WorldWideScience

Sample records for immuno gold nanocages

  1. Gold Nanocages for Biomedical Applications**

    Science.gov (United States)

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2008-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. PMID:18648528

  2. Gold Nanocages for Biomedical Applications.

    Science.gov (United States)

    Skrabalak, Sara E; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-10-17

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl(4). The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy.

  3. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  4. Gold nanocages: from synthesis to theranostic applications.

    Science.gov (United States)

    Xia, Younan; Li, Weiyang; Cobley, Claire M; Chen, Jingyi; Xia, Xiaohu; Zhang, Qiang; Yang, Miaoxin; Cho, Eun Chul; Brown, Paige K

    2011-10-18

    Gold nanostructures have garnered considerable attention in recent years for their potential to facilitate both the diagnosis and treatment of cancer through their advantageous chemical and physical properties. The key feature of Au nanostructures for enabling this diverse array of biomedical applications is their attractive optical properties, specifically the scattering and absorption of light at resonant wavelengths due to the excitation of plasmon oscillations. This phenomenon is commonly known as localized surface plasmon resonance (LSPR) and is the source of the ruby red color of conventional Au colloids. The resonant wavelength depends on the size, shape, and geometry of the nanostructures, providing a set of knobs to manipulate the optical properties as needed. For in vivo applications, especially when optical excitation or transduction is involved, the LSPR peaks of the Au nanostructures have to be tuned to the transparent window of soft tissues in the near-infrared (NIR) region (from 700 to 900 nm) to maximize the penetration depth. Gold nanocages represent one class of nanostructures with tunable LSPR peaks in the NIR region. These versatile nanostructures, characterized by hollow interiors and ultrathin, porous walls, can be prepared in relatively large quantities using a remarkably simple procedure based on the galvanic replacement between Ag nanocubes and aqueous chloroauric acid. The LSPR peaks of Au nanocages can be readily and precisely tuned to any wavelength in the NIR region by controlling their size, wall thickness, or both. Other significant features of Au nanocages that make them particularly intriguing materials for biomedical applications include their compact sizes, large absorption cross sections (almost five orders of magnitude greater than those of conventional organic dyes), and their bio-inertness, as well as a robust and straightforward procedure for surface modification based on Au-thiolate chemistry. In this Account, we present

  5. Gold Nanocages: Synthesis, Properties, and Applications

    OpenAIRE

    SKRABALAK, SARA E.; CHEN, JINGYI; SUN, YUGANG; LU, XIANMAO; AU, LESLIE; COBLEY, LAIRE M.; XIA, YOUNAN

    2008-01-01

    Noble-metal nanocages represent a novel class of nanostructures with hollow interiors and porous walls. They are prepared using the remarkably simple galvanic replacement reaction between solutions containing metal precursor salts and Ag nanostructures prepared by polyol reduction. The electrochemical potential difference between the two species drives the reaction, with the reduced metal depositing on the surface of the Ag nanostructure. In our most studied example involving HAuCl4 as the me...

  6. Gold nanocages: synthesis, properties, and applications.

    Science.gov (United States)

    Skrabalak, Sara E; Chen, Jingyi; Sun, Yugang; Lu, Xianmao; Au, Leslie; Cobley, Claire M; Xia, Younan

    2008-12-01

    Noble-metal nanocages comprise a novel class of nanostructures possessing hollow interiors and porous walls. They are prepared using a remarkably simple galvanic replacement reaction between solutions containing metal precursor salts and Ag nanostructures prepared through polyol reduction. The electrochemical potential difference between the two species drives the reaction, with the reduced metal depositing on the surface of the Ag nanostructure. In our most studied example, involving HAuCl(4) as the metal precursor, the resultant Au is deposited epitaxially on the surface of the Ag nanocubes, adopting their underlying cubic form. Concurrent with this deposition, the interior Ag is oxidized and removed, together with alloying and dealloying, to produce hollow and, eventually, porous structures that we commonly refer to as Au nanocages. This approach is versatile, with a wide range of morphologies (e.g., nanorings, prism-shaped nanoboxes, nanotubes, and multiple-walled nanoshells or nanotubes) available upon changing the shape of the initial Ag template. In addition to Au-based structures, switching the metal salt precursors to Na(2)PtCl(4) and Na(2)PdCl(4) allows for the preparation of Pt- and Pd-containing hollow nanostructures, respectively. We have found that changing the amount of metal precursor added to the suspension of Ag nanocubes is a simple means of tuning both the composition and the localized surface plasmon resonance (LSPR) of the metal nanocages. Using this approach, we are developing structures for biomedical and catalytic applications. Because discrete dipole approximations predicted that the Au nanocages would have large absorption cross-sections and because their LSPR can be tuned into the near-infrared (where the attenuation of light by blood and soft tissue is greatly reduced), they are attractive materials for biomedical applications in which the selective absorption of light at great depths is desirable. For example, we have explored their

  7. Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication

    Science.gov (United States)

    Yang, Xuan; Gilroy, Kyle D.; Vara, Madeline; Zhao, Ming; Zhou, Shan; Xia, Younan

    2017-09-01

    Because of their unique optical properties, gold nanocages are excellent candidates for biomedical applications. Traditionally, they are prepared using a method that involves the galvanic replacement reaction between Ag nanocubes and HAuCl4. Here we demonstrate a different approach for the facile synthesis of Au icosahedral nanocages containing twin boundaries, as well as a compact size below 15 nm and ultrathin walls of only a few atomic layers thick. Their optical properties could be tuned by simply controlling the etching time, a result that was also validated by computational modeling. We further evaluated the feasibility of fragmenting the nanocages using ultrasonication.

  8. Facile Synthesis of Gold-Silver Nanocages with Controllable Pores on the Surface

    OpenAIRE

    Chen, Jingyi; McLellan, Joseph M.; Siekkinen, Andrew; Xiong, Yujie; Li, Zhi-Yuan; Xia, Younan

    2006-01-01

    Gold-silver alloy nanocages with controllable pores on the surface have been synthesized via galvanic replacement reaction between truncated Ag nanocubes and aqueous HAuCl4. Unlike the previous studies, the initiation of replacement reaction started in a controllable way, simultaneously from eight corners of the truncated Ag nanocubes where {111} facets were exposed. The formation of cubic nanocages with pores at all the corners was determined by the capping agent, poly(vinyl pyrrolidone) (PV...

  9. Gold Nanocage-Photosensitizer Conjugates for Dual-Modal Image-Guided Enhanced Photodynamic Therapy

    Science.gov (United States)

    Srivatsan, Avinash; Jenkins, Samir V.; Jeon, Mansik; Wu, Zhijin; Kim, Chulhong; Chen, Jingyi; Pandey, Ravindra K.

    2014-01-01

    We have demonstrated that gold nanocage-photosensitizer conjugates can enable dual image-guided delivery of photosensitizer and significantly improve the efficacy of photodynamic therapy in a murine model. The photosensitizer, 3-devinyl-3-(1'-hexyloxyethyl)pyropheophorbide (HPPH), was noncovalently entrapped in the poly(ethylene glycol) monolayer coated on the surface of gold nanocages. The conjugate is stable in saline solutions, while incubation in protein rich solutions leads to gradual unloading of the HPPH, which can be monitored optically by fluorescence and photoacoustic imaging. The slow nature of the release in turn results in an increase in accumulation of the drug within implanted tumors due to the passive delivery of gold nanocages. Furthermore, the conjugate is found to generate more therapeutic singlet oxygen and have a lower IC50 value than the free drug alone. Thus the conjugate shows significant suppression of tumor growth as compared to the free drug in vivo. Short-term study showed neither toxicity nor phenotypical changes in mice at therapeutic dose of the conjugates or even at 100-fold higher than therapeutic dose of gold nanocages. PMID:24465274

  10. Facile synthesis of gold-silver nanocages with controllable pores on the surface.

    Science.gov (United States)

    Chen, Jingyi; McLellan, Joseph M; Siekkinen, Andrew; Xiong, Yujie; Li, Zhi-Yuan; Xia, Younan

    2006-11-22

    Gold-silver alloy nanocages with controllable pores on the surface have been synthesized via galvanic replacement reaction between truncated Ag nanocubes and aqueous HAuCl4. Unlike in the previous studies, the initiation of replacement reaction started in a controllable way, simultaneously from eight corners of the truncated Ag nanocubes where {111} facets were exposed. The formation of cubic nanocages with pores at all the corners was determined by the capping agent, poly(vinyl pyrrolidone) (PVP), which preferentially covered the {100} facets of a truncated Ag nanocube.

  11. Gold nanocages covered by smart polymers for controlled release with near-infrared light.

    Science.gov (United States)

    Yavuz, Mustafa S; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Song, Kwang H; Schwartz, Andrea G; Wang, Lihong V; Xia, Younan

    2009-12-01

    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.

  12. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    Science.gov (United States)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  13. Interstitial diffuse radiance spectroscopy of gold nanocages and nanorods in bulk muscle tissues

    Directory of Open Access Journals (Sweden)

    Grabtchak S

    2015-02-01

    converted to the relative density of photons incident on the inclusion. Finally, the experimentally measured quantities were expressed via the relative perturbation and arranged into the classical Beer–Lambert law that allowed one to extract the extinction coefficients of various types of Au nanoparticles in both the transmission and back reflection geometries. It was shown that the spatial variation of perturbation could be described as 1/r dependence, where r is the distance between the inclusion and the detector. Due to a larger absorption cross section, Au nanocages produced greater perturbations than Au nanorods of equal particle concentration, indicating a better suitability of Au nanocages as contrast agents for optical measurements in turbid media. Individual measurements from different inclusions were combined into detectability maps.Keywords: gold nanocages, gold nanorods, turbid media, porcine muscles, diffuse radiance spectroscopy, Beer–Lambert law, perturbation

  14. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

    Science.gov (United States)

    Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei

    2018-01-01

    Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

  15. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging.

    Science.gov (United States)

    Zhou, Guoyong; Xiao, Hong; Li, Xiaoxia; Huang, Yi; Song, Wei; Song, Liang; Chen, Meiwan; Cheng, Du; Shuai, Xintao

    2017-12-01

    A pH-sensitive copolymer PAsp(DIP)-b-PAsp(MEA) (PDPM) was synthesized and self-assembled to micelle loading chemotherapeutic drug doxorubicin (DOX) and introducing a gold nanocage structure for photothermo-chemotherapy and photoacoustic imaging. After further surface modification with polyethylene glycol (PEG), the DOX-loaded pH-sensitive gold nanocage (D-PGNC) around 100 nm possessed a uniform spherical structure with a pH-sensitive core of PAsp(DIP) incorporating DOX, an interlayer crosslinked via disulfide bonds and decorated with discontinuous gold shell, and a PEG corona. The release of DOX from D-PGNC was turned off in bloodstream due to the cross-linking and gold decoration of interlayer but turned on inside tumor tissue by multiple stimulations including the low pH value of tumor tissue (≈6.8), the low lysosomal pH value of cancer cells (≈5.0) and near-infrared (NIR) irradiation. The gold nanocage receiving NIR irradiation could generate hyperthermia to ablate tumor cells. Moreover, the photoacoustic (PA) imaging and analysis of DOX fluorescence inside tumor tissue demonstrated that photothermal therapy based on the gold nanocage effectively drove DOX penetration inside tumor. Owing to the rapid intratumor release and deep tissue penetration of drug favorable for killing cancer cells survived the photothermal therapy, the combined therapy based on D-PGNC via NIR irradiation exhibited a synergistic treatment effect superior to either chemotherapy or NIR-induced photothermal therapy alone. The novelty of the manuscript is its multifunctional system which incorporates anticancer drug DOX in its pH-sensitive core and acts as a template to introduce a gold nanocage. This nanomedicine presents potentials of sequestrating drug molecules in blood circulation but releasing them inside tumor upon responding to the acidic microenvironment therein. Exposure to NIR laser further expedited the pH-sensitive DOX release and promoted DOX penetration into cancer

  16. Formation of substrate-based gold nanocage chains through dealloying with nitric acid

    Directory of Open Access Journals (Sweden)

    Ziren Yan

    2015-06-01

    Full Text Available Metal nanocages have raised great interest because of their new properties and wide applications. Here, we report on the use of galvanic replacement reactions to synthesize substrate-supported Ag–Au nanocages from silver templates electrodeposited on transparent indium tin oxide (ITO film coated glass. The residual Ag in the composition was dealloyed with 10% nitric acid. It was found that chains of Au nanocages were formed on the substrate surface during dealloying. When the concentration of HNO3 increased to 20%, the structures of nanocages were damaged and formed crescent or semi-circular shapes. The transfer process on the substrate surface was discussed.

  17. Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages.

    Science.gov (United States)

    Cheng, Haoyan; Huo, Da; Zhu, Chunlei; Shen, Song; Wang, Wenxia; Li, Haoxuan; Zhu, Zhihong; Xia, Younan

    2018-04-03

    Selenite, one of the inorganic forms of selenium, is emerging as an attractive chemotherapeutic agent owing to its selectivity in eradicating cancer cells. Here we demonstrate a new formulation of nanomedicine based on selenous acid, which is mixed with lauric acid (a phase-change material with a melting point around 43 °C) and then loaded into the cavities of Au nanocages. The Au nanocages can serve as a carrier during cell endocytosis and then as a photothermal agent to melt the lauric acid upon the irradiation with a near-infrared laser, triggering the swift release of selenous acid. The photothermal and chemo therapies can also work synergistically, leading to enhanced destruction of cancer cells relative to normal cells. Our systematic study suggests that the impaired mitochondrial function arising from the ROS generated through combination treatment is responsible for the cell death. This study offers an appealing candidate that holds great promise for synergistic cancer treatment. Published by Elsevier Ltd.

  18. Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors.

    Directory of Open Access Journals (Sweden)

    Subash C B Gopinath

    Full Text Available Gold nanoparticles were conjugated to an antibody (immuno-AuNP against A/Udorn/307/1972 (H3N2 influenza virus to detect viruses on a sensing plate designed for an evanescent field-coupled waveguide-mode sensor. Experiments were conducted using human influenza A/H3N2 strains, and immuno-AuNP could detect 8×10(5 PFU/ml (40 pg/µl intact A/Udorn/307/1972 and 120 pg/µl A/Brisbane/10/2007. Furthermore, increased signal magnitude was achieved in the presence of non-ionic detergent, as the virtual detection level was increased to 8×10(4 PFU/ml A/Udorn/307/1972. Immuno-AuNPs were then complexed with viruses to permit direct observation, and they formed a ring of confined nanodots on the membrane of both intact and detergent-treated viruses as directly visualized by scanning electron microscopy. With this complex the detection limit was improved further to 8×10(3 PFU/ml on anti-rabbit IgG immobilized sensing plate. These strategies introduce methods for observing trapped intact viruses on the sensing plates generated for optical systems.

  19. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy.

    Science.gov (United States)

    Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Čeleketić, D; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A

    2017-07-01

    Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind with high affinity and specificity to different antigens. They are small (molecular weight ca. 15kDa) and are usually easy to produce in microorganisms. Here we have evaluated the feasibility of a nanobody binding to HER2 for application in immuno-electron microscopy. To obtain highest labeling efficiency combined with optimal specificity, different labeling conditions were analysed, which included nanobody concentration, fixation and blocking conditions. The obtained optimal protocol was applied for post-embedment labeling of Tokuyasu cryosections and for pre-embedment labeling of HER2 for fluorescence microscopy and both transmission and scanning electron microscopy. We show that formaldehyde fixation after incubation with the anti-HER2 nanobody, improves labeling intensity. Among all tested blocking agents the best results were obtained with a mixture of cold water fish gelatine and acetylated bovine serum albumin, which prevented a-specific interactions causing background labeling while preserving specific interactions at the same time. In conclusion, we have developed a nanobody-based protocol for immuno-gold labeling of HER2 for Tokuyasu cryosections in TEM as well as for pre-embedment gold labeling of cells for both TEM and SEM. Copyright © 2017. Published by Elsevier Inc.

  20. Catalytic enhancement of gold nanocages induced by undercoordination-charge-polarization

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available Principle behind the highest catalytic ability of the least coordinated gold remains a puzzle. With the aid of density functional theory calculations, we show that in 3-coordinated gold cages (i the Au–Au bond contracts by ∼5% in average, (ii the valance density-of-states shift up to Fermi level when the Au55 cluster turns into an Au12 cage, and (iii the activation energy for CO oxidation drops in sequence, Au55 cluster (13.6 Kcal/mol, Au42 cage (8.0 Kcal/mol, Au13(6.5 Kcal/mol, and Au12 cage (5.1 Kcal/mol, with comparing the reaction paths and spin states. The principle clarified here paves the way for the design of gold nanocatalyst.

  1. Coreactant-free and Label-free Eletrochemiluminescence Immunosensor for Copeptin Based on Luminescent Immuno-Gold Nanoassemblys.

    Science.gov (United States)

    Han, Zhili; Shu, Jiangnan; Jiang, Qiaoshi; Cui, Hua

    2018-04-25

    In this work, the eletrochemiluminescence (ECL) behavior of Cu 2+ /cysteine complexes and N-(aminobutyl)-N-(ethylisoluminol) (ABEI) functionalized gold nanoparticles combined with chitosan (Cu 2+ -Cys-ABEI-GNPs-CS) were studied by cyclic voltammetry and a double-step potential, which exhibited excellent ECL properties without any coreactant. It was found that the ECL intensity of Cu 2+ -Cys-ABEI-GNPs-CS could increase at least one order of magnitude compared with that of Cu 2+ -Cys-ABEI-GNPs. Furthermore, a coreactant-free and label-free ECL immunosensor has been established for the determination of early acute myocardial infarction biomarker copeptin based on luminescent immuno-gold nanoassemblys consisting of Cu 2+ -Cys-ABEI-GNPs-CS and immuno-gold nanoparticles prepared by connecting copeptin antibody with trisodium citrate stabilized gold nanoparticles. In the presence of copeptin, an obvious decrease in ECL intensity was observed due to the formation of antibody-antigen immunocomplex, which could be used for the determination of copeptin in the range of 2.0×10 -14 -1.0×10 -11 mol/L with a detection limit of 5.18×10 -15 mol/L. The detection limit of the ECL immunosensor is at least two orders of magnitude lower than that of sandwich immunoassays based on labeling technology. And the ECL immunosensor does not need any coreactant, and avoids complicated labeling and purification procedure. It is ultrasensitive, simple, specific and low-cost. This work reveals that the proposed luminescent immuno-gold nanoassemblys are ideal nanointerfaces for the construction of immunosensors. The proposed strategy may be used for the determination of other antigens if corresponding antibodies are available.

  2. Labeling Human Mesenchymal Stem Cells with Gold Nanocages for in vitro and in vivo Tracking by Two-Photon Microscopy and Photoacoustic Microscopy

    Science.gov (United States)

    Zhang, Yu Shrike; Wang, Yu; Wang, Lidai; Wang, Yucai; Cai, Xin; Zhang, Chi; Wang, Lihong V.; Xia, Younan

    2013-01-01

    Stem cell tracking is a highly important subject. Current techniques based on nanoparticle-labeling, such as magnetic resonance imaging, fluorescence microscopy, and micro-computed tomography, are plagued by limitations including relatively low sensitivity or penetration depth, involvement of ionizing irradiation, and potential cytotoxicity of the nanoparticles. Here we introduce a new class of contrast agents based on gold nanocages (AuNCs) with hollow interiors and porous walls to label human mesenchymal stem cells (hMSCs) for both in vitro and in vivo tracking using two-photon microscopy and photoacoustic microscopy. As demonstrated by the viability assay, the AuNCs showed negligible cytotoxicity under a reasonable dose, and did not alter the differentiation potential of the hMSCs into desired lineages. We were able to image the cells labeled with AuNCs in vitro for at least 28 days in culture, as well as to track the cells that homed to the tumor region in nude mice in vivo. PMID:23946820

  3. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells.

    Science.gov (United States)

    Zhang, Zhipeng; Xu, Shaohui; Wang, Yun; Yu, Yanna; Li, Fangzhou; Zhu, Hao; Shen, Yuanyuan; Huang, Shengtang; Guo, Shengrong

    2018-01-01

    Previously, combination chemotherapy of doxorubicin (DOX) and quercetin (QUR) was developed to improve antitumor effects and reverse multidrug resistance and several biocompatible nanocarriers, such as liposomes and micelles, were validated for their targeted delivery. In this study, we report a near-infrared (NIR)-responsive drug delivery system based on DOX and QUR co-loaded gold nanocages (AuNCs) with biotin modification. The system was simply fabricated by filling the hollow interiors of AuNCs with tetradecanol (TD), a phase-change material with a melting point of 39°C, to control the drug release. The main cause of multidrug resistance (MDR) of DOX is the overexpression of P-glycoprotein (P-gp), which can be inhibited by QUR. Thus the combination chemotherapy of DOX and QUR may provide a promising strategy for MDR. The in vitro cytotoxicity of DOX and QUR at several fixed mass ratios was carried out and showed that the combination index (CI) was the smallest at the ratio of 1:0.2, indicating that the best synergistic effect was achieved. The resultant nanocomplex (abbreviated as BPQD-AuNCs) exhibited fast release (80% released in 20min) and strong cytotoxicity against MCF-7/ADR cells (IC 50 , 1.5μg/mL) under NIR irradiation. Additionally, BPQD-AuNCs were found to generate a large amount of reactive oxygen species (ROS), to inhibit P-gp expression and ATP activity. Taken together, the results show that BPQD-AuNC is a prospective nano-delivery system for overcoming multidrug-resistant cancer. Copyright © 2017. Published by Elsevier Inc.

  4. Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study.

    Science.gov (United States)

    Brisson, Alain R; Tan, Sisareuth; Linares, Romain; Gounou, Céline; Arraud, Nicolas

    2017-05-01

    Cells release membrane vesicles in their surrounding medium either constitutively or in response to activating signals. Two main types of extracellular vesicles (EVs) are commonly distinguished based on their mechanism of formation, membrane composition and size. According to the current model, EVs shed from the plasma membrane, often called microvesicles, expose phosphatidylserine (PS) and range in size from 100 nm to 1 µm, while EVs originating from endosomal multi-vesicular bodies, called exosomes, contain tetraspanin proteins, including CD63, and range in size from 50 to 100 nm. Heijnen et al. [1] have shown that activated platelets release EVs corresponding to these two types of vesicles, using negative staining electron microscopy (EM) and immuno-gold labeling. Here, we apply cryo-EM and immuno-gold labeling to provide a quantitative analysis of EVs released by platelets activated by thrombin, TRAP and CRP-XL, as well as EVs from serum. We show that EVs activated by these three agonists present a similar size distribution, the majority of them forming a broad peak extending from 50 nm to 1 µm, about 50% of them ranging from 50 to 400 nm. We show also that 60% of the EVs from TRAP or CRP-XL activation expose CD41, a majority of them exposing also PS. To explain the presence of large EVs CD41-negative or PS-negative, several alternative mechanisms of EV formation are proposed. We find also that the majority of EVs in activated platelet samples expose CD63, and distinguish two populations of CD63-positive EVs, namely large EVs with low labeling density and small EVs with high labeling density.

  5. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy

    NARCIS (Netherlands)

    Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Celeketic, Dusan; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A

    Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind

  6. An enzyme-linked immunosorbent assay and a gold-nanoparticle based immuno chromatographic test for amatoxins using recombinant antibody

    International Nuclear Information System (INIS)

    He, Kuo; Zhao, Ruiping; Wang, Lixia; Feng, Tingting; Wei, Dong; Zhang, Xiuyuan

    2016-01-01

    The authors describe two kinds of rapid assays for the determination of amatoxins in mushrooms. The first is an enzyme-linked immunosorbent assay (ELISA) using horseradish peroxidase. The second is a rapid immuno chromatographic assay that uses colloidal gold as a red label (CG-ICA). Both are based on the use of a well-characterized recombinant single chain variable fragment antibody (named scFv-A4). The half-maximum inhibition concentrations (IC50) of α-amanitin, β-amanitin and γ-amanitin are 78, 85 and 90 ng⋅mL -1 , and the limits of detection (LODs; for IC15) are 1.9, 2.1 and 2.8 ng⋅mL -1 . The method was applied to the determination of amanitins in mushrooms, and the LODs for α-amanitin, β-amanitin and γ-amanitin in mushroom samples were found to be 4.9, 6.4 and 8.3 ng⋅mL -1 . The visual minimum detection limits of the optimized CGIA are 4 and 6 ng⋅mL -1 for mushroom samples. The test can be performed within 10 min. The results of the analysis of spiked samples showed that the CG-IA can rapidly and semi-quantitatively quantify amatoxins in mushroom samples on site and at low costs. (author)

  7. Gold nanoparticle-based immuno-PCR for detection of tau protein in cerebrospinal fluid

    Czech Academy of Sciences Publication Activity Database

    Stegurová, Lucie; Dráberová, Eduarda; Bartoš, A.; Dráber, Pavel; Řípová, D.; Dráber, Peter

    2014-01-01

    Roč. 406, april (2014), s. 137-142 ISSN 0022-1759 R&D Projects: GA AV ČR KAN200520701; GA TA ČR TA01010436; GA ČR GAP302/12/1673; GA ČR(CZ) GBP302/12/G101; GA MPO FR-TI3/067 Institutional support: RVO:68378050 Keywords : Gold nanoparticles * Tau protein * ELISA * PCR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.820, year: 2014

  8. Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA

    Czech Academy of Sciences Publication Activity Database

    Potůčková, Lucie; Franko, Filip; Bambousková, Monika; Dráber, Petr

    2011-01-01

    Roč. 371, 1-2 (2011), s. 38-47 ISSN 0022-1759 R&D Projects: GA AV ČR KAN200520701; GA MŠk 1M0506; GA MŠk LC545; GA ČR GA301/09/1826; GA ČR GAP302/10/1759; GA ČR(CZ) GD204/05/H023 Grant - others:AV ČR(CZ) M200520901 Institutional research plan: CEZ:AV0Z50520514 Keywords : immuno-PCR * nano-iPCR * nanogold particles Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.203, year: 2011

  9. A54 peptide-mediated functionalized gold nanocages for targeted delivery of DOX as a combinational photothermal-chemotherapy for liver cancer

    Directory of Open Access Journals (Sweden)

    Huang S

    2017-07-01

    Full Text Available Shengnan Huang,1,* Chunming Li,2,* Weiping Wang,1 Huanjie Li,1 Zhi Sun,3 Chengzhi Song,4 Benyi Li,5 Shaofeng Duan,6,7 Yurong Hu1,8,9 1Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China; 2Department of Pharmacy, Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing, People’s Republic of China; 3Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 4School of Physical Sciences, University of Science and Technology of China, Hefei, People’s Republic of China; 5Department of Urology and Cancer Center, the University of Kansas Medical Center, Kansas City, KS, USA; 6College of Pharmacy, Henan University, Kaifeng, People’s Republic of China; 7Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 8Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, People’s Republic of China; 9Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The combination of photothermal therapy and chemotherapy (photothermal–­chemotherapy is a promising strategy for cancer therapy. Gold nanocages (AuNCs, with hollow and porous structures and unique optical properties, have become a rising star in the field of drug delivery. Here, we designed a novel targeted drug delivery system based on functionalized AuNCs and evaluated their therapeutic effects in vitro and in vivo. We then loaded doxorubicin into this promising system, designated as DHTPAuNCs consisting of hyaluronic acid-grafted and A54 peptide-targeted PEGylated AuNCs. Its formation was corroborated by ultraviolet

  10. Metallic double shell hollow nanocages: the challenges of their synthetic techniques.

    Science.gov (United States)

    Mahmoud, M A; El-Sayed, M A

    2012-03-06

    Hollow metallic nanoparticles have been attracting the attention of many researchers in the past five years due to their new properties and potential applications. The unique structure of the hollow nanoparticles; presence of two surfaces (internal and external), and the presence of both cavities and pores in the wall surfaces of these nanoparticles are responsible for their unique properties and applications. Here the galvanic replacement technique is used to prepare nanocages made of gold, platinum, and palladium. In addition, hollow double shell nanoparticles are made of two metal shells like Au-Pt, Pt-Au, Au-Pd, Pd-Au, Pd-Pt, and Pt-Pd. Silver nanocubes are used as templates during the synthesis of hollow nanoparticles with single metal shell or double shell nanocages. Most of the problems that could affect the synthesis of solid Silver nanocubes used as template as well as the double shell nanocages and their possible solutions are discussed in a detail. The sizes and shapes of the single-shell and double-shell nanocages were characterized by a regular and high-resolution TEM. A SEM mapping technique is also used to image the surface atoms for the double shell hollow nanoparticles in order to determine the thickness of the two metal shells. In addition, optical studies are used to monitor the effect of the dielectric properties of the other metals on the plasmonic properties of the gold nanoshell in these mixed nanoparticles.

  11. Porous graphene nanocages for battery applications

    Science.gov (United States)

    Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.

    2017-03-07

    An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.

  12. GestioImmuno

    OpenAIRE

    Sánchez González, Virginia

    2011-01-01

    El treball engloba les fases d'anàlisi i disseny d'una aplicació anomenada GestioImmuno que serveix per portar un correcte seguiment de pacients sotmesos a teràpies biològiques. El trabajo engloba las fases de análisis y diseño de una aplicación llamada GestioImmuno que sirve para llevar un correcto seguimiento de pacientes sometidos a terapias biológicas.

  13. Facile synthesis of Ag nanocubes and Au nanocages.

    Science.gov (United States)

    Skrabalak, Sara E; Au, Leslie; Li, Xingde; Xia, Younan

    2007-01-01

    This protocol describes a method for the synthesis of Ag nanocubes and their subsequent conversion into Au nanocages via the galvanic replacement reaction. The Ag nanocubes are prepared by a rapid (reaction time nanocubes. With this method, Ag nanocubes can be prepared and isolated for use within approximately 3 h. The Ag nanocubes can then serve as sacrificial templates for the preparation of Au nanocages, with a method for their preparation also described herein. The procedure for Au nanocage preparation and isolation requires approximately 5 h.

  14. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger.

    Science.gov (United States)

    Karimi, Mahdi; Zangabad, Parham Sahandi; Mehdizadeh, Fatemeh; Malekzad, Hedieh; Ghasemi, Alireza; Bahrami, Sajad; Zare, Hossein; Moghoofei, Mohsen; Hekmatmanesh, Amin; Hamblin, Michael R

    2017-01-26

    Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.

  15. Combined time-lapse cinematography and immuno-electron microscopy.

    Science.gov (United States)

    Balfour, B M; Goscicka, T; MacKenzie, J L; Gautam, A; Tate, M; Clark, J

    1990-04-01

    A method was developed to record interactions between mobile non-adherent immunocytes by time-lapse cinematography and then to study the same cells by immuno-electron microscopy, using monoclonal antibodies against surface components. For this purpose a modified stage was designed to fit an inverted microscope. The attachment included a device to cool the culture chamber with N2 gas, a micro-injector for monoclonal antibody and immuno-gold treatment, and two pairs of washing needles to change the medium without disturbance. The technique was first employed to study the formation of aggregates around the antigen-presenting cells in cultures containing cells from hyper-immunized animals. Recently peripheral blood cells from normal subjects and patients with immune deficiency syndromes were stimulated with pokeweed mitogen, cluster formation was recorded, and the cells were processed for immuno-electron microscopy.

  16. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  17. Sensitivity of BN nano-cages to caffeine and nicotine molecules

    Science.gov (United States)

    Soltani, Alireza; Baei, Mohammad T.; Tazikeh Lemeski, E.; Shahini, Malihe

    2014-12-01

    Adsorption of caffeine and nicotine molecules over B12N12 and B16N16 nano-cages were investigated by using first-principles calculations to define whether BN nano-cages are applicable for filtering or sensing caffeine and nicotine molecules. The chemisorption energy of nicotine molecule on BN nano-cages is very stronger than caffeine molecule. Upon the adsorption of caffeine and nicotine molecules, the electronic properties of the BN nano-cages can be significantly changed, being too much sensitized on the caffeine and nicotine adsorptions.

  18. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    Science.gov (United States)

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  19. Maxi- and Mini-Ferritins: Minerals and Protein Nanocages

    OpenAIRE

    Bevers, Loes E.; Theil, Elizabeth C.

    2011-01-01

    Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step...

  20. Receptor-Mediated Entry of Pristine Octahedral DNA Nanocages in Mammalian Cells

    DEFF Research Database (Denmark)

    Vindigni, Giulia; Raniolo, Sofia; Ottaviani, Alessio

    2016-01-01

    , more recently, identified as a tumor marker. For this purpose a truncated octahedral DNA nanocage functionalized with a single biotin molecule, which allows DNA cage detection through the biotin–streptavidin assays, was constructed. The results indicate that DNA nanocages are stable in biological...

  1. Resonant gravimetric immuno sensing based on capacitive micromachined ultrasound transducers

    International Nuclear Information System (INIS)

    Virzonis, Darius; Gailius Vanagas; Dovydas Barauskas; Ramanaviciene, Almira; Makaraviciute, Asta; Ramanavicius, Arunas; Wen, Weijia; Kodzius, Rimantas

    2014-01-01

    High-frequency (40 MHz) and low-frequency (7 MHz) capacitive micromachined ultrasound transducers (CMUT) were fabricated and tested for use in gravimetric detection of biomolecules. The low-frequency CMUT sensors have a gold-coated surface, while the high-frequency sensors have a silicon nitride surface. Both surfaces were functionalized with bovine leukemia virus antigen gp51 acting as the antigen. On addition of an a specific antibody labeled with horseradish peroxidase (HRP), the antigen/antibody complex is formed on the surface and quantified by HRP-catalyzed oxidation of tetramethylbenzidine. It has been found that a considerably smaller quantity of immuno complex is formed on the high frequency sensor surface. In parallel, the loading of the surface of the CMUT was determined via resonance frequency and electromechanical resistance readings. Following the formation of the immuno complexes, the resonance frequencies of the low-frequency and high-frequency sensors decrease by up to 420 and 440 kHz, respectively. Finite element analysis reveals that the loading of the (gold-coated) low frequency sensors is several times larger than that on high frequency sensors. The formation of the protein film with pronounced elasticity and stress on the gold surface case is discussed. We also discuss the adoption of this method for the detection of DNA using a hybridization assay following polymerase chain reaction. (author)

  2. Synthesis and Sensing Properties of ZnO/ZnS Nanocages

    Science.gov (United States)

    2010-01-01

    Large-scale uniform ZnO dumbbells and ZnO/ZnS hollow nanocages were successfully synthesized via a facile hydrothermal route combined with subsequent etching treatment. The nanocages were formed through preferential dissolution of the twinned (0001) plane of ZnO dumbbells. Due to their special morphology, the hollow nanocages show better sensing properties to ethanol than ZnO dumbbells. The gain in sensitivity is attributed to both the interface between ZnO and ZnS heterostructure and their hollow architecture that promotes analyte diffusion and increases the available active surface area. PMID:20672076

  3. Synthesis and Sensing Properties of ZnO/ZnS Nanocages

    Directory of Open Access Journals (Sweden)

    Wang Hong-Li

    2010-01-01

    Full Text Available Abstract Large-scale uniform ZnO dumbbells and ZnO/ZnS hollow nanocages were successfully synthesized via a facile hydrothermal route combined with subsequent etching treatment. The nanocages were formed through preferential dissolution of the twinned (0001 plane of ZnO dumbbells. Due to their special morphology, the hollow nanocages show better sensing properties to ethanol than ZnO dumbbells. The gain in sensitivity is attributed to both the interface between ZnO and ZnS heterostructure and their hollow architecture that promotes analyte diffusion and increases the available active surface area.

  4. Encapsulation of Gold Nanoparticles in a DNA Origami Cage

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Jacovetty, Erica L.; Liu, Yan; Yan, Hao

    2011-01-21

    A critical challenge in nanoparticle (NP) surface functionalization is to label the NP surface with a single copy of a functional group or to display multiple, unique molecules on the NP surface with control of the orientation and intermolecular distance. This challenge was addressed with the construction of a spatially addressable, self-assembling DNA origami nanocage that encapsulates gold nanoparticles and interrupts its surface symmetry

  5. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    Science.gov (United States)

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  6. Use of colloidal gold in diagnostic surgical pathology.

    Science.gov (United States)

    Warhol, M J

    1989-01-01

    Colloidal gold immuno-electron microscopy is a powerful tool for defining antigenicity at the subcellular level. Such studies permit correlation with cell fractionation studies. They also allow one to assess the specificity of a particular antibody. The most useful reagent for immuno-electron microscopy is colloidal gold stabilized by a binding protein, either staphylococcal protein A or immunoglobulin. This method permits highly discrete labeling, and the system is useful for most antibodies used in diagnostic pathology.

  7. Placing and shaping liposomes with reconfigurable DNA nanocages

    Science.gov (United States)

    Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang

    2017-07-01

    The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

  8. Directed self-assembly of DNA tiles into complex nanocages.

    Science.gov (United States)

    Tian, Cheng; Li, Xiang; Liu, Zhiyu; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-07-28

    Tile-based self-assembly is a powerful method in DNA nanotechnology and has produced a wide range of well-defined nanostructures. But the resulting structures are relatively simple. Increasing the structural complexity and the scope of the accessible structures is an outstanding challenge in molecular self-assembly. A strategy to partially address this problem by introducing flexibility into assembling DNA tiles and employing directing agents to control the self-assembly process is presented. To demonstrate this strategy, a range of DNA nanocages have been rationally designed and constructed. Many of them can not be assembled otherwise. All of the resulting structures have been thoroughly characterized by gel electrophoresis and cryogenic electron microscopy. This strategy greatly expands the scope of accessible DNA nanostructures and would facilitate technological applications such as nanoguest encapsulation, drug delivery, and nanoparticle organization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. How Ag Nanospheres Are Transformed into AgAu Nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Liane M.; Schurman, Charles A.; Kewalramani, Sumit; Shahjamali, Mohammad M.; Mirkin, Chad A.; Bedzyk, Michael J. (NWU)

    2017-08-23

    Bimetallic hollow, porous noble metal nanoparticles are of broad interest for biomedical, optical and catalytic applications. The most straightforward method for preparing such structures involves the reaction between HAuCl4 and well-formed Ag particles, typically spheres, cubes, or triangular prisms, yet the mechanism underlying their formation is poorly understood at the atomic scale. By combining in situ nanoscopic and atomic-scale characterization techniques (XAFS, SAXS, XRF, and electron microscopy) to follow the process, we elucidate a plausible reaction pathway for the conversion of citrate-capped Ag nanospheres to AgAu nanocages; importantly, the hollowing event cannot be explained by the nanoscale Kirkendall effect, nor by Galvanic exchange alone, two processes that have been previously proposed. We propose a modification of the bulk Galvanic exchange process that takes into account considerations that can only occur with nanoscale particles. This nanoscale Galvanic exchange process explains the novel morphological and chemical changes associated with the typically observed hollowing process.

  10. Optical properties of truncated Au nanocages with different size and shape

    Science.gov (United States)

    Chen, Qin; Qi, Hong; Ren, Ya-Tao; Sun, Jian-Ping; Ruan, Li-Ming

    2017-06-01

    The hollow nanostructures are conducive to applications including drug delivery, energy storage and conversion, and catalysis. In the present work, a versatile type of Au nanoparticles, i.e. nanocage with hollow interior, was studied thoroughly. Simulation of the optical properties of nanocages with different sizes and shapes was presented, which is essential for tuning the localized surface plasmon resonance peak. The edge length, side length of triangle, and wall thickness were used as structural parameters of truncated Au nanocage. The dependence of absorption efficiency, resonant wavelength, and absorption quantum yield on the structural parameters were discussed. Meanwhile, the applications of absorption quantum yield in biomedical imaging and laser induced thermal therapy were investigated. It was found that the phenomenon of multipolar plasmon resonances exists on truncated Au nanocage. Furthermore, the electric field distribution at different resonant wavelengths was also investigated. It is found that the electromagnetic field corresponds to the dipolar mode in an individual nanocage is largely distributed at the corners. Whereas, the electromagnetic field corresponds to the multipolar region is mainly located in the internal corners and edges.

  11. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.

    Science.gov (United States)

    Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam

    2018-02-21

    The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.

  12. Ni adsorption on Al12P12 nano-cage: A DFT study

    International Nuclear Information System (INIS)

    Rad, Ali Shokuhi; Ayub, Khurshid

    2016-01-01

    Density functional theory (DFT) calculations have been performed to evaluate the geometries and electronic properties of nickel decorated aluminum phosphide (AlP) nano-cages. At the lowest coverage of our system (one Ni per one Al 12 P 12 ), four adsorption sites (P 1 −P 4 ) of Ni on AlP nano-cage are studied. Band structures, binding energies, total density of states, natural bond orbital (NBO) charges, and electron density differences of Ni-adsorbed Al 12 P 12 nano-cages are studied for each adsorption site. We found that three orientations (P 1 , P 2 , and P 3 ) show electron transfer from the Ni to Al 12 P 12 whereas one orientation (P 4 ) has reverse direction of electron transfer. The adsorption energies of Ni on AlP nano-cage are −136.7, −108.5, −102.7, and −99.4 kcal mol −1 for P4, P3, P1 and P2, respectively. Formation of new Al−Ni and P−Ni bonds is observed concomitant with the dissociation of some Al−P bonds of the nano-cage. - Highlights: • There are four adsorption sites (P 1 , P 2 , P 3 , and P 4 ) on Al 12 P 12 nano-cage for Ni adsorption. • Direction of charge transfer for P 1 , P 2 , and P 3 are from the Ni to Al 12 P 12 while reverse direction is found for P 4 . • The order of Ni adsorption on Al 12 P 12 is: P4> P3> P1 >P2. • Dissociation of some Al−P bonds of the Al 12 P 12 and formation of new Al−Ni and P−Ni bonds upon adsorption of Ni.

  13. Highly open bowl-like PtAuAg nanocages as robust electrocatalysts towards ethylene glycol oxidation

    Science.gov (United States)

    Xu, Hui; Yan, Bo; Li, Shumin; Wang, Jin; Song, Pingping; Wang, Caiqin; Guo, Jun; Du, Yukou

    2018-04-01

    A novel combined seed mediated and galvanic replacement method has been demonstrated to synthesize a new class of trimetallic PtAuAg nanocatalysts with highly open bowl-like nanocage structure. The newly-generated PtAuAg nanocages catalysts exhibit superior electrocatalytic performances towards ethylene glycol oxidation with the mass activity of 6357.1 mA mg-1, 5.5 times higher than that of commercial Pt/C (1151.1 mA mg-1). This work demonstrates the first example of designing shape-controlled architectures of trimetallic bowl-like PtAuAg nanocages for liquid fuel electrooxidation.

  14. Synthesis of copper hydroxide branched nanocages and their transformation to copper oxide

    KAUST Repository

    LaGrow, Alec P.

    2014-08-21

    Copper oxide nanostructures have been explored in the literature for their great promise in the areas of energy storage and catalysis, which can be controlled based on their shape. Herein we describe the synthesis of complex branched nanocages of copper hydroxide with an alternating stacked morphology. The size of the nanocages\\' core and the length of the branches can be controlled by the temperature and ratio of surfactant used, varying the length from 85 to 232 nm long, and varying the core size from 240 to 19 nm. The nanostructures\\' unique morphology forms by controlling the growth of an initial spherical seed, and the crystallization of the anisotropic arms. The Cu(OH)2 nanostructures can be converted to polycrystalline CuO branched nanocages and Cu2O nanoframes. We show that the branched nanocage morphology of CuO has markedly superior catalytic properties to previous reports with CuO nanomaterials, resulting in a rapid and efficient catalyst for C-S coupling. © 2014 American Chemical Society.

  15. A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots.

    Science.gov (United States)

    Seo, Junyoung; Al-Hilal, Taslim A; Jee, Jun-Goo; Kim, Yong-Lim; Kim, Ha-Jeong; Lee, Byung-Heon; Kim, Soyoun; Kim, In-San

    2018-04-01

    The use of thrombolytic therapies is limited by an increased risk of systemic hemorrhage due to lysis of hemostatic clots. We sought to develop a plasmin-based thrombolytic nanocage that efficiently dissolves the clot without causing systemic fibrinolysis or disrupting hemostatic clots. Here, we generated a double chambered short-length ferritin (sFt) construct that has an N-terminal region fused to multivalent clot targeting peptides (CLT: CNAGESSKNC) and a C-terminal end fused to a microplasmin (μPn); CLT recognizes fibrin-fibronectin complexes in clots, μPn efficiently dissolves clots, and the assembly of double chambered sFt (CLT-sFt-μPn) into nanocage structure protects the activated-μPn from its circulating inhibitors. Importantly, activated CLT-sFt-μPn thrombolytic nanocage showed a prolonged circulatory life over activated-μPn and efficiently lysed the preexisting clots in both arterial and venous thromboses models. Thus, CLT-sFt-μPn thrombolytic nanocage platform represents the prototype of a targeted clot-busting agent with high efficacy and safety over existing thrombolytic therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Adsorption of rare gases on the C20 nanocage: a theoretical investigation

    Science.gov (United States)

    Rahimi, Rezvan; Kamalinahad, Saeedeh; Solimannejad, Mohammad

    2018-03-01

    The adsorption of rare gases (Rg) on the external surface of pristine and Sc-doped C20 (ScC19) nanocage is investigated using density functional theory (DFT). Also, time-dependent density functional theory (TD-DFT) and natural bond orbital (NBO) calculations are performed at the CAM-B3LYP/6-31G (d) level. The NBO analyses indicate that the adsorption of Rg molecules with studied nanocage significantly alters its electronic nature. Theoretical results have shown that Rg is weakly adsorbed on the pristine C20, so this nanocage cannot be a proper sensor for detecting and sensing rare gases. In order to improve properties of the nanocage as a promising sensor, Sc-doping process was investigated. The more negative adsorption energies (Eads) of Rg/ScC19 means that adsorption of Rg on the surface of ScC19 is energetically more favored than C20 and other nano-structures as reported in previous studies. It is expected that significant changes in the electronic properties caused by Rg may be used for designing new sensors for detection of rare gases.

  17. Maxi- and mini-ferritins: minerals and protein nanocages.

    Science.gov (United States)

    Bevers, Loes E; Theil, Elizabeth C

    2011-01-01

    Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step ii. O(2) or H(2)O(2) binding and formation of transition intermediates, step iii. release of differric oxo mineral precursors from active sites, step iv. nucleation and mineralization) properties of the minerals, and protein control of mineral dissolution and release of Fe(II). Pores in ferritin protein cages control iron entry for mineralization and iron exit after mineral dissolution. The relationship between phosphate or the presence of catalytically inactive subunits (animal L subunits) and ferritin iron mineral disorder is developed based on new information about contributions of ferritin protein cage structure to nucleation in protein cage subunit channels that exit close enough to those of other subunits and exiting mineral nuclei to facilitate bulk mineral formation. How and where protons move in and out of the protein during mineral synthesis and dissolution, how ferritin cage assembly with 12 or 24 subunits is encoded in the widely divergent ferritin amino acid sequences, and what is the role of the protein in synthesis of the bulk mineral are all described as problems requiring new approaches in future investigations of ferritin biominerals.

  18. Synthesis and Properties of Magnetic Carbon Nanocages Particles for Dye Removal

    Directory of Open Access Journals (Sweden)

    Hengfei Qin

    2015-01-01

    Full Text Available Magnetic carbon nanocages (MCNCs with multiform pore structure have been synthesized by a simple low temperature carbonization process. Biorenewable lignin was used as a cheap and carbon-rich precursor for the first time. The products were characterized by X-ray diffraction (XRD, nitrogen adsorption-desorption, energy dispersive X-ray spectroscopy (EDS, vibrating sample magnetometer (VSM, transmission electron microscopy (TEM, and Raman spectrum. XRD pattern and Raman spectrum showed that the product has a high degree of graphitization crystallinity. TEM micrograph indicated that the synthesized MCNCs have the hierarchical pore and cage structure. Due to these characteristics, the obtained magnetic carbon nanocages can be used as efficient and recycled adsorbents in the removal of dye staff from textile wastewater.

  19. Hydrogen storage by BeO nano-cage: A DFT study

    International Nuclear Information System (INIS)

    Beheshtian, Javad; Ravaei, Isa

    2016-01-01

    Graphical abstract: The electrostatic potential contours of Be 12 O 12 cluster with hydrogen molecules adsorbed. - Highlights: • H 2 adsorption on pristine beryllium oxide nano-cage (BeONC) investigated. • We investigated using density functional theory calculations in terms of adsorption energy, gravimetric, and charge transfer of H 2 molecule on BeONC. • We found that H 2 molecule is significantly adsorbed on the pristine BeO nano-cage. • We found that the DFT calculations indicate that gravimetric storage capacity of surface adsorption of hydrogen on BeONC is more than 7.6 wt%. • The H 2 molecule shows significantly adsorbed and gravimetric storage capacity, which our DFT results suggest on providing guidance for material design to better storage materials. - Abstract: First-principles calculations based on density functional theory were performed to study the hydrogen adsorption and H 2 storage on the beryllium oxide nano-cage (BeONC). The adsorption of H 2 molecules on the nano-cage depends on the polarization and charge of the atom surface. The transfer of charge from the Be atom to its neighboring O atoms in the surface of the cluster indicates the ionic character of the Be−O bond, so that Be−O bonds are polarized. The results show that the H 2 molecule is significantly adsorbed on the BeONC surface, so that the H 2 prefers to be adsorbed atop a Be atom as compared to oxygen atoms of the cluster surface. Our calculations also reveal that the gravimetric uptake can overpass the value of 7.6 wt% with an average adsorbed energy (E ads ) of −0.11 eV. These findings have important implications on designing of hydrogen storage materials and significantly broadening the spectrum of strategies for fabricating of new nanostructures to enhance hydrogen storage capacity.

  20. PNA-Peptide Assembly in a 3D DNA Nanocage at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Flory, Justin D. [Center; Shinde, Sandip [Center; Lin, Su [Center; Liu, Yan [Center; Yan, Hao [Center; Ghirlanda, Giovanna [Center; Fromme, Petra [Center

    2013-04-12

    Proteins and peptides fold into dynamic structures that access a broad functional landscape; however, designing artificial polypeptide systems is still a great challenge. Conversely, DNA engineering is now routinely used to build a wide variety of 2D and 3D nanostructures from hybridization based rules, and their functional diversity can be significantly expanded through site specific incorporation of the appropriate guest molecules. Here we demonstrate a new approach to rationally design 3D nucleic acid–amino acid complexes using peptide nucleic acid (PNA) to assemble peptides inside a 3D DNA nanocage. The PNA-peptides were found to bind to the preassembled DNA nanocage in 5–10 min at room temperature, and assembly could be performed in a stepwise fashion. Biophysical characterization of the DNA-PNA-peptide complex was performed using gel electrophoresis as well as steady state and time-resolved fluorescence spectroscopy. Based on these results we have developed a model for the arrangement of the PNA-peptides inside the DNA nanocage. This work demonstrates a flexible new approach to leverage rationally designed nucleic acid (DNA-PNA) nanoscaffolds to guide polypeptide engineering.

  1. Copper-doped Al12N12 nano-cages: potential candidates for nonlinear optical materials

    Science.gov (United States)

    Gilani, Mazhar Amjad; Tabassum, Sobia; Gul, Urooj; Mahmood, Tariq; Alharthi, Abdulrahman I.; Alotaibi, Mshari A.; Geesi, Mohammed; Sheikh, Rizwan; Ayub, Khurshid

    2018-01-01

    DFT calculations have been performed to study geometric, electronic and NLO properties of copper-doped Al12N12 nano-cages. Doping of copper significantly reduces HOMO-LUMO gap of the nano-cages. The most prominent change in E g is observed for Cu@R6 (copper at the center of the six-membered ring), where E g is reduced by 52% of the original value. Total and partial densities of states have been plotted for all the structures revealing that a new HOMO has appeared between the original frontier molecular orbitals of Al12N12. Polarizabilities and hyperpolarizabilities show manifold increase ( α = 418 au and β 0 = 1.8 × 104 au for Cu@R6) than pure Al12N12. TD-DFT calculations have been performed to obtain crucial excited states to account for the high hyperpolarizability values. The hyperpolarizability trend estimated from the two-level method and DFT calculations correlates nicely. The hyperpolarizability trend is justified nicely from the decreased E g. These findings designate such doped nano-cages as excellent candidates for their potential applications in electronic devices.

  2. DFT study on the adsorption behavior and electronic response of AlN nanotube and nanocage toward toxic halothane gas

    Science.gov (United States)

    Mohammadi, R.; Hosseinian, A.; Khosroshahi, E. Saedi; Edjlali, L.; Vessally, E.

    2018-04-01

    We have investigated the adsorption of a halothane molecule on the AlN nanotube, and nanocage using density functional theory calculations. We predicted that the halothane molecule tends to be physically adsorbed on the surface of AlN nanotube with adsorption energy (Ead) of -4.2 kcal/mol. The electronic properties of AlN nanotube are not affected by the halothane, and it is not a sensor. But the AlN nanocage is more reactive than the AlN nanotube because of its higher curvature. The halothane tends to be adsorbed on a hexagonal ring, an Alsbnd N bond, and a tetragonal ring of the AlN nanocage. The adsorption ability order is as follows: tetragonal ring (Ead = -14.7 kcal/mol) > Alsbnd N bond (Ead = -12.3 kcal/mol) > hexagonal ring (Ead = -10.1 kcal/mol). When a halothane molecule is adsorbed on the AlN nanocage, its electrical conductivity is increased, demonstrating that it can yield an electronic signal at the presence of this molecule, and can be employed in chemical sensors. The AlN nanocage benefits from a short recovery time of about 58 ms at room temperature.

  3. ImmunoCAP assays: Pros and cons in allergology.

    Science.gov (United States)

    van Hage, Marianne; Hamsten, Carl; Valenta, Rudolf

    2017-10-01

    Allergen-specific IgE measurements and the clinical history are the cornerstones of allergy diagnosis. During the past decades, both characterization and standardization of allergen extracts and assay technology have improved. Here we discuss the uses, advantages, misinterpretations, and limitations of ImmunoCAP IgE assays (Thermo Fisher Scientific/Phadia, Uppsala, Sweden) in the field of allergology. They can be performed as singleplex (ImmunoCAP) and, for the last decade, as multiplex (Immuno Solid-phase Allergen Chip [ISAC]). The major benefit of ImmunoCAP is the obtained quantified allergen-specific IgE antibody level and the lack of interference from allergen-specific IgG antibodies. However, ImmunoCAP allergen extracts are limited to the composition of the extract. The introduction of allergen molecules has had a major effect on analytic specificity and allergy diagnosis. They are used in both singleplex ImmunoCAP and multiplex ImmunoCAP ISAC assays. The major advantage of ISAC is the comprehensive IgE pattern obtained with a minute amount of serum. The shortcomings are its semiquantitative measurements, lower linear range, and cost per assay. With respect to assay performance, ImmunoCAP allergen extracts are good screening tools, but allergen molecules dissect the IgE response on a molecular level and put allergy research on the map of precision medicine. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  5. Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity.

    Science.gov (United States)

    Xu, Hui; Wang, Jin; Yan, Bo; Li, Shumin; Wang, Caiqin; Shiraishi, Yukihide; Yang, Ping; Du, Yukou

    2017-11-09

    Highly open metallic nanocages represent a novel class of nanostructures for advanced catalytic applications in direct liquid fuels cells due to their specific capability of providing easy access to reactants in both internal and external active sites and also desirable electronic structures for the adsorption of molecules, which render superior catalytic performances. However, to date, the rational design of trimetallic nanocages with tunable compositions remains a challenge. Herein, we demonstrate a facile method combining seed mediated and galvanic replacement for the preparation of unique trimetallic Pd-Au-Ag nanocages catalysts with tunable compositions. A series of controlled experiments reveal that the reaction time plays a crucial role in affecting the morphology of the final product. Importantly, the newly-generated Pd-Au-Ag nanocages are high-performance electrocatalysts for the oxidation of both ethylene glycol and glycerol with mass activities of 7578.2 and 5676.1 mA mg -1 , respectively, which are far superior to that of commercial Pd/C. We firmly believe that the strategy and enhanced electrocatalysts developed in this study can be well applied to boost the commercial development of fuel cell technologies.

  6. DFT study of the adsorption of H2O2 inside and outside Al12N12 nano-cage

    Science.gov (United States)

    Baei, Mohammad T.; Tazikeh Lemeski, E.; Soltani, Alireza

    2017-08-01

    The adsorption of hydrogen peroxide (H2O2) molecule on the outer and inner surfaces of Al12N12 nano-cage in terms of energetic, geometric, and electronic properties has been investigated using the density functional theory (DFT) calculations by B3LYP-D and M06-2X methods and 6-31G** basis set. It has been found that H2O2 molecule can be strongly chemisorbed (-3.45 eV) over the outer surface of the Al12N12 nanocage, where the adsorption energy depending upon its orientation with the nano-cage. Moreover, the adsorption of two H2O2 molecules on the outside surface of adsorbent is about -2.05 eV, while the adsorption of the molecule trapped inside adsorbent is about -1.81 eV. It was found that the H2O2 adsorption on the outer and inner surfaces of Al12N12 nano-cage leads to slightly lower energy gap and increasing the dipole moment of adsorbent.

  7. Double-shell CuS nanocages as advanced supercapacitor electrode materials

    Science.gov (United States)

    Guo, Jinxue; Zhang, Xinqun; Sun, Yanfang; Zhang, Xiaohong; Tang, Lin; Zhang, Xiao

    2017-07-01

    Metal sulfides hollow structures are advanced materials for energy storage applications of lithium-ion batteries and supercapacitors. However, constructing hollow metal sulfides with specific features, such as multi-shell and non-spherical shape, still remains great challenge. In this work, we firstly demonstrate the synthesis of CuS double-shell hollow nanocages using Cu2O nanocubes as precursors. The synthesis processes involve the repeated anion exchange reaction with Na2S and the controllable etching using hydrochloric acid. The whole synthesis processes are well revealed and the obtained double-shell CuS is tested as pseudocapacitive electrode material for supercapacitors. As expected, the CuS double-shell hollow nanocages deliver high specific capacitance, good rate performance and excellent cycling stability due to their unique nano-architecture. The present work contributes greatly to the exploration of hollow metal sulfides with complex architecture and non-spherical shape, as well as their promising application in high-performance electrochemical supercapacitors.

  8. Applications of gold nanoparticles in cancer nanotechnology

    Directory of Open Access Journals (Sweden)

    Weibo Cai

    2008-09-01

    Full Text Available Weibo Cai1,2, Ting Gao3, Hao Hong1, Jiangtao Sun11Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, Wisconsin, USA; 2University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, Wisconsin, USA; 3Tyco Electronics Corporation, 306 Constitution Drive, Menlo Park, California, USAAbstract: It has been almost 4 decades since the “war on cancer” was declared. It is now generally believed that personalized medicine is the future for cancer patient management. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of cancer, nanoparticles have been extensively studied over the last decade. In this review, we will summarize the current state-of-the-art of gold nanoparticles in biomedical applications targeting cancer. Gold nanospheres, nanorods, nanoshells, nanocages, and surface enhanced Raman scattering nanoparticles will be discussed in detail regarding their uses in in vitro assays, ex vivo and in vivo imaging, cancer therapy, and drug delivery. Multifunctionality is the key feature of nanoparticle-based agents. Targeting ligands, imaging labels, therapeutic drugs, and other functionalities can all be integrated to allow for targeted molecular imaging and molecular therapy of cancer. Big strides have been made and many proof-of-principle studies have been successfully performed. The future looks brighter than ever yet many hurdles remain to be conquered. A multifunctional platform based on gold nanoparticles, with multiple receptor targeting, multimodality imaging, and multiple therapeutic entities, holds the promise for a “magic gold bullet” against cancer.Keywords: gold nanoparticles, cancer, nanotechnology, optical imaging, nanomedicine, molecular therapy

  9. Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics

    Science.gov (United States)

    Jelveh, Salomeh; Chithrani, Devika B.

    2011-01-01

    The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs), gold nanorods (GNRs), gold nanoshells (GNSs) and gold nanocages (GNCs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options and recent developments in cancer research show that the incorporation of gold nanostructures into these protocols has enhanced tumor cell killing. These nanostructures further provide strategies for better loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy and photodynamic therapy. In addition, the heat generation capability of gold nanostructures upon exposure to UV or near infrared light is being used to damage tumor cells locally in photothermal therapy. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. In this review article, the recent progress in the development of gold-based NPs towards improved therapeutics will be discussed. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research. PMID:24212654

  10. Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Jelveh, Salomeh [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON (Canada); Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Chithrani, Devika B., E-mail: devika.chithrani@rmp.uhn.on.ca [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); STTARR Innovation Centre, Toronto Medical Discovery Tower, Toronto, ON (Canada)

    2011-03-04

    The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs), gold nanorods (GNRs), gold nanoshells (GNSs) and gold nanocages (GNCs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options and recent developments in cancer research show that the incorporation of gold nanostructures into these protocols has enhanced tumor cell killing. These nanostructures further provide strategies for better loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy and photodynamic therapy. In addition, the heat generation capability of gold nanostructures upon exposure to UV or near infrared light is being used to damage tumor cells locally in photothermal therapy. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. In this review article, the recent progress in the development of gold-based NPs towards improved therapeutics will be discussed. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research.

  11. Immuno-therapy of Acute Radiation Syndromes : Extracorporeal Immuno-Lympho-Plasmo-Sorption.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Methods Results Summary and conclusions Introduction: Existing Medical Management of the Acute Radiation Syndromes (ARS) does not include methods of specific immunotherapy and active detoxication. Though the Acute Radiation Syndromes were defined as an acute toxic poisonous with development of pathological processes: Systemic Inflammatory Response Syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndrome(TMODS), Toxic Multiple Organ Failure (TMOF). Radiation Toxins of SRD Group play an important role as the trigger mechanisms in development of the ARS clinical symptoms. Methods: Immuno-Lympho-Plasmo-Sorption is a type of Immuno-therapy which includes prin-ciples of immunochromato-graphy, plasmopheresis, and hemodialysis. Specific Antiradiation Antitoxic Antibodies are the active pharmacological agents of immunotherapy . Antiradia-tion Antitoxic Antibodies bind selectively to Radiation Neurotoxins, Cytotoxins, Hematotox-ins and neutralize their toxic activity. We have developed the highly sensitive method and system for extracorporeal-immune-lypmh-plasmo-sorption with antigen-specific IgG which is clinically important for treatment of the toxic and immunologic phases of the ARS. The method of extracorporeal-immune-lypmh-plasmo-sorption includes Antiradiation Antitoxic Antibodies (AAA) immobilized on microporous polymeric membranes with a pore size that is capable to provide diffusion of blood-lymph plasma. Plasma of blood or lymph of irradiated mammals contains Radiation Toxins (RT) that have toxic and antigenic properties. Radiation Toxins are Antigen-specific to Antitoxic blocking antibodies (Immunoglobulin G). Plasma diffuses through membranes with immobilized AAA and AA-antibodies bind to the polysaccharide chain of tox-ins molecules and complexes of AAA-RT that are captured on membrane surfaces. RT were removed from plasma. Re-transfusion of plasma of blood and lymph had been provided. We show a statistical significant

  12. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  13. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-01-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614

  14. Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages

    Science.gov (United States)

    Zhao, Xiyu; Li, Xinlu; Huang, Yanchun; Su, Zelong; Long, Junjun; Zhang, Shilei; Sha, Junwei; Wu, Tianli; Wang, Ronghua

    2017-12-01

    A hybrid of graphene nanoribbons (GNRs) interlacing hollow NiCoO2 (G-HNCO) nanocages in a size range of 300 500 nm with rough surface is synthesized by a chemical etching Cu2O templates and followed by GNR interlacing process. The G-HNCO showed high electrochemical performance of oxygen evolution reaction (OER), which exhibited small onset potential of 1.50 V and achieved current densities of 10 mA cm-2 at potentials of 1.62 V. Also, the hybrid delivered high capacitance of 937.8 F g-1 at 1 A g-1 in supercapacitor (SC) tests as well as stable cycling performance in both OER and SC measurements. The approach to synthesize the hybrid is simple and scalable for other graphene nanoribbon-based electrocatalysts. [Figure not available: see fulltext.

  15. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

    Science.gov (United States)

    Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2017-02-21

    Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the

  16. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems.

    Science.gov (United States)

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D; Boscoboinik, Alejandro M; Kim, Taejin; Stacchiola, Dario J; Lu, Deyu; Boscoboinik, J Anibal

    2017-07-17

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

  17. Dye-sensitization of CdS nano-cage - A density functional theory approach

    International Nuclear Information System (INIS)

    Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam; Josefsson, Ida; Odelius, Michael; Ramaniah, Lavanya M.

    2016-01-01

    Quantum dots a few nanometer in size exhibit unique properties in comparison to bulk due to quantum confinement. Their properties can be tuned according to their sizes. Dye sensitized quantum dot (DSQD) solar cells are based on the same principle with surface dangling bonds as a challenge. Researches have shown the existence and stability of nano-cages which are assembled such as to minimize the surface dangling bonds and hence maximize stability. Here, we report a first principles DFT study of optical and electronic properties of CdS-cage (Cd 34 S 34 ) sensitized with nkx-2388 dye in three different geometric configurations of dye attachment. A significant distortion is found to occur in the geometric structure of the cage when it interacts strongly with the dye. The relative positioning of dye and cage energy levels is found to be different in different configurations. The absorption spectrum has been analyzed with the help of natural transition orbitals (NTO).

  18. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems

    Science.gov (United States)

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D.; Boscoboinik, Alejandro M.; Kim, Taejin; Stacchiola, Dario J.; Lu, Deyu; Boscoboinik, J. Anibal

    2017-07-01

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

  19. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage

    Science.gov (United States)

    Hao, Chenhui; Li, Xiang; Tian, Cheng; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-05-01

    RNA nanotechnology promises rational design of RNA nanostructures with wide array of structural diversities and functionalities. Such nanostructures could be used in applications such as small interfering RNA delivery and organization of in vivo chemical reactions. Though having impressive development in recent years, RNA nanotechnology is still quite limited and its programmability and complexity could not rival the degree of its closely related cousin: DNA nanotechnology. Novel strategies are needed for programmed RNA self-assembly. Here, we have assembled RNA nanocages by re-engineering a natural, biological RNA motif: the packaging RNA of phi29 bacteriophage. The resulting RNA nanostructures have been thoroughly characterized by gel electrophoresis, cryogenic electron microscopy imaging and dynamic light scattering.

  20. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  1. Sensing performance of Cu-decorated Si12C12 nanocage towards toxic cyanogen gas: a DFT study

    Science.gov (United States)

    Solimannejad, Mohammad; Karimi Anjiraki, Azin; Kamalinahad, Saeedeh

    2017-04-01

    In this work, the adsorption of cyanogen (NCCN) molecule on the external surface of pristine and Cu-decorated Si12C12 (Cu@Si12C12) nanocage has been reported using density functional theory (DFT) calculations at the WB97XD/6-31  +  G(d) level. The weak physisorption can be seen for the adsorption of the NCCN molecule onto the pristine nanocage. Thus, the structural and electronic properties of the pristine Si12C12 do not change dramatically by the adsorption process. As a result, Si12C12 nanocage cannot be a proper sensor for detecting and sensing NCCN molecule. In order to improve the properties of the nanosensor, Cu decorating process was investigated. Results obtained show that on the effectiveness of this process, the electrical properties of Si12C12 are considerably changed. In addition to, we investigated the adsorption of the NCCN molecule on to the external surface of Cu-decorated Si12C12 (Cu@Si12C12). According to the results of the calculations, this process is chemisorptions with the adsorption energy (E ads) in about  -102.84 kJ · mol-1 and also in this process; the value of energy gap (E g) is significantly decreased. Therefore Cu@Si12C12 is a suitable adsorbent and it is expected that can potentially to be used as nanosensors for detecting the presence of toxic NCCN molecule.

  2. Al12CN11 nano-cage sensitive to NH3 detection: A first-principles study

    Science.gov (United States)

    Tazikeh-Lemeski, Elham

    2017-05-01

    We investigated the adsorption ability of NH3 molecule on the outer surfaces of Al12N12, Al16N16, and Al12CN11 nano-cages using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. The calculations represent that the NH3 molecule can be chemically adsorbed on the top of aluminum atoms in Al12N12 and Al16N16 nano-cages with the energies of -1.38 and -1.30 eV, respectively, indicating that the nature of these interactions are of the covalent characteristic. After the NH3 adsorption on the Al12CN11, the electronic and optical properties of the nano-cage and the atomic charge in the some of the nearby Al and N atoms around C atom was dramatically changed. Thus, the Al12CN11 can be utilized as a novel material for the detection of NH3 molecule owing to significant changes observed in their electrical conductivity.

  3. Immuno-modulatory properties of prebiotics extracted from Vernonia ...

    African Journals Online (AJOL)

    Methods: The immuno-modulatory potential was evaluated by monitoring the effects of oral administration of the extract on immunological, haematological and lipid profiles of Rattus norvegicus, while the prebiotic components were identified by thin layer chromatography (TLC), following liquid-liquid fractionation of the ...

  4. Immuno-histochemical localization of cholesterol binding proteins in ...

    African Journals Online (AJOL)

    Further, cholesterol association in tissue sections was confirmed by using tetramethylrhodamine isothiocyanate (TRITC) labeled florescent antibodies and immuno-blotting of CBPs. Finally, CBPs or cholesterol-carrying proteins were detected intracellularly in midgut epithelial/ microvillus cells named as CBP+. Zymogene ...

  5. Malaria in immuno-suppressed individuals on antiretroviral therapy ...

    African Journals Online (AJOL)

    Malaria in immuno-suppressed individuals on antiretroviral therapy (ART) in north-central Nigeria. C.R. Pam, B.T. Abubakar, G.O. Inwang, G.A. Amuga. Abstract. The immune deficiency caused by HIV infection reduces the immune response to malaria parasitaemia and therefore leads to an increased frequency of clinical ...

  6. THYROID HORMONE: A “PRIME SUSPECT” IN HUMAN IMMUNO ...

    African Journals Online (AJOL)

    Daniel Owu

    .nips; www.cas.org. THYROID HORMONE: A “PRIME SUSPECT” IN HUMAN IMMUNO. DEFICIENCY VIRUS (HIV/AIDS) PATIENTS? K. AMADI, A. M. SABO, O. O. OGUNKEYE and F. S. OLUWOLE. 1. Department of Human Physiology, College ...

  7. Defective immuno- and thymoproteasome assembly causes severe immunodeficiency

    DEFF Research Database (Denmark)

    Treise, Irina; Huber, Eva M.; Klein-Rodewald, Tanja

    2018-01-01

    in the C-terminal appendage of β2i that prevent the biogenesis of immuno- and thymoproteasomes. Proteasomes are essential for cell survival, and defective proteasome assembly causes selective death of cells expressing the mutant MECL-1, leading to the severe immunological phenotype. In contrast...... in the single amino acid exchange G170W in multicatalytic endopeptidase complex subunit-1 (MECL-1), the β2i-subunit of the immuno- and thymoproteasome. Yeast mutagenesis and crystallographic data suggest that the severe TUB6-phenotype compared to the MECL-1 knockout mouse is caused by structural changes......By N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated the mutant mouse line TUB6 that is characterised by severe combined immunodeficiency (SCID) and systemic sterile autoinflammation in homozygotes, and a selective T cell defect in heterozygotes. The causative missense point mutation results...

  8. Advances in synthetic peptide immuno-regulatory epitopes.

    Science.gov (United States)

    Creticos, Peter Socrates

    2014-01-01

    Synthetic peptide immuno-regulatory epitopes (SPIRE) represent a new class of therapeutics for allergen immunotherapy that offer the potential to suppress the IgE-mediated allergic disease process through induction of T-cell tolerance. These synthetic T-cell-tolerizing peptides have been designed to induce immunologic tolerance via binding to MHC class II molecules on antigen presenting cells, with subsequent upregulation of regulatory T-cells.

  9. Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: Quantum chemical calculations

    Science.gov (United States)

    Kazemi, Mohammad; Rad, Ali Shokuhi

    2017-06-01

    In the present study, we used density functional theory calculations (at B3LYP and ωB97XD Levels) to search on the adsorption of Sulfur mustard gas (defined as mustard gas) on the surface of fullerene-like ZnO nanocage as a semiconductor. We found three different configurations of adsorbed gas on the surface of this nanostructure semiconductor. The values of adsorption energy of mustard gas are calculated in the range of -144∼ -200 kJ/mol with enthalpies in the range of -132∼-195 kJ/mol and Gibbs free energies in the range of -88∼-144 kJ/mol (T = 298 K, based on ωB97XD level), which indicate exothermic and spontaneous chemisorption. For all geometries, we calculated geometry parameters by taking into account the charge analysis and frontier molecular orbital study. The result of this study can be a support for next studies to develop new nanomaterials as adsorbent/sensor for mustard gas.

  10. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  11. Pt-Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction.

    Science.gov (United States)

    Sun, Xiaojun; Yang, Xuan; Zhang, Yun; Ding, Yong; Su, Dong; Qin, Dong

    2017-10-12

    We report a facile synthesis of Pt-Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag template via wet etching. In a typical process, we inject a specific volume of aqueous H 2 PtCl 6 into a mixture of Ag nanocubes, ascorbic acid (H 2 Asc), NaOH, and poly(vinylpyrrolidone) in water under ambient conditions. At an initial pH of 11.9, the Pt(iv) precursor is quickly reduced by an ascorbate monoanion, a strong reducing agent derived from the neutralization of H 2 Asc with NaOH. The newly formed Pt atoms are deposited onto the edges and then corners and side faces of Ag nanocubes, leading to the generation of Ag@Pt core-shell nanocubes with a conformal Pt shell of approximately three atomic layers (or, about 0.6 nm in thickness) when 0.4 mL of 0.2 mM H 2 PtCl 6 is involved. After the selective removal of Ag in the core using an etchant based on a mixture of Fe(NO 3 ) 3 and HNO 3 , we transform the core-shell nanocubes into Pt-Ag alloy nanocages with an ultrathin wall thickness of less than 2 nm. We further demonstrate that the as-obtained nanocages with a composition of Pt 42 Ag 58 exhibit an enhanced catalytic activity toward the oxygen reduction reaction, with a mass activity of 0.30 A mg -1 and a specific activity of 0.93 mA cm -2 , which are 1.6 and 2.5 times, respectively, greater than those of a commercial Pt/C catalyst.

  12. Isotopic methods or immuno diagnosis: The Radioimmunoassay and immunoradiometric assay

    International Nuclear Information System (INIS)

    Caso, R.

    1997-01-01

    This work offers an explanation about the more used isotopic techniques for immuno diagnosis: the radioimmunoassay (RIA) and immunoradiometric assay (IRMA). It describes the basic principles of these assays, the antigen-antibody reaction, the radioiodination methods with I-125 for antigens and antibodies, the purification and characterization of labelled compounds. On the order hand they present work gives a review of the methods for separate the bound and free fractions. At the end it offers the principles of the quality control of immunoassay and the future lines of research in the field of RIA and IRMA

  13. Assembly of silver Trigons into a buckyball-like Ag180nanocage.

    Science.gov (United States)

    Wang, Zhi; Su, Hai-Feng; Tan, Yuan-Zhi; Schein, Stan; Lin, Shui-Chao; Liu, Wei; Wang, Shu-Ao; Wang, Wen-Guang; Tung, Chen-Ho; Sun, Di; Zheng, Lan-Sun

    2017-11-14

    Buckminsterfullerene (C 60 ) represents a perfect combination of geometry and molecular structural chemistry. It has inspired many creative ideas for building fullerene-like nanopolyhedra. These include other fullerenes, virus capsids, polyhedra based on DNA, and synthetic polynuclear metal clusters and cages. Indeed, the regular organization of large numbers of metal atoms into one highly complex structure remains one of the foremost challenges in supramolecular chemistry. Here we describe the design, synthesis, and characterization of a Ag 180 nanocage with 180 Ag atoms as 4-valent vertices (V), 360 edges (E), and 182 faces (F)--sixty 3-gons, ninety 4-gons, twelve 5-gons, and twenty 6-gons--in agreement with Euler's rule V - E + F = 2. If each 3-gon (or silver Trigon) were replaced with a carbon atom linked by edges along the 4-gons, the result would be like C 60 , topologically a truncated icosahedron, an Archimedean solid with icosahedral ( I h ) point-group symmetry. If C 60 can be described mathematically as a curling up of a 6.6.6 Platonic tiling, the Ag 180 cage can be described as a curling up of a 3.4.6.4 Archimedean tiling. High-resolution electrospray ionization mass spectrometry reveals that {Ag 3 } n subunits coexist with the Ag 180 species in the assembly system before the final crystallization of Ag 180 , suggesting that the silver Trigon is the smallest building block in assembly of the final cage. Thus, we assign the underlying growth mechanism of Ag 180 to the Silver-Trigon Assembly Road (STAR), an assembly path that might be further employed to fabricate larger, elegant silver cages.

  14. MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage.

    Science.gov (United States)

    Liu, Jun; Wu, Chao; Xiao, Dongdong; Kopold, Peter; Gu, Lin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2016-05-01

    Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An overview of synthetic strategies and current applications of gold nanorods in cancer treatment

    Science.gov (United States)

    Manish Lakhani, Prit; Vishnu Kiran Rompicharla, Sri; Ghosh, Balaram; Biswas, Swati

    2015-10-01

    Photothermal therapy, also referred to as optical hyperthermia or photothermal ablation, is an emerging strategy for treating solid tumours. Colloidal gold converts the absorbed light into localized heat via a non-radiative mechanism, surface plasmon resonance, which ablates the solid tumours. Several plasmon resonating nanostructures, including gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanoshells, gold nanocages, copper sulphide and carbon nanotubes, have shown potential for photo-activated cancer therapy. Generally, spherical AuNPs display absorption maxima between 500-550 nm, making them inefficient due to low tissue penetration. On the other hand, AuNRs absorb light in the near-infrared (NIR) region that penetrates deeper with higher spatial precision, and causes no damage to the surrounding healthy tissues due to the low energy absorption of NIR light by normal tissue. Moreover, the absorption range of light can be fine-tuned to the NIR region by adjusting the aspect ratios of AuNRs. However, large-scale synthesis and stability of this colloidal system still poses challenges for clinical translation. In this review, we discuss various strategies applied up to now for the synthesis of AuNRs. Current trends in the pre-clinical development of multifunctional AuNRs with emphasis on preparation and application strategies in cancer therapy have been delineated.

  16. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  17. Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs

    NARCIS (Netherlands)

    Storm, G; Vingerhoeds, MH; Crommelin, DJA; Haisma, HJ

    1997-01-01

    Immunoliposomes bearing anticancer prodrug activating enzymes (immuno-enzymosomes) are proposed for use in a two-phase approach to targeted chemotherapy of human cancer. In the first phase the tumor-specific immuno-enzymosomes are administered, and time is allowed for tumor localization and

  18. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  19. Influence of gold nanoparticle architecture on in vitro bioimaging and cellular uptake

    Science.gov (United States)

    Polat, Ozlem; Karagoz, Aysel; Isık, Sevim; Ozturk, Ramazan

    2014-12-01

    Gold nanoparticles (GNPs) are favorable nanostructures for several biological applications due to their easy synthesis and biocompatible properties. Commonly studied GNP shapes are nanosphere (AuNS), nanorod (AuNR), and nanocage (AuNC). In addition to distinct geometries and structural symmetries, these shapes have different photophysical properties detected by surface plasmon resonances. Therefore, choosing the best shaped GNP for a specific purpose is crucial to the success of the application. In this study, all three shapes of GNP were investigated for their potency to interact with cell surface receptors. Anti-HER2 antibody was conjugated to the surface of nanoparticles. MCF-7 breast adenocarcinoma and hMSC human mesenchymal cell lines were treated with GNPs and analyzed for cellular uptake and bioimaging efficiencies using the UV-vis spectroscopy and dark-field microscopy.

  20. Macrophages, meta-inflammation, and immuno-metabolism.

    Science.gov (United States)

    Shapiro, Haim; Lutaty, Aviv; Ariel, Amiram

    2011-01-01

    Current research depicts specific modes of immunity and energy metabolism as being interrelated at the molecular, cellular, organ and organism level. Hence, whereas M2 (alternatively-activated) macrophages dominate insulin-sensitive adipose tissue in the lean, M1-skewed (classically-activated) macrophages accumulate in parallel to adiposity in the obese, and promote inflammation and insulin resistance, that is, meta-inflammation. The latest frontier of immuno-metabolism explores the coregulation of energy metabolism and immune function within hematopoietic cells. M1-skewed macrophages are sustained in edematous, hypoxic tissues by anaerobic glycolysis, whereas mitochondrial biogenesis and respiration dominates in M2 cells. We review the underlying mechanisms and the consequences of the transition from M2 to M1 predominance in adipose tissue, as well as the extracellular signals and transcription factors that control macrophage phenotypes and impose distinct metabolic modes.

  1. Myelography in patients with acquired immuno deficiency syndrome

    International Nuclear Information System (INIS)

    Borgstein, B.J.; Koster, P.A.; Peeters, F.L.M.; Portegies, P.

    1989-01-01

    Neurological complications in patients with Acquired Immuno Deficiency Syndrome (AIDS) are frequent and in addition to central nervous system syndromes, involvement of the peripheral nervous system is increasingly seen. We evaluated the indications and results of myelographic examination in six AIDS-patients with signs of peripheral nervous system disease, out of 200 AIDS-patients with neurological complications. Five of these patients had a polyradiculopathy, with proven cytomegalovirus (CMV) infection in four cases. There were two abnormal myelographic examinations with findings of cauda equina nerve root involvement, both in patients with proven CMV-polyradiculopathy. These abnormal findings had no direct therapeutic consequences. Myelography is not essential for establishing the diagnosis, which is based on cerebrospinal fluid (CSF) analysis, but may be indicated to exclude a spinal cord or nerve root compressive lesion. (orig.)

  2. Antibodies and antimatter: the resurgence of immuno-PET.

    Science.gov (United States)

    Wu, Anna M

    2009-01-01

    The completion of the human genome, coupled with parallel major research efforts in proteomics and systems biology, has led to a flood of information on the roles of individual genes and proteins in normal physiologic processes and their disruptions in disease. In practical terms, this information has opened the door to increasingly targeted therapies as specific molecular markers are identified and validated. The ongoing transition from empiric to molecular medicine has engendered a need for corresponding molecular diagnostics, including noninvasive molecular imaging. Convergence of knowledge regarding key biomarkers that define normal biologic processes and disease with protein and imaging technology makes this an opportune time to revisit the combination of antibodies and PET, or immuno-PET.

  3. Food irradiation: Special solutions for the immuno-compromised

    Science.gov (United States)

    Mohácsi-Farkas, Csilla

    2016-12-01

    Safety of food is particularly important for immuno-compromised patients, because these people are vulnerable to all sorts of infectious complications and foodborne pathogens as well, and even organisms normally considered non-pathogenic may cause problems. According to the guidelines published by the FDA, immunocompromised patients have to avoid high-risk foods, and advised to consume only pasteurized juice, milk or cheese, and well-cooked eggs, poultry, meat and fish. In the frame of an IAEA CRP the objective was to develop, in collaborations with the healthcare community, the use of irradiation to increase the variety, availability and acceptability of foods for immunocompromised, for example irradiated fresh produce (fruits, vegetables, salads) and ready-to-eat meals. Further aim was to widen the acceptance of irradiated foods by the healthcare and regulatory communities.

  4. Influence of the single-strand linker composition on the structural/dynamical properties of a truncated octahedral DNA nano-cage family.

    Science.gov (United States)

    Iacovelli, Federico; Alves, Cassio; Falconi, Mattia; Oteri, Francesco; de Oliveira, Cristiano L P; Desideri, Alessandro

    2014-10-01

    The structural/dynamical properties of three truncated octahedral DNA nano-cages composed by identical double helices but single strand linkers with different composition, namely 7 thymidines, 7 adenines, and 7 alternated thymidines and adenines, have been investigated through classical molecular dynamics simulations. Trajectories have been analyzed to investigate the role of the linkers in defining nano-cages stability and flexibility, including possible influence on the internal cages motions. The data indicate that the cages behavior is almost identical and that the structural/dynamical parameters measured along the trajectories are not particularly affected by the presence of different bases. These results demonstrate that the constraints imposed by the nano-structure geometry are the main factor in modulating these properties

  5. Ultrathin Nanosheet Assembled Sn0.91Co0.19S2Nanocages with Exposed (100) Facets for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Bing; Gu, Peng; Zhang, Guangxun; Lu, Yao; Huang, Kesheng; Xue, Huaiguo; Pang, Huan

    2018-02-01

    Ultrathin 2D inorganic nanomaterials are good candidates for lithium-ion batteries, as well as the micro/nanocage structures with unique and tunable morphologies. Meanwhile, as a cost-effective method, chemical doping plays a vital role in manipulating physical and chemical properties of metal oxides and sulfides. Thus, the design of ultrathin, hollow, and chemical doped metal sulfides shows great promise for the application of Li-ion batteries by shortening the diffusion pathway of Li ions as well as minimizing the electrode volume change. Herein, ultrathin nanosheet assembled Sn 0.91 Co 0.19 S 2 nanocages with exposed (100) facets are first synthesized. The as-prepared electrode delivers an excellent discharge capacity of 809 mA h g -1 at a current density of 100 mA g -1 with a 91% retention after 60 discharge-charge cycles. The electrochemical performance reveals that the Li-ion batteries prepared by Sn 0.91 Co 0.19 S 2 nanocages have high capacity and great cycling stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Genina, Elina A; Terentyuk, G S; Khlebtsov, B N; Bashkatov, A N; Tuchin, Valerii V

    2012-06-30

    The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and the optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.

  7. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    International Nuclear Information System (INIS)

    Genina, Elina A; Terentyuk, G S; Khlebtsov, B N; Bashkatov, A N; Tuchin, Valerii V

    2012-01-01

    The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and the optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.

  8. Significance of neo-angiogenesis and immuno-surveillance cells in ...

    African Journals Online (AJOL)

    tumoural microvessel number is a significant predictor of metastasis and clinical outcome in many tumours, including oral malignancies. The immuno-surveillance cells, mast cells and eosinophils are implicated in the biological behaviour of tumours.

  9. Cytokine-induced 'bystander' senescence in DDR and immuno-surveillance

    Czech Academy of Sciences Publication Activity Database

    Hodný, Zdeněk; Hubáčková, Soňa; Bartek, Jiří

    2013-01-01

    Roč. 4, č. 10 (2013), s. 1552-1553 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : cell senescence * cytokines * immuno- surveillance Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.627, year: 2013

  10. The effect of resuscitation strategy on the longitudinal immuno-inflammatory response to blunt trauma

    DEFF Research Database (Denmark)

    Bonde, Alexander; Nordestgaard, Ask Tybjærg; Kirial, Rasmus

    2017-01-01

    INTRODUCTION: Resuscitation strategies following blunt trauma have been linked to immuno-inflammatory complications leading to systemic inflammatory syndrome (SIRS), sepsis and multiple organ failure (MOF). The effect of resuscitation strategy on longitudinal inflammation marker trajectories is...

  11. [Psycho-immuno-endocrinology of the thyroid gland].

    Science.gov (United States)

    Šterzl, Ivan; Absolonová, Karolína; Matucha, Petr

    Historically endocrinologists and psychiatrists are aware that disturbances in thyroid disease in beginning or even in clinically intensified states of thyrotoxicosis or hypothyroidism exhibit pathological mental manifestations, masking or potentiating the underlying disease. Immune system disorders cause thyroid organ-specific autoimmune process. This autoimmune thyroid disease binds with a number of disorders in both endocrine or non-endocrine organs. This appears in vascular, neurological, skin, connective tissue, gastrointestinal tract and mental pathology. These disorders are part of autoimmune polyglandular syndromes (APS) type I -III, especially the APS type III. Originally it was assumed that these mental disorders are caused by direct exposure to excess or deficiency of thyroid hormones. Recently, however, it appears that these psycho-immune-endocrine disorders have common etiologic mechanisms of formation and on cellular and molecular level they involve similar, if not in some cases, common mechanisms.Key words: antithyroid peroxidase antibody - autoimmune polyglandular syndrome type I., II., III. - autoimmune thyroid disease - bipolar disorder - depression - Hashimotos encephalopathy - postpartum psychosis - psycho-immuno-endocrinology - schizophrenia.

  12. The immuno-dynamics of conflict intervention in social systems.

    Directory of Open Access Journals (Sweden)

    David C Krakauer

    Full Text Available We present statistical evidence and dynamical models for the management of conflict and a division of labor (task specialization in a primate society. Two broad intervention strategy classes are observed--a dyadic strategy--pacifying interventions, and a triadic strategy--policing interventions. These strategies, their respective degrees of specialization, and their consequences for conflict dynamics can be captured through empirically-grounded mathematical models inspired by immuno-dynamics. The spread of aggression, analogous to the proliferation of pathogens, is an epidemiological problem. We show analytically and computationally that policing is an efficient strategy as it requires only a small proportion of a population to police to reduce conflict contagion. Policing, but not pacifying, is capable of effectively eliminating conflict. These results suggest that despite implementation differences there might be universal features of conflict management mechanisms for reducing contagion-like dynamics that apply across biological and social levels. Our analyses further suggest that it can be profitable to conceive of conflict management strategies at the behavioral level as mechanisms of social immunity.

  13. [Computational medical imaging (radiomics) and potential for immuno-oncology].

    Science.gov (United States)

    Sun, R; Limkin, E J; Dercle, L; Reuzé, S; Zacharaki, E I; Chargari, C; Schernberg, A; Dirand, A S; Alexis, A; Paragios, N; Deutsch, É; Ferté, C; Robert, C

    2017-10-01

    The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  14. Gold in Modern Economy

    Directory of Open Access Journals (Sweden)

    Boryshkevych Olena V.

    2014-01-01

    Full Text Available The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in the gold market during 1968 – 2013 and identifies main factors that determine the gold price. It identifies interconnection between the state of the gold market and financial markets of countries. The study showed that namely geopolitical and economic instability restricts the spectrum of financial assets for investing and gold is not only a safe investment object but also a profitable one.

  15. Immuno-oncology: A changing paradigm in cancer therapy

    Directory of Open Access Journals (Sweden)

    Omar Abdel-Rahman

    2016-12-01

    , the use of this biomarker has been criticized for the lack of consistency and standardization, and it is expected to take a while before a general consensus can be established on this particular point[19].The issue of toxicity is another important point of consideration associated with the use of immune check point inhibitors. Contrary to traditional cytotoxic chemotherapy, check point inhibition is linked to a wide spectrum of immune-related toxicities including those of endocrine, cutaneous, pulmonary, hepatic, ocular, and neurological, which necessitate proper diagnosis and treatment[20-27]. In conclusion, the advancement of immuno-oncology is transforming the field of oncology worldwide. It remains to be seen whether developing countries are capable of coping with the escalating prices of these newer immuno-therapeutics and more importantly, it is crucial to identify measures that can be taken by the global oncology community to deliver these life-saving drugs to all patients in need, irrespective of their financial circumstances.

  16. Combination radioimmunotherapy approaches and quantification of immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-06-15

    Monoclonal antibodies (mAbs), which play a prominent role in cancer therapy, can interact with specific antigens on cancer cells, thereby enhancing the patient' immune response via various mechanisms, or mAbs can act against cell growth factors and, thereby, arrest the proliferation of tumor cells. Radionuclide-labeled mAbs, which are used in radioimmunotherapy (RIT), are effective for cancer treatment because tumor associated-mAbs linked to cytotoxic radionuclides can selectively bind to tumor antigens and release targeted cytotoxic radiation. Immunological positron emission tomography (immuno-PET), which is the combination of PET with mAb, is an attractive option for improving tumor detection and mAb quantification. However, RIT remains a challenge because of the limited delivery of mAb into tumors. The transport and uptake of mAb into tumors is slow and heterogeneous. The tumor microenvironment contributed to the limited delivery of the mAb. During the delivery process of mAb to tumor, mechanical drug resistance such as collagen distribution or physiological drug resistance such as high intestinal pressure or absence of lymphatic vessel would be the limited factor of mAb delivery to the tumor at a potentially lethal mAb concentration. When α-emitter-labeled mAbs were used, deeper penetration of α-emitter-labeled mAb inside tumors was more important because of the short range of the α emitter. Therefore, combination therapy strategies aimed at improving mAb tumor penetration and accumulation would be beneficial for maximizing their therapeutic efficacy against solid tumors.

  17. Combination radioimmunotherapy approaches and quantification of immuno-PET

    International Nuclear Information System (INIS)

    Kim, Jin Su

    2016-01-01

    Monoclonal antibodies (mAbs), which play a prominent role in cancer therapy, can interact with specific antigens on cancer cells, thereby enhancing the patient' immune response via various mechanisms, or mAbs can act against cell growth factors and, thereby, arrest the proliferation of tumor cells. Radionuclide-labeled mAbs, which are used in radioimmunotherapy (RIT), are effective for cancer treatment because tumor associated-mAbs linked to cytotoxic radionuclides can selectively bind to tumor antigens and release targeted cytotoxic radiation. Immunological positron emission tomography (immuno-PET), which is the combination of PET with mAb, is an attractive option for improving tumor detection and mAb quantification. However, RIT remains a challenge because of the limited delivery of mAb into tumors. The transport and uptake of mAb into tumors is slow and heterogeneous. The tumor microenvironment contributed to the limited delivery of the mAb. During the delivery process of mAb to tumor, mechanical drug resistance such as collagen distribution or physiological drug resistance such as high intestinal pressure or absence of lymphatic vessel would be the limited factor of mAb delivery to the tumor at a potentially lethal mAb concentration. When α-emitter-labeled mAbs were used, deeper penetration of α-emitter-labeled mAb inside tumors was more important because of the short range of the α emitter. Therefore, combination therapy strategies aimed at improving mAb tumor penetration and accumulation would be beneficial for maximizing their therapeutic efficacy against solid tumors

  18. Towards Translational ImmunoPET/MR Imaging of Invasive Pulmonary Aspergillosis: The Humanised Monoclonal Antibody JF5 Detects Aspergillus Lung Infections In Vivo

    DEFF Research Database (Denmark)

    Davies, Genna; Rolle, Anna-Maria; Maurer, Andreas

    2017-01-01

    of the fungus from invasive lung biopsy, considered the gold standard for IPA detection, is slow and often not possible in critically ill patients. In a previous study, we reported the development of a novel non-invasive procedure for IPA diagnosis based on antibody-guided positron emission tomography...... and magnetic resonance imaging (immunoPET/MRI) using a [64Cu] DOTA-labeled mouse monoclonal antibody (mAb), mJF5, specific to Aspergillus. To enable translation of the tracer to the clinical setting, we report here the development of a humanised version of the antibody (hJF5), and pre-clinical imaging of lung......Cu] NODAGA-hJF5 tracer developed here represents an ideal candidate for the diagnosis of IPA and translation to the clinical setting....

  19. Determination of Seric E immuno-globulins. Comparison of two techniques, radioimmunological and immuno enzymatic. Clinical correlations

    International Nuclear Information System (INIS)

    Lafosse-Marin, Sylvie.

    1977-09-01

    Because of the very low seric IgE concentrations their research and analysis are difficult and many techniques of a more or less sophisticated kind have been proposed for this reason. Our aim was to compare two total seric IgE determination methods: one recent, the enzymmuno-Plaque-Pasteur (EPP); the other, most commonly used at present, the Radio-Immuno-Sorbent-Test (RIST). For this we measured total seric IgE in a hundred and one children by the EPP technique and compared our results with those supplied from the same samples by a laboratory using the RIST technique; the results were then correlated with clinical evidence. The technique proposed by the Pasteur Institute to determine total seric IgE is based on radial immunodiffusion sensitized by the use of antibodies labelled with glucose oxydase. This simple technique, easy to use, requires no expensive materials but has two disadvantages: it takes rather a long time and can only measure IgE concentrations of 50 UI/ml or more. The RIST technique is based on competitive fixation, onto anti-IgE-coated Sephadex particles of the IgE under analysis and of a fixed dose of radio-labelled IgE. This second technique, though faster, has the major disadvantage of being practicable in few laboratories because of the heavy equipment needed and the radioactivity used. This study has shown on the whole an equivalence (correlation coefficient 0.95) between the results given by the two techniques: EPP and RIST (the comparison was made between the IgE contents and not their logarithm) [fr

  20. Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts

    Science.gov (United States)

    Dhavale, Vishal M.; Gaikwad, Sachin S.; George, Leena; Devi, R. Nandini; Kurungot, Sreekumar

    2014-10-01

    Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N, and C, the overall integrity of the structure and its intra-molecular connectivity within the framework help in achieving better oxygen evolution characteristics at a significantly reduced overpotential. The engineered Ni-NGr nanocage displays a substantially low overpotential of ~290 mV at a practical current density of 20 mA cm-2 in 0.1 M KOH. In comparison, NGr and Ni-particles as separate entities give overpotentials of ~570 and ~370 mV under similar conditions. Moreover, the long term stability of Ni-NGr was investigated by anodic potential cycling for 500 cycles and an 8.5% increment in the overpotential at 20 mA cm-2 was observed. Additionally, a chronoamperometric test was performed for 15 h at 20 mA cm-2, which highlights the better sustainability of Ni-NGr under the actual operating conditions. Finally, the quantitative estimation of evolved oxygen was monitored by gas chromatography and was found to be 70 mmol h-1 g-1 of oxygen, which is constant in the second cycle as well.Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N

  1. Immuno-PCR--a new tool for paleomicrobiology: the plague paradigm.

    Directory of Open Access Journals (Sweden)

    Nada Malou

    Full Text Available BACKGROUND: The cause of past plague pandemics was controversial but several research teams used PCR techniques and dental pulp as the primary material to reveal that they were caused by Yersinia pestis. However, the degradation of DNA limits the ability to detect ancient infections. METHODS: We used for the first time immuno-PCR to detect Yersinia pestis antigens; it can detect protein concentrations 70 times lower than the standard ELISA. After determining the cut-off value, we tested 34 teeth that were obtained from mass graves of plague, and compared previous PCR results with ELISA and immuno-PCR results. RESULTS: The immuno-PCR technique was the most sensitive (14 out of 34 followed by the PCR technique (10 out of 34 and ELISA (3 out of 34. The combination of these three methods identified 18 out of 34 (53% teeth as presumably being from people with the plague. CONCLUSION: Immuno-PCR is specific (no false-positive samples were found and more sensitive than the currently used method to detect antigens of ancient infections in dental pulp. The combination of three methods, ELISA, PCR and immuno-PCR, increased the capacity to identify ancient pathogens in dental pulp.

  2. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

    of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...... value maximization forces the manager of high type to extract the gold.The implications are three-fold. First, all managers (except the lowest type) extract the gold too soon compared to the first-best policy of leaving the gold in the mine forever. Second, a manager of high type extracts the gold......  Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...

  3. Bonding the superalkali M3O (M = Li and K): An effective strategy to improve the electronic and nonlinear optical properties of the inorganic B40 nanocage

    Science.gov (United States)

    Li, Zhipeng; Yu, Guangtao; Zhang, Xueying; Huang, Xuri; Chen, Wei

    2017-10-01

    Inspired by the fascinating finding of all-boron fullerene B40 (Nat Chem, 2014, 6, 727), we propose a new and effective strategy to construct a series of typical Donor-Acceptor (D-A) frameworks via linking the superalkali M3O (M = Li and K) unit with the low ionization potential to the B40 nanocage with large electron affinity. By means of the density functional theory computations, we have systematically investigated the structures, electronic properties, the first and second hyperpolarizabilities of these modified B40 nanocage systems. Owing to the formation of a B-O chemical bond, these composite systems (M3O)n-B40 (M = Li and K, n = 1 and 2) can possess the considerably large binding energy ranging from 57.0 to 99.8 kcal/mol, indicating their high structure stabilities. Compared with the pristine B40 nanocage, linking the superalkali M3O can effectively narrow the wide energy gap from the original 2.86 eV to 0.61-1.11 eV, and significantly increase the first and second hyperpolarizabilities to as large as 5.00 × 104-2.46 × 105 au and 1.48 × 107-4.85 × 108 au, respectively, owing to the occurrence of evident electron transfer process in this kind of typical D-A framework. These fascinating findings will be advantageous for promoting the potential applications of the inorganic boron-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical materials.

  4. Enzyme-immuno assay for total estrogens and human placental lactogen. Comparison with radio-immuno-assay in normal pregnancy-monitoring

    International Nuclear Information System (INIS)

    Raichvarg, D.; Tallet, F.; Lajeunie, E.; Bonnaire, Y.; Danglas, P.

    1980-01-01

    The concentrations of estrogens (E) and human placental lactogen (HLP) are estimated in sera by radio immuno-assay (RIA) and enzyme-immuno-assay (EIA). Statistical data indicate mean intra-assay variation coefficients of 7% and 12% for E and HLP tests, respectively. The correlation coefficient (RIA/EIA) are found higher than 0,9% for both hormonal assays. The dilution curves obtained by RIA and EIA are similar. However, Student'test gives a significant difference for E determination. In fact, total E and E 3 only are measured by EIA and RIA, respectively. In most cases biological interferences are negligible except for HLP in presence of higher protein or haemoglobin levels. RIA and EIA are performed to study serum HLP and E levels throughout normal pregnancies. Results allow to use EIA for HLP and E evaluations in pregnancy-monitoring [fr

  5. A theoretical investigation of the N2O + SO2 reaction on surfaces of P-doped C60 nanocage and Si-doped B30N30 nanocage

    Directory of Open Access Journals (Sweden)

    Meysam Najafi

    Full Text Available The mechanism of N2O reduction via SO2 on surfaces of P-doped C60 and Si-doped B30N30 by density functional theory were investigated. The P and Si adsorption energies on surface of C60 and B30N30 were calculated to be −287.5 and −312.1 kcal/mol, respectively. The decomposition of C60-P-N2O and B30N30-Si-N2O and reduction of C60-P-O∗ and B30N30-Si-O∗ by SO2 molecule were investigated. The B30N30-Si-O∗ has lower activation energy and has more negative ΔGad rather than C60-P-O∗ and therefore the process of B30N30-Si-O∗ + SO2 → B30N30-Si + SO3 was spontaneous more than C60-P-O∗ + SO2 → C60-P + SO3 from thermodynamic view point. Results show that activation energies for B30N30-Si-O∗ + N2O → B30N30-Si-O2 + N2 and C60-P-O∗ + N2O → C60-P-O2 + N2 reactions were 33.23 and 35.82 kcal/mol, respectively. The results show that P-doped C60 and Si-doped B30N30 can be observed as a real catalysts for the reduction of N2O. Keywords: Atom doping, Catalyst, Nanocage, Adsorption, N2O reduction

  6. Skin contact with gold and gold alloys.

    Science.gov (United States)

    Rapson, W S

    1985-08-01

    3 types of reaction to gold merit discussion. First, there is the effect known as black dermographism, in which stroking with certain metals immediately produces well-defined black lines on the skin. Some gold alloys are amongst such metals. The evidence indicates that the effect is the result of impregnation of the skin with black metallic particles generated by mechanical abrasion of the metal by contaminants of the skin. There is no positive and unequivocal evidence of the ability of metals to mark uncontaminated skin so rapidly that it is possible to write upon it. Secondly there are the 2 related phenomena of the wear of gold jewelry, and the susceptibility to certain individuals to blackening of the skin where it is in contact with such jewelry. The occurrence of smudge, as it is often called, is not very common, but is brought to the attention of most jewelers from time to time. In extreme cases it may make it embarrassing for the person concerned to wear metallic jewelry. It would appear as if gold smudge also results mainly from mechanical abrasion of jewelry, though this may be aided and/or supplemented in some instances by corrosion of gold or gold alloy induced by certain components of the sweat. Finally, there is the question of true allergic responses to contact of the skin with gold and its alloys. Judging from the very few cases which have been recorded, such responses are extremely rare. Some recent observations on the reactions of metallic gold with amino acids and of reaction to contact of the skin with gold on the part of rheumatoid arthritis patients undergoing gold therapy, are, however, relevant in this connection.

  7. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  8. Antioxidant activity of omega-3 derivatives and their delivery via nanocages and nanocones: DFT and experimental in vivo investigation.

    Science.gov (United States)

    Najafi, Houshang; Changizi-Ashtiyani, Saeed; Najafi, Meysam

    2017-10-28

    The antioxidant properties of omega-3 were investigated via experimental in vivo and theoretical methods. For experimental evaluation, oxidative stress was induced by 30 min bilateral renal ischemia and 24 h of reperfusion in male Sprague Dawley rats. The oxidative stress was evaluated through measuring malondialdehyde (MDA) and ferric reducing/antioxidant power (FRAP) levels in renal tissue. In theoretical methods, the reaction enthalpies of antioxidant mechanisms of omega-3 were calculated and the effects of NHMe, OMe, OH, Cl, and Me substituents on its antioxidant activity were investigated. Moreover, the omega-3 delivery potential by carbon and boron nitride nanocages and naocones were evaluated. The experimental results showed that omega-3 administration decreases MDA and increases FRAP levels after their changes by ischemia/reperfusion. Theoretical results indicated that NHMe and OMe substituents can significantly improve the antioxidant activity of omega-3. Also, boron nitride nanocone (BNNC) has higher |∆E ad | values, so it has higher potential for omega-3 delivery. Taken together, the new findings presented here indicate that omega-3 has anti-oxidative properties and NHMe and OMe substituents can improve its antioxidant activity. Moreover, adsorption of omega-3 on the surface of the studied nanostructures was exothermic, and BNNC with higher |∆Ead| values has higher potential for omega-3 delivery. Graphical abstract The interaction and adsorption of BNNC with omega-3 is exothermic and experimentally possible from the energetic viewpoint, so the BNNC with higher |∆E ad | and |∆G ad | values has higher potential for omega-3 delivery.

  9. Structural, electronic and magnetic properties of Fen-C60 and Fen-C80 (n=2-7) endohedral metallofullerene nano-cages: First principles study

    International Nuclear Information System (INIS)

    Bezi Javan, M.; Tajabor, N.

    2012-01-01

    We studied the structural, electronic and magnetic properties of small Fe n clusters (n=2-7) endohedrally doped in icosahedral C 60 and C 80 fullerenes using first principles calculations based on the density functional theory. It is found that the encapsulated Fe n clusters inside icosahedral C 80 are energetically favorable while Fe n -C 60 metallofullerene nano-cages are not. The binding energies of the Fe n encapsulated in C 60 are positive and increase with the number of iron atoms (n) while those of the Fe n -C 80 are negative and their absolute values increase up to n=6. The encapsulation does not significantly change the enclosed cluster structure, but the total magnetic moment of the larger clusters reduces due to a stronger Fe-C hybridization. - Highlights: → Encapsulated Fe n clusters inside C 80 cage are energetically favorable while Fe n -C 60 nano-cages are not. → Encapsulation does not significantly change the enclosed cluster structure. → Total magnetic moment of the larger clusters reduces due to a stronger Fe-C hybridization.

  10. 21 CFR 866.5775 - Rheumatoid factor immuno-logical test system.

    Science.gov (United States)

    2010-04-01

    ... the rheumatoid factor (antibodies to immunoglobulins) in serum, other body fluids, and tissues... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rheumatoid factor immuno-logical test system. 866.5775 Section 866.5775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  11. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Science.gov (United States)

    2010-04-01

    ...-hematology. 864.9285 Section 864.9285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In...-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  12. Lateral flow (immuno) assay : its strengths, weaknesses, opportunities and threats. A literature survey

    NARCIS (Netherlands)

    Posthuma-Trumpie, Geertruida A.; Korf, Jakob; van Amerongen, Aart

    Lateral flow (immuno) assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food

  13. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    Science.gov (United States)

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  14. Immuno PET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo

    DEFF Research Database (Denmark)

    Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R.

    2016-01-01

    a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging.Administration of a [64Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus...

  15. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Korf, J.; Amerongen, van A.

    2009-01-01

    Lateral flow (immuno)assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food

  16. Een onderzoek over de waarde van de Schultz-Dale techniek in de immuno-pathologie

    NARCIS (Netherlands)

    Jansz, Anton

    1960-01-01

    Dit proefschrift geeft in hoofdstuk I een overzicht over problemen in de immuno-pathologie. waarbij vooral aandacht wordt geschonken aan de auto-immunologische ziekteprocessen. Een beter inzicht hierin kan verkregen worden door dierexperimenteel en door serologisch onderzoek. Het laatste vooral

  17. Comparison of ImmunoCAP and Immulite serum specific IgE assays for the assessment of egg allergy.

    Science.gov (United States)

    Graham, François; Bégin, Philippe; Paradis, Louis; Lacombe-Barrios, Jonathan; Paradis, Jean; Des Roches, Anne

    2016-01-01

    Egg specific IgE levels are frequently used in combination with skin-prick tests to guide clinical decisions and to monitor egg allergy evolution in children. We compared both Immulite and ImmunoCAP egg specific IgE assays in egg allergic children, and found a linear correlation between both assays with a mean Immulite:ImmunoCAP ratio of 3. This is relevant information for clinicans wishing to estimate values from one assay to the other, as most literature has been published using the ImmunoCAP system.

  18. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2008-01-01

    Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough...... in silico methods are here proposed for apoptosis studies and for AMG studies.   Methods   MR - heating of high concentration micrometer gold and low concentration nano gold.   CSLM of ethidum bromide stained cell lines, with and witout gold and automated image processing.   AMG gold uptake study...

  19. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  20. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  1. Magnetism in nanocrystalline gold.

    Science.gov (United States)

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  2. Virus-helminth co-infection reveals a microbiota-independent mechanism of immuno-modulation

    Science.gov (United States)

    Osborne, Lisa C.; Monticelli, Laurel A.; Nice, Timothy J.; Sutherland, Tara E.; Siracusa, Mark C.; Hepworth, Matthew R.; Tomov, Vesselin T.; Kobuley, Dmytro; Tran, Sara V.; Bittinger, Kyle; Bailey, Aubrey G.; Laughlin, Alice L.; Boucher, Jean-Luc; Wherry, E. John; Bushman, Frederic D.; Allen, Judith E.; Virgin, Herbert W.; Artis, David

    2015-01-01

    The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immuno-modulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth co-infection. Helminth co-infection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively-activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immuno-modulation occurs independently of changes in the microbiota but is dependent on Ym1. PMID:25082704

  3. Sterile diets for the immuno-comprised: is there a need?

    Energy Technology Data Exchange (ETDEWEB)

    Butterweck, J.S. [Environmental Medicine Services, Fresno, CA (United States). Aerospace and Environmental Medicine Group

    1995-10-01

    There is a general misunderstanding in the radiation processing industry about the use of sterile diets in the medical profession. Sterile diets are used on a limited basis in hospitals that specialize in cancer treatment and organ transplants. These patients are severely immuno-compromised. There are many other patients that are immuno-compromised that do not require sterile diets. These patients may require a diet that is pathogen-free and are also ``low-microbial diets``. Nosocomial infections have become a major issue in US hospitals. The ``infection control committee`` is the focus group responsible to assure nosocomial infections incidence are below the hospital goals. Application of ionizing radiation to sterilize diets has not been chosen because the product is not available at a reasonable total cost. This paper will discuss the hospitals views. (Author).

  4. Sterile diets for the immuno-compromised: Is there a need?

    Science.gov (United States)

    Butterweck, Joseph S.

    1995-02-01

    There is a general misunderstanding in the radiation processing industry about the use of sterile diets in the medical profession. Sterile diets are used on a limited basis in hospitals that specialize in cancer treatment and organ transplants. These patients are severely immuno-compromised. There are many other patients that are immuno-compromised that do not require sterile diets. These patients may require a diet that is pathogen-free and are aslo "low-microbial diets". Nosocomial infections have become a major issue in US hospitals. The "infection control committee" is the focus group responsible to assure nosocomial infections incidence are below the hospital goals. Application of ionizing radiation to sterilize diets has not been chosen because the product is not available at a reasonable total cost. This paper will discuss the hospitals views.

  5. Sterile diets for the immuno-comprised: is there a need?

    International Nuclear Information System (INIS)

    Butterweck, J.S.

    1995-01-01

    There is a general misunderstanding in the radiation processing industry about the use of sterile diets in the medical profession. Sterile diets are used on a limited basis in hospitals that specialize in cancer treatment and organ transplants. These patients are severely immuno-compromised. There are many other patients that are immuno-compromised that do not require sterile diets. These patients may require a diet that is pathogen-free and are also ''low-microbial diets''. Nosocomial infections have become a major issue in US hospitals. The ''infection control committee'' is the focus group responsible to assure nosocomial infections incidence are below the hospital goals. Application of ionizing radiation to sterilize diets has not been chosen because the product is not available at a reasonable total cost. This paper will discuss the hospitals views. (Author)

  6. Prussian Blue Analogues Derived Penroseite (Ni,Co)Se2 Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting

    KAUST Repository

    Xu, Xun

    2017-08-14

    Efficient water splitting demands highly active, low cost, and robust electrocatalysts. In this study, we report the synthesis of penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel using Prussian blue analogues as precursor and further their applications in overall water splitting electrolysis. The synergy between the high activity of (Ni,Co)Se2 and the good conductivity of graphene leads to superior performance of the hybrid toward the water splitting in basic solutions. The (Ni,Co)Se2-GA only requires a low cell voltage of 1.60 V to reach the current density of 10 mA cm-2, making the (Ni,Co)Se2-GA hybrid a competitive alternative to noble metal based catalysts for water splitting.

  7. The use of irradiated food for immuno-suppressed hospital patients

    International Nuclear Information System (INIS)

    Pryke, D.C.

    1994-01-01

    The treatment of leukaemia and other forms of haematological malignancies involves destruction of the bone marrow followed by bone-marrow transplant. This results in patients becoming severely immuno-suppressed. Other diseases result in a similar condition, most notably Acquired Immuno-Deficiency Syndrome (AIDS). Irradiation using radioactive sources or machines has been proposed as a method for preparing foods for immuno-suppressed patients and other high risk groups. Doses of around 30 kGy ensure a total sterility whilst a dose of 10 kGy (the recommended maximum for food available to the general public) results in a significant reduction in the number of pathogenic microorganisms. Irradiation has a number of advantages over other processing methods, in particular that flavour, texture and nutritional changes are limited. This is important as patients are often in a compromised state and need clinical assistance in returning to normal eating habits. In recognition of the potential of irradiated foods for hospital patients this use has been specifically exempted from regulatory control in the UK. This paper reviews the experience in the UK of irradiation-sterilized foods in hospitals. It was found that for practical reasons use is currently restricted. The future prospects for food irradiated at non-sterilized doses are also considered. It is concluded that as well as providing greater choice for consumers (high risk and the general public as a whole) irradiated foods could extend and improved the diets of immuno-suppressed hospital patients; this could be an important factor in recovery. (author)

  8. Immuno-Magnetic Isolation and Thermogenic Differentiation of White Adipose Tissue Progenitor Cells.

    Science.gov (United States)

    Babaei, Rohollah; Bayindir-Buchhalter, Irem; Meln, Irina; Vegiopoulos, Alexandros

    2017-01-01

    Appropriate cell models are necessary for the investigation of thermogenic beige adipocyte differentiation from progenitor cells. Here, we describe a primary cell culture method that is based on defined progenitor cells from murine white adipose tissue and aims at minimizing confounding factors including cell heterogeneity and nonphysiological differentiation inducers. Adipocyte progenitor cells are enriched by immuno-magnetic separation, expanded minimally, and induced for beige adipocyte differentiation with carbaprostacyclin, a stable analogue of the endogenous mediator PGI 2 .

  9. Alkaline phosphatase-fused repebody as a new format of immuno-reagent for an immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyo-Deok; Lee, Joong-jae [Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Kim, Yu Jung [Industrial Biotechnology and Bioenergy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of); Hantschel, Oliver [School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Lee, Seung-Goo [Industrial Biotechnology and Bioenergy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of); Kim, Hak-Sung, E-mail: hskim76@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2017-01-15

    Enzyme-linked immunoassays based on an antibody-antigen interaction are widely used in biological and medical sciences. However, the conjugation of an enzyme to antibodies needs an additional chemical process, usually resulting in randomly cross-linked molecules and a loss of the binding affinity and enzyme activity. Herein, we present the development of an alkaline phosphatase-fused repebody as a new format of immuno-reagent for immunoassays. A repebody specifically binding to human TNF-α (hTNF-α) was selected through a phage display, and its binding affinity was increased up to 49 nM using a modular engineering approach. A monomeric alkaline phosphatase (mAP), which was previously isolated from a metagenome library, was genetically fused to the repebody as a signal generator, and the resulting repebody-mAP fusion protein was used for direct and sandwich immunoassays of hTNF-α. We demonstrate the utility and potential of the repebody-mAP fusion protein as an immuno-reagent by showing the sensitivity of 216 pg mL{sup −1} for hTNF-α in a sandwich immunoassay. Furthermore, this repebody-mAP fusion protein enabled the detection of hTNF-α spiked in a serum-supplemented medium with high accuracy and reproducibility. It is thus expected that a mAP-fused repebody can be broadly used as an immuno-reagent in immunoassays. - Highlights: • A human TNF-α (hTNF-α)-specific repebody was selected using a phage display. • A monomeric alkaline phosphatase (mAP) was genetically fused to the repebody. • mAP-fused repebody enabled detection of hTNF-α with high sensitivity and accuracy. • mAP-fused repebody can be widely used as a new immuno-reagent in immunoassays.

  10. Detection of antibody activity in human sera against meningococcal cell wall antigens using a gel-immuno-radio-assay (GIRA)

    International Nuclear Information System (INIS)

    Poolman, J.T.; Zanen, H.C.

    1980-01-01

    The authors recently described the application of the SDS-polyacrylamide-gel-electrophoresis-immuno-peroxidase (SGIP) technique to the analysis of meningococcal cell walls. However, it appeared that SGIP was not sensitive enough to detect low levels of human antibodies against meningococcal cell wall antigens. They therefore replaced the peroxidase labeled anti-IgG by 125 I-labeled protein A in order to detect antibody binding by bacterial antigens separated in gels, resulting in gel-immuno-radio-assay (GIRA). (Auth.)

  11. Finding an optimum immuno-histochemical feature set to distinguish benign phyllodes from fibroadenoma.

    Science.gov (United States)

    Maity, Priti Prasanna; Chatterjee, Subhamoy; Das, Raunak Kumar; Mukhopadhyay, Subhalaxmi; Maity, Ashok; Maulik, Dhrubajyoti; Ray, Ajoy Kumar; Dhara, Santanu; Chatterjee, Jyotirmoy

    2013-05-01

    Benign phyllodes and fibroadenoma are two well-known breast tumors with remarkable diagnostic ambiguity. The present study is aimed at determining an optimum set of immuno-histochemical features to distinguish them by analyzing important observations on expressions of important genes in fibro-glandular tissue. Immuno-histochemically, the expressions of p63 and α-SMA in myoepithelial cells and collagen I, III and CD105 in stroma of tumors and their normal counterpart were studied. Semi-quantified features were analyzed primarily by ANOVA and ranked through F-scores for understanding relative importance of group of features in discriminating three classes followed by reduction in F-score arranged feature space dimension and application of inter-class Bhattacharyya distances to distinguish tumors with an optimum set of features. Among thirteen studied features except one all differed significantly in three study classes. F-Ranking of features revealed highest discriminative potential of collagen III (initial region). F-Score arranged feature space dimension and application of Bhattacharyya distance gave rise to a feature set of lower dimension which can discriminate benign phyllodes and fibroadenoma effectively. The work definitely separated normal breast, fibroadenoma and benign phyllodes, through an optimal set of immuno-histochemical features which are not only useful to address diagnostic ambiguity of the tumors but also to spell about malignant potentiality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying.

    Science.gov (United States)

    Wan, Dehui; Xia, Xiaohu; Wang, Yucai; Xia, Younan

    2013-09-23

    A facile, robust approach to the synthesis of Au cubic nanoframes is described. The synthesis involves three major steps: 1) preparation of Au-Ag alloyed nanocages using a galvanic replacement reaction between Ag nanocubes and HAuCl4 ; 2) deposition of thin layers of pure Au onto the surfaces of the nanocages by reducing HAuCl4 with ascorbic acid, and; 3) formation of Au cubic nanoframes through a dealloying process with HAuCl4 . The key to the formation of Au cubic nanoframes is to coat the surfaces of the Au-Ag nanocages with sufficiently thick layers of Au before they are dealloyed. The Au layer could prevent the skeleton of a nanocage from being fragmented during the dealloying step. The as-prepared Au cubic nanoframes exhibit tunable localized surface plasmon resonance peaks in the near-infrared region, but with much lower Ag content as compared with the initial Au-Ag nanocages. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  14. Axially chiral allenyl gold complexes.

    Science.gov (United States)

    Johnson, Alice; Laguna, Antonio; Gimeno, M Concepción

    2014-09-17

    Unprecedented allenyl gold complexes have been achieved starting from triphenylpropargylphosphonium bromide. Two different coordination modes of the allene isomer of triphenylphosphoniumpropargylide to gold have been found depending on the gold oxidation state. Bromo-, pentafluorophenyl-, and triphenylphosphine-gold(I) allenyl complexes were prepared in which the α carbon coordinates to the gold(I) center. A chiral pentafluorophenyl-gold(III) allenyl complex with the gold atoms coordinated to the γ carbon was also prepared. All the complexes have been structurally characterized by X-ray diffraction showing the characteristic distances for a C═C═C unit.

  15. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  16. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  17. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping.

    Science.gov (United States)

    Mason, Ronald Paul

    2016-08-01

    The accurate and sensitive detection of biological free radicals in a reliable manner is required to define the mechanistic roles of such species in biochemistry, medicine and toxicology. Most of the techniques currently available are either not appropriate to detect free radicals in cells and tissues due to sensitivity limitations (electron spin resonance, ESR) or subject to artifacts that make the validity of the results questionable (fluorescent probe-based analysis). The development of the immuno-spin trapping technique overcomes all these difficulties. This technique is based on the reaction of amino acid- and DNA base-derived radicals with the spin trap 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) to form protein- and DNA-DMPO nitroxide radical adducts, respectively. These adducts have limited stability and decay to produce the very stable macromolecule-DMPO-nitrone product. This stable product can be detected by mass spectrometry, NMR or immunochemistry by the use of anti-DMPO nitrone antibodies. The formation of macromolecule-DMPO-nitrone adducts is based on the selective reaction of free radical addition to the spin trap and is thus not subject to artifacts frequently encountered with other methods for free radical detection. The selectivity of spin trapping for free radicals in biological systems has been proven by ESR. Immuno-spin trapping is proving to be a potent, sensitive (a million times higher sensitivity than ESR), and easy (not quantum mechanical) method to detect low levels of macromolecule-derived radicals produced in vitro and in vivo. Anti-DMPO antibodies have been used to determine the distribution of free radicals in cells and tissues and even in living animals. In summary, the invention of the immuno-spin trapping technique has had a major impact on the ability to accurately and sensitively detect biological free radicals and, subsequently, on our understanding of the role of free radicals in biochemistry, medicine and toxicology. Published by

  18. ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy

    DEFF Research Database (Denmark)

    Faraco, Juliette; Lin, Ling; Kornum, Birgitte Rahbek

    2013-01-01

    Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals...... with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell...

  19. Differential Immuno-Reactivity to Genomic DNA, RNA and Mitochondrial DNA is Associated with Auto-Immunity

    Directory of Open Access Journals (Sweden)

    Vilena V. Ivanova

    2014-12-01

    Full Text Available Background: Circulating auto-reactive antibodies are hallmark features of auto-immune diseases, however little is known with respect to the specificity of such bio-markers. In the present study, we investigated the specificity of anti-nucleic acid antibodies in the blood of subjects with systemic lupus erythematosus (SLE and healthy controls. Methods: Sera from 12 SLE cases and 8 controls were evaluated for immuno-reactivity to purified RNA, DNA and mitochondrial DNA (mtDNA by enzyme-linked immuno-sorbent assay (ELISA. Results: As expected, immuno-reactivity to total nucleic acids was significantly higher in subjects with SLE when compared to healthy controls, however a clear distinction was observed among the various nucleic acid sub-types, with sera from SLE subjects displaying the greatest immuno-reactivity to RNA followed by mtDNA and then total DNA. Conclusion: The identification of auto-reactive antibodies can serve as highly sensitive biomarkers, although their specificity may not always allow diagnostic certainty. The knowledge that auto-antibodies in subjects with SLE display differential immuno-reactivity may help to improve existing diagnostics and may lead to a better understanding of the pathogenesis of auto-immune disorders.

  20. An improved gold nanoparticle probe-based assay for HCV core antigen ultrasensitive detection.

    Science.gov (United States)

    Yin, Hui-Qiong; Ji, Chang-Fu; Yang, Xi-Qin; Wang, Rui; Yang, Shu; Zhang, He-Qiu; Zhang, Jin-Gang

    2017-05-01

    A gold nanoparticle probe-based assay (GNPA) was developed for ultrasensitive detection of Hepatitis C virus (HCV) core antigen. In the GNPA, after anti-HCV core antigen polyclonal antibodies and single-stranded barcode signal DNA were labeled on gold nanoparticle probe (NP), DNA enzyme was used to degrade the unbound barcode DNAs. The anti-HCV core antigen monoclonal antibodies were coated on magnetic microparticles probe (MMP). Then the NP-HCV core antigen-MMP sandwich immuno-complex was formed when the target antigen protein was added and captured. Magnetically separated, the immuno-complex containing the single-stranded barcode signal DNA was characterized by TaqMan probe based real-time fluorescence PCR. A detection limit of 1 fg/ml was determined for the HCV core antigen which is magnitude greater than that of ELISA (2ng/ml). The coefficients of variation (CV) of intra-assay and inter-assay respectively ranged from 0.22-2.62% and 1.92-3.01%. The improved GNPA decreased the interference of unbound barcode DNAs and may be an new way for HCV core antigen detection. Copyright © 2017. Published by Elsevier B.V.

  1. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  2. Immuno-histochemistry analysis of Helicobacter pylori antigen in renal biopsy specimens from patients with glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Qian Li

    2013-01-01

    Full Text Available This study was conducted to investigate the relationship between Helicobacter pylori infection and three varieties of glomerulonephritis. Renal biopsy specimens from patients with Henoch Schonlein Purpura nephritis (HSPN; n = 10, membranous nephropathy (MN; n = 9 and lupus nephritis (LN; n = 27 were studied using immuno-histochemical labeling to clarify the etiological significance of H. pylori antigen in this disease. Immuno-histochemical labeling was performed using a mixture of anti-H. pylori-antibody-positive serum from nine volunteers; a mixture of anti-H. pylori-antibody-negative serum from nine volunteers was used as control. Staphylococci protein-A labeled by horseradish peroxidase was used as the second antibody in this study. A total of 34 of the 48 specimens revealed positive reaction with the anti-H. pylori-positive serum and five of the 48 specimens revealed positive reaction with the anti-H. pylori-negative serum. Positive reaction against anti-H. pylori-positive serum was seen in 10/10 patients with HSPN, six of nine patients with MN and 18/27 patients with LN. Statistical analysis showed that the difference of the positive reaction between anti-H. pylori-positive and negative sera was significant (χ 2 = 36.318, P = 0.000. Our study indicates that H. pylori infection may be associated with the development and/or progression of HSPN, MN and LN.

  3. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  4. Evaluation of instant cup noodle, irradiated for immuno-compromised patients

    International Nuclear Information System (INIS)

    Lee, Ji-Hye; Kim, Jae-Kyung; Park, Jae-Nam; Yoon, Young-Min; Sung, Nak-Yun; Kim, Jae-Hun; Song, Beom-Seok; Yook, Hong-Sun; Kim, Byeong-Keun; Lee, Ju-Woon

    2012-01-01

    In the present study, initial microbial load of instant cup noodle (ICN) was investigated and gamma irradiation applied to develop immuno-compromised patients food for their safe consumption. The initial microbial population of dried vegetable and meat, and noodle was below the detection limit (1 log CFU/g); however, that of seasoning powder was just above 4 log CFU/g. Moreover, rehydrated-ICN with water at 100 °C still show above 3 log CFU/g of microbial load, which indicates the need for an additional process to control microbial safety of the seasoning powder. The total aerobic bacteria in seasoning powder and rehydrated-ICN could be controlled with 17 kGy gamma irradiation. This result referred 17 kGy gamma irradiation could reach ‘practical sterility’ of ICN. The overall difference in sensory properties between the non-irradiated and irradiated ICN was insignificant. Thus, gamma irradiation could improve the microbial quality of ICN, and reduce the risk of infection posed by the seasoning powder, without any adverse effects on their sensory quality. These results suggest that gamma-irradiated ICN can be used as a snack food for immuno-compromised patients.

  5. Evaluation of instant cup noodle, irradiated for immuno-compromised patients

    Science.gov (United States)

    Lee, Ji-Hye; Kim, Jae-Kyung; Park, Jae-Nam; Yoon, Young-Min; Sung, Nak-Yun; Kim, Jae-Hun; Song, Beom-Seok; Yook, Hong-Sun; Kim, Byeong-Keun; Lee, Ju-Woon

    2012-08-01

    In the present study, initial microbial load of instant cup noodle (ICN) was investigated and gamma irradiation applied to develop immuno-compromised patients food for their safe consumption. The initial microbial population of dried vegetable and meat, and noodle was below the detection limit (1 log CFU/g); however, that of seasoning powder was just above 4 log CFU/g. Moreover, rehydrated-ICN with water at 100 °C still show above 3 log CFU/g of microbial load, which indicates the need for an additional process to control microbial safety of the seasoning powder. The total aerobic bacteria in seasoning powder and rehydrated-ICN could be controlled with 17 kGy gamma irradiation. This result referred 17 kGy gamma irradiation could reach 'practical sterility' of ICN. The overall difference in sensory properties between the non-irradiated and irradiated ICN was insignificant. Thus, gamma irradiation could improve the microbial quality of ICN, and reduce the risk of infection posed by the seasoning powder, without any adverse effects on their sensory quality. These results suggest that gamma-irradiated ICN can be used as a snack food for immuno-compromised patients.

  6. Recombinant antigen-based immuno-slot blot method for serodiagnosis of syphilis

    Directory of Open Access Journals (Sweden)

    N.S. Sato

    2004-07-01

    Full Text Available Three recombinant antigens of Treponema pallidum Nichols strain were fused with GST, cloned and expressed in Escherichia coli, resulting in high levels of GST-rTp47 and GST-rTp17 expression, and supplementation with arginine tRNA for the AGR codon was needed to obtain GST-rTp15 overexpression. Purified fusion protein yields were 1.9, 1.7 and 5.3 mg/l of cell culture for GST-rTp47, GST-rTp17 and GST-rTp15, respectively. The identities of the antigens obtained were confirmed by automated DNA sequencing using ABI Prism 310 and peptide mapping by Finningan LC/MS. These recombinant antigens were evaluated by immuno-slot blot techniques applied to 137 serum samples from patients with a clinical and laboratory diagnosis of syphilis (61 samples, from healthy blood donors (50 samples, individuals with sexually transmitted disease other than syphilis (3 samples, and from individuals with other spirochetal diseases such as Lyme disease (20 samples and leptospirosis (3 samples. The assay had sensitivity of 95.1% (95% CI, 86.1 to 98.7% and a specificity of 94.7% (95% CI, 87.0 to 98.7%; a stronger reactivity was observed with fraction rTp17. The immunoreactivity results showed that fusion recombinant antigens based-immuno-slot blot techniques are suitable for use in diagnostic assays for syphilis.

  7. Serodiagnosis of dengue infection using rapid immuno chromatography test in patients with probable dengue infection

    International Nuclear Information System (INIS)

    Kidwai, A.A.; Jamal, Q.; Mehrunnisa, S.; Farooqi, F.R.

    2010-01-01

    Objective: To determine the frequency of seropositive dengue infection using rapid immuno chromatographic assay in patients with probable dengue infection as per WHO criteria. Method: A cross-sectional observational study was conducted at Abbasi Shaheed Hospital, Karachi from July 2008 to January 2009. Patients presenting with acute febrile illness, rashes, bleeding tendencies, leucopenia and or thrombocytopenia were evaluated according to WHO criteria for probable dengue infection. Acute phase sera were collected after 5 days of the onset of fever as per WHO criteria. Serology was performed using rapid immuno chromatographic (ICT) assay with differential detection of IgM and IgG. A primary dengue infection was defined by a positive IgM band and a negative IgG band whereas secondary infection was defined by a positive IgG band with or without positive IgM band. Result: Among 599 patients who met the WHO criteria for dengue infection, 251(41.9%) were found to be ICT reactive among whom 42 (16.73%) had primary infection. Secondary infection was reported in 209 (83.26%). Acute phase sera of 348 (58.09%) were ICT non reactive. Four patients died because of dengue shock syndrome among which three had secondary infection. Conclusion: Early identification of secondary infection in acute phase sera using rapid ICT is valuable in terms of disease progression and mortality. However in highly suspected cases of dengue infection clinical management should not rely on negative serological results. (author)

  8. A novel design for randomized immuno-oncology clinical trials with potentially delayed treatment effects

    Directory of Open Access Journals (Sweden)

    Pei He

    2015-10-01

    Full Text Available The semi-parametric proportional hazards model is widely adopted in randomized clinical trials with time-to-event outcomes, and the log-rank test is frequently used to detect a potential treatment effect. Immuno-oncology therapies pose unique challenges to the design of a trial as the treatment effect may be delayed, which violates the proportional hazards assumption, and the log-rank test has been shown to markedly lose power under the non-proportional hazards setting. A novel design and analysis approach for immuno-oncology trials is proposed through a piecewise treatment effect function, which is capable of detecting a potentially delayed treatment effect. The number of events required for the trial will be determined to ensure sufficient power for both the overall log-rank test without a delayed effect and the test beyond the delayed period when such a delay exists. The existence of a treatment delay is determined by a likelihood ratio test with resampling. Numerical results show that the proposed design adequately controls the Type I error rate, has a minimal loss in power under the proportional hazards setting and is markedly more powerful than the log-rank test with a delayed treatment effect.

  9. ImmunoGrid: towards agent-based simulations of the human immune system at a natural scale

    DEFF Research Database (Denmark)

    Halling-Brown, M.; Pappalardo, F.; Rapin, Nicolas

    2010-01-01

    The ultimate aim of the EU-funded ImmunoGrid project is to develop a natural-scale model of the human immune system-that is, one that reflects both the diversity and the relative proportions of the molecules and cells that comprise it-together with the grid infrastructure necessary to apply...... this model to specific applications in the field of immunology. These objectives present the ImmunoGrid Consortium with formidable challenges in terms of complexity of the immune system, our partial understanding about how the immune system works, the lack of reliable data and the scale of computational...

  10. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  11. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice.

    NARCIS (Netherlands)

    Verel, I.; Visser, G.W.; Boellaard, R.; Boerman, O.C.; Eerd-Vismale, J.E.M. van; Snow, G.B.; Lammertsma, A.A.; Dongen, G.A.M.S. van

    2003-01-01

    Immuno-PET as a scouting procedure before radioimmunotherapy (RIT) aims at the confirmation of tumor targeting and the accurate estimation of radiation dose delivery to both tumor and normal tissues. Immuno-PET with (89)Zr-labeled monoclonal antibodies (mAbs) and (90)Y-mAb RIT might form such a

  12. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  13. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...... are increasingly being noted, there is little analysis of miners' mobility patterns and material outcomes. In this article, on the basis of a sample survey and interviews at two gold-mining sites in Tanzania, we probe when and why miners leave one site in favour of another. Our findings indicate that movement...

  14. Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture.

    Science.gov (United States)

    Ban, Yujie; Li, Zhengjie; Li, Yanshuo; Peng, Yuan; Jin, Hua; Jiao, Wenmei; Guo, Ang; Wang, Po; Yang, Qingyuan; Zhong, Chongli; Yang, Weishen

    2015-12-14

    Fine-tuning of effective pore size of microporous materials is necessary to achieve precise molecular sieving properties. Herein, we demonstrate that room temperature ionic liquids can be used as cavity occupants for modification of the microenvironment of MOF nanocages. Targeting CO2 capture applications, we tailored the effective cage size of ZIF-8 to be between CO2 and N2 by confining an imidazolium-based ionic liquid [bmim][Tf2 N] into ZIF-8's SOD cages by in-situ ionothermal synthesis. Mixed matrix membranes derived from ionic liquid-modified ZIF-8 exhibited remarkable combinations of permeability and selectivity that transcend the upper bound of polymer membranes for CO2 /N2 and CO2 /CH4 separation. We observed an unusual response of the membranes to varying pressure, that is, an increase in the CO2 /CH4 separation factor with pressure, which is highly desirable for practical applications in natural gas upgrading. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heterometallic metal-organic framework-templated synthesis of porous Co3O4/ZnO nanocage catalysts for the carbonylation of glycerol

    Science.gov (United States)

    Lü, Yinyun; Jiang, Yating; Zhou, Qi; Li, Yunmei; Chen, Luning; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2017-12-01

    The efficient synthesis of glycerol carbonate (GLC) has recently received great attention due to its significance in reducing excess glycerol in biodiesel production as well as its promising applications in several industrial fields. However, the achievement of high conversion and high selectivity of GLC from glycerol in heterogeneous catalytic processes remains a challenge due to the absence of high-performance solid catalysts. Herein, highly porous nanocage catalysts composed of well-mixed Co3O4 and ZnO nanocrystals were successfully fabricated via a facile heterometallic metal-organic framework (MOF)-templated synthetic route. Benefiting from a high porosity and the synergistic effect between Co3O4 and ZnO, the as-prepared composite catalysts exhibited a significantly enhanced production efficiency of GLC in the carbonylation reaction of glycerol with urea compared to the single-component counterparts. The yield of GLC over the Co50Zn50-350 catalyst reached 85.2%, with 93.3% conversion and near 91% GLC selectivity, and this catalytic performance was superior to that over most heterogeneous catalysts. More importantly, the proposed templated synthetic strategy of heterometallic MOFs facilitates the regulation of catalyst composition and surface structure and can therefore be potentially extended in the tailoring of other metal oxide composite catalysts.

  16. O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by Nickel decoration: A comprehensive DFT study

    Science.gov (United States)

    Rad, Ali Shokuhi; Ayub, Khurshid

    2017-07-01

    Adsorption of SO2 and O3 molecules on pristine boron nitride (B12N12) and Ni-decorated B12N12 nano-cages has been systemically investigated through density functional theory (DFT) methods. Adsorption energies (thermodynamics), bond distances, charge analysis, dipole moments, orbital analysis and density of states are calculated by van der Waals DFT method (MPW1PW91) functional. The adsorption energies of O3 and SO2 on pristine B12N12 are about -143.8 and -14.0 kJ mol-1, respectively. The interaction energies of O3 and SO2 with pristine B12N12 are indicative of chemisorption and physisorption, respectively. Ni-decorated B12N12 (Ni@BN) enhances adsorption of both O3 and SO2 species. The interaction energies for adsorption of SO2 are about -166 and -277 kJ mol-1 whereas the corresponding energies for O3 are -362 and -396 kJ mol-1 for configuration A and B, respectively. These observations show that functionalized B12N12 are highly sensitive toward SO2 and O3 molecules.

  17. Development of hepatitis C virus vaccine using hepatitis B core antigen as immuno-carrier

    Science.gov (United States)

    Chen, Jia-Yu; Li, Fan

    2006-01-01

    AIM: To develop hepatitis C virus (HCV) vaccine using HBcAg as the immuno-carrier to express HCV T epitope and to investigate its immunogenicity in mice. METHODS: We constructed the plasmid pTrc-coreNheI using gene engineering technique, constructed the pcDNA3.1-coreNheI-GFP plasmid with GFP as the reporter gene, and transfected them into Hela cells. The expression of GFP was observed under confocal microscopy and the feasibility of using HBcAg as an immuno-carrier vaccine was studied. pTrc-core gene with a synthetic T epitope antigen gene of HCV (35-44aa) was fused and expressed in the plasmid pTrc-core-HCV (T). For the fusion of the HBcAg-T protein, sucrose, density gradient centrifugation was used, and its molecular weight and purity were analyzed by SDS-PAGE. Then balb/c mice were immunized by the plasmid with the HBcAg (expressed by pTrc-core) protein as control. The tumor regression potential was investigated in mice and evaluated at appropriate time. After three times of immunization, the peripheral blood and spleen of vaccinated mice were collected. HBcAb was detected by ELISA, and nonspecific T lymphocyte proliferation and response of splenocytes were respectively examined by MTT assay. T cell subset of blood and spleen were detected by FACS. RESULTS: GFP was successfully expressed. Tumor regression trial showed that no tumor formation was found in the group receiving immunization, while tumor xenograft progression was not changed in the control group. Strong nonspecific lymphocyte proliferation response was induced. FACS also showed that the ratio of CD8+ T cells in the experimental group was higher than the controls, but the serum HBcAb in experimental group was similar to the control. CONCLUSION: HBcAg can be used as an immuno-carrier of vaccine, the fusion of HBcAg-T protein could induce stronger cellular immune responses and it might be a candidate for therapeutic vaccines specific for HCV. PMID:17203519

  18. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  19. Metal-Organic Framework-Derived Reduced Graphene Oxide-Supported ZnO/ZnCo2O4/C Hollow Nanocages as Cathode Catalysts for Aluminum-O2 Batteries.

    Science.gov (United States)

    Liu, Yisi; Jiang, Hao; Hao, Jiayu; Liu, Yulong; Shen, Haibo; Li, Wenzhang; Li, Jie

    2017-09-20

    Aluminum-air battery is a promising candidate for large-scale energy applications because of its low cost and high energy density. Remarkably, tremendous efforts have been concentrated on developing efficient and stable cathode electrocatalysts toward the oxygen reduction reaction. In this work, a hydrothermal-calcination approach was utilized to prepare novel reduced graphene oxide (rGO)-supported hollow ZnO/ZnCo 2 O 4 nanoparticle-embedded carbon nanocages (ZnO/ZnCo 2 O 4 /C@rGO) using a zeolitic imidazolate framework (ZIF-67)/graphene oxide/zinc nitrate composite as the precursor. The ZnO/ZnCo 2 O 4 /C@rGO hybrid exhibits remarkable electrocatalytic performance for oxygen reduction reaction under alkaline conditions and superior stability and methanol tolerance to those of the commercial Pt/C catalyst. Furthermore, novel and simple Al-air coin cells were first fabricated using the hybrid materials as cathode catalysts under ambient air conditions to further investigate their catalytic performance. The coin cell with the ZnO/ZnCo 2 O 4 /C@rGO cathode catalyst displays a higher open circuit voltage and discharge voltage and more sluggish potential drop than those of the cell with the ZnO/ZnCo 2 O 4 /C cathode catalyst, which confirms that rGO can enhance the electrocatalytic activity and stability of the catalyst system. The excellent electrocatalytic performance of the ZnO/ZnCo 2 O 4 /C@rGO hybrid is attributed to the prominent conductivity and high specific surface area resulting from rGO, the more accessible catalytic active sites induced by the unique porous hollow nanocage structure, and synergic covalent coupling between rGO sheets and ZnO/ZnCo 2 O 4 /C nanocages.

  20. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  1. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  2. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...

  3. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  4. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  5. ELISA and ImmunoStrip® for detection of Phytophthora ramorum, P. kernoviae, and other Phytophthora species

    Science.gov (United States)

    Francisco J. Avila; Barbara Schoedel; Z. Gloria Abad; Michael D. Coffey; Cheryl Blomquist

    2009-01-01

    The goal of this work was to develop improved tools for the detection of Phytophthora ramorum and P. kernoviae for field and the laboratory use. ImmunoStrip® and ELISA were selected as the test formats for development. Presently, the diagnosis of sudden oak death (SOD) in the national survey of P. ramorum ...

  6. Immuno-histomorphometric and –fluorescent characteristics of rat GH cells after chronic exposure to moderate heat

    Directory of Open Access Journals (Sweden)

    Popovska-Perčinić Florina

    2012-01-01

    Full Text Available Growth hormone (GH axis function appears to be changed in the warm milieu. The effect of chronic exposure to moderate heat on immuno-histomorphometric and –fluorescent characteristics of pituitary GH cells, in adult male rats, was examined. The experimental group was exposed to 35±1oC for 30 days, whereas the control group was kept at room temperature during the same period. GH cells were studied using the adequate immunostaining procedures. The body weight of animals in the experimental group was significantly decreased by 24.5% compared to the controls. Immuno-histochemically and –fluorescently identified GH cells in controls were intensely stained, oval in shape, with the centrally located spherical nucleus. In rats exposed to moderate heat the localisation of GH cells was not significantly changed, while their shape was slightly different. They were mostly organized in groups, with darker cytoplasmic regions/higher intensity of immunofluorescence signal throughout the whole cytoplasm. The cellular and nuclear volumes of GH cells in the experimental group were significantly decreased by 16.0% and 9.0% respectively, but the volume density was only slightly decreased in comparison with the controls. These findings suggest that 30 days of continuous exposure of adult male rats to moderately high ambient temperature has an inhibitory effect on the immuno-histomorphometric characteristics and increases the immuno-fluorescence signal of GH cells.

  7. Immuno disc assay for screening duck hepatitis B surface antigen in serum, liver tissue and cultured hepatocytes

    NARCIS (Netherlands)

    G.A. de Wilde (G.); R.A. Heijtink

    1993-01-01

    textabstractAn immuno disc assay (IDA) for semi-quantitative analysis of the surface antigen (DHBsAg) of duck hepatitis B virus (DHBV) is described. Unpurified antigen preparations were adsorbed onto punched-out nitrocellulose membrane discs. Rabbit antiserum raised against serum-derived

  8. Immuno-Pharmacological Targeting of Virus-Containing Compartments in HIV-1-Infected Macrophages.

    Science.gov (United States)

    Graziano, Francesca; Vicenzi, Elisa; Poli, Guido

    2016-07-01

    In addition to CD4 T lymphocytes, HIV-1 infects tissue macrophages that can actively accumulate infectious virions in vacuolar subcellular structures mostly connected to the plasma membrane and recently termed virus-containing compartments (VCCs). The VCC-associated HIV-1 reservoir of infected macrophages can be either increased or depleted by immunologic and pharmacologic agents, at least in vitro, thus suggesting that these factors (or related molecules) could be effective in curtailing the macrophage-associated HIV-1 reservoir in infected individuals receiving combination antiretroviral therapy (cART). Here we review evidence on the pathogenic role of tissue macrophages as long-term viral reservoirs in vivo and upon in vitro infection with a particular emphasis on the immuno-pharmacological modulation of VCCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. ZINC ET PROFIL IMMUNO-INFLAMMATOIRE CHEZ LES ENFANTS ET LES ADOLESCENTS DIABETIQUES DE TYPE 1

    OpenAIRE

    BESTAOUI, Abdelaziz

    2014-01-01

    Introduction : le diabète de type 1 (DT1) est une maladie autoimmune qui résulte de la destruction progressive et sélective des cellules-bêta pancréatiques. Objectifs : Ce travail consiste à déterminer les nivaux de zinc apporté par l’alimentation et de mesurer sa concentration sérique chez les diabétiques de type 1 et les sujets sains, contrôles. But : Montrer le rôle immuno-modulateur du zinc dans le processus d’auto-immunité inflammatoire au cours de DT1. Matériels et méthodes : t...

  10. Nanometal particle reagents for sensitive, MEMS based fiber-optic, multi-analyte, immuno-biosensing

    Science.gov (United States)

    Hong, Bin

    Integration of nanotechnology to medical diagnostics has brought a new era to public health practice. An excellent example is the utilization of unique optoelectronic properties of nanoparticles to develop highly sensitive biosensing devices for point-of-care (POC) disease diagnosis/prognosis. Fluorophore mediated, immuno-biosensors are important disease detection tools. The property of intra-molecular fluorescence quenching of most fluorophores, however, limits the sensitivity of this type of sensors. A plasmon-rich nanometal particle (NMP) can transfer the lone pair electrons of a fluorophore, which normally participate in the fluorescence self-quenching, to its surface plasmon field, resulting in artificial fluorescence enhancement. The enhancement was found to depend on the metal type, the particle size, the distance between a particle and a fluorophore, and the quantum yield of a fluorophore. Some biocompatible solvents were also found to increase the fluorescence emission efficiency via effective dipole coupling between the fluorophore and the solvent molecule. The application of solvents in inmuno-sensing could additionally improve the fluorescence light retrieval by the conformational change of the protein complexes in solvent. The mixture of the NMP and the solvent, which we defined as nanometal particle reagent (NMPR), provided even higher enhancements. Cardiovascular diseases (CVDs) kill 1 person in every 6 seconds. Among the CVDs, acute myocardial infarction (AMI; commonly known as heart attack) is the most dangerous and time-sensitive killer. A rapid and accurate AMI diagnosis is crucial for saving many lives. For this purpose, a fluorophore mediated, immuno-reaction based, multi-cardiac-marker sensing device was developed, to quantify four myocardium-specific proteins simultaneously, accurately, rapidly, and user-friendly. The four cardiac markers of our choice were myoglobin (MG), C-reactive protein (CRP), cardiac troponin I (cTnI), and B

  11. Rare presentation of gall bladder tuberculosis in a non immuno-compromised patient

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    2015-06-01

    Full Text Available The gall bladder is least common intraabdominal organ to be involved by tuberculosis. It is either part of systemic miliary tuberculosis or abdominal tuberculosis. Isolated gall bladder tuberculosis is even rarer, can presents either as calculus or acalculus cholecystitis. Gall bladder tuberculosis presenting as a localized perforation with a sinus formation into anterior abdominal wall is unreported complication in a non immuno-compromised person. A 48-year old female presented with a gradually increasing swelling in right hypochondrium. Abdominal ultrasound showed superficial collection over right hypochondrium with intraperitoneal extension. Computed tomography showed localized gall bladder perforation with extension to the abdominal wall. Patient underwent emergency exploration and cholecystectomy with excision of sinus tract and drainage of abdominal wall abscess. Histopathological examination showed granulomatous cholecystitis suggestive of tuberculosis of gall bladder with extension into the sinus tract. She had an uneventful recovery and was treated with 6-month antitubercular therapy after surgery.

  12. ImmunoChip study implicates antigen presentation to T cells in narcolepsy.

    Directory of Open Access Journals (Sweden)

    Juliette Faraco

    Full Text Available Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip. Three loci located outside the Human Leukocyte Antigen (HLA region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@, variants in two additional narcolepsy loci, Cathepsin H (CTSH and Tumor necrosis factor (ligand superfamily member 4 (TNFSF4, also called OX40L, attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.

  13. ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy

    Science.gov (United States)

    Kornum, Birgitte Rahbek; Kenny, Eimear E.; Trynka, Gosia; Einen, Mali; Rico, Tom J.; Lichtner, Peter; Dauvilliers, Yves; Arnulf, Isabelle; Lecendreux, Michel; Javidi, Sirous; Geisler, Peter; Mayer, Geert; Pizza, Fabio; Poli, Francesca; Plazzi, Giuseppe; Overeem, Sebastiaan; Lammers, Gert Jan; Kemlink, David; Sonka, Karel; Nevsimalova, Sona; Rouleau, Guy; Desautels, Alex; Montplaisir, Jacques; Frauscher, Birgit; Ehrmann, Laura; Högl, Birgit; Jennum, Poul; Bourgin, Patrice; Peraita-Adrados, Rosa; Iranzo, Alex; Bassetti, Claudio; Chen, Wei-Min; Concannon, Patrick; Thompson, Susan D.; Damotte, Vincent; Fontaine, Bertrand; Breban, Maxime; Gieger, Christian; Klopp, Norman; Deloukas, Panos; Wijmenga, Cisca; Hallmayer, Joachim; Onengut-Gumuscu, Suna; Rich, Stephen S.; Winkelmann, Juliane; Mignot, Emmanuel

    2013-01-01

    Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease. PMID:23459209

  14. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Science.gov (United States)

    2010-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable backs...

  15. Effective dose to immuno-PET patients due to metastable impurities in cyclotron produced zirconium-89

    Science.gov (United States)

    Alfuraih, Abdulrahman; Alzimami, Khalid; Ma, Andy K.; Alghamdi, Ali; Al Jammaz, Ibrahim

    2014-11-01

    Immuno-PET is a nuclear medicine technique that combines positron emission tommography (PET) with radio-labeled monoclonal antibodies (mAbs) for tumor characterization and therapy. Zirconium-89 (89Zr) is an emerging radionuclide for immuno-PET imaging. Its long half-life (78.4 h) gives ample time for the production, the administering and the patient uptake of the tagged radiopharmaceutical. Furthermore, the nuclides will remain in the tumor cells after the mAbs are catabolized so that time series studies are possible without incurring further administration of radiopharmarceuticals. 89Zr can be produced in medical cyclotrons by bombarding an yttrium-89 (89Y) target with a proton beam through the 89Y(p,n)89Zr reaction. In this study, we estimated the effective dose to the head and neck cancer patients undergoing 89Zr-based immune-PET procedures. The production of 89Zr and the impurities from proton irradiation of the 89Y target in a cyclotron was calculated with the Monte Carlo code MCNPX and the nuclear reaction code TALYS. The cumulated activities of the Zr isotopes were derived from real patient data in literature and the effective doses were estimated using the MIRD specific absorbed fraction formalism. The estimated effective dose from 89Zr is 0.5±0.2 mSv/MBq. The highest organ dose is 1.8±0.2 mSv/MBq in the liver. These values are in agreement with those reported in literature. The effective dose from 89mZr is about 0.2-0.3% of the 89Zr dose in the worst case. Since the ratio of 89mZr to 89Zr depends on the cooling time as well as the irradiation details, contaminant dose estimation is an important aspect in optimizing the cyclotron irradiation geometry, energy and time.

  16. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity.

    Science.gov (United States)

    Fernández-Ulibarri, Inés; Hammer, Katharina; Arndt, Michaela A E; Kaufmann, Johanna K; Dorer, Dominik; Engelhardt, Sarah; Kontermann, Roland E; Hess, Jochen; Allgayer, Heike; Krauss, Jürgen; Nettelbeck, Dirk M

    2015-05-01

    Antibody therapy of solid cancers is well established, but suffers from unsatisfactory tumor penetration of large immunoglobulins or from low serum retention of antibody fragments. Oncolytic viruses are in advanced clinical development showing excellent safety, but suboptimal potency due to limited virus spread within tumors. Here, by developing an immunoRNase-encoding oncolytic adenovirus, we combine viral oncolysis with intratumoral genetic delivery of a small antibody-fusion protein for targeted bystander killing of tumor cells (viro-antibody therapy). Specifically, we explore genetic delivery of a small immunoRNase consisting of an EGFR-binding scFv antibody fragment fused to the RNase Onconase (ONC(EGFR)) that induces tumor cell death by RNA degradation after cellular internalization. Onconase is a frog RNase that combines lack of immunogenicity and excellent safety in patients with high tumor killing potency due to its resistance to the human cytosolic RNase inhibitor. We show that ONC(EGFR) expression by oncolytic adenoviruses is feasible with an optimized, replication-dependent gene expression strategy. Virus-encoded ONC(EGFR) induces potent and EGFR-dependent bystander killing of tumor cells. Importantly, the ONC(EGFR)-encoding oncolytic adenovirus showed dramatically increased cytotoxicity specifically to EGFR-positive tumor cells in vitro and significantly enhanced therapeutic activity in a mouse xenograft tumor model. The latter demonstrates that ONC(EGFR) is expressed at levels sufficient to trigger tumor cell killing in vivo. The established ONC(EGFR)-encoding oncolytic adenovirus represents a novel agent for treatment of EGFR-positive tumors. This viro-antibody therapy platform can be further developed for targeted/personalized cancer therapy by exploiting antibody diversity to target further established or emerging tumor markers or combinations thereof. © 2014 UICC.

  17. Sterilization of freeze dried manila clam (Ruditapea philippinarum) porridge for immuno-compromised patients

    Energy Technology Data Exchange (ETDEWEB)

    Song, Beom Seok; Park, Jae Nam [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-02-15

    This study was conducted to evaluate the combined effect of gamma irradiation and different conditions (vacuum packaging, antioxidant and freezing) on the microbiological and sensory characteristics of freeze dried Manila clam porridge (MCP) for immuno-compromised patient food. McP can be sterilized at 1 kGy to 10 kGy. the initial counts of total aerobic bacteria and yeast molds in the non-irradiated MCP were 2.4±0.5 and 1.2±0.3 log CFU g{sup -}'1, respectively, but gamma irradiation significantly decreased the total aerobic bacteria to below the detection limit (1 log CFU g{sup -1}) (5 kGy). Moreover, gamma irradiation effectively eliminated yeasts/molds at dose below than 1 kGy. However, gamma irradiation accelerated the increase of lipid oxidation and therefore, decreased the sensory characteristics of MCP as irradiation dose increased. to improve the sensory qualities of gamma irradiated MCP, combination treatment (vacuum packaging, 0.1% vitamin c) were applied. there was no significant difference in the overall acceptance scores between the combined-treatment sample (5.6 points) and the non-irradiated samples (6.0). the results indicate that combination treatment (vacuum packaging, 0.1% vitamin c) may help to maintain the quality of MCP. therefore, it considered that irradiation of MCP with combined treatment and this is an effective method for the consumption as a special purpose food such as for space travel or immuno-compromised patients.

  18. Single-pot biofabrication of zinc sulfide immuno-quantum dots.

    Science.gov (United States)

    Zhou, Weibin; Schwartz, Daniel T; Baneyx, François

    2010-04-07

    Quantum dots (QDs) are a powerful alternative to organic dyes and fluorescent proteins for biological and biomedical applications. These semiconductor nanocrystals are traditionally synthesized above 200 degrees C in organic solvents using toxic and costly precursors, and further steps are required to conjugate them to a biological ligand. Here, we describe a simple, aqueous route for the one-pot synthesis of antibody-derivatized zinc sulfide (ZnS) immuno-QDs. In this strategy, easily expressed and purified fusion proteins perform the dual function of nanocrystal mineralizers through ZnS binding sequences identified by cell surface display and adaptors for immunoglobin G (IgG) conjugation through a tandem repeat of the B domain of Staphylococcus aureus protein A. Although approximately 4.3 nm ZnS wurtzite cores could be biomineralized from either zinc chloride or zinc acetate precursors, only the latter salt gives rise to protein-coated QDs with long shelf life and narrow hydrodynamic diameters (8.8 +/- 1.4 nm). The biofabricated QDs have a quantum yield of 2.5% and blue-green ensemble emission with contributions from the band-edge at 340 nm and from trap states at 460 and 665 nm that are influenced by the identity of the protein shell. Murine IgG(1) antibodies exhibit high affinity (K(d) = 60 nM) for the protein shell, and stable immuno-QDs with a hydrodynamic diameter of 14.1 +/- 1.3 nm are readily obtained by mixing biofabricated nanocrystals with human IgG.

  19. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  20. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  1. Gold Nanoparticles Cytotoxicity

    Science.gov (United States)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  2. The RHIC gold rush

    CERN Document Server

    Schäfer, T

    2003-01-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  3. Radioactive gold ring dermatitis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.A.; Aldrich, J.E. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  4. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  5. [Electron microscopic observation of COX activity in pre-BotC of brainstem in rats: application of histochemical staining and immuno-electron microscopic double-labeling].

    Science.gov (United States)

    Kang, Junjun; Liang, Weihua; Huang, Xiaofeng; Liu, Yingying

    2017-09-01

    Objective To explore the changes of cytochrome oxidase (COX) activity in the pre-Botzinger complex (pre-BotC) of the brainstem. Methods The double labeling of COX histochemistry and pre-BotC marker neurokinin-1 receptor (NK1R) nanogold-silver immunohistochemical staining was conducted to determine COX activity in the pre-BotC, especially within different subcellular structures of this nucleus. COX activity was semi-quantitatively analyzed. Results Under the light microscope, NK1R-immunoreactive (NK1R-ir) product was mainly distributed along the neuronal membrane, clearly outlining pre-BotC neurons. COX histochemical staining in brown was extensively expressed in the somata and processes of NK1R-ir neurons. Under the electron microscope, NK1R-ir gold particles were mainly distributed along the inner surface of the membrane of the somata and dendrites. The cytoplasm was also found labeled with NK1R-ir gold particles. The mitochondrial shape and distribution were different in different subcellular structures (somata, axon terminals, dendrites) of the pre-BotC. They were usually round or oval in the somata and axon terminals, whereas in the dendrites, slender elongated mitochondria were the most common. Tubular and vesicular cristae were more commonly visualized in the somata, but lamellar-oriented cristae were frequently encountered in the dendrites and axon terminals. The mitochondria appeared clustered together in the axon terminals, but in scattered distribution and close to the membrane in the dendrites except at synapses, where they were densely distributed and enlarged locally close to the postsynaptic membrane. The close link of the mitochondria with synapses indicated functional requirement that postsynaptic signal neurotransmission needs a large amount of ATP consumption. COX active product was expressed in the mitochondrial cristae, where different densities of the cristae represented different level of COX activity. The higher level of COX activity was

  6. Direct evidence of oxidized gold on supported gold catalysts.

    Science.gov (United States)

    Fu, L; Wu, N Q; Yang, J H; Qu, F; Johnson, D L; Kung, M C; Kung, H H; Dravid, V P

    2005-03-10

    Supported gold catalysts have drawn worldwide interest due to the novel properties and potential applications in industries. However, the origin of the catalytic activity in gold nanoparticles is still not well understood. In this study, time-of-flight secondary ion mass spectroscopy (TOF-SIMS) has been applied to investigate the nature of gold in Au (1.3 wt %)/gamma-Al2O3 and Au (2.8 wt %)/TiO2 catalysts prepared by the deposition-precipitation method. The SIMS spectrum of the supported gold catalysts presented AuO-, AuO2-, and AuOH- ion clusters. These measurements show direct evidence for oxidized gold on supported gold catalysts and may be helpful to gaining better understanding of the origin of the catalytic activity.

  7. Designing CdS Mesoporous Networks on Co-C@Co9S8Double-Shelled Nanocages as Redox-Mediator-Free Z-Scheme Photocatalyst.

    Science.gov (United States)

    Reddy, D Amaranatha; Park, Hanbit; Gopannagari, Madhusudana; Kim, Eun Hwa; Lee, Seunghee; Kumar, D Praveen; Kim, Tae Kyu

    2018-01-10

    Designing porous nanostructures with unprecedented functionalities and an effective ability to harvest the maximum energy region of the solar spectrum and suppress the charge-carrier recombination rate offers promising potential for sustainable energy production. Although several functional porous nanostructures have been developed, high-efficiency materials are still needed. Herein, we report a new, highly active, noble-metal-free, and redox-mediator-free Z-scheme photocatalyst, CdS/Co-C@Co 9 S 8 , for H 2 production through water splitting under solar irradiation. The designed photocatalytic system contains open 3 D CdS mesopores as a light absorber for wider solar-light harvesting. Metal-organicframework-derived cobalt nanocrystal-embedded few-layered carbon@Co 9 S 8 double-shelled nanocages were used as a co-semiconductor to hamper the photo charge-carrier recombination by accelerating the photogenerated electrons and holes from the other semiconductor. The optimized catalyst shows a H 2 evolution rate of 26.69 mmol g -1  h -1 under simulated solar irradiation, which is 46 times higher than that of the as-synthesized CdS mesoporous nanostructures. The apparent quantum yield reached 7.82 % at λ=425 nm in 5 h. The outstanding photocatalytic activity of CdS/Co-C@Co9S8 reflects the favorable suppression of the charge-carrier recombination rate, as determined by photoluminescence, photocurrent, and impedance analyses. We believe that the findings reported here may inspire the design of new noble-metal-free porous nanohybrids for sustainable H 2 production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP

    International Nuclear Information System (INIS)

    Liu, Na; Feng, Feng; Liu, Zhimin; Ma, Zhanfang

    2015-01-01

    We describe the use of porous platinum nanoparticles (pPt NPs) and PdPt nanocages (PdPt NCs) in an electrochemical immunoassay for two tumor markers (CEA and AFP) directly in serum and with enhanced detection performance. The pPt NPs possess a high specific surface area and electrical conductivity, while the PdPt NCs display excellent catalytic property and high loading capacity. The PdPt NCs were labeled with anti-CEA and thionine, and the PdPt NCs were labeled with anti-AFP and ferrocene. The resulting electrode displayed a large decrease of the anodic peak current and an increase of cathodic peak current for hydrogen peroxide (H 2 O 2 ). The dual square wave voltammetric immunoassay was performed at −0.1 V (for CEA) and +0.6 V (for AFP) after exposure to a sample containing CEA and AFP and in the presence of H 2 O 2 . CEA can be detected in the 0.05 to 200 ng mL −1 concentration range and AFP between 0.03 and 100 ng mL −1 . The limits of detection are 1.4 pg mL −1 for CEA and 1 pg mL −1 for AFP (at an SNR of 3). The sensitivity of the method (expressed as slope vs. concentration) is better by a factor of 4.6 to 100 compared to conventional electrochemical immunoassays. Analytical data obtained with diluted serum samples were in good agreement with reference values obtained via a standard ELISA. Negligible cross-reactivity is found between CEA and AFP. In our opinion, this approach paves the way for developing other kinds of electrochemical immunosensors based on the use of pPt NPs and PdPt NCs as materials for designing new electrode interfaces. (author)

  9. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions.

    Science.gov (United States)

    Xie, Shuifen; Jin, Mingshang; Tao, Jing; Wang, Yucai; Xie, Zhaoxiong; Zhu, Yimei; Xia, Younan

    2012-11-19

    This paper describes the synthesis of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with a yolk-shell structure through galvanic replacement reactions that involve Pd@Cu core-shell nanocubes as sacrificial templates and ethylene glycol as the solvent. Compared with the most commonly used templates based on Ag, Cu offers a much lower reduction potential (0.34 versus 0.80 V), making the galvanic reaction more easily to conduct, even at room temperature. Our structural and compositional characterizations indicated that the products were hollow inside, and each one of them contained porous M-Cu alloy walls and a Pd cube in the interior. For the Pd@Au(x)Cu(1-x) yolk-shell nanocages, they displayed broad extinction peaks extending from the visible to the near-IR region. Our mechanistic study revealed that the dissolution of the Cu shell preferred to start from the slightly truncated corners and then progressed toward the interior, because the Cu {100} side faces were protected by a surface capping layer of hexadecylamine. This galvanic approach can also be extended to generating other hollow metal nanostructures by using different combinations of Cu nanostructures and salt precursors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages

    International Nuclear Information System (INIS)

    Shokuhi Rad, Ali; Ayub, Khurshid

    2016-01-01

    Density functional theory (DFT) calculations have been performed for adsorption of guanine (a nucleobase) on the surface of Al 12 N 12 (AlN), Al 12 P 12 (AlP), B 12 N 12 (BN), and B 12 P 12 (BP) nano-cages. The interaction of guanine with nano-cages is highly exothermic (chemisorption), and the adsorption energies are in order of AlN > AlP > BN > BP. Although AlN has the highest adsorption energy; however, BN and BP show more changes in electronic property upon adsorption of guanine. The results of charge analysis, density of states (DOSs), and frontier molecular orbital, confirm a distinguished orbital hybridization upon adsorption of guanine, which suggest potential application of BN as biochemical adsorbent for guanine. - Highlights: • The adsorption energies are in order of AlN > AlP > BN > BP upon adsorption of guanine. • BN and BP show more changes in electronic property upon adsorption of guanine. • Distinguished orbital hybridization upon adsorption of guanine. • The strongest interaction energy of guanine was obtained for AlN.

  11. DFT simulation towards evaluation the molecular structure and properties of the heterogeneous C16Mg8O8 nano-cage as selective nano-sensor for H2 and N2 gases.

    Science.gov (United States)

    Ghamsari, Parnia Abyar; Nouraliei, Milad; Gorgani, Sara Soleimani

    2016-11-01

    Adsorption of hydrogen (H 2 ) and nitrogen (N 2 ) molecules was analyzed on a new fullerene-like C 16 Mg 8 O 8 nano-cage, composed of magnesium, oxygen, and carbon, using density functional theory. A detailed analysis of the energy, geometry, and electronic structure of various H 2 and N 2 adsorptions on the cluster surface was performed. The adsorption energies of H 2 and N 2 were estimated to ranging from -0.16 to -0.52eV, respectively. The most stable adsorption configurations were those in which the H or N atoms of the adsorbates were located near the Mg atom of the cluster surface at different sides. It was found that the heterogeneous C 16 Mg 8 O 8 nano-cluster selectively act against the H 2 and N 2 gaseous molecules. The electrical conductivity of the cluster, arising from HOMO/LUMO energy gap, was more sensitive to N 2 gaseous molecule rather than H 2 one, indicating that the heterogeneous C 16 Mg 8 O 8 nano-cage may be potential nano-sensor for N 2 molecule. These findings were specified by analyzing the characteristics in the electron density of states (DOS). Copyright © 2016. Published by Elsevier Inc.

  12. Gold--a controversial sensitizer

    DEFF Research Database (Denmark)

    Bruze, M; Andersen, Klaus Ejner

    1999-01-01

    of clinical relevance, i.e., causing or aggravating a contact dermatitis. In this paper, these steps are discussed with regard to gold. With our present knowledge of contact allergy-allergic contact dermatitis, we do not recommend including gold sodium thiosulfate in the standard series. It should be applied......Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact...... allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason...

  13. Modeling the economic outcomes of immuno-oncology drugs: alternative model frameworks to capture clinical outcomes

    Directory of Open Access Journals (Sweden)

    Gibson EJ

    2018-03-01

    Full Text Available EJ Gibson,1 N Begum,1 I Koblbauer,1 G Dranitsaris,2 D Liew,3 P McEwan,4 AA Tahami Monfared,5,6 Y Yuan,7 A Juarez-Garcia,7 D Tyas,8 M Lees9 1Wickenstones Ltd, Didcot, UK; 2Augmentium Pharma Consulting Inc, Toronto, ON, Canada; 3Department of Epidemiology and Preventive Medicine, Alfred Hospital, Monash University, Melbourne, VIC, Australia; 4Health Economics and Outcomes Research Ltd, Cardiff, UK; 5Bristol-Myers Squibb Canada, Saint-Laurent, QC Canada; 6Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada; 7Bristol-Myers Squibb, Princeton, NJ, USA; 8Bristol-Myers Squibb, Uxbridge, UK; 9Bristol-Myers Squibb, Rueil-Malmaison, France Background: Economic models in oncology are commonly based on the three-state partitioned survival model (PSM distinguishing between progression-free and progressive states. However, the heterogeneity of responses observed in immuno-oncology (I-O suggests that new approaches may be appropriate to reflect disease dynamics meaningfully. Materials and methods: This study explored the impact of incorporating immune-specific health states into economic models of I-O therapy. Two variants of the PSM and a Markov model were populated with data from one clinical trial in metastatic melanoma patients. Short-term modeled outcomes were benchmarked to the clinical trial data and a lifetime model horizon provided estimates of life years and quality adjusted life years (QALYs. Results: The PSM-based models produced short-term outcomes closely matching the trial outcomes. Adding health states generated increased QALYs while providing a more granular representation of outcomes for decision making. The Markov model gave the greatest level of detail on outcomes but gave short-term results which diverged from those of the trial (overstating year 1 progression-free survival by around 60%. Conclusion: Increased sophistication in the representation of disease dynamics in economic models

  14. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas.

    Directory of Open Access Journals (Sweden)

    A G de Lucas

    Full Text Available A critical challenge in the management of Glioblastoma Multiforme (GBM tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models.An anti-human MT1-MMP monoclonal antibody (mAb, LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251 expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7 as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543 and U251 cells, with different degrees of blood-brain barrier (BBB disruption were also used for PET imaging experiments.89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90% and specific activity (78.5 MBq/mg. Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models.A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In vivo validation showed high

  15. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  16. Bats, cyanide, and gold mining

    Science.gov (United States)

    Clark, Donald R.

    1991-01-01

    Although the boom days of prospectors and gold nuggets are long gone, modern technology enables gold to continue to be extracted from ore. Unfortunately, the extraction method has often been disastrous for bats and other wildlife, an issue I first became aware of in early 1989. Phone calls from Drs. Merlin Tuttle and Elizabeth Pierson, a BCI member and bat researcher from Berkeley, California, alerted me that bats were dying from apparent cyanide poisoning at gold mines in the western United States.

  17. [A VALIDATION STUDY OF THE IMPROVED PRODUCT FOR MEASURING JAPANESE CYPRESS POLLEN-SPECIFIC IgE (THERMO SCIENTIFIC™ImmunoCAP™ImmunoCAP JAPANESE CYPRESS POLLEN-SPECIFIC IgE)].

    Science.gov (United States)

    Yonekura, Syuji; Okamoto, Yoshitaka; Nakayama, Satoshi

    2018-01-01

    Japanese cypress pollen is a major causative allergen of seasonal allergic rhinitis in Japan. Although ImmunoCAP-specific immunoglobulin E (IgE) reagent Japanese cypress pollen has been widely used as a diagnostic aid, its sensitivity requires enhancement. This study evaluated an improved version of this reagent. Serum samples from 61 subjects who underwent Japanese cypress pollen exposure testing in an environmental challenge chamber in Chiba University were assessed using the conventional ImmunoCAPspecific IgE Japanese cypress pollen product and the improved product. In addition, specific IgE for Cha o 1 and Cha o 2, the primary allergen components of Japanese cypress pollen, was evaluated and their reactivity to specific IgE was compared between the conventional and improved products. The antibody titer of the improved product was approximately 1.8-fold that of the conventional product. In addition, higher correlations with Cha o 1 and Cha o 2 were observed for the improved product than for the conventional product. The clinical sensitivity (≥class 2) in 56 exposure test-positive subjects was better for the improved product (80.4%) than for the conventional product (71.4%). An improvement of the ImmunoCAP-specific IgE reagent Japanese cypress pollen resulted in enhanced Japanese cypress pollen-specific IgE sensitivity. The primary reason for this appeared to be an improved Cha o 1- and Cha o 2-specific IgE detectability.

  18. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  19. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  20. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  1. Tus-Ter-lock immuno-PCR assays for the sensitive detection of tropomyosin-specific IgE antibodies.

    Science.gov (United States)

    Johnston, Elecia B; Kamath, Sandip D; Lopata, Andreas L; Schaeffer, Patrick M

    2014-02-01

    The increasing prevalence of food allergies requires development of specific and sensitive tests capable of identifying the allergen responsible for the disease. The development of serologic tests that can detect specific IgE antibodies to allergenic proteins would, therefore, be highly received. Here we present two new quantitative immuno-PCR assays for the sensitive detection of antibodies specific to the shrimp allergen tropomyosin. Both assays are based on the self-assembling Tus-Ter-lock protein-DNA conjugation system. Significantly elevated levels of tropomyosin-specific IgE were detected in sera from patients allergic to shrimp. This is the first time an allergenic protein has been fused with Tus to enable specific IgE antibody detection in human sera by quantitative immuno-PCR.

  2. A transatlantic perspective on the integration of immuno-oncology prognostic and predictive biomarkers in innovative clinical trial design.

    Science.gov (United States)

    Morfouace, M; Hewitt, S M; Salgado, R; Hartmann, K; Litiere, S; Tejpar, S; Golfinopoulos, V; Lively, T; Thurin, M; Conley, B; Lacombe, D

    2018-01-05

    Immuno-therapeutics aim to activate the body's own immune system against cancer and are one of the most promising cancer treatment strategies, but currently limited by a variable response rate. Biomarkers may help to distinguish those patients most likely to respond to therapy; they may also help guide clinical decision making for combination therapies, dosing schedules, and determining progression versus relapse. However, there is a need to confirm such biomarkers in preferably prospective clinical trials before they can be used in practice. Accordingly, it is essential that clinical trials for immuno-therapeutics incorporate biomarkers. Here, focusing on the specific setting of immune therapies, we discuss both the scientific and logistical hurdles to identifying potential biomarkers and testing them in clinical trials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free white blood cell counting system using MEMS...

  4. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and our partner, Draper Laboratory, propose to develop an on orbit immuno-based, label-free, white blood cell counting system for...

  5. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free white blood cell counting system using MEMS...

  6. Determining gold content

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1981-01-01

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  7. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  8. Determination of Gold from Gold Matrix of North Western Nigeria ...

    African Journals Online (AJOL)

    The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...

  9. Immuno-modulation effect of sulphated polysaccharide (porphyran) from Porphyra vietnamensis.

    Science.gov (United States)

    Bhatia, Saurabh; Rathee, Permender; Sharma, Kiran; Chaugule, B B; Kar, Nabanita; Bera, Tanmoy

    2013-06-01

    Our investigation explores the immuno-efficiency of sulphated polysaccharides enriched Porphyra vietnamenis. Isolated polysaccharide fraction (17.1-25.8%) was characterized by FTIR and NMR spectroscopy which showed the presence of typical linear backbone structure called as porphyran. Oral administration of porphyran (200-500 mg/kg) evoked a significant (P ≤ 0.05) increase in weight of the thymus, spleen and lymphoid organ cellularity. The total leucocyte and lymphocyte count was increased significantly (P<0.005). The increase in the percent neutrophil adhesion to nylon fibres as well as a dose-dependent increase in antibody titre values was observed. A decreased response to DTH reaction induced by SRBC was recorded. A potential phagocytic response was seen and significant changes were observed in the formation of formazone crystals. It also prevented myelosuppression in cyclophosphamide drug treated rats. The results indicated that P. vietnamenis possesses potential immunomodulatory activity and has therapeutic potential for the prevention of autoimmune diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Updates in the Development of ImmunoRNases for the Selective Killing of Tumor Cells

    Directory of Open Access Journals (Sweden)

    Sandra Jordaan

    2018-03-01

    Full Text Available Targeted cancer therapy includes, amongst others, antibody-based delivery of toxic payloads to selectively eliminate tumor cells. This payload can be either a synthetic small molecule drug composing an antibody-drug conjugate (ADC or a cytotoxic protein composing an immunotoxin (IT. Non-human cytotoxic proteins, while potent, have limited clinical efficacy due to their immunogenicity and potential off-target toxicity. Humanization of the cytotoxic payload is essential and requires harnessing of potent apoptosis-inducing human proteins with conditional activity, which rely on targeted delivery to contact their substrate. Ribonucleases are attractive candidates, due to their ability to induce apoptosis by abrogating protein biosynthesis via tRNA degradation. In fact, several RNases of the pancreatic RNase A superfamily have shown potential as anti-cancer agents. Coupling of a human RNase to a humanized antibody or antibody derivative putatively eliminates the immunogenicity of an IT (now known as a human cytolytic fusion protein, hCFP. However, RNases are tightly regulated in vivo by endogenous inhibitors, controlling the ribonucleolytic balance subject to the cell’s metabolic requirements. Endogenous inhibition limits the efficacy with which RNase-based hCFPs induce apoptosis. However, abrogating the natural interaction with the natural inhibitors by mutation has been shown to significantly enhance RNase activity, paving the way toward achieving cytolytic potency comparable to that of bacterial immunotoxins. Here, we review the immunoRNases that have undergone preclinical studies as anti-cancer therapeutic agents.

  11. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Directory of Open Access Journals (Sweden)

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  12. Immuno-PCR, a new technique for the serodiagnosis of tuberculosis.

    Science.gov (United States)

    Mehta, Promod K; Dahiya, Bhawna; Sharma, Suman; Singh, Netrapal; Dharra, Renu; Thakur, Zoozeal; Mehta, Neeru; Gupta, Krishna B; Gupta, Mahesh C; Chaudhary, Dhruva

    2017-08-01

    Rapid and accurate diagnosis of tuberculosis (TB) is essential to control the disease. The conventional microbiological tests have limitations and there is an urgent need to devise a simple, rapid and reliable point-of-care (POC) test. The failure of TB diagnostic tests based on antibody detection due to inconsistent and imprecise results has stimulated renewed interest in the development of rapid antigen detection methods. However, the World Health Organization (WHO) has emphasized to continue research for designing new antibody-based detection tests with improved accuracy. Immuno-polymerase chain reaction (I-PCR) combines the simplicity and versatility of enzyme-linked immunosorbent assay (ELISA) with the exponential amplification capacity and sensitivity of PCR thus leading to several-fold increase in sensitivity in comparison to analogous ELISA. In this review, we have described the serodiagnostic potential of I-PCR assays for an early diagnosis of TB based on the detection of potential mycobacterial antigens and circulating antibodies in body fluids of TB patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Neoadjuvant intratumoral immuno-gene therapy for non-small cell lung cancer.

    Science.gov (United States)

    Predina, Jarrod D; Keating, Jane; Venegas, Ollin; Nims, Sarah; Singhal, Sunil

    2016-04-01

    Non-small Cell Lung Cancer (NSCLC) remains a deadly disease despite aggressive treatment protocols which incorporate chemotherapy, radiation and surgery. These traditional approaches have reached a plateau in therapeutic benefit. There is emerging evidence suggesting that immunotherapy can serve as an alternative treatment modality for NSCLC. Our group has nearly two decades of experience involving immuno-gene therapy with Ad.hIFN-α and Ad.hIFN-β in human mesothelioma trials, and has observed both safety and efficacy in treatment of Thoracic malignancies. We have expanded the scope of our work and have obtained encouraging pre-clinical evidence suggesting a role for immunotherapy as a surgical adjuvant for NSCLC cancers. By combining immunotherapy with surgery, synergistic results have been observed. Based on these observations, we have prepared a Phase I Clinical Trial that pairs Ad.hIFN-α with surgery for patients with resectable NSCLC. Patient enrollment is likely to begin in the Summer of 2016. We hope that this trial will serve as a platform for future trials aimed at pairing immunotherapy with surgery for patients diagnosed with NSCLC.

  14. Correlative light and immuno-electron microscopy of retinal tissue cryostat sections

    Science.gov (United States)

    Burgoyne, Thomas; Lane, Amelia; Laughlin, William E.; Cheetham, Michael E.

    2018-01-01

    Correlative light-electron microscopy (CLEM) is a powerful technique allowing localisation of specific macromolecules within fluorescence microscopy (FM) images to be mapped onto corresponding high-resolution electron microscopy (EM) images. Existing methods are applicable to limited sample types and are technically challenging. Here we describe novel methods to perform CLEM and immuno-electron microscopy (iEM) on cryostat sections utilising the popular FM embedding solution, optimal cutting temperature (OCT) compound. Utilising these approaches, we have (i) identified the same phagosomes by FM and EM in the retinal pigment epithelium (RPE) of retinal tissue (ii) shown the correct localisation of rhodopsin on photoreceptor outer segment disc like-structures in iPSC derived optic cups and (iii) identified a novel interaction between peroxisomes and melanosomes as well as phagosomes in the RPE. These data show that cryostat sections allow easy characterisation of target macromolecule localisation within tissue samples, thus providing a substantial improvement over many conventional methods that are limited to cultured cells. As OCT embedding is routinely used for FM this provides an easily accessible and robust method for further analysis of existing samples by high resolution EM. PMID:29315318

  15. Bridging ImmunoGenomic Data Analysis Workflow Gaps (BIGDAWG): An integrated case-control analysis pipeline.

    Science.gov (United States)

    Pappas, Derek J; Marin, Wesley; Hollenbach, Jill A; Mack, Steven J

    2016-03-01

    Bridging ImmunoGenomic Data-Analysis Workflow Gaps (BIGDAWG) is an integrated data-analysis pipeline designed for the standardized analysis of highly-polymorphic genetic data, specifically for the HLA and KIR genetic systems. Most modern genetic analysis programs are designed for the analysis of single nucleotide polymorphisms, but the highly polymorphic nature of HLA and KIR data require specialized methods of data analysis. BIGDAWG performs case-control data analyses of highly polymorphic genotype data characteristic of the HLA and KIR loci. BIGDAWG performs tests for Hardy-Weinberg equilibrium, calculates allele frequencies and bins low-frequency alleles for k×2 and 2×2 chi-squared tests, and calculates odds ratios, confidence intervals and p-values for each allele. When multi-locus genotype data are available, BIGDAWG estimates user-specified haplotypes and performs the same binning and statistical calculations for each haplotype. For the HLA loci, BIGDAWG performs the same analyses at the individual amino-acid level. Finally, BIGDAWG generates figures and tables for each of these comparisons. BIGDAWG obviates the error-prone reformatting needed to traffic data between multiple programs, and streamlines and standardizes the data-analysis process for case-control studies of highly polymorphic data. BIGDAWG has been implemented as the bigdawg R package and as a free web application at bigdawg.immunogenomics.org. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  16. Comparison study Irma Ca-125 Kit between the production of immuno tech

    International Nuclear Information System (INIS)

    Puji Widayati; Sri Hartini; Agus Ariyanto

    2012-01-01

    An immunoradiometric assay (IRMA) is one of immunoassay technique using radionuclide as the tracer to detect low quantity of analyte. This technique is based on the reaction between antigen (Ag) contained in the sample or standard (tumor marker) with radioactive antibody (Ab*) which is in the excessive quantity can form the antigen-antibody (Ag-Ab*). This technique is suitable for tumor marker testing in the serum which has complex matrix and various concentration. The tumor marker used for monitoring of ovarium cancer is Ca-125, a kind of antigenic glycoprotein which is formed in the ovarium and released into the blood system of people who suffering ovarium cancer. The aim of this research is to compare between local IRMA Ca-125 kit (produced by Center for Radioisotopes and Radiopharmaceuticals, National Nuclear Energy Agency) and imported IRMA (Immuno tech, France) toward 245 samples obtained from PPTA-BATAN clinic and Dharmais Cancer Hospital. The results showed 184 samples as true negative, 46 samples as true positive of ovarium cancer, 13 samples as false negative and 2 samples as false positive. This comparison study gave diagnostic sensitivity as much as 95.83% and diagnostic specificity as much as 93.40%. (author)

  17. New opportunities for allergen immunotherapy using synthetic peptide immuno-regulatory epitopes (SPIREs).

    Science.gov (United States)

    Klimek, Ludger; Pfaar, Oliver; Worm, Margitta

    2016-10-01

    Allergen immunotherapy (AIT) reduces allergic rhinoconjunctivitis (ARC) symptoms, but long-term efficacy requires treatment for 3-5 years. Synthetic peptide immuno-regulatory epitopes, a new class of AIT, are allergen peptides with a shorter, more convenient treatment regimen that could potentially have benefits on adherence and outcomes. Phase 2 trials of therapies derived from cat, house dust mite, grass, and ragweed allergen peptides demonstrated significant reduction in ARC symptoms after short-course treatment; improvement was sustained for 18-24 months posttreatment. We conducted a PubMed literature search for clinical publications using the search terms AIT; allergen peptides; ARC; cat, grass, house dust mite, and ragweed allergy; SCIT; SLIT; and synthetic peptides. Expert commentary: Long-term disease modification is a realistic goal of AIT. The inconvenience of conventional AIT regimens negatively impacts long-term persistence and, thus, efficacy. In comparison, SPIREs have a more convenient treatment regimen that could potentially have benefits on adherence and outcomes.

  18. Irradiated foods for immuno-compromised patients and other potential target groups

    International Nuclear Information System (INIS)

    Blackburn, Carl

    2011-01-01

    Radiation processing technology has been employed in the past to completely sterilize foods for patients, but very few foods are currently irradiated specifically for this purpose and the application of this technology to provide safe food for patients and other similar target groups requiring a high margin of food safety is not utilized in most countries. However, research projects and published papers indicate that low dose irradiation treatments (irradiation without complete sterilization of the food) could be used to provide foods that are suitable for hospital diets. Irradiation to sub-sterilization doses does not severely affect the foods nutritional quality and it retains its organoleptic qualities. There are certain types of food which are generally excluded from specific groups of ill or recovering patients because these people may be particularly susceptible to infection from food borne organisms. Food irradiation has the potential to increase the range of foods available for hospital patients, particularly the immuno-compromised, and increase the variety of foods available to them. Not only is a varied diet important nutritionally, but also the feel-good-factor associated with an enjoyable meal should not be underestimated. Being allowed to consume food which is like the food you usually eat, or having food treats (enjoying ice cream and fresh fruit salad, for example) can do much to aid recovery and well being

  19. Development of an immunoFET biosensor for the detection of biotinylated PCR product

    Directory of Open Access Journals (Sweden)

    Wannaporn Muangsuwan

    2016-10-01

    Full Text Available ImmunoFET (IMFET biosensor is a simple platform for the detection of biotinylated products of polymerase chain reaction (PCR. Construction of the IMFET biosensor started with adsorption of 1.5 mg/mL of protein A (PA onto the insulated gate surface of ISFET for 90 min. Next, the immobilized 1/500 dilution of anti-biotin antibody was adsorbed onto the PA layer for 60 min. The IMFET biosensor was subsequently ready for detection of the biotinylated amplicon. The IMFET biosensor showed highly specific binding to the biotinylated PCR product of the phaE gene of Haloquadratum walsbyi DSM 16854. The phaE gene is a biomarker of polyhydroxyalkanoate (PHA producers that contain PHA synthase class III. The lowest amount of DNA template of H. walsbyi DSM 16854 that the IMFET biosensor could detect was 125 fg. The IMFET biosensor has a lower amount of detection compared with a DNA lateral flow biosensor from our previous study. The degree of linearity of the biosensor signal was influenced by the concentration of the biotinylated amplicon. The IMFET biosensor also has a short response time (approximately 30 times to detect the phaE amplicon compared to an agarose gel electrophoresis. The IMFET biosensor is a promising tool for the detection of the biotinylated PCR product, and it can be integrated into a micro total analysis system (μTAS.

  20. Immuno and affinity cytochemical analysis of cell wall composition in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Berry

    2016-03-01

    Full Text Available In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalacturonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogeneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  1. Immuno-Virological Discordance and the Risk of NonAIDS and AIDS Events in a Large Observational Cohort of HIV-Patients in Europe

    DEFF Research Database (Denmark)

    Zoufaly, Alexander; Cozzi-Lepri, Alessandro; Reekie, Joanne

    2014-01-01

    The impact of immunosuppression despite virological suppression (immuno-virological discordance, ID) on the risk of developing fatal and non-fatal AIDS/non-AIDS events is unclear and remains to be elucidated.......The impact of immunosuppression despite virological suppression (immuno-virological discordance, ID) on the risk of developing fatal and non-fatal AIDS/non-AIDS events is unclear and remains to be elucidated....

  2. Systemic study on the safety of immuno-deficient nude mice treated by atmospheric plasma-activated water

    Science.gov (United States)

    Dehui, XU; Qingjie, CUI; Yujing, XU; Bingchuan, WANG; Miao, TIAN; Qiaosong, LI; Zhijie, LIU; Dingxin, LIU; Hailan, CHEN; Michael, G. KONG

    2018-04-01

    Cold atmospheric-pressure plasma is a new technology, widely used in many fields of biomedicine, especially in cancer treatment. Cold plasma can selectively kill a variety of tumor cells, and its biological safety in clinical trials is also very important. In many cases, the patient’s immune level is relatively low, so we first studied the safety assessment of plasma treatment in an immuno-compromised animal model. In this study, we examined the safety of immuno-deficient nude mice by oral lavage treatment of plasma-activated water, and studied the growth status, main organs and blood biochemical indexes. Acute toxicity test results showed that the maximum dose of plasma treatment for 15 min had no lethal effect and other acute toxicity. There were no significant changes in body weight and survival status of mice after 2 min and 4 min of plasma-activated water (PAW) treatment for 2 weeks. After treatment, the major organs, including heart, liver, spleen, lung and kidney, were not significantly changed in organ coefficient and tissue structure. Blood biochemical markers showed that blood neutrophils and mononuclear cells were slightly increased, and the others remained unchanged. Liver function, renal function, electrolytes, glucose metabolism and lipid metabolism were not affected by different doses of PAW treatment. The above results indicate that PAW treatment can be used to treat immuno-deficient nude mice without significant safety problems.

  3. Ultrasensitive detection and quantification of E. coli O157:H7 using a giant magneto impedance sensor in an open-surface micro fluidic cavity covered with an antibody-modified gold surface

    International Nuclear Information System (INIS)

    Yang, Zhen; Liu, Yan; Lei, Chong; Sun, Xue-cheng; Zhou, Yong

    2016-01-01

    We report on a method for ultrasensitive detection and quantification of the pathogen Escherichia coli (E. coli), type O157:H7. It is using a tortuous-shaped giant magneto impedance (GMI) sensor in combination with an open-surface micro fluidic system coated with a gold film for performing the sandwich immuno binding on its surface. Streptavidin-coated super magnetic Dynabeads were loaded with biotinylated polyclonal antibody to capture E. coli O157:H7. The E. coli-loaded Dynabeads are then injected into the microfluidics system where it comes into contact with the surface of gold nanofilm carrying the monoclonal antibody to form the immuno complex. As a result, the GMI ratio is strongly reduced at high frequencies if E. coli O157:H7 is present. The sensor has a linear response in the 50 to 500 cfu·mL −1 concentration range, and the detection limit is 50 cfu·mL −1 at a working frequency of 2.2 MHz. In our perception, this method provides a valuable tool for developing GMI-based micro fluidic sensors systems for ultrasensitive and quantitative analysis of pathogenic bacteria. The method may also be extended to other sensing applications by employing respective immuno reagents. (author)

  4. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  5. Stealing the Gold

    International Nuclear Information System (INIS)

    Whittington, S G

    2005-01-01

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  6. Clinical Significance of Immuno phenotypic Markers in Pediatric T-cell Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)

    SIDHOM, I.; SHAABAN, Kh.; SOLIMAN, S.; HAMDY, N.; YASSIN, D.; SALEM, Sh.; HASSANEIN, H.; MANSOUR, M.T.; EZZAT, S.; EL-ANWAR, W.

    2008-01-01

    Background: Cell-marker profiling has led to conflicting conclusions about its prognostic significance in T-ALL. Aim: To investigate the prevalence of the expression of CD34, CD10 and myeloid associated antigens (CD13/ CD33) in childhood T-ALL and to relate their presence to initial clinical and biologic features and early response to therapy. Patients and Methods: This study included 67 consecutive patients with newly diagnosed T-ALL recruited from the Children's Cancer Hospital in Egypt during the time period from July 2007 to June 2008. Immuno phenotypic markers and minimal residual disease (MRD) were studied by five-color flow cytometry. Results: The frequency of CD34 was 34.9%, CD10 33.3%, while CD13/CD33 was 18.8%. No significant association was encountered between CD34, CD10 or myeloid antigen positivity and the presenting clinical features as age, sex, TLC and CNS leukemia. Only CD10+ expression had significant association with initial CNS involvement (p=0.039). CD34 and CD13/CD33 expression was significantly associated with T-cell maturation stages (p<0.05). No relationship was observed for age, TLC, gender, NCI risk or CNS involvement with early response to therapy illustrated by BM as well as MRD day 15 and day 42. CD34+, CD13/CD33+ and early T-cell stage had high MRD levels on day 15 that was statistically highly significant (p<0.01), but CD10+ had statistically significant lower MRD level on day 15 (p=0.049). However, only CD34 retained its significance at an MRD cut-off level of 0.01%. Conclusion: CD34, CD10, CD13/CD33 expression, as well as T-cell maturation stages, may have prognostic significance in pediatric T-ALL as they have a significant impact on early clearance of leukemic cells detected by MRD day 15.

  7. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides.

    Science.gov (United States)

    Mishima, Eikan; Jinno, Daisuke; Akiyama, Yasutoshi; Itoh, Kunihiko; Nankumo, Shinnosuke; Shima, Hisato; Kikuchi, Koichi; Takeuchi, Yoichi; Elkordy, Alaa; Suzuki, Takehiro; Niizuma, Kuniyasu; Ito, Sadayoshi; Tomioka, Yoshihisa; Abe, Takaaki

    2015-01-01

    The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.

  8. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides

    Science.gov (United States)

    Akiyama, Yasutoshi; Itoh, Kunihiko; Nankumo, Shinnosuke; Shima, Hisato; Kikuchi, Koichi; Takeuchi, Yoichi; Elkordy, Alaa; Suzuki, Takehiro; Niizuma, Kuniyasu; Ito, Sadayoshi; Tomioka, Yoshihisa; Abe, Takaaki

    2015-01-01

    The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism. PMID:26606401

  9. Use of immuno-magnetic beads for direct capture of nanosized microparticles from plasma.

    Science.gov (United States)

    Yuana, Yuana; Osanto, Susanne; Bertina, Rogier M

    2012-04-01

    Increased microparticle tissue factor (TF) activity is not only found in cancer patients, but also in patients with cardiovascular and inflammatory diseases. Methods such as flow cytometry and impedance-based flow cytometry allow the analysis of microparticle subsets but provide no insight on which microparticles carry active TF. Conversely, the microparticle-TF activity itself does not reveal the cellular origin of the microparticles carrying the active TF.For this reason, we developed an immuno-magnetic bead method to capture subsets of microparticles directly from plasma. The method was optimized for capture of platelet-derived microparticles (PMPs) from plasma. Only 100 μl platelet-poor plasma (PPP) was needed in combination with 135 μl (27 μg) of biotinylated antihuman CD41 monoclonal antibody (MoAb) and 200 μl of streptavidin beads to achieve complete separation of PMPs from plasma. As a control, biotinylated mouse IgG1 isotype control MoAb was used instead of the anti-CD41 MoAb. Using biotinylated anti-CD14 MoAb, CD14-positive microparticles were captured from normal plasma spiked with microparticles isolated from the supernatant of lipopolysaccharide-stimulated monocytes (MoMPs). TF activity was found both in the positive (selected) and negative (depleted) fractions indicating that both CD14-positive and negative MoMPs carry active TF. We propose that this method can be used in the future to investigate the source of microparticles carrying active TF in plasma of patients with cancer and other diseases.

  10. Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome.

    Science.gov (United States)

    Oud, Machteld M; Tuijnenburg, Paul; Hempel, Maja; van Vlies, Naomi; Ren, Zemin; Ferdinandusse, Sacha; Jansen, Machiel H; Santer, René; Johannsen, Jessika; Bacchelli, Chiara; Alders, Marielle; Li, Rui; Davies, Rosalind; Dupuis, Lucie; Cale, Catherine M; Wanders, Ronald J A; Pals, Steven T; Ocaka, Louise; James, Chela; Müller, Ingo; Lehmberg, Kai; Strom, Tim; Engels, Hartmut; Williams, Hywel J; Beales, Phil; Roepman, Ronald; Dias, Patricia; Brunner, Han G; Cobben, Jan-Maarten; Hall, Christine; Hartley, Taila; Le Quesne Stabej, Polona; Mendoza-Londono, Roberto; Davies, E Graham; de Sousa, Sérgio B; Lessel, Davor; Arts, Heleen H; Kuijpers, Taco W

    2017-02-02

    EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Low renal but high extrarenal phenotype variability in Schimke immuno-osseous dysplasia.

    Directory of Open Access Journals (Sweden)

    Beata S Lipska-Ziętkiewicz

    Full Text Available Schimke immuno-osseous dysplasia (SIOD is a rare multisystem disorder with early mortality and steroid-resistant nephrotic syndrome (SRNS progressing to end-stage kidney disease. We hypothesized that next-generation gene panel sequencing may unsurface oligosymptomatic cases of SIOD with potentially milder disease courses. We analyzed the renal and extrarenal phenotypic spectrum and genotype-phenotype associations in 34 patients from 28 families, the largest SMARCAL1-associated nephropathy cohort to date. In 11 patients the diagnosis was made unsuspectedly through SRNS gene panel testing. Renal disease first manifested at median age 4.5 yrs, with focal segmental glmerulosclerosis or minimal change nephropathy on biopsy and rapid progression to end-stage kidney disease (ESKD at median age 8.7 yrs. Whereas patients diagnosed by phenotype more frequently developed severe extrarenal complications (cerebral ischemic events, septicemia and were more likely to die before age 10 years than patients identified by SRNS-gene panel screening (88 vs. 40%, the subgroups did not differ with respect to age at proteinuria onset and progression to ESKD. Also, 10 of 11 children diagnosed unsuspectedly by Next Generation Sequencing were small at diagnosis and all showed progressive growth failure. Severe phenotypes were usually associated with biallelic truncating mutations and milder phenotypes with biallelic missense mutations. However, no genotype-phenotype correlation was observed for the renal disease course. In conclusion, while short stature is a reliable clue to SIOD in children with SRNS, other systemic features are highly variable. Our findings support routine SMARCAL1 testing also in non-syndromic SRNS.

  12. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides.

    Directory of Open Access Journals (Sweden)

    Eikan Mishima

    Full Text Available The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A, N6-methyladenosine (m6A, pseudouridine, and 5-methylcytidine (m5C showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.

  13. Annotating STEAP1 regulation in prostate cancer with 89Zr immuno-PET.

    Science.gov (United States)

    Doran, Michael G; Watson, Philip A; Cheal, Sarah M; Spratt, Daniel E; Wongvipat, John; Steckler, Jeffrey M; Carrasquillo, Jorge A; Evans, Michael J; Lewis, Jason S

    2014-12-01

    Antibodies and antibody-drug conjugates targeting the cell surface protein 6 transmembrane epithelial antigen of prostate 1 (STEAP1) are in early clinical development for the treatment of castration-resistant prostate cancer (PCa). In general, antigen expression directly affects the bioactivity of therapeutic antibodies, and the biologic regulation of STEAP1 is unusually complicated in PCa. Paradoxically, STEAP1 can be induced or repressed by the androgen receptor (AR) in different human PCa models, while also expressed in AR-null PCa. Consequently, there is an urgent need to translate diagnostic strategies to establish which regulatory mechanism predominates in patients to situate the appropriate therapy within standard of care therapies inhibiting AR. To this end, we prepared and evaluated (89)Zr-labeled MSTP2109A ((89)Zr-2109A), a radiotracer for PET derived from a fully humanized monoclonal antibody to STEAP1 in preclinical PCa models. (89)Zr-2109A specifically localized to the STEAP1-positive human PCa models CWR22Pc, 22Rv1, and PC3. Moreover, (89)Zr-2109A sensitively measured treatment-induced changes (∼66% decline) in STEAP1 expression in CWR22PC in vitro and in vivo, a model we showed to express STEAP1 in an AR-dependent manner. These findings highlight the ability of immuno-PET with (89)Zr-2109A to detect acute changes in STEAP1 expression and argue for an expansion of ongoing efforts to image PCa patients with (89)Zr-2109A to maximize the clinical benefit associated with antibodies or antibody-drug conjugates to STEAP1. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Diagnostic value of enzyme linked immuno-sorbent assay for cytomegalovirus disease.

    Directory of Open Access Journals (Sweden)

    Priya K

    2002-07-01

    Full Text Available BACKGROUND: Since interpretation of results of enzyme linked immuno-sorbent assay (ELISA for diagnosis of Cytomegalovirus (CMV infection in India is difficult, its diagnostic value required evaluation. AIMS: To evaluate the diagnostic value of ELISA against polymerase chain reaction (PCR in CMV disease. SETTINGS AND DESIGN: Results of ELISA test for CMV antibodies in CMV-DNA PCR positive and negative patients and normal healthy blood donors were analysed. METHODS AND MATERIAL: Anti-CMV antibodies were assayed by ELISA on the sera of 26 CMV PCR positive and 21 PCR negative patients and 35 normal healthy blood donors. STATISTICAL ANALYSIS: Chi square and Fischer exact test were used for statistical analysis. RESULTS: Anti-CMV antibodies (IgG or IgG and IgM were present in 20 (76.9% of 26 PCR positive and 13 (61.9% of 21 PCR negative patients. ELISA was negative in six (23.1% of 26 PCR positive patients. Of the 28 paediatric patients, ELISA was positive in 14 (73.7% of 19 PCR positive and three (33.3% of nine PCR negative patients showing a statistically significant difference (Chi square test, P value 0.038. Among the 19 patients having complications after organ transplant, ELISA showed anti-CMV antibodies in six (85.7% of seven PCR positive and 11 (91.7% of 12 PCR negative patients showing no significant difference. CMV-DNA was not detected in the buffy coat of 35 sero-positive blood donors. CONCLUSION: ELISA has no diagnostic value in the detection of CMV activation although it may help in the differential diagnosis of CMV infection in the paediatric age group.

  15. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2007-05-01

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the 131 iodine or the 90 yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  16. Shape evolution of gold nanoparticles

    International Nuclear Information System (INIS)

    Wang, Y. Q.; Liang, W. S.; Geng, C. Y.

    2010-01-01

    The tetraoctylammonium bromide-stabilized gold nanoparticles have been successfully fabricated. The shape evolution of these nanoparticles under different annealing temperatures has been investigated using high-resolution transmission electron microscopy. After an annealing at 100 o C for 30 min, the average diameters of the gold nanoparticles change a little. However, the shapes of gold nanoparticles change drastically, and facets appear in most nanoparticles. After an annealing at 200 o C for 30 min, not only the size but also the shape changes a lot. After an annealing at 300 o C for 30 min, two or more gold nanoparticles coalesce into bigger ones. In addition, because of the presence of Cu grid during the annealing, some gold particles become the nucleation sites of Cu 2 O nanocubes, which possess a microstructure of gold-particle core/Cu 2 O shell. These Au/Cu 2 O heterostructure nanocubes can only be formed at a relatively high temperature (≥300 o C). The results can provide some insights on controlling the shapes of gold nanoparticles.

  17. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  18. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  19. Grafting of Gold Nanoparticles on Glass Using Sputtered Gold Interlayers

    OpenAIRE

    Kvítek, Ondřej; Hendrych, Robin; Kolská, Zdeňka; Švorčík, Václav

    2014-01-01

    Three-step preparation of nanostructured Au layer on glass substrate is described. The procedure starts with sputtered gold interlayer, followed by grafting with dithiols and final coverage with gold nanoparticles (AuNPs). Successful binding of dithiols on the sputtered Au film was confirmed by X-ray photoelectron spectroscopy measurement. AuNPs bound to the surface were observed using atomic force microscopy. Both single nanoparticles and their aggregates were observed. UV-Vis spectra show b...

  20. 41 CFR 101-45.002 - Gold.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  1. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  2. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  3. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  4. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  5. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  6. Applied immuno-epidemiological research: an approach for integrating existing knowledge into the statistical analysis of multiple immune markers.

    Science.gov (United States)

    Genser, Bernd; Fischer, Joachim E; Figueiredo, Camila A; Alcântara-Neves, Neuza; Barreto, Mauricio L; Cooper, Philip J; Amorim, Leila D; Saemann, Marcus D; Weichhart, Thomas; Rodrigues, Laura C

    2016-05-20

    Immunologists often measure several correlated immunological markers, such as concentrations of different cytokines produced by different immune cells and/or measured under different conditions, to draw insights from complex immunological mechanisms. Although there have been recent methodological efforts to improve the statistical analysis of immunological data, a framework is still needed for the simultaneous analysis of multiple, often correlated, immune markers. This framework would allow the immunologists' hypotheses about the underlying biological mechanisms to be integrated. We present an analytical approach for statistical analysis of correlated immune markers, such as those commonly collected in modern immuno-epidemiological studies. We demonstrate i) how to deal with interdependencies among multiple measurements of the same immune marker, ii) how to analyse association patterns among different markers, iii) how to aggregate different measures and/or markers to immunological summary scores, iv) how to model the inter-relationships among these scores, and v) how to use these scores in epidemiological association analyses. We illustrate the application of our approach to multiple cytokine measurements from 818 children enrolled in a large immuno-epidemiological study (SCAALA Salvador), which aimed to quantify the major immunological mechanisms underlying atopic diseases or asthma. We demonstrate how to aggregate systematically the information captured in multiple cytokine measurements to immunological summary scores aimed at reflecting the presumed underlying immunological mechanisms (Th1/Th2 balance and immune regulatory network). We show how these aggregated immune scores can be used as predictors in regression models with outcomes of immunological studies (e.g. specific IgE) and compare the results to those obtained by a traditional multivariate regression approach. The proposed analytical approach may be especially useful to quantify complex immune

  7. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  8. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays

    DEFF Research Database (Denmark)

    Engmark, Mikael; Andersen, Mikael Rørdam; Laustsen, Andreas Hougaard

    2016-01-01

    Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens....... In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high...

  9. The TRIPS (Toll-like receptors in immuno-inflammatory pathogenesis) Hypothesis: a novel postulate to understand schizophrenia.

    Science.gov (United States)

    Venkatasubramanian, Ganesan; Debnath, Monojit

    2013-07-01

    Mounting evidence indicates that immune activation and/or immuno-inflammatory reactions during neurodevelopment apparently contribute to the pathogenesis and progression of schizophrenia. One of the important environmental factors that is known to trigger immune activation/inflammatory responses during early pregnancy is prenatal infection. Recent understanding from animal studies suggests that prenatal infection induced maternal immune activation (MIA)/inflammation in congruence with oxidative/nitrosative stress can lead to neurodevelopmental damage and behavioral abnormalities in the offspring. Although the underlying precise mechanistic processes of MIA/inflammation are yet to be completely elucidated, it is being increasingly recognized that Toll-like receptors (TLRs) that form the first line of defense against invading microorganisms could participate in the prenatal infection induced immune insults. Interestingly, some of the TLRs, especially TLR3 and TLR4 that modulate neurodevelopment, neuronal survival and neuronal plasticity by regulating the neuro-immune cross-talk in the developing and adult brain could also be affected by prenatal infection. Importantly, sustained activation of TLR3/TLR4 due to environmental factors including infection and stress has been found to generate excessive reactive oxygen species (ROS)/reactive nitrogen species (RNS) as well as pro-inflammatory mediators during embryogenesis, which result into neuronal damage by necrosis/apoptosis. In recent times, ROS/RNS and immuno-inflammatory mediators are being increasingly linked to progressive brain changes in schizophrenia. Although a significant role of TLR3/TLR4 in neurodegeneration is gaining certainty, their importance in establishing a causal link between prenatal infection and immuno-inflammatory, oxidative and nitrosative stress (IO&NS) responses and influence on adult presentation of schizophrenia is yet to be ascertained. We review here the current knowledge generated from

  10. Quantification of alpha-tubulin isotypes by sandwich ELISA with signal amplification through biotinyl-tyramide or immuno-PCR

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; Stegurová, Lucie; Sulimenko, Vadym; Hájková, Zuzana; Dráber, Petr; Dráber, Pavel

    2013-01-01

    Roč. 395, 1-2 (2013), s. 63-70 ISSN 0022-1759 R&D Projects: GA AV ČR KAN200520701; GA ČR GAP302/12/1673; GA ČR GPP302/11/P709; GA ČR GAP302/10/1759; GA ČR GA301/09/1826; GA MŠk(CZ) LD13015; GA MŠk LD12073 Institutional support: RVO:68378050 Keywords : alpha-tubulin isotypes * biotinyl-tyramide * ELISA * immuno-PCR * mast cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.005, year: 2013

  11. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  12. Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renjie, E-mail: 1058464972@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); Ni, Yanan, E-mail: 468885029@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); Xu, Yi, E-mail: xuyibbd@sina.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); National Center for International Research of Micro/Nano-System and New Material Technology, No. 174, St. Shazhengjie, Shapingba District, Chongqing (China); Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology for National Defense, Chongqing (China); Jiang, Yan, E-mail: 919865356@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); Dong, Chunyan, E-mail: 774176325@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); Chuan, Na, E-mail: 814859441@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China)

    2015-01-01

    Highlights: • A novel microfluidic chip and a LIF microsystem were designed and fabricated. • Salmonella typhimurium was captured and labeled by specific immuno-capture on chip. • CdSe/ZnS quantum dots-labeled bacteria were detected by in situ analysis using LIF microsystem. • The proposed method has potential application in practice. - Abstract: The new method presented in this article achieved the goal of capturing Salmonella typhimurium via immunoreaction and rapid in situ detection of the CdSe/ZnS quantum dots (QDs) labeled S. typhimurium by self-assembly light-emitting diode-induced fluorescence detection (LIF) microsystem on a specially designed multichannel microfluidic chip. CdSe/ZnS QDs were used as fluorescent markers improving detection sensitivity. The microfluidic chip developed in this study was composed of 12 sample channels, 3 mixing zones, and 6 immune reaction zones, which also acted as fluorescence detection zones. QDs–IgG–primary antibody complexes were generated by mixing CdSe/ZnS QDs conjugated secondary antibody (QDs–IgG) and S. typhimurium antibody (primary antibody) in mixing zones. Then, the complexes went into immune reaction zones to label previously captured S. typhimurium in the sandwich mode. The capture rate of S. typhimurium in each detection zone was up to 70%. The enriched QDs-labeled S. typhimurium was detected using a self-assembly LIF microsystem. A good linear relationship was obtained in the range from 3.7 × 10 to 3.7 × 10{sup 5} cfu mL{sup −1} using the equation I = 0.1739 log (C) − 0.1889 with R{sup 2} = 0.9907, and the detection limit was down to 37 cfu mL{sup −1}. The proposed method of online immunolabeling with QDs for in situ fluorescence detection on the designed multichannel microfluidic chip had been successfully used to detect S. typhimurium in pork sample, and it has shown potential advantages in practice.

  13. Morphological and immuno phenotypic characterization of mammary carcinomas in relation to family history of breast cancer

    International Nuclear Information System (INIS)

    Gualco, G.; Ortega, V.; Musto, M.; Delgado, L.

    2004-01-01

    Objective: To investigate histopathological and immuno phenotypic differences between breast carcinomas sporadic (CM E) and developed in the context of breast cancer (B C) Family (CM F). Methodology: The study included in the CME group (n = 34) patients (pts) with unilateral CM diagnosed after age 30 without family history of CM. In CM F group (n = 26) family members were included pts with 3 or more cases of CM (at least one diagnosed before age 50) or two cases with any of the following sub-criteria: at least one case diagnosed before age 35, paternal transmission, bilateral breast cancer, cancer ovary. Each group was subdivided into 2 subgroups according to age at diagnosis of CM: age equal to or greater than 40 years (subgroup 1) and age under 40 years (subgroup 2). It recorded the clinical characteristics and conventional anatomical and pathological parameters. By immunohistochemistry (IHC) expression of estrogen receptors was studied and progesterone (E R, P R), HER2, p3, bcl-2 and Ki67. Appropriate statistical tests were applied to Univariate and multivariate analyzes. Results: Mean age at diagnosis (45 vs 58, p <0.001) and tumor size (p <0.05) were lower in the CMF group than in the group with CME. In both groups predominant histological type was infiltrating ductal carcinoma NOS. He documented a tendency to higher histological grade and lower E R expression in CMF regarding CME. There were no differences in the expression of Pr, HER2, Ki67, bcl2 and p53. while in the CMF group no differences in tumor characteristics were observed by age diagnosis, in the CME, subgroup 2 showed a predominance of edges expansive growth, lower tubular differentiation, histological grade end stores III, minor component in situ, and low expression of RE. Discussion: Morphologic and immune phenotypic features are similar to the CMF studies documented in the United States and Europe, which agrees with the ancestral origin predominant in our population. Overall, the group presented

  14. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  15. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization

    DEFF Research Database (Denmark)

    Pappalardo, F.; Halling-Brown, M. D.; Rapin, Nicolas

    2009-01-01

    Vaccine research is a combinatorial science requiring computational analysis of vaccine components, formulations and optimization. We have developed a framework that combines computational tools for the study of immune function and vaccine development. This framework, named ImmunoGrid combines...... conceptual models of the immune system, models of antigen processing and presentation, system-level models of the immune system, Grid computing, and database technology to facilitate discovery, formulation and optimization of vaccines. ImmunoGrid modules share common conceptual models and ontologies....... The ImmunoGrid portal offers access to educational simulators where previously defined cases can be displayed, and to research simulators that allow the development of new, or tuning of existing, computational models. The portal is accessible at http://www.w3.org....

  16. Synergistic Photothermal and Antibiotic Killing of Biofilm-AssociatedStaphylococcus aureusUsing Targeted Antibiotic-Loaded Gold Nanoconstructs.

    Science.gov (United States)

    Meeker, Daniel G; Jenkins, Samir V; Miller, Emily K; Beenken, Karen E; Loughran, Allister J; Powless, Amy; Muldoon, Timothy J; Galanzha, Ekaterina I; Zharov, Vladimir P; Smeltzer, Mark S; Chen, Jingyi

    2016-04-08

    Resistance to conventional antibiotics is a growing public health concern that is quickly outpacing the development of new antibiotics. This has led the Infectious Diseases Society of America (IDSA) to designate Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species as "ESKAPE pathogens" on the basis of the rapidly decreasing availability of useful antibiotics. This emphasizes the urgent need for alternative therapeutic strategies to combat infections caused by these and other bacterial pathogens. In this study, we used Staphylococcus aureus ( S. aureus ) as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) can be incorporated into polydopamine-coated gold nanocages (AuNC@PDA) and that daptomycin-loaded AuNC@PDA can be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoconstructs directly to the bacterial cell surface. Targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis , and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. We demonstrate that laser irradiation at levels within the current safety standard for use in humans can be used to achieve both a lethal photothermal effect and controlled release of the antibiotic, thus resulting in a degree of therapeutic synergy capable of eradicating viable S. aureus cells. The system was validated using planktonic bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains and subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.

  17. Immuno-MALDI-MS in Human Plasma and On-Chip Biomarker Characterizations at the Femtomole Level

    Directory of Open Access Journals (Sweden)

    Wilfrid Boireau

    2012-11-01

    Full Text Available Immuno-SPR-MS is the combination of immuno-sensors in biochip format with mass spectrometry. This association of instrumentation allows the detection and the quantification of proteins of interest by SPR and their molecular characterization by additional MS analysis. However, two major bottlenecks must be overcome for a wide diffusion of the SPR-MS analytical platform: (i To warrant all the potentialities of MS, an enzymatic digestion step must be developed taking into account the spot formats on the biochip and (ii the biological relevancy of such an analytical solution requires that biosensing must be performed in complex media. In this study, we developed a procedure for the detection and the characterization at ~1 µg/mL of the LAG3 protein spiked in human plasma. The analytical performances of this new method was established, particularly its specificity (S/N > 9 and sensitivity (100% of LAG3 identification with high significant mascot score >68 at the femtomole level. The collective and automated on-chip MALDI-MS imaging and analysis based on peptidic fragments opens numerous applications in the fields of proteomics and diagnosis.

  18. Immuno-flow cytometric detection of the ichthyotoxic dinoflagellates Gyrodinium aureolum and Gymnodinium nagasakiense: independence of physiological state

    Science.gov (United States)

    Vrieling, Engel G.; van de Poll, Willem H.; Vriezekolk, Gertie; Gieskes, Winfried W. C.

    1997-05-01

    The ichthyotoxic dinoflagellates Gyrodinium aureolum and Gymnodinium nagasakiense were cultured under different environmental conditions to test possible variability in immunochemical labelling intensity of cell-surface antigens using species-specific monoclonal antibodies. Variation of antigen abundance (which is directly related to labelling intensity) at the cell surface, determined by immuno-flow cytometry of cells labelled with FITC, appeared to be small but significant compared to control cultures. In general, a minor decrease in FIX fluorescence was recorded during exponential growth, followed by an increase during stationary growth. FITC fluorescence was correlated with cell size, shape and structure. This suggests a constant number of antigens per unit of cell surface. In all cultures, immunochemically labelled cells were distinguished clearly from unlabelled cells; immuno-flow cytometric identification is apparently not affected by growth conditions. Only at the end of the stationary growth phase in batch cultures did the FITC fluorescence values drop, which suggests that unhealthy, dying or lysing cells may either alter the composition of the cell surface or just fail to express the antigen.

  19. Structure and bonding in gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.

    1988-01-01

    Recent developments in chemical applications of 197 Au Moessbauer spectroscopy are reviewed. For gold(I) and gold(III), systematic variations in isomer shift and quadrupole splitting are seen as the ligands are changed; the effects of change in coordination number of the gold atoms are also systematic. Data for gold(II) systems involving gold-gold bonds lie between those for corresponding gold(I) and gold(III) materials, showing a small increase in isomer shift and a larger increase in quadrupole splitting as the oxidation state decreases; these trends are explained in terms of the structures. Data for mixed-metal cluster compounds are much more sensitive to structural effects than in homonuclear clusters. Both sets of data show systematic changes with increase in the number of metal atoms to which the gold atom is bound. The connectivity also influences the recoil-free fraction. (orig.)

  20. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.

    Science.gov (United States)

    Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori

    2014-04-07

    Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

  1. Grafting of Gold Nanoparticles on Glass Using Sputtered Gold Interlayers

    Directory of Open Access Journals (Sweden)

    Ondřej Kvítek

    2014-01-01

    Full Text Available Three-step preparation of nanostructured Au layer on glass substrate is described. The procedure starts with sputtered gold interlayer, followed by grafting with dithiols and final coverage with gold nanoparticles (AuNPs. Successful binding of dithiols on the sputtered Au film was confirmed by X-ray photoelectron spectroscopy measurement. AuNPs bound to the surface were observed using atomic force microscopy. Both single nanoparticles and their aggregates were observed. UV-Vis spectra show broadening of surface plasmon resonance peak after AuNPs binding caused by aggregation of AuNPs on the sample surface. Zeta potential measurements suggest that a large part of the dithiol molecules are preferentially bound to the gold interlayer via both –SH groups.

  2. Surface Chemistry of Gold Nanorods.

    Science.gov (United States)

    Burrows, Nathan D; Lin, Wayne; Hinman, Joshua G; Dennison, Jordan M; Vartanian, Ariane M; Abadeer, Nardine S; Grzincic, Elissa M; Jacob, Lisa M; Li, Ji; Murphy, Catherine J

    2016-10-04

    Gold nanorods have garnered a great deal of scientific interest because of their unique optical properties, and they have the potential to greatly impact many areas of science and technology. Understanding the structure and chemical makeup of their surfaces as well as how to tailor them is of paramount importance in the development of their successful applications. This Feature Article reviews the current understanding of the surface chemistry of as-synthesized gold nanorods, methods of tailoring the surface chemistry of gold nanorods with various inorganic and organic coatings/ligands, and the techniques employed to characterize ligands on the surface of gold nanorods as well as the associated measurement challenges. Specifically, we address the challenges of determining how thick the ligand shell is, how many ligands per nanorod are present on the surface, and where the ligands are located in regiospecific and mixed-ligand systems. We conclude with an outlook on the development of the surface chemistry of gold nanorods leading to the development of a synthetic nanoparticle surface chemistry toolbox analogous to that of synthetic organic chemistry and natural product synthesis.

  3. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  4. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  5. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  6. Nanobubble trouble on gold surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    When analyzing surfaces related to biosensors with in situ atomic force microscopy (AFM), the existence of nanobubbles called for our attention. The bubbles seem to form spontaneously when gold surfaces are immersed in clean water and are probably a general phenomenon at water-solid interfaces....... Besides from giving rise to undesired effects in, for example, biosensors, nanobubbles can also cause artifacts in AFM imaging. We have observed nanobubbles on unmodified gold surfaces, immersed in clean water, using standard silicon AFM probes. Nanobubbles can be made to disappear from contact mode AFM...

  7. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  8. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  9. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  10. Immuno-ultrastructural localization of involucrin in squamous epithelium and cultured keratinocytes.

    Science.gov (United States)

    Warhol, M J; Roth, J; Lucocq, J M; Pinkus, G S; Rice, R H

    1985-02-01

    Involucrin immunoreactivity was localized ultrastructurally with protein A--gold in epidermis and cultured keratinocytes embedded in Lowicryl K4M. In the skin, immunoreactivity was found predominantly in cells of the granular layer and inner stratum corneum. The label was associated primarily with amorphous cytoplasmic material and especially keratohyaline granules. Some labeling was observed at the cell periphery, but little with keratin filaments. Tissue samples examined without aldehyde fixation showed relatively greater labeling in the outer stratum corneum than fixed tissue. In cultured cells, the labeling was also associated primarily with cytoplasmic granular material and to a lesser extent with the cell periphery. Upon treatment with the ionophore X537A, keratin filaments were found in aggregated arrays and the plasma membranes became convoluted. That involucrin immunoreactivity persisted in the cytoplasm in cultured cells and in vivo after cross-linking occurs could account for considerable isopeptide bonding detected in epidermal keratin fractions and indicates that not all the involucrin participates in envelope formation.

  11. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  12. Lamellar multilayer hexadecylaniline-modified gold nanoparticle

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  13. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  14. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  15. A bio-immuno assay to determine free tissue-type plasminogen activator (t-PA) in Stabilyte® plasma

    NARCIS (Netherlands)

    Bos, R.; Revet, M.; Nieuwenhuizen, W.

    1994-01-01

    This article describes a two-step bio-immuno assay (BIA), which determines active (free) tissue-type plasminogen activator (t-PA) in (acidified) plasma. Plasma samples, diluted in buffer of pH 6.0, are added to the wells of a microtiter plate containing an immobilised monoclonal antibody which binds

  16. A NEW APPLICATION FOR LIPOSOMES IN CANCER-THERAPY - IMMUNOLIPOSOMES BEARING ENZYMES (IMMUNO-ENZYMOSOMES) FOR SITE-SPECIFIC ACTIVATION OF PRODRUGS

    NARCIS (Netherlands)

    VINGERHOEDS, MH; Haisma, Hidde; VANMUIJEN, M; VANDERIJT, RBJ; CROMMELIN, DJA; STORM, G

    1993-01-01

    We have tested a new type of immunoliposomes which may effectively mediate the targeting of enzymes to be used for site-specific prodrug activation (immuno-enzymosomes). The enzyme beta-glucuronidase, capable of activating the prodrug epirubicin-glucuronide (epi-glu), was coupled to the external

  17. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways

    NARCIS (Netherlands)

    Verhoeckx, K.C.M.; Korthout, H.A.A.J.; Meeteren-Kreikamp, A.P. van; Ehlert, K.A.; Wang, M.; Greef, J. van der; Rodenburg, R.J.T.; Witkamp, R.F.

    2006-01-01

    There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of Δ9-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa

  18. Design of immuno-enzymosomes with maximum enzyme targeting capability : effect of the enzyme density on the enzyme targeting capability and cell binding properties

    NARCIS (Netherlands)

    Fonseca, MJ; Haisma, HJ; Klaasen, S; Vingerhoeds, MH; Storm, G

    1999-01-01

    Immuno-enzymosomes have been proposed for the targeting of enzymes to cancer cells to achieve site specific activation of anticancer prodrugs. Previously, we reported that the enzyme beta-glucuronidase (GUS), capable of activating anthracycline-glucuronide prodrugs, can be coupled to the surface of

  19. Immuno-virological discordance and the risk of non-AIDS and AIDS events in a large observational cohort of HIV-patients in Europe

    NARCIS (Netherlands)

    Zoufaly, A.; Cozzi-Lepri, A.; Reekie, J.; Kirk, O.; Lundgren, J.; Reiss, P.; Jevtovic, D.; Machala, L.; Zangerle, R.; Mocroft, A.; Lunzen, J. van; Burger, D.M.; et al.,

    2014-01-01

    BACKGROUND: The impact of immunosuppression despite virological suppression (immuno-virological discordance, ID) on the risk of developing fatal and non-fatal AIDS/non-AIDS events is unclear and remains to be elucidated. METHODS: Patients in EuroSIDA starting at least 1 new antiretroviral drug with

  20. Labelling of T cell subsets under field conditions in tropical countries. Adaptation of the immuno-alkaline phosphatase staining method for blood smears

    DEFF Research Database (Denmark)

    Lisse, I M; Whittle, H; Aaby, P

    1990-01-01

    Immuno-alkaline phosphatase (AP) staining for T cell subsets (CD4 and CD8) of smears from fingerprick blood functioned well under tropical climatic conditions when smears were stored frozen with silica gel before being labelled. Unlabelled smears were stored for up to 12 months and could be trans...

  1. Development of Indirect Competitive Immuno-Assay Method Using SPR Detection for Rapid and Highly Sensitive Measurement of Salivary Cortisol Levels

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Yusuke; Huang, Zhe; Kiritoshi, Tetsuro [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka (Japan); Onodera, Takeshi [Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka (Japan); Toko, Kiyoshi, E-mail: toko@ed.kyushu-u.ac.jp [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka (Japan); Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka (Japan)

    2014-05-30

    The monitoring of salivary cortisol as a key biomarker of an individual’s stress response has been increasingly focused on. This paper describes the development of a novel cortisol immuno-assay method based on an indirect competitive method using a commercially available surface plasmon resonance instrument. The surface of an Au chip was modified with PEG6-COOH aromatic dialkanethiol self-assembled monolayers and hydrocortisone 3-(O-carboxymethyl) oxime (hydrocortisone 3-CMO) as a cortisol analog. A detection limit of 38 ppt range with a measurement range of 10 ppt–100 ppb was accomplished without the incubation of a mixing solution consisting of standard cortisol and an anti-cortisol antibody, and the time for quantification of cortisol concentration was 8 min from the sample injection. We experimentally compared our immuno-assay with a commercialized salivary cortisol enzyme-linked immunosorbent assay (ELISA) kit using human saliva samples. It was found that the results obtained by the cortisol immuno-assay had a good correlation with those obtained by ELISA assay (R = 0.96). Our findings indicate the potential utility of the cortisol immuno-assay for measurements of human salivary cortisol levels.

  2. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  3. In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping.

    Science.gov (United States)

    Towner, Rheal A; Garteiser, Philippe; Bozza, Fernando; Smith, Nataliya; Saunders, Debra; d' Avila, Joana C P; Magno, Flora; Oliveira, Marcus F; Ehrenshaft, Marilyn; Lupu, Florea; Silasi-Mansat, Robert; Ramirez, Dario C; Gomez-Mejiba, Sandra E; Mason, Ronald P; Castro Faria-Neto, Hugo C

    2013-12-01

    Free radicals are known to play a major role in sepsis. Combined immuno-spin trapping and molecular magnetic resonance imaging (MRI) was used to detect in vivo and in situ levels of free radicals in murine septic encephalopathy after cecal ligation and puncture (CLP). DMPO (5,5-dimethyl pyrroline N-oxide) was injected over 6h after CLP, before administration of an anti-DMPO probe (anti-DMPO antibody bound to albumin-gadolinium-diethylene triamine pentaacetic acid-biotin MRI targeting contrast agent). In vitro assessment of the anti-DMPO probe in oxidatively stressed mouse astrocytes significantly decreased T1 relaxation (p free radicals in murine septic encephalopathy. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. An immuno-epidemiological model with threshold delay: a study of the effects of multiple exposures to a pathogen.

    Science.gov (United States)

    Qesmi, Redouane; Heffernan, Jane M; Wu, Jianhong

    2015-01-01

    An immuno-epidemiological model of pathogen transmission is developed. This model incorporates two main features: (i) the epidemiological model includes within-host pathogen dynamics for an infectious disease, (ii) the susceptible individuals to the infection experience a series of exposures via the pathogen before becoming infectious. It is shown that this model leads naturally to a system of differential delay equations of the threshold type and that these equations can be transformed, in a biologically natural way, to differential equations with state-dependent delay. An interesting dynamical behavior of the model is the bistability phenomena, when the basic reproductive ratio R0 is less than unity, which raises many new challenges to effective infection control.

  5. Immuno-cytology character recognition system - Application: Automatic determination of red blood cell groups and tissue types

    International Nuclear Information System (INIS)

    Passouris, Dimitris

    1980-01-01

    The study presented here has lead to the implementation of real time image analysis system. The image data analysis system consists of a motorised microscope, a C.C.D. array sensor, a reprocessing hardware, a processing and management microprocessor and a printer. The various immuno-haematology tests are carried out according to micro-methods, into the wells of a 'Terasaki' plate. The rate of reaction is qualitatively and quantitatively estimated. The originality of the described system is: the adaptation of the micromethod to all biological tests carried by the system; the fast reading of the biological tests (ABO-Rhesus grouping per patient in 12 seconds); the determination and implementation of a wired algorithm for the correction of the C.C.D. array sensor non-linearities. (author) [fr

  6. The role of Vitamin D in immuno-inflammatory responses in Ankylosing Spondylitis patients with and without Acute Anterior Uveitis.

    Science.gov (United States)

    Mitulescu, T C; Stavaru, C; Voinea, L M; Banica, L M; Matache, C; Predeteanu, D

    2016-01-01

    Hypothesis: Abnormal Vitamin D (Vit D) level could have consequences on the immuno-inflammatory processes in Ankylosing Spondylitis (AS). Aim: The purpose of this study was to analyze the role of Vitamin D in the interplay between immune and inflammation effectors in AS associated-Acute Anterior Uveitis (AAU). Methods and Results: 25-hydroxyvitamin D (Vit D), LL-37 peptide, IL-8 and Serum Amyloid A (SAA) were identified and quantified in the serum/ plasma of thirty-four AS patients [eleven AS patients presenting AAU (AAU AS patients) and twenty-three AS patients without AAU (wAAU AS patients)] and eighteen healthy individuals (Control) using enzyme-linked immunosorbent assay. Acute-phase SAA level was significantly higher in AS patients compared to Controls. Contrary with wAAU AS patients, significantly elevated levels of IL-8, and diminished levels of Vit D characterized AAU AS patients. Regarding LL-37, its level decreased concomitantly with the level of Vit D. When AS patients were subgrouped based on AAU presence or on Vit D level, important associations between immuno-inflammatory assessed markers and AS features were noticed. Generally, Vit D levels were associated indirectly with leukocytes/ neutrophils number or with ESR, CRP, and Fibrinogen levels. The levels of SAA and IL-8 associated directly with AAU or with AAU relapses, especially in AS patients with Vit D insufficiency, while SAA associated directly with infection/ inflammatory markers and with disease activity indexes or with the degree of functional limitation. Discussion: Altered levels of Vit D affect the balance between LL-37, IL-8 and SAA, suggesting an association with AAU, an extra-articular manifestation of AS. Abbreviations: Vit D = Vitamin D, AS = Ankylosing Spondylitis, AAU = Acute Anterior Uveitis, AAU AS = AS patients with AAU, wAAU AS = AS patients without AAU, SSZ = Sulphasalazine, Leu = Leukocytes, Neu = Neutrophils.

  7. Immuno-detection of OCTN1 (SLC22A4) in HeLa cells and characterization of transport function.

    Science.gov (United States)

    Pochini, Lorena; Scalise, Mariafrancesca; Indiveri, Cesare

    2015-11-01

    OCTN1 was immuno-detected in the cervical cancer cell HeLa, in which the complete pattern of acetylcholine metabolizing enzymes is expressed. Comparison of immuno-staining intensity of HeLa OCTN1 with the purified recombinant human OCTN1 allowed measuring the specific OCTN1 concentration in the HeLa cell extract and, hence calculating the HeLa OCTN1 specific transport activity that was about 10 nmol×min(-1)×mg protein(-1), measured as uptake of [(3)H]acetylcholine in proteoliposomes reconstituted with HeLa extract. This value was very similar to the specific activity of the recombinant protein. Acetylcholine transport was suppressed by incubation of the protein or proteoliposomes with the anti-OCTN1 antibody and was strongly inhibited by PLP and MTSEA, known inhibitors of OCTN1. The absence of ATP in the internal side of proteoliposomes strongly impaired transport function of both the HeLa and, as expected, the recombinant OCTN1. HeLa OCTN1 was inhibited by spermine, NaCl (Na(+)), TEA, γ-butyrobetaine, choline, acetylcarnitine and ipratropium but not by neostigmine. Besides acetylcholine, choline was taken up by HeLa OCTN1 proteoliposomes. The transporter catalyzed also acetylcholine and choline efflux which, differently from uptake, was not inhibited by MTSEA. Time course of [(3)H]acetylcholine uptake in intact HeLa cells was measured. As in proteoliposomes, acetylcholine transport in intact cells was inhibited by TEA and NaCl. Efflux of [(3)H]acetylcholine occurred in intact cells, as well. The experimental data concur in demonstrating a role of OCTN1 in transporting acetylcholine and choline in HeLa cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions.

    Science.gov (United States)

    Ansell, Brendan R E; Schnyder, Manuela; Deplazes, Peter; Korhonen, Pasi K; Young, Neil D; Hall, Ross S; Mangiola, Stefano; Boag, Peter R; Hofmann, Andreas; Sternberg, Paul W; Jex, Aaron R; Gasser, Robin B

    2013-12-01

    Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention. © 2013.

  9. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  10. Ultrasonic inspection of fake gold jewelry

    Science.gov (United States)

    Pauzi Ismail, Mohamad; Sani, Suhairy; Shofri, Faris Syazwan bin Mohd; Harun, Mohd.; Omar, Norlaili Binti

    2018-01-01

    Hollow jewelry made from combination of gold and other material was found in the market. At the outside it is made of gold and the inside layer is made of other material. X-ray fluorescent method cannot detect the inside material that was covered by gold. This paper explained the experimental result of ultrasonic inspection of fake gold used for jewelry. The ultrasonic pulse echo contact method was used to measure longitudinal wave velocity in the gold jewelry. The results of measurements are explained and discussed.

  11. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  12. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  13. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  14. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  15. Byzantine gold coins and jewellery

    International Nuclear Information System (INIS)

    Oddy, A.; La Niece, S.

    1986-01-01

    The article deals with the dating of Byzantine gold coinage. The results of such a study are of fundamental importance for the study of the economic history of the later Byzantine Empire and they are also of importance for the historian of technology when studying the composition of the contemporary Byzantine jewellery. Although Carbon-14 dating cannot be used as a method af dating, historians can still benefit from the analysis of the alloy of which the antiquity is made, as this is sometimes characteristic of the period in which it was used. A number of pieces of Byzantine jewellery has been analysed by x-ray fluorescence analysis, after first gently abrading a small area of the surface of the gold with the carborundum paper in an inconspicious position on the back or side of the object. A table is given on the results of this analysis

  16. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  17. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  18. Gold, currencies and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2016-01-01

    Roč. 449, č. 1 (2016), s. 27-34 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Efficient market hypothesis, * Gold * Currencies, * Fractal dimension * Entropy * Long-Term memory Subject RIV: AH - Economics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0455876.pdf

  19. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  20. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  1. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U 3 O 8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U 3 O 8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  2. Quantification and Prediction of Bulk Gold Fineness at Placer Gold Mines: A New Zealand Example

    Directory of Open Access Journals (Sweden)

    Dave Craw

    2017-11-01

    Full Text Available This study documents the bulk Au fineness (Au parts per thousand of the bullion from a placer gold mine in southern New Zealand. The compositions of doré bars produced approximately every 10 days over nearly three years is compared to the range of compositions of gold particles which have been extracted. Silver is the principal impurity in the gold, and the doré bars contained 2–3 wt % Ag over the period examined. At the scale of a typical individual 0.5 mm gold particle, there are three different types of gold: an Ag-bearing core (2–9 wt % Ag, a 10–50 µm wide Ag-poor rim (typically <1 wt % Ag, and micron scale overgrowth gold (0% Ag. The overgrowths are volumetrically negligible, and the average Ag content of a gold particle is controlled principally by the proportions of core and rim gold. The rims have been formed by recrystallisation of deformed core gold, with associated leaching of the Ag from the recrystallised gold. The volumetric proportion of cores has decreased with increasing flattening of gold particles, and highly flattened and folded flakes have little or no remnant cores. The bulk Au fineness of doré bars from the mine has decreased from ~980 to ~970 as the mine progressed upstream in a Pleistocene paleochannel because the upstream gold has been less flattened than the downstream gold.

  3. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes.

    Science.gov (United States)

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2015-01-26

    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Application of Gold Nanoparticles to Paint Colorants

    Science.gov (United States)

    Ishibashi, Hideo

    Metal nanoparticles possess unique properties that they do not exhibit in their bulk states. One of these properties is the color due to surface plasmon resonance. Gold nanoparticles appear red. This color has been utilized in glass for a long long time. In recent years, highly concentrated pastes of gold and silver nanoparticles have been successfully produced by using a special type of protective polymer and a mild reductant. The paste of gold nanoparticles can be used for paint and other materials as red colorants. In this article,application examples of gold nanoparticles as colorant are introduced. Recently, methods for producing bimetal nanoparticles such as gold/silver and gold/copper have been developed. These nanoparticles allow colors from yellow to green to be created. These methods and colors they produce are also described in this article.

  5. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  6. Fabrication of Gold Nanoparticles Doped DVB Foams

    International Nuclear Information System (INIS)

    Fang Yu; Luo Xuan; Fan Yongheng; Zhang Qingjun; Ren Hongbo; Xiao Lei

    2009-01-01

    The fabrication of gold nanoparticles doped low density DVB foams was researched, which can be used as ICF target materials. By high internal phase emulsion (HIPE) method, gold nanoparticles doped low density DVB foams were prepared, with gold nanoparticles dissolved in inner phase. The results show that the content of Au in the gold nanoparticles doped DVB foam is 3. 19%, the axial direction density of the foam is uniform which indicates none evident settlement of gold nanoparticles. SEM tests show that the gold doped DVB polymer foams have open-celled structure and very uniform aperture, and the average pore size is about 1 μm, which is much smaller than that of pure DVB foams. EDX test shows that Au disperses uniformly in the foams. (authors)

  7. Recovery of carrier-free gold-195

    International Nuclear Information System (INIS)

    Iofa, B.Z.; Ivanova, N.A.

    1995-01-01

    It is known that gold(III) is readily extracted from nitric acid solutions with ethers. The authors have studied extraction of trace amounts of gold(III) from nitric acid solutions with diethyl and diisopropyl ethers in the presence of significant excess of Pt(IV). Distribution coefficients of gold(III) were measured radiometrically using carrier-free gold-195 or spectrophotometrically in the presence of platinum(IV). Very high coefficients of gold separation from platinum may be achieved. Preliminary experiments have shown that zinc-65 was not extracted with ethers from nitric acid solutions. As an extraction system, the authors have chosen the system 10 M HNO 3 -diisopropyl ether. After model experiments, the authors have performed recovery of carrier-free gold-195 from a real platinum target irradiated with protons in a cyclotron

  8. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille

    2013-01-01

    Multiple sclerosis (MS) is a neurodegenerative disease caused by recurring attacks of neuroinflammation leading to neuronal death. Immune-suppressing gold salts are used for treating connective tissue diseases; however, side effects occur from systemic spread of gold ions. This is limited...... by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study...... investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages...

  9. Physiological investigation of gold nanorods toward watermelon.

    Science.gov (United States)

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  10. Glyco-gold nanoparticles: synthesis and applications

    OpenAIRE

    Compostella, Federica; Pitirollo, Olimpia; Silvestri, Alessandro; Polito, Laura

    2017-01-01

    Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco ...

  11. Glyco-gold nanoparticles: synthesis and applications

    Directory of Open Access Journals (Sweden)

    Federica Compostella

    2017-05-01

    Full Text Available Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.

  12. Gold, fiat money and price stability

    OpenAIRE

    Michael D. Bordo; Robert Dittmar; William T. Gavin

    2006-01-01

    The classical gold standard has long been associated with long-run price stability. But short-run price variability led critics of the gold standard to propose reforms that look much like modern versions of price-path targeting. This paper uses a dynamic stochastic general equilibrium model to examine price dynamics under alternative policy regimes. In the model, an inflation target provides more short-run price stability than does the gold standard and, although it introduces a unit root int...

  13. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  14. Shape-Controlled Gold Nanoparticle Synthesis

    Science.gov (United States)

    2013-09-01

    Shankar, S. S.; Bhargava, S.; Sastry, M. Synthesis of Gold Nanospheres and Nanotriangles by the Turkevich Approach. Journal of Nanoscience and...Accounts of Chemical Research 2008, 41, 1587–1595. 22. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold And Silver Nanoparticles. Science...N.; Griep, M. H.; and Karna, S. P. Chemical vs. Sonochemical Synthesis and Characterization of Silver , Gold, and Hybrid Nanoparticles; ARL-TR-5764

  15. Coal gold agglomeration: an innovative approach to the recovery of gold in environmentally sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Wall, N.C.; Hughes-Narborough, C.; Willey, G. [Davy (Stockton) Ltd., Stockton-on-Tees (United Kingdom)

    1994-11-01

    Coal Gold Agglomeration (CGA) was developed by BP Minerals and involves the selective recovery of oleophilic gold particles from an aqueous slurry into coal-oil agglomerates. These agglomerates are allowed to build up to a high gold loading and are then separated from the slurry. The loaded agglomerates are burned and the gold is finally recovered from the ash residue by dissolution and precipitation or by direct smelting. 6 figs.

  16. Chemistry of Oligonucleotibe-Gold Nanoparticle Conjugates

    National Research Council Canada - National Science Library

    Letsinger, Robert

    2003-01-01

    Conjugates prepared by immobilizing thiol-terminated oligonucleotides onto gold nanoparticles from stable colloidal solutions in aqueous media The oligo nucleotides can serve as linkers to organize...

  17. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  18. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  19. Gold Rushes and mineral property rights allocation

    DEFF Research Database (Denmark)

    Sinding, Knud

    , is to handle the other projects that are generated by the "gold rush" informational externalities created by the initial discovery. At the core of the problems of dealing with a gold rush situation is both the informational externality and an institutional framework which is not designed to deal with large...... influxes of prospectors competing for a very limited area. This paper charts significant gold rush events in the mineral industry in recent decades and uses preliminary data on the areas impacted by these gold rushes to argue that many mineral tenure systems should be modified in order to be better able...

  20. Gold Cleaning Methods for Electrochemical Detection Applications

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Tenje, Maria; Heiskanen, Arto

    2009-01-01

    This work investigates methods for obtaining reliably clean gold film surfaces. Nine gold cleaning methods are investigated here: UV ozone photoreactor; potassium hydroxide-hydrogen peroxide; potassium hydroxide potential sweep; sulfuric acid hydrogen peroxide; sulfuric acid potential cycling......-ray photo-electron spectroscopy are used to characterize surface cleanliness. A low peak-current potential-difference and charge transfer resistance indicates a cleaner surface, as does a higher percentage of elemental gold on the electrode surface. The potassium hydroxide potential sweep method is found...... to leave the gold surface the cleanest overall....

  1. Evaluation of rapid immuno chromatographic assay kit using monoclonal mpt64 antibodies for identification of mycobacterium tuberculosis complex

    International Nuclear Information System (INIS)

    Satti, L.; Ikram, A.; Malik, N.

    2010-01-01

    To evaluate the performance of rapid immuno chromatographic kit MPT64 Ag for the identification of Mycobacterium tuberculosis complex from various Mycobacterium tuberculosis culture positive specimens. Department of Microbiology, Armed Forces Institute of Pathology Rawalpindi, from August 2008 through March 2009. Eighty four Mycobacterium tuberculosis positive cultures on I BACTEC 460 and MGIT 960, one ATCC 25177 MTB strain, three institutional control MTB strains, two institutional control MOTT strains and 20 different bacterial isolates were tested. Tests were performed according to the instructional manual. Out of total 84 tested samples, MPT64 showed positive result in 80 cultures. Only four positive cultures did not display any band on MPT64 kit. These four strains were reconfirmed as Mycobacterium tuberculosis by PCR method. MOTT control strains and all the 20 bacterial isolates were negative for band. The sensitivity and specificity of ICT assay in our study was 95.2% and 100% respectively. Rapid MPT64 Kit is a good diagnostic tool to differentiate between Mycobacterium tuberculosis complex and MOTT with 100% specificity. The technique is simple and can provide prompt information to the clinicians to initiate early and appropriate antituberculosis therapy. (author)

  2. Immuno-chromatographic wicking assay for the rapid detection of dengue viral antigens in mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Wanja, Elizabeth; Parker, Zahra F; Odusami, Oluwakemi; Rowland, Tobin; Davé, Kirti; Davé, Sonia; Turell, Michael J

    2014-01-01

    There is a threat for dengue virus (DENV) reemergence in many regions of the world, particularly in areas where the DENV vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), are readily available. However, there are currently no accurate and reliable diagnostic methods to provide critical, real-time information for early detection of DENV within the vector populations to implement appropriate vector control and personal protective measures. In this article, we report the ability of an immuno-chromatographic assay developed by VecTOR Test Systems Inc. to detect DENV in a pool of female Aedes mosquitoes infected with any of the four viral serotypes. The DENV dipstick assay was simple to use, did not require a cold chain, and provided clear results within 30 min. It was highly specific and did not cross-react with samples spiked with West Nile, yellow fever, Japanese encephalitis, Rift Valley fever, chikungunya, Venezuelan equine encephalomyelitis, Ross River, LaCrosse, or Caraparu viruses. The DENV assay can provide real-time critical information on the presence of DENV in mosquitoes to public health personnel. Results from this assay will allow a rapid threat assessment and the focusing of vector control measures in high-risk areas.

  3. Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting.

    Science.gov (United States)

    Barbarossa, M V; Röst, G

    2015-12-01

    When the body gets infected by a pathogen the immune system develops pathogen-specific immunity. Induced immunity decays in time and years after recovery the host might become susceptible again. Exposure to the pathogen in the environment boosts the immune system thus prolonging the time in which a recovered individual is immune. Such an interplay of within host processes and population dynamics poses significant challenges in rigorous mathematical modeling of immuno-epidemiology. We propose a framework to model SIRS dynamics, monitoring the immune status of individuals and including both waning immunity and immune system boosting. Our model is formulated as a system of two ordinary differential equations (ODEs) coupled with a PDE. After showing existence and uniqueness of a classical solution, we investigate the local and the global asymptotic stability of the unique disease-free stationary solution. Under particular assumptions on the general model, we can recover known examples such as large systems of ODEs for SIRWS dynamics, as well as SIRS with constant delay.

  4. Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?

    Directory of Open Access Journals (Sweden)

    Marie Morimoto

    2016-11-01

    Full Text Available Abstract Background Schimke immuno-osseous dysplasia (SIOD is a multisystemic disorder caused by biallelic mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1 gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore, we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS of SIOD by altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic interaction analysis in Drosophila. Results We found increased expression of components and targets of the Wnt and Notch signaling pathways in the SIOD patient kidney, increased levels of unphosphorylated β-catenin and Notch1 intracellular domain in the glomeruli of most SIOD patient kidneys, and genetic interaction between the Drosophila SMARCAL1 homologue Marcal1 and genes of the Wnt and Notch signaling pathways. Conclusions We conclude that increased Wnt and Notch activity result from SMARCAL1 deficiency and, as established causes of FSGS, contribute to the renal disease of most SIOD patients. This further clarifies the pathogenesis of SIOD and will hopefully direct potential therapeutic approaches for SIOD patients.

  5. Quantification of (1→4-β-d-Galactans in Compression Wood Using an Immuno-Dot Assay

    Directory of Open Access Journals (Sweden)

    Ramesh R. Chavan

    2015-01-01

    Full Text Available Compression wood is a type of reaction wood formed on the underside of softwood stems when they are tilted from the vertical and on the underside of branches. Its quantification is still a matter of some scientific debate. We developed a new technique that has the potential to do this based on the higher proportions of (1→4-β-d-galactans that occur in tracheid cell walls of compression wood. Wood was milled, partially delignified, and the non-cellulosic polysaccharides, including the (1→4-β-d-galactans, extracted with 6 M sodium hydroxide. After neutralizing, the solution was serially diluted, and the (1→4-β-d-galactans determined by an immuno-dot assay using the monoclonal antibody LM5, which specifically recognizes this polysaccharide. Spots were quantified using a dilution series of a commercially available (1→4-β-d-galactan from lupin seeds. Using this method, compression and opposite woods from radiata pine (Pinus radiata were easily distinguished based on the amounts of (1→4-β-d-galactans extracted. The non-cellulosic polysaccharides in the milled wood samples were also hydrolysed using 2 M trifluoroacetic acid followed by the separation and quantification of the released neutral monosaccharides by high performance anion exchange chromatography. This confirmed that the compression woods contained higher proportions of galactose-containing polysaccharides than the opposite woods.

  6. Phage-Mediated Immuno-PCR for Ultrasensitive Detection of Cry1Ac Protein Based on Nanobody.

    Science.gov (United States)

    Liu, Yuanyuan; Jiang, Dongjian; Lu, Xin; Wang, Wei; Xu, Yang; He, Qinghua

    2016-10-11

    The widespread use of Cry proteins in transgenic plants for insect control has raised concerns about the environment and food safety in the public. An effective detection method for introduced Cry proteins is of significance for environmental risk assessment and product quality control. This paper describes a novel phage mediated immuno-PCR (iPCR) for the ultrasensitive determination of Cry proteins based on nanobodies. Three nanobodies against Cry1Ac protein were obtained from a naı̈ve phage displayed nanobody library without animal immunization process and were applied to the iPCR assay for Cry1Ac. The phage-mediated iPCR for Cry1Ac based on nanobodies showed a dynamic range of 0.001-100 ng/mL and a limit detection of 0.1 pg/mL. Specific measurement of this established method was performed by testing cross-reativity of other Cry1Ac analogues, and the result showed negligible cross-reactivity with other test Cry proteins (Cry1Ab, Cry1F, Cry3B). Furthermore, the phage-mediated iPCR based on nanobody should be easily applicable to the detection of many other Cry proteins.

  7. Nuclear excitation in muonic gold

    CERN Document Server

    Robert Tissot, B; Debrunner, P; Engfer, R; Link, R; Schellenberg, L; Schneuwly, H; Walter, H K

    1973-01-01

    Energies and intensities of muonic X-rays in gold were measured at the CERN muon channel with an experimental set-up as described by Backe et al. (1972). The 2p-1s and 3d-2p transitions could only be analysed taking into account beside the static quadrupole interaction a dynamical hyperfine interaction of the 2p states, which leads to an excitation of the first four nuclear levels. The dynamical hyperfine interaction was calculated using the core excitation model (de Shalit, (1961)). (0 refs).

  8. Metallogeny of gold in the Fennoscandian Shield

    Science.gov (United States)

    Gaál, G.; Sundblad, K.

    1990-12-01

    Gold occurs in a number of different ore types in the Fennoscandian Shield ranging in age from Late Archean to Late Proterozoic. Until recently, the metal was exploited primarily as a byproduct in volcanogenic massive sulphide deposits but during the 1980s more gold mines have been opened than during any other episode in the mining history of northern Europe. The occurrence of gold in the Fennoscandian Shield is reviewed in the context of the major tectonostratigraphic units: 1. In the Karelian Province, gold is hosted by greenstone belts of the Archean basement complex e.g. at Ilomantsi, eastern Finland. Greenstone belts of the Nordkalott Province, which are interpreted as part of an Early Proterozoic cover sequence, contain gold deposits associated with copper (Bidjovagge, Saattopora and Pahtohavare). Gold is also associated with cobalt in the metasomatically altered Early Proterozoic cover in north-eastern Finland (Meurastuksenaho and Juomasuo). 2. In the Svecofennian Domain, the major gold deposits were generated during the emplacement of 1.92 1.87 Ga old accretional magmatism. These deposits occur in the northeastern part of the Svecofennian Domain, close to the Archean-Proterozoic boundary. They comprise two major types: (a) the porphyry-type and shear-zone gold hosted by tonalite at Tallberg, Laivakangas, Kopsa and Osikonmäki; (b) as a component of volcanogenic massive sulphide deposits (e.g. Holmtjärn, Boliden and Pyhäsalmi). Other types are: (c) gold-bearing quartz-alumina alteration zones formed during the 1.92 1.87 Ga magmatic period (Enåsen); (d) gold in massive sulphide and iron ore deposits in Bergslagen. 3. Gold associated with 1.84 1.54 Ga granites has been reported from several sites in the Shield, including quartz veins and contact-metasomatic deposits. In addition, shear-zone-related gold deposits post-dating these granites have been identified in southeastern Sweden (Ädelfors). 4. In the Sveconorwegian Domain, the gold deposits at Bleka

  9. Geochemical methodology for gold prospect ion in Uruguay

    International Nuclear Information System (INIS)

    Spangenber, J.

    1987-01-01

    This work is about the history of gold prospection in Uruguay. In this study there are considered the geochemical aspects, the gold performance, the applicability to mining prospection and the gold prospection aluvionar

  10. Gold-carbon dots for the intracellular imaging of cancer-derived exosomes

    Science.gov (United States)

    Jiang, Xiaoyue; Zong, Shenfei; Chen, Chen; Zhang, Yizhi; Wang, Zhuyuan; Cui, Yiping

    2018-04-01

    As a novel fluorescent nanomaterial, gold-carbon quantum dots (GCDs) possess high biocompatibility and can be easily synthesized by a microwave-assisted method. Owing to their small sizes and unique optical properties, GCDs can be applied to imaging of biological targets, such as cells, exosomes and other organelles. In this study, GCDs were used for fluorescence imaging of exosomes. Tumor-specific antibodies are attached to the GCDs, forming exosome specific nanoprobes. The nanoprobes can label exosomes via immuno-reactions and thus facilitate fluorescent imaging of exosomes. When incubated with live cells, exosomes labeled with the nanoprobes can be taken up by the cells. The intracellular experiments confirmed that the majority of exosomes were endocytosed by cells and transported to lysosomes. The manner by which exosomes were taken up and the intracellular distribution of exosomes are unaffected by the GCDs. The experimental results successfully demonstrated that the presented nanoprobe can be used to study the intrinsic intracellular behavior of tumor derived exosomes. We believe that the GCDs based nanoprobe holds a great promise in the study of exosome related cellular events, such as cancer metastasis.

  11. Amperometric Immunosensor Based on a Protein A/Deposited Gold Nanocrystals Modified Electrode for Carbofuran Detection

    Directory of Open Access Journals (Sweden)

    Xia Sun

    2011-12-01

    Full Text Available In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV, respectively. With the excellent electroconductivity of DpAu and the PA’s oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  12. Gold emissivities for hydrocode applications

    International Nuclear Information System (INIS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-01-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroes superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroes emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations

  13. Paper Money but a Gold Debt. Italy in the Gold Standard

    OpenAIRE

    Giuseppe Tattara; or consequences)

    2002-01-01

    During the 52 years between the Unification of the Kingdom of Italy and World War 1, the lira was legally convertible into metal for a limited period of time. Although not formally committed to gold, the lira exchange towards the gold standard countries proved remarkably stable, \\223shadowing\\224 gold. It is widely claimed that being one of the successful members of the gold standard circle entailed a number of advantages. If the lira was closely linked to gold, suggesting that there was only...

  14. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    Materials Chemistry Division, National Chemical Laboratory, Pune 411 008,. India e-mail: ... to the Brust method for the synthesis of hydrophobized gold nanoparticles.33 This process essentially consists of .... due to rearrangement of the gold nanoparticles within domains (and reorganization of the domains themselves) on ...

  15. Dress Images on Gold-foil Figures

    DEFF Research Database (Denmark)

    Mannering, Ulla; Andersson Strand, Eva Birgitta

    2009-01-01

    From the Late Iron Age settlement Sorte Muld on Bornholm both gold foil figures with depictions of costumes and textile tools can tell about textile production.......From the Late Iron Age settlement Sorte Muld on Bornholm both gold foil figures with depictions of costumes and textile tools can tell about textile production....

  16. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  17. Computational approaches to homogeneous gold catalysis.

    Science.gov (United States)

    Faza, Olalla Nieto; López, Carlos Silva

    2015-01-01

    Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold's properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.

  18. Geochemistry of hydrothermal gold deposits: A review

    Directory of Open Access Journals (Sweden)

    Yongfeng Zhu

    2011-07-01

    Full Text Available Mineral assemblages formed during hydrothermal alteration reflect the geochemical composition of ore-forming fluids. Gold is mainly transported in solution as Au–Cl and Au–S complexes. The change of physicochemical conditions such as temperature, pressure, oxygen fugacity, and sulfur fugacity are effective mechanisms for gold precipitation. Gold tends to be concentrated in the vapor phase of fluids at high temperatures and pressures. Au–As and Au–Sb associations are common in gold deposit. Native antimony and/or arsenic – native gold assemblages may precipitate from hydrothermal fluids with low sulfur fugacity. Hydrothermal fluids forming epithermal gold deposits are Au-saturated in most cases, whereas fluids of Carlin-type are Au-undersaturated. Quasi-steady As-bearing pyrite extracts solid solution Au from hydrothermal fluids through absorption. The capability of As-bearing pyrite to absorb Au from under-saturated fluid is the key to the formation of large-scale Carlin-type deposits. With increasing new data, studies on the geochemistry of gold deposits can be used to trace the origin of ore-forming fluids, the source of gold, and the transporting form of Au and other ore-forming elements, such as Si, S, F, Cl, As and Ag.

  19. Gold - Old Drug with New Potentials.

    Science.gov (United States)

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  1. Numerical simulations of nanostructured gold films

    DEFF Research Database (Denmark)

    Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.

    2017-01-01

    We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...

  2. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  3. Gold 100: proceedings of the international conference on gold. V. 2

    International Nuclear Information System (INIS)

    Fivaz, C.E.; King, R.P.

    1986-01-01

    The proceedings of Gold 100 have been published in three separate volumes. The first deals with the mining of gold, the second with the extractive metallurgy of gold, and the third with industrial uses of gold. In this second volume, the papers on extractive metallurgy presented at the Conference reflect most of the problems that are currently of significant technical interest to the industry. This volume is divided in six main parts covering plant design, carbon-in-pulp technology, refractory gold, new technology, grinding and concentration, and leaching. The part on new technology includes papers on x-ray fluorescence analyzers, Moessbauer spectroscopy and leaching processes for uranium, while the part on grinding and concentration includes papers on nuclear and radiotracer techniques for the recovery of gold as well as various flotation parameters in the flotation behaviour of gold and uranium

  4. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  5. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability of the dev......The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... predicts optical losses based on structure of the gold films....

  6. The interaction of gold with gallium arsenide

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  7. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  8. Gold Liquid Crystals in the XXI Century

    Directory of Open Access Journals (Sweden)

    Manuel Bardají

    2014-08-01

    Full Text Available Since the first gold liquid crystal was described in 1986, much effort has been done to prepare new compounds bearing this property. The review deals with the last results obtained in this new century. Gold(I has a strong affinity to give linear co-ordination and metal-metal interactions, which produce a rich supramolecular chemistry, and can promote the behavior as liquid crystal. Therefore, most liquid crystals are based on rod-like gold(I compounds, while gold(III liquid crystals are scarce. Calamitic and discotic mesogens have been reported, as well as chiral liquid crystals. Weak interactions such as H-bonds have also been used to obtain gold mesogens. Some of them exhibit additional properties, such as color, luminescence, and chirality. Luminescence has been reported, not only in the solid state or in solution, but also in the mesophase. This is relevant for applications in LEDs (Light Emitting Diodes, information storage, and sensors.

  9. In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya

    2017-12-11

    In vivo free radical imaging in preclinical models of disease has become a reality. Free radicals have traditionally been characterized by electron spin resonance (ESR) or electron paramagnetic resonance (EPR) spectroscopy coupled with spin trapping. The disadvantage of the ESR/EPR approach is that spin adducts are short-lived due to biological reductive and/or oxidative processes. Immuno-spin trapping (IST) involves the use of an antibody that recognizes macromolecular 5,5-dimethyl-pyrroline-N-oxide (DMPO) spin adducts (anti-DMPO antibody), regardless of the oxidative/reductive state of trapped radical adducts. Recent Advances: The IST approach has been extended to an in vivo application that combines IST with molecular magnetic resonance imaging (mMRI). This combined IST-mMRI approach involves the use of a spin-trapping agent, DMPO, to trap free radicals in disease models, and administration of an mMRI probe, an anti-DMPO probe, which combines an antibody against DMPO-radical adducts and an MRI contrast agent, resulting in targeted free radical adduct detection. The combined IST-mMRI approach has been used in several rodent disease models, including diabetes, amyotrophic lateral sclerosis (ALS), gliomas, and septic encephalopathy. The advantage of this approach is that heterogeneous levels of trapped free radicals can be detected directly in vivo and in situ to pin point where free radicals are formed in different tissues. The approach can also be used to assess therapeutic agents that are either free radical scavengers or generate free radicals. Smaller probe constructs and radical identification approaches are being considered. The focus of this review is on the different applications that have been studied, advantages and limitations, and future directions. Antioxid. Redox Signal. 00, 000-000.

  10. Imaging the L-type amino acid transporter-1 (LAT1 with Zr-89 immunoPET.

    Directory of Open Access Journals (Sweden)

    Oluwatayo F Ikotun

    Full Text Available The L-type amino acid transporter-1 (LAT1, SLC7A5 is upregulated in a wide range of human cancers, positively correlated with the biological aggressiveness of tumors, and a promising target for both imaging and therapy. Radiolabeled amino acids such as O-(2-[(18F]fluoroethyl-L-tyrosine (FET that are transport substrates for system L amino acid transporters including LAT1 have met limited success for oncologic imaging outside of the brain, and thus new strategies are needed for imaging LAT1 in systemic cancers. Here, we describe the development and biological evaluation of a novel zirconium-89 labeled antibody, [(89Zr]DFO-Ab2, targeting the extracellular domain of LAT1 in a preclinical model of colorectal cancer. This tracer demonstrated specificity for LAT1 in vitro and in vivo with excellent tumor imaging properties in mice with xenograft tumors. PET imaging studies showed high tumor uptake, with optimal tumor-to-non target contrast achieved at 7 days post administration. Biodistribution studies demonstrated tumor uptake of 10.5 ± 1.8 percent injected dose per gram (%ID/g at 7 days with a tumor to muscle ratio of 13 to 1. In contrast, the peak tumor uptake of the radiolabeled amino acid [(18F]FET was 4.4 ± 0.5 %ID/g at 30 min after injection with a tumor to muscle ratio of 1.4 to 1. Blocking studies with unlabeled anti-LAT1 antibody demonstrated a 55% reduction of [(89Zr]DFO-Ab2 accumulation in the tumor at 7 days. These results are the first report of direct PET imaging of LAT1 and demonstrate the potential of immunoPET agents for imaging specific amino acid transporters.

  11. Simple Objective Detection of Human Lyme Disease Infection Using Immuno-PCR and a Single Recombinant Hybrid Antigen

    Science.gov (United States)

    Halpern, Micah D.; Molins, Claudia R.; Schriefer, Martin

    2014-01-01

    A serology-based tiered approach has, to date, provided the most effective means of laboratory confirmation of clinically suspected cases of Lyme disease, but it lacks sensitivity in the early stages of disease and is often dependent on subjectively scored immunoblots. We recently demonstrated the use of immuno-PCR (iPCR) for detecting Borrelia burgdorferi antibodies in patient serum samples that were positive for Lyme disease. To better understand the performance of the Lyme disease iPCR assay, the repeatability and variability of the background of the assay across samples from a healthy population (n = 36) were analyzed. Both of these parameters were found to have coefficients of variation of Lyme disease patient serum samples (n = 12) demonstrated a strong correlation with that of 2-tier testing. Furthermore, a simplified iPCR approach using a single hybrid antigen and detecting only IgG antibodies confirmed the 2-tier diagnosis in the Lyme disease patient serum samples (n = 12). Validation of the hybrid antigen IgG iPCR assay using a blinded panel of Lyme disease and non-Lyme disease patient serum samples (n = 92) resulted in a sensitivity of 69% (95% confidence interval [CI], 50% to 84%), compared to that of the 2-tier analysis at 59% (95% CI, 41% to 76%), and a specificity of 98% (95% CI, 91% to 100%) compared to that of the 2-tier analysis at 97% (95% CI, 88% to 100%). A single-tier hybrid antigen iPCR assay has the potential to be an improved method for detecting host-generated antibodies against B. burgdorferi. PMID:24899074

  12. Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function

    Directory of Open Access Journals (Sweden)

    Lau Yu

    2008-07-01

    Full Text Available Abstract Background Previous studies demonstrated Ganoderma lucidum polysaccharides (GL-PS, a form of bioactive β-glucan can stimulate the maturation of monocyte-derived dendritic cells (DC. The question of how leukemic cells especially in monocytic lineage respond to GL-PS stimuli remains unclear. Results In this study, we used in vitro culture model with leukemic monocytic cell-lines THP-1 and U937 as monocytic effectors cells for proliferation responses and DCs induction. We treated the THP-1 and U937 cells with purified GL-PS (100 μg/mL or GL-PS with GM-CSF/IL-4. GL-PS alone induced proliferative response on both THP-1 and U937 cells but only THP-1 transformed into typical DC morphology when stimulated with GL-PS plus GM-CSF/IL-4. The transformed THP-1 DCs had significant increase expression of HLA-DR, CD40, CD80 and CD86 though not as high as the extent of normal monocyte-derived DCs. They had similar antigen-uptake ability as the normal monocyte-derived DCs positive control. However, their potency in inducing allogeneic T cell proliferation was also less than that of normal monocyte-derived DCs. Conclusion Our findings suggested that GL-PS could induce selected monocytic leukemic cell differentiation into DCs with immuno-stimulatory function. The possible clinical impact of using this commonly used medicinal mushroom in patients with monocytic leukemia (AML-M4 and M5 deserved further investigation.

  13. MWCNT-Fe{sub 3}O{sub 4}-based immuno-PCR for the early screening of nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chia-Ching, Liu [Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Subramaniam, Sadhasivam [Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641 046 (India); Sivasubramanian, Savitha [Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai (India); Feng-Huei, Lin, E-mail: double@ntu.edu.tw [Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China)

    2016-04-01

    Nasopharyngeal carcinoma (NPC) is the most prevalent form of malignancy in southeast China and its development is meticulously related to EBV pathogenesis. The current screening techniques are unsatisfactory in terms of the sensitivity and hence most of the NPC patients are diagnosed at an advanced stage. Herein, we report the multi-walled carbon nanotubes (MWCNTs) combined with iron oxide nanoparticles as a sensing surface for the early screening of nasopharyngeal carcinoma (NPC) by immuno-PCR (iPCR). The MWCNT-Fe{sub 3}O{sub 4} nanocomposite was characterized by Fourier transform infrared spectra (FTIR), Raman spectra, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The characterization techniques had confirmed the successful formation of MWCNT-Fe{sub 3}O{sub 4} nanocomposites. The MWCNT-Fe{sub 3}O{sub 4}-based iPCR was effectively tested for the quantification of anti-EBV antibodies in human serum and the limit of detection (LOD) was compared with ELISA. The limit of detection by iPCR was valid until 1:10,000,000 fold dilution of NPC{sup +ve} human serum, whereas ELISA can detect the anti-EBV antibodies in human serum up to 1:100,000 fold dilution. The MWCNT-Fe{sub 3}O{sub 4} offers an excellent surface area for the antigen-antibody binding and hence greater sensitivity was achieved. - Highlights: • MWCNT-Fe{sub 3}O{sub 4} nanocomposite offers more surface area and effortless separation • The iPCR offers an exceptional LOD, which is significantly higher than the other analytical techniques reported • LOD of anti-EBV abs by ELISA was significant only until 1:100000 fold dilution • The proposed iPCR design could be extremely useful for the population-based screening.

  14. Carbonate hosted gold deposit in Tasmania, Australia

    International Nuclear Information System (INIS)

    Abadi, M.H.

    1999-01-01

    Full text: This study uses elemental and isotopic composition of carbonates associated with gold from Henty and Beaconsfield in Tasmania, Australia, to illustrate source of gold-bearing fluids, salinity, temperature and dissolution and reprecipitation of carbonate. The Beaconsfield and Henty gold mines are located in northern and western Tasmania respectively. Gold mineralisation in Beaconsfield occurs within the quartz-carbonate Tasmania Reef (Lower to Middle Palaeozoic sequence, Hills, 1998). The Henty gold mine is located at the base of the Cambrian Tyndall Group (volcano-sedimentary succession, White and McPhie, 1996) close to Henty Fault. Gold in carbonate samples from Henty ranges from 7.7 to 9360 ppm and in Beaconsfield ranges from 0.01 to 434 ppm. The amount of carbonate in samples from Henty and Beaconsfield gold mines varies from approximately 24 to 99.8%. Bivariate plot of Ca relative to total amounts of Mg, Fe and Mn illustrates that the major carbonate minerals at Beaconsfield and Henty gold mines are magnesian ankerite and calcite. The difference in carbonate mineralogy, at Henty and Beaconsfield gold mines, is attributed to the composition of fluids responsible for carbonate alteration. Gold and magnesium in Beaconsfield ankerite are derived from the leaching of Cambrian ultramafic rocks during the Devonian by the passage of meteoric fluids through tectonically affected Ordovician carbonates (Rao and Adabi, 1999). The total concentration of Fe and Mn are low (0.5 to 2%) in Henty and high (1 to 17.5%) in Beaconsfield ankerite, possibly due to oxidising conditions at Henty and reducing conditions at Beaconsfield gold mines during gold mineralisation. Variation of Sr values between Beaconsfield ankerite and Henty calcite is related to dissolution of limestone that increase Sr concentrations in gold mineralising fluids. Na values in both Beaconsfield (20 to 1100 ppm) and Henty carbonates (25 to 1650 ppm) suggest low salinity fluids responsible for gold

  15. Gold nanoparticles: generation and characterization

    International Nuclear Information System (INIS)

    Dey, G.R.

    2013-07-01

    In this presentation we report the reduction of Au 3+ through chemical and free radical (e solv - ) reactions both in non-aqueous and aqueous media. In chemical reduction, the spectral nature in ascorbic acid (AA) and citric acid (CA) systems was different. The band intensity of gold nanoparticles was lower in AA system. While in free radical reaction, the yield of nanoparticles was pure i.e. free from excess reactants. Under the study 60-200 nm size nanoparticles were generated, which are inert to oxygen. Using pulse radiolysis technique, the initial rate for e solv - reaction with Au 3+ was determined to be 7.6 x 10 9 M -1 s -1 . (author)

  16. Extinction Coefficient of Gold Nanostars.

    Science.gov (United States)

    de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-07-30

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

  17. Intensification Behavior of Mercury Ions on Gold Cyanide Leaching

    Directory of Open Access Journals (Sweden)

    Qiang Zhong

    2018-01-01

    Full Text Available Cyanidation is the main method used to extract gold from gold raw materials; however, a serious problem with this method is the low leaching rate. In order to improve gold leaching, the intensification behavior of mercury ions on gold cyanide leaching, for two types of materials, sulphide gold concentrate and oxide gold ore, was investigated. The results showed that mercury ions, with only a 10−5 M dosage, could significantly intensify leaching and gold recovery. The dissolution behavior of gold plate was also intensified by 10−5 M mercury ions. Microstructure analysis showed that mercury ions intensified the cyanidation corrosion of the gold surface, resulting in a loose structure, where a large number of deep ravines and raised particles were evident across the whole gold surface. The loose structure added contact surface between the gold and cyanide, and accelerated gold dissolution. Moreover, mercury ions obstructed the formation of insoluble products, such as AuCN, Au(OHCN, and Au(OHx, that lead to a passivation membrane on the gold surface, reducing contact between the gold and cyanide. These effects, brought about by mercury ions, change the structure and product of the gold surface during gold cyanidation and promote gold leaching.

  18. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  19. Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate

    Science.gov (United States)

    Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan

    Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.

  20. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  1. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  2. Gel Electrophoresis of Gold-DNA Nanoconjugates

    Directory of Open Access Journals (Sweden)

    T. Pellegrino

    2007-01-01

    Full Text Available Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effective diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.

  3. Nature vs. nurture: gold perpetuates "stemness".

    Science.gov (United States)

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  4. Urban artisanal gold shops and mercury emissions

    International Nuclear Information System (INIS)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G.

    2008-01-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs

  5. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  6. Urban artisanal gold shops and mercury emissions

    Energy Technology Data Exchange (ETDEWEB)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mining and Mineral Process Engineering

    2008-07-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs.

  7. Phytomining for Artisanal Gold Mine Tailings Management

    Directory of Open Access Journals (Sweden)

    Baiq Dewi Krisnayanti

    2016-08-01

    Full Text Available Mine tailings are generally disposed of by artisanal and small scale gold miners in poorly constructed containment areas and this leads to environmental risk. Gold phytomining could be a possible option for tailings management at artisanal and small-scale gold mining (ASGM locations where plants accumulate residual gold in their above ground biomass. The value of metal recovered from plants could offset some of the costs of environmental management. Getting gold into plants has been repeatedly demonstrated by many research groups; however, a simple working technology to get gold out of plants is less well described. A field experiment to assess the relevance of the technology to artisanal miners was conducted in Central Lombok, Indonesia between April and June 2015. Tobacco was planted in cyanidation tailings (1 mg/kg gold and grown for 2.5 months before the entire plot area was irrigated with NaCN to induce metal uptake. Biomass was then harvested (100 kg, air dried, and ashed by miners in equipment currently used to ash activated carbon at the end of a cyanide leach circuit. Borax and silver as a collector metal were added to the tobacco ash and smelted at high temperature to extract metals from the ash. The mass of the final bullion (39 g was greater than the mass of silver used as a collector (31 g, indicating recovery of metals from the biomass through the smelt process. The gold yield of this trial was low (1.2 mg/kg dry weight biomass concentration, indicating that considerable work must still be done to optimise valuable metal recovery by plants at the field scale. However, the described method to process the biomass was technically feasible, and represents a valid technique that artisanal and small-scale gold miners are willing to adopt if the economic case is good.

  8. The giant Kalgoorlie Gold Field revisited

    Directory of Open Access Journals (Sweden)

    Noreen Mary Vielreicher

    2016-05-01

    Direct timing constraints on gold mineralization indicate that Fimiston- and Mt Charlotte-style mineralization formed within a relative short period of time around 2.64 Ga, and, as such, support a model of progressive deformation of a rheologically heterogeneous rock package late in the structural history. Fluid characteristics, combined with the structural, metamorphic and absolute timing, support description of gold mineralization at the Golden Mile as orogenic and mesozonal, and this allows direct correlation with orogenic gold deposits worldwide, which classically formed during accretion along convergent margins throughout Earth history.

  9. Integer conductance quantization of gold atomic sheets

    Science.gov (United States)

    Kurui, Yoshihiko; Oshima, Yoshifumi; Okamoto, Masakuni; Takayanagi, Kunio

    2008-04-01

    Using a transmission electron microscope combined with a scanning tunneling microscope, we find that a gold (111) or (001) atomic sheet is formed between two gold electrodes. Simultaneous conductance measurements indicate a value in the vicinity of G0 ( =2e2/h : conductance quantum), 2G0 , 3G0 , and 4G0 . Each quantum number is equal to the number of atomic strands. First-principle calculations suggest that the atomic sheet should be deformed to explain this rule. It is likely that the gold atomic sheet is stabilized by an increment of the nonlocal bond because of the deformation.

  10. Synthesis of gold nanoparticles with graphene oxide.

    Science.gov (United States)

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  11. Gold nanoparticles extraction from dielectric scattering background

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.

  12. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  13. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  14. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)--chloride complexes.

    Science.gov (United States)

    Lengke, Maggy F; Fleet, Michael E; Southam, Gordon

    2006-03-14

    Plectonema boryanum UTEX 485, a filamentous cyanobacterium, has been reacted with aqueous Au(S(2)O(3))(2)(3)(-) and AuCl(4)(-) solutions ( approximately 400-550 mg/L Au) at 25-100 degrees C for up to 1 month and at 200 degrees C for 1 day. The interaction of cyanobacteria with aqueous Au(S(2)O(3))(2)(3)(-) promoted the precipitation of cubic (100) gold nanoparticles (gold sulfide within cells and encrusted on the cyanobacteria, whