    A rapid indirect micro-immunofluorescence test capable of detecting and differentiating type-specific antibodies to herpes simplex virus is described. The test proved highly sensitive and, in 80 patients with active herpes ocular infection, antibody was detected in 94%. No anti-herpes antibody was detected in a control group of 20 patients with adenovirus infections. Testing of animal sera prepared against herpes simplex virus types 1 and 2 and of human sera from cases of ocular and genital herpes infections showed that the test can differentiate antibodies to the infecting serotypes. Specimens of whole blood, taken by fingerprick, and eye secretions, both collected on cellulose sponges, could be tested by indirect micro-immunofluorescence. Anti-herpes IgG, IgM, and IgA can also be detected.

  18. Quantitative immunofluorescence microscopy of renal glomeruli from mice exhibiting murien lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R H [Lawrence Livermore Lab., CA; Greenspan, J S; Moore, D II; Talal, N; Roubinian, J R

    1981-01-01

    Pathologic changes in renal glomeruli of mice with systemic murine lupus erythematosus were quantified using microfluorophotometry. Cryostat sections were taken from kidneys of affected mice, stained with fluorescein-conjugated anti-mouse immunoglobulin, and the extent of immune complex glomerulonephritis was determined. A subjective microscopic examination procedure, which has been used previously, was compared with quantitative microfluorophotometry and a close correlation between the results using each of the two methods was found. Since the microfluorometric procedure measures the total fluorescence per glomerulus, subjective microscopy must estimate that same quantity in a linear fashion. The present advance in measuring capability indicates good potential for rapid, quantitive measurements for further studies on systemic lupus erythematosus, and on other tissue sections stained with fluorescent antibodies.

  19. An expert protocol for immunofluorescent detection of calcium channels in tsA-201 cells.

    Science.gov (United States)

    Koch, Peter; Herzig, Stefan; Matthes, Jan

    Pore-forming subunits of voltage gated calcium channels (VGCC) are large membrane proteins (260kDa) containing 24 transmembrane domains. Despite transfection with viral promoter driven vectors, biochemical analysis of VGCC is often hampered by rather low expression levels in heterologous systems rendering VGCC challenging targets. Especially in immunofluorescent detection, calcium channels are demanding proteins. We provide an expert step-by-step protocol with adapted conditions for handling procedures (tsA-201 cell culture, transient transfection, incubation time and temperature at 28°C or 37°C and immunostaining) to address the L-type calcium-channel pore Ca v 1.2 in an immunofluorescent approach. We performed immunocytochemical analysis of Ca v 1.2 expression at single-cell level in combination with detection of different markers for cellular organelles. We show confluency levels and shapes of tsA-201 cells at different time points during an experiment. Our experiments reveal sufficient levels of Ca v 1.2 protein and a correct Ca v 1.2 expression pattern in polygonal shaped cells already 12h after transfection. A sequence of elaborated protocol modifications allows subcellular localization analysis of Ca v 1.2 in an immunocytochemical approach. We provide a protocol that may be used to achieve insights into physiological and pathophysiological processes involving voltage gated calcium channels. Our protocol may be used for expression analysis of other challenging proteins and efficient overexpression may be exploited in related biochemical techniques requiring immunolabels. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Development of immunofluorescence colony staining (IFC) for detection of Xanthomonas campestris pv. vesicatoria and Clavibacter michiganensis subsp michiganensis in tomato seeds

    NARCIS (Netherlands)

    Nemeth, J.; Vuurde, van J.W.L.

    2006-01-01

    Immunofluorescence colony-staining (IFC) is based on sample pour plating in combination with immunofluorescence staining for recognition of the target colony. IFC was optimised for detecting Xanthomonas campestris pv. vesicatoria (Xcv) and Clavibacter michiganensis subsp. michiganensis (Cmm) in

  1. Comparison of new immunofluorescence method for detection of soy protein in meat products with immunohistochemical, histochemical, and ELISA methods

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2014-01-01

    Full Text Available Soy proteins are commonly used in the food industry thanks to their technological properties. However, soy is, along with cow’s milk, eggs, wheat, peanuts, tree nuts, fish, crustaceans, and molluscs, responsible for around 90% of food allergies, and is also one of the foodstuffs that can cause anaphylaxis. The aim of this work was to compare the immunofluorescence method for the detection of soy protein in meat products purchased from the retail market with other microscopic methods (immunohistochemical and histochemical, with the ELISA reference method and with the confirmatory results. Within the research, 127 meat products purchased in the retail network were examined using the immunofluorescence method used for the detection of soy protein. The method was compared to Enzyme-Linked ImmunoSorbent Assay (ELISA, immunohistochemical, and histochemical methods. According to McNemar’s test, non-compliance between the immunofluorescence method and immunohistochemical method was low. In addition, a significant difference between the fluorescence method and ELISA (P P < 0.01 was found. The immunofluorescence method was also compared with confirmatory results. According to McNemar’s test, non-compliance between the immunofluorescence method and confirmatory results was low. The results showed the possibilities of this new method to detect the content of soy protein in meat products.

  2. Practical application of immunofluorescence for the detection of bacterial contaminants during vinification

    Directory of Open Access Journals (Sweden)

    Marielle Bouix

    1997-03-01

    Full Text Available This study presents a rapid and specific microscopie technique for detecting and identifying populations of lactic acid bacteria in musts, wines, and inoculum starter cultures. Through the use of fluorescent antibodies, this procedure can be performed in less than two hours, and it is effective with Leuconostoc, Pediococcus and Lactobacillus concentrations as small as 102 cells/ml. Implementation of this technique will assist winemakers in controlling malolactic fermentations and in preventing lactic acid bacterial spoilage.

  3. Human cryptosporidiosis: detection of specific antibodies in the serum by an indirect immunofluorescence

    Directory of Open Access Journals (Sweden)

    Braz Lúcia M.A.

    1996-01-01

    Full Text Available Cryptosporidium sp., a coccidian parasite usually found in the faeces of cattle, has been recently implicated as an agent of human intestinal disease, mainly in immunocompromised patients. In the study realized, by an indirect immunofluorescence technique, specific immunoglobulins (IgG and IgM have been demonstrated in human serum against Cryptosporidium oocysts. Purified oocysts were used as antigens in the indirect immunofluorecence assay. After analyzing this test in sera from selected groups of patients, the frequency of both specific IgG and IgM of immunocompetent children who were excreting oocysts in their faeces was 62% and in children with negative excretion of oocysts was 20% and 40%, respectively. In adults infected with the human immunodeficiency virus (HIV and who were excreting Cryptosporidium in their stools, the frequency was 57% for IgG but only 2% for IgM. Twenty three percent of immunocompromised adults with not determined excretion of oocysts in their stools had anti-Cryptosporidium IgG in their sera. Children infected with human immunodeficiency virus had no IgM and only 14% had IgG detectable in their sera. The indirect immunoflorescence assay, when used with other parasitological techniques appears to be useful for retrospective population studies and for diagnosis of acute infection. The humoral immune response of HIV positive patients to this protozoan agent needs clarification.

  4. Detection of viral infection by immunofluorescence in formalin-fixed tissues, pretreated with trypsin

    Directory of Open Access Journals (Sweden)

    O. M. Barth

    1988-06-01

    Full Text Available The presence of viral antigen in sections from formalin-fixed and paraffin-embedded human tissues was demonstrated by trypsin digestion followed by direct or indirect immunofluorescence. The specimens may be used for retrospective diagnosis. The immunofluorescence technique has to be adapted to the suspected virus infection on the basis of previous histopathology study. Variations of trypsin concentration time and temperature of incubation, expose different viral antigens and have to be previously tested for each unknown system. For measles virus detection in lung a stronger digestion has to be applied as compared to adenovirus or respiratory disease viruses in the same tisue. Flavivirus in liver tissue needs a weaker digestion. The reproducibility of the method makes it useful as a routine technique in diagnosis of virus infection.A presença de antígeno viral em cortes de tecidos humanos fixados em formol e emblocados em parafina foi demonstrada pela digestão com tripsina foi demonstrada pela ingestão com tripsina seguida de imunofluorescência direta ou indireta. Os espécimens podem ser utilizados para diagnoses retrospectivas. A técnica da imunofluorescência deve ser adaptada à infecção viral suspeita segundo diagnosie histopatológica prévia. Os parâmetros para a digestão do tecido pela tripsina, relacionados à concentração, duração de atuação e temperatura, expõem diferentes antígenos virais e devem ser previamente testados para cada sistema a ser estabelecido. Uma digestão mais intensa deve ser aplicada para a detecção do vírus do sarampo em tecido pulmonar do que para adenovírus ou vírus respiratório sincicial no mesmo tecido. Por outro lado, o vírus da febre amarela em tecido de fígado necessita de uma digestão mais fraca.

  5. Characterization of pars intermedia connections in amphibians by biocytin tract tracing and immunofluorescence aided by confocal microscopy

    NARCIS (Netherlands)

    Jansen, K; Fabro, C; Artero, C; Feuilloley, M; Vaudry, H; Fasolo, A; Franzoni, MF

    Biocytin, recently introduced in neuroanatomical studies, was used as a retrograde tract tracer in combination with immunofluorescence in order to analyse the neurochemical characters of some central neuronal projections to the pars intermedia in two amphibian species, the anuran Rana esculenta and

  6. Neuromyelitis optica immunoglobulin G in Chinese patients detected by immunofluorescence assay on a monkey brain substrate.

    Science.gov (United States)

    Long, Youming; Hu, Xueqiang; Peng, Fuhua; Lu, Zhengqi; Wang, Yuge; Yang, Yu; Qiu, Wei

    2012-01-01

    Serum neuromyelitis optica immunoglobulin G (NMO-IgG) is used as a biomarker to differentiate between neuromyelitis optica (NMO) and multiple sclerosis (MS). However, the original assay is expensive and complex and shows low sensitivity. Here, we investigated the potential of NMO-IgG detection using an indirect immunofluorescence (IIF) assay on monkey brains. NMO-IgG seroprevalence was determined in 168 samples by an IIF assay on a monkey brain substrate. The data were compared with those from a standard mouse brain IIF assay using McNemar and kappa tests. Thirty-one of 50 (62%) NMO patients, 7 of 18 (38.9%) longitudinally extensive transverse myelitis patients, 6 of 57 (10.5%) MS patients, and 5 of 10 (50%) optic neuritis patients were seropositive for NMO-IgG. None of the acute partial transverse myelitis patients (n = 3) or healthy controls (n = 20) was positive. Thus, the sensitivity of the test was 62% for the patients with clinically definite NMO. The specificity was 89.5%, considering the 57 MS patients as the control group. The modified IIF assay on monkey brains and the standard IIF assay based on mouse brains were not significantly different (McNemar test; p = 1.000). The two assays were concordant in 39 seropositive samples and 100 seronegative samples (kappa test; kappa = 0.592, p monkey brain assay was no better than the standard mouse brain IIF assay, we affirmed that NMO-IgG is a sensitive and specific biomarker to differentiate between NMO and MS. Copyright © 2011 S. Karger AG, Basel.

  7. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways

    DEFF Research Database (Denmark)

    Vestergaard, Maj Linea; Awan, Aashir; Warzecha, Caroline Becker

    2016-01-01

    onto 16-well glass chambers, and continuing with the general IFM and qPCR anlysis. The techniques are illustrated with results on cellular localization of transcriptional factors and components of the Hedgehog, Wnt, PDGF, and TGFβ signaling pathways to primary cilia in stem cell maintenance......This chapter describes the procedures for immunofluorescence microscopy (IFM) and quantitative PCR (qPCR) analyses of human embryonic stem cells (hESCs) grown specifically under feeder-free conditions. A detailed protocol is provided outlining the steps from initially growing the cells, passaging...

  8. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    International Nuclear Information System (INIS)

    Decho, Alan W; Beckman, Erin M; Chandler, G Thomas; Kawaguchi, Tomohiro

    2008-01-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae

  9. Characterisation of L-Type Amino Acid Transporter 1 (LAT1 Expression in Human Skeletal Muscle by Immunofluorescent Microscopy

    Directory of Open Access Journals (Sweden)

    Nathan Hodson

    2017-12-01

    Full Text Available The branch chain amino acid leucine is a potent stimulator of protein synthesis in skeletal muscle. Leucine rapidly enters the cell via the L-Type Amino Acid Transporter 1 (LAT1; however, little is known regarding the localisation and distribution of this transporter in human skeletal muscle. Therefore, we applied immunofluorescence staining approaches to visualise LAT1 in wild type (WT and LAT1 muscle-specific knockout (mKO mice, in addition to basal human skeletal muscle samples. LAT1 positive staining was visually greater in WT muscles compared to mKO muscle. In human skeletal muscle, positive LAT1 staining was noted close to the sarcolemmal membrane (dystrophin positive staining, with a greater staining intensity for LAT1 observed in the sarcoplasmic regions of type II fibres (those not stained positively for myosin heavy-chain 1, Type II—25.07 ± 5.93, Type I—13.71 ± 1.98, p < 0.01, suggesting a greater abundance of this protein in these fibres. Finally, we observed association with LAT1 and endothelial nitric oxide synthase (eNOS, suggesting LAT1 association close to the microvasculature. This is the first study to visualise the distribution and localisation of LAT1 in human skeletal muscle. As such, this approach provides a validated experimental platform to study the role and regulation of LAT1 in human skeletal muscle in response to various physiological and pathophysiological models.

  10. Immunofluorescent detection in the ovary of host antibodies against a secretory ferritin injected into female Haemaphysalis longicornis ticks.

    Science.gov (United States)

    Galay, Remil Linggatong; Matsuo, Tomohide; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Kusakisako, Kodai; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2018-04-01

    Due to the continuous threat of ticks and tick-borne diseases to human and animal health worldwide, and the drawbacks of chemical acaricide application, many researchers are exploring vaccination as an alternative tick control method. Earlier studies have shown that host antibodies can circulate in the ticks, but it has not been confirmed whether these antibodies can be passed on to the eggs. We previously reported that ticks infesting rabbits immunized with a recombinant secretory ferritin of Haemaphysalis longicornis (HlFER2) had reduced egg production and hatching. Here we attempted to detect the presence of antibodies against HlFER2 in the ovary and eggs of female ticks through immunofluorescent visualization. Purified anti-HlFER2 antibodies or rabbit IgG for control was directly injected to engorged female H. longicornis. Ovaries and eggs after oviposition were collected and prepared for an indirect immunofluorescent antibody test. Positive fluorescence was detected in ovaries one day post-injection of anti-HlFER2 antibodies. Through silencing of Hlfer2 gene, we also determined whether the injected antibodies can specifically bind to native HlFER2. Immunofluorescence was observed in the oocytes of dsLuciferase control ticks injected with anti-HlFER2 antibodies, but not in the oocytes of Hlfer2-silenced ticks also injected with anti-HlFER2 antibodies. Our current findings suggest that host antibodies can be passed on to the oocytes, which is significant in formulating a vaccine that can disrupt tick reproduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Double-label immunofluorescence method for simultaneous detection of adenovirus and herpes simplex virus from the eye.

    Science.gov (United States)

    Walpita, P; Darougar, S

    1989-07-01

    The development and application of a double-label immunofluorescence method which has the potential to screen for single or dual infections from any site, in single shell vial cultures, is described. In this study, a total of 1,141 ocular specimens were inoculated in shell vials, centrifuged at 15,000 X g for 1 h, incubated at 37 degrees C for 48 h, and fixed in methanol at room temperature for 15 min. The virus inclusions were detected by staining with a double-label indirect immunofluorescence procedure using mixtures of appropriate first antibodies, followed by fluorescein- and rhodamine-conjugated second antibodies. Each specimen was also inoculated in parallel by the conventional virus isolation method. The sensitivity and specificity of the double-label shell vial procedure were comparable to those with the conventional method, and the former test took only 48 h to complete. The test offers a rapid and simple single-vial procedure which allows for individual or simultaneous detection of multiple pathogens. It results in savings in time and cost over the conventional virus isolation method and other shell vial procedures.

  12. A Unique Immunofluorescence Protocol to Detect Protein Expression in Vascular Tissues: Tacking a Long Standing Pathological Hitch

    Directory of Open Access Journals (Sweden)

    Puneet GANDHI

    2018-01-01

    Full Text Available Objective: Autofluorescence induced interference is one of the major drawbacks in immunofluorescence analysis of formalin-fixed paraffin-embedded tissues, as it decreases the signal-to-noise ratio of specific labeling. Apart from aldehyde-fixation induced artifacts; collagen and elastin, red blood cells and endogenous fluorescent pigment lipofuscin are prime sources of autofluorescence in vascular and aging tissues. We describe herein, an optimized indirect-immunofluorescence method for archival formalin-fixed paraffin-embedded tissues tissues and cryo sections, using a combination of 3-reagents in a specific order, to achieve optimal fluorescence signals and imaging. Material and Method: Human telomerase reverse transcriptase, a protein implicated as a proliferation marker, was chosen relevant to its expression in solid tumors along with 3 other intracellular proteins exhibiting nuclear and/or cytoplasmic expression. Staining was performed on 10 glioma tissue sections along with 5 of their cryo sections, 5 sections each of hepatocellular, lung, papillary-thyroid and renal cell carcinoma, with 10 non-malignant brain tissue samples serving as control. Specimens were imaged using epifluorescence microscopy, followed by software-based quantification of fluorescence signals for statistical analysis and validation. Results: We observed that the combined application of sodium-borohydride followed by crystal violet before antigen retrieval and a Sudan black B treatment after secondary antibody application proved to be most efficacious for masking autofluorescence/non-specific background in vascular tissues. Conclusion: This unique trio-methodology provides quantifiable observations with maximized fluorescence signal intensity of the target protein for longer retention time of the signal even after prolonged storage. The results can be extrapolated to other human tissues for different protein targets.

  13. Use of a Granulocyte Immunofluorescence Assay Designed for Humans for Detection of Antineutrophil Cytoplasmic Antibodies in Dogs with Chronic Enteropathies.

    Science.gov (United States)

    Florey, J; Viall, A; Streu, S; DiMuro, V; Riddle, A; Kirk, J; Perazzotti, L; Affeldt, K; Wagner, R; Vaden, S; Harris, T; Allenspach, K

    2017-07-01

    Perinuclear antineutrophil cytoplasmic antibodies (pANCA) previously have been shown to be serum markers in dogs with chronic enteropathies, with dogs that have food-responsive disease (FRD) having higher frequencies of seropositivity than dogs with steroid-responsive disease (SRD). The indirect immunofluorescence (IIF) assay used in previous publications is time-consuming to perform, with low interobserver agreement. We hypothesized that a commercially available granulocyte IIF assay designed for humans could be used to detect perinuclear antineutrophil cytoplasmic antibodies in dogs. Forty-four dogs with FRD, 20 dogs with SRD, 20 control dogs, and 38 soft-coated wheaten terrier (SCWT) or SCWT-cross dogs. A granulocyte assay designed for humans was used to detect pANCA, cANCA, and antinuclear antibodies (ANA), as well as antibodies against proteinase-3 protein (PR-3) and myeloperoxidase protein (MPO) in archived serum samples. Sensitivity of the granulocyte assay to predict FRD in dogs was 0.61 (95% confidence interval (CI), 0.45, 0.75), and specificity was 1.00 (95% CI, 0.91, 1.00). A significant association was identified between positive pANCA or cANCA result and diagnosis of FRD (P < 0.0001). Agreement between the two assays to detect ANCA in the same serum samples from SCWT with protein-losing enteropathy/protein-losing nephropathy (PLE/PLN) was substantial (kappa, 0.77; 95% CI, 0.53, 1.00). Eight ANCA-positive cases were positive for MPO or PR-3 antibodies. The granulocyte immunofluorescence assay used in our pilot study was easy and quick to perform. Agreement with the previously published method was good. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Evaluation of a Direct Immunofluorescent Assay and/or Conjunctival Cytology for Detection of Canine Distemper Virus Antigen.

    Science.gov (United States)

    Athanasiou, Labrini V; Kantere, Maria C; Kyriakis, Constantinos S; Pardali, Dimitra; Adamama Moraitou, Katerina; Polizopoulou, Zoe S

    2018-04-01

    Canine distemper is a common and potentially lethal multisystemic disease caused by the Canine distemper virus (CDV). We evaluated the diagnostic performance of direct immunofluorescent assay (FA) and cytology to detect CDV antigen in conjunctival cells compared with an established polymerase chain reaction (PCR) detection assay used as a gold standard for CDV diagnosis. Samples were collected from 57 young dogs presenting with central nervous system signs compatible with distemper disease. Exfoliative epithelial cells were collected from the right and left conjunctiva of each animal using nylon-bristled cytobrushes for cytology and cotton swabs for FA and PCR. For the direct FA, samples were stained with anti-CDV polyclonal antiserum conjugated to fluorescein isothiocyanate and imaged using a fluorescent microscope. Out of 57 dogs tested, 19 were PCR positive (15 positive in direct FA and 4 positive in cytology, including one that was negative by PCR), whereas 37 dogs were negative in all methods. A good agreement was observed between the FA and PCR, with a κ-value of 0.833 (95% CI: 0.678-0.989). Meanwhile, there was poor agreement between cytology and PCR (κ-value of 0.164; 95% CI: -0.045 to 0.373) and a fair agreement between FA and cytology (κ-value of 0.231; 95% CI: -0.026 to 0.487). Our results indicated a poor performance of cytology for the detection of CDV antigen. In contrast, FA is a 100% specific and an adequately sensitive assay (sensitivity: 78.95%, negative likelihood ratio: 0.21, 95% CI: 0.09-0.50) for antemortem diagnosis of canine distemper.

  15. DETECTION OF ANTIBODIES TO CANDIDA ALBICANS GERM TUBE BY IMMUNOFLUORESCENCE IN IMMUNOSUPPRESSED MICE WITH EXPERIMENTAL SYSTEMIC CANDIDIASIS

    Directory of Open Access Journals (Sweden)

    F. Zaini

    2007-07-01

    Full Text Available "nThe increasing incidence of systemic candidiasis, which parallels the use of invasive and immunosuppressive medical procedures, necessitates development of rapid and cost effective tests for diagnosis of systemic candidiasis. Therefore in this study 85 mice were first immunosuppressed by cyclophosphamide and then infected by Candida albicans NCPF 3153. Other 85 mice were employed as control. The case and control mice were bled and then autopsied. Hearts and kidneys were checked by direct, histopathological and cultural examination for systemic candidiasis. The 85 sera from histological proven cases and 85 control mice were adsorbed with heat killed blastospores of same strain of C. albicans. Anti-Candida albicans germ tube antibodies were detected by indirect immunofluorescence assay for diagnosis of invasive candidiasis in case and control mice. In addition, sera from 35 mice with proven cryptococcosis were also tested. While 84 mice with proven systemic candidiasis (100% had anti-germ tube antibodies, these antibodies were absent in all controls and mice with cryptococcosis. The specificity was 100%, indicating a high degree of discrimination was possible between systemic candidiasis and cryptococcosis in the mice studied. It must be concluded that anti-germ tube responses did not appear to be significantly reduced in immunocompromised mice.

  16. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis.

    Science.gov (United States)

    Litster, A L; Pogranichniy, R; Lin, T-L

    2013-11-01

    The antemortem diagnosis of feline infectious peritonitis (FIP) remains challenging in clinical practice, since current testing methods have suboptimal diagnostic accuracy. Immunohistochemical testing of biopsy specimens and postmortem examination are the standard diagnostic methods, although direct immunofluorescence (DIF) testing to detect feline coronavirus in macrophages in effusion specimens has been reported to have 100% specificity and has been recommended as an antemortem confirmatory test. The aim of this study was to compare the results of DIF testing in antemortem feline effusions with postmortem results using field samples. Effusion specimens were collected antemortem from 17 cats and tested by DIF, followed by postmortem examination. Histopathological examination of specimens collected at postmortem confirmed FIP in 10/17 cases and ruled out FIP out in 7/17 cases. Antemortem DIF testing was positive in all 10 cases confirmed as FIP at postmortem examination. In the seven cats where FIP was ruled out at postmortem examination, DIF was negative in five cases and positive in the remaining two cases. The calculated sensitivity of DIF testing was 100% and the specificity was 71.4%. Duplicate effusion specimens from eight cats that were initially DIF positive were stored refrigerated (4 °C) or at room temperature (22-25 °C) and subjected to serial DIF testing to determine the duration of positive results. DIF-positive specimens stored at both temperatures retained their positive status for at least 2 days. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Detection of laser damage by Raman microscopy

    International Nuclear Information System (INIS)

    Fauchet, P.M.; Campbell, I.H.; Adar, F.

    1988-01-01

    The authors demonstrate that Raman miroscopy is a sensitive and quantitative tool to detect and characterize laser-induced damage in solids. After damage is induced with single or multiple high power laser pulses, a Raman microprobe maps the surface of the sample with one micron spatial resolution. By performing accurate measurements of the Stokes line, the authors have been able to measure stress, strain and crystallinity in various samples which had been exposed to high intensity pulses. These results are compared to those obtained using conventional tools such as Nomarski microscopy. Major advantages of Raman microscopy include sensitivity to subtle structural modifications and the fact that it gives quantitative measurements

  18. Indirect immunofluorescence assay for the simultaneous detection of antibodies against clinically important old and new world hantaviruses.

    Directory of Open Access Journals (Sweden)

    Sabine Lederer

    Full Text Available In order to detect serum antibodies against clinically important Old and New World hantaviruses simultaneously, multiparametric indirect immunofluorescence assays (IFAs based on biochip mosaics were developed. Each of the mosaic substrates consisted of cells infected with one of the virus types Hantaan (HTNV, Puumala (PUUV, Seoul (SEOV, Saaremaa (SAAV, Dobrava (DOBV, Sin Nombre (SNV or Andes (ANDV. For assay evaluation, serum IgG and IgM antibodies were analyzed using 184 laboratory-confirmed hantavirus-positive sera collected at six diagnostic centers from patients actively or previously infected with the following hantavirus serotypes: PUUV (Finland, n=97; SEOV (China, n=5; DOBV (Romania, n=7; SNV (Canada, n=23; ANDV (Argentina and Chile, n=52. The control panel comprised 89 sera from healthy blood donors. According to the reference tests, all 184 patient samples were seropositive for hantavirus-specific IgG (n=177; 96% and/or IgM (n=131; 72%, while all control samples were tested negative. In the multiparametric IFA applied in this study, 183 (99% of the patient sera were IgG and 131 (71% IgM positive (accordance with the reference tests: IgG, 96%; IgM, 93%. Overall IFA sensitivity for combined IgG and IgM analysis amounted to 100% for all serotypes, except for SNV (96%. Of the 89 control sera, 2 (2% showed IgG reactivity against the HTNV substrate, but not against any other hantavirus. Due to the high cross-reactivity of hantaviral nucleocapsid proteins, endpoint titrations were conducted, allowing serotype determination in >90% of PUUV- and ANDV-infected patients. Thus, multiparametric IFA enables highly sensitive and specific serological diagnosis of hantavirus infections and can be used to differentiate PUUV and ANDV infection from infections with Murinae-borne hantaviruses (e.g. DOBV and SEOV.

  19. [Application of Immunohistochemistry and Immunofluorescence Staining in Detection of Phospholipase A2 Receptor on Paraffin Section of Renal Biopsy Tissue].

    Science.gov (United States)

    Dong, Hong-rui; Wang, Yan-yan; Wang, Guo-qin; Sun, Li-jun; Cheng, Hong; Chen, Yi-pu

    2015-10-01

    To evaluate the application of immunohistochemistry and fluorescence staining method in the detection of phospholipase A2 receptor (PLA2R) on paraffin section of renal biopsy tissue,and to find an accurate and fast method for the detection of PLA2R in renal tissue. The PLA2R of 193 cases were detected by immunohistochemical staining,and the antigen was repaired by the method of high pressure cooker (HPC) hot repair plus trypsin repair. The 193 samples including 139 cases of idiopathic membranous nephropathy (IMN), 15 cases of membranous lupus nephritis, 8 cases of hepatitis B virus associated membranous nephropathy, 18 cases of IgA nephropathy, and 13 cases of minimal change diseases. To compare the dyeing effects, 22 paraffin sections of renal biopsy tissue of IMN cases with positive PLA2R were stained by using 4 different. of antigen repairing,which included HPC hot repair, HPC hot repair plus trypsin repair, water bath heat repair, and water bath heat repair plus trypsin repair. To compare the dyeing effects, 15 paraffin sections of renal biopsy tissue of IMN cases with positive PLA2R were stained by using 3 different. of antigen repairing,which included water bath heat repair plus trypsin repair, protease K digestion repair, and pepsin digestion repair. In 193 cases, the positive rate of PLA2R in IMN cases was 90.6% (126/139), and the other 54 patients without IMN were negative. Twenty-two IMN patients were positive for PLA2R by using the HPC heat repair plus trypsin repaire or the water bath heat repair plus trypsin repair;while only a few cases of 22 IMN cases were positive by using the HPC hot repair alone or water bath heat repair alone. Fifteen IMN patients were positive for PLA2R by using water bath heat repair plus trypsin repair,protease K digestion repair,and pepsin digestion repair, but the distribution of positive deposits and the background were different. PLA2R immunohistochemical staining can effectively identify IMN and secondary MN. For

  20. Backscattering position detection for photonic force microscopy

    International Nuclear Information System (INIS)

    Volpe, Giovanni; Kozyreff, Gregory; Petrov, Dmitri

    2007-01-01

    An optically trapped particle is an extremely sensitive probe for the measurement of pico- and femto-Newton forces between the particle and its environment in microscopic systems (photonic force microscopy). A typical setup comprises an optical trap, which holds the probe, and a position sensing system, which uses the scattering of a beam illuminating the probe. Usually the position is accurately determined by measuring the deflection of the forward-scattered light transmitted through the probe. However, geometrical constraints may prevent access to this side of the trap, forcing one to make use of the backscattered light instead. A theory is presented together with numerical results that describes the use of the backscattered light for position detection. With a Mie-Debye approach, we compute the total (incident plus scattered) field and follow its evolution as it is collected by the condenser lenses and projected onto the position detectors and the responses of position sensitive detectors and quadrant photodetectors to the displacement of the probe in the optical trap, both in forward and backward configurations. We find out that in the case of backward detection, for both types of detectors the displacement sensitivity can change sign as a function of the probe size and is null for some critical sizes. In addition, we study the influence of the numerical aperture of the detection system, polarization, and the cross talk between position measurements in orthogonal directions. We finally discuss how these features should be taken into account in experimental designs

  1. Comparison of enzyme-linked immunosorbent assay, radioimmunoassay, complement fixation, anticomplement immunofluorescence and passive haemaglutination techniques for detecting cytomegalovirus IgG antibody

    Energy Technology Data Exchange (ETDEWEB)

    Booth, J C; Hannington, G; Bakir, T M.F.; Stern, H; Kangro, H; Griffiths, P D; Heath, R B [Saint George' s Hospital Medical School, London (UK); Saint Bartholomew' s Hospital, London (UK))

    1982-12-01

    The radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) techniques were found to be comparable in sensitivity and specificity for detecting cytomegalovirus IgG antibody, and 10 to 100 times more sensitive than complement-fixation (CF), anticomplement immunofluorescence (ACIF) and passive haemagglutination (PHA). In screening tests for antibody, the frequency of false-positive and -negative results was 0.6% for RIA and ELISA, 1.5% for CF, 1.6% for ACIF and 3.6% for PHA. PHA was the least satisfactory test, largely because of technical problems.

  2. Construction of iron-polymer-graphene nanocomposites with low nonspecific adsorption and strong quenching ability for competitive immunofluorescent detection of biomarkers in GM crops.

    Science.gov (United States)

    Yin, Kaifei; Liu, Anran; Shangguan, Li; Mi, Li; Liu, Xu; Liu, Yuanjian; Zhao, Yuewu; Li, Ying; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-04-15

    We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Diagnóstico de criptosporidiose em amostras fecais de bezerros por imunofluorescência direta e microscopia de contraste de fase Diagnosis of cryptosporidiosis in fecal samples of calves using direct immunofluorescence and phase contrast microscopy

    Directory of Open Access Journals (Sweden)

    Weslen Fabricio Pires Teixeira

    2011-06-01

    Full Text Available O presente estudo teve como objetivo comparar as técnicas de imunofluorescência direta (IFD e a microscopia de contraste de fase em solução de Sheather (MCF, para detecção de oocistos de Cryptosporidium spp. em amostras fecais de bezerros. A determinação dos limiares detecção da IFD e da MCF foi realizada utilizando cinco alíquotas de uma amostra fecal de bezerro, comprovadamente negativa para Cryptosporidium spp., adicionadas com diferentes quantidades de oocistos de Cryptosporidium parvum. Ao exame das 5 alíquotas, a IFD e a MCF apresentaram, respectivamente, limiares de detecção de 3,3x104 (duas alíquotas positivas e 3,3x105 oocistos (1 alíquota positiva por grama de fezes. Foram também realizadas a comparação entre a positividade obtida e uma análise semiquantitativa do número de oocistos observados por campo de microscopia, em ambos os métodos, em 300 amostras fecais de bezerros. Entre as 300 amostras, 19,7% (59/300 foram positivas pela IFD, com diferença estatisticamente significante (P=0,0098 quando comparada com a positividade obtida pela MCF, que foi de 11,7% (35/300. As amostras positivas foram submetidas à reação em cadeia da polimerase para amplificação de fragmentos da subunidade 18S do rRNA, com posterior sequenciamento dos fragmentos amplificados, o que permitiu a identificação de Cryptosporidium andersoni em 11,9% (7/59 e de C.parvum em 88,1% (52/59 das amostras. Os resultados observados comprovam que a IFD foi mais eficiente que a MCF para detecção de oocistos de Cryptosporidium spp. em amostras fecais de bezerros.This study aimed to compare the direct immunofluorescence assay (DIF and the phase contrast microscopy in Sheather solution (PCM for detection of Cryptosporidium oocysts in fecal samples from calves. The determination of the thresholds of detection of DIF and PCM was performed using five aliquots of a fecal sample from a calf negative for Cryptosporidium spp. oocysts, spiked with

  4. Direct immunofluorescence for the diagnosis of legionellosis

    Directory of Open Access Journals (Sweden)

    David JM Haldane

    1993-01-01

    Full Text Available Culture and direct immunofluorescent microscopy (DFA results for Legionella pneumophila were reviewed over a two-year period. In the first year, a positive result was defined as having at least one morphologically typical fluorescing organism. In the second year, a positive was defined as at least five typical fluorescing organisms. Despite these stricter criteria and other measures to reduce the possibility of reagent contamination, there was no statistically significant difference in the sensitivity or specificity of the DFA in the two years for sputa, deep specimens or overall. Of 37 sputum specimens from infected patients, 16 were positive on DFA. Thirty-two of 38 positive patients were detected by sputum culture. DFA can provide rapid diagnostic information but cannot be used to rule out the diagnosis. Sputum is a useful specimen for the initial laboratory investigation of patients with legionellosis.

  5. Comparative evaluations of the detection of antinuclear antibodies by means of various immunofluorescence techniques and by means of a radioimmunoassay under particular consideration of disseminated Lupus erythematodus

    International Nuclear Information System (INIS)

    Gemuend, R.

    1980-01-01

    On a group of 146 test persons (in 50 cases desseminated lupus erythematodus had been confirmed), for the first time comparative evaluations were made with four methods (A to D) under the application of a repurified fluorescinisothiocyanat FITC) serum, in order to detect antinuclear antibodies (ANA). The ANA detection was obtained by immunofluorescence (IFL) on frozen sections of mouse livers; by IFL on chicken erythrocytes smears, previously treated with hydrochloric acid; by IFL on ethanol-fixed flagellates Crithidia luciliae; and by the radioimmunoassay (RIA) of a test kit with reference sera. These two tests served to detect antibodies - with respect to negative DNA - which are of particular importance in lupous nephritis. A good correlation of both methods was proved by means of various statistic methods and by follow-up observations and examinations of the reference sera. Possible reasons responsible for the deviations, which were found between the two tests, are described. Of all 4 tests, RIA and IFL on Crithida resulted to be the most closely ones to the relevant laboratory values and reflect very evidently the activity of the desseminated lupus erethematodus. The particularly well correlation with the blood sedimentation rate, proteinuria and with the complement level becomes very obvious. The advantages and disadvantages of the applied methods are discussed and it is emphasized that at present the method of choice for the detection of DNA antibodies is the combined examination of the patient serum, both, in the IFL on Crithidia and in the RIA. (orig./MG) [de

  6. Giardia and Cryptosporidium spp. dissemination during wastewater treatment and comparative detection via immunofluorescence assay (IFA), nested polymerase chain reaction (nested PCR) and loop mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Gallas-Lindemann, Carmen; Sotiriadou, Isaia; Plutzer, Judit; Noack, Michael J; Mahmoudi, Mohammad Reza; Karanis, Panagiotis

    2016-06-01

    Environmental water samples from the Lower Rhine area in Germany were investigated via immunofluorescence assays (IFAs), nested polymerase chain reaction (nested PCR) and loop-mediated isothermal amplification (LAMP) to detect the presence of Giardia spp. (n=185) and Cryptosporidium spp. (n=227). The samples were concentrated through filtration or flocculation, and oocysts were purified via centrifugation through a sucrose density gradient. For all samples, IFA was performed first, followed by DNA extraction for the nested PCR and LAMP assays. Giardia cysts were detected in 105 samples (56.8%) by IFA, 62 samples (33.5%) by nested PCR and 79 samples (42.7%) by LAMP. Cryptosporidium spp. were detected in 69 samples (30.4%) by IFA, 95 samples (41.9%) by nested PCR and 99 samples (43.6%) by LAMP. According to these results, the three detection methods are complementary for monitoring Giardia and Cryptosporidium in environmental waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A novel immunofluorescence flow cytometry technique detects the expansion of brown tides caused by Aureoumbra lagunensis to the Caribbean Sea.

    Science.gov (United States)

    Koch, F; Kang, Y; Villareal, T A; Anderson, D M; Gobler, C J

    2014-08-01

    During the past 3 decades, brown tides caused by the pelagophytes Aureococcus anophagefferens and Aureoumbra lagunensis have caused ecological and economic damage to coastal ecosystems across the globe. While blooms of A. lagunensis had previously been confined to Texas, in 2012, an expansive brown tide occurred on Florida's East Coast, causing widespread disruption within the Indian River and Mosquito Lagoons and generating renewed interest in this organism. A major impediment to detailed investigations of A. lagunensis in an ecosystem setting has been the absence of a rapid and reliable method for cell quantification. The combination of their small size (3 to 5 μm) and nondescript extracellular features makes identification and enumeration of these cells with conventional methods a challenge. Here we report the development of an immunological-based flow cytometry method that uses a fluorescently labeled antibody developed against A. lagunensis. This method is species specific, sensitive (detection limit of 1.5 × 10(3) cells ml(-1)), precise (1% relative standard deviation of replicated samples), and accurate (108% ± 8% recovery of spiked samples) over a wide range of cell concentrations. Furthermore, this method effectively quantifies A. lagunensis in both glutaraldehyde- and formalin-preserved samples, yields a high throughput of samples (∼35 samples h(-1)), and is cost-effective, making it an ideal tool for managers and scientists. This method successfully documented the recurrence of a brown tide bloom in Florida in 2013. Bloom densities were highest in June (>2.0 × 10(6) cells ml(-1)) and spanned >60 km from the Ponce de Leon inlet in the northern Mosquito Lagoon south to Titusville in the Indian River Lagoon. Low levels of A. lagunensis cells were found >250 km south of this region. This method also quickly and accurately identified A. lagunensis as the causative agent of a 2013 brown tide bloom in Guantanamo Bay, Cuba, and thus should prove useful for

  8. Ferritin protein imaging and detection by magnetic force microscopy.

    Science.gov (United States)

    Hsieh, Chiung-Wen; Zheng, Bin; Hsieh, Shuchen

    2010-03-14

    Magnetic force microscopy was used to image and detect ferritin proteins and the strength of the magnetic signal is discussed, revealing a large workable lift height between the magnetic tip and the ferritin sample.

  9. Detection of Lawsonia intracellularis in formalin-fixed porcine intestinal tissue samples: comparison of immunofluorescence and in-situ hybridization, and evaluation of the effects of controlled autolysis.

    Science.gov (United States)

    Jensen, T K; Boesen, H T; Vigre, H; Boye, M

    2010-01-01

    Two methods, an immunofluorescence assay (IFA; with a Lawsonia intracellularis-specific monoclonal antibody) and fluorescent in-situ hybridization (FISH; with a specific oligonucleotide probe targeting 16S ribosomal RNA of the bacterium), were compared for their ability to detect L. intracellularis (the cause of porcine proliferative enteritis [PE]) in formalin-fixed samples of intestinal tissue. Of 69 intestinal samples with gross lesions of PE, 63 were positive by both FISH and IFA, but six were positive only by IFA. This indicated that the sensitivity of FISH was 91% that of IFA. However, both methods had a specificity of 100%. Fifty normal porcine intestines were negative by both tests. IFA was much less susceptible than FISH to the effects of autolysis. Thus, three of nine samples from pigs with PE were FISH-negative after being kept at 20 degrees C for 4 days, and seven were FISH negative after 2 weeks; after 4 weeks at this temperature, however, six of the nine samples were still IFA positive. After being kept at 4 degrees C for 12 weeks, the majority of samples (> or = 66%) were positive by both methods.

  10. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

    Directory of Open Access Journals (Sweden)

    Qu YG

    2014-12-01

    Full Text Available Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen41Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of ChinaBackground: Epidermal growth factor receptor (EGFR mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R have been developed, EGFR mutation detection by immunohistochemistry (IHC is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC, to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS.Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30; the specificity for both antibodies was 100.0% (26/26. IHC sensitivity was 80.0% (24/30 and the specificity was 92.31% (24/26. When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01. Excellent agreement was observed

  11. Performance evaluation of spot detection algorithms in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2012-10-01

    Full Text Available triggered the development of a highly sophisticated imaging tool known as fluorescence microscopy. This is used to visualise and study intracellular processes. The use of fluorescence microscopy and a specific staining method make biological molecules... was first used in astronomical applications [2] to detect isotropic objects, and was then introduced to biological applications [3]. Olivio-Marin[3] approached the problem of feature extraction based on undecimated wavelet representation of the image...

  12. [Immunofluorescence assay with Crithidia luciliae for the detection of anti-DNA antibodies. Atypical images and their relationship with Chagas' disease and leishmaniasis].

    Science.gov (United States)

    Griemberg, Gloria; Ferrarotti, Nidia F; Svibel, Graciela; Ravelli, Maria R; Taranto, Nestor J; Malchiodi, Emilio L; Pizzimenti, Maria C

    2006-01-01

    Anti-native DNA antibodies can be detected by indirect immunofluorescence assay with Crithidia luciliae, displaying an annular image due to a kinetoplast containing double stranded DNA. Other structures such as membrane, flagellum and basal corpuscle can be stained as well, showing what is called atypical fluorescent images. As C. luciliae belongs to the Trypanosomatidae family, which include the human pathogens Trypanosoma cruzi and Leishmania spp., it was considered that these atypical images could be caused by cross-reactions. Serological studies for Chagas' disease were performed in 105 serum samples displaying atypical images. Sixty four percent of the samples from non endemic and 78.3% from endemic areas for Chagas' disease showed fluorescence in both, membrane and flagellum (joint image). Fifty samples from normal blood donors and 57 samples from patients with conective tissue diseases were tested with C. luciliae. None of them presented the joint image except for two patients with lupus who were also chagasic. In addition, 54 samples from chagasic patients were studied and all of them presented the joint image. We also studied 46 samples from patients with leishmaniasis from whom 28 were coinfected with T. cruzi. The joint image was observed in 88.0% of the samples with leishmaniasis and in 89.3% of the co-infected samples. The results suggest that C. luciliae could be used as an economical, and of low risk, alternative substrate for the serological diagnosis of Chagas' disease, even though it does not discriminate for Leishmania spp. infection. This study also suggests that whenever atypical images are observed in C. luciliae during the search for anti-DNA antibodies, it would be convenient to submit the patient to clinical and serological tests for the diagnosis of leishmaniosis and Chagas' disease.

  13. Evaluation and Comparison of Enzyme Immunoassay (Eia and Acid Fast Staining with Confirmation by Immunofluorescent Antibody Assay for Detection of Cryptosporidium Species in Infants and Young Children.

    Directory of Open Access Journals (Sweden)

    D Dorostcar Moghaddam

    2005-01-01

    Full Text Available Introduction: Cryptosporidiosis is prevalent world wide, causing a variety of problems ranging from acute, self-limiting diarrhea to fatal cases in immunocompromised persons, particulary those with acquired immunodeficiency (AIDS. Diagnosis of Cryptosporidium is made by identification of oocysts in stool specimens. The detection is most commonly made by the acid-fast staining method followed by microscopic examination which has low specificity and sensitivity. Material and Methods: In the present study, we evaluated diagnostic utility of a commercially available enzyme immunoassay (EIA, which detects Cryptosporidium-Specific antigen (CSA in 204 unprocessed stool specimens obtained from patients less than 3 years of age. Results: When compared with the routine screening procedure applied in this field study (screening by acid-fast staining and microscopy after concentration of positive results by IFA, both sensitivity and specificity were 98%. Of the 139 specimens negative by microscopy, 13 (9.3% were positive by EIA, 11 of which were confirmed by inhibition with antibody to Cryptosporidia-specific antigen. Conclusion: The EIA is an important tool for identifying Cryptosporidium in fecal specimens in field studies since it is sensitive, specific, simple to use and unaffected by the presence of a preservative.

  14. A review of cellphone microscopy for disease detection.

    Science.gov (United States)

    Dendere, R; Myburg, N; Douglas, T S

    2015-12-01

    The expansion in global cellphone network coverage coupled with advances in cellphone imaging capabilities present an opportunity for the advancement of cellphone microscopy as a low-cost alternative to conventional microscopy for disease detection in resource-limited regions. The development of cellphone microscopy has also benefitted from the availability of low-cost miniature microscope components such as low-power light-emitting diodes and ball lenses. As a result, researchers are developing hardware and software techniques that would enable such microscopes to produce high-resolution, diagnostic-quality images. This approach may lead to more widespread delivery of diagnostic services in resource-limited areas where there is a shortage of the skilled labour required for conventional microscopy and where prevalence of infectious and other diseases is still high. In this paper, we review current techniques, clinical applications and challenges faced in the field of cellphone microscopy. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, D.M.; Morris, J.W. Jr.; Shaw, T.J.; Lee, Seungkyun; Clarke, John

    2002-01-01

    A 'Holy Grail' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  16. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, David; Morris Jr., J.W.; Shaw, T.J.; McDermott R.; Clarke, John

    2001-01-01

    A ''Holy Grail'' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  17. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    Science.gov (United States)

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  18. Early cell death detection with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    Full Text Available BACKGROUND: Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM dedicated to early and label-free detection of cell death. METHODS AND FINDINGS: We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability. CONCLUSIONS: The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death.

  19. Multispectral detection of cutaneous lesions using spectroscopy and microscopy approaches

    Science.gov (United States)

    Borisova, E.; Genova-Hristova, Ts.; Troyanova, P.; Pavlova, E.; Terziev, I.; Semyachkina-Glushkovskaya, O.; Lomova, M.; Genina, E.; Stanciu, G.; Tranca, D.; Avramov, L.

    2018-02-01

    Autofluorescence, diffuse-reflectance and transmission spectral, and microscopic measurements were made on different cutaneous neoplastic lesions, namely basal cell carcinoma, squamous cell carcinoma, malignant melanoma, and dysplastic and benign lesions related. Spectroscopic measurements were made on ex vivo tissue samples, and confocal microscopy investigations were made on thin tissue slices. Fluorescence spectra obtained reveal statistically significant differences between the different benign, dysplastic and malignant lesions by the level of emission intensity, as well by spectral shape, which are fingerprints applicable for differentiation algorithms. In reflectance mode the most significant differences are related to the influence of skin pigments - melanin and hemoglobin. Transmission spectroscopy mode gave complementary optical properties information about the tissue samples investigated to that one of reflectance and absorption spectroscopy. Using autofluorescence detection of skin lesions we obtain very good diagnostic performance for distinguishing of nonmelanoma lesions. Using diffuse reflectance and transmission spectroscopy we obtain significant tool for pigmented pathologies differentiation, but it is a tool with moderate sensitivity for non-melanoma lesions detection. One could rapidly increase the diagnostic accuracy of the received combined "optical biopsy" method when several spectral detection techniques are applied in common algorithm for lesions' differentiation. Specific spectral features observed in each type of lesion investigated on micro and macro level would be presented and discussed. Correlation between the spectral data received and the microscopic features observed would be discussed in the report.

  20. In-line balanced detection stimulated Raman scattering microscopy

    KAUST Repository

    Crisafi, Francesco

    2017-08-31

    We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

  1. In-line balanced detection stimulated Raman scattering microscopy

    KAUST Repository

    Crisafi, Francesco; Kumar, Vikas; Scopigno, Tullio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario

    2017-01-01

    We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

  2. Ultrafast electron microscopy integrated with a direct electron detection camera

    Directory of Open Access Journals (Sweden)

    Young Min Lee

    2017-07-01

    Full Text Available In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM, which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  3. Ultrafast electron microscopy integrated with a direct electron detection camera.

    Science.gov (United States)

    Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon

    2017-07-01

    In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  4. Detection of Streptococcus suis by in situ hybridization, indirect immunofluorescence, and peroxidase-antiperoxidase assays in formalin-fixed, paraffin-embedded tissue sections from pigs

    DEFF Research Database (Denmark)

    Boye, Mette; Feenstra, Anne Avlund; Tegtmeier, Conny

    2000-01-01

    and the immunohistochemical methods were used for detection of S. suis in formalin-fixed, paraffin-embedded tissue sections of brain, endocardium, and lung from pigs infected with S. suis. The methods developed were able to detect single cells of S. suis in situ in the respective samples, whereas no signal was observed from...

  5. Community detection for fluorescent lifetime microscopy image segmentation

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  6. Detection of oxidative hair treatment using fluorescence microscopy.

    Science.gov (United States)

    Witt, Silvana; Wunder, Cora; Paulke, Alexander; Verhoff, Marcel A; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2016-08-01

    In assessing abstinence from drug or alcohol abuse, hair analysis plays an important role. Cosmetic hair treatment influences the content of deposited drugs which is not always detectable during analysis. Since oxidation of melanin leads to an increase in fluorescence, a microscopic method was developed to distinguish natural from cosmetically treated hair. For validation, natural hair samples were treated with different types of cosmetics and inspected by fluorescence microscopy. Hair samples from 20 volunteers with documented cosmetic treatment and as a proof of concept 100 hair samples from forensic cases were analyzed by this method. Apart from autofluorescence with excitation at 365 nm, no obvious fluorescence was observed in untreated hair samples. Tinting and a natural plant product had no influence on fluorescence, but dyeing procedures including oxidation led to a marked increase in fluorescence. Proof of cosmetic treatment was achieved in hair samples from the 20 volunteers. In 100 forensic cases, 13 samples were characterized as oxidatively treated, which was in accordance with the respective disclosure except for one case where treatment was not admitted. This fluorescence microscopic procedure proved to be fast, easy, and reliable to identify oxidatively treated hair samples, which must be considered especially in evaluating cases of negative drug results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  8. Estimation of antibodies to human cytomegalovirus by immunofluorescence and radioimmunoassay

    International Nuclear Information System (INIS)

    Jankowski, M.; Gut, W.; Nawrocka, E.

    1980-01-01

    The 125 I labelled IgG fraction against rabbit IgG of goat origin was employed for the detection of CMV IgG and IgM antibodies in the double indirect radioimmunoassay. The results were compared with those obtained in complement fixation, indirect immunofluorescence and anti-complement immunofluorescence tests. The application of labelled anti-fc antisera, instead of antisera against whole IgG in the tests for detection of specific CMV IgG antibody resulted in increased sensitivity of radioimmunoassay and reduction of non-specific cytoplasmatic reactions in preparations stained by indirect immunofluorescence. The absorption of sera with protein A rich staphylococci and aggregates to immunoglobulin eliminated unwanted secondary IgM staining caused by rheumatoid factors both in indirect immunofluorescence and radioimmunoassay tests for CMV antibodies. (author)

  9. Performance of LED fluorescence microscopy for the detection of ...

    African Journals Online (AJOL)

    Introduction: Ziehl-Neelsen (ZN) bright-field microscopy is time-consuming, with poor sensitivity, even under optimal conditions. Introduction of Primo Star iLED fluorescent microscopy (FM) may improve TB case finding at referral hospitals in Rwanda. The study aimed to determine the acceptability and effectiveness of iLED ...

  10. Should varicella-zoster virus culture be eliminated? A comparison of direct immunofluorescence antigen detection, culture, and PCR, with a historical review.

    Science.gov (United States)

    Wilson, D A; Yen-Lieberman, B; Schindler, S; Asamoto, K; Schold, J D; Procop, G W

    2012-12-01

    A comparison of direct fluorescent-antibody assay (DFA), culture, and two PCR assays disclosed sensitivities of 87.8%, 46.3%, and 97.6% and 100%, respectively. We reviewed 1,150 results for clinical specimens submitted for DFA and culture and found that only 17 were culture positive/DFA negative. The incremental cost to detect these 17 positives was $3,078/specimen.

  11. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    International Nuclear Information System (INIS)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-01-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations

  12. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, Ireneusz [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany); Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław (Poland); Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  13. Detection of malaria parasites by microscopy and rapid diagnostic ...

    African Journals Online (AJOL)

    The effectiveness of Rapid Diagnostic Test Kit (RDT) was compared with microscopy for the evaluation of malaria infection in children and pregnant women attending two selected health facilities in Lagos State, south-western, Nigeria. A total of 482 patients comprising 252 pregnant women (mean age: 26.86±4.46 years) ...

  14. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  15. Microscopy outperformed in a comparison of five methods for detecting Trichomonas vaginalis in symptomatic women.

    Science.gov (United States)

    Nathan, B; Appiah, J; Saunders, P; Heron, D; Nichols, T; Brum, R; Alexander, S; Baraitser, P; Ison, C

    2015-03-01

    In the UK, despite its low sensitivity, wet mount microscopy is often the only method of detecting Trichomonas vaginalis infection. A study was conducted in symptomatic women to compare the performance of five methods for detecting T. vaginalis: an in-house polymerase chain reaction (PCR); Aptima T. vaginalis kit; OSOM ®Trichomonas Rapid Test; culture and microscopy. Symptomatic women underwent routine testing; microscopy and further swabs were taken for molecular testing, OSOM and culture. A true positive was defined as a sample that was positive for T. vaginalis by two or more different methods. Two hundred and forty-six women were recruited: 24 patients were positive for T. vaginalis by two or more different methods. Of these 24 patients, 21 patients were detected by real-time PCR (sensitivity 88%); 22 patients were detected by the Aptima T. vaginalis kit (sensitivity 92%); 22 patients were detected by OSOM (sensitivity 92%); nine were detected by wet mount microscopy (sensitivity 38%); and 21 were detected by culture (sensitivity 88%). Two patients were positive by just one method and were not considered true positives. All the other detection methods had a sensitivity to detect T. vaginalis that was significantly greater than wet mount microscopy, highlighting the number of cases that are routinely missed even in symptomatic women if microscopy is the only diagnostic method available. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy.

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2012-08-15

    A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.

  17. Automatic detection of NIL defects using microscopy and image processing

    KAUST Repository

    Pietroy, David; Gereige, Issam; Gourgon, Cé cile

    2013-01-01

    patterns, sticking. In this paper, microscopic imaging combined to a specific processing algorithm is used to detect numerically defects in printed patterns. Results obtained for 1D and 2D imprinted gratings with different microscopic image magnifications

  18. Quantification of photoacoustic microscopy images for ovarian cancer detection

    Science.gov (United States)

    Wang, Tianheng; Yang, Yi; Alqasemi, Umar; Kumavor, Patrick D.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2014-03-01

    In this paper, human ovarian tissues with malignant and benign features were imaged ex vivo by using an opticalresolution photoacoustic microscopy (OR-PAM) system. Several features were quantitatively extracted from PAM images to describe photoacoustic signal distributions and fluctuations. 106 PAM images from 18 human ovaries were classified by applying those extracted features to a logistic prediction model. 57 images from 9 ovaries were used as a training set to train the logistic model, and 49 images from another 9 ovaries were used to test our prediction model. We assumed that if one image from one malignant ovary was classified as malignant, it is sufficient to classify this ovary as malignant. For the training set, we achieved 100% sensitivity and 83.3% specificity; for testing set, we achieved 100% sensitivity and 66.7% specificity. These preliminary results demonstrate that PAM could be extremely valuable in assisting and guiding surgeons for in vivo evaluation of ovarian tissue.

  19. Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection, Quantification, and Characterization of Microbes

    Science.gov (United States)

    2015-11-16

    Approved for Public Release; Distribution Unlimited Final Report: 14.3 Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection...Fluroesence; Raman Spectroscopy; Microbiology REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO...14.3 Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection, Quantification, and Characterization of Microbes Report Title

  20. Label-free detection of breast masses using multiphoton microscopy.

    Directory of Open Access Journals (Sweden)

    Xiufeng Wu

    Full Text Available Histopathology forms the gold standard for the diagnosis of breast cancer. Multiphoton microscopy (MPM has been proposed to be a potentially powerful adjunct to current histopathological techniques. A label-free imaging based on two- photon excited fluorescence and second-harmonic generation is developed for differentiating normal breast tissues, benign, as well as breast cancer tissues. Human breast biopsies (including human normal breast tissues, benign as well as breast cancer tissues that are first imaged (fresh, unfixed, and unstained with MPM and are then processed for routine H-E histopathology. Our results suggest that the MPM images, obtained from these unprocessed biopsies, can readily distinguish between benign lesions and breast cancers. In the tissues of breast cancers, MPM showed that the tumor cells displayed marked cellular and nuclear pleomorphism. The tumor cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, infiltrated into disrupted connective tissue, leading to the loss of second-harmonic generation signals. For breast cancer, MPM diagnosis was 100% correct because the tissues of breast cancers did not have second-harmonic generation signals in MPM imaging. On the contrary, in benign breast masses, second-harmonic generation signals could be seen easily in MPM imaging. These observations indicate that MPM could be an important potential tool to provide label-free noninvasive diagnostic impressions that can guide surgeon in biopsy and patient management.

  1. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  2. Role of direct immunofluorescence in the diagnosis of glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Archana C Buch

    2015-01-01

    Full Text Available Background: Immunofluorescence microscopy is a vital tool for the diagnosis of glomerular diseases. This study was carried out to study patterns of glomerulonephritis (GN and to record the sensitivity of direct immunofluorescence (DIF in renal lesions. The DIF findings were correlated with clinical and histopathology findings and discrepancies were analyzed. Materials and Methods: The cross-sectional analytical study was conducted during the period July 2011 to July 2013 at a tertiary care Hospital, Department of Pathology. A total of 75 renal biopsies were received for routine and immunofluorescence studies in which histopathology and clinical data were reviewed and analyzed. Results: The sensitivity of DIF was 87.9% and specificity was 70.5%. The maximum number of cases were seen in the age group 41-50 years. The pattern of GN by DIF was minimal change disease (MCD in 24%, IgA nephropathy in 13%, focal segmental glomerulosclerosis in 9% and membranoproliferative glomerulonephritis in 8% of the cases. Twelve histopathologically proven cases of GN were negative on DIF. One case of MCD on histopathology was diagnosed as IgM nephropathy based on DIF. Conclusion: Direct immunofluorescence forms an important diagnostic tool in reaching the exact diagnosis in various types of GN presenting with overlapping clinical and histomorphological features.

  3. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    Science.gov (United States)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  4. Automatic detection of NIL defects using microscopy and image processing

    KAUST Repository

    Pietroy, David

    2013-12-01

    Nanoimprint Lithography (NIL) is a promising technology for low cost and large scale nanostructure fabrication. This technique is based on a contact molding-demolding process, that can produce number of defects such as incomplete filling, negative patterns, sticking. In this paper, microscopic imaging combined to a specific processing algorithm is used to detect numerically defects in printed patterns. Results obtained for 1D and 2D imprinted gratings with different microscopic image magnifications are presented. Results are independent on the device which captures the image (optical, confocal or electron microscope). The use of numerical images allows the possibility to automate the detection and to compute a statistical analysis of defects. This method provides a fast analysis of printed gratings and could be used to monitor the production of such structures. © 2013 Elsevier B.V. All rights reserved.

  5. Frequency modulation detection atomic force microscopy in the liquid environment

    Science.gov (United States)

    Jarvis, S. P.; Ishida, T.; Uchihashi, T.; Nakayama, Y.; Tokumoto, H.

    True atomic resolution imaging using frequency modulation detection is already well established in ultra-high vacuum. In this paper we demonstrate that it also has great potential in the liquid environment. Using a combination of magnetic activation and high-aspect-ratio carbon nanotube probes, we show that imaging can be readily combined with point spectroscopy, revealing both the tip-sample interaction and the structure of the intermediate liquid.

  6. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    Science.gov (United States)

    Avti, Pramod K; Hu, Song; Favazza, Christopher; Mikos, Antonios G; Jansen, John A; Shroyer, Kenneth R; Wang, Lihong V; Sitharaman, Balaji

    2012-01-01

    In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  7. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    Directory of Open Access Journals (Sweden)

    Pramod K Avti

    Full Text Available In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM was investigated to detect, map, and quantify trace amounts [nanograms (ng to micrograms (µg] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds.Optical-resolution (OR and acoustic-resolution (AR--Photoacoustic microscopy (PAM was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR fluorescence microscopy.Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections.The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  8. Neutron detection using CR-39 and Atomic Force Microscopy (AFM)

    International Nuclear Information System (INIS)

    Vazquez L, C.; Fragoso, R.; Felix, R.; Golzarri, J.I.; Espinosa, G.; Castillo, F.

    2007-01-01

    AFM has been applied in many CR-39 track formation analyses. In this paper, the use of AFM in the neutron detection and analysis of the track formation is reported. The irradiation was made with an 1.5 GBq (0.5 Ci) 241 Am-Be neutron source, with and without a polyethylene radiator. The surface analysis was made to the CR-39 fresh material without irradiation, after the irradiation, and after a very short etching time. The results show important differences between the irradiation, with and without polyethylene radiator, and the latent tracks of the neutron in the CR-39 polycarbonate. The development of track formation after very short etching time and pits characterization were measured too using the AFM facilities. (Author)

  9. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction.

    Science.gov (United States)

    Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip

    2017-11-27

    Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  10. Auditing smear microscopy results according to time to detection using the BACTEC™ MGIT™ TB system.

    Science.gov (United States)

    Elsaghier, A A F

    2015-09-01

    Smear microscopy is a rapid method for the identification of the most infectious patients with mycobacterial infection. Suboptimal smear microscopy may significantly compromise or delay patient isolation and contact tracing. A stringent method for auditing mycobacterial smear results is thus needed. This article proposes an auditing tool based on time to detection (TTD) of culture-positive samples using the automated BACTEC™ MGIT™ 960 TB system. In our study, sputum samples subjected to liquefaction and concentration before staining with a TTD of ≤ 13 days using the BACTEC system should be positive on smear microscopy.

  11. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.

  12. An overview of the legislation and light microscopy for detection of processed animal proteins in feeds.

    Science.gov (United States)

    Liu, Xian; Han, Lujia; Veys, Pascal; Baeten, Vincent; Jiang, Xunpeng; Dardenne, Pierre

    2011-08-01

    From the first cases of bovine spongiform encephalopathy (BSE) among cattle in the United Kingdom in 1986, the route of infection of BSE is generally believed by means of feeds containing low level of processed animal proteins (PAPs). Therefore, many feed bans and alternative and complementary techniques were resulted for the BSE safeguards in the world. Now the feed bans are expected to develop into a "species to species" ban, which requires the corresponding species-specific identification methods. Currently, banned PAPs can be detected by various methods as light microscopy, polymerase chain reaction, enzyme-linked immunosorbent assay, near infrared spectroscopy, and near infrared microscopy. Light microscopy as described in the recent Commission Regulation EC/152/2009 is the only official method for the detection and characterization of PAPs in feed in the European Union. It is able to detect the presence of constituents of animal origin in feed at the level of 1 g/kg with hardly any false negative. Nevertheless, light microscopy has the limitation of lack of species specificity. This article presents a review of legislations on the use of PAPs in feedstuff, the detection details of animal proteins by light microscopy, and also presents and discusses the analysis procedure and expected development of the technique. Copyright © 2010 Wiley-Liss, Inc.

  13. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  14. Application of indirect immunofluorescent test with an improved HEp-2 substrate tranfected with human Ro60/SSA autoantigens

    International Nuclear Information System (INIS)

    Lv Liangjing; Chen Shunle; Gu Yueying; Shen Nan; Bao Chunde; Wang Yuan; Xue Feng; Ye Peng; Yu Chongzhao

    2006-01-01

    To develop an improved substrate for indirect immunofluorescent test (IIF) to detect anti-Ro/SSA autoantibodies, the human 60-kDa Ro/SSA autoantigens (Ro60) cDNAs were obtained from placental cDNA library using PCR and were cloned into the mammalian expression vectorpEGFP-C1. Then the recombinant plasmids were transfected into HEp-2 cells. We con- firmed the overexpression, localization and antigenicity of fusion proteins in transfected cells by means of fluorescence microscopy, immunoblotting and IIF. HEp-2 and HEp-Ro60 was analyzed by IIF using a panel of 10 precipitinpositive anti-Ro human sera simultaneously. Stable expression of Ro60-GFP (green fluorescent protein) fusion proteins maintained ten more generations. And Ro60-GFP kept the antigenicity of Ro and had its own characteristic immunofluorescent pattern in HEp-Ro60 cells. The transfectants dramatically increased the sensitivity of IIF testing (a mean increase of 6.7-fold in endpoint titer, P<0.01). Eight (8/10) positive an- ti-Ro sera showed characteristic immunofluorescent pattern on HEp-Ro60, including two sera which were antinuclear antibodies (ANA) negative on untransfected HEp-2. IIF-ANA in all healthy sera were negative on HEp-Ro60. As a kind of new substrate of IIF, the Ro60 transfectants can be used to detect anti-Ro antibodies. In addition, transfected HEp-2 cells kept the immunofluorescent property of HEp-2 cells in IIF-ANA tests and could be employed as substrate for the routine IIF-ANA detection. The method improved the sensitivity of IIF-ANA. (authors)

  15. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.

    Science.gov (United States)

    Barizuddin, Syed; Balakrishnan, Baskar; Stringer, R Cody; Dweik, Majed

    2015-08-01

    A method combining immunomagnetic separation and fluorescent sensing was developed to detect Escherichia coli (E. coli) O104:H4. The antibody specific to E. coli O104:H4 was immobilized on protein A-coated magnetic beads. This protein-A-anti E. coli O104:H4 complex was used to bind Fluorescein IsoThioCyanate (FITC) labeled E. coli O104:H4 antigen (whole cell) on it. The goal was to achieve a fluorescently detectable protein-A-anti E. coli O104:H4-E. coli O104:H4 complex on the magnetic beads. Fluorescent microscopy was used to image the magnetic beads. The resulting fluorescence on the beads was due to the FITC labeled antigen binding on the protein-A-anti E. coli O104:H4 immobilized magnetic beads. This visually proves the antigen-antibody binding. The fluorescent imaging results were obtained in 2 h if the minimum available bacteria in the sample were at least 10(5) CFU/ml. If no fluorescence was observed on the magnetic beads during fluorescent imaging, it indicates the bacterial concentration in the sample to be too low for it to have bound to the magnetic beads and hence no detection was possible. To detect bacterial concentration less than 10(5) CFU/ml in the sample, an additional step was required for detection. The magnetic bead complex was added to the LST-MUG (lauryl sulfate tryptose-4-methylumbelliferyl-β-D-glucuronide), a signaling reporter. The E. coli O104:H4 grows in LST-MUG and releases β-glucuronidase enzyme. This enzyme cleaves the MUG substrate that produces 4-methylumbelliferone, a highly fluorescent species. This fluorescence was detected using a spectrofluorometer. The emission peak in the fluorescent spectrum was found to be at 450 nm. The lower and upper detection range for this LST-MUG assay was found to be 2.05×10(5)-4.09×10(8) CFU/ml. The results for the LST-MUG assay for concentrations below 10(5) CFU/ml were ascertained in 8h. The advantages of this technique include the specific detection of bacteria without an enrichment step and

  16. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    Science.gov (United States)

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  17. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  18. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-10-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.

  19. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    Science.gov (United States)

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  20. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Kalle, W.H.J.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, Jan; de Grooth, B.G.; van Hulst, N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single

  1. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    NARCIS (Netherlands)

    Avti, P.K.; Hu, S.; Favazza, C.; Mikos, A.G.; Jansen, J.A.; Shroyer, K.R.; Wang, L.V.; Sitharaman, B.

    2012-01-01

    AIMS: In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (microg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies

  2. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    Science.gov (United States)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43- symmetric stretch vibrations at 959 cm-1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.

  3. Nail unit in collagen vascular diseases: A clinical, histopathological and direct immunofluorescence study

    Directory of Open Access Journals (Sweden)

    Nabil P

    2006-01-01

    Full Text Available Background: Abnormalities of the nail unit are common in patients with connective tissue diseases. Clinical examination of the nail unit, coupled with biopsy of proximal nail fold offers an additional advantage in the diagnosis. Purpose: Our aim was to record clinical changes of the nail unit in connective tissue diseases and to study the histopathological (both H and E and periodic acid Schiff and direct immunofluorescence (DIF findings of nail-fold biopsy. Materials and Methods: Thirty-eight confirmed cases connective tissue diseases attending skin OPD were enrolled in the study. After detailed clinical examination of the nail unit, a crescentric biopsy was taken from the proximal nail fold (PNF. Histopathological and DIF studies were was carried out. Findings: Nail changes could be demonstrated in 65% connective tissue diseases. Specific histopathological (H and E and immunofluorescence findings were also encountered in many patients. Conclusion: Clinical examination of the nail unit offers additional clue in the diagnosis of connective tissue diseases. Though DIF of PNF biopsy is useful in the diagnosis, it is not an ideal site for H and E study, as the yield is very low. Limitations: Lack of adequate comparison group and non-utilization of capillary microscopy for the detection of nail fold capillary abnormalities.

  4. Development of a new light collection and detection system optimized for ion beam induced fluorescence microscopy

    International Nuclear Information System (INIS)

    Vanga, Sudheer Kumar; Mi, Zhaohong; Koh, Long Cheng; Tao, Ye; Bettiol, Andrew A.; Watt, Frank

    2015-01-01

    Ion beam induced fluorescence microscopy is a new imaging technique which has the potential to achieve sub-50 nm spatial resolution fluorescence images. Currently the resolution of the technique has been limited to around 150 nm mainly because of inefficient collection and detection of emitted photons from the sample. To overcome this limitation, a new light collection system based on a custom made parabolic mirror is employed to enhance the fluorescence collection. The custom made mirror is designed so as to obtain both structural (scanning transmission ion microscopy) and ion beam induced fluorescence imaging simultaneously. The design and characterization of the parabolic mirror is discussed in detail

  5. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging.

    Science.gov (United States)

    Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco

    2017-05-04

    Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.

  6. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  7. Detection of single quantum dots in model organisms with sheet illumination microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany); Wagner, Toni U. [Institute of Physiological Chemistry I, Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Harms, Gregory S., E-mail: gregory.harms@virchow.uni-wuerzburg.de [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany)

    2009-12-18

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 {mu}m. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  8. Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy

    OpenAIRE

    Cason, Chevelle A.; Fabré, Thomas A.; Buhrlage, Andrew; Haik, Kristi L.; Bullen, Heather A.

    2012-01-01

    Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine) PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC) and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD = 2.5 × 10−13 moles). The biorecognition method is reproducible and shows high specificity and good accur...

  9. Detection of single quantum dots in model organisms with sheet illumination microscopy

    International Nuclear Information System (INIS)

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir; Wagner, Toni U.; Harms, Gregory S.

    2009-01-01

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 μm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  10. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  11. Decoupled illumination detection in light sheet microscopy for fast volumetric imaging

    OpenAIRE

    Olarte, Omar; Andilla, Jordi; Artigas García, David; Loza-Alvarez, Pablo

    2015-01-01

    Current microscopy demands the visualization of large three-dimensional samples with increased sensitivity, higher resolution, and faster speed. Several imaging techniques based on widefield, point-scanning, and light-sheet strategies have been designed to tackle some of these demands. Although successful, all these require the illuminated volumes to be tightly coupled with the detection optics to accomplish efficient optical sectioning. Here, we break this paradigm and produce optical sectio...

  12. The Fate of Inhaled Nanoparticles: Detection and Measurement by Enhanced Dark-field Microscopy.

    Science.gov (United States)

    Mercer, Robert R; Scabilloni, James F; Wang, Liying; Battelli, Lori A; Antonini, James M; Roberts, Jenny R; Qian, Yong; Sisler, Jennifer D; Castranova, Vincent; Porter, Dale W; Hubbs, Ann F

    2018-01-01

    Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles.

  13. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143

  14. Impact of transition from microscopy to molecular screening for detection of intestinal protozoa in Dutch patients.

    Science.gov (United States)

    Svraka-Latifovic, S; Bouter, S; Naus, H; Bakker, L J; Timmerman, C P; Dorigo-Zetsma, J W

    2014-11-01

    Detection of intestinal protozoa by PCR methods has been described as being sensitive and specific, and as improving the diagnostic yield. Here we present the outcome of the transition from microscopy to molecular screening for detection of a select group of intestinal protozoa in faeces in our laboratory. Introduction of molecular screening for intestinal protozoa resulted in higher sensitivity, reduced hands-on-time, reduced time-to-results, leading to improved diagnostic efficiency. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  15. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    Science.gov (United States)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  16. Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images.

    Science.gov (United States)

    Dabbah, M A; Graham, J; Petropoulos, I; Tavakoli, M; Malik, R A

    2010-01-01

    Corneal Confocal Microscopy (CCM) imaging is a non-invasive surrogate of detecting, quantifying and monitoring diabetic peripheral neuropathy. This paper presents an automated method for detecting nerve-fibres from CCM images using a dual-model detection algorithm and compares the performance to well-established texture and feature detection methods. The algorithm comprises two separate models, one for the background and another for the foreground (nerve-fibres), which work interactively. Our evaluation shows significant improvement (p approximately 0) in both error rate and signal-to-noise ratio of this model over the competitor methods. The automatic method is also evaluated in comparison with manual ground truth analysis in assessing diabetic neuropathy on the basis of nerve-fibre length, and shows a strong correlation (r = 0.92). Both analyses significantly separate diabetic patients from control subjects (p approximately 0).

  17. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    Science.gov (United States)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  18. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Miotke, Laura; Maity, Arindam; Ji, Hanlee

    2015-01-01

    BACKGROUND: Rapid reliable diagnostics of DNA mutations are highly desirable in research and clinical assays. Current development in this field goes simultaneously in two directions: 1) high-throughput methods, and 2) portable assays. Non-enzymatic approaches are attractive for both types...... 1000-fold above the potential detection limit. CONCLUSION: Overall, the novel assay we describe could become a new approach to rapid, reliable and enzyme-free diagnostics of cancer or other associated DNA targets. Importantly, stoichiometry of wild type and mutant targets is conserved in our assay...... of methods since they would allow rapid and relatively inexpensive detection of nucleic acids. Modern fluorescence microscopy is having a huge impact on detection of biomolecules at previously unachievable resolution. However, no straightforward methods to detect DNA in a non-enzymatic way using fluorescence...

  19. Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images.

    Science.gov (United States)

    Basset, Antoine; Boulanger, Jérôme; Salamero, Jean; Bouthemy, Patrick; Kervrann, Charles

    2015-11-01

    Accurately detecting subcellular particles in fluorescence microscopy is of primary interest for further quantitative analysis such as counting, tracking, or classification. Our primary goal is to segment vesicles likely to share nearly the same size in fluorescence microscopy images. Our method termed adaptive thresholding of Laplacian of Gaussian (LoG) images with autoselected scale (ATLAS) automatically selects the optimal scale corresponding to the most frequent spot size in the image. Four criteria are proposed and compared to determine the optimal scale in a scale-space framework. Then, the segmentation stage amounts to thresholding the LoG of the intensity image. In contrast to other methods, the threshold is locally adapted given a probability of false alarm (PFA) specified by the user for the whole set of images to be processed. The local threshold is automatically derived from the PFA value and local image statistics estimated in a window whose size is not a critical parameter. We also propose a new data set for benchmarking, consisting of six collections of one hundred images each, which exploits backgrounds extracted from real microscopy images. We have carried out an extensive comparative evaluation on several data sets with ground-truth, which demonstrates that ATLAS outperforms existing methods. ATLAS does not need any fine parameter tuning and requires very low computation time. Convincing results are also reported on real total internal reflection fluorescence microscopy images.

  20. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    Science.gov (United States)

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical

  1. Parallel detecting super-resolution microscopy using correlation based image restoration

    Science.gov (United States)

    Yu, Zhongzhi; Liu, Shaocong; Zhu, Dazhao; Kuang, Cuifang; Liu, Xu

    2017-12-01

    A novel approach to achieve the image restoration is proposed in which each detector's relative position in the detector array is no longer a necessity. We can identify each detector's relative location by extracting a certain area from one of the detector's image and scanning it on other detectors' images. According to this location, we can generate the point spread functions (PSF) for each detector and perform deconvolution for image restoration. Equipped with this method, the microscope with discretionally designed detector array can be easily constructed without the concern of exact relative locations of detectors. The simulated results and experimental results show the total improvement in resolution with a factor of 1.7 compared to conventional confocal fluorescence microscopy. With the significant enhancement in resolution and easiness for application of this method, this novel method should have potential for a wide range of application in fluorescence microscopy based on parallel detecting.

  2. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    Science.gov (United States)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  3. Deteccion de Chlamydia trachomatis en muestras uretrales mediante inmunofluorescencia directa Detecção de Chlamydia trachomatis em amostras uretrais mediante imunofluorescência direta Detection of Chlamydia trachomatis in urethral samples by means of direct immunofluorescence

    Directory of Open Access Journals (Sweden)

    Myra Wilson Schuster

    1989-12-01

    Full Text Available Se estudiaron 82 pacientes con uretritis para la búsqueda de Chlamydia trachomatis mediante inmunofluorescencia directa, Neisscria gonorrhoeae, Mycoplastna y Ureaplasma mediante métodos estándar. Se encontró un 19,5% de Chlamydia trachomatis y en 11 de ellos (68,8% se encontró asociada a otras bacterias y estos pacientes presentó una secreción escasa-gelatinosa.Em 82 doentes com uretrite foi pesquisada a presença de Chlamydia trachomatis, utilizando a prova da imunofluorescência direta, e de Neisseria gonorrhoeae, Mycoplasma e Ureaplasma, utilizando os métodos padrões. Ch. trachomatis foi encontrada em 19,5% dos casos, sendo que em 11 deles (68,8% observou-se associação entre Chlamydia e as outras bactérias pesquisadas. Nesses pacientes observou-se presença de secreção uretral escassa e de aspecto gelatinoso.The presence of Chlamydia trachomatis was studied by the direct immunofluorescence test, as also was that of Neisseria gonorrhoeae, Mycoplasma and Ureaplasma by the standard methods, in 82 patients with urethral discharge. Ch. trachomatis was found in 19.5% (16 of the cases and in 11 of them (68.8% there was association with the other bacteria investigated. This eleven patients presented a scanty gelatinous discharge.

  4. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  5. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  6. Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.

    Science.gov (United States)

    Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi

    2018-06-01

    A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.

  7. Ultrasonic force microscopy: detection and imaging of ultra-thin molecular domains.

    Science.gov (United States)

    Dinelli, Franco; Albonetti, Cristiano; Kolosov, Oleg V

    2011-03-01

    The analysis of the formation of ultra-thin organic films is a very important issue. In fact, it is known that the properties of organic light emitting diodes and field effect transistors are strongly affected by the early growth stages. For instance, in the case of sexithiophene, the presence of domains made of molecules with the backbone parallel to the substrate surface has been indirectly evidenced by photoluminescence spectroscopy and confocal microscopy. On the contrary, conventional scanning force microscopy both in contact and intermittent contact modes have failed to detect such domains. In this paper, we show that Ultrasonic Force Microscopy (UFM), sensitive to nanomechanical properties, allows one to directly identify the structure of sub-monolayer thick films. Sexithiophene flat domains have been imaged for the first time with nanometer scale spatial resolution. A comparison with lateral force and intermittent contact modes has been carried out in order to explain the origins of the UFM contrast and its advantages. In particular, it indicates that UFM is highly suitable for investigations where high sensitivity to material properties, low specimen damage and high spatial resolution are required. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the

  9. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    International Nuclear Information System (INIS)

    Bosse, J. L.; Huey, B. D.; Tovee, P. D.; Kolosov, O. V.

    2014-01-01

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm 2 unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular

  10. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  11. Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission

    Directory of Open Access Journals (Sweden)

    Zborowski Maciej

    2008-04-01

    Full Text Available Abstract Background Aggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG. Methods and findings Individuals with Plasmodium falciparum malaria symptoms (n = 55 provided samples for conventional blood smear (CBS and magnetic deposition microscopy (MDM diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. Plasmodium falciparum parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13, trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01, schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08 and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002 parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively. Conclusion MDM increased detection sensitivity of P. falciparum-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.

  12. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    Science.gov (United States)

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  13. Diagnostic significance of colloid body deposition in direct immunofluorescence

    Directory of Open Access Journals (Sweden)

    Chularojanamontri Leena

    2010-01-01

    Full Text Available Background: Colloid bodies (CB in direct immunofluorescence (DIF studies are usually found in interface dermatitis. Furthermore, CB can be found in various skin diseases and even in normal skin. Aim: To evaluate the diagnostic value of CB deposits in DIF studies. Methods: From 1996-2007, data from 502 patients where DIF studies showed immunoreactants at CB were enrolled. The definite diagnoses of these patients were based on clinical, histopathological and immunofluorescent findings. The results of DIF studies were analyzed. Results: Immunoreactants at CB were detected in 44.4%, 43.8%, 4.2%, 3.8%, and 2.2% of interface dermatitis, vasculitis, autoimmune vesiculobullous disease, panniculitis, and scleroderma/morphea, respectively. The most common immunoreactant deposit of all diseases was Immunoglobulin M (IgM. Brighter intensity and higher quantity of CB was detected frequently in the group with interface dermatitis. Conclusions: Immunoreactant deposits at CB alone can be found in various diseases but a strong intensity and high quantity favor the diagnosis of interface dermatitis. CB plus dermoepidermal junction (DEJ deposits are more common in interface dermatitis than any other disease. Between lichen planus (LP and discoid lupus erythematosus (DLE, CB alone is more common in LP; whereas, CB plus DEJ and superficial blood vessel (SBV is more common in DLE. The most common pattern in both diseases is CB plus DEJ. The quantity and intensity of CB in LP is higher than in DLE.

  14. [Laboratory diagnosis of genital herpes--direct immunofluorescence method].

    Science.gov (United States)

    Majewska, Anna; Romejko-Wolniewicz, Ewa; Zareba-Szczudlik, Julia; Kilijańczyk, Marek; Gajewska, Małgorzata; Młynarczyk, Grazyna

    2013-07-01

    Aim of the study was to determine clinical usefulness of direct immunofluorescence method in the laboratory diagnosis of genital herpes in women. Overall 187 anogenital swabs were collected from 120 women. Using a dacron-tipped applicator 83 swabs were collected from women suspected of genital herpes and 104 from patients with no signs of genital infection. All samples were tested using cell culture (Vero cell line) and then direct immunofluorescence method (DIF) for the identification of antigens of herpes simplex viruses: HSV-1 and HSV-2. Characteristic cytopathic effect (CPE), indicative of alphaherpesvirus infection, was observed in 43.4% of cultures with clinical specimens collected from women with suspected genital herpes and in 29.8% of cultures of clinical specimens taken from patients with no clinical symptoms of genital herpes. Herpes simplex viruses were determined in 73 samples by direct immunofluorescence method after amplification of the virus in cell culture. The DIF test confirmed the diagnosis based on the microscopic CPE observation in 85%. In 15% of samples (taken from pregnant women without clinical signs of infection) we reported positive immunofluorescence in the absence of CPE. The frequency of antigen detection was statistically significantly higher in samples that were positive by culture study (chi-square test with Yates's correction, p genital herpes in swabs taken from the vestibule of the vagina and the vulva. However, there was no statistically significant difference in the frequency of detection of Herpes Simplex Virus antigens in specimens from different parts of the genital tract in both groups of women (chi-square test, p > 0.05). In our study HHV-1 was the main causative agent of genital herpes. The growing worldwide prevalence of genital herpes, challenges with the clinical diagnosis, and availability of effective antiviral therapy are the main reasons for a growing interest in rapid, proper laboratory diagnosis of infected

  15. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    Science.gov (United States)

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  16. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    Directory of Open Access Journals (Sweden)

    Nino Guy Cassuto

    2016-01-01

    Full Text Available Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p<10-6, OR = 2.4; and p<0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.

  17. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  18. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    Science.gov (United States)

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  20. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    Science.gov (United States)

    Wirth, Dennis; Smith, Thomas W.; Moser, Richard; Yaroslavsky, Anna N.

    2015-04-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml-1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.

  1. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    International Nuclear Information System (INIS)

    Wirth, Dennis; Yaroslavsky, Anna N; Smith, Thomas W; Moser, Richard

    2015-01-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml −1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors. (paper)

  2. Comparison of immunofluorescence investigations and a new anti-DNA-antibody radioimmunoassay for the diagnosis of connective tissue diseases

    International Nuclear Information System (INIS)

    Neumeier, D.; Vogt, W.; Knedel, M.

    1976-01-01

    The procedure of determining the anti-DNA antibody activity is simplified by high-molecular double strand DNA labelled with 125 I. Cases of suspected connective tissue disease should first be examined by immunofluorescence microscopy, since this method can detect a wider spectrum of diseases with similar symptoms. For a differential diagnosis of SLE, the anti-DNA antibody activity is then investigated by a radioimmunoassay. When assessing the antibody activity, the following criteria should be kept in mind: - Findings of less than 10 units/ml serum do not indicate pathological changes, - Higher antibody activities up to 35 units/ml serum may occur in SLE patients but are also possible in other ANA positive diseases with similar symptoms, - Activities over 35 units/ml serum are nearly always a sign of SLE. (orig./GSE) [de

  3. Comparison of immunofluorescence investigations and a new anti-DNA-antibody radioimmunoassay for the diagnosis of connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, D; Vogt, W; Knedel, M

    1976-01-01

    The procedure of determining the anti-DNA antibody activity is simplified by high-molecular double strand DNA labelled with /sup 125/I. Cases of suspected connective tissue disease should first be examined by immunofluorescence microscopy, since this method can detect a wider spectrum of diseases with similar symptoms. For a differential diagnosis of SLE, the anti-DNA antibody activity is then investigated by a radioimmunoassay. When assessing the antibody activity, the following criteria should be kept in mind: - Findings of less than 10 units/ml serum do not indicate pathological changes, - Higher antibody activities up to 35 units/ml serum may occur in SLE patients but are also possible in other ANA positive diseases with similar symptoms, - Activities over 35 units/ml serum are nearly always a sign of SLE.

  4. Multi-modality photoacoustic tomography, ultrasound, and light sheet microscopy for volumetric tumor margin detection

    Science.gov (United States)

    Sangha, Gurneet S.; Hu, Bihe; Bolus, Daniel; Wang, Mei; Skidmore, Shelby J.; Sholl, Andrew B.; Brown, J. Quincy; Goergen, Craig J.

    2018-02-01

    Current methods for breast tumor margin detection are invasive, time consuming, and typically result in a reoperative rate of over 25%. This marks a clear clinical need to develop improved tools to intraoperatively differentiate negative versus positive tumor margins. Here, we utilize photoacoustic tomography (PAT), ultrasound (US), and inverted Selective Plane Illumination Microscopy (iSPIM) to assess breast tumor margins in eight human breast biopsies. Our PAT/US system consists of a tunable Nd:YAG laser (NT 300, EKSPLA) coupled with a 40MHz central frequency US probe (Vevo2100, FUJIFILM Visual Sonics). This system allows for the delivery of 10Hz, 5ns pulses with fluence of 40mJ/cm2 to the tissue with PAT and US axial resolutions of 125μm and 40μm, respectively. For this study, we used a linear stepper motor to acquire volumetric PAT/US images of the breast biopsies using 1100nm light to identify bloodrich "tumor" regions and 1210nm light to identify lipid-rich "healthy" regions. iSPIM (Applied Scientific Instrumentation) is an advanced microscopy technique with lateral resolution of 1.5μm and axial resolution of 7μm. We used 488nm laser excitation and acridine orange as a general comprehensive histology stain. Our results show that PAT/US can be used to identify lipid-rich regions, dense areas of arterioles and arteries, and other internal structures such as ducts. iSPIM images correlate well with histopathology slides and can verify nuclear features, cell type and density, stromal features, and microcalcifications. Together, this multimodality approach has the potential to improve tumor margin detection with a high degree of sensitivity and specificity.

  5. Optical detection of ultrasound using an apertureless near-field scanning optical microscopy system

    Science.gov (United States)

    Ahn, Phillip; Zhang, Zhen; Sun, Cheng; Balogun, Oluwaseyi

    2013-01-01

    Laser ultrasonics techniques are power approaches for non-contact generation and detection of high frequency ultrasound on a local scale. In these techniques, optical diffraction limits the spatial information that can be accessed from a measurement. In order to improve the lateral spatial resolution, we incorporate an apertureless near-field scanning optical microscope (aNSOM) into laser ultrasonics setup for local detection of laser generated ultrasound. The aNSOM technique relies on the measurement of a weak backscattered near-field light intensity resulting from the oblique illumination of a nanoscale probe-tip positioned close to a sample surface. We enhance the optical near-field intensity by coupling light to surface plasmon polaritons (SPPs) on the shaft of an atomic force microscopy (AFM) cantilever. The SPPs propagate down the AFM shaft, localize at the tip apex, and are backscattered to the far-field when the separation distance between the probe tip and the sample surface is comparable to the probe-tip radius. The backscattered near-field intensity is dynamically modulated when an ultrasonic wave arrives at the sample surface leading to a transient change in the tip-sample separation distance. We present experimental results detailing measurement of broadband and narrowband laser generated ultrasound in solids with frequencies reaching up to 180 MHz range.

  6. Fluorescent nanoscale detection of biotin-streptavidin interaction using near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Park, Hyun Kyu; Chung, Bong Hyun; Gokarna, Anisha; Hulme, John P; Park, Hyun Gyu

    2008-01-01

    We describe a nanoscale strategy for detecting biotin-streptavidin binding using near-field scanning optical microscopy (NSOM) that exploits the fluorescence properties of single polydiacetylene (PDA) liposomes. NSOM is more useful to observe nanomaterials having optical properties with the help of topological information. We synthesized amine-terminated 10,12-pentacosadiynoic acid (PCDA) monomer (PCDA-NH 2 ) and used this derivatized monomer to prepare PCDA liposomes. PCDA-NH 2 liposomes were immobilized on an aldehyde-functionalized glass surface followed by photopolymerization by using a 254 nm light source. To measure the biotin-streptavidin binding, we conjugated photoactivatable biotin to immobilized PCDA-NH 2 liposomes by UV irradiation (365 nm) and subsequently allowed them to interact with streptavidin. We analyzed the fluorescence using a fluorescence scanner and observed single liposomes using NSOM. The average height and NSOM signal observed in a single liposome after binding were ∼31.3 to 8.5 ± 0.5 nm and 0.37 to 0.16 ± 0.6 kHz, respectively. This approach, which has the advantage of not requiring a fluorescent label, could prove highly beneficial for single molecule detection technology

  7. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Science.gov (United States)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-06-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a

  8. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice

    2017-06-14

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  9. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Ceylan Koydemir Hatice

    2017-06-01

    Full Text Available Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond

  10. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-01-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  11. Immunophenotype of leukemic blasts with small peroxidase-positive granules detected by electron microscopy.

    Science.gov (United States)

    Vainchenker, W; Villeval, J L; Tabilio, A; Matamis, H; Karianakis, G; Guichard, J; Henri, A; Vernant, J P; Rochant, H; Breton-Gorius, J

    1988-05-01

    Forty-three cases of undifferentiated leukemias by light microscopy examination were diagnosed as acute myeloblastic leukemias by ultrastructural revelation of peroxidase and were subsequently studied by immunological markers. In 41 of these cases, blasts were labeled by at least one of the antimyeloid MoAbs (My 7, My 9, and 80H5). An antimyeloperoxidase polyclonal antibody was used in 23 cases and was clearly positive in 11 of them, while cytochemistry by light microscopy was negative. These myeloblasts were frequently mixed with a minority of blasts from other lineages especially promegakaryoblasts. It is noteworthy that in 6 cases myeloid and lymphoid markers (E rosette receptor, common acute lymphoblastic leukemia antigen (cALLA), CD 9, CD 19 antigens (anti-B4 MoAb] were detected on a fraction of blast cells, suggesting a bilineage leukemia. However, in double labeling experiments, blasts with myeloperoxidase coexpressed lymphoid and myeloid markers including cALLA and CD 19 antigen. In one case, blasts had a typical non-B, non-T acute lymphoblastic leukemia phenotype (HLA-DR, CD 9, CD 19, cALLA positive) without staining by any of the antimyeloid MoAbs. However, 70% of the blasts were labeled by the antimyeloperoxidase antibody and expressed peroxidase-positive granules at ultrastructural level. In conclusion, most of the AML undiagnosed by optical cytochemistry are identified by antimyeloid antibodies. Some of these cases are also stained by some antilymphoid MoAbs. Use of antibodies against myeloperoxidase may improve the diagnosis of difficult cases of acute myeloblastic leukemia.

  12. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  13. Use of commercially available rabbit monoclonal antibodies for immunofluorescence double staining

    DEFF Research Database (Denmark)

    Bzorek, M.; Stamp, I.M.; Frederiksen, L.

    2008-01-01

    Immunohistochemistry, that is, the use of polyclonal and monoclonal antibodies to detect cell and tissue antigens at a microscopical level is a powerful tool for both research and diagnostic purposes. Especially in the field of hematologic disease, there is often a need to detect several antigens...... synchronously, and we report here a fast and easy technique for demonstrating more than 1 antigen in 1 slide using immunofluorescence. We have used commercially available rabbit monoclonal antibodies (Cyclin D1, CD3, CD5, CD23, etc.) paired with mouse monoclonal antibodies (CD7, CD20, CD79a, Pax-5, etc.......) for double immunofluorescence labeling on paraffin-embedded tissue sections. Commercially available rabbit monoclonal antibodies in combination with mouse monoclonal antibodies proved useful in double immunofluorescence labeling on paraffin-embedded tissue, and all combinations used yielded excellent results...

  14. Comparison between optical techniques and confocal microscopy for defect detection on thin wires

    International Nuclear Information System (INIS)

    Siegmann, Philip; Sanchez-Brea, Luis Miguel; Martinez-Anton, Juan Carlos; Bernabeu, Eusebio

    2004-01-01

    Conventional microscopy techniques, such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal microscopy (CM) are not suitable for on-line surface inspection of fine metallic wires. In the recent years, some optical techniques have been developed to be used for those tasks. However, they need a rigorous validation. In this work, we have used confocal microscopy to obtain the topography z(x,y) of wires with longitudinal defects, such as dielines. The topography has been used to predict the light scattered by the wire. These simulations have been compared with experimental results, showing a good agreement

  15. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  16. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  17. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    International Nuclear Information System (INIS)

    Ali, Esam M.A.; Edwards, Howell G.M.; Hargreaves, Michael D.; Scowen, Ian J.

    2008-01-01

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material

  18. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Science.gov (United States)

    Corte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.

    2016-05-01

    Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ˜1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  19. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Directory of Open Access Journals (Sweden)

    H. Corte-León

    2016-05-01

    Full Text Available Hybrid ferromagnetic(Py/non-magnetic metal(Au junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM with a magnetic bead (MB attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  20. Digital Holographic Microscopy, a Method for Detection of Microorganisms in Plume Samples from Enceladus and Other Icy Worlds.

    Science.gov (United States)

    Bedrossian, Manuel; Lindensmith, Chris; Nadeau, Jay L

    2017-09-01

    Detection of extant microbial life on Earth and elsewhere in the Solar System requires the ability to identify and enumerate micrometer-scale, essentially featureless cells. On Earth, bacteria are usually enumerated by culture plating or epifluorescence microscopy. Culture plates require long incubation times and can only count culturable strains, and epifluorescence microscopy requires extensive staining and concentration of the sample and instrumentation that is not readily miniaturized for space. Digital holographic microscopy (DHM) represents an alternative technique with no moving parts and higher throughput than traditional microscopy, making it potentially useful in space for detection of extant microorganisms provided that sufficient numbers of cells can be collected. Because sample collection is expected to be the limiting factor for space missions, especially to outer planets, it is important to quantify the limits of detection of any proposed technique for extant life detection. Here we use both laboratory and field samples to measure the limits of detection of an off-axis digital holographic microscope (DHM). A statistical model is used to estimate any instrument's probability of detection at various bacterial concentrations based on the optical performance characteristics of the instrument, as well as estimate the confidence interval of detection. This statistical model agrees well with the limit of detection of 10 3 cells/mL that was found experimentally with laboratory samples. In environmental samples, active cells were immediately evident at concentrations of 10 4 cells/mL. Published estimates of cell densities for Enceladus plumes yield up to 10 4 cells/mL, which are well within the off-axis DHM's limits of detection to confidence intervals greater than or equal to 95%, assuming sufficient sample volumes can be collected. The quantitative phase imaging provided by DHM allowed minerals to be distinguished from cells. Off-axis DHM's ability for

  1. Low cost automated whole smear microscopy screening system for detection of acid fast bacilli.

    Directory of Open Access Journals (Sweden)

    Yan Nei Law

    Full Text Available In countries with high tuberculosis (TB burden, there is urgent need for rapid, large-scale screening to detect smear-positive patients. We developed a computer-aided whole smear screening system that focuses in real-time, captures images and provides diagnostic grading, for both bright-field and fluorescence microscopy for detection of acid-fast-bacilli (AFB from respiratory specimens.To evaluate the performance of dual-mode screening system in AFB diagnostic algorithms on concentrated smears with auramine O (AO staining, as well as direct smears with AO and Ziehl-Neelsen (ZN staining, using mycobacterial culture results as gold standard.Adult patient sputum samples requesting for M. tuberculosis cultures were divided into three batches for staining: direct AO-stained, direct ZN-stained and concentrated smears AO-stained. All slides were graded by an experienced microscopist, in parallel with the automated whole smear screening system. Sensitivity and specificity of a TB diagnostic algorithm in using the screening system alone, and in combination with a microscopist, were evaluated.Of 488 direct AO-stained smears, 228 were culture positive. These yielded a sensitivity of 81.6% and specificity of 74.2%. Of 334 direct smears with ZN staining, 142 were culture positive, which gave a sensitivity of 70.4% and specificity of 76.6%. Of 505 concentrated smears with AO staining, 250 were culture positive, giving a sensitivity of 86.4% and specificity of 71.0%. To further improve performance, machine grading was confirmed by manual smear grading when the number of AFBs detected fell within an uncertainty range. These combined results gave significant improvement in specificity (AO-direct:85.4%; ZN-direct:85.4%; AO-concentrated:92.5% and slight improvement in sensitivity while requiring only limited manual workload.Our system achieved high sensitivity without substantially compromising specificity when compared to culture results. Significant improvement

  2. Kelvin probe force microscopy from single charge detection to device characterization

    CERN Document Server

    Glatzel, Thilo

    2018-01-01

    This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors’ previous volume “Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces,” presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.

  3. Immunofluorescent determination of wheat protein in meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2014-02-01

    foodstuffs is relatively difficult because of the fact that they occur in trace amounts and are often masked by various parts of the product. This paper deals with detection of wheat protein in meat products bought in the retail network of the Czech Republic. Ten cooked meat products, especially types of sausages and soft salami which stated wheat protein in their composition, were examined. The samples were processed using the method of immunofluorescence and stained with Texas Red fluorochrome. The presence of wheat protein was demonstrated in all the examined meat products. From the results it follows that the method of immunofluorescence is suitable for detection of wheat protein in meat products. Normal 0 21 false false false CS JA X-NONE

  4. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).

    Science.gov (United States)

    Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K

    2017-06-28

    Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization

  5. Scattering features for lung cancer detection in fibered confocal fluorescence microscopy images.

    Science.gov (United States)

    Rakotomamonjy, Alain; Petitjean, Caroline; Salaün, Mathieu; Thiberville, Luc

    2014-06-01

    To assess the feasibility of lung cancer diagnosis using fibered confocal fluorescence microscopy (FCFM) imaging technique and scattering features for pattern recognition. FCFM imaging technique is a new medical imaging technique for which interest has yet to be established for diagnosis. This paper addresses the problem of lung cancer detection using FCFM images and, as a first contribution, assesses the feasibility of computer-aided diagnosis through these images. Towards this aim, we have built a pattern recognition scheme which involves a feature extraction stage and a classification stage. The second contribution relies on the features used for discrimination. Indeed, we have employed the so-called scattering transform for extracting discriminative features, which are robust to small deformations in the images. We have also compared and combined these features with classical yet powerful features like local binary patterns (LBP) and their variants denoted as local quinary patterns (LQP). We show that scattering features yielded to better recognition performances than classical features like LBP and their LQP variants for the FCFM image classification problems. Another finding is that LBP-based and scattering-based features provide complementary discriminative information and, in some situations, we empirically establish that performance can be improved when jointly using LBP, LQP and scattering features. In this work we analyze the joint capability of FCFM images and scattering features for lung cancer diagnosis. The proposed method achieves a good recognition rate for such a diagnosis problem. It also performs well when used in conjunction with other features for other classical medical imaging classification problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses

    Science.gov (United States)

    Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan

    2013-03-01

    The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.

  7. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.

    Science.gov (United States)

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young's double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space (Dk-CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes.

  8. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  9. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    Hartsuiker, L.; van Es, P.; Petersen, W.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  10. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection

    DEFF Research Database (Denmark)

    Ernstsen, Christina Lundgaard; Login, Frédéric H.; Jensen, Helene Halkjær

    2017-01-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacteria...

  11. Immunofluorescent staining of nuclear antigen in lymphoid cells transformed by Herpesvirus papio (HVP).

    Science.gov (United States)

    Schmitz, H

    1981-01-01

    An improved fixation method for antigen detection in lymphoblastoid cells is described. Herpesvirus papio nuclear antigen (HUPNA) could be stained in several transformed lymphoid cell lines by anti-complement immunofluorescence (ACIF). Antibody to HUPNA was detected in many human sera containing antibodies to Epstein-Barr virus capsid and nuclear antigen (EBNA). Rheumatoid arthritis sera showed a high incidence of both anti-EBNA and anti-HUPNA antibodies.

  12. Comparison of Real Time Polymerase Chain Reaction with Microscopy and Antigen Detection Assay for the Diagnosis of Malaria

    International Nuclear Information System (INIS)

    Khan, S. A.; Ahmed, S.; Khan, F. A.; Shamshad, G. U.; Joyia, Z.; Mushahid, N.; Saeed, S.

    2013-01-01

    Objective: To determine the sensitivity of a real time polymerase chain reaction (PCR) for malaria diagnosis and to compare its accuracy with microscopy and an antigen based rapid diagnostic test (OptiMal). Study Design: Cross-sectional analytical study. Place and Duration of Study: Military Hospital, Armed Forces Institute of Transfusion and Armed Forces Institute of Pathology, Rawalpindi, from July to December 2011. Methodology: Venous blood samples of 300 clinically suspected patients of malaria were tested for malaria parasite by microscopy and OptiMal; and malaria parasite index was calculated for the positive samples. Plasmodium genus specific real time PCR was performed on all specimens, targeting small subunit rRNA gene. Diagnostic accuracy of three tests was compared and cost analysis was done. Results: Out of 300 patients, malaria parasite was detected in 110, 106 and 123 patients by microscopy, OptiMAL and PCR respectively. Real time PCR was 100% sensitive while microscopy and OptiMal had sensitivity of 89.4% and 86.2% respectively. All methods were 100% specific. The cost per test was calculated to be 0.2, 2.75 and 3.30 US dollar by microscopy, OptiMal and PCR respectively, excluding the once capital cost on PCR equipment. Conclusion: Genus specific real time PCR for the diagnosis of malaria was successfully established as a highly sensitive and affordable technology that should be incorporated in the diagnostic algorithm in this country. (author)

  13. Nested PCR detection of Plasmodium malariae from microscopy confirmed P. falciparum samples in endemic area of NE India.

    Science.gov (United States)

    Dhiman, Sunil; Goswami, Diganta; Kumar, Dinesh; Rabha, Bipul; Sharma, Dhirendra Kumar; Bhola, Rakesh Kumar; Baruah, Indra; Veer, Vijay

    2013-11-01

    The present study evaluates the performance of OptiMAL-IT test and nested PCR assay in detection of malaria parasites. A total of 76 randomly selected blood samples collected from two malaria endemic areas were tested for malaria parasites using microscopy and OptiMAL-IT test in the field. PCR assays were performed in the laboratory using DNA extracted from blood spots of the same samples collected on the FTA classic cards. Of the total of 61 field confirmed malaria positive samples, only 58 (95%) were detected positive using microscopy in the laboratory. Sensitivity, specificity, positive predictive value, negative predictive value and false discovery rate of OptiMal-IT in comparison to the microscopy were 93%, 83%, 95%, 79% and 5%, respectively. On the other hand, the sensitivity and specificity of PCR assay were 97% and 100%, respectively, whereas positive predictive value, negative predictive value and false discovery rate were 100%, 90% and 0%, respectively. The overall performance of OptiMal-IT and PCR assays for malaria diagnosis was 76% and 97%, respectively. PCR assay enabled the identification of infection with Plasmodium malariae Laveran, 1881 in four samples misidentified by microscopy and Plasmodium-specific antigen (PAN) identified by the OptiMAL-IT test. In addition to the standard methods, such PCR assay could be useful to obtain the real incidence of each malaria parasite species for epidemiological perspectives.

  14. Direct immunofluorescence of normal skin in rheumatoid arthritis.

    Science.gov (United States)

    Fitzgerald, O M; Barnes, L; Woods, R; McHugh, L; Barry, C; O'Loughlin, S

    1985-11-01

    The clinical significance of previously described immunoglobulin and complement deposition in the superficial dermal vessel walls of patients with rheumatoid arthritis is unknown. In the present study, skin biopsies were obtained from the normal forearm and buttock of 48 unselected patients with rheumatoid arthritis and were examined by direct immunofluorescence (IF) for the presence of immunoglobulin (IgG,A,M) and complement (C3) in the vessel walls. Deposits of C3, IgM or IgG were detected in 10 patients. Five patients had deposits at the forearm sample alone, four patients had deposits at both biopsy sites, while one patient was positive at the buttock alone. Clinical features were similar in patients with and without vessel IF. However, patients with IF were significantly more seropositive with lower levels of complement and raised levels of serum IgA and IgM. There was also an increased level of circulating IgG immune complexes in these patients. Further analysis following exclusion of seronegative patients revealed similar results. This study suggests that the presence of vessel IF identifies a subgroup of patients who have evidence of more severe immunological disturbance.

  15. Detection of Lipid-Rich Prostate Circulating Tumour Cells with Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Mitra, Ranjana; Chao, Olivia; Urasaki, Yasuyo; Goodman, Oscar B; Le, Thuc T

    2012-01-01

    Circulating tumour cells (CTC) are an important indicator of metastasis and associated with a poor prognosis. Detection sensitivity and specificity of CTC in the peripheral blood of metastatic cancer patient remain a technical challenge. Coherent anti-Stokes Raman scattering (CARS) microscopy was employed to examine the lipid content of CTC isolated from the peripheral blood of metastatic prostate cancer patients. CARS microscopy was also employed to evaluate lipid uptake and mobilization kinetics of a metastatic human prostate cancer cell line. One hundred CTC from eight metastatic prostate cancer patients exhibited strong CARS signal which arose from intracellular lipid. In contrast, leukocytes exhibited weak CARS signal which arose mostly from cellular membrane. On average, CARS signal intensity of prostate CTC was 7-fold higher than that of leukocytes (P<0.0000001). When incubated with human plasma, C4-2 metastatic human prostate cancer cells exhibited rapid lipid uptake kinetics and slow lipid mobilization kinetics. Higher expression of lipid transport proteins in C4-2 cells compared to non-transformed RWPE-1 and non-malignant BPH-1 prostate epithelial cells further indicated strong affinity for lipid of metastatic prostate cancer cells. Intracellular lipid could serve as a biomarker for prostate CTC which could be sensitively detected with CARS microscopy in a label-free manner. Strong affinity for lipid by metastatic prostate cancer cells could be used to improve detection sensitivity and therapeutic targeting of prostate CTC

  16. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance

    Directory of Open Access Journals (Sweden)

    Ralevski Filip

    2009-12-01

    Full Text Available Abstract Background Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. Materials and methods A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR, and two rapid diagnostic immuno-chromatographic tests (ICT in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. Results QPCR is the most analytically sensitive method (sensitivity 99.41%, followed by CARESTART (sensitivity 88.24%, and BINAXNOW (sensitivity 86.47% for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746 in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more

  17. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    International Nuclear Information System (INIS)

    Hong Xia; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai

    2009-01-01

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  18. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hong Xia [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry, Jilin University, Changchun 130023 (China)], E-mail: xiahong@nenu.edu.cn; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai [College of Chemistry, Jilin University, Changchun 130023 (China)

    2009-09-15

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  19. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy

    DEFF Research Database (Denmark)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H

    2017-01-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analy...

  20. Direct single electron detection with a CMOS detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Henderson, R.; Pryddetch, M.; Allport, P.; Evans, A.

    2005-01-01

    We report the results of an investigation into the use of a monolithic active pixel sensor (MAPS) for electron microscopy. MAPS, designed originally for astronomers at the Rutherford Appleton Laboratories, was installed in a 120 kV electron microscope (Philips CM12) at the MRC Laboratory in Cambridge for tests which included recording single electrons at 40 and 120 keV, and measuring signal-to-noise ratio (SNR), spatial resolution and radiation sensitivity. Our results show that, due to the excellent SNR and resolution, it is possible to register single electrons. The radiation damage to the detector is apparent with low doses and gets progressively greater so that its lifetime is limited to 600,000-900,000 electrons/pixel (very approximately 10-15 krad). Provided this detector can be radiation hardened to reduce its radiation sensitivity several hundred fold and increased in size, it will provide excellent performance for all types of electron microscopy

  1. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    International Nuclear Information System (INIS)

    Pham, Son; Tabarin, Thibault; Garvey, Megan; Pade, Corinna; Rossy, Jérémie; Monaghan, Paul; Hyatt, Alex; Böcking, Till; Leis, Andrew; Gaus, Katharina; Mak, Johnson

    2015-01-01

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  2. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  3. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  4. Detection of SiO2 nanoparticles in lung tissue by ToF-SIMS imaging and fluorescence microscopy.

    Science.gov (United States)

    Veith, Lothar; Vennemann, Antje; Breitenstein, Daniel; Engelhard, Carsten; Wiemann, Martin; Hagenhoff, Birgit

    2017-07-10

    The direct detection of nanoparticles in tissues at high spatial resolution is a current goal in nanotoxicology. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is widely used for the direct detection of inorganic and organic substances with high spatial resolution but its capability to detect nanoparticles in tissue sections is still insufficiently explored. To estimate the applicability of this technique for nanotoxicological questions, comparative studies with established techniques on the detection of nanoparticles can offer additional insights. Here, we compare ToF-SIMS imaging data with sub-micrometer spatial resolution to fluorescence microscopy imaging data to explore the usefulness of ToF-SIMS for the detection of nanoparticles in tissues. SiO 2 nanoparticles with a mean diameter of 25 nm, core-labelled with fluorescein isothiocyanate, were intratracheally instilled into rat lungs. Subsequently, imaging of lung cryosections was performed with ToF-SIMS and fluorescence microscopy. Nanoparticles were successfully detected with ToF-SIMS in 3D microanalysis mode based on the lateral distribution of SiO 3 - (m/z 75.96), which was co-localized with the distribution pattern that was obtained from nanoparticle fluorescence. In addition, the lateral distribution of protein (CN - , m/z 26.00) and phosphate based signals (PO 3 - , m/z 78.96) originating from the tissue material could be related to the SiO 3 - lateral distribution. In conclusion, ToF-SIMS is suitable to directly detect and laterally resolve SiO 2 nanomaterials in biological tissue at sufficient intensity levels. At the same time, information about the chemical environment of the nanoparticles in the lung tissue sections is obtained.

  5. Indirect immunofluorescence staining of Chlamydia trachomatis inclusions in microculture plates with monoclonal antibodies.

    Science.gov (United States)

    Zapata, M; Chernesky, M; Mahony, J

    1984-06-01

    Indirect immunofluorescence (IF) staining, using a monoclonal antibody, detected two- to fourfold more inclusions than did iodine staining. Of 274 clinical specimens, 53 (19.3%) were positive by IF on passage 1 as compared with 33 (12%) by iodine staining (P less than 0.005). IF-stained inclusions in McCoy cells in the bottom of microculture wells were readily viewed with a long-focal-length objective at a magnification of 250 X.

  6. Indirect immunofluorescence staining of Chlamydia trachomatis inclusions in microculture plates with monoclonal antibodies.

    OpenAIRE

    Zapata, M; Chernesky, M; Mahony, J

    1984-01-01

    Indirect immunofluorescence (IF) staining, using a monoclonal antibody, detected two- to fourfold more inclusions than did iodine staining. Of 274 clinical specimens, 53 (19.3%) were positive by IF on passage 1 as compared with 33 (12%) by iodine staining (P less than 0.005). IF-stained inclusions in McCoy cells in the bottom of microculture wells were readily viewed with a long-focal-length objective at a magnification of 250 X.

  7. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy

    Science.gov (United States)

    Risco, Cristina; Sanmartín-Conesa, Eva; Tzeng, Wen-Pin; Frey, Teryl K.; Seybold, Volker; de Groot, Raoul J.

    2012-01-01

    Summary More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell’s interior are lagging behind. We describe a novel approach, metal-tagging TEM (METTEM) that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before. PMID:22579245

  8. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy

    Science.gov (United States)

    Singam, Shashi K. R.; Motylewski, Jaroslaw; Monaco, Antonina; Gjorgievska, Elena; Bourgeois, Emilie; Nesládek, Milos; Giugliano, Michele; Goovaerts, Etienne

    2016-12-01

    Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static magnetic field (SMF). Here, we compare RMW- and SMF-induced contrast measurements over a wide range of optical excitation rates for fluorescent nanodiamonds (FNDs) and for NV centers shallowly buried under the (100)-oriented surface of a diamond single crystal (SC). Contrast levels are found to be systematically lower in the FNDs than in the SC. At low excitation rates, the RMW contrast initially rises to a maximum (up to 7% in FNDs and 13% in the SC) but then decreases steadily at higher intensities. Conversely, the SMF contrast increases from approximately 12% at low excitation rates to high values of 20% and 38% for the FNDs and SC, respectively. These observations are well described in a rate-equations model for the charged NV defect using parameters in good agreement with the literature. The SMF approach yields higher induced contrast in image collection under commonly applied optical excitation. Unlike the RMW method, there is no thermal load exerted on the aqueous media in biological samples in the SMF approach. We demonstrate imaging by SMF-induced contrast in neuronal cultures incorporating FNDs (i) in a setup for patch-clamp experiments in parallel with differential-interference-contrast microscopy, (ii) after a commonly used staining procedure as an illustration of the high selectivity against background fluorescence, and (iii) in a confocal fluorescence microscope in combination with bright-field microscopy.

  9. Comparison of microscopy, ELISA, and real-time PCR for detection of Giardia intestinalis in human stool specimens

    Science.gov (United States)

    Beyhan, Yunus Emre; Taş Cengiz, Zeynep

    2017-08-23

    Background/aim: This study included patients who had digestive system complaints between August 2015 and October 2015. The research was designed to compare conventional microscopy with an antigen detection ELISA kit and the TaqMan-based real-time PCR (RT-PCR) technique for detection of Giardia intestinalis in human stool specimens. Materials and methods: Samples were concentrated by formalin-ether sedimentation technique and microscopic examinations were carried out on wet mount slides. A commercially available ELISA kit (Giardia CELISA, Cellabs, Brookvale, Australia) was used for immunoassay. DNA was extracted from fecal samples of about 200 mg using the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany) and the LightCycler Nano system (Roche Diagnostics, Mannheim, Germany) was used for the TaqMan-based RT-PCR assay. Results: A total of 94 stool samples, 38 of them diagnosed positive (40.4%) and 56 of them diagnosed negative by microscopy, were selected for evaluation by antigen detection and molecular assays. The prevalence of G. intestinalis infection was found as 46.8% (n: 44) and 79.8% (n: 75) by ELISA and RT-PCR, respectively. RT-PCR revealed by far the highest positivity rate compared to the other two methods. The difference between these methods was found to be statistically significant (P PCR, the sensitivity and specificity of microscopy and ELISA were 50.7% and 100% and 53.3% and 79%, respectively. Conclusion: RT-PCR seems to be much more sensitive and beneficial for rapid and accurate diagnosis of G. intestinalis in human stools.

  10. Influence of hydrocarbons on element detection in ion images by SIMS microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takaya, Kenichi; Okabe, Motonori; Sawataishi, Masaru; Yoshida, Toshiko

    2004-06-15

    Ion microscopy on fresh frozen cryostat sections, 5-10 {mu}m thick, is useful to determine the distribution of elements and low molecular organic compounds in the larger areas of the tissues. Fresh frozen cryostat sections of tree frog eyeball were examined. Secondary ion images of Na, Mg, Al, C{sub 2}H{sub 3}, K, Ca and C{sub 3}H{sub 5} were observed by ion microscopy (IMS-6f) using O{sub 2}{sup +} as the primary beam source at an energy of 15 keV. The primary beam current was 10{sup -10} A, the ion image magnification was varied from 300 to 1500 and the mass resolution was set between 300 and 3000. The areas of high intensity ion counts of the organic compounds generally showed low ion counts of elements. After long exposure to the primary ion beam, the intensity of the organic compound ions decreased, whereas the intensity of atomic ions of elements increased.

  11. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy

    Science.gov (United States)

    Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.

    1996-01-01

    Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.

  12. High-resolution magnetic resonance imaging of rotator cuff tears using a microscopy coil. Noninvasive detection without intraarticular contrast material

    International Nuclear Information System (INIS)

    Hitachi, Shin; Takase, Kei; Higano, Shuichi; Takahashi, Shoki; Tanaka, Minoru; Tojo, Yuichi; Tabata, Shiro; Majima, Kazuhiro

    2011-01-01

    The aim of this study was to evaluate the feasibility of high-resolution magnetic resonance imaging (MRI) using a microscopy coil for the diagnosis of rotator cuff tears by comparing the method to conventional MRI and MRI arthrography. A total of 68 shoulders were prospectively studied using a 1.5-T MRI unit. Conventional MRI scans were obtained with a surface coil and high-resolution MRI scans with a microscopy coil. MRI arthrography was performed in 28 shoulders using a surface coil. MRI evaluation of tears of rotator cuff tendons was compared with arthroscopic findings and surgical results. The surgery revealed 40 full-thickness tears, 13 partial-thickness tears, and 15 intact cuffs. In all, 35 (88%) full-thickness tears were correctly diagnosed on conventional MRI and 40 (100%) on high-resolution MRI. MR arthrography delineated 11 of 12 (92%) full-thickness tears. Altogether, 5 (38%) of the partial-thickness tears were detected on conventional MRI, and 12 (92%) were clearly demonstrated on high-resolution MRI. MRI arthrography depicted three (60%) of five partial-thickness tears. High-resolution MRI showed higher sensitivity than conventional MRI (P<0.05) and had values equivalent to those of MRI arthrography for diagnosing partial-thickness tears. High-resolution MRI with a microscopy coil is a feasible, noninvasive technique for diagnosing rotator cuff tears. (author)

  13. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    Science.gov (United States)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  14. Detecting Release of Bacterial dsDNA into the Host Cytosol Using Fluorescence Microscopy.

    Science.gov (United States)

    Dreier, Roland Felix; Santos, José Carlos; Broz, Petr

    2018-01-01

    Recognition of pathogens by the innate immune system relies on germline-encoded pattern recognition receptors (PRRs) that recognize unique microbial molecules, so-called pathogen-associated molecular patterns (PAMPs). Nucleic acids and their derivatives are one of the most important groups of PAMPs, and are recognized by a number of surface-associated as well as cytosolic PRRs. Cyclic GMP-AMP synthase (cGAS) recognizes the presence of pathogen- or host-derived dsDNA in the cytosol and initiates type-I-IFN production. Here, we describe a methodology that allows for evaluating the association of cGAS with released bacterial dsDNA during Francisella novicida infection of macrophages, by fluorescence confocal microscopy. This method can be adapted to the study of cGAS-dependent responses elicited by other intracellular bacterial pathogens and in other cell types.

  15. Detection of single bacteria - causative agents of meningitis using raman microscopy

    Science.gov (United States)

    Baikova, T. V.; Minaeva, S. A.; Sundukov, A. V.; Svistunova, T. S.; Bagratashvili, V. N.; Alushin, M. V.; Gonchukov, S. A.

    2015-03-01

    Early diagnostics of meningitis is a very topical problem as it is a fulminant disease with a high level of mortality. The progress of this disease is, as a rule, accompanied by the appearance of bacteria in the cerebrospinal fluid (CSF) composition. The examination of the CSF is well known to be the only reliable approach to the identification of meningitis. However, the traditional biochemical analyses are time consuming and not always reliable, simple, and inexpensive, whereas the optical methods are poorly developed. This work is devoted to the study of Raman spectra of several bacterial cultures which are mainly present during meningitis. Raman microscopy is a prompt and noninvasive technique capable of providing reliable information about molecular-level alterations of biological objects at their minimal quantity and size. It was shown that there are characteristic lines in Raman spectra which can be the reliable markers for determination of bacterial form of meningitis at a level of a single bacterium.

  16. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Roukes, M.L.; Hammel, P.C.

    1996-01-01

    The signal intensity of electron spin resonance in magnetic resonance force microscopy (MRFM) experiments employing periodic saturation of the electron spin magnetization is determined by four parameters: the rf field H 1 , the modulation level of the bias field H m , the spin relaxation time τ 1 , and the magnetic size R(∂H/∂z) of the sample. Calculations of the MRFM spectra obtained from a 2,2-diphenyl-1-picrylhydrazyl particle have been performed for various conditions. The results are compared with experimental data and excellent agreement is found. The systematic variation of the signal intensity as a function of H 1 and H m provides a powerful tool to characterize the MRFM apparatus. copyright 1996 American Institute of Physics

  17. Robust Cell Detection for Large-Scale 3D Microscopy Using GPU-Accelerated Iterative Voting

    Directory of Open Access Journals (Sweden)

    Leila Saadatifard

    2018-04-01

    Full Text Available High-throughput imaging techniques, such as Knife-Edge Scanning Microscopy (KESM,are capable of acquiring three-dimensional whole-organ images at sub-micrometer resolution. These images are challenging to segment since they can exceed several terabytes (TB in size, requiring extremely fast and fully automated algorithms. Staining techniques are limited to contrast agents that can be applied to large samples and imaged in a single pass. This requires maximizing the number of structures labeled in a single channel, resulting in images that are densely packed with spatial features. In this paper, we propose a three-dimensional approach for locating cells based on iterative voting. Due to the computational complexity of this algorithm, a highly efficient GPU implementation is required to make it practical on large data sets. The proposed algorithm has a limited number of input parameters and is highly parallel.

  18. Detection of single bacteria – causative agents of meningitis using Raman microscopy

    International Nuclear Information System (INIS)

    Baikova, T V; Alushin, M V; Gonchukov, S A; Minaeva, S A; Bagratashvili, V N; Sundukov, A V; Svistunova, T S

    2015-01-01

    Early diagnostics of meningitis is a very topical problem as it is a fulminant disease with a high level of mortality. The progress of this disease is, as a rule, accompanied by the appearance of bacteria in the cerebrospinal fluid (CSF) composition. The examination of the CSF is well known to be the only reliable approach to the identification of meningitis. However, the traditional biochemical analyses are time consuming and not always reliable, simple, and inexpensive, whereas the optical methods are poorly developed. This work is devoted to the study of Raman spectra of several bacterial cultures which are mainly present during meningitis. Raman microscopy is a prompt and noninvasive technique capable of providing reliable information about molecular-level alterations of biological objects at their minimal quantity and size. It was shown that there are characteristic lines in Raman spectra which can be the reliable markers for determination of bacterial form of meningitis at a level of a single bacterium

  19. Detecting onset of chain scission and crosslinking of {gamma}-ray irradiated elastomer surfaces using frictional force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Sinha, N K [Innovative Design Engineering and Synthesis Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Gayathri, N [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Ponraju, D [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Dash, S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Tyagi, A K [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Raj, Baldev [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India)

    2007-02-07

    We report here that atomic force microscopy (AFM) in frictional force mode can be used to detect the onset of chain scission and crosslinking in polymeric and macromolecular samples upon irradiation. A systematic investigation to detect chain scission and crosslinking of two elastomers (1) ethylene-propylene-diene monomer rubber and (2) fluorocarbon rubber, upon {gamma}-ray irradiation has been carried out using frictional force microscopy (FFM). From the AFM results we observed that both the elastomers show a systematic smoothening of its surfaces, as the {gamma}-ray dose rate increases. However, the frictional property studied using FFM of the sample surfaces show an initial increase and then a decrease as a function of dose rate. This behaviour of increase in its frictional property has been attributed to the onset of chain scission, and the subsequent decrease in friction has been attributed to the onset of crosslinking of the polymer chains. The evaluated qualitative and semi-quantitative changes observed in the overall frictional property as a function of the {gamma}-ray dose rate for the two elastomers are presented in this paper.

  20. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    Science.gov (United States)

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. Detecting onset of chain scission and crosslinking of γ-ray irradiated elastomer surfaces using frictional force microscopy

    International Nuclear Information System (INIS)

    Banerjee, S; Sinha, N K; Gayathri, N; Ponraju, D; Dash, S; Tyagi, A K; Raj, Baldev

    2007-01-01

    We report here that atomic force microscopy (AFM) in frictional force mode can be used to detect the onset of chain scission and crosslinking in polymeric and macromolecular samples upon irradiation. A systematic investigation to detect chain scission and crosslinking of two elastomers (1) ethylene-propylene-diene monomer rubber and (2) fluorocarbon rubber, upon γ-ray irradiation has been carried out using frictional force microscopy (FFM). From the AFM results we observed that both the elastomers show a systematic smoothening of its surfaces, as the γ-ray dose rate increases. However, the frictional property studied using FFM of the sample surfaces show an initial increase and then a decrease as a function of dose rate. This behaviour of increase in its frictional property has been attributed to the onset of chain scission, and the subsequent decrease in friction has been attributed to the onset of crosslinking of the polymer chains. The evaluated qualitative and semi-quantitative changes observed in the overall frictional property as a function of the γ-ray dose rate for the two elastomers are presented in this paper

  2. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.

    Science.gov (United States)

    Kayasandik, Cihan Bilge; Labate, Demetrio

    2016-12-01

    Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Moore, G.J.; Hanlon, J.A.; Lamartine, B.; Hawley, M.; Solem, J.C.; Signer, S.; Jarmer, J.J.; Penttila, S.; Sillerud, L.O.; Pryputniewicz, R.J.

    1993-01-01

    Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene

  4. High-throughput label-free detection of aggregate platelets with optofluidic time-stretch microscopy (Conference Presentation)

    Science.gov (United States)

    Jiang, Yiyue; Lei, Cheng; Yasumoto, Atsushi; Ito, Takuro; Guo, Baoshan; Kobayashi, Hirofumi; Ozeki, Yasuyuki; Yatomi, Yutaka; Goda, Keisuke

    2017-02-01

    According to WHO, approximately 10 million new cases of thrombotic disorders are diagnosed worldwide every year. In the U.S. and Europe, their related diseases kill more people than those from AIDS, prostate cancer, breast cancer and motor vehicle accidents combined. Although thrombotic disorders, especially arterial ones, mainly result from enhanced platelet aggregability in the vascular system, visual detection of platelet aggregates in vivo is not employed in clinical settings. Here we present a high-throughput label-free platelet aggregate detection method, aiming at the diagnosis and monitoring of thrombotic disorders in clinical settings. With optofluidic time-stretch microscopy with a spatial resolution of 780 nm and an ultrahigh linear scanning rate of 75 MHz, it is capable of detecting aggregated platelets in lysed blood which flows through a hydrodynamic-focusing microfluidic device at a high throughput of 10,000 particles/s. With digital image processing and statistical analysis, we are able to distinguish them from single platelets and other blood cells via morphological features. The detection results are compared with results of fluorescence-based detection (which is slow and inaccurate, but established). Our results indicate that the method holds promise for real-time, low-cost, label-free, and minimally invasive detection of platelet aggregates, which is potentially applicable to detection of platelet aggregates in vivo and to the diagnosis and monitoring of thrombotic disorders in clinical settings. This technique, if introduced clinically, may provide important clinical information in addition to that obtained by conventional techniques for thrombotic disorder diagnosis, including ex vivo platelet aggregation tests.

  5. [Detection of Clonorchis sinensis eggs in the ground gallbladder stones by microscopy].

    Science.gov (United States)

    Ma, Rui-Hong; Qiao, Tie; Luo, Xiao-Bing

    2012-08-30

    Sera, feces, bile and gallbladder stones were collected from 179 patients who accepted gallbladder-preserving cholelithotomy during the period of January to June 2010 at the general surgery department in the Second People's Hospital of Panyu District in Guangzhou. Rapid colloidal gold immunochromatography was used to detect IgG against Clonorchis sinensis. C. sinensis eggs were examined by fecal direct smear, and in bile sediments and ground gallbladder stones. The results showed that the positive rate of rapid colloidal gold immunochromatographic assay for IgG was 51.4%, and the egg positive rate in feces, bile sediments and gallbladder stones was 30.7%, 44.7% and 69.8%, respectively. The detection rate of fecal direct smear was the lowest, while that of the gallbladder stone examination was the highest (P stones.

  6. Autoradiographical Detection of Tritium in Cu-Ni Alloy by Scanning Electron Microscopy

    OpenAIRE

    高安, 紀; 中野, 美樹; 竹内, 豊三郎

    1981-01-01

    The autoradiograph of tritium dispersed in Cu-Ni alloy sheet by 6Li(n,α)3H reaction was obtained by a scanning electron microscope. Prior to the irradiation of neutrons 6Li was deposited on the sheet by evaporation. The liquid emulsion, Fuji-ER, was used in this study. The distribution of tritium was detected by the dispersion of silver grains remaining in the emulsion after the development was carried out.

  7. Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy.

    Science.gov (United States)

    Liu, Xiaojun; Wu, Zhangjian; Zhang, Qingquan; Zhao, Wenfeng; Zong, Chenghua; Gai, Hongwei

    2016-02-16

    Mercury severely damages the environment and human health, particularly when it accumulates in the food chain. Methods for the colorimetric detection of Hg(2+) have increasingly been developed over the past decade because of the progress in nanotechnology. However, the limits of detection (LODs) of these methods are mostly either comparable to or higher than the allowable maximum level (10 nM) in drinking water set by the US Environmental Protection Agency. In this study, we report a single Au nanoparticle (AuNP)-based colorimetric assay for Hg(2+) detection in solution. AuNPs modified with oligonucleotides were fixed on the slide. The fixed AuNPs bound to free AuNPs in the solution in the presence of Hg(2+) because of oligonucleotide hybridization. This process was accompanied by a color change from green to yellow as observed under an optical microscope. The ratio of changed color spots corresponded with Hg(2+) concentration. The LOD was determined as 1.4 pM, which may help guard against mercury accumulation. The proposed approach was applied to environmental samples with recoveries of 98.3 ± 7.7% and 110.0 ± 8.8% for Yuquan River and industrial wastewater, respectively.

  8. A novel versatile microbiosensor for local hydrogen detection by means of scanning photoelectrochemical microscopy.

    Science.gov (United States)

    Zhao, Fangyuan; Conzuelo, Felipe; Hartmann, Volker; Li, Huaiguang; Stapf, Stefanie; Nowaczyk, Marc M; Rögner, Matthias; Plumeré, Nicolas; Lubitz, Wolfgang; Schuhmann, Wolfgang

    2017-08-15

    The development of a versatile microbiosensor for hydrogen detection is reported. Carbon-based microelectrodes were modified with a [NiFe]-hydrogenase embedded in a viologen-modified redox hydrogel for the fabrication of a sensitive hydrogen biosensor By integrating the microbiosensor in a scanning photoelectrochemical microscope, it was capable of serving simultaneously as local light source to initiate photo(bio)electrochemical reactions while acting as sensitive biosensor for the detection of hydrogen. A hydrogen evolution biocatalyst based on photosystem 1-platinum nanoparticle biocomplexes embedded into a specifically designed redox polymer was used as a model for proving the capability of the developed hydrogen biosensor for the detection of hydrogen upon localized illumination. The versatility and sensitivity of the proposed microbiosensor as probe tip allows simplification of the set-up used for the evaluation of complex electrochemical processes and the rapid investigation of local photoelectrocatalytic activity of biocatalysts towards light-induced hydrogen evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S

    2014-03-01

    A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.

  10. A SIMULTANEOUS MULTI-PROBE DETECTION LABEL-FREE OPTICAL-RESOLUTION PHOTOACOUSTIC MICROSCOPY TECHNIQUE BASED ON MICROCAVITY TRANSDUCER

    Directory of Open Access Journals (Sweden)

    YONGBO WU

    2013-07-01

    Full Text Available We demonstrate the feasibility of simultaneous multi-probe detection for an optical-resolution photoacoustic microscopy (OR-PAM system. OR-PAM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth. OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules. However, given the inadequate absorption of some biomolecules, detection sensitivity at the same incident intensity requires improvement. In this study, a modulated continuous wave with power density less than 3 mW/cm2 (1/4 of the ANSI safety limit excited the weak photoacoustic (PA signals of biological cells. A microcavity transducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid; air pressure variation is inversely proportional to cavity volume at the same temperature increase. Considering that a PA wave expands in various directions, detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio. Therefore, we employ four detectors to acquire tiny PA signals simultaneously. Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.

  11. Validation of a near infrared microscopy method for the detection of animal products in feedingstuffs: results of a collaborative study.

    Science.gov (United States)

    Boix, A; Fernández Pierna, J A; von Holst, C; Baeten, V

    2012-01-01

    The performance characteristics of a near infrared microscopy (NIRM) method, when applied to the detection of animal products in feedingstuffs, were determined via a collaborative study. The method delivers qualitative results in terms of the presence or absence of animal particles in feed and differentiates animal from vegetable feed ingredients on the basis of the evaluation of near infrared spectra obtained from individual particles present in the sample. The specificity ranged from 86% to 100%. The limit of detection obtained on the analysis of the sediment fraction, prepared as for the European official method, was 0.1% processed animal proteins (PAPs) in feed, since all laboratories correctly identified the positive samples. This limit has to be increased up to 2% for the analysis of samples which are not sedimented. The required sensitivity for the official control is therefore achieved in the analysis of the sediment fraction of the samples where the method can be applied for the detection of the presence of animal meal. Criteria for the classification of samples, when fewer than five spectra are found, as being of animal origin needs to be set up in order to harmonise the approach taken by the laboratories when applying NIRM for the detection of the presence of animal meal in feed.

  12. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Rufeng Li

    2017-11-01

    Full Text Available This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1 Gaussian filtering to remove the noise of overall fluorescent targets, (2 a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3 an red maximizing inter-class variance thresholding method (OTSU to segment the enhanced image for getting the binary map of the overall micro-droplets, (4 a circular Hough transform (CHT method to detect overall micro-droplets and (5 an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  13. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    Science.gov (United States)

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  14. Spot detection in microscopy images using Convolutional Neural Network with sliding-window approach

    CSIR Research Space (South Africa)

    Mabaso, Matsilele A

    2018-01-01

    Full Text Available stream_source_info Mabaso_20271_2018.pdf.txt stream_content_type text/plain stream_size 24351 Content-Encoding UTF-8 stream_name Mabaso_20271_2018.pdf.txt Content-Type text/plain; charset=UTF-8 Spot Detection....n. Krizhevsky, A., Sutskever, I. & Hinton, G. E., 2012. Imagenet classication with deep convolutional neural networks. s.l., s.n., pp. 1-9. Li, R. et al., 2014. Deep learning based imaging data completion for improved brain disease diagnosis. Quebec City, s...

  15. Detection and classification of orange peel on polished steel surfaces by interferometric microscopy

    International Nuclear Information System (INIS)

    2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" data-affiliation=" (AC2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" >Miranda-Medina, M L; 2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" data-affiliation=" (AC2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" >Somkuti, P; 2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" data-affiliation=" (AC2T Research GmbH, Viktor Kaplan Strasse 2, Wiener Neustadt 2700 (Austria))" >Steiger, B

    2013-01-01

    In this work, we provide a general description of the so-called orange peel defect produced on polished steel surfaces. By characterizing a prototype set of samples with various degrees orange peel, we attempt to create a simple model that allows the classification of additional samples through the study of surface parameters. On those surfaces, the orange peel structure has roughness amplitudes in the nanometer range. Detecting surface features on that range requires the implementation of a high-precision technique, such as phase shifting interferometry (PSI). Therefore, we can contribute to the improvement of the manufacturing of polished steel surfaces as well as to the quality control by using optical techniques.

  16. Quantum Dot Immunocytochemical Localization of Somatostatin in Somatostatinoma by Widefield Epifluorescence, Super-resolution Light, and Immunoelectron Microscopy

    Science.gov (United States)

    Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon

    2012-01-01

    Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862

  17. Quantum dot immunocytochemical localization of somatostatin in somatostatinoma by Widefield Epifluorescence, super-resolution light, and immunoelectron microscopy.

    Science.gov (United States)

    Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon

    2012-11-01

    Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.

  18. Detection of Melamine in Soybean Meal Using Near-Infrared Microscopy Imaging with Pure Component Spectra as the Evaluation Criteria

    Directory of Open Access Journals (Sweden)

    Zengling Yang

    2016-01-01

    Full Text Available Soybean meal was adulterated with melamine with the purpose of boosting the protein content for unlawful interests. In recent years, the near-infrared (NIR spectroscopy technique has been widely used for guaranteeing food and feed security for its fast, nondestructive, and pollution-free characteristics. However, there are problems with using near-infrared (NIR spectroscopy for detecting samples with low contaminant concentration because of instrument noise and sampling issues. In addition, methods based on NIR are indirect and depend on calibration models. NIR microscopy imaging offers the opportunity to investigate the chemical species present in food and feed at the microscale level (the minimum spot size is a few micrometers, thus avoiding the problem of the spectral features of contaminants being diluted by scanning. The aim of this work was to investigate the feasibility of using NIR microscopy imaging to identify melamine particles in soybean meal using only the pure component spectrum. The results presented indicate that using the classical least squares (CLS algorithm with the nonnegative least squares (NNLS algorithm, without needing first to develop a calibration model, could identify soybean meal that is both uncontaminated and contaminated with melamine particles at as low a level as 50 mg kg−1.

  19. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jared M.; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo, E-mail: hwang.458@osu.edu

    2017-01-15

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga{sub 2}O{sub 3} and SrTiO{sub 3}, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra “ripples” at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20–40 mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. - Highlights: • A new electron microscopy technique that can visualize 3D position of point defect is proposed. • The technique relies on the electron de-channeling signals at low scattering angles. • The technique enables precise determination of the depth of vacancies and lighter impurity atoms.

  20. Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Torsten Bölke

    2014-11-01

    Full Text Available Intravital 2-photon microscopy of mucosal membranes across which nanoparticles enter the organism typically generates noisy images. Because the noise results from the random statistics of only very few photons detected per pixel, it cannot be avoided by technical means. Fluorescent nanoparticles contained in the tissue may be represented by a few bright pixels which closely resemble the noise structure. We here present a data-adaptive method for digital denoising of datasets obtained by 2-photon microscopy. The algorithm exploits both local and non-local redundancy of the underlying ground-truth signal to reduce noise. Our approach automatically adapts the strength of noise suppression in a data-adaptive way by using a Bayesian network. The results show that the specific adaption to both signal and noise characteristics improves the preservation of fine structures such as nanoparticles while less artefacts were produced as compared to reference algorithms. Our method is applicable to other imaging modalities as well, provided the specific noise characteristics are known and taken into account.

  1. Plasmodium spp. and Haemoproteus spp. infection in birds of the Brazilian Atlantic Forest detected by microscopy and polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Raquel Tostes

    2015-01-01

    Full Text Available In recent years haemosporidian infection by protozoa of the genus Plasmodium and Haemoproteus, has been considered one of the most important factors related to the extinction and/or population decline of several species of birds worldwide. In Brazil, despite the large avian biodiversity, few studies have been designed to detect this infection, especially among wild birds in captivity. Thus, the objective of this study was to analyze the prevalence of Plasmodium spp. and Haemoproteus spp. infection in wild birds in captivity in the Atlantic Forest of southeastern Brazil using microscopy and the polymerase chain reaction. Blood samples of 119 different species of birds kept in captivity at IBAMA during the period of July 2011 to July 2012 were collected. The parasite density was determined based only on readings of blood smears by light microscopy. The mean prevalence of Plasmodium spp. and Haemoproteus spp. infection obtained through the microscopic examination of blood smears and PCR were similar (83.19% and 81.3%, respectively, with Caracara plancus and Saltator similis being the most parasitized. The mean parasitemia determined by the microscopic counting of evolutionary forms of Plasmodium spp. and Haemoproteus spp. was 1.51%. The results obtained from this study reinforce the importance of the handling of captive birds, especially when they will be reintroduced into the wild.

  2. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul

    2013-08-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.

  3. Atomic-scale nanoindentation: detection and identification of single glide events in three dimensions by force microscopy

    International Nuclear Information System (INIS)

    Egberts, P; Bennewitz, R

    2011-01-01

    Indentation experiments on the nanometre scale have been performed by means of atomic force microscopy in ultra-high vacuum on KBr(100) surfaces. The surfaces yield in the form of discrete surface displacements with a typical length scale of 1 A. These surface displacements are detected in both normal and lateral directions. Measurement of the lateral tip displacement requires a load-dependent calibration due to the load dependence of the effective lateral compliance. Correlation of the lateral and normal displacements for each glide event allow identification of the activated slip system. The results are discussed in terms of the resolved shear stress in indentation experiments and of typical results in atomistic simulations of nanometre-scale indentation.

  4. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    Directory of Open Access Journals (Sweden)

    St-Pierre Tim G

    2009-05-01

    Full Text Available Abstract Background The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sensitivity of a technique based on the use of commercially available magnetic fractionation columns with those for thick blood film microscopy and reverse transcriptase polymerase chain reaction (RT-PCR methods. Methods Gametocyte detection in six series of dilutions of cultured P. falciparum parasites with known gametocytaemia was conducted using magnetic fractionation, thick blood film, and RT-PCR techniques. Results The preparations obtained by the magnetic fractionation method were of thin film quality allowing easy gametocyte identification by light microscopy. Magnetic fractionation had a higher sensitivity and approximately two orders of magnitude better limit of detection than thick blood film microscopy. Gametocytes were also more readily detectable on the magnetically fractionated preparations. Magnetic fractionation had a similar limit of detection to that of RT-PCR. Conclusion Magnetic fractionation is a highly sensitive and convenient method for gametocyte detection in comparison with the standard thick blood film and RT-PCR methods, and could readily be adapted to field application.

  5. Combination of atomic force microscopy and mass spectrometry for the detection of target protein in the serum samples of children with autism spectrum disorders

    Science.gov (United States)

    Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.

    2017-10-01

    Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.

  6. Antibodies to cytoskeletal proteins as evidenced by immunofluorescence microscopy and radioimmunoassay

    International Nuclear Information System (INIS)

    Zugehoer, M.; Struy, H.; Morenz, J.

    1987-01-01

    In patients suffering from chronic hepatitis, collagenosis and infectious mononucleosis, resp., as well as in blood donors antibodies against cytoskeletal antigens such as actin, myosin, actinin, desmin, keratin, and tubulin were determined by radioimmunoassay

  7. Antibodies to cytoskeletal proteins as evidenced by immunofluorescence microscopy and radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zugehoer, M; Struy, H; Morenz, J

    1987-01-01

    In patients suffering from chronic hepatitis, collagenosis and infectious mononucleosis, resp., as well as in blood donors antibodies against cytoskeletal antigens such as actin, myosin, actinin, desmin, keratin, and tubulin were determined by radioimmunoassay.

  8. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study.

    Science.gov (United States)

    Bradford, W. D.; Croker, B. P.; Tisher, C. C.

    1979-01-01

    The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676

  9. Handheld optical coherence tomography-reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins

    Science.gov (United States)

    Iftimia, Nicusor; Yélamos, Oriol; Chen, Chih-Shan J.; Maguluri, Gopi; Cordova, Miguel A.; Sahu, Aditi; Park, Jesung; Fox, William; Alessi-Fox, Christi; Rajadhyaksha, Milind

    2017-07-01

    We present a hand-held implementation and preliminary evaluation of a combined optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) probe for detecting and delineating the margins of basal cell carcinomas (BCCs) in human skin in vivo. A standard OCT approach (spectrometer-based) with a central wavelength of 1310 nm and 0.11 numerical aperture (NA) was combined with a standard RCM approach (830-nm wavelength and 0.9 NA) into a common path hand-held probe. Cross-sectional OCT images and enface RCM images are simultaneously displayed, allowing for three-dimensional microscopic assessment of tumor morphology in real time. Depending on the subtype and depth of the BCC tumor and surrounding skin conditions, OCT and RCM imaging are able to complement each other, the strengths of each helping overcome the limitations of the other. Four representative cases are summarized, out of the 15 investigated in a preliminary pilot study, demonstrating how OCT and RCM imaging may be synergistically combined to more accurately detect BCCs and more completely delineate margins. Our preliminary results highlight the potential benefits of combining the two technologies within a single probe to potentially guide diagnosis as well as treatment of BCCs.

  10. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    OpenAIRE

    Karl, Stephan; Davis, Timothy ME; St-Pierre, Tim G

    2009-01-01

    Abstract Background The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sens...

  11. Diagnostic performance of direct wet mount microscopy in detecting intestinal helminths among pregnant women attending ante-natal care (ANC) in East Wollega, Oromia, Ethiopia.

    Science.gov (United States)

    Mengist, Hylemariam Mihiretie; Demeke, Gebreselassie; Zewdie, Olifan; Belew, Adugna

    2018-05-04

    The aim of this study was to evaluate the diagnostic performance of direct wet mount microscopy compared to formalin ether concentration (FEC) technique in detecting intestinal helminths in pregnant women. The total prevalence of intestinal helminths was 18.8% (70/372) by direct wet mount microscopy and 24.7% (92/372) by FEC technique (P  0.81) but they fairly agreed in detecting ova of Hymenolepis nana (Kappa = 0.39). Intestinal helminths were underdiagnosed and the total diagnostic performance of direct wet mount microscopy was significantly poor in detecting intestinal helminths as compared to FEC technique. Routine use of FEC method is recommended for the diagnosis of intestinal helminths in pregnant women.

  12. Are the soft, liquid-like structures detected around bacteria by ambient dynamic atomic force microscopy capsules?

    Science.gov (United States)

    Méndez-Vilas, A; Labajos-Broncano, L; Perera-Núñez, J; González-Martín, M L

    2011-05-01

    High-resolution imaging of bacterial capsules by microscopy is of paramount importance in microbiology due to their role in pathogenesis. This is, however, quite a challenging task due to their delicate nature. In this context, recent reports have claimed successful exploitation of the capacity of atomic force microscopy (AFM) for imaging of extremely deformable (even liquid) surfaces under ambient conditions to detect bacterial capsules in the form of tiny amounts of liquid-like substances around bacteria. In order to further explore this supposed capacity of AFM, in this work, three staphylococcal strains have been scrutinized for the presence of capsules using such an AFM-based approach with a phosphate buffer and water as the suspending liquids. Similar results were obtained with the three strains. AFM showed the presence of liquid-like substances identical to those attributed to bacterial capsules in the previous literature. Extensive imaging and chemical analysis point out the central role of the suspending liquid (buffer) in the formation of these substances. The phenomenon has been reproduced even by using nonliving particles, a finding that refutes the biological origin of the liquid-like substances visualized around the cells. Deliquescence of major components of biological buffers, such as K(2)HPO(4), CaCl(2), or HEPES, is proposed as the fundamental mechanism of the formation of these ultrasmall liquid-like structures. Such an origin could explain the high similarity of our results obtained with three very different strains and also the high similarity of these results to others reported in the literature based on other bacteria and suspending liquids. Finally, possible biological/biomedical implications of the presence of these ultrasmall amounts of liquids wrapping microorganisms are discussed.

  13. Bovine tuberculosis in South Darfur State, Sudan: an abattoir study based on microscopy and molecular detection methods.

    Science.gov (United States)

    Asil, El Tigani A; El Sanousi, Sulieman M; Gameel, Ahmed; El Beir, Haytham; Fathelrahman, Maha; Terab, Nasir M; Muaz, Magzoub A; Hamid, Mohamed E

    2013-02-01

    Bovine tuberculosis (BTB) is a widespread zoonosis in developing countries but has received little attention in many sub-Saharan African countries including Sudan and particularly in some parts such as Darfur states. This study aimed to detect bovine tuberculosis among caseous materials of cattle slaughtered in abattoirs in South Darfur State, Sudan by using microscopic and PCR-based methods. The study was a cross-sectional abattoir-based study which examined a total of 6,680 bovine carcasses for caseous lesions in South Darfur State between 2007 and 2009. Collected specimens were examined for the presence of acid-fast bacilli (AFB) by using microscopic and culture techniques. Isolated mycobacteria were identified by selected conventional cultural and biochemical tests in comparison to a single tube multiplex PCR (m-PCR) assay which detect Mycobacterium bovis-specific 168-bp amplicons. Of the total 6,680 slaughtered cattle examined in South Darfur, 400 (6 %) showed caseations restricted to lymph nodes (86.8 %) or generalized (13.2 %). Bovine tuberculosis was diagnosed in 12 (0.18 %), bovine farcy in 59 (0.88 %), unidentified mycobacteria in 6 (0.09 %), and missed or contaminated cultures in 7 (0.1 %). Out of 18 cultures with nonbranching acid-fast rods, 12 amplified unique 168-bp sequence specific for M. bovis and subsequently confirmed as M. bovis. With the exception of the reference M. tuberculosis strains, none of the remaining AFB amplified the 337-bp amplicon specific for M. tuberculosis. It could be concluded that bovine tuberculosis is prevalent among cattle in South Darfur representing 4.5 % from all slaughtered cattle with caseous lesions. The study sustains microscopy as a useful and accessible technique for detecting AFB. m-PCR assay proved to be valuable for confirmation of BTB and its differentiation from other related mycobacteriosis, notably bovine farcy.

  14. A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ishikawa, R.; Sánchez-Santolino, G. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Lugg, N.R., E-mail: shibata@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2017-02-15

    Important properties of functional materials, such as ferroelectric shifts and octahedral distortions, are associated with displacements of the positions of lighter atoms in the unit cell. Annular bright-field scanning transmission electron microscopy is a good experimental method for investigating such phenomena due to its ability to image light and heavy atoms simultaneously. To map atomic positions at the required accuracy precise angular alignment of the sample with the microscope optical axis is necessary, since misalignment (tilt) of the specimen contributes to errors in position measurements of lighter elements in annular bright-field imaging. In this paper it is shown that it is possible to detect tilt with the aid of images recorded using a central bright-field detector placed within the inner radius of the annular bright-field detector. For a probe focus near the middle of the specimen the central bright-field image becomes especially sensitive to tilt and we demonstrate experimentally that misalignment can be detected with a precision of less than a milliradian, as we also confirm in simulation. Coma in the probe, an aberration that can be misidentified as tilt of the specimen, is also investigated and it is shown how the effects of coma and tilt can be differentiated. The effects of tilt may be offset to a large extent by shifting the diffraction plane detector an amount equivalent to the specimen tilt and we provide an experimental proof of principle of this using a segmented detector system. - Highlights: • Octahedral distortions are associated with displacements of lighter atoms. • Annular bright-field imaging is sensitive to light and heavy atoms simultaneously. • Mistilt of the specimen leads to errors in position measurements of lighter elements. • It is possible to detect tilt using images taken by a central bright-field detector. • Tilt may be offset by shifting the diffraction plane detector by an equivalent amount.

  15. Localization of proteins in paint cross-sections by scanning electrochemical microscopy as an alternative immunochemical detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Sciutto, Giorgia; Prati, Silvia [Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Via Guaccimanni 42, Ravenna 48121 (Italy); Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Mazzeo, Rocco, E-mail: rocco.mazzeo@unibo.it [Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Via Guaccimanni 42, Ravenna 48121 (Italy); Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Zangheri, Martina; Roda, Aldo; Bardini, Luca; Valenti, Giovanni; Rapino, Stefania [Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Marcaccio, Massimo, E-mail: massimo.marcaccio@unibo.it [Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy)

    2014-06-01

    Highlights: • Advanced immuno-electrochemical detection of proteins in paint samples by SECM. • Analysis performed directly on cross-section with high spatial resolution. • Identification of HRP catalytic activity for a selective location of analyte. • Satisfactory results were obtained for aged real samples. • The way forward for an extensive application of SECM in conservation science is shown. - Abstract: The qualitative identification of proteinaceous substances, as well as their location within a complex paint stratigraphy, is one of the most challenging issues in the characterization of painting materials. Nevertheless, information on paint components represent a crucial task for studies concerning both the ancient painting techniques adopted and the state of conservation, being fundamental investigations for the selection of appropriate conservation actions. The present research was aimed at developing a new detection approach for the immunochemical localization of ovalbumin in paint cross-sections based on the use of scanning electrochemical microscopy (SECM). The immunochemical analyses were performed using an anti-ovalbumin primary antibody and a secondary antibody labelled with horseradish peroxidase (HRP). SECM measurements were performed in feedback mode using benzoquinone (BQ)/hydroquinone (H{sub 2}Q) redox couple. In presence of hydrogen peroxide (H{sub 2}O{sub 2}), HRP catalyzes the re-oxidation of H{sub 2}Q to BQ and the increment of BQ concentration in correspondence of the target protein was detected by SECM through the electrochemical reduction of the regenerated BQ at the microelectrode. Indeed, the localization of ovalbumin was possible thanks to a clear discrimination of SECM currents, achieved by the comparison of the measurements recorded before and after H{sub 2}O{sub 2} administration, based on the HRP on/off approach. The method was evaluated both on samples from standard mocks-up and on a historical sample, collected from a

  16. Automated Processing and Evaluation of Anti-Nuclear Antibody Indirect Immunofluorescence Testing.

    Science.gov (United States)

    Ricchiuti, Vincent; Adams, Joseph; Hardy, Donna J; Katayev, Alexander; Fleming, James K

    2018-01-01

    Indirect immunofluorescence (IIF) is considered by the American College of Rheumatology (ACR) and the international consensus on ANA patterns (ICAP) the gold standard for the screening of anti-nuclear antibodies (ANA). As conventional IIF is labor intensive, time-consuming, subjective, and poorly standardized, there have been ongoing efforts to improve the standardization of reagents and to develop automated platforms for assay incubation, microscopy, and evaluation. In this study, the workflow and performance characteristics of a fully automated ANA IIF system (Sprinter XL, EUROPattern Suite, IFA 40: HEp-20-10 cells) were compared to a manual approach using visual microscopy with a filter device for single-well titration and to technologist reading. The Sprinter/EUROPattern system enabled the processing of large daily workload cohorts in less than 8 h and the reduction of labor hands-on time by more than 4 h. Regarding the discrimination of positive from negative samples, the overall agreement of the EUROPattern software with technologist reading was higher (95.6%) than when compared to the current method (89.4%). Moreover, the software was consistent with technologist reading in 80.6-97.5% of patterns and 71.0-93.8% of titers. In conclusion, the Sprinter/EUROPattern system provides substantial labor savings and good concordance with technologist ANA IIF microscopy, thus increasing standardization, laboratory efficiency, and removing subjectivity.

  17. Automated Processing and Evaluation of Anti-Nuclear Antibody Indirect Immunofluorescence Testing

    Directory of Open Access Journals (Sweden)

    Vincent Ricchiuti

    2018-05-01

    Full Text Available Indirect immunofluorescence (IIF is considered by the American College of Rheumatology (ACR and the international consensus on ANA patterns (ICAP the gold standard for the screening of anti-nuclear antibodies (ANA. As conventional IIF is labor intensive, time-consuming, subjective, and poorly standardized, there have been ongoing efforts to improve the standardization of reagents and to develop automated platforms for assay incubation, microscopy, and evaluation. In this study, the workflow and performance characteristics of a fully automated ANA IIF system (Sprinter XL, EUROPattern Suite, IFA 40: HEp-20-10 cells were compared to a manual approach using visual microscopy with a filter device for single-well titration and to technologist reading. The Sprinter/EUROPattern system enabled the processing of large daily workload cohorts in less than 8 h and the reduction of labor hands-on time by more than 4 h. Regarding the discrimination of positive from negative samples, the overall agreement of the EUROPattern software with technologist reading was higher (95.6% than when compared to the current method (89.4%. Moreover, the software was consistent with technologist reading in 80.6–97.5% of patterns and 71.0–93.8% of titers. In conclusion, the Sprinter/EUROPattern system provides substantial labor savings and good concordance with technologist ANA IIF microscopy, thus increasing standardization, laboratory efficiency, and removing subjectivity.

  18. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A. [School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lead, J.R., E-mail: jlead@mailbox.sc.edu [School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia 29208, SC (United States); Baalousha, M., E-mail: mbaalous@mailbox.sc.edu [Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia 29208, SC (United States)

    2015-12-15

    Improved detection and characterization of nanomaterials (NMs) in complex environmental media requires the development of novel sampling approaches to improve the detection limit to be close to environmentally realistic concentrations. Transmission electron microscopy (TEM) is an indispensable metrological tool in nanotechnology and environmental nanoscience due to its high spatial resolution and analytical capabilities when coupled to spectroscopic techniques. However, these capabilities are hampered by the conventional sample preparation methods, which suffer from low NM recovery. The current work presents a validated, fully quantitative sampling technique for TEM that overcomes conventional sample preparation shortcomings, and thus enables the use of TEM for measurement of particle number concentration and their detection in complex media at environmentally realistic concentrations. This sampling method is based on ultracentrifugation of NMs from suspension onto a poly-L-lysine (PLL) functionalized TEM grid, using active deposition (by ultracentrifugation) and retention (by PLL interactions with NM surface) of NMs on the substrate, enabling fully quantitative analysis. Similar analysis with AFM was satisfactory in simple media but the lack of chemical-selectivity of AFM limits its applicability for the detection of NMs in complex environmental samples. The sampling approach was validated using both citrate- and PVP-coated AuNMs in pure water, which demonstrated an even distribution of NM on the TEM grid and high NM recovery (80–100%) at environmentally relevant NM concentrations (ca. 0.20–100 μg L{sup −1}). The applicability of the sampling method to complex environmental samples was demonstrated by the quantification of particle number concentration of AuNMs in EPA soft water (with and without Suwannee River fulvic acid) and lake water. This sample preparation approach is also applicable to other types of NMs with some modifications (e.g. centrifugation

  19. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media

    International Nuclear Information System (INIS)

    Prasad, A.; Lead, J.R.; Baalousha, M.

    2015-01-01

    Improved detection and characterization of nanomaterials (NMs) in complex environmental media requires the development of novel sampling approaches to improve the detection limit to be close to environmentally realistic concentrations. Transmission electron microscopy (TEM) is an indispensable metrological tool in nanotechnology and environmental nanoscience due to its high spatial resolution and analytical capabilities when coupled to spectroscopic techniques. However, these capabilities are hampered by the conventional sample preparation methods, which suffer from low NM recovery. The current work presents a validated, fully quantitative sampling technique for TEM that overcomes conventional sample preparation shortcomings, and thus enables the use of TEM for measurement of particle number concentration and their detection in complex media at environmentally realistic concentrations. This sampling method is based on ultracentrifugation of NMs from suspension onto a poly-L-lysine (PLL) functionalized TEM grid, using active deposition (by ultracentrifugation) and retention (by PLL interactions with NM surface) of NMs on the substrate, enabling fully quantitative analysis. Similar analysis with AFM was satisfactory in simple media but the lack of chemical-selectivity of AFM limits its applicability for the detection of NMs in complex environmental samples. The sampling approach was validated using both citrate- and PVP-coated AuNMs in pure water, which demonstrated an even distribution of NM on the TEM grid and high NM recovery (80–100%) at environmentally relevant NM concentrations (ca. 0.20–100 μg L"−"1). The applicability of the sampling method to complex environmental samples was demonstrated by the quantification of particle number concentration of AuNMs in EPA soft water (with and without Suwannee River fulvic acid) and lake water. This sample preparation approach is also applicable to other types of NMs with some modifications (e.g. centrifugation

  20. Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin.

    Science.gov (United States)

    Dillinger, Stefan; Németh, Attila

    2016-01-01

    The nuclear distribution of eu- and heterochromatin is nonrandom, heterogeneous, and dynamic, which is mirrored by specific spatiotemporal arrangements of histone posttranslational modifications (PTMs). Here we describe a semiautomated method for the analysis of histone PTM localization patterns within the mammalian nucleus using confocal laser scanning microscope images of fixed, immunofluorescence stained cells as data source. The ImageJ-based process includes the segmentation of the nucleus, furthermore measurements of total fluorescence intensities, the heterogeneity of the staining, and the frequency of the brightest pixels in the region of interest (ROI). In the presented image analysis pipeline, the perinucleolar chromatin is selected as primary ROI, and the nuclear periphery as secondary ROI.

  1. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season.

    Science.gov (United States)

    Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J

    2011-07-01

    To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.

  2. Dynamic phase microscopy, a new method to detect viable and killed spores and to estimate the heterogeneity of spore populations

    Science.gov (United States)

    Tychinsky, Vladimir P.; Mulyukin, Andrey L.; Lisovskii, Vitalii V.; Nikolaev, Yury A.; Kretushev, Aleksander V.; Vyshenskaya, Tatyana V.; Suzina, Nataliya E.; Duda, Vitalii I.; El-Registan, Galina I.

    One of the challenging tasks in monitoring studies is to estimate heterogeneity of microbial populations by the physiological state and potential viability of individual cells, especially with regard of their ability to withstand various environmental assaults. Previously, we described some approaches based on electron microscopy methods to discriminate vegetative, dormant, and dead cells in both aged microbial cultures and environmental samples, including permafrost. We propose to extend the arsenal of microscopy methods for monitoring studies by a new non-invasive and informative method - dynamic phase microscopy (DPM). The substantial advantage of DPM is that it gives quantitative (digitized) data of undestroyed (living) microscopic objects, exemplified in our work by Bacillus licheniformis spores. Using DPM made it possible to record interference images of objects (spores) and to produce picture of their "phase thickness" (PT) that is the optical path difference in nm. Thus, it was demonstrated the remarkable difference in the PT of spores at different physiological states: dormant, germinating, and heat-killed spores had PT values of 80, 40-50, and 20 nm, respectively. The other found criterion to distinguish between spores was the PT fluctuations. In contrast to dormant and killed spores, the PT of germinating spores oscillated with amplitude of up to 7 nm, with typical frequencies of 1.3 and 3.4 Hz. A combination of the recorded PT values and PT fluctuations gave a key to detect viable and dead cells. Under the conditions that did not support germination (the lack of nutrients), we were able to follow the response of a single dormant spore and a spore population to heating from 25 °C to 70 °C. Thus, a very small temperature change (from 40 °C to 42 °C) under conditions non-favorable for germination, caused a drastic decrease in the spores' PT; the second drop in the PT values was observed during heating from 60 °C to 70 °C. These changes were

  3. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy

    Science.gov (United States)

    Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying

    2015-01-01

    AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718

  4. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  5. Automated detection of fluorescent cells in in-resin fluorescence sections for integrated light and electron microscopy.

    Science.gov (United States)

    Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M

    2018-04-26

    Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  6. Confocal Cornea Microscopy Detects Involvement of Corneal Nerve Fibers in a Patient with Light-Chain Amyloid Neuropathy Caused by Multiple Myeloma: A Case Report

    Directory of Open Access Journals (Sweden)

    Dietrich Sturm

    2016-06-01

    Full Text Available Changes in the subbasal corneal plexus detected by confocal cornea microscopy (CCM have been described for various types of neuropathy. An involvement of these nerves within light-chain (AL amyloid neuropathy (a rare cause of polyneuropathy has never been shown. Here, we report on a case of a patient suffering from neuropathy caused by AL amyloidosis and underlying multiple myeloma. Small-fiber damage was detected by CCM.

  7. Immunofluorescence in multiple tissues utilizing serum from a patient affected by systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Piotr Brzezinski

    2012-01-01

    Full Text Available Introduction: Lupus erythematosus is a chronic, inflammatory autoimmune disease that can affect multiple organs. Lupus can affect many parts of the body, especially in systemic lupus erythematosus (SLE; affected tissues may include the joints, skin, kidneys, heart, lungs, blood vessels, and brain. Case report: A 46-year-old female presented with pruritus, photosensitivity and edema of the cheeks of about 2 years duration, and was evaluated by a dermatologist. On examination, multiple telangiectasias were present on the cheeks, with erythema, edema and a malar rash observed. A review of systems documented breathing difficulty and pleuitic pain, joint pain and joint edema, photosensitivity, cardiac dysrhythmia, and periodic pain in the back close to the kidneys. Methods: Skin biopsies for hematoxylin and eosin testing, as well for direct and indirect immunofluorescence were performed, in addition to multiple diagnostic blood tests, chest radiography and directed immunologic testing. Results: The blood testing showed elevated C-reactive protein. Direct and indirect immunofluorescence testing utilizing monkey esophagus, mouse and pig heart and kidney, normal human eyelid skin and veal brain demonstrated strong reactivity to several components of smooth muscle, nerves, blood vessels, skin basement membrane zone and sweat gland ducts and skin meibomian glands. Anti-endomysium antibodies were detected as well as others, especially using FITC conjugated Complement/C1q, FITC conjugated anti-human immunoglobulin IgG and FITC conjugated anti-human fibrinogen. Conclusions: We conclude that both direct and indirect immunofluorescence using several substrates can unveil previously undocumented autoantibodies in multiple organs in lupus erythematosus, and that these findings could be utilized to complement existing diagnostic testing for this disorder.

  8. Inmunofluorescencia con Crithidia luciliae para la detección de anticuerpos anti-ADN: Imágenes atípicas y su relación con enfermedad de Chagas y leishmaniasis Immunofluorescence assay with Crithidia luciliae for the detection of anti-DNA antibodies: Atypical images and their relationship with Chagas’ disease and leishmaniasis

    Directory of Open Access Journals (Sweden)

    Gloria Griemberg

    2006-02-01

    Full Text Available Los anticuerpos anti-ADN nativo pueden detectarse por inmunofluorescencia indirecta con Crithidia luciliae, observándose tinción fluorescente anular del kinetoplasto que contiene ADN de doble cadena. En algunos casos pueden observarse imágenes fluorescentes en flagelo, membrana y corpúsculo basal, consideradas atípicas. Como C. luciliae pertenece a la familia Trypanosomatidae, que incluye patógenos para el hombre como Trypanosoma cruzi y Leishmaniaspp., se consideró que las imágenes atípicas pudieran deberse a reacciones cruzadas. Se realizaron estudios serológicos para Chagas a 105 muestras provenientes de zona endémica (Corrientes y no endémica (Buenos Aires para T. cruzi que presentaban imágenes atípicas con C. luciliae. La serología para Chagas resultó positiva en el 64.7% de las muestras de Buenos Aires y en el 78.3% de las de Corrientes que presentaban frente a C. luciliae imagen conjunta de membrana y flagelo. No presentaron la imagen conjunta ninguna de las muestras de dadores de sangre normales, ni de pacientes con enfermedades del tejido conectivo, excepto dos con lupus que también eran chagásicos. Todas las muestras de pacientes chagásicos analizadas frente a C. luciliae presentaron la imagen conjunta. Se estudiaron también 46 muestras de pacientes con leishmaniasis, 28 de ellos coinfectados con T. cruzi. La imagen conjunta se observó en el 88.0% de las muestras de leishmaniásicos y en el 78.5% de las de coinfectados. Los resultados sugieren que C. luciliae podría ser un sustrato alternativo, económico y de bajo riesgo para el diagnóstico serológico de enfermedad de Chagas, aunque no discrimina la infección por Leishmania. El hallazgo de la imagen conjunta en la detección de anti-ADN nativo señala la conveniencia de realizar en esos pacientes, estudios clínicos y de laboratorio para enfermedad de Chagas y leishmaniasis.Anti-native DNA antibodies can be detected by indirect immunofluorescence assay with

  9. Confocal fluorescence microscopy in a murine model of microdissection testicular sperm extraction to improve sperm retrieval.

    Science.gov (United States)

    Smith, Ryan P; Lowe, Greg J; Kavoussi, Parviz K; Steers, William D; Costabile, Raymond A; Herr, John C; Shetty, Jagathpala; Lysiak, Jeffrey J

    2012-05-01

    Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules. After establishing the feasibility of fiberoptic confocal fluorescent microscopy to identify antibody labeled sperm in vivo C57/B6 mice underwent intraperitoneal injection of busulfan to induce azoospermia. During spermatogenesis reestablishment at approximately 16 weeks the mice were anesthetized and the testes were delivered through a low midline incision. Fluorescein isothiocyanate labeled antibody to intra-acrosomal protein Hs-14 was injected retrograde into a single murine rete testis. The testes were imaged in vivo with fiberoptic confocal fluorescent microscopy and sperm foci were detected. The respective seminiferous tubules were excised and squash prepared for immunofluorescence microscopy. Sperm foci were identified in the testis injected with fluorescently tagged antibody by in vivo fiberoptic confocal fluorescence microscopy. The contralateral control testis of each mouse showed no specific signal. Immunofluorescence microscopy of the excised tubules provided morphological confirmation of the presence of labeled sperm with an absence in controls. Findings were consistent in the feasibility portion of the study and in the busulfan model of nonobstructive azoospermia. Fiberoptic confocal fluorescent microscopy was feasible during microdissection testicular sperm extraction in an azoospermic mouse model to identify fluorescently labeled sperm in vivo. Translation to the clinical setting could decrease operative time and improve the sperm harvest rate. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Original Approach for Automated Quantification of Antinuclear Autoantibodies by Indirect Immunofluorescence

    Directory of Open Access Journals (Sweden)

    Daniel Bertin

    2013-01-01

    Full Text Available Introduction. Indirect immunofluorescence (IIF is the gold standard method for the detection of antinuclear antibodies (ANA which are essential markers for the diagnosis of systemic autoimmune rheumatic diseases. For the discrimination of positive and negative samples, we propose here an original approach named Immunofluorescence for Computed Antinuclear antibody Rational Evaluation (ICARE based on the calculation of a fluorescence index (FI. Methods. We made comparison between FI and visual evaluations on 237 consecutive samples and on a cohort of 25 patients with SLE. Results. We obtained very good technical performance of FI (95% sensitivity, 98% specificity, and a kappa of 0.92, even in a subgroup of weakly positive samples. A significant correlation between quantification of FI and IIF ANA titers was found (Spearman's ρ=0.80, P<0.0001. Clinical performance of ICARE was validated on a cohort of patients with SLE corroborating the fact that FI could represent an attractive alternative for the evaluation of antibody titer. Conclusion. Our results represent a major step for automated quantification of IIF ANA, opening attractive perspectives such as rapid sample screening and laboratory standardization.

  11. Application of a sepharose bead immunofluorescence assay and a solid-phase radioimmunoassay to the bovine leukemia virus system

    International Nuclear Information System (INIS)

    Fiebach, H.; Uckert, W.; Micheel, B.

    1982-01-01

    Several fluorescence assays with bovine leukemia virus (BLV) conjugated to activated Sepharose 4B were used for the detection of BLV and anti-BLV antibodies. These tests were compared with a solid-phase radioimmunoassay and found to be in the same sensitivity range. Sepharose bead immunofluorescence assay and solid-phase radioimmunoassay can be applied to the diagnosis of BLV infection in cattle. (author)

  12. Application of a sepharose bead immunofluorescence assay and a solid-phase radioimmunoassay to the bovine leukemia virus system

    Energy Technology Data Exchange (ETDEWEB)

    Fiebach, H.; Uckert, W.; Micheel, B. (Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Krebsforschung)

    Several fluorescence assays with bovine leukemia virus (BLV) conjugated to activated Sepharose 4B were used for the detection of BLV and anti-BLV antibodies. These tests were compared with a solid-phase radioimmunoassay and found to be in the same sensitivity range. Sepharose bead immunofluorescence assay and solid-phase radioimmunoassay can be applied to the diagnosis of BLV infection in cattle.

  13. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul; Woo, Jongwook; Goodman, Matthew; Huffman, Todd; Choe, Yoonsuck

    2013-01-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy

  14. Validate or falsify: Lessons learned from a microscopy method claimed to be useful for detecting Borrelia and Babesia organisms in human blood.

    Science.gov (United States)

    Aase, Audun; Hajdusek, Ondrej; Øines, Øivind; Quarsten, Hanne; Wilhelmsson, Peter; Herstad, Tove K; Kjelland, Vivian; Sima, Radek; Jalovecka, Marie; Lindgren, Per-Eric; Aaberge, Ingeborg S

    2016-01-01

    A modified microscopy protocol (the LM-method) was used to demonstrate what was interpreted as Borrelia spirochetes and later also Babesia sp., in peripheral blood from patients. The method gained much publicity, but was not validated prior to publication, which became the purpose of this study using appropriate scientific methodology, including a control group. Blood from 21 patients previously interpreted as positive for Borrelia and/or Babesia infection by the LM-method and 41 healthy controls without known history of tick bite were collected, blinded and analysed for these pathogens by microscopy in two laboratories by the LM-method and conventional method, respectively, by PCR methods in five laboratories and by serology in one laboratory. Microscopy by the LM-method identified structures claimed to be Borrelia- and/or Babesia in 66% of the blood samples of the patient group and in 85% in the healthy control group. Microscopy by the conventional method for Babesia only did not identify Babesia in any samples. PCR analysis detected Borrelia DNA in one sample of the patient group and in eight samples of the control group; whereas Babesia DNA was not detected in any of the blood samples using molecular methods. The structures interpreted as Borrelia and Babesia by the LM-method could not be verified by PCR. The method was, thus, falsified. This study underlines the importance of doing proper test validation before new or modified assays are introduced.

  15. IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis.

    Science.gov (United States)

    Rodríguez-Arribas, Mario; Pizarro-Estrella, Elisa; Gómez-Sánchez, Rubén; Yakhine-Diop, S M S; Gragera-Hidalgo, Antonio; Cristo, Alejandro; Bravo-San Pedro, Jose M; González-Polo, Rosa A; Fuentes, José M

    2016-04-01

    Most laboratories interested in autophagy use different imaging software for managing and analyzing heterogeneous parameters in immunofluorescence experiments (e.g., LC3-puncta quantification and determination of the number and size of lysosomes). One solution would be software that works on a user's laptop or workstation that can access all image settings and provide quick and easy-to-use analysis of data. Thus, we have designed and implemented an application called IFDOTMETER, which can run on all major operating systems because it has been programmed using JAVA (Sun Microsystems). Briefly, IFDOTMETER software has been created to quantify a variety of biological hallmarks, including mitochondrial morphology and nuclear condensation. The program interface is intuitive and user-friendly, making it useful for users not familiar with computer handling. By setting previously defined parameters, the software can automatically analyze a large number of images without the supervision of the researcher. Once analysis is complete, the results are stored in a spreadsheet. Using software for high-throughput cell image analysis offers researchers the possibility of performing comprehensive and precise analysis of a high number of images in an automated manner, making this routine task easier. © 2015 Society for Laboratory Automation and Screening.

  16. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells

    KAUST Repository

    Castagnetti, Francesco

    2017-06-13

    Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and agerelated muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration.

  17. Systemic lupus erythematosus and the Crithidia luciliae immunofluorescent test

    International Nuclear Information System (INIS)

    Whitehouse, I.J.; Fehr, K.; Wagenhaeuser, F.J.

    1983-01-01

    A comparative study of the Crithidia luciliae immunofluorescence (CL-IF) assay and an adapted Farr radioimmunoassay (RIA), for the measurement of antibodies to native deoxyribonucleic acid, was performed using forty-two sera from patients with systematic lupus erythematosus (SLE) and another forty-two from patients with rheumatoid arthritis. Both assays were specific for SLE. The CL-IF assay was statistically significantly more sensitive than the adapted RIA assay. This significant difference was due to greater sensitivity of the CL-IF assay in the cases of sera from patients with SLE of slight activity. Additional advantages of the CL-IF assay were its use to classify the immunoglobulin types of the antibodies (most commonly IgG or IgM) and to measure complement-fixing antibodies to native deoxyribonucleic acid; it affords a simple method of selecting and following SLE patients at risk of developing severe renal disease. These advantages plus the simplicity and inexpensiveness of the CL-IF assay make it a useful tool, especially for use in small laboratories, for the study of antibodies to native deoxyribonucleic acid in patients with SLE. (orig.) [de

  18. [Standardized indirect immunofluorescence. Differentiation of mitochondrial, microsomal and ribosomal antibodies].

    Science.gov (United States)

    Storch, W

    1977-02-15

    By an extensive standardisation of the indirect immunofluorescence for the demonstration espeially of mitochondrial antibodies we succeeded in recognizing atypical fluorescence patterns and in describing their exact localisation. On the basis of absorption studies with mitochondrias, microsomas and ribosomas by comparative observation of sections of liver, stomach and kidneys of rats the preferred sort of reaction and the intensity of fluorescence of antibodies against mitochondria, microsomas and ribosomas were empirically established. Antimitochondrial antibodies react above all with the parietal cells of the stomach and the distal epithelia of the tubulus of the kidney. Antibodies against microsomas of liver and kidney are characterized by a brilliant diffuse cytoplasmatic fluorescence of the hepatocytes and by a comparatively weaker fluorescence of exclusively proximal tubuli of the kidneys of rats. Antibodies against ribosomas lead to a fluorescence especially of the main cells of the stomach. The differentiation of several cytoplasmatic antibodies is among others of interest for the diagnosis of certain autoimmune diseases. Although there are numerous still unclear findings and "overlap" phenomena the existence of high titre antibodies against mitochondrias speaks for a primarily biliary cirrhosis or a pseudo-LE-syndrome, the existence of antibodies against microsomas of kidney and liver of rats for a special form of a chronically active hepatitis and the existence of the very rare antibodies against ribosomas for an active lupus erythematodes disseminatus.

  19. Detection of UV-induced pigmentary and epidermal changes over time using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Middelkamp-Hup, Maritza A.; Park, H.-Y.; Lee, Jin; Gilchrest, Barbara A.; Gonzalez, Salvador

    2006-01-01

    In vivo reflectance confocal microscopy (RCM) provides high-resolution optical sections of the skin in its native state, without needing to fix or section the tissue. Melanin provides an excellent contrast for RCM, giving a bright signal in the confocal images. The pigmented guinea-pig is a common

  20. Comparison of LED and Conventional Fluorescence Microscopy for Detection of Acid Fast Bacilli in a Low-Incidence Setting

    Science.gov (United States)

    Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina

    2011-01-01

    Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622

  1. Comparison of LED and conventional fluorescence microscopy for detection of acid fast bacilli in a low-incidence setting.

    Directory of Open Access Journals (Sweden)

    Jessica Minion

    Full Text Available INTRODUCTION: Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. METHODS: In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS. Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. RESULTS: There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. CONCLUSIONS: Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used.

  2. Imaging-in-flow: digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms

    NARCIS (Netherlands)

    Zetsche, E.-M.; El Mallahi, A.; Dubois, F.; Yourassowsky, C.; Kromkamp, J.C.; Meysman, F.J.R.

    2014-01-01

    Traditional taxonomic identification of planktonic organisms is based on light microscopy, which is both time-consuming and tedious. In response, novel ways of automated (machine) identification, such as flow cytometry, have been investigated over the last two decades. To improve the taxonomic

  3. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method

    Science.gov (United States)

    Tabassum, Shahina; Al-Mahtab, Mamun; Nessa, Afzalun; Jahan, Munira; Shamim Kabir, Chowdhury Mohammad; Kamal, Mohammad; Cesar Aguilar, Julio

    2015-01-01

    Background Hepatitis B virus (HBV) infection has many faces. Precore and core promoter mutants resemble inactive carrier status. The identification of hepatitis B core antigen (HBcAg) in hepatocytes may have variable clinical significance. The present study was undertaken to detect HBcAg in chronic hepatitis B (CHB) patients and to assess the efficacy of detection system by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP). Materials and methods The study was done in 70 chronic HBV-infected patients. Out of 70 patients, eight (11.4%) were hepatitis B e antigen (HBeAg) positive and 62 (88.57%) were HBeAg negative. Hepatitis B core antigen was detected by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP) methods in liver tissue. Results All HBeAg positive patients expressed HBcAg by both IIF and IIP methods. Out of 62 patients with HBeAg-negative CHB, HBcAg was detected by IIF in 55 (88.7%) patients and by IIP in 51 (82.26%) patients. A positive relation among viral load and HBcAg detection was also found. This was more evident in the case of HBeAg negative patients and showed a positive relation with HBV DNA levels. Conclusion Hepatitis B core antigen can be detected using the IIF from formalin fixed paraffin block preparation and also by IIP method. This seems to reflect the magnitudes of HBV replication in CHB. How to cite this article Raihan R, Tabassum S, Al-Mahtab M, Nessa A, Jahan M, Kabir CMS, Kamal M, Aguilar JC. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method. Euroasian J Hepato-Gastroenterol 2015;5(1):7-10. PMID:29201677

  4. Detection of viable and viable nonculturable Vibrio cholerae O1 through cultures and immunofluorescence in the Tucumán rivers, Argentina Detecção de Vibrio cholerae O1 viável e viável não cultivável, através de técnicas de cultivo e imunofluorescência nos rios de Tucumán, Argentina

    Directory of Open Access Journals (Sweden)

    Olga Aulet

    2007-08-01

    Full Text Available Vibrio cholerae has been sporadically isolated from rivers in Tucumán, Argentina, since the outbreak in 1991. The aim of this study was to determine the environmental reservoir of the bacterium in these rivers, assessing the presence of Vibrio cholerae non-O1 and O1 (the latter both in its viable culturable and non culturable state and its relationship to environmental physicochemical variables. 18 water samplings were collected in the Salí River (in Canal Norte and Banda and the Lules River between 2003 and 2005. Physical-chemical measurements (pH, water temperature, electrical conductivity and dissolved oxygen were examined. Vibrio cholerae was investigated with conventional culture methods and with Direct Immunofluorescence (DFA-VNC in order to detect viable non culturable organisms. All isolated microorganisms corresponded to Vibrio cholerae non-O1 and non-O139 (Lules 26%, Canal Norte 33% and Banda 41%. The majority was found during spring and summer and correlated with temperature and pH. Non culturable Vibrio cholerae O1 was detected year round in 38 of the 54 water samples analyzed. Application of the Pearson correlation coefficient revealed that there was no relationship between positive immunofluorescence results and environmental physicochemical parameters. Genes coding for somatic antigen O1 were confirmed in all DFA-VNC-positive samples, whereas the virulence-associated ctxA and tcpA genes were confirmed in 24 samples.Vibrio cholerae tem sido isolado esporadicamente nos rios da Província de Tucumán, Argentina, desde outubro de 1991. O objetivo deste estudo foi localizar os reservatórios nestes rios, identificar a presença de Vibrio cholerae O1 (em estado cultivável e não cultivável e relacionar a presença desta bactéria com as variações físico-químicos da água. Foram coletadas dezoito amostras de água do rio Salí (nas localidades de Canal Norte e Banda e do rio Lules, entre 2003 e 2005. Estas foram submetidas a an

  5. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  6. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    Science.gov (United States)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  7. Variability in the recognition of distinctive immunofluorescence patterns in different brands of HEp-2 cell slides

    Directory of Open Access Journals (Sweden)

    Alessandra Dellavance

    2013-06-01

    Full Text Available INTRODUCTION: Indirect immunofluorescence on HEp-2 cells is considered the gold standard for the detection of autoantibodies against cellular antigens. However, the culture conditions, cell fixation and permeabilization processes interfere directly in the preservation and spatial distribution of antigens. Therefore, one can assume that certain peculiarities in the processing of cellular substrate may affect the recognition of indirect immunofluorescence patterns associated with several autoantibodies. OBJECTIVE: To evaluate a panel of serum samples representing nuclear, nucleolar, cytoplasmic, mitotic apparatus, and chromosome plate patterns on HEp-2 cell substrates from different suppliers. MATERIALS AND METHODS: Seven blinded observers, independent from the three selected reference centers, evaluated 17 samples yielding different nuclear, nucleolar, cytoplasmic and mitotic apparatus patterns on HEp-2 cell slides from eight different brands. The slides were coded to maintain confidentiality of both brands and participating centers. RESULTS: The 17 HEp-2 cell patterns were identified on most substrates. Nonetheless, some slides showed deficit in the expression of several patterns: nuclear coarse speckled/U1-ribonucleoprotein associated with antibodies against RNP (U1RNP, centromeric protein F (CENP-F, proliferating cell nuclear antigen (PCNA, cytoplasmic fine speckled associated with anti-Jo-1 antibodies (histidyl synthetase, nuclear mitotic apparatus protein 1 (NuMA-1 and nuclear mitotic apparatus protein 2 (NuMA-2. CONCLUSION: Despite the overall good quality of the assessed HEp-2 substrates, there was considerable inconsistency in results among different commercial substrates. The variations may be due to the evaluated batches, hence generalizations cannot be made as to the respective brands. It is recommended that each new batch or new brand be tested with a panel of reference sera representing the various patterns.

  8. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium.

    Science.gov (United States)

    Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan

    2017-06-01

    Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep

  9. Correlation between dipstick urinalysis and urine sediment microscopy in detecting haematuria among children with sickle cell anaemia in steady state in Ilorin, Nigeria.

    Science.gov (United States)

    Anigilaje, Emmanuel Ademola; Adedoyin, Olanrewaju Timothy

    2013-01-01

    Haematuria is one of the clinical manifestations of sickle cell nephropathy. Although dipstick urinalysis detects haemoglobin and by extension haematuria; it does not confirm haematuria. Urine sediment microscopy confirms haematuria and constitutes a non-invasive "renal biopsy". The need to correlate dipstick urinalysis and urine sediment microscopy findings becomes important because of the cheapness, quickness and simplicity of the former procedure. Dipstick urinalysis and urine sediment microscopy were carried (both on first contact and a month after) among consecutive steady state sickle cell anaemia children attending sickle cell clinic at the University of Ilorin Teaching Hospital between October 2004 and July 2005. A total of 75 sickle cell anemia children aged between 1-17 years met the inclusion criteria. Haematuria was found in 12 children (16.0%) and persistent haematuria in 10 children 13.3%. Age and gender did not have significant relationship with haematuria both at first contact (p values 0.087 and 0.654 respectively) and at follow-up (p values 0.075 and 0.630 respectively). Eumorphic haematuria was confirmed in all the children with persistent haematuria with Pearson correlation +0.623 and significant p value of 0.000. The study has revealed a direct significant correlation for haematuria detected on dipstick urinalysis and at urine sediment microscopy. It may therefore be inferred that dipstick urinalysis is an easy and readily available tool for the screening of haematuria among children with sickle cell anaemia and should therefore be done routinely at the sickle cell clinics.

  10. Taeniasis caused by Taenia saginata in Gianyar town and Taenia solium in Karangasem villages of Bali, Indonesia, 2011-2016: How to detect tapeworm carriers, anamnesis or microscopy?

    Science.gov (United States)

    Swastika, Kadek; Wandra, Toni; Dharmawan, Nyoman Sadra; Sudarmaja, I Made; Saragih, John Master; Diarthini, Luh Putu Eka; Ariwati, Luh; Damayanti, Putu Ayu Asri; Laksemi, Dewa Ayu Agus Sri; Kapti, Nengah; Sutisna, Putu; Yanagida, Tetsuya; Ito, Akira

    2017-10-01

    From January 2011 until September 2016, screening of taeniasis carriers was carried out in a town in Gianyar District (Taenia saginata) and in villages which consisted of several Banjars (the smallest community units) on the eastern slope of Mt. Agung, Karangasem District (Taenia solium) in Bali, Indonesia. Fecal samples from all community members who chose to participate were examined microscopically for detection of taeniid eggs each person completedwith a questionnaire to determine if they had seen whitish, noodle-like proglottids (anamnesis) in their feces. Members with egg positive feces, and those with anamnesis, were treated with niclosamide (Yomesan ® , Bayer). A total of 39T. saginata tapeworm carriers were confirmed in Gianyar after deworming based on anamnesis (100%, 39/39). Only three of them (3/39, 7.7%) and 3/173 participants (1.7%) were identified by fecal microscopy. In contrast, 20T. solium carriers including one migrated to Gianyar were confirmed from 12 patients with eggs in their feces and from another 8 persons of 12 persons suspected to be infected due anamnesis only (8/12,66.7%) in Karangasem. The majority of carriers (12/20, 60.0%) identified by microscopy included 4 (33.3%) and 8 (66.7%) carriers confirmed microscopically with and without anamnesis, respectively. The prevalence rate was 12/1090 (1.10%) of participants. The results indicate that anamnesis is reliable for detection of T. saginata carriers, whereas it is not so reliable for detection of T. solium taeniasis (8/12, 66.7%) and that microscopy is more informative than anamnesis for T. solium. Eggs were detected more frequently in T. solium carriers (4/12, 33.3%) than in patients infected with T. saginata (3/39, 7.7%). T. solium carriers have so far been confirmed from nine of 13 Banjars examined in Karangasem. This study reveals that anamnesis is highly useful for screening of T. saginata carriers, whereas microscopy is a more valuable tool for detection of T. solium carriers

  11. Detection of fatigue fracture in pearlitic flake graphite cast iron with the help of scanning and transmission electron microscopy

    International Nuclear Information System (INIS)

    Dunger, B.; Hunger, J.

    1976-01-01

    To prove the existence of the characteristic features of fatigue fracture in a pearlitic flake graphite cast iron, its fracture surface topography revealed by scanning electron microscopy has been compared with that of a pearlitic steel, the fractures having been caused by static tensile and by cyclic bending tests. The characteristic features of fatigue fracture were visible in the pearlitic matrix of the steel and of the flake graphite cast iron as well. These features differ characteristically from the lamellar structure of the pearlite, particularly after etching the surface area of the fractures. The graphite structures as viewed on the electron scanning and the electron transmission microscope are described. (orig.) [de

  12. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    Science.gov (United States)

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  13. Two-Photon Probes for Lysosomes and Mitochondria: Simultaneous Detection of Lysosomes and Mitochondria in Live Tissues by Dual-Color Two-Photon Microscopy Imaging.

    Science.gov (United States)

    Lim, Chang Su; Hong, Seung Taek; Ryu, Seong Shick; Kang, Dong Eun; Cho, Bong Rae

    2015-10-01

    Novel two-photon (TP) probes were developed for lysosomes (PLT-yellow) and mitochondria (BMT-blue and PMT-yellow). These probes emitted strong TP-excited fluorescence in cells at widely separated wavelength regions and displayed high organelle selectivity, good cell permeability, low cytotoxicity, and pH insensitivity. The BMT-blue and PLT-yellow probes could be utilized to detect lysosomes and mitochondria simultaneously in live tissues by using dual-color two-photon microscopy, with minimum interference from each other. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Diagnosing Polyparasitism in a High-Prevalence Setting in Beira, Mozambique: Detection of Intestinal Parasites in Fecal Samples by Microscopy and Real-Time PCR.

    Directory of Open Access Journals (Sweden)

    Lynn Meurs

    2017-01-01

    Full Text Available Many different intestinal parasite species can co-occur in the same population. However, classic diagnostic tools can only frame a particular group of intestinal parasite species. Hence, one or two tests do not suffice to provide a complete picture of infecting parasite species in a given population. The present study investigated intestinal parasitic infections in Beira, Mozambique, i.e. in the informal settlement of Inhamudima. Diagnostic accuracy of five classical microscopy techniques and real-time PCR for the detection of a broad spectrum of parasites was compared.A cross-sectional population-based survey was performed. One stool sample per participant (n = 303 was examined by direct smear, formal-ether concentration (FEC, Kato smear, Baermann method, coproculture and real-time PCR. We found that virtually all people (96% harbored at least one helminth, and that almost half (49% harbored three helminths or more. Remarkably, Strongyloides stercoralis infections were widespread with a prevalence of 48%, and Ancylostoma spp. prevalence was higher than that of Necator americanus (25% versus 15%, the hookworm species that is often assumed to prevail in East-Africa. Among the microscopic techniques, FEC was able to detect the broadest spectrum of parasite species. However, FEC also missed a considerable number of infections, notably S. stercoralis, Schistosoma mansoni and G. intestinalis. PCR outperformed microscopy in terms of sensitivity and range of parasite species detected.We showed intestinal parasites-especially helminths-to be omnipresent in Inhamudima, Beira. However, it is a challenge to achieve high diagnostic sensitivity for all species. Classical techniques such as FEC are useful for the detection of some intestinal helminth species, but they lack sensitivity for other parasite species. PCR can detect intestinal parasites more accurately but is generally not feasible in resource-poor settings, at least not in peripheral labs. Hence

  15. Diagnosing Polyparasitism in a High-Prevalence Setting in Beira, Mozambique: Detection of Intestinal Parasites in Fecal Samples by Microscopy and Real-Time PCR.

    Science.gov (United States)

    Meurs, Lynn; Polderman, Anton M; Vinkeles Melchers, Natalie V S; Brienen, Eric A T; Verweij, Jaco J; Groosjohan, Bernhard; Mendes, Felisberto; Mechendura, Manito; Hepp, Dagmar H; Langenberg, Marijke C C; Edelenbosch, Rosanne; Polman, Katja; van Lieshout, Lisette

    2017-01-01

    Many different intestinal parasite species can co-occur in the same population. However, classic diagnostic tools can only frame a particular group of intestinal parasite species. Hence, one or two tests do not suffice to provide a complete picture of infecting parasite species in a given population. The present study investigated intestinal parasitic infections in Beira, Mozambique, i.e. in the informal settlement of Inhamudima. Diagnostic accuracy of five classical microscopy techniques and real-time PCR for the detection of a broad spectrum of parasites was compared. A cross-sectional population-based survey was performed. One stool sample per participant (n = 303) was examined by direct smear, formal-ether concentration (FEC), Kato smear, Baermann method, coproculture and real-time PCR. We found that virtually all people (96%) harbored at least one helminth, and that almost half (49%) harbored three helminths or more. Remarkably, Strongyloides stercoralis infections were widespread with a prevalence of 48%, and Ancylostoma spp. prevalence was higher than that of Necator americanus (25% versus 15%), the hookworm species that is often assumed to prevail in East-Africa. Among the microscopic techniques, FEC was able to detect the broadest spectrum of parasite species. However, FEC also missed a considerable number of infections, notably S. stercoralis, Schistosoma mansoni and G. intestinalis. PCR outperformed microscopy in terms of sensitivity and range of parasite species detected. We showed intestinal parasites-especially helminths-to be omnipresent in Inhamudima, Beira. However, it is a challenge to achieve high diagnostic sensitivity for all species. Classical techniques such as FEC are useful for the detection of some intestinal helminth species, but they lack sensitivity for other parasite species. PCR can detect intestinal parasites more accurately but is generally not feasible in resource-poor settings, at least not in peripheral labs. Hence, there is a

  16. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues.

    Science.gov (United States)

    Kajimura, Junko; Ito, Reiko; Manley, Nancy R; Hale, Laura P

    2016-02-01

    Performance of immunofluorescence staining on archival formalin-fixed paraffin-embedded human tissues is generally not considered to be feasible, primarily due to problems with tissue quality and autofluorescence. We report the development and application of procedures that allowed for the study of a unique archive of thymus tissues derived from autopsies of individuals exposed to atomic bomb radiation in Hiroshima, Japan in 1945. Multiple independent treatments were used to minimize autofluorescence and maximize fluorescent antibody signals. Treatments with NH3/EtOH and Sudan Black B were particularly useful in decreasing autofluorescent moieties present in the tissue. Deconvolution microscopy was used to further enhance the signal-to-noise ratios. Together, these techniques provide high-quality single- and dual-color fluorescent images with low background and high contrast from paraffin blocks of thymus tissue that were prepared up to 60 years ago. The resulting high-quality images allow the application of a variety of image analyses to thymus tissues that previously were not accessible. Whereas the procedures presented remain to be tested for other tissue types and archival conditions, the approach described may facilitate greater utilization of older paraffin block archives for modern immunofluorescence studies. © 2016 The Histochemical Society.

  17. Clus-DoC: a combined cluster detection and colocalization analysis for single-molecule localization microscopy data

    Science.gov (United States)

    Pageon, Sophie V.; Nicovich, Philip R.; Mollazade, Mahdie; Tabarin, Thibault; Gaus, Katharina

    2016-01-01

    Advances in fluorescence microscopy are providing increasing evidence that the spatial organization of proteins in cell membranes may facilitate signal initiation and integration for appropriate cellular responses. Our understanding of how changes in spatial organization are linked to function has been hampered by the inability to directly measure signaling activity or protein association at the level of individual proteins in intact cells. Here we solve this measurement challenge by developing Clus-DoC, an analysis strategy that quantifies both the spatial distribution of a protein and its colocalization status. We apply this approach to the triggering of the T-cell receptor during T-cell activation, as well as to the functionality of focal adhesions in fibroblasts, thereby demonstrating an experimental and analytical workflow that can be used to quantify signaling activity and protein colocalization at the level of individual proteins. PMID:27582387

  18. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry.

    Science.gov (United States)

    Mascuch, Samantha J; Moree, Wilna J; Hsu, Cheng-Chih; Turner, Gregory G; Cheng, Tina L; Blehert, David S; Kilpatrick, A Marm; Frick, Winifred F; Meehan, Michael J; Dorrestein, Pieter C; Gerwick, Lena

    2015-01-01

    White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.

  19. Flexible digital signal processing architecture for narrowband and spread-spectrum lock-in detection in multiphoton microscopy and time-resolved spectroscopy.

    Science.gov (United States)

    Wilson, Jesse W; Park, Jong Kang; Warren, Warren S; Fischer, Martin C

    2015-03-01

    The lock-in amplifier is a critical component in many different types of experiments, because of its ability to reduce spurious or environmental noise components by restricting detection to a single frequency and phase. One example application is pump-probe microscopy, a multiphoton technique that leverages excited-state dynamics for imaging contrast. With this application in mind, we present here the design and implementation of a high-speed lock-in amplifier on the field-programmable gate array (FPGA) coprocessor of a data acquisition board. The most important advantage is the inherent ability to filter signals based on more complex modulation patterns. As an example, we use the flexibility of the FPGA approach to enable a novel pump-probe detection scheme based on spread-spectrum communications techniques.

  20. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    Science.gov (United States)

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

  1. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry

    Science.gov (United States)

    Mascuch, Samantha J.; Moree, Wilna J.; Cheng-Chih Hsu, Cheng-Chih; Turner, Gregory G.; Cheng, Tina L.; Blehert, David S.; Kilpatrick, A. Marm; Frick, Winifred F.; Meehan, Michael J.; Dorrestein, Pieter C.; Gerwick, Lena

    2015-01-01

    White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.

  2. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Samantha J Mascuch

    Full Text Available White-nose syndrome (WNS caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.

  3. Detection of amyloid in abdominal fat pad aspirates in early amyloidosis: Role of electron microscopy and Congo red stained cell block sections

    Directory of Open Access Journals (Sweden)

    Sumana Devata

    2011-01-01

    Full Text Available Background: Fine-needle aspiration biopsy (FNA of the abdominal fat pad is a minimally invasive procedure to demonstrate tissue deposits of amyloid. However, protocols to evaluate amyloid in fat pad aspirates are not standardized, especially for detecting scant amyloid in early disease. Materials and Methods: We studied abdominal fat pad aspirates from 33 randomly selected patients in whom subsequent tissue biopsy, autopsy, and/or medical history for confirmation of amyloidosis (AL were also available. All these cases were suspected to have early AL, but had negative results on abdominal fat pad aspirates evaluated by polarizing microscopy of Congo Red stained sections (CRPM. The results with CRPM between four reviewers were compared in 12 cases for studying inter observer reproducibility. 24 cases were also evaluated by ultrastructural study with electron microscopy (EM. Results: Nine of thirty-three (27% cases reported negative by polarizing microscopy had amyloidosis. Reanalysis of 12 mixed positive-negative cases, showed considerable inter-observer variability with frequent lack of agreement between four observers by CRPM alone (Cohen′s Kappa index of 0.1, 95% CI -0.1 to 0.36. EM showed amyloid in the walls of small blood vessels in fibroadipose tissue in four out of nine cases (44% with amyloidosis. Conclusion: In addition to poor inter-observer reproducibility, CRPM alone in cases with scant amyloid led to frequent false negative results (9 out of 9, 100%. For improved detection of AL, routine ultrastructural evaluation with EM of fat pad aspirates by evaluating at least 15 small blood vessels in the aspirated fibroadipose tissue is recommended. Given the high false negative rate for CRPM alone in early disease, routine reflex evaluation with EM is highly recommended to avert the invasive option of biopsying various organs in cases with high clinical suspicion for AL.

  4. Detection of Silver and TiO2 Nanoparticles using Light Scatter by Flow Cytometry and Darkfield Microscopy

    Science.gov (United States)

    Titanium Dioxide (Ti02) and Silver (Ag) nanoparticles are used in many domestic applications, including sunscreens and paints. Evaluation of the potential hazard of manmade nanomaterials has been hampered by a limited ability to detect and measure nanoparticles in cells. In the p...

  5. Detection of latex allergens by immunoelectron microscopy in ambient air (PM10) in Oslo, Norway (1997-2003).

    Science.gov (United States)

    Namork, Ellen; Kurup, Viswanath P; Aasvang, Gunn Marit; Johansen, Bjørn V

    2004-11-01

    The authors collected ambient air along two highways in Oslo to investigate the annual variations in particulate matter (PM10) and the presence of latex as an outdoor allergen. PMI, was monitored for a period of five years, during which time the use of studded winter tires was reduced. The presence of latex and of common aeroallergens was examined directly on the collection filters with immunoelectron microscopy visualized in a scanning electron microscope. The annual variation in PM10 was similar over the five years of sampling, with increased mass concentrations in winter. Statistical analysis indicated no major effect from the change to nonstudded tires. The most important factors influencing the PM10 concentration were meteorological parameters like wind and rain. Immnunolabeling of the filters showed latex as an outdoor allergen that adhered to carbon aggregates from vehicle emission. The results also indicated cross-reactive epitopes among the common allergens investigated, which for sensitized subjects may add to the risk of developing latex allergy.

  6. Sensitivity of direct immunofluorescence in oral diseases. Study of 125 cases.

    Science.gov (United States)

    Sano, Susana Mariela; Quarracino, María Cecilia; Aguas, Silvia Cristina; González, Ernestina Jesús; Harada, Laura; Krupitzki, Hugo; Mordoh, Ana

    2008-05-01

    Direct immunofluorescence (DIF) is widely used for the diagnosis of bullous diseases and other autoimmune pathologies such as oral lichen planus. There is no evidence in the literature on how the following variants influence the detection rate of DIF: intraoral site chosen for the biopsy, perilesional locus or distant site from the clinical lesion, number of biopsies and instrument used. to determine if the following variants influenced the sensitivity (detection rate): intraoral site chosen for the biopsy, perilesional or distant site from the clinical lesion, number of biopsies and instrument used (punch or scalpel). A retrospective study was done at the Cátedra de Patología y Clínica Bucodental II at the Facultad de Odontología, Universidad de Buenos Aires; 136 clinical medical histories were revised for the period March 2000 - March 2005 corresponding to patients with clinical diagnosis of OLP and bullous diseases (vulgar pemphigus, bullous pemphigoid and cicatricial pemphigoid). DIF detection rate was 65.8% in patients with OLP, 66.7% in cicatricial pemphigoid patients, in bullous pemphigoid 55.6%, in pemphigus vulgaris 100%, and in those cases in which certain diagnosis could not be obtained, the DIF positivity rate was 45.5% (Pearson chi(2) (4)= 21.5398 Pr= 0.000). There was no statistically significant difference between the different sites of biopsy (Fisher exact test: 0.825). DIF detection rate in perilesional biopsies was 66.1% and in those distant from the site of clinical lesion was 64.7% (Pearson chi(2) v1)= 0.0073 Pr= 0.932. When the number of biopsies were incremented, DIF detection rate also incremented (Pearson chi(2) = 8.7247 Pr= 0.003). The biopsies taken with punch had a higher detection rate than those taken with scalpel (39.1% versus 71.7%) (Pearson chi(2) = 49.0522 Pr= 0.000). While not statistically significant, the tendency outlined in this study indicates there are intraoral regions in which the detection rate of the DIF technique is

  7. Mechanical detection and mode shape imaging of vibrational modes of micro and nanomechanical resonators by dynamic force microscopy

    International Nuclear Information System (INIS)

    Paulo, A S; GarcIa-Sanchez, D; Perez-Murano, F; Bachtold, A; Black, J; Bokor, J; Esplandiu, M J; Aguasca, A

    2008-01-01

    We describe a method based on the use of higher order bending modes of the cantilever of a dynamic force microscope to characterize vibrations of micro and nanomechanical resonators at arbitrarily large resonance frequencies. Our method consists on using a particular cantilever eigenmode for standard feedback control in amplitude modulation operation while another mode is used for detecting and imaging the resonator vibration. In addition, the resonating sample device is driven at or near its resonance frequency with a signal modulated in amplitude at a frequency that matches the resonance of the cantilever eigenmode used for vibration detection. In consequence, this cantilever mode is excited with an amplitude proportional to the resonator vibration, which is detected with an external lock-in amplifier. We show two different application examples of this method. In the first one, acoustic wave vibrations of a film bulk acoustic resonator around 1.6 GHz are imaged. In the second example, bending modes of carbon nanotube resonators up to 3.1 GHz are characterized. In both cases, the method provides subnanometer-scale sensitivity and the capability of providing otherwise inaccessible information about mechanical resonance frequencies, vibration amplitude values and mode shapes

  8. An Unsupervised kNN Method to Systematically Detect Changes in Protein Localization in High-Throughput Microscopy Images.

    Directory of Open Access Journals (Sweden)

    Alex Xijie Lu

    Full Text Available Despite the importance of characterizing genes that exhibit subcellular localization changes between conditions in proteome-wide imaging experiments, many recent studies still rely upon manual evaluation to assess the results of high-throughput imaging experiments. We describe and demonstrate an unsupervised k-nearest neighbours method for the detection of localization changes. Compared to previous classification-based supervised change detection methods, our method is much simpler and faster, and operates directly on the feature space to overcome limitations in needing to manually curate training sets that may not generalize well between screens. In addition, the output of our method is flexible in its utility, generating both a quantitatively ranked list of localization changes that permit user-defined cut-offs, and a vector for each gene describing feature-wise direction and magnitude of localization changes. We demonstrate that our method is effective at the detection of localization changes using the Δrpd3 perturbation in Saccharomyces cerevisiae, where we capture 71.4% of previously known changes within the top 10% of ranked genes, and find at least four new localization changes within the top 1% of ranked genes. The results of our analysis indicate that simple unsupervised methods may be able to identify localization changes in images without laborious manual image labelling steps.

  9. An Unsupervised kNN Method to Systematically Detect Changes in Protein Localization in High-Throughput Microscopy Images.

    Science.gov (United States)

    Lu, Alex Xijie; Moses, Alan M

    2016-01-01

    Despite the importance of characterizing genes that exhibit subcellular localization changes between conditions in proteome-wide imaging experiments, many recent studies still rely upon manual evaluation to assess the results of high-throughput imaging experiments. We describe and demonstrate an unsupervised k-nearest neighbours method for the detection of localization changes. Compared to previous classification-based supervised change detection methods, our method is much simpler and faster, and operates directly on the feature space to overcome limitations in needing to manually curate training sets that may not generalize well between screens. In addition, the output of our method is flexible in its utility, generating both a quantitatively ranked list of localization changes that permit user-defined cut-offs, and a vector for each gene describing feature-wise direction and magnitude of localization changes. We demonstrate that our method is effective at the detection of localization changes using the Δrpd3 perturbation in Saccharomyces cerevisiae, where we capture 71.4% of previously known changes within the top 10% of ranked genes, and find at least four new localization changes within the top 1% of ranked genes. The results of our analysis indicate that simple unsupervised methods may be able to identify localization changes in images without laborious manual image labelling steps.

  10. Antibodies to UV irradiated DNA: the monitoring of DNA damage by ELISA and indirect immunofluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wani, A A; Gibson-D' Ambrosio, R E; D' Ambrosio, S M [Ohio State Univ., Columbus (USA). Dept. of Radiology

    1984-10-01

    The enzyme-linked immunosorbant assay (ELISA) was modified to (1) characterize antibodies raised in rabbits against UV-irradiated single-stranded DNA (UVssDNA) complexed with methylated BSA and (2) directly detect pyrimidine dimers in irradiated DNA. The antisera specifically bound to UVssDNA, UVpoly(dT) and to a limited extent to UVdsDNA and UVpoly(dC). Fifty per cent of the maximum antibody binding was observed at a 1-5000 dilution against UVssDNA. Binding to ssDNA and poly(dT) was observed only at much higher concentrations of antibody, whereas no binding to double stranded DNA (dsDNA) was observed. The extent of binding of the antibody was dependent on the UV dose to DNA and the concentration of antigen immobilized on the plate. The ability of various irradiated molecules, DNA, homopolymers and linkers to act as inhibitors of antibody binding establishes that the antigenic determinants are mainly thymine homodimers with lower affinity for cytosine dimers. Potential usefulness of the antibodies to directly quantitate pyrimidine dimers in cells exposed to UV radiation was determined by indirect immunofluorescence. Flow cytometric analysis of immunostained human lymphocytes irradiated with 254 nm radiation indicated that greater than 50% of the population had significantly higher fluorescent intensity than unirradiated cells.

  11. Correlation of antinuclear antibody immunofluorescence patterns with immune profile using line immunoassay in the Indian scenario

    Directory of Open Access Journals (Sweden)

    Sebastian Wendy

    2010-07-01

    Full Text Available Background: Immunity status, individual response to disease and types of antibodies produced are well known to vary from person to person, place to place and probably from population to population. A broad spectrum of specific auto antibodies that have so far been associated with specific rheumatic diseases, as noted in Western literature, has been well taken as a reference standard all over the world. There is neither research work nor any data correlating the auto antibodies and their antinuclear antibody (ANA patterns with the immunoprofile in the Indian population to date. Aims: To understand a definite association between ANA patterns and specific antibodies in the serum in the Indian study population and to document similarities / differences with the West. Settings and Design: This prospective and retrospective double blind study was undertaken on the South Indian population referred for ANA testing by Indirect Immunofluorescence method and by immunoline methods. Materials and Methods: Serum samples of patients from a random South Indian population who sought medical help for rheumatic disease were subjected for ANA testing by indirect immunofluorescence (IIF method and line immunoassay during the study period of 27 months. Serum samples were processed in dilution of 1:100 using HEp - 2010 / liver biochip (Monkey (EUROIMMUN AG. The serum samples which were further processed for line immunoassay were treated in 1:100 dilution on nylon strips coated with recombinant and purified antigens as discrete lines with plastic backing (EUROIMMUN AG coated with antigens nRNP / Sm, Sm, SSA, Ro-52, SSB, Scl-70, PM-Scl, PCNA, Jo-1, CENP-B, dsDNA, nucleosomes, histones, ribosomal protein-P, anti-mitochondrial antibodies (AMA-M2 along with a control band. The analysis was done by comparing the intensity of the reaction with positive control line by image analysis. Results: The antinuclear antibody indirect immunofluorescence (ANA - IIF patterns obtained

  12. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy.

    Directory of Open Access Journals (Sweden)

    Maryam Ferdousi

    Full Text Available There are multiple neurological complications of cancer and its treatment. This study assessed the utility of the novel non-invasive ophthalmic technique of corneal confocal microscopy in identifying neuropathy in patients with upper gastrointestinal cancer before and after platinum based chemotherapy. In this study, 21 subjects with upper gastrointestinal (oesophageal or gastric cancer and 21 healthy control subjects underwent assessment of neuropathy using the neuropathy disability score, quantitative sensory testing for vibration perception threshold, warm and cold sensation thresholds, cold and heat induced pain thresholds, nerve conduction studies and corneal confocal microscopy. Patients with gastro-oesophageal cancer had higher heat induced pain (P = 0.04 and warm sensation (P = 0.03 thresholds with a significantly reduced sural sensory (P<0.01 and peroneal motor (P<0.01 nerve conduction velocity, corneal nerve fibre density (CNFD, nerve branch density (CNBD and nerve fibre length (CNFL (P<0.0001. Furthermore, CNFD correlated significantly with the time from presentation with symptoms to commencing chemotherapy (r = -0.54, P = 0.02, and CNFL (r = -0.8, P<0.0001 and CNBD (r = 0.63, P = 0.003 were related to the severity of lymph node involvement. After the 3rd cycle of chemotherapy, there was no change in any measure of neuropathy, except for a significant increase in CNFL (P = 0.003. Corneal confocal microscopy detects a small fibre neuropathy in this cohort of patients with upper gastrointestinal cancer, which was related to disease severity. Furthermore, the increase in CNFL after the chemotherapy may indicate nerve regeneration.

  13. Validation of commercially available sphingosine kinase 2 antibodies for use in immunoblotting, immunoprecipitation and immunofluorescence [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Heidi A. Neubauer

    2017-03-01

    Full Text Available Sphingosine kinase 2 (SK2 is a ubiquitously expressed lipid kinase that has important, albeit complex and poorly understood, roles in regulating cell survival and cell death. In addition to being able to promote cell cycle arrest and apoptosis under certain conditions, it has recently been shown that SK2 can promote neoplastic transformation and tumorigenesis in vivo. Therefore, well validated and reliable tools are required to study and better understand the true functions of SK2. Here, we compare two commercially available SK2 antibodies: a rabbit polyclonal antibody from Proteintech that recognizes amino acids 266-618 of human SK2a, and a rabbit polyclonal antibody from ECM Biosciences that recognizes amino acids 36-52 of human SK2a. We examine the performance of these antibodies for use in immunoblotting, immunoprecipitation and immunofluorescence staining of endogenous SK2, using human HEK293 and HeLa cell lines, as well as mouse embryonic fibroblasts (MEFs. Furthermore, we assess the specificity of these antibodies to the target protein through the use of siRNA-mediated SK2 knockdown and SK2 knockout (Sphk2-/- MEFs. Our results demonstrate that the Proteintech anti-SK2 antibody reproducibly displayed superior sensitivity and selectivity towards SK2 in immunoblot analyses, while the ECM Biosciences anti-SK2 antibody was reproducibly superior for SK2 immunoprecipitation and detection by immunofluorescence staining. Notably, both antibodies produced non-specific bands and staining in the MEFs, which was not observed with the human cell lines. Therefore, we conclude that the Proteintech SK2 antibody is a valuable reagent for use in immunoblot analyses, and the ECM Biosciences SK2 antibody is a useful tool for SK2 immunoprecipitation and immunofluorescence staining, at least in the human cell lines employed in this study.

  14. A sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual fibers in samples from patients with duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Chantal Beekman

    Full Text Available Duchenne muscular dystrophy (DMD is characterized by the absence or reduced levels of dystrophin expression on the inner surface of the sarcolemmal membrane of muscle fibers. Clinical development of therapeutic approaches aiming to increase dystrophin levels requires sensitive and reproducible measurement of differences in dystrophin expression in muscle biopsies of treated patients with DMD. This, however, poses a technical challenge due to intra- and inter-donor variance in the occurrence of revertant fibers and low trace dystrophin expression throughout the biopsies. We have developed an immunofluorescence and semi-automated image analysis method that measures the sarcolemmal dystrophin intensity per individual fiber for the entire fiber population in a muscle biopsy. Cross-sections of muscle co-stained for dystrophin and spectrin have been imaged by confocal microscopy, and image analysis was performed using Definiens software. Dystrophin intensity has been measured in the sarcolemmal mask of spectrin for each individual muscle fiber and multiple membrane intensity parameters (mean, maximum, quantiles per fiber were calculated. A histogram can depict the distribution of dystrophin intensities for the fiber population in the biopsy. This method was tested by measuring dystrophin in DMD, Becker muscular dystrophy, and healthy muscle samples. Analysis of duplicate or quadruplicate sections of DMD biopsies on the same or multiple days, by different operators, or using different antibodies, was shown to be objective and reproducible (inter-assay precision, CV 2-17% and intra-assay precision, CV 2-10%. Moreover, the method was sufficiently sensitive to detect consistently small differences in dystrophin between two biopsies from a patient with DMD before and after treatment with an investigational compound.

  15. A molecular method for typing Herpes simplex virus isolates as an alternative to immunofluorescence methods

    Directory of Open Access Journals (Sweden)

    Abraham A

    2009-01-01

    Full Text Available Background: Typing of Herpes simplex virus (HSV isolates is required to identify the virus isolated in culture. The methods available for this include antigen detection by immunofluorescence (IF assays and polymerase chain reaction (PCR. This study was undertaken to standardize a molecular method for typing of HSV and compare it with a commercial IF reagent for typing. Objectives: To compare a molecular method for typing HSV isolates with a monoclonal antibody (MAb based IF test. Study design : This cross-sectional study utilized four reference strains and 42 HSV isolates obtained from patients between September 1998 and September 2004. These were subjected to testing using an MAb-based IF test and a PCR that detects the polymerase ( pol gene of HSV isolates. Results: The observed agreement of the MAb IF assay with the pol PCR was 95.7%. Fifty four point eight percent (23/42 of isolates tested by IF typing were found to be HSV-1, 40.5% (17/42 were HSV-2, and two (4.8% were untypable using the MAb IF assay. The two untypable isolates were found to be HSV-2 using the pol PCR. In addition, the cost per PCR test for typing is estimated to be around Rs 1,300 (USD 30, whereas the cost per MAb IF test is about Rs 1,500 (USD 35 including all overheads (reagents, instruments, personnel time, and consumables. Conclusion: The pol PCR is a cheaper and more easily reproducible method for typing HSV isolates as compared to the IF test. It could replace the IF-based method for routine typing of HSV isolates as availability of PCR machines (thermal cyclers is now more widespread than fluorescence microscopes in a country like India.

  16. Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi; Zheng, Wei; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore); Stephen Hsu, Chin-Ying [Department of Dentistry, Faculty of Dentistry, National University of Singapore and National University Health System, Singapore 119083 (Singapore)

    2015-01-19

    We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm{sup −1}) and high-wavenumber (2500–3800 cm{sup −1}) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. The quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.

  17. The use of fluorescence microscopy and image analysis for rapid detection of non-producing revertant cells of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002.

    Science.gov (United States)

    Schulze, Katja; Lang, Imke; Enke, Heike; Grohme, Diana; Frohme, Marcus

    2015-04-17

    Ethanol production via genetically engineered cyanobacteria is a promising solution for the production of biofuels. Through the introduction of a pyruvate decarboxylase and alcohol dehydrogenase direct ethanol production becomes possible within the cells. However, during cultivation genetic instability can lead to mutations and thus loss of ethanol production. Cells then revert back to the wild type phenotype. A method for a rapid and simple detection of these non-producing revertant cells in an ethanol producing cell population is an important quality control measure in order to predict genetic stability and the longevity of a producing culture. Several comparable cultivation experiments revealed a difference in the pigmentation for non-producing and producing cells: the accessory pigment phycocyanin (PC) is reduced in case of the ethanol producer, resulting in a yellowish appearance of the culture. Microarray and western blot studies of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002 confirmed this PC reduction on the level of RNA and protein. Based on these findings we developed a method for fluorescence microscopy in order to distinguish producing and non-producing cells with respect to their pigmentation phenotype. By applying a specific filter set the emitted fluorescence of a producer cell with a reduced PC content appeared orange. The emitted fluorescence of a non-producing cell with a wt pigmentation phenotype was detected in red, and dead cells in green. In an automated process multiple images of each sample were taken and analyzed with a plugin for the image analysis software ImageJ to identify dead (green), non-producing (red) and producing (orange) cells. The results of the presented validation experiments revealed a good identification with 98 % red cells in the wt sample and 90 % orange cells in the producer sample. The detected wt pigmentation phenotype (red cells) in the producer sample were either not fully induced yet (in 48 h induced

  18. Comparative performance of PCR-based assay versus microscopy and culture for the direct detection of Mycobacterium tuberculosis in clinical respiratory specimens in Lebanon.

    Science.gov (United States)

    Araj, G F; Talhouk, R S; Itani, L Y; Jaber, W; Jamaleddine, G W

    2000-09-01

    American University of Beirut Medical Center, Lebanon. To assess the performance of a polymerase chain reaction (PCR) using primers that flank 542 bp within IS6110 in Mycobacterium tuberculosis (TB) vs. microscopy and BACTEC culture, in the diagnosis of tuberculosis. A total of 82 clinical respiratory pulmonary specimens and 73 samples from BACTEC vials were tested by the three methods. Of 24 smear-positive culture-positive (SP-CP) and 11 smear-negative culture-positive (SN-CP) TB specimens, PCR detected 83% and 64%, respectively. Among 17 specimens yielding mycobacteria other than tuberculosis (MOTT), the PCR was positive in 33% SP-CP and 14% SN-CP specimens. Among the 73 BACTEC vials, PCR was positive in 36 of 38 (95%) yielding culture-positive TB, and in one of 20 (5%) yielding culture positive MOTT. None of the 30 smear-negative culture-negative (SN-CN) clinical specimens and 15 of the CN vials were positive by PCR. The overall sensitivity of PCR was 77% and 95% for TB detection in respiratory specimens and BACTEC vials, respectively, and the specificity was 94% in both. Because a substantial number of TB cases are missed, especially in SN-CP specimens, a PCR-based assay utilizing these primers cannot be used reliably, alone, in clinical laboratory diagnosis of mycobacterial respiratory infections.

  19. Quantitative method for the detection and localization of quantum-limited events from radionuclides in cells and tissue sections by computer-enhanced video microscopy

    International Nuclear Information System (INIS)

    Pressman, N.J.; Frost, J.K.; Gupta, P.K.; Showers, R.L.; Gill, G.W.; Cook, D.L.; Frost, J.K. Jr.; Traub, R.K.

    1987-01-01

    Cellular dynamics often involve extremely low concentrations of biologically active substances, which can be radiolabeled and detected, localized and quantitated by autoradiography. The latter may require exposures from a few days to many months. The objective of this research was to demonstrate the feasibility of reducing this long period of data collection by one to two orders of magnitude, while maintaining or improving the spatial resolution and localization in tissues and the quantitative characteristics inherent in autoradiography. A mathematical model describing the complete system was generated using energy partition calculations to estimate photon production via scintillant per H3 beta particle emission and to estimate the subsequent photon capture based upon imaging system parameters and microscope geometry. Calculations showed that, typically, a single tritium beta particle produces a maximum of 5.8 X 10(3) photons. A photon-limited camera and microscope imaging system were selected and optimized in conjunction with a specially developed physical scintillation model. Results showed that the number of detected photoevents increases monotonically with both signal integration time and, independently, with the concentration of the radionuclide. Consequently, this work demonstrates that video microscopy imaging methods can spatially and temporally quantify very low concentrations of radiolabeled substances and can reduce data acquisition times

  20. In situ detection of the Zn(2+) release process of ZnO NPs in tumour cells by confocal laser scanning fluorescence microscopy.

    Science.gov (United States)

    Song, Wenshuang; Tang, Xiaoling; Li, Yong; Sun, Yang; Kong, Jilie; Qingguang, Ren

    2016-08-01

    The use of zinc oxide (ZnO) nanoparticles (NPs) for cancer is not yet clear for human clinical applications, which is primarily due to the lack of a better understanding of the action mechanisms and cellular consequences of the direct exposure of cells to these NPs. In this work, the authors have selected zinquin ethyl ester, a Zn(2+)-specific fluorescent molecular probe, to efficiently differentiate ZnO NPs and Zn(2+), and combined with confocal laser scanning microscopy (CLSM) to in situ study the Zn(2+) release process of ZnO NPs in cancer cell system through detecting the change of Zn(2+) level over time. During the experiments, the authors have designed the test group ZnO-2 in addition to assess the influence of a long-term storage on the characteristics of ZnO NPs in aqueous solution, and the Zn(2+) release process of ZnO NPs in cancer cell system. After three-month storage at room temperature, the release process became earlier and faster, which was consistent with previous results of transmission electron microscope, UV-Vis and PL spectra. It is a good detection method that combination of Zn(2+)-specific fluorescent molecular probe and CLSM, which will be helpful for ZnO NPs using in clinical research.

  1. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms.

    Science.gov (United States)

    Lausch, V; Hermann, P; Laue, M; Bannert, N

    2014-06-01

    Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.

  2. Variations in Cell Surfaces of Estrogen Treated Breast Cancer Cells Detected by A Combined Instrument for Far-Field and Near-Field Microscopy

    Directory of Open Access Journals (Sweden)

    P. Perner

    2002-01-01

    Full Text Available The response of single breast cancer cells (cell line T‐47D to 17β‐estradiol (E2 under different concentrations was studied by using an instrument that allows to combine far‐field light microscopy with high resolution scanning near‐field (AFM/SNOM microscopy on the same cell. Different concentrations of E2 induce clearly different effects as well on cellular shape (in classical bright‐field imaging as on surface topography (atomic force imaging and absorbance (near‐field light transmission imaging. The differences range from a polygonal shape at zero via a roughly spherical shape at physiological up to a spindle‐like shape at un‐physiologically high concentrations. The surface topography of untreated control cells was found to be regular and smooth with small overall height modulations. At physiological E2 concentrations the surfaces became increasingly jagged as detected by an increase in membrane height. After application of the un‐physiological high E2 concentration the cell surface structures appeared to be smoother again with an irregular fine structure. The general behaviour of dose dependent differences was also found in the near‐field light transmission images. In order to quantify the treatment effects, line scans through the normalised topography images were drawn and a rate of co‐localisation between high topography and high transmission areas was calculated. The cell biological aspects of these observations are, so far, not studied in detail but measurements on single cells offer new perspectives to be empirically used in diagnosis and therapy control of breast cancers.

  3. Application of serum anticardiolipin antibody (ACA) determination with ELISA for detection of intra-uterine growth retardation (IUGR)

    International Nuclear Information System (INIS)

    Chen Wen; Zhong Jianhui; Shen Junnan

    2005-01-01

    Objective: To explore the interrelationship between presence of serum ACA and development of IUGR. Methods: Serum ACA contents were examined with ELISA in 5330 apparently normal pregnant women. The placentae in 16 pregnancies with IUGR and positive ACA were examined with immunofluorescence microscopy. Results: Among the 5330 pregnant women there were 144 with positive ACA (2.70%), in whom there were 22 IUGR cases (22/144, 15.28% ). The rate of IUGR in the remaining ACA negative women was only 1.77% (92/5186), the difference being very significant (P<0.01 ). ACA IgG was positive in 5 of the IUGR neonates, All the placental tissues examined with immunofluorescence microscopy showed positive immunoglobulin fluorescence antibody and complement discoloration. Conclusion: Positive ACA is one of the causative factors of development of IUGR and determination of ACA in pregnant women was helpful for early detection of IUGR. (authors)

  4. Collaborative study on the effect of grinding on the detection of bones from processed animal proteins in feed by light microscopy.

    Science.gov (United States)

    Veys, Pascal; Planchon, Viviane; Colbert, Ruairi; Cruz, Clara; Frick, Geneviève; Ioannou, Ioannis; Marchis, Daniela; Nordkvist, Erik; Paradies-Severin, Inge; Pohto, Arja; Weiss, Roland; Baeten, Vincent; Berben, Gilbert

    2017-08-01

    Bone fragments are essential structures for the detection of processed animal proteins (PAPs) in feed by light microscopy for official controls according to Annex VI of European Union Regulation EC/152/2009. The preparation of samples submitted for analysis requires a grinding step to make them suitable for microscopic slide preparation and observation. However, there are no technical guidelines set down for this step despite the fact that it can lead to an increase in bone numbers due to fragmentation. This was demonstrated by an in-house study carried out by the Irish National Reference Laboratory (NRL) for animal protein detection. The present collaborative study investigated the possible effects of three different grinding conditions on the final result for a feed adulterated with 0.05 and 0.01% (w/w) of PAP. The microscopic analysis either combined or not with an Alizarin Red staining was carried out by 10 different laboratories. The results demonstrated that although a large variation in the numbers of bone fragments was noted, five of the six different grinding/staining combinations applied at two levels of PAP adulteration did not significantly (at p = 0.05) differ from one another. The only exception occurred when grinding the feed containing 0.05% of PAP with a rotor mill equipped with a 0.5-mm sieve and combined with a staining which resulted in a greater number of bone fragments by forced fragmentation. Overall, the impact of the grinding/staining combinations on the final results was shown to be negligible when considering the regulatory limit of detection (LOD) requirement for the method and the current rules of implementation of the light microscopic method. From a total of 180 analyses carried out on the feed matrix containing 0.05% of PAP no false-negative result was observed, and at a level of 0.01% PAP only 10 false-negative results occurred.

  5. Detection of antinuclear antibodies by solid-phase immunoassays and immunofluorescence analysis

    DEFF Research Database (Denmark)

    Fenger, Mogens; Wiik, Allan; Høier-Madsen, Mimi

    2004-01-01

    -established rheumatic disorders, the newly developed EIA in which HEp-2 extracts were included had sensitivities and specificities comparable to or in some instances better than the IFA. The assays without HEp-2 extracts included had significantly lower sensitivities and specificities. In the outpatient population, up...... to 51% of patients had positive ANA tests that did not correspond to classic ANA-associated disease. However, in the assays in which the HEp-2 extracts were not included, the false-positive rate was ... and was mostly extracts included had a low sensitivity but a high specificity, particularly in nonselected populations. The choice of test is highly dependent on the clinical setting in which...

  6. Detection of Bim and Puma in mouse hair follicles using immunofluorescence and TUNEL assay double staining

    Czech Academy of Sciences Publication Activity Database

    Veselá, Barbora; Matalová, Eva

    2015-01-01

    Roč. 90, č. 8 (2015), s. 587-593 ISSN 1052-0295 Grant - others:GA ČR(CZ) GAP502/12/1285 Program:GA Institutional support: RVO:67985904 Keywords : apoptosis * Bim * development Subject RIV: ED - Physiology Impact factor: 1.078, year: 2015

  7. Detection of the thraustochytrid protist Ulkenia visurgensis in a hydroid, using immunofluorescence

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.

    to November 1986 By treating the samples with antiserum prepared against this organism and conjugated with FITC stain, the protist was regularly found to occur in association with a hydroid Several cells of the organism were observed in the coelenteron...

  8. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    Science.gov (United States)

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  9. Orthogonal identification of gunshot residue with complementary detection principles of voltammetry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy: sample, screen, and confirm.

    Science.gov (United States)

    O'Mahony, Aoife M; Samek, Izabela A; Sattayasamitsathit, Sirilak; Wang, Joseph

    2014-08-19

    Field-deployable voltammetric screening coupled with complementary laboratory-based analysis to confirm the presence of gunshot residue (GSR) from the hands of a subject who has handled, loaded, or discharged a firearm is described. This protocol implements the orthogonal identification of the presence of GSR utilizing square-wave stripping voltammetry (SWSV) as a rapid screening tool along with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to confirm the presence of the characteristic morphology and metal composition of GSR particles. This is achieved through the judicious modification of the working electrode of a carbon screen-printed electrode (CSPE) with carbon tape (used in SEM analysis) to fix and retain a sample. A comparison between a subject who has handled and loaded a firearm and a subject who has had no contact with GSR shows the significant variations in voltammetric signals and the presence or absence of GSR-consistent particles and constituent metals. This initial electrochemical screening has no effect on the integrity of the metallic particles, and SEM/EDX analysis conducted prior to and postvoltammetry show no differences in analytical output. The carbon tape is instrumental in retaining the GSR sample after electrochemical analysis, supported by comparison with orthogonal detection at a bare CSPE. This protocol shows great promise as a two-tier detection system for the presence of GSR from the hands of a subject, whereby initial screening can be conducted rapidly onsite by minimally trained operators; confirmation can follow at the same substrate to substantiate the voltammetric results.

  10. A new approach for the detection of charged particles by photographic recording systems - first applications in corpuscular physics, biology and electron microscopy

    International Nuclear Information System (INIS)

    Rechenmann, R.V.; Wittendorp, E.; Senger, B.

    1977-01-01

    The activation procedure consists not only of the introduction of more or less sophisticated treatments in the development phase, but also of the setting up of a specific ionographic methodology which will be described. The working hypotheses which led to the formulation of the so-called activation treatments will be outlined, notably the concept of the stable sub-latent image. The consequences of the activation procedure in ionography will be recalled, e.g. the drastic increase of the signal/noise ratio ranging from 1.5 to 20 and more, as well as the remarkable stability of the fog. The interest of the activation procedure for corpuscular physics as well as for the life sciences will be illustrated by first applications in autoradiography, electron microscopy and microdosimetry. As far as the autoradiographic methods are concerned, the considerable increase in efficiency and in resolution results in a drastic decrease of the exposure time or/and of the quantity of tracer elements applied, as well as in the possibility to carry out studies implying the detection of very small amounts of activity. The activation of the latent image can also be applied to exposed electron microscope photographic plates in order to allow a non-destructive observation of very sensitive specimens (macromolecules, etc.). In the field of corpuscular physics, the activation treatments led to the detection of secondary events distributed along α tracks of medium and low energy recorded in nuclear emulsions. An analytical study confirmed the hypotheses that the largest part of these protuberances are tracks of electrons and H-nuclei ejected by the incoming particle. These investigations are intended to lead to a description of the ionizing track pattern as well as to the interpretation of experimentally determined fluctuations of the track width. (author)

  11. BLIND TRIALS EVALUATING IN VITRO INFECTIVITY OF CRYPTOSPORIDIUM PARVUM OOCYSTS USING CELL CULTURE IMMUNOFLUORESCENCE

    Science.gov (United States)

    An optimized cell culture-immunofluorescence (IFA) procedure, using the HCT-8 cell line, was evaluated in 'blind' trials to determine the sensitivity and reproducibility for measuring infectivity of flow cytometry prepared inocula of C. parvum oocysts. In separate trials, suspens...

  12. Performance of an ELISA and Indirect Immunofluorescence Assay in Serological Diagnosis of Zoonotic Cutaneous Leishmaniasis in Iran

    Directory of Open Access Journals (Sweden)

    Bahador Sarkari

    2014-01-01

    Full Text Available Serological assays have been extensively evaluated for diagnosis of visceral leishmaniasis (VL and considered as a routine method for diagnosis of VL while these methods are not properly evaluated for diagnosis of cutaneous leishmaniasis (CL. This study aimed to assess the performance of indirect immunofluorescent-antibody test (IFA and enzyme-linked immunosorbent assay (ELISA for serodiagnosis of cutaneous leishmaniasis in Iran. Sixty-one sera samples from parasitologically confirmed CL patients and 50 sera from healthy controls along with 50 sera from non-CL patients were collected. Antigen was prepared from promastigotes and amastigotes of Leishmania major. IFA was used to detect anti-Leishmania IgG while ELISA was used to detect anti-Leishmania IgM, total IgG, or IgG subclasses (IgG1 and 4. ELISA, for detection of total IgG and IgM, showed sensitivity of 83.6% and 84.7% and specificity of 62.7% and 54.6%, respectively. Sensitivity and specificity of ELISA for detecting IgG1 and IgG4 were 64%, 75% and 85%, 49%, respectively. Sensitivity and specificity of IFA were 91.6% and 81%. Conclusion. Findings of this study demonstrated that serological test, especially IFA, can be used for proper diagnosis of CL.

  13. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2017-04-01

    Full Text Available Atomic force microscopy (AFM has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  14. Confocal fluorescence microscopy for minimal-invasive tumor diagnosis

    International Nuclear Information System (INIS)

    Zenzinger, M.; Bille, J.

    2000-01-01

    The goal of the project ''stereotactic laser-neurosurgery'' is the development of a system for careful and minimal-invasive resection of brain tumors with ultrashort laser pulses through a thin probe. A confocal laser-scanning-microscope is integrated in the probe. In this paper, the simulation of its optical properties by a laboratory setup and the expansion by the ability for fluorescence microscopy are reported. For a valuation of the imaging properties, the point-spread-function in three dimensions and the axial depth-transfer-function were measured and thus, among other things, the resolving power and the capacity for depth discrimination were analysed. The microscope will enable intra-operative detection of tumor cells by the method of immunofluorescence. As a first model of the application in the brain, cell cultures, that fluorescein-labelled antibodies were bound to specifically, were used in this work. Due to the fluorescence signal, it was possible to detect and identify clearly the areas that had been marked in this manner, proving the suitability of the setup for minimal-invasive tumor diagnosis. (orig.)

  15. Detection of CO2•- in the Electrochemical Reduction of Carbon Dioxide in N,N-Dimethylformamide by Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Kai, Tianhan; Zhou, Min; Duan, Zhiyao; Henkelman, Graeme A; Bard, Allen J

    2017-12-27

    The electrocatalytic reduction of CO 2 has been studied extensively and produces a number of products. The initial reaction in the CO 2 reduction is often taken to be the 1e formation of the radical anion, CO 2 •- . However, the electrochemical detection and characterization of CO 2 •- is challenging because of the short lifetime of CO 2 •- , which can dimerize and react with proton donors and even mild oxidants. Here, we report the generation and quantitative determination of CO 2 •- in N,N-dimethylformamide (DMF) with the tip generation/substrate collection (TG/SC) mode of scanning electrochemical microscopy (SECM). CO 2 was reduced at a hemisphere-shaped Hg/Pt ultramicroelectrode (UME) or a Hg/Au film UME, which were utilized as the SECM tips. The CO 2 •- produced can either dimerize to form oxalate within the nanogap between SECM tip and substrate or collected at SECM substrate (e.g., an Au UME). The collection efficiency (CE) for CO 2 •- depends on the distance (d) between the tip and substrate. The dimerization rate (6.0 × 10 8 M -1 s -1 ) and half-life (10 ns) of CO 2 •- can be evaluated by fitting the collection efficiency vs distance curve. The dimerized species of CO 2 •- , oxalate, can also be determined quantitatively. Furthermore, the formal potential (E 0 ') and heterogeneous rate constant (k 0 ) for CO 2 reduction were determined with different quaternary ammonium electrolytes. The significant difference in k 0 is due to a tunneling effect caused by the adsorption of the electrolytes on the electrode surface at negative potentials.

  16. Cell-based quantification of biomarkers from an ultra-fast microfluidic immunofluorescent staining: application to human breast cancer cell lines

    Science.gov (United States)

    Migliozzi, D.; Nguyen, H. T.; Gijs, M. A. M.

    2018-02-01

    Immunohistochemistry (IHC) is one of the main techniques currently used in the clinics for biomarker characterization. It consists in colorimetric labeling with specific antibodies followed by microscopy analysis. The results are then used for diagnosis and therapeutic targeting. Well-known drawbacks of such protocols are their limited accuracy and precision, which prevent the clinicians from having quantitative and robust IHC results. With our work, we combined rapid microfluidic immunofluorescent staining with efficient image-based cell segmentation and signal quantification to increase the robustness of both experimental and analytical protocols. The experimental protocol is very simple and based on fast-fluidic-exchange in a microfluidic chamber created on top of the formalin-fixed-paraffin-embedded (FFPE) slide by clamping it a silicon chip with a polydimethyl siloxane (PDMS) sealing ring. The image-processing protocol is based on enhancement and subsequent thresholding of the local contrast of the obtained fluorescence image. As a case study, given that the human epidermal growth factor receptor 2 (HER2) protein is often used as a biomarker for breast cancer, we applied our method to HER2+ and HER2- cell lines. We report very fast (5 minutes) immunofluorescence staining of both HER2 and cytokeratin (a marker used to define the tumor region) on FFPE slides. The image-processing program can segment cells correctly and give a cell-based quantitative immunofluorescent signal. With this method, we found a reproducible well-defined separation for the HER2-to-cytokeratin ratio for positive and negative control samples.

  17. Fibrinogen Demonstration in Oral Lichen Planus: An Immunofluorescence Study on Archival Tissues.

    Science.gov (United States)

    Shirol, Pallavi D; Naik, Veena; Kale, Alka

    2015-10-01

    Lichen planus is a premalignant condition with minimal diagnostic aids. This study is an attempt to use paraffin embedded sections of lichen planus with immunofluorescein stain and to evaluate the immunofluorescent sections to establish pattern of fibrinogen deposition. Thirty-five paraffin embedded sections of old and new cases of oral lichen planus (study group) and five normal oral mucosa (control group) were chosen. Two sections of each (H & E) case were taken, one was stained with hematoxylin and eosin and another with fluorescein isothiocynate conjugate (FITC) polyclonal rabbit antibody against fibrinogen. Fluorescent findings were examined with a fluorescent microscope. A high statistical significant correlation was found in respect to fluorescence positivity, intensity of fluorescence and distribution of fluorescence each with p < 0.0001 and fluorescence at blood vessel walls (p = 0.0003). This study suggested that paraffin embedded sections can be successfully used in direct immunofluorescence staining in routine set up where only formalin fixed tissues are received. Paraffin embedded sections can be successfully used in direct immunofluorescence staining when only formalin fixed tissues are received.

  18. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  19. Time-resolved opto-electronic properties of poly(3-hexylthiophene-2,5-dyil): fullerene heterostructures detected by Kelvin force microscopy

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan; Rezek, Bohuslav; Cimrová, Věra; Fejfar, Antonín; Purkrt, Adam; Vaněček, Milan; Kočka, Jan

    2010-01-01

    Roč. 519, č. 2 (2010), s. 836-840 ISSN 0040-6090 R&D Projects: GA ČR GD202/09/H041; GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40500505 Keywords : photovoltaics * bulk-heterojunction * atomic force microscopy * Kelvin force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.909, year: 2010

  20. Sensor detection of parasite eggs and (oo-)cysts - possibilities and challenges

    DEFF Research Database (Denmark)

    Enemark, Heidi

    2015-01-01

    and cysts ((oo-)cysts) of the protozoan genera Cryptosporidium and Giardia are major causes of waterborne outbreaks of diarrhea. Methods for routine recovery and detection of waterborne Giardia and/or Cryptosporidium include filtration, immunomagnetic separation and detection by microscopy...... of immunofluorescence stained (oo-)cysts. These methods have low recovery rates, are time consuming, costly, and require well equipped laboratory facilities. Likewise, microscopy is the universal diagnostic method for detection of helminth eggs and protozoa in food and feed despite low sensitivity, difficulties...... system and ultrasound to obtain high recovery rates of apparently undamaged protozoa: 84.9% (Standard deviation (±) 4.8) for Giardia cysts and 70% (± 6.5) for Cryptosporidium oocysts. Ultrasound in the current system is tuned into a useful tool for enhanced elution of filtered (oo-)cysts. The combined...

  1. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy.

    Science.gov (United States)

    Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Čeleketić, D; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A

    2017-07-01

    Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind with high affinity and specificity to different antigens. They are small (molecular weight ca. 15kDa) and are usually easy to produce in microorganisms. Here we have evaluated the feasibility of a nanobody binding to HER2 for application in immuno-electron microscopy. To obtain highest labeling efficiency combined with optimal specificity, different labeling conditions were analysed, which included nanobody concentration, fixation and blocking conditions. The obtained optimal protocol was applied for post-embedment labeling of Tokuyasu cryosections and for pre-embedment labeling of HER2 for fluorescence microscopy and both transmission and scanning electron microscopy. We show that formaldehyde fixation after incubation with the anti-HER2 nanobody, improves labeling intensity. Among all tested blocking agents the best results were obtained with a mixture of cold water fish gelatine and acetylated bovine serum albumin, which prevented a-specific interactions causing background labeling while preserving specific interactions at the same time. In conclusion, we have developed a nanobody-based protocol for immuno-gold labeling of HER2 for Tokuyasu cryosections in TEM as well as for pre-embedment gold labeling of cells for both TEM and SEM. Copyright © 2017. Published by Elsevier Inc.

  2. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy

    NARCIS (Netherlands)

    Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Celeketic, Dusan; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A

    Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind

  3. Accuracy of molecular diagnostics in pemphigus and bullous pemphigoid: comparison of commercial and modified mosaic indirect immunofluorescence tests as well as enzyme-linked immunosorbent assays.

    Science.gov (United States)

    Gornowicz-Porowska, Justyna; Seraszek-Jaros, Agnieszka; Bowszyc-Dmochowska, Monika; Kaczmarek, Elżbieta; Pietkiewicz, Paweł; Bartkiewicz, Paweł; Dmochowski, Marian

    2017-02-01

    Pemphigus and bullous pemphigoid (BP) are identified by autoantibodies (abs) against desmoglein 1, 3 (DSG1/3) and BP180/BP230, respectively. A novel mosaic to indirect immunofluorescence (IIF) using purified BP180 recombinant proteins spotted on slide and transfected cells expressing BP230, DSG1, DSG3 is available. The commercial (IgG detection) and modified (IgG4 detection) mosaic for indirect immunofluorescence (IIFc - IIF commercial, IIFm - IIF modified) and IgG ELISAs were evaluated in pemphigus and bullous pemphigoid (BP) molecular diagnostics. To compare diagnostic accuracy of commercial (IgG detection) and modified (IgG4 detection) mosaic IIF assay and to examine the diagnostic value of ELISAs in relation to mosaic IIF in routine laboratory diagnostics of pemphigus and BP. Sera from 37 BP and 19 pemphigus patients were studied. Associations between tests were assessed using Fisher's exact test. There are associations between the positive/negative samples detected by IIFc with desmoglein1 (DSG1)/desmoglein3 (DSG3)/BP230 transfected cells and ELISAs and no association between anti-BP180 IgG detection by IIFc and ELISA. IIFm with DSG1 and DSG3 showed both 100% sensitivity and 100% and 78% specificity, respectively, and 100% and 83% positive predictive value in relation to IIFc. IIFm with BP230 had 87% specificity, 55% sensitivity, whereas IIFm with BP180 had a 100% sensitivity and 13% specificity in relation to IIFc. The IIFc with DSG1/DSG3/BP230 transfected cells, excluding BP180 spots, is an alternative method to ELISA in pemphigus/BP diagnostics. IgG4 antibodies, both pathogenically and diagnostically important, are inconsistently detectable with IIFm.

  4. Accuracy of molecular diagnostics in pemphigus and bullous pemphigoid: comparison of commercial and modified mosaic indirect immunofluorescence tests as well as enzyme-linked immunosorbent assays

    Directory of Open Access Journals (Sweden)

    Justyna Gornowicz-Porowska

    2017-02-01

    Full Text Available Introduction : Pemphigus and bullous pemphigoid (BP are identified by autoantibodies (abs against desmoglein 1, 3 (DSG1/3 and BP180/BP230, respectively. A novel mosaic to indirect immunofluorescence (IIF using purified BP180 recombinant proteins spotted on slide and transfected cells expressing BP230, DSG1, DSG3 is available. The commercial (IgG detection and modified (IgG4 detection mosaic for indirect immunofluorescence (IIFc – IIF commercial, IIFm – IIF modified and IgG ELISAs were evaluated in pemphigus and bullous pemphigoid (BP molecular diagnostics. Aim : To compare diagnostic accuracy of commercial (IgG detection and modified (IgG4 detection mosaic IIF assay and to examine the diagnostic value of ELISAs in relation to mosaic IIF in routine laboratory diagnostics of pemphigus and BP. Material and methods : Sera from 37 BP and 19 pemphigus patients were studied. Associations between tests were assessed using Fisher’s exact test. Results: There are associations between the positive/negative samples detected by IIFc with desmoglein1 (DSG1/desmoglein3 (DSG3/BP230 transfected cells and ELISAs and no association between anti-BP180 IgG detection by IIFc and ELISA. IIFm with DSG1 and DSG3 showed both 100% sensitivity and 100% and 78% specificity, respectively, and 100% and 83% positive predictive value in relation to IIFc. IIFm with BP230 had 87% specificity, 55% sensitivity, whereas IIFm with BP180 had a 100% sensitivity and 13% specificity in relation to IIFc. Conclusions : The IIFc with DSG1/DSG3/BP230 transfected cells, excluding BP180 spots, is an alternative method to ELISA in pemphigus/BP diagnostics. IgG4 antibodies, both pathogenically and diagnostically important, are inconsistently detectable with IIFm.

  5. Comparison between immunomagnetic separation, coupled with immunofluorescence, and the techniques of Faust et al. and of Lutz for the diagnosis of Giardia lamblia cysts in human feces

    Directory of Open Access Journals (Sweden)

    Souza Doris Sobral Marques

    2003-01-01

    Full Text Available In the present study, the performance of Immunomagnetic Separation technique, coupled with Immunofluorescence (IMS-IFA, was compared with the FAUST et al. and Lutz parasitological techniques for the detection of Giardia lamblia cysts in human feces. One hundred and twenty-seven samples were evaluated by the three techniques at the same time showing a rate of cyst detection of 27.5% by IMS-IFA and 15.7% by both Faust et al. and Lutz techniques. Data analysis showed a higher sensitivity of IMS-IFA for the detection of G. lamblia cysts in comparison with the techniques of FAUST et al. and Lutz. The use of this methodology as a routine procedure enables the processing of many samples simultaneously, in order to increase recovery rate of G. lamblia cysts and reduce the time of sample storage.

  6. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  7. SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons.

    Directory of Open Access Journals (Sweden)

    Eric Danielson

    Full Text Available Continuous modification of the protein composition at synapses is a driving force for the plastic changes of synaptic strength, and provides the fundamental molecular mechanism of synaptic plasticity and information storage in the brain. Studying synaptic protein turnover is not only important for understanding learning and memory, but also has direct implication for understanding pathological conditions like aging, neurodegenerative diseases, and psychiatric disorders. Proteins involved in synaptic transmission and synaptic plasticity are typically concentrated at synapses of neurons and thus appear as puncta (clusters in immunofluorescence microscopy images. Quantitative measurement of the changes in puncta density, intensity, and sizes of specific proteins provide valuable information on their function in synaptic transmission, circuit development, synaptic plasticity, and synaptopathy. Unfortunately, puncta quantification is very labor intensive and time consuming. In this article, we describe a software tool designed for the rapid semi-automatic detection and quantification of synaptic protein puncta from 2D immunofluorescence images generated by confocal laser scanning microscopy. The software, dubbed as SynPAnal (for Synaptic Puncta Analysis, streamlines data quantification for puncta density and average intensity, thereby increases data analysis throughput compared to a manual method. SynPAnal is stand-alone software written using the JAVA programming language, and thus is portable and platform-free.

  8. Semi-automated relative quantification of cell culture contamination with mycoplasma by Photoshop-based image analysis on immunofluorescence preparations.

    Science.gov (United States)

    Kumar, Ashok; Yerneni, Lakshmana K

    2009-01-01

    Mycoplasma contamination in cell culture is a serious setback for the cell-culturist. The experiments undertaken using contaminated cell cultures are known to yield unreliable or false results due to various morphological, biochemical and genetic effects. Earlier surveys revealed incidences of mycoplasma contamination in cell cultures to range from 15 to 80%. Out of a vast array of methods for detecting mycoplasma in cell culture, the cytological methods directly demonstrate the contaminating organism present in association with the cultured cells. In this investigation, we report the adoption of a cytological immunofluorescence assay (IFA), in an attempt to obtain a semi-automated relative quantification of contamination by employing the user-friendly Photoshop-based image analysis. The study performed on 77 cell cultures randomly collected from various laboratories revealed mycoplasma contamination in 18 cell cultures simultaneously by IFA and Hoechst DNA fluorochrome staining methods. It was observed that the Photoshop-based image analysis on IFA stained slides was very valuable as a sensitive tool in providing quantitative assessment on the extent of contamination both per se and in comparison to cellularity of cell cultures. The technique could be useful in estimating the efficacy of anti-mycoplasma agents during decontaminating measures.

  9. Surface-biofunctionalized multicore/shell CdTe@SiO2 composite particles for immunofluorescence assay

    Science.gov (United States)

    Jing, Lihong; Li, Yilin; Ding, Ke; Qiao, Ruirui; Rogach, Andrey L.; Gao, Mingyuan

    2011-12-01

    Strongly fluorescent multicore/shell structured CdTe@SiO2 composite particles of ~ 50 nm were synthesized via the reverse microemulsion method by using CdTe quantum dots co-stabilized by thioglycolic acid and thioglycerol. The optical stability of the CdTe@SiO2 composite particles in a wide pH range, under prolonged UV irradiation in pure water, or in different types of physiological buffers was systematically investigated. Towards immunofluorescence assay, both poly(ethylene glycol) (PEG) and carboxyl residues were simultaneously grafted on the surface of the silanol-terminated CdTe@SiO2 composite particles upon further reactions with silane reagents bearing a PEG segment and carboxyl group, respectively, in order to suppress the nonspecific interactions of the silica particles with proteins and meanwhile introduce reactive moieties to the fluorescent particles. Agarose gel electrophoresis, dynamic light scattering and conventional optical spectroscopy were combined to investigate the effectiveness of the surface modifications. Via the surface carboxyl residue, various antibodies were covalently conjugated to the fluorescent particles and the resultant fluorescent probes were used in detecting cancer cells through both direct fluorescent antibody and indirect fluorescent antibody assays, respectively.

  10. A quantum dot-immunofluorescent labeling method to investigate the interactions between a crinivirus and its whitefly vector

    Directory of Open Access Journals (Sweden)

    James C. K. Ng

    2013-04-01

    Full Text Available Successful vector-mediated plant virus transmission entails an intricate but poorly understood interplay of interactions among virus, vector, and plant. The complexity of interactions requires continually improving/evaluating tools and methods for investigating the determinants that are central to mediating virus transmission. A recent study using an organic fluorophore (Alexa Fluor-based immunofluorescent localization assay demonstrated that specific retention of Lettuce infectious yellows virus (LIYV virions in the anterior foregut or cibarium of its whitefly vector is required for virus transmission. Continuous exposure of organic fluorophore to high excitation light intensity can result in diminished or loss of signals, potentially confounding the identification of important interactions associated with virus transmission. This limitation can be circumvented by incorporation of photostable fluorescent nanocrystals, such as quantum dots (QDs, into the assay. We have developed and evaluated a QD-immunofluorescent labeling method for the in vitro and in situ localization of LIYV virions based on the recognition specificity of streptavidin-conjugated QD605 (S-QD605 for biotin-conjugated anti-LIYV IgG (B-αIgG. IgG biotinylation was verified in a blot overlay assay by probing SDS-PAGE separated B-αIgG with S-QD605. Immunoblot analyses of LIYV using B-αIgG and S-QD605 resulted in a virus detection limit comparable to that of DAS-ELISA. In membrane feeding experiments, QD signals were observed in the anterior foregut or cibarium of virion-fed whitefly vectors but absent in those of virion-fed whitefly non-vectors. Specific virion retention in whitefly vectors corresponded with successful virus transmission. A fluorescence photobleaching assay of viruliferous whiteflies fed B-αIgG and S-QD605 vs. those fed anti-LIYV IgG and Alexa Fluor 488-conjugated IgG revealed that QD signal was stable and deteriorated ∼7 to 8 fold slower than that of Alexa

  11. Calcium detection in secretion granules of avian oviduct by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX)

    International Nuclear Information System (INIS)

    Makita, T.; Hatsuoka, M.; Sugi, Y.

    1983-01-01

    Secretion granules in the shell gland, isthmus, and albumin-secreting region of the hen oviduct were analyzed with WET-scanning electron microscopy (SEM) and EDX, a combination of wide-angle backscattered electron detector (BED) and energy-dispersive X-ray microanalyzer (EDX). Glutaraldehyde-fixed but unhydrated, unstained, and uncoated samples were analyzed; Ca was localized in all secretion granules in all three sections of the hen oviduct studied

  12. Validate or falsify: Lessons learned from a microscopy method claimed to be useful for detecting Borrelia and Babesia organisms in human blood

    Czech Academy of Sciences Publication Activity Database

    Aase, A.; Hajdušek, Ondřej; Øines, Ø.; Quarsten, H.; Wilhelmsson, P.; Herstad, T.K.; Kjelland, V.; Šíma, Radek; Jalovecká, Marie; Lindgren, P-E.; Aaberge, I.S.

    2016-01-01

    Roč. 48, č. 6 (2016), s. 411-419 ISSN 2374-4235 R&D Projects: GA ČR GP13-27630P; GA ČR GP13-12816P EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : Lyme disease * Borrelia burgdorferi sensu lato * babesiosis * Babesia spp. * Lyme borreliosis * PCR * microscopy Subject RIV: EC - Immunology Impact factor: 1.119, year: 2016

  13. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections.

    Directory of Open Access Journals (Sweden)

    Sandrine Prost

    Full Text Available The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family. Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705, Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches.

  14. Heavy-ion microscopy

    International Nuclear Information System (INIS)

    Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.

    1980-01-01

    This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included

  15. Anti-human neutrophil antigen-1a, -1b, and -2 antibodies in neonates and children with immune neutropenias analyzed by extracted granulocyte antigen immunofluorescence assay.

    Science.gov (United States)

    Onodera, Rie; Kurita, Emi; Taniguchi, Kikuyo; Karakawa, Shuhei; Okada, Satoshi; Kihara, Hirotaka; Fujii, Teruhisa; Kobayashi, Masao

    2017-11-01

    Anti-human neutrophil antigen (HNA) antibodies have been implicated in the development of neonatal alloimmune neutropenia (NAN) and autoimmune neutropenia (AIN). There are many conventional assay methods that detect anti-HNA antibodies. However, a method to measure multiple samples and detect several anti-HNA antibodies simultaneously is needed. We developed a new method, the extracted granulocyte antigen immunofluorescence assay (EGIFA), to analyze anti-HNA-1a, -1b, and -2 antibodies in sera. The results obtained by EGIFA were evaluated in comparison with those from several standard assay methods. Anti-HNA antibodies in serum samples from nine familial cases with suspected NAN (n = 19) and children with suspected AIN (n = 88) were also measured by EGIFA. The evaluation of nine serum samples with anti-HNA antibodies suggested that EGIFA demonstrated equivalent specificity and superior sensitivity to monoclonal antibody-specific immobilization of granulocyte antigens and had comparable sensitivity to the granulocyte indirect immunofluorescence test. EGIFA successfully detected anti-HNA-1a or -1b antibodies in seven of nine familial cases with suspected NAN. EGIFA detected anti-HNA antibodies in 40.9% of children with suspected AIN. Among them, isolated anti-HNA-1a or -1b antibody was detected in 4.5 or 12.5% of children, respectively, and anti-HNA-2 antibody was identified in 3.4% of children. The 30.8% (16 of 52) of children negative for anti-HNA antibody by EGIFA were positive for anti-HLA antibody. EGIFA facilitated the measurement of anti-HNA-1a, -1b, and/or -2 antibodies in sera. The prompt measurement of anti-HNA antibodies will improve the diagnosis and clinical management of patients with suspected NAN or AIN. © 2017 AABB.

  16. A Novel Tool for High-Throughput Screening of Granulocyte-Specific Antibodies Using the Automated Flow Cytometric Granulocyte Immunofluorescence Test (Flow-GIFT

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available Transfusion-related acute lung injury (TRALI is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT and granulocyte agglutination test (GAT were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti—HNA 3a, n = 3; anti—HNA-1b, n = 1 and GAT (anti—HNA-2a, n = 1. The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of

  17. A novel tool for high-throughput screening of granulocyte-specific antibodies using the automated flow cytometric granulocyte immunofluorescence test (Flow-GIFT).

    Science.gov (United States)

    Nguyen, Xuan Duc; Dengler, Thomas; Schulz-Linkholt, Monika; Klüter, Harald

    2011-02-03

    Transfusion-related acute lung injury (TRALI) is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT) has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT) and granulocyte agglutination test (GAT) were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti-HNA 3a, n = 3; anti-HNA-1b, n = 1) and GAT (anti-HNA-2a, n = 1). The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of blood products.

  18. Detection of charge storage on molecular thin films of tris(8-hydroxyquinoline) aluminum (Alq3) by Kelvin force microscopy: a candidate system for high storage capacity memory cells.

    Science.gov (United States)

    Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir

    2012-03-14

    Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells. © 2012 American Chemical Society

  19. Comparative determination of the rheumatic factor by means of agglutination, immunofluorescence and radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, L.; Storz, H.; Hein, G.; Schlenvoigt, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Bereich Medizin)

    1982-01-01

    The rheumatic factor (RF) was determined by means of agglutination, immunofluorescence (IF) test and radioimmunoassay (RIPEGA) in random groups of 56 patients with rheumatoid arthritis (RA), 13 patients with seronegative RA and 39 patients with psoriasis arthropathica. All three methods are of equal value with regard to the number of positive results. Further classification of seronegative patients, i.e. patients with a negative agglutination reaction and the clinical symptoms of RA is possible with the IF method and, above all, by means of RIPEGA. But because of the comprehensive test devices the two methods are only an alternative. Titer differences are attributed to the different indication principles and the immunological heterogeneity of RF. An improvement of the diagnosis of activity was not possible.

  20. Comparative determination of the rheumatic factor by means of agglutination, immunofluorescence and radioimmunoassay

    International Nuclear Information System (INIS)

    Jaeger, L.; Storz, H.; Hein, G.; Schlenvoigt, G.

    1982-01-01

    The rheumatic factor (RF) was determined by means of agglutination, immunofluorescence (IF) test and radioimmunoassay (RIPEGA) in random groups of 56 patients with rheumatoid arthritis (RA), 13 patients with seronegative RA and 39 patients with psoriasis arthropathica. All three methods are of equal value with regard to the number of positive results. Further classification of seronegative patients, i.e. patients with a negative agglutination reaction and the clinical symptoms of RA is possible with the IF method and, above all, by means of RIPEGA. But because of the comprehensive test devices the two methods are only an alternative. Titer differences are attributed to the different indication principles and the immunological heterogeneity of RF. An improvement of the diagnosis of activity was not possible. (author)

  1. Staining pattern classification of antinuclear autoantibodies based on block segmentation in indirect immunofluorescence images.

    Directory of Open Access Journals (Sweden)

    Jiaqian Li

    Full Text Available Indirect immunofluorescence based on HEp-2 cell substrate is the most commonly used staining method for antinuclear autoantibodies associated with different types of autoimmune pathologies. The aim of this paper is to design an automatic system to identify the staining patterns based on block segmentation compared to the cell segmentation most used in previous research. Various feature descriptors and classifiers are tested and compared in the classification of the staining pattern of blocks and it is found that the technique of the combination of the local binary pattern and the k-nearest neighbor algorithm achieve the best performance. Relying on the results of block pattern classification, experiments on the whole images show that classifier fusion rules are able to identify the staining patterns of the whole well (specimen image with a total accuracy of about 94.62%.

  2. Multiplexed Immunofluorescence Reveals Potential PD-1/PD-L1 Pathway Vulnerabilities in Craniopharyngioma.

    Science.gov (United States)

    Coy, Shannon; Rashid, Rumana; Lin, Jia-Ren; Du, Ziming; Donson, Andrew M; Hankinson, Todd C; Foreman, Nicholas K; Manley, Peter E; Kieran, Mark W; Reardon, David A; Sorger, Peter K; Santagata, Sandro

    2018-03-02

    Craniopharyngiomas are neoplasms of the sellar/parasellar region that are classified into adamantinomatous (ACP) and papillary (PCP) subtypes. Surgical resection of craniopharyngiomas is challenging, and recurrence is common, frequently leading to profound morbidity. BRAF V600E mutations render PCP susceptible to BRAF/MEK inhibitors, but effective targeted therapies are needed for ACP. We explored the feasibility of targeting the PD-1/PD-L1 immune checkpoint pathway in ACP and PCP. We mapped and quantified PD-L1 and PD-1 expression in ACP and PCP resections using immunohistochemistry, immunofluorescence, and RNA in situ hybridization. We used tissue-based cyclic immunofluorescence (t-CyCIF) to map the spatial distribution of immune cells and characterize cell cycle and signaling pathways in ACP tumor cells which intrinsically express PD-1. All ACP (15±14% of cells, n=23, average±S.D.) and PCP (35±22% of cells, n=18) resections expressed PD-L1. In ACP, PD-L1 was predominantly expressed by tumor cells comprising the cyst-lining. In PCP, PD-L1 was highly-expressed by tumor cells surrounding the stromal fibrovascular cores. ACP also exhibited tumor cell-intrinsic PD-1 expression in whorled epithelial cells with nuclear-localized beta-catenin. These cells exhibited evidence of elevated mTOR and MAPK signaling. Profiling of immune populations in ACP and PCP showed a modest density of CD8+ T-cells. ACP exhibit PD-L1 expression in the tumor cyst-lining and intrinsic PD-1 expression in cells proposed to comprise an oncogenic stem-like population. In PCP, proliferative tumor cells express PD-L1 in a continuous band at the stromal-epithelial interface. Targeting PD-L1 and/or PD-1 in both subtypes of craniopharyngioma might therefore be an effective therapeutic strategy.

  3. Atomic Force Microscopy Images Label-Free, Drug Encapsulated Nanoparticles In Vivo and Detects Difference in Tissue Mechanical Properties of Treated and Untreated: A Tip for Nanotoxicology

    Science.gov (United States)

    Lamprou, Dimitrios A.; Venkatpurwar, Vinod; Kumar, M. N. V. Ravi

    2013-01-01

    Overcoming the intractable challenge of imaging of label-free, drug encapsulated nanoparticles in tissues in vivo would directly address associated regulatory concerns over 'nanotoxicology'. Here we demonstrate the utility of Atomic Force Microscopy (AFM) for visualising label-free, drug encapsulated polyester particles of ∼280 nm distributed within tissues following their intravenous or peroral administration to rodents. A surprising phenomenon, in which the tissues' mechanical stiffness was directly measured (also by AFM) and related to the number of embedded nanoparticles, was utilised to generate quantitative data sets for nanoparticles localisation. By coupling the normal determination of a drug's pharmacokinetics/pharmacodynamics with post-sacrifice measurement of nanoparticle localisation and number, we present for the first time an experimental design in which a single in vivo study relates the PK/PD of a nanomedicine to its toxicokinetics. PMID:23724054

  4. Quantum Dots-Based Immunofluorescent Imaging of Stromal Fibroblasts Caveolin-1 and Light Chain 3B Expression and Identification of Their Clinical Significance in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    2012-10-01

    Full Text Available Caveolin-1 (Cav-1 expression deficiency and autophagy in tumor stromal fibroblasts (hereafter fibroblasts are involved in tumor proliferation and progression, particularly in breast and prostate cancer. The aim of this study was to detect the expression of fibroblastic Cav-1 and LC3B, markers of autophagy, in gastric cancer (GC and to analyze their clinical significances. Furthermore, because Epstein-Barr virus (EBV-associated GC (EBVaGC is a unique subtype of GC; we compared the differential expression of fibroblastic Cav-1 and LC3B in EBVaGC and non-EBVaGC. Quantum dots (QDs-based immunofluorescence histochemistry was used to examine the expression of fibroblastic Cav-1 and LC3B in 118 cases of GC with adequate stroma. QDs-based double immunofluorescence labeling was performed to detect the coexpression of Cav-1 and LC3B proteins. EBV-encoded small RNA was detected by QDs-based fluorescence in situ hybridization to identify EBVaGC. Multivariate analysis indicated that low fibroblastic Cav-1 level was an independent prognosticator (p = 0.029 that predicted poorer survival of GC patients. Positive fibroblastic LC3B was correlated with lower invasion (p = 0.032 and was positively associated with Cav-1 expression (r = 0.432, p < 0.001. EBV infection did not affect fibroblastic Cav-1 and LC3B expression. In conclusion, positive fibroblastic LC3B correlates with lower invasion, and low expression of fibroblastic Cav-1 is a novel predictor of poor GC prognosis.

  5. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  6. Padronização de ensaio imunoenzimático para pesquisa de anticorpos das classes IgM e IgG anti-Toxoplasma gondii e comparação com a técnica de imunofluorescência indireta Standardization of enzyme-linked immunosorbent assay ELISA to detect anti-Toxoplasma gondii IgM and IgG antibodies, and comparison with the indirect immunofluorescence technique

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Antunes Uchôa

    1999-12-01

    Full Text Available A sorologia tem sido o método de escolha para o diagnóstico da toxoplasmose. Devido a isto, padronizamos um ensaio imunoenzimático (ELISA e comparamos seus resultados com a técnica de imunofluorescência indireta (IFI. A técnica padronizada apresentou na pesquisa de IgG sensibilidade (S de 96,7% e especificidade (E de 75%, com valor de predição de positividade (VPP de 83,3% e de negatividade (VPN de 94,7%, com uma concordância ajustada (K de 73,5%. A IFI apresentou S de 83,8%, E de 79,1% com VPP de 83,8 % e VPN de 79,1% com K de 63%. A concordância bruta entre os dois testes (ELISA/IFI foi de 88,3% para pesquisa de IgG e de 81,5% para pesquisa de IgM, sendo o K de 70,8% para IgG e de 1,3% para IgM, sendo o índice de correlação (r de 0,556 para IgG e de -0,023 para IgM. Podemos concluir que a ELISA-IgG padronizada é indicada nos processos de triagem sorológica, sendo a ELISA-IgM desaconselhada uma vez que apresentou baixos índices de concordância ajustada com a técnica de referência, sugerindo pouca confiabilidade dos resultados.Serology has been the most popular method to diagnose toxoplasmosis. Accordingly, this study standardizes an enzyme-linked immunosorbent assay (ELISA and compares its results with the IFI technique. In the IgG detection test, the standardized technique presented a sensibility (S of 96.77%, a specificity (SP of 75%, with a positive predictive value (PPV of 83.33%, a negative predictive value (NPV of 94.74%, and an adjusted concordance (K of 73.50%. The IFI exhibited 83.87% for S, 79.16% for SP, 83.81% for PPV, 79.16% for NPV, and 63% for K. The rough concordance between these two tests (ELISA/IFI was 88.35% for the IgG detection test and 81.55% for the IgM detection test. K was 70.82% and 1.31% for IgG and IgM, respectively, the correlation index (r being 0.556 for IgG and -0.023 for IgM. We can conclude that standardized ELISA-IgG is indicated in serologic selection processes, whereas the ELISA-IgM is

  7. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  8. Immunofluorescence pattern of antinuclear antibody and its association with autoantibody profile in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Sadia Sharmin

    2016-08-01

    Full Text Available Background: Antinuclear antibody (ANA is useful in the diagnosis of systemic lupus erythematosus (SLE. Association of specific autoantibodies with the immunofluorescence pattern of ANA in SLE as noted in Western literature has been taken as reference in all over the world. However, in Bangladesh such research work or data correlating the autoantibodies and their ANA patterns is inadequate. Objective: To identify an association between immunofluorescence patterns of antinuclear antibody on HEp-2 cell and more specific antinuclear reactivities (e.g. anti-dsDNA and anti-extractable nuclear antigen in the serum samples of SLE patients.Methods: Serum samples of 37 SLE patients who were diagnosed by ARA (American Rheumatism Association classification criteria and laboratory tests, attending at lupus clinic of Bangabandhu Sheikh Mujib Medical University (BSMMU during the study period of six months were subjected for ANA testing by Indirect Imrnunofluorescence (IIF on HEp-2 cell, anti-dsDNA by ELISA and anti- extractable nuclear antigen (anti-ENA by Dot Immunoblot. Dot blot strips were tested for anti-Sm, anti-RNP, anti-SSA/Ro, and anti-SSB/La. Results: Out of 37 SLE patients 32 (86.5% cases were ANA positive by IIF on HEp-2 cell. ANA positive sera exhibited three fluorescence patterns such as speckled (43.7%, peripheral (34.3% and homogenous pattern (21.8%. Peripheral pattern (100% was strongly associated with anti-dsDNA (p<0.05 and homogenous pattern (85.7% was also predominantly associated with anti-dsDNA (p<0.05. Speckled pattern (85.6% was significantly associated with anti-ENA (p<0.05. Anti-dsDNA was positive in 75% of SLE cases and majority (45.8% of which showed peripheral pattern whereas anti-ENA was positive in 48.6% cases and majority (70.5% of which showed speckled pattern. The most commonly identified antinuclear autoreactivity was directed towards anti-RNP (22.2% then anti-Sm (16.6%, anti-SSA (16.6% and anti-SSB (11.1 %. Multiple anti

  9. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  10. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  11. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  12. Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.

    Science.gov (United States)

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B

    2015-10-06

    Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.

  13. Spatial Mixture Modelling for Unobserved Point Processes: Examples in Immunofluorescence Histology.

    Science.gov (United States)

    Ji, Chunlin; Merl, Daniel; Kepler, Thomas B; West, Mike

    2009-12-04

    We discuss Bayesian modelling and computational methods in analysis of indirectly observed spatial point processes. The context involves noisy measurements on an underlying point process that provide indirect and noisy data on locations of point outcomes. We are interested in problems in which the spatial intensity function may be highly heterogenous, and so is modelled via flexible nonparametric Bayesian mixture models. Analysis aims to estimate the underlying intensity function and the abundance of realized but unobserved points. Our motivating applications involve immunological studies of multiple fluorescent intensity images in sections of lymphatic tissue where the point processes represent geographical configurations of cells. We are interested in estimating intensity functions and cell abundance for each of a series of such data sets to facilitate comparisons of outcomes at different times and with respect to differing experimental conditions. The analysis is heavily computational, utilizing recently introduced MCMC approaches for spatial point process mixtures and extending them to the broader new context here of unobserved outcomes. Further, our example applications are problems in which the individual objects of interest are not simply points, but rather small groups of pixels; this implies a need to work at an aggregate pixel region level and we develop the resulting novel methodology for this. Two examples with with immunofluorescence histology data demonstrate the models and computational methodology.

  14. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  15. Aquaporin-4 autoantibodies in neuromyelitis optica spectrum disorders: comparison between tissue-based and cell-based indirect immunofluorescence assays

    Directory of Open Access Journals (Sweden)

    Chan Koon H

    2010-09-01

    Full Text Available Abstract Background Neuromyelitis optica spectrum disorders (NMOSD are severe central nervous system inflammatory demyelinating disorders (CNS IDD characterized by monophasic or relapsing, longitudinally extensive transverse myelitis (LETM and/or optic neuritis (ON. A significant proportion of NMOSD patients are seropositive for aquaporin-4 (AQP4 autoantibodies. We compared the AQP4 autoantibody detection rates of tissue-based indirect immunofluorescence assay (IIFA and cell-based IIFA. Methods Serum of Chinese CNS IDD patients were assayed for AQP4 autoantibodies by tissue-based IIFA using monkey cerebellum and cell-based IIFA using transfected HEK293 cells which express human AQP4 on their cell membranes. Results In total, 128 CNS IDD patients were studied. We found that 78% of NMO patients were seropositive for AQP4 autoantibodies by cell-based IIFA versus 61% by tissue-based IFA (p = 0.250, 75% of patients having relapsing myelitis (RM with LETM were seropositive by cell-based IIFA versus 50% by tissue-based IIFA (p = 0.250, and 33% of relapsing ON patients were seropositive by cell-based IIFA versus 22% by tissue-based IIFA (p = 1.000; however the differences were not statistically significant. All patients seropositive by tissue-based IIFA were also seropositive for AQP4 autoantibodies by cell-based IIFA. Among 29 NMOSD patients seropositive for AQP4 autoantibodies by cell-based IIFA, 20 (69% were seropositive by tissue-based IIFA. The 9 patients seropositive by cell-based IIFA while seronegative by tissue-based IIFA had NMO (3, RM with LETM (3, a single attack of LETM (1, relapsing ON (1 and a single ON attack (1. Among 23 NMO or RM patients seropositive for AQP4 autoantibodies by cell-based IIFA, comparison between those seropositive (n = 17 and seronegative (n = 6 by tissue-based IIFA revealed no differences in clinical and neuroradiological characteristics between the two groups. Conclusion Cell-based IIFA is slightly more sensitive

  16. Near-field reflection backscattering apertureless optical microscopy: Application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques

    International Nuclear Information System (INIS)

    Diziain, S.; Bijeon, J.-L.; Adam, P.-M.; Lamy de la Chapelle, M.; Thomas, B.; Deturche, R.; Royer, P.

    2007-01-01

    An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy

  17. Near-field reflection backscattering apertureless optical microscopy: Application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Diziain, S. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Bijeon, J.-L. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)]. E-mail: bijeon@utt.fr; Adam, P.-M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Lamy de la Chapelle, M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Thomas, B. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Deturche, R. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Royer, P. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)

    2007-01-15

    An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy.

  18. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  19. Immunofluorescence-based screening identifies germ cell associated microRNA 302 as an antagonist to p63 expression

    DEFF Research Database (Denmark)

    Scheel, Andreas Hans Joachim; Beyer, Ulrike; Agami, Reuven

    2009-01-01

    The tumor suppressor homologue p63 is required for proper skin and limb development, but specific isoforms of it also act as a "guardian of the germline." To gain insight into the regulation of p63 expression, we performed immunofluorescence-based screening assays. Using a large collection of micro...

  20. Dictionary of Microscopy

    Science.gov (United States)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  1. Variations in Local Calcium Signaling in Adjacent Cardiac Myocytes of the Intact Mouse Heart Detected with Two-Dimensional Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Karin P Hammer

    2015-01-01

    Full Text Available Dyssynchronous local Ca release within individual cardiac myocytes has been linked to cellular contractile dysfunction. Differences in Ca kinetics in adjacent cells may also provide a substrate for inefficient contraction and arrhythmias. In a new approach we quantify variation in local Ca transients between adjacent myocytes in the whole heart.Langendorff-perfused mouse hearts were loaded with Fluo-8 AM to detect Ca and Di-4-ANEPPS to visualize cell membranes. A spinning disc confocal microscope with a fast camera allowed us to record Ca signals within an area of 465 µm by 315 µm with an acquisition speed of 55 fps. Images from multiple transients recorded at steady state were registered to their time point in the cardiac cycle to restore averaged local Ca transients with a higher temporal resolution. Local Ca transients within and between adjacent myocytes were compared with regard to amplitude, time to peak and decay at steady state stimulation (250 ms cycle length.Image registration from multiple sequential Ca transients allowed reconstruction of high temporal resolution (2.4 ±1.3ms local CaT in 2D image sets (N= 4 hearts, n= 8 regions. During steady state stimulation, spatial Ca gradients were homogeneous within cells in both directions and independent of distance between measured points. Variation in CaT amplitudes was similar across the short and the long side of neighboring cells. Variations in TAU and TTP were similar in both directions. Isoproterenol enhanced the CaT but not the overall pattern of spatial heterogeneities.Here we detected and analyzed local Ca signals in intact mouse hearts with high temporal and spatial resolution, taking into account 2D arrangement of the cells. We observed significant differences in the variation of CaT amplitude along the long and short axis of cardiac myocytes. Variations of Ca signals between neighboring cells may contribute to the substrate of cardiac remodeling.

  2. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    International Nuclear Information System (INIS)

    Huang Jialing; Lazear, Helen M.; Friedman, Harvey M.

    2011-01-01

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  3. Determination of cutoff of ELISA and immunofluorescence assay for scrub typhus

    Directory of Open Access Journals (Sweden)

    Nitin Gupta

    2016-01-01

    Full Text Available Background: The most common method employed for diagnosis of scrub typhus is serology. It is widely known that demonstration of ≥4-fold rise in titers of antibody in paired sera is required for diagnosis. However, for guidance of initial treatment, there is a need for rapid diagnosis at the time of admission. Therefore, there is a need for standardized region specific cutoff titers at the time of admission. Materials and Methods: A total of 258 patients of all age groups with clinically suspected scrub typhus over a period of 24 months (October 2013-October 2015 were enrolled. Serum samples of these patients were subjected to immunofluorescent antibody (IFA for immunoglobulin M (IgM (Fuller Labs, USA with dilutions of 1:64, 1:128, 1:256, and 1:512. Serum samples of all 258 patients were subjected to IgM ELISA (Inbios Inc., USA. Any patient with response to antibiotics within 48 h accompanied by either presence of an eschar or positivity by polymerase chain reaction was taken as positive. Receiver operating characteristic (ROC curve was drawn to generate cutoff for these tests. Results: A total of 20 patients were diagnosed as cases of scrub typhus. The ROC curve analysis revealed a cutoff optical density value of 0.87 with sensitivity and specificity of 100% and 94.12%, respectively. ROC curve analysis of IFA revealed sensitivity and specificity of 100% and 93.5%, respectively at 1:64 dilution. Conclusion: Considering cost constraints, centers in and around New Delhi region can use the cutoffs we determined for the diagnosis of scrub typhus.

  4. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    Science.gov (United States)

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  5. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  6. Influence of Different Antioxidants on X-Ray Induced DNA Double-Strand Breaks (DSBs Using γ-H2AX Immunofluorescence Microscopy in a Preliminary Study.

    Directory of Open Access Journals (Sweden)

    Michael Brand

    Full Text Available Radiation exposure occurs in X-ray guided interventional procedures or computed tomography (CT and γ-H2AX-foci are recognized to represent DNA double-strand breaks (DSBs as a biomarker for radiation induced damage. Antioxidants may reduce the induction of γ-H2AX-foci by binding free radicals. The aim of this study was to establish a dose-effect relationship and a time-effect relationship for the individual antioxidants on DSBs in human blood lymphocytes.Blood samples from volunteers were irradiated with 10 mGy before and after pre-incubation with different antioxidants (zinc, trolox, lipoic acid, ß-carotene, selenium, vitamin E, vitamin C, N-acetyl-L-cysteine (NAC and Q 10. Thereby, different pre-incubation times, concentrations and combinations of drugs were evaluated. For assessment of DSBs, lymphocytes were stained against the phosphorylated histone variant γ-H2AX.For zinc, trolox and lipoic acid regardless of concentration or pre-incubation time, no significant decrease of γ-H2AX-foci was found. However, ß-carotene (15%, selenium (14%, vitamin E (12%, vitamin C (25%, NAC (43% and Q 10 (18% led to a significant reduction of γ-H2AX-foci at a pre-incubation time of 1 hour. The combination of different antioxidants did not have an additive effect.Antioxidants administered prior to irradiation demonstrated the potential to reduce γ-H2AX-foci in blood lymphocytes.

  7. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan

    2017-01-01

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  8. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  9. New microscopy for nanoimaging

    CERN Document Server

    Kinjo, Y; Watanabe, M

    2002-01-01

    Two types of new microscopy, namely, X-ray contact microscopy (XRCM) in combination with atomic force microscopy (AFM) and X-ray projection microscopy (XRPM) using synchrotron radiation and zone plate optics were used to image the fine structures of human chromosomes. In the XRCM plus AFM system, location of X-ray images on a photoresist has become far easier than that with our previous method using transmission electron microscopy coupled with the replica method. In addition, the images obtained suggested that the conformation of chromatin fiber differs from the current textbook model regarding the architecture of a eukaryotic chromosome. X-ray images with high contrast of the specimens could be obtained with XRPM. The resolution of each microscopy was about 30 and 200-300 nm for XRCM plus AFM and XRPM, respectively. (author)

  10. Microscopy and Image Analysis.

    Science.gov (United States)

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. CARS microscopy for imaging

    International Nuclear Information System (INIS)

    Arzumanyan Grigory; Voskanyan Karine

    2013-01-01

    Optical microscopy grows in its importance with the development of modern nanotechnology, biotechnology, methods of diagnostics and treatment of most dangerous diseases for mankind. There are several important goals of optical microscopy for biomedical studies among which the next three may be distinguished: fast imaging with high lateral spatial resolution, 3-D sectioning capability and high contrast for chemical selectivity. To meet these specific requirements, various types of both linear and nonlinear optical microscopy were elaborated. (authors)

  12. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Comparison of the Triage Micro Parasite Panel and Microscopy for the Detection of Entamoeba histolytica/Entamoeba dispar, Giardia lamblia, and Cryptosporidium parvum in Stool Samples Collected in Kenya

    Directory of Open Access Journals (Sweden)

    Brett Swierczewski

    2012-01-01

    Full Text Available Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum are three of the most important parasitic causes of acute diarrhea worldwide. Laboratory diagnosis of these parasites is usually done by ova and parasite examination (O&P examination via microscopy. The sensitivity and specificity of O&P examination varies among laboratories and can be labor intensive and time consuming. The Triage Micro Parasite Panel (BioSite, San Diego, California is an enzyme immunoassay kit that can detect E. histolytica/E. dispar, G. lamblia, and C. parvum simultaneously using fresh or frozen stool. The present study evaluated the Triage Micro Parasite Panel in detecting E. histolytica/E. dispar, G. lamblia, and C. parvum compared to O&P examination in 266 stool samples collected at medical facilities in Kenya. The sensitivity and specificity results for the Triage Micro Parasite Panel were: for E. histolytica/E. dispar: 100%, 100%, G. lamblia: 100%, 100% and C. parvum: 73%, 100%. There was no evidence of cross reactivity using the kit with other parasites identified in the stool specimens. These results indicate that the Triage Micro Parasite Panel is a highly sensitive kit that can be used for screening purposes in large scale studies or outbreak investigations or as a possible alternative to O&P examination.

  14. Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging.

    Science.gov (United States)

    Nyström, Sofie; Bäck, Marcus; Nilsson, K Peter R; Hammarström, Per

    2017-10-20

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive β-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  15. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  16. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  17. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  18. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay.

    Science.gov (United States)

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M

    2011-10-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin.

  19. HRP2 and pLDH-Based Rapid Diagnostic Tests, Expert Microscopy, and PCR for Detection of Malaria Infection during Pregnancy and at Delivery in Areas of Varied Transmission: A Prospective Cohort Study in Burkina Faso and Uganda.

    Directory of Open Access Journals (Sweden)

    Daniel J Kyabayinze

    Full Text Available Intermittent screening and treatment (IST of malaria during pregnancy has been proposed as an alternative to intermittent preventive treatment in pregnancy (IPTp, where IPTp is failing due to drug resistance. However, the antenatal parasitaemias are frequently very low, and the most appropriate screening test for IST has not been defined.We conducted a multi-center prospective study of 990 HIV-uninfected women attending ANC in two different malaria transmission settings at Tororo District Hospital, eastern Uganda and Colsama Health Center in western Burkina Faso. Women were enrolled in the study in the second or third trimester of pregnancy and followed to delivery, generating 2,597 blood samples for analysis. Screening tests included rapid diagnostic tests (RDTs targeting histidine-rich protein 2 (HRP2 and parasite lactate dehydrogenase (pLDH and microscopy, compared to nPCR as a reference standard. At enrolment, the proportion of pregnant women who were positive for P. falciparum by HRP2/pan pLDH RDT, Pf pLDH/pan pLDH RDT, microscopy and PCR was 38%, 29%, 36% and 44% in Uganda and 21%, 16%, 15% and 35% in Burkina Faso, respectively. All test positivity rates declined during follow-up. In comparison to PCR, the sensitivity of the HRP2/pan pLDH RDT, Pf pLDH/pan pLDH RDT and microscopy was 75.7%, 60.1% and 69.7% in Uganda, 55.8%, 42.6% and 55.8% in Burkina Faso respectively for all antenatal visits. Specificity was greater than 96% for all three tests. Comparison of accuracy using generalized estimating equation revealed that the HRP2- detecting RDT was the most accurate test in both settings.The study suggests that HRP2-based RDTs are the most appropriate point-of-care test currently available for use during pregnancy especially for symptomatic women, but will still miss some PCR-positive women. The clinical significance of these very low density infections needs to be better defined.

  20. Using the AD12-ICT rapid-format test to detect Wuchereria bancrofti circulating antigens in comparison to Og4C3-ELISA and nucleopore membrane filtration and microscopy techniques.

    Science.gov (United States)

    El-Moamly, Amal Abdul-Rasheed; El-Sweify, Mohamed Aly; Hafez, Mohamad Abdul

    2012-09-01

    Lymphatic filariasis (LF) continues to be a major source of permanent disability and an impediment to socio-economic development in 73 countries where more than 1 billion people are at risk and over 120 millions are infected. The global drive to eliminate LF necessitates an increasing demand for valid, reliable and rapid diagnostic tests. This study aimed to assess the performance of the AD12 rapid format immunochromatographic test (ICT) to detect Wuchereria bancrofti circulating antigens, against the combined gold standard: TropBio Og4C3-ELISA (enzyme-linked immunosorbent assay) which detects circulating filarial antigen (CFA) and the nucleopore membrane filtration and microscopic examination. This prospective case-control study involved 647 asymptomatic migrant workers from filariasis-endemic countries. Of these specimens, 32 were positive for microfilaremia using the membrane filtration and microscopy, 142 positive by ELISA (of which 32 had microfilaremia), and 128 positive by the ICT (of which 31 had microfilaremia). The performance of the ICT was calculated against 32 true-positive and 90 true-negative cases. For the detection of CFA, the ICT had a sensitivity of 97% (95% confidence interval [CI] 91-103), specificity 100% (95% CI 100-100), Positive Predictive Value (PPV) 100% (95% CI 100-100), Negative Predictive Value (NPV) 99% (95% CI 97-101); and the total accuracy of the test was 99% (95% CI 98-101). The agreement between ICT and ELISA in detecting W. bancrofti antigens was excellent (kappa = 0.934; p = 0.000). In conclusion, the AD12-ICT test for the detection of W. bancrofti-CFA was sensitive and specific and comparable to the performance of ELISA. The ICT would be a useful additional test to facilitate the proposed strategies for control and elimination of LF. Because it is rapid, simple to perform, and does not require the use of special equipment, the ICT may be most appropriate in screening programs and in monitoring the possible risk of introducing

  1. Limits to magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Glover, Paul; Mansfield, Peter

    2002-01-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit. (author)

  2. Elucidating the Burden of HIV in Tissues Using Multiplexed Immunofluorescence and In Situ Hybridization: Methods for the Single-Cell Phenotypic Characterization of Cells Harboring HIV In Situ.

    Science.gov (United States)

    Vasquez, Joshua J; Hussien, Rajaa; Aguilar-Rodriguez, Brandon; Junger, Henrik; Dobi, Dejan; Henrich, Timothy J; Thanh, Cassandra; Gibson, Erica; Hogan, Louise E; McCune, Joseph; Hunt, Peter W; Stoddart, Cheryl A; Laszik, Zoltan G

    2018-02-01

    Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.

  3. Single spin stochastic optical reconstruction microscopy

    OpenAIRE

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single quantum emitters by combined optical microscopy and spin resonance techniques. To this end we utilize nitrogen-vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers we are able to simultaneously perform sub diffraction-limit imaging and optically detected spin resonance (ODMR)...

  4. DETECTION OF THE ICHTHYOTOXIC DINOFLAGELLATE GYRODINIUM (CF) AUREOLUM AND MORPHOLOGICALLY RELATED GYMNODINIUM SPECIES USING MONOCLONAL-ANTIBODIES - A SPECIFIC IMMUNOLOGICAL TOOL

    NARCIS (Netherlands)

    VRIELING, EG; PEPERZAK, L; GIESKES, WWC; VEENHUIS, M

    Sixteen monoclonal antibodies which recognize different cell surface antigens of the ichthyotoxic marine dinoflagellate Gyrodinium cf. aureolum were prepared and characterized for use in identification by both immunofluorescence microscopy and flow cytometry. Based on the labeling results obtained

  5. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  6. Development of polyclonal antibodies for the detection of ...

    African Journals Online (AJOL)

    2013-09-11

    month-old male New Zealand rabbits were immunized using .... Immunofluorescence analysis of anti-rHuEPO pAb in CHO cells transfected with pTARGET/EPO. ... erythropoietin gene doping: detection strategies in the genomic era.

  7. International Multidisciplinary Microscopy Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet; InterM; INTERM2013

    2014-01-01

    The International Multidisciplinary Microscopy Congress (INTERM2013) was organized on October 10-13, 2013. The aim of the congress was to bring together scientists from various branches to discuss the latest advances in the field of microscopy. The contents of the congress have been broadened to a more "interdisciplinary" scope, so as to allow all scientists working on related subjects to participate and present their work. These proceedings include 39 peer-reviewed technical papers, submitted by leading academic and research institutions from over 12 countries and representing some of the most cutting-edge research available. The 39 papers are grouped into the following sections: - Applications of Microscopy in the Physical Sciences - Applications of Microscopy in the Biological Sciences

  8. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity

    International Nuclear Information System (INIS)

    Chen Chuang; Li Yan; Peng Jun; Xu Hao; Tang Hongwu; Zhang Zhiling; Pang Daiwen; Xia Heshun; Wu Qiongshui; Zeng Libo; Zhu Xiaobo

    2010-01-01

    Breast cancer (BC) is a heterogeneous tumor, and better understanding of its heterogeneity is essential to improving treatment effect. Quantum dot (QD)-based immunofluorescent nanotechnology (QD-IHC) for molecular pathology has potential advantages in delineating tumor heterogeneity. This potential is explored in this paper by QD-IHC imaging of HER2 and ER. BC heterogeneity can be displayed more clearly and sensitively by QD-IHC than conventional IHC in BC tissue microarrays. Furthermore, the simultaneous imaging of ER and HER2 might help understand their interactions during the process of evolution of heterogeneous BC.

  9. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  10. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  11. Exploitation of immunofluorescence for the quantification and characterization of small numbers of Pasteuria endospores.

    Science.gov (United States)

    Costa, Sofia R; Kerry, Brian R; Bardgett, Richard D; Davies, Keith G

    2006-12-01

    The Pasteuria group of endospore-forming bacteria has been studied as a biocontrol agent of plant-parasitic nematodes. Techniques have been developed for its detection and quantification in soil samples, and these mainly focus on observations of endospore attachment to nematodes. Characterization of Pasteuria populations has recently been performed with DNA-based techniques, which usually require the extraction of large numbers of spores. We describe a simple immunological method for the quantification and characterization of Pasteuria populations. Bayesian statistics were used to determine an extraction efficiency of 43% and a threshold of detection of 210 endospores g(-1) sand. This provided a robust means of estimating numbers of endospores in small-volume samples from a natural system. Based on visual assessment of endospore fluorescence, a quantitative method was developed to characterize endospore populations, which were shown to vary according to their host.

  12. Fidelity imaging for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sayan, E-mail: ghos0087@umn.edu; Salapaka, Murti, E-mail: murtis@umn.edu [Nanodynamics Systems Laboratory, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  13. A Novel High-Content Immunofluorescence Assay as a Tool to Identify at the Single Cell Level γ-Globin Inducing Compounds.

    Directory of Open Access Journals (Sweden)

    Marta Durlak

    Full Text Available The identification of drugs capable of reactivating γ-globin to ameliorate β-thalassemia and Sickle Cell anemia is still a challenge, as available γ-globin inducers still have limited clinical indications. High-throughput screenings (HTS aimed to identify new potentially therapeutic drugs require suitable first-step-screening methods combining the possibility to detect variation in the γ/β globin ratio with the robustness of a cell line. We took advantage of a K562 cell line variant expressing β-globin (β-K562 to set up a new multiplexed high-content immunofluorescence assay for the quantification of γ- and β-globin content at single-cell level. The assay was validated by using the known globin inducers hemin, hydroxyurea and butyric acid and further tested in a pilot screening that confirmed HDACs as targets for γ-globin induction (as proved by siRNA-mediated HDAC3 knockdown and by treatment with HDACs inhibitors entinostat and dacinostat and identified Heme-oxygenases as novel candidate targets for γ-globin induction. Indeed, Heme-oxygenase2 siRNA knockdown as well as its inhibition by Tin protoporphyrin-IX (TinPPIX greatly increased γ-globin expression. This result is particularly interesting as several metalloporphyrins have already been developed for clinical uses and could be tested (alone or in combination with other drugs to improve pharmacological γ-globin reactivation for the treatment of β-hemoglobinopathies.

  14. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovana M B Veronezi

    Full Text Available Valproic acid (VPA, a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC immunofluorescence signals and Fourier transform-infrared (FT-IR microspectroscopy centered on spectral regions related to the vibration of-CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for-CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than-CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.

  15. Isolation, Culture, Functional Assays, and Immunofluorescence of Myofiber-Associated Satellite Cells.

    Science.gov (United States)

    Vogler, Thomas O; Gadek, Katherine E; Cadwallader, Adam B; Elston, Tiffany L; Olwin, Bradley B

    2016-01-01

    Adult skeletal muscle stem cells, termed satellite cells, regenerate and repair the functional contractile cells in adult skeletal muscle called myofibers. Satellite cells reside in a niche between the basal lamina and sarcolemma of myofibers. Isolating single myofibers and their associated satellite cells provides a culture system that partially mimics the in vivo environment. We describe methods for isolating and culturing intact individual myofibers and their associated satellite cells from the mouse extensor digitorum longus muscle. Following dissection and isolation of individual myofibers we provide protocols for myofiber transplantation, satellite cell transfection, immune detection of satellite cell antigens, and assays to examine satellite cell self-renewal and proliferation.

  16. A direct view by immunofluorescent comet assay (IFCA) of DNA damage induced by nicking and cutting enzymes, ionizing (137)Cs radiation, UV-A laser microbeam irradiation and the radiomimetic drug bleomycin.

    Science.gov (United States)

    Grigaravicius, Paulius; Rapp, Alexander; Greulich, Karl Otto

    2009-03-01

    In DNA repair research, DNA damage is induced by different agents, depending on the technical facilities of the investigating researchers. A quantitative comparison of different investigations is therefore often difficult. By using a modified variant of the neutral comet assay, where the histone H1 is detected by immunofluorescence [immunofluorescent comet assay (IFCA)], we achieve previously unprecedented resolution in the detection of fragmented chromatin and show that trillions of ultraviolet A photons (of a few eV), billions of bleomycin (BLM) molecules and thousands of gamma quanta (of 662 keV) generate, in first order, similar damage in the chromatin of HeLa cells. A somewhat more detailed inspection shows that the damage caused by 20 Gy ionizing radiation and by a single laser pulse of 10 microJ are comparable, while the damage caused by 12 microg/ml BLM depends highly on the individual cell. Taken together, this work provides a detailed view of DNA fragmentation induced by different treatments and allows comparing them to some extent, especially with respect to the neutral comet assay.

  17. Performance analysis of automated evaluation of Crithidia luciliae-based indirect immunofluorescence tests in a routine setting - strengths and weaknesses.

    Science.gov (United States)

    Hormann, Wymke; Hahn, Melanie; Gerlach, Stefan; Hochstrate, Nicola; Affeldt, Kai; Giesen, Joyce; Fechner, Kai; Damoiseaux, Jan G M C

    2017-11-27

    Antibodies directed against dsDNA are a highly specific diagnostic marker for the presence of systemic lupus erythematosus and of particular importance in its diagnosis. To assess anti-dsDNA antibodies, the Crithidia luciliae-based indirect immunofluorescence test (CLIFT) is one of the assays considered to be the best choice. To overcome the drawback of subjective result interpretation that inheres indirect immunofluorescence assays in general, automated systems have been introduced into the market during the last years. Among these systems is the EUROPattern Suite, an advanced automated fluorescence microscope equipped with different software packages, capable of automated pattern interpretation and result suggestion for ANA, ANCA and CLIFT analysis. We analyzed the performance of the EUROPattern Suite with its automated fluorescence interpretation for CLIFT in a routine setting, reflecting the everyday life of a diagnostic laboratory. Three hundred and twelve consecutive samples were collected, sent to the Central Diagnostic Laboratory of the Maastricht University Medical Centre with a request for anti-dsDNA analysis over a period of 7 months. Agreement between EUROPattern assay analysis and the visual read was 93.3%. Sensitivity and specificity were 94.1% and 93.2%, respectively. The EUROPattern Suite performed reliably and greatly supported result interpretation. Automated image acquisition is readily performed and automated image classification gives a reliable recommendation for assay evaluation to the operator. The EUROPattern Suite optimizes workflow and contributes to standardization between different operators or laboratories.

  18. Validation of tumor protein marker quantification by two independent automated immunofluorescence image analysis platforms

    Science.gov (United States)

    Peck, Amy R; Girondo, Melanie A; Liu, Chengbao; Kovatich, Albert J; Hooke, Jeffrey A; Shriver, Craig D; Hu, Hai; Mitchell, Edith P; Freydin, Boris; Hyslop, Terry; Chervoneva, Inna; Rui, Hallgeir

    2016-01-01

    Protein marker levels in formalin-fixed, paraffin-embedded tissue sections traditionally have been assayed by chromogenic immunohistochemistry and evaluated visually by pathologists. Pathologist scoring of chromogen staining intensity is subjective and generates low-resolution ordinal or nominal data rather than continuous data. Emerging digital pathology platforms now allow quantification of chromogen or fluorescence signals by computer-assisted image analysis, providing continuous immunohistochemistry values. Fluorescence immunohistochemistry offers greater dynamic signal range than chromogen immunohistochemistry, and combined with image analysis holds the promise of enhanced sensitivity and analytic resolution, and consequently more robust quantification. However, commercial fluorescence scanners and image analysis software differ in features and capabilities, and claims of objective quantitative immunohistochemistry are difficult to validate as pathologist scoring is subjective and there is no accepted gold standard. Here we provide the first side-by-side validation of two technologically distinct commercial fluorescence immunohistochemistry analysis platforms. We document highly consistent results by (1) concordance analysis of fluorescence immunohistochemistry values and (2) agreement in outcome predictions both for objective, data-driven cutpoint dichotomization with Kaplan–Meier analyses or employment of continuous marker values to compute receiver-operating curves. The two platforms examined rely on distinct fluorescence immunohistochemistry imaging hardware, microscopy vs line scanning, and functionally distinct image analysis software. Fluorescence immunohistochemistry values for nuclear-localized and tyrosine-phosphorylated Stat5a/b computed by each platform on a cohort of 323 breast cancer cases revealed high concordance after linear calibration, a finding confirmed on an independent 382 case cohort, with concordance correlation coefficients >0

  19. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  20. Robust tumor morphometry in multispectral fluorescence microscopy

    Science.gov (United States)

    Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo

    2009-02-01

    Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.

  1. A Comparison of Anti-Nuclear Antibody Quantification Using Automated Enzyme Immunoassays and Immunofluorescence Assays

    DEFF Research Database (Denmark)

    Baronaite, Renata; Engelhart, Merete; Mørk Hansen, Troels

    2014-01-01

    using IFA and automated EIA techniques. The IFA results generated by two independent laboratories were compared with the EIA results from antibodies against double-stranded DNA (dsDNA), from ANA screening, and from tests of the seven included subantigens. The final IFA and EIA results for 386 unique......, with Cohen's kappa value of 0.30 (95% confidence interval (CI) = 0.14-0.46), which decreased to 0.23 (95% CI = 0.06-0.40) when the results for dsDNA were omitted. The EIA method was less reliable for assessing nuclear and speckled reactivity patterns, whereas the IFA method presented difficulties detecting...... dsDNA and Ro activity. The automated EIA method was performed in a similar way to the conventional IFA method using HEp-2 cells; thus, automated EIA may be used as a screening test....

  2. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  3. Leakage radiation interference microscopy.

    Science.gov (United States)

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  4. Using immunoglobulin Y as an alternative antibody for the detection of hepatitis A virus in frozen liver sections

    Directory of Open Access Journals (Sweden)

    Gentil Arthur Bentes

    2015-06-01

    Full Text Available An increasing amount of research has been conducted on immunoglobulin Y (IgY because the use of IgY offers several advantages with respect to diagnostic testing, including its easy accessibility, low cost and translatability to large-scale production, in addition to the fact that it can be ethically produced. In a previous work, immunoglobulin was produced and purified from egg yolks (IgY reactive to hepatitis A virus (HAV antigens. In the present work, this anti-HAV-specific IgY was used in an indirect immunofluorescence assay to detect viral antigens in liver biopsies that were obtained from experimentally infected cynomolgus monkeys. Fields that were positive for HAV antigen were detected in liver sections using confocal microscopy. In conclusion, egg yolks from immunised hens may be a reliable source for antibody production, which can be employed for immunological studies.

  5. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  6. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  7. Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating chlorinated hydrocarbon degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Franck, M.M.; Brey, J.; Fliermans, C.B. [Westinghouse Savannah River, Aiken, SC (United States). Environmental Biotechnology Section; Scott, D.; Lanclos, K. [Medical Coll. of Georgia, Augusta, GA (United States)

    1997-06-01

    Immunological procedures were developed to enumerate chlorinated hydrocarbon degrading bacteria. Polyclonal antibodies (Pabs) were produced by immunizing New Zealand white rabbits against 18 contaminant-degrading bacteria. These included methanotrophic and chlorobenzene (CB) degrading species. An enzyme-linked immunosorbent assay (ELISA) was used to test for specificity and sensitivity of the Pabs. Direct fluorescent antibodies (DFAs) were developed with these Pabs against select methanotrophic bacteria isolated from a trichloroethylene (TCE) contaminated landfill at the Savannah River Site (SRS) and cultures from the American Type Culture Collection (ATCC). Analysis of cross reactivity testing data showed some of the Pabs to be group specific while others were species specific. The threshold of sensitivity for the ELISA is 105 bacteria cells/ml. The DFA can detect as few as one bacterium per ml after concentration. Results from the DFA and ELISA techniques for enumeration of methanotrophic bacteria in groundwater were higher but not significantly different (P < 0.05) compared to indirect microbiological techniques such as MPN. These methods provide useful information on in situ community structure and function for bioremediation applications within 1--4 hours of sampling.

  8. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  9. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  10. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  11. Dual-color immunofluorescent labeling with quantum dots of the diabetes-associated proteins aldose reductase and Toll-like receptor 4 in the kidneys of diabetic rats

    Directory of Open Access Journals (Sweden)

    Liu XM

    2015-05-01

    sensitivity and specificity for the detection of biomarkers in cells and tissues, but also is a valuable supplement of immunohistochemistry. The QD-based multiplexed imaging technology provides a new insight into the mechanistic study of the correlation among biological factors as well as having potential applications in the diagnosis and treatment of diseases. Keywords: diabetic nephropathy, TLR4, immunofluorescence, immunohistochemistry

  12. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  13. Electron microscopy in metallurgy

    International Nuclear Information System (INIS)

    Loretto, M.H.

    1980-01-01

    The aim of this paper is to review briefly the contribution which (TEM) transmission electron microscopy (including high voltage electron microscopy (HVEM)) has made to metallurgy. Since it is straightforward with modern electron microscopes to extract the crystallographic information which provides the basis for any interpretation, the major problem in most metallurgical work lies in assessing how the structure (which TEM has characterised) has arisen and which properties of the specimen can be understood in terms of this structure. Radiation damage, quenching, phase transformations, grain boundaries and plastic deformation have been the main fields in which TEM has contributed significantly. After briefly summarising the role of TEM in each field, examples of recent work will be used to indicate current TEM activity in physical metallurgy. (author)

  14. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward...... scattered SHG light reveal complementary features of the structures of myofibers and collagen fibers. Upon heating the myofibers show no structural changes before reaching a temperature of 53 °C. At this temperature the SHG signal becomes extinct. The extinction of the SHG at 53 °C coincides with a low......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...

  15. Electron microscopy and diffraction

    International Nuclear Information System (INIS)

    Gjoennes, J.; Olsen, A.

    1986-01-01

    This report is a description of research activities and plans at the electron microscopy laboratorium, Physics Department, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  16. Deep Learning Microscopy

    KAUST Repository

    Rivenson, Yair

    2017-05-12

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.

  17. Active Pixel Sensors for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Denes, P. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: pdenes@lbl.gov; Bussat, J.-M. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lee, Z.; Radmillovic, V. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2007-09-01

    The technology used for monolithic CMOS imagers, popular for cell phone cameras and other photographic applications, has been explored for charged particle tracking by the high-energy physics community for several years. This technology also lends itself to certain imaging detector applications in electron microscopy. We have been developing such detectors for several years at Lawrence Berkeley National Laboratory, and we and others have shown that this technology can offer excellent point-spread function, direct detection and high readout speed. In this paper, we describe some of the design constraints peculiar to electron microscopy and summarize where such detectors could play a useful role.

  18. Asymptomatic Plasmodium falciparum infection is associated with anaemia in pregnancy and can be more cost-effectively detected by rapid diagnostic test than by microscopy in Kinshasa, Democratic Republic of the Congo.

    Science.gov (United States)

    Matangila, Junior R; Lufuluabo, Jean; Ibalanky, Axel L; Inocêncio da Luz, Raquel A; Lutumba, Pascal; Van Geertruyden, Jean-Pierre

    2014-04-02

    In areas of high malaria transmission, Plasmodium falciparum infection during pregnancy is characterized by malaria-related anaemia, placental malaria and does not always result in clinical symptoms. This situation is associated with poor pregnancy outcomes. The aim of this study was to determine the extent of asymptomatic P. falciparum infection, its relation with anaemia as well as the most cost-effective technique for its diagnosis in healthy pregnant women living in Kinshasa, Democratic Republic of the Congo. In a cross-sectional study design, information on socio-demographic characteristics and cost data were collected in healthy pregnant women attending antenatal care consultations. Plasmodium falciparum infection was diagnosed using rapid diagnostic test (RDT), microscopy and polymerase chain reaction (PCR). Haemoglobin concentration was also determined. In total, 332 pregnant women were enrolled. RDT and microscopy data were available for all the blood samples and 166 samples were analysed by PCR. The prevalence of asymptomatic P. falciparum infection using microscopy, RDTs and PCR, were respectively 21.6%, 27.4% and 29.5%. Taking PCR as a reference, RDTs had a sensitivity of 81.6% and a specificity of 94.9% to diagnose asymptomatic P. falciparum infection. The corresponding values for microscopy were 67.3% and 97.4%. The prevalence of anaemia was 61.1% and asymptomatic malaria increased five times the odds (p anaemia. RDTs were more cost-effective compared to microscopy. Incremental cost-effectiveness ratio was US$ 63.47 per microscopy adequately diagnosed case. These alarming results emphasize the need to actively diagnose and treat asymptomatic malaria infection during all antenatal care visits. Moreover, in DRC, malaria and anaemia control efforts should be strengthened by promoting the use of insecticide-treated nets, intermittent preventive treatment with sulphadoxine-pyrimethamine and iron and folic acid supplements.

  19. Oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics: Immunofluorescent localization in the mouse hypothalamus.

    Science.gov (United States)

    Anderson, Brian M; Jacobson, Lauren; Novakovic, Zachary M; Grasso, Patricia

    2017-06-01

    This study describes the localization of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics, in the hypothalamus of Swiss Webster and C57BL/6J wild-type mice, leptin-deficient ob/ob mice, and leptin-resistant diet-induced obese (DIO) mice. The mice were given [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in 0.3% dodecyl maltoside by oral gavage. Once peak serum concentrations were reached, the mice received a lethal dose of pentobarbital and were subjected to intracardiac perfusion fixation. The brains were excised, post-fixed in paraformaldehyde, and cryo-protected in sucrose. Free-floating frozen coronal sections were cut at 25-µm and processed for imaging by immunofluorescence microscopy. In all four strains of mice, dense staining was concentrated in the area of the median eminence, at the base and/or along the inner wall of the third ventricle, and in the brain parenchyma at the level of the arcuate nucleus. These results indicate that [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 cross the blood-brain barrier and concentrate in an area of the hypothalamus known to regulate energy balance and glucose homeostasis. Most noteworthy is the localization of [D-Leu-4]-OB3 immunoreactivity within the hypothalamus of DIO mice via a conduit that is closed to leptin in this rodent model, and in most cases of human obesity. Together with our previous studies describing the effects of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on energy balance, glucose regulation, and signal transduction pathway activation, these findings are consistent with a central mechanism of action for these synthetic peptide leptin mimetics, and suggest their potential usefulness in the management of leptin-resistant obesity and type 2 diabetes in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  1. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    OpenAIRE

    Malika M.A.; Majchrzak K.; Braszczyńska-Malik K.N.

    2013-01-01

    Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

  2. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Malika M.A.

    2013-03-01

    Full Text Available Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

  3. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  4. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  5. Application of 125I-labelled soluble proteins in the histoautoradiographic detection of antigen and antibodies in the spleen of rabbits during primary immune response

    International Nuclear Information System (INIS)

    Rodak, L.

    1975-01-01

    An autoradiographic method for detecting soluble antigen (chicken serum albumin, CSA) and specific antibodies in the spleen of rabbits during a primary immune response is described. The method consists of incubating sections from the spleen with 125 I-labelled IgG 2 anti CSA (for demonstration of antigen) or with 125 I-labelled antigen (for demonstration of specific antibodies). This treatment of histological sections combines the advantages and principles of the immunofluorescence technique with the possibility of evaluating the exact localization of the proteins by light microscopy in preparations stained with haematoxylin or methyl green-pyronin. The sensitivity of detection is very high: both antigen and antibodies could be demonstrated in the spleen follicles for as long as 42 days after the primary intravenous injection

  6. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    Science.gov (United States)

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  7. Invited Review Article: Pump-probe microscopy

    Science.gov (United States)

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  8. Invited Review Article: Pump-probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Martin C., E-mail: Martin.Fischer@duke.edu; Wilson, Jesse W.; Robles, Francisco E. [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Warren, Warren S. [Departments of Chemistry, Biomedical Engineering, Physics, and Radiology, Duke University, Durham, North Carolina 27708 (United States)

    2016-03-15

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  9. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  10. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  11. Direct immunofluorescence assay compared to cell culture for the diagnosis of mucocutaneous herpes simplex virus infections in children.

    Science.gov (United States)

    Caviness, A Chantal; Oelze, Lindsay L; Saz, Ulas E; Greer, Jewel M; Demmler-Harrison, Gail J

    2010-09-01

    Direct immunofluorescence assay (DFA) is commonly used for the rapid identification of herpes simplex virus (HSV) infection in mucocutaneous lesions, yet little is known about its diagnostic accuracy. To determine the diagnostic yield and accuracy of HSV DFA for the diagnosis of mucocutaneous HSV infection in pediatric patients. Retrospective cross-sectional study of all patients who underwent HSV DFA testing by the Texas Children's Hospital Diagnostic Virology between January 1, 1995 and December 31, 2005. HSV DFA sensitivity, specificity, positive likelihood ratio (LRs), and negative LRs were estimated using viral culture as the reference standard. 659 specimens were submitted for HSV DFA with concurrent viral cultures. Viral cultures were positive for HSV type 1 in 158 (24%) and HSV type 2 in 2 (0.3%). There were 433 different patients with a median age of 8.6 years. Types of lesions were as follows: 50% ulcerative, 26% vesicular, 8% erythema or purpura, 5% pustular, and 11% missing. Of the 659 specimens submitted for HSV DFA, 160 (24%) were inconclusive due to inadequate cells. Of the 499 adequate specimens, overall HSV DFA test accuracy was: sensitivity 61%, specificity 99%, LR positive 40, and LR negative 0.39. A quarter of specimens submitted for HSV DFA testing are not adequate for DFA testing. When HSV DFA can be performed, it is specific, but not sensitive, for the identification of mucocutaneous HSV infection in children. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Immunofluorescent histological studies of the role of fibronectin in the expression of the associative preferences of embryonic tissues.

    Science.gov (United States)

    Armstrong, P B; Armstrong, M T

    1981-08-01

    The identity of the chemical factors controlling the spreading behaviour of sheets of cells was examined in organ culture. When aggregates of two dissimilar tissues are apposed in organ culture, one tissue spreads reproducibly over the surface of the second. The present study employed indirect immunofluorescent localization techniques to evaluate the hypothesis that the spreading behaviour of chick embryonic heart tissue in culture is dominated by the presence or absence of the cell-surface and extracellular matrix protein fibronectin in the surface layers of the aggregates. Specifically, the hypothesis proposes that aggregates that display surface fibronectin earlier after culturing and/or in higher quantities segregate internally to aggregates that are slower to develop a surface layer of fibronectin or in which this layer contains reduced amounts of fibronectin. The hypothesis has been supported for 3 categories of behaviour of chick embryo heart tissue: (1) myocyte aggregates spread over myocyte aggregates containing a 20% admixture of heart fibroblasts, which in turn spread over heart fibroblast aggregates; (2) 5-day embryonic ventricle-tissue fragments maintained in culture for 0.5 days spread over ventricle fragments cultured for 2.5 days; and (3) 2-day embryonic ventricle spreads over 5-day ventricle. In all these situations, the aggregate type that segregates to an internal position displays more fibronectin at its surface than aggregate types that spread to occupy an external position. Evidence is presented that the fibronectin in heart tissue aggregates is elaborated by heart fibroblasts.

  13. Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy.

    Directory of Open Access Journals (Sweden)

    Masahito Asada

    Full Text Available BACKGROUND: Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed "gliding motility". However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs, and gliding motility has so far not been observed in the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. CONCLUSIONS/SIGNIFICANCE: This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding.

  14. Flow Cytometry Detection of Infectious Rotaviruses in Environmental and Clinical Samples

    Science.gov (United States)

    Abad, F. Xavier; Pintó, Rosa M.; Bosch, Albert

    1998-01-01

    A method for the detection of infectious human rotaviruses based on infection of CaCo-2 cells and detection of infected cells by indirect immunofluorescence and flow cytometry (IIF-FC) has been developed. The technique was validated by performing a seminested reverse transcription-PCR assay with sorted cell populations. The efficiency of the procedure has been compared with that of the standard method of infection of MA104 cells and ulterior detection by IIF and optical microscopy (IIF-OM) and with that of infection of MA104 cells and detection by IIF-FC. The limit of sensitivity for the detection of the cell-adapted strain Itor P13, expressed as the most probable number of cytopathogenic units, was established as 200 and 2 for MA104 and CaCo-2 cells, respectively, by the IIF-FC method. The ratio of infectious virus particles to total virus particles for a wild-type rotavirus was determined to be 1/2 × 106 and 1/2 × 104 for IIF-OM with MA104 cells and IIF-FC with CaCo-2 cells, respectively. The use of IIF-FC with CaCo-2 cells was tested with fecal and water samples and proved to be more effective than the standard procedure for rotavirus detection. PMID:9647805

  15. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...... microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  16. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  17. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  18. Hyperspectral light sheet microscopy

    Science.gov (United States)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  19. HEMORRHAGIC-FEVER VIRUS-INFECTIONS IN AN ISOLATED RAIN-FOREST AREA OF CENTRAL LIBERIA - LIMITATIONS OF THE INDIRECT IMMUNOFLUORESCENCE SLIDE TEST FOR ANTIBODY SCREENING IN AFRICA

    NARCIS (Netherlands)

    van der Waals, F. W.; Pomeroy, K. L.; Goudsmit, J.; Asher, D. M.; Gajdusek, D. C.

    1986-01-01

    Serum samples from 119 healthy individuals and 106 epilepsy patients inhabiting Grand Bassa County, Liberia, were tested for antibodies to hemorrhagic fever viruses (HFV) by indirect immunofluorescence. E6 Vero cells infected with Lassa fever virus (LAS), Rift Valley Fever virus (RVF), Congo

  20. Longitudinal study of the indirect immunofluorescence and complement fixation tests for diagnosis of chagas' disease in immunosuppressed patients submitted to renal transplantation

    Directory of Open Access Journals (Sweden)

    José Fernando de Castro Figueiredo

    1993-12-01

    Full Text Available Clinical and serological follow-up of 7 patients submitted to renal transplantation and presenting positive serological reactions to Chagas 'disease before immunossupression did not show significant changes in indirect immunofluorescence and complement fixation titres for Chagas ' disease, or signs and symptoms indicating exacerbation of the disease during follow- up. In addition, 18 of 66 recipients of renal transplants considered to be non-chagasic before immunosuppression showed at least one positive result to the indirect immunofluorescence test for Chagas ' disease during the study period. The results suggest that the immunosuppression State induced in chagasic patients submitted to renal transplant did notpromoted exacerbation of the chronic infection in these patients and not interfere with the serological response of chronic chagasics, thus permitting the use of these serologic reactions for diagnostic purposes in these cases. However, the positive results ofthe indirect immunofluorescence test in non- chagasic patients indicate the needforjudicious interpretation ofthe indirect immunofluorescence test for the diagnosis of Chagas' disease in renal transplanted patients.

  1. Charge gradient microscopy

    Science.gov (United States)

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  2. Green Approach To Synthesize Crystalline Nanoscale ZnII-Coordination Polymers: Cell Growth Inhibition and Immunofluorescence Study.

    Science.gov (United States)

    Mukherjee, Somali; Ganguly, Sumi; Manna, Krishnendu; Mondal, Sanchaita; Mahapatra, Supratim; Das, Debasis

    2018-04-02

    Five new coordination polymers (CPs) namely, [{Zn(μ 2 -H 2 O) 0.5 (5N 3 -IPA)(2,2'-bpe)}] ∞ (1), [{Zn(μ 2 -H 2 O) 0.5 (5N 3 -IPA)(1,10-phen)}] ∞ (2), [{Zn(5N 3 -IPA)(1,2-bpe)}] ∞ (3), [{Zn(5N 3 -IPA)(1,2-bpey)}] ∞ (4), and [{Zn(H 2 O)(5N 3 -IPA)(4,4'-tme)}(H 2 O) 0.5 ] ∞ (5) (5N 3 -H 2 IPA = 5-azidoisophthalic acid, 2,2'-bpe= 2,2'-bipyridine, 1,10-phen = 1,10-phenanthroline, 1,2-bpe = 1,2-bis(4-pyridyl)ethane, 1,2-bpey = 1,2-bis(4-pyridyl)ethylene, 4,4'-tme = 4,4'-trimethylenedipyridine), have been synthesized based on a mixed ligand approach adopting a solvothermal technique. Depending upon the intrinsic structural flexibility of the bis-pyridyl coligands, interesting structural topologies have also been observed in the resulting CPs: Sra SrAl2 type topology for 3 and a 3-fold interpenetrated dmp topology for 4. A green hand grinding technique has been implemented to reduce the particle size of the CPs to generate nanoscale CPs (NCPs). SEM studies of NCPs reveal the formation of square and spherical particles for NCP 1 and 2, respectively, and nano rod for NCP 3, 4, and 5. Remarkably, when scaled down to nano range all the NCPs retain their crystalline nature. The cytotoxic activity of the NCPs (1-5) has been studied using human colorectal carcinoma cells (HCT 116). Significant cell death is observed for NCP 2, which is further corroborated by cell growth inhibition study. The observed cell death is likely to be due to mitochondrial-assisted apoptosis as is evident from immunofluorescence study.

  3. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  4. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    Science.gov (United States)

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  5. Electron microscopy (nonbiological)

    International Nuclear Information System (INIS)

    Cowley, J.M.

    1986-01-01

    The period 1982-1985, which is covered by this review, has seen major advances in the capabilities of the commercially available instruments. The new electron microscopes operating in the range of 300-400 keV have provided important improvements in the resolution available and in the possibilities for microanalysis of very small specimen areas. Correspondingly there has been a broadening in the range of possible applications of the techniques. Electron microscopy has become a much more powerful tool for studies of semiconductors and catalysts, for example, and offers promise of a major revolution in surface science. The major industrial laboratories, in particular, are investing in million-dollar instruments and in the highly skilled scientists needed to run them because the capabilities of the new instruments are seen to have immediate practical applications to current industrial research. Unfortunately all of the new instruments and most of the skilled users come from overseas. The American instrument industry, although showing some limited signs of life, is not yet in a position to compete in this lucrative market and the training of electron optics specialists in this country is far from meeting the demand. The increased sophistication required for both the operation of the instruments and the interpretation of the observation requires that the quality as well as the quantity of trainees must be improved. 62 references

  6. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  7. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  8. Transmission acoustic microscopy investigation

    Science.gov (United States)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  9. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    Science.gov (United States)

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  10. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  11. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  12. Comparison of Assays for Sensitive and Reproducible Detection of Cell Culture-Infectious Cryptosporidium parvum and Cryptosporidium hominis in Drinking Water

    Science.gov (United States)

    Di Giovanni, George D.; Rochelle, Paul A.

    2012-01-01

    This study compared the three most commonly used assays for detecting Cryptosporidium sp. infections in cell culture: immunofluorescent antibody and microscopy assay (IFA), PCR targeting Cryptosporidium sp.-specific DNA, and reverse transcriptase PCR (RT-PCR) targeting Cryptosporidium sp.-specific mRNA. Monolayers of HCT-8 cells, grown in 8-well chamber slides or 96-well plates, were inoculated with a variety of viable and inactivated oocysts to assess assay performance. All assays detected infection with low doses of flow cytometry-enumerated Cryptosporidium parvum oocysts, including infection with one oocyst and three oocysts. All methods also detected infection with Cryptosporidium hominis. The RT-PCR assay, IFA, and PCR assay detected infection in 23%, 25%, and 51% of monolayers inoculated with three C. parvum oocysts and 10%, 9%, and 16% of monolayers inoculated with one oocyst, respectively. The PCR assay was the most sensitive, but it had the highest frequency of false positives with mock-infected cells and inactivated oocysts. IFA was the only infection detection assay that did not produce false positives with mock-infected monolayers. IFA was also the only assay that detected infections in all experiments with spiked oocysts recovered from Envirochek capsules following filtration of 1,000 liters of treated water. Consequently, cell culture with IFA detection is the most appropriate method for routine and sensitive detection of infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. PMID:22038611

  13. Electronic Blending in Virtual Microscopy

    Science.gov (United States)

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  14. Detection of membrane-bound and soluble antigens by magnetic levitation

    DEFF Research Database (Denmark)

    Andersen, Mikkel Schou; Howard, Emily; Lu, Shulin

    2017-01-01

    blood cell-bound Epstein-Barr viral particles, and soluble IL-6, and validate the results by flow cytometry and immunofluorescence microscopy performed in parallel. Additionally, employing an inexpensive, single lens, manual focus, wifi-enabled camera, we extend the portability of our method for its...

  15. Probing graphene defects and estimating graphene quality with optical microscopy

    International Nuclear Information System (INIS)

    Lai, Shen; Kyu Jang, Sung; Jae Song, Young; Lee, Sungjoo

    2014-01-01

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality

  16. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  17. Microscopy as a diagnostic tool in pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Ritu Singhal

    2015-01-01

    Full Text Available Tuberculosis continues to cast a huge impact on humanity with its high incidence and mortality, especially in developing countries. For tuberculosis case detection, microscopy continues to be indispensible, given its low cost, rapidity, simplicity of procedure and high specificity. Modifications have attempted to improve the sensitivity of microscopy which include: concentration methods such as centrifugation, N-acetyl cysteine–sodium hydroxide, bleach, ammonium sulfate or chitin. Furthermore, classical Ziehl–Neelsen (ZN staining has been subjected to varying carbol fuchsin concentrations or replaced by Kinyoun staining, fluorescent microscopy or immune-fluorescence. Currently, light emitting diode fluorescence is recognizably the most plausible method as an alternative to ZN staining.

  18. Microscopy techniques in flavivirus research.

    Science.gov (United States)

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. An automated image analysis framework for segmentation and division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy

    Science.gov (United States)

    Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.

    2016-10-01

    Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.

  20. Rapid analysis and exploration of fluorescence microscopy images.

    Science.gov (United States)

    Pavie, Benjamin; Rajaram, Satwik; Ouyang, Austin; Altschuler, Jason M; Steininger, Robert J; Wu, Lani F; Altschuler, Steven J

    2014-03-19

    Despite rapid advances in high-throughput microscopy, quantitative image-based assays still pose significant challenges. While a variety of specialized image analysis tools are available, most traditional image-analysis-based workflows have steep learning curves (for fine tuning of analysis parameters) and result in long turnaround times between imaging and analysis. In particular, cell segmentation, the process of identifying individual cells in an image, is a major bottleneck in this regard. Here we present an alternate, cell-segmentation-free workflow based on PhenoRipper, an open-source software platform designed for the rapid analysis and exploration of microscopy images. The pipeline presented here is optimized for immunofluorescence microscopy images of cell cultures and requires minimal user intervention. Within half an hour, PhenoRipper can analyze data from a typical 96-well experiment and generate image profiles. Users can then visually explore their data, perform quality control on their experiment, ensure response to perturbations and check reproducibility of replicates. This facilitates a rapid feedback cycle between analysis and experiment, which is crucial during assay optimization. This protocol is useful not just as a first pass analysis for quality control, but also may be used as an end-to-end solution, especially for screening. The workflow described here scales to large data sets such as those generated by high-throughput screens, and has been shown to group experimental conditions by phenotype accurately over a wide range of biological systems. The PhenoBrowser interface provides an intuitive framework to explore the phenotypic space and relate image properties to biological annotations. Taken together, the protocol described here will lower the barriers to adopting quantitative analysis of image based screens.

  1. Fluorescence confocal microscopy for pathologists.

    Science.gov (United States)

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  2. Electron microscopy of atmospheric particles

    Science.gov (United States)

    Huang, Po-Fu

    Electron microscopy coupled with energy dispersive spectrometry (EM/EDS) is a powerful tool for single particle analysis. However, the accuracy with which atmospheric particle compositions can be quantitatively determined by EDS is often hampered by substrate-particle interactions, volatilization losses in the low pressure microscope chamber, electron beam irradiation and use of inaccurate quantitation factors. A pseudo-analytical solution was derived to calculate the temperature rise due to the dissipation of the electron energy on a particle-substrate system. Evaporative mass loss for a spherical cap-shaped sulfuric acid particle resting on a thin film supported by a TEM grid during electron beam impingement has been studied. Measured volatilization rates were found to be in very good agreement with theoretical predictions. The method proposed can also be used to estimate the vapor pressure of a species by measuring the decay of X-ray intensities. Several types of substrates were studied. We found that silver-coated silicon monoxide substrates give carbon detection limits comparable to commercially available substrates. An advantage of these substrates is that the high thermal conductivity of the silver reduces heating due to electron beam impingement. In addition, exposure of sulfuric acid samples to ammonia overnight substantially reduces sulfur loss in the electron beam. Use of size-dependent k-factors determined from particles of known compositions shows promise for improving the accuracy of atmospheric particle compositions measured by EM/EDS. Knowledge accumulated during the course of this thesis has been used to analyze atmospheric particles (Minneapolis, MN) selected by the TDMA and collected by an aerodynamic focusing impactor. 'Less' hygroscopic particles, which do not grow to any measurable extent when humidified to ~90% relative humidity, included chain agglomerates, spheres, flakes, and irregular shapes. Carbon was the predominant element detected in

  3. Method development for analysis of urban dust using scanning electron microscopy with energy dispersive x-ray spectrometry to detect the possible presence of world trade center dust constituents

    Science.gov (United States)

    Bern, A.M.; Lowers, H.A.; Meeker, G.P.; Rosati, J.A.

    2009-01-01

    The collapse of the World Trade Center Towers on September 11, 2001, sent dust and debris across much of Manhattan and in the surrounding areas. Indoor and outdoor dust samples were collected and characterized by U.S. Geological Survey (USGS) scientists using scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS). From this characterization, the U.S. Environmental Protection Agency and USGS developed a particulate screening method to determine the presence of residual World Trade Center dust in the indoor environment using slag wool as a primary "signature". The method describes a procedure that includes splitting, ashing, and sieving of collected dust. From one split, a 10 mg/mL dust/ isopropanol suspension was prepared and 10-30 ??L aliquots of the suspension placed on an SEM substrate. Analyses were performed using SEM/EDS manual point counting for slag wool fibers. Poisson regression was used to identify some of the sources of uncertainty, which are directly related to the small number of fibers present on each sample stub. Preliminary results indicate that the procedure is promising for screening urban background dust for the presence of WTC dust. Consistent sample preparation of reference materials and samples must be performed by each laboratory wishing to use this method to obtain meaningful and accurate results. ?? 2009 American Chemical Society.

  4. Application of the methods of scanning electron microscopy and X-ray microanalysis for 'hot particles' detection in the human lungs formed as a result of the Chernobyl accident

    International Nuclear Information System (INIS)

    Reva, Yu.P.; Portyanko, N.M.; Ivanov, A.S.; Chuchalin, A.G.

    1993-01-01

    The up-to-date approaches to 'hot particles' studying were applied in this investigation. A complex of morphological and physical-chemical methods make it possible to detect and identify the 'hot particles' in the autopsy material of the lungs from 2 males at the age 27 and 25, who participated in the liquidation of Chernobyl katastrophe consequences in 1986. The elemental and isotope content of these particles was the same as that of the 'hot particles' detected in the zone of the katstrophe. The results obtained make it possible to suppose that the 'hot particles' have been inhaled and existed for a long time in the human bodies. On the basis of these data we suppose that the 'hot particle' are the cause of respiratory and other systems disorders

  5. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...... erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes....

  6. Magnetic Resonance Microscopy for Assessment of Morphological Changes in Hydrating Hydroxypropylmethylcellulose Matrix Tablets In Situ–Is it Possible to Detect Phenomena Related to Drug Dissolution Within the Hydrated Matrices?

    OpenAIRE

    Kulinowski, Piotr; Młynarczyk, Anna; Jasiński, Krzysztof; Talik, Przemysław; Gruwel, Marco L. H.; Tomanek, Bogusław; Węglarz, Władysław P.; Dorożyński, Przemysław

    2014-01-01

    ABSTRACT Purpose So far, the hydrated part of the HPMC matrix has commonly been denoted as a “gel” or “pseudogel” layer. No MRI-based results have been published regarding observation of internal phenomena related to drug dissolution inside swelling polymeric matrices during hydration. The purpose of the study was to detect such phenomena. Methods Multiparametric, spatially and temporally resolved T2 MR relaxometry, in situ, was applied to study formation of the hydration progress in HPMC mat...

  7. Scanning Tunneling Microscopy - image interpretation

    International Nuclear Information System (INIS)

    Maca, F.

    1998-01-01

    The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique

  8. Rapid Detection and Enumeration of Giardia lamblia Cysts in Water Samples by Immunomagnetic Separation and Flow Cytometric Analysis ▿ †

    Science.gov (United States)

    Keserue, Hans-Anton; Füchslin, Hans Peter; Egli, Thomas

    2011-01-01

    Giardia lamblia is an important waterborne pathogen and is among the most common intestinal parasites of humans worldwide. Its fecal-oral transmission leads to the presence of cysts of this pathogen in the environment, and so far, quantitative rapid screening methods are not available for various matrices, such as surface waters, wastewater, or food. Thus, it is necessary to establish methods that enable reliable rapid detection of a single cyst in 10 to 100 liters of drinking water. Conventional detection relies on cyst concentration, isolation, and confirmation by immunofluorescence microscopy (IFM), resulting in low recoveries and high detection limits. Many different immunomagnetic separation (IMS) procedures have been developed for separation and cyst purification, so far with variable but high losses of cysts. A method was developed that requires less than 100 min and consists of filtration, resuspension, IMS, and flow cytometric (FCM) detection. MACS MicroBeads were used for IMS, and a reliable flow cytometric detection approach was established employing 3 different parameters for discrimination from background signals, i.e., green and red fluorescence (resulting from the distinct pattern emitted by the fluorescein dye) and sideward scatter for size discrimination. With spiked samples, recoveries exceeding 90% were obtained, and false-positive results were never encountered for negative samples. Additionally, the method was applicable to naturally occurring cysts in wastewater and has the potential to be automated. PMID:21685159

  9. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  10. Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry.

    Science.gov (United States)

    Lee, Keon-Cheol; Sharma, Seema; Tuttle, Jeremy B; Steers, William D

    2010-10-01

    Autonomic innervation of urethral smooth muscle may influence urinary continence after prostatectomy. It is unclear whether the cavernous nerves carry fibers that influence continence. Using a retrograde axonal tracer combined with real-time in vivo imaging and ex vivo immunohistochemistry we determined the course and type of neurons supplying urethral smooth muscle distal to the prostate in the rat. We injected the retrograde axonal tracers cholera toxin B fragment-Alexa Fluor 488 and Fast Blue in the distal urethral smooth muscle in 10 rats each. Five days later the cavernous nerves and pelvic ganglion were imaged using fiberoptic confocal fluorescence microscopy (cholera toxin B fragment-Alexa Fluor 488) or harvested for immunohistochemistry (Fast Blue). Dual immunofluorescence of Fast Blue neurons with tyrosine hydroxylase or neuronal nitric oxide synthase was done to characterize neurons as noradrenergic or nitrergic. To ascertain whether the cavernous nerves contain fibers to the urethra that originate in the pelvic ganglia we cut the cavernous nerves with their ancillary branches in 3 rats and imaged them for Fast Blue. Fluorescent neurons and axons were detected in cavernous nerves and the pelvic ganglion. Few neurons were seen in rats with cavernous nerve section. Of urethral neurons 53.1% showed neuronal nitric oxide synthase positivity while 40.6% were immunoreactive for tyrosine hydroxylase. About 6.2% of urethral neurons failed to show tyrosine hydroxylase or neuronal nitric oxide synthase immunoreactivity. Most of the autonomic innervation to the urethra beyond the prostatic apex travels in the cavernous nerves. Many nerves may be parasympathetic based on neuronal nitric oxide synthase immunoreactivity. Nerves supplying the urethra outside the cavernous nerves may course posterior to the prostate. Along with afferent fibers, tyrosine hydroxylase immunoreactivity expressing neuron fibers, ie noradrenergic nerves, traveling in the cavernous nerves may

  11. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy.

    Science.gov (United States)

    Landa, B B; López-Díaz, C; Jiménez-Fernández, D; Montes-Borrego, M; Muñoz-Ledesma, F J; Ortiz-Urquiza, A; Quesada-Moraga, E

    2013-10-01

    Beauveria bassiana strain 04/01-Tip obtained from larvae of the opium poppy stem gall Iraella luteipes endophytically colonizes opium poppy plants and protect it against this pest. Development of a specific, rapid and sensitive technique that allows accurately determining the process and factors leading to the establishment of this strain in opium poppy plants would be essential to achieve its efficient control in a large field scale. For that purpose in the present study, species-specific primers that can be used in conventional or quantitative PCR protocols were developed for specifically identification and detection of B. bassiana in plant tissues. The combination of the designed BB.fw/BB.rv primer set with the universal ITS1-F/ITS4 primer set in a two-step nested-PCR approach, has allowed the amplification of up to 10fg of B. bassiana. This represented an increase in sensitivity of 10000- and 1000-fold of detection than when using the BB.fw/BB.rv primers in a single or single-tube semi-nested PCR approaches, respectively. The BB.fw and BB.rv primer set were subsequently optimized to be used in real time quantitative PCR assays and allowed to accurately quantify B. bassiana DNA in different plant DNA backgrounds (leaves and seeds) without losing accuracy and efficiency. The qPCR protocol was used to monitor the endophytic colonization of opium poppy leaves byB. bassiana after inoculation with the strain EABb 04/01-Tip, detecting as low as 26fg of target DNA in leaves and a decrease in fungal biomass over time. PCR quantification data were supported in parallel with CLMS by the monitoring of spatial and temporal patterns of leaf and stem colonization using a GFP-tagged transformant of the B. bassiana EABb 04/01-Tip strain, which enabled to demonstrate that B. bassiana effectively colonizes aerial tissues of opium poppy plants mainly through intercellular spaces and even leaf trichomes. A decline in endophytic colonization was also observed by the last sampling

  12. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy

    Science.gov (United States)

    Mauzeroll, Janine; Bard, Allen J.; Owhadian, Omeed; Monks, Terrence J.

    2004-01-01

    The cytotoxicity of menadione on hepatocytes was studied by using the substrate generation/tip collection mode of scanning electrochemical microscopy by exposing the cells to menadione and detecting the menadione-S-glutathione conjugate (thiodione) that is formed during the cellular detoxication process and is exported from the cell by an ATP-dependent pump. This efflux was electrochemically detected and allowed scanning electrochemical microscopy monitoring and imaging of single cells and groups of highly confluent live cells. Based on a constant flux model, ≈6 × 106 molecules of thiodione per cell per second are exported from monolayer cultures of Hep G2 cells. PMID:15601769

  13. Magnetic resonance microscopy for assessment of morphological changes in hydrating hydroxypropylmethylcellulose matrix tablets in situ-is it possible to detect phenomena related to drug dissolution within the hydrated matrices?

    Science.gov (United States)

    Kulinowski, Piotr; Młynarczyk, Anna; Jasiński, Krzysztof; Talik, Przemysław; Gruwel, Marco L H; Tomanek, Bogusław; Węglarz, Władysław P; Dorożyński, Przemysław

    2014-09-01

    So far, the hydrated part of the HPMC matrix has commonly been denoted as a "gel" or "pseudogel" layer. No MRI-based results have been published regarding observation of internal phenomena related to drug dissolution inside swelling polymeric matrices during hydration. The purpose of the study was to detect such phenomena. Multiparametric, spatially and temporally resolved T2 MR relaxometry, in situ, was applied to study formation of the hydration progress in HPMC matrix tablets loaded with L-dopa and ketoprofen using a 11.7 T MRI system. Two spin-echo based pulse sequences were used, one of them specifically designed to study short T2 signals. Two components in the T2 decay envelope were estimated and spatial distributions of their parameters, i.e. amplitudes and T2 values, were obtained. Based on the data, different region formation patterns (i.e. multilayer structure) were registered depending on drug presence and solubility. Inside the matrix with incorporated sparingly soluble drug a specific layer formation due to drug dissolution was detected, whereas a matrix with very slightly soluble drug does not form distinct external "gel-like" layer. We have introduced a new paradigm in the characterization of hydrating matrices using (1)H MRI methods. It reflects molecular mobility and concentration of water inside the hydrated matrix. For the first time, drug dissolution related phenomena, i.e. particular front and region formation, were observed by MRI methods.

  14. Photoacoustic microscopy of bilirubin in tissue phantoms

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2012-12-01

    Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.

  15. Photobleaching correction in fluorescence microscopy images

    International Nuclear Information System (INIS)

    Vicente, Nathalie B; Diaz Zamboni, Javier E; Adur, Javier F; Paravani, Enrique V; Casco, Victor H

    2007-01-01

    Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique

  16. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Original Research. Photoacoustic Microscopy in Dental Medicine

    Directory of Open Access Journals (Sweden)

    Stan Adrian Tudor

    2017-03-01

    Full Text Available Introduction: Photoacoustic microscopy, also known as optoacoustic imaging, is a comparatively new method of investigation in dental medicine, which uses a laser-generated ultrasound (short laser pulses to achieve images for interpretation. Photoacoustic microscopy can be used in a broad spectrum, from detecting tooth decay at its earliest stages to dental anatomy analysis. Material and methods: The energy emitted by the photoacoustic pulse is moderately absorbed by the target and exchanged into heat, leading to a local transitory temperature upsurge. The tension propagates and grows as ultrasonic waves, distinguished by the ultrasonic transducers which are planted apart from the tissue. The photoacoustic microscope has a tunable dye laser which passes through a condensing lens, an objective and ultimately an ultrasonic transducer attached to an acoustic lens to capture and receive information about the scanned probe from a sample moved on the X, Y dimensions. Results: The precise anatomy of layered concentric structures can be clearly observed in photoacoustic microscopy. The image value of the inner layer can be higher, indicating strong optical absorption, while the image value of the outer layer is lower, indicating weaker optical absorption. Meanwhile, the inner layer has the exact same size as the dentin structure and the outer layer has the exact same size as the enamel structure in this cross-section. Conclusions: The photoacoustic microscope (all-optical comes out to be a future and promising tool for detecting early-stage caries and lesions on the surface of the teeth, where micro-leakage occurs at the interface of tooth restoration, and also the anatomy of dental tissues.

  18. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Science.gov (United States)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  19. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter [Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands)

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  20. Single-spin stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-10-14

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub-diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.

  1. Dew drops on spider web appearance: a newly named pattern of IgG4 deposition in pemphigus with direct immunofluorescence

    Directory of Open Access Journals (Sweden)

    Marian Dmochowski

    2017-08-01

    Full Text Available Novel appearances in cutaneous pathology as well as mucocutaneous clinical signs are being described which indicate that this is still an attractive area for exploration. The H + E histology terms of “decorated tomb stoning” and “undecorated tomb stoning”, advocated by some pathologists, are misleading and as such should be avoided. Here, an appearance of IgG4 pemphigus deposits examined cost-effectively with direct immunofluorescence and suggested to be called “dew drops on spider web” is depicted in depth.

  2. A comparative study of an elisa test and an indirect immunofluorescence test for serological diagnosis of Babesia bovis infection

    International Nuclear Information System (INIS)

    Martins, J.R.; Cheong, F.H.; Correa, B.L.; Radley, D.E.; Cereser, V.H.

    1998-01-01

    Detection of antibodies to Babesia bovis in cattle is essential for the understanding of the epidemiology of babesiosis and this study was concerned with comparing the indirect fluorescent antibody with the ELISA. Both assays gave rise to 100% sensitivity whilst the ELISA was shown to be marginally more specific at 98%. The ease of use and low cost of the ELISA would make it the more obvious choice in conducting future serological surveys for this parasite. (author)

  3. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  4. Light microscopy - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available The first part of the book (six chapters is devoted to some selected applications of bright-field microscopy while the second part (eight chapters to some fluorescence microscopy studies. Both animal and plant biology investigations are presented covering multiple fields like immunology, cell signaling, cancer biology and, surprisingly to me, ecology. This chapter is titled: Light microscopy in aquatic ecology: Methods for plankton communities studies and it is due to Maria Carolina S. Soares and colleagues from the Laboratory of Aquatic Ecology, Dept. of Biology, Federal University of Juiz de Fora (Brazil. Here they present methods to quantify the different component of planktonic communities in a step-by-step manner so that virus, bacteria, algae and animals pertaining to different taxa can be recognized and the contribution they made to the plankton composition evaluated. It descends that even how the plankton composition is changing due to environmental variations can be accurately determined....

  5. Proximal design for a multimodality endoscope with multiphoton microscopy, optical coherence microscopy and visual modalities

    Science.gov (United States)

    Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.

    2018-02-01

    A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.

  6. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  7. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    .1% of the surface of the planet with a device that converts solar energy into a useable form at 10% efficiency would give more than the present worldwide consumption of fossil energy. Photocatalysts are of fundamental interest for sustainable energy research because they provide a viable route for converting solar...... energy into chemical bonds. By means of Transmission Electron Microscopy (TEM) it is possible to gain insight in the fundamentals of their reaction mechanisms, chemical behaviour, structure and morphology before, during and after reaction using in situ investigations. In particular, the environmental TEM...... the microscope that allows electron microscopy under nonconventional TEM conditions and new kinds of in situ spectroscopy....

  8. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  9. Detection of liver kidney microsomal type 1 antibody using molecularly based immunoassays.

    Science.gov (United States)

    Kerkar, N; Ma, Y; Davies, E T; Cheeseman, P; Mieli-Vergani, G; Vergani, D

    2002-12-01

    To assess the diagnostic value of two commercial molecularly based immunoassays detecting liver kidney microsomal type 1 antibody (LKM1). The performance of Varelisa and LKM1 enzyme linked immunosorbent assay (ELISA) was compared with immunofluorescence, and two validated research techniques-an in house ELISA and a radioligand assay measuring antibodies to P4502D6. Thirty serum samples from three patients with autoimmune hepatitis type 2 covering immunofluorescence titres of 1/10 to 1/10 240 and 55 LKM1 negative controls were tested. All 30 sera that were LKM1 positive by immunofluorescence were positive by the in house ELISA, the radioligand assay, and LKM1-ELISA, and 29 were also positive by Varelisa. None of the 55 sera negative for LKM1 by immunofluorescence was positive by the in house ELISA and radioligand assay, but one was positive by Varelisa and 14 were positive using the LKM1-ELISA. Agreement between immunofluorescence, the in house ELISA, the radioligand assay, and Varelisa was high (kappa > 0.8), and agreement between immunofluorescence and LKM1-ELISA was moderate (kappa = 0.63). The assay kit marketed as Varelisa allows accurate detection of LKM1.

  10. Quantitative automated microscopy (QuAM elucidates growth factor specific signalling in pain sensitization

    Directory of Open Access Journals (Sweden)

    Levine Jon D

    2010-12-01

    Full Text Available Abstract Background Dorsal root ganglia (DRG-neurons are commonly characterized immunocytochemically. Cells are mostly grouped by the experimenter's eye as "marker-positive" and "marker-negative" according to their immunofluorescence intensity. Classification criteria remain largely undefined. Overcoming this shortfall, we established a quantitative automated microscopy (QuAM for a defined and multiparametric analysis of adherent heterogeneous primary neurons on a single cell base. The growth factors NGF, GDNF and EGF activate the MAP-kinase Erk1/2 via receptor tyrosine kinase signalling. NGF and GDNF are established factors in regeneration and sensitization of nociceptive neurons. If also the tissue regenerating growth factor, EGF, influences nociceptors is so far unknown. We asked, if EGF can act on nociceptors, and if QuAM can elucidate differences between NGF, GDNF and EGF induced Erk1/2 activation kinetics. Finally, we evaluated, if the investigation of one signalling component allows prediction of the behavioral response to a reagent not tested on nociceptors such as EGF. Results We established a software-based neuron identification, described quantitatively DRG-neuron heterogeneity and correlated measured sample sizes and corresponding assay sensitivity. Analysing more than 70,000 individual neurons we defined neuronal subgroups based on differential Erk1/2 activation status in sensory neurons. Baseline activity levels varied strongly already in untreated neurons. NGF and GDNF subgroup responsiveness correlated with their subgroup specificity on IB4(+- and IB4(--neurons, respectively. We confirmed expression of EGF-receptors in all sensory neurons. EGF treatment induced STAT3 translocation into the nucleus. Nevertheless, we could not detect any EGF induced Erk1/2 phosphorylation. Accordingly, intradermal injection of EGF resulted in a fundamentally different outcome than NGF/GDNF. EGF did not induce mechanical hyperalgesia, but blocked

  11. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  12. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Photocatalysts are of fundamental interest for sustainable energy research because of their wide range of applications and great potential for state of the art and future usages [1]. By means of Transmission Electron Microscopy (TEM) it is possible to give a deep insight in the structure, composi...

  13. Light Microscopy at Maximal Precision

    Directory of Open Access Journals (Sweden)

    Matthew Bierbaum

    2017-10-01

    Full Text Available Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI. As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10–100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  14. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  15. Light Microscopy at Maximal Precision

    Science.gov (United States)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  16. Stochastic Optical Reconstruction Microscopy (STORM).

    Science.gov (United States)

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Transmission electron microscopy of bone

    NARCIS (Netherlands)

    Everts, Vincent; Niehof, Anneke; Tigchelaar-Gutter, Wikky; Beertsen, Wouter

    2012-01-01

    This chapter describes procedures to process mineralized tissues obtained from different sources for transmission electron microscopy (TEM). Methods for fixation, resin embedding, staining of semi-thin sections and ultrathin sections are presented. In addition, attention will be paid to processing

  18. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Science.gov (United States)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  19. Comparison of Rapid Malaria Test and Laboratory Microscopy ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Blood samples collected from 272 volunteers in two communities of Bayelsa State in the Niger. Delta area were investigated for falciparum malaria parasite using the rapid test based on the detection of soluble antigen and laboratory microscopy test. The data showed that out of the 272 samples collected, ...

  20. Imaging of RNA in situ hybridization by atomic force microscopy

    NARCIS (Netherlands)

    Kalle, W.H.J.; Macville, M.V.E.; van de Corput, M.P.C.; de Grooth, B.G.; Tanke, H.J.; Raap, A.K.

    In this study we investigated the possibility of imaging internal cellular molecules after cytochemical detection with atomic force microscopy (AFM). To this end, rat 9G and HeLa cells were hybridized with haptenized probes for 28S ribosomal RNA, human elongation factor mRNA and cytomegalovirus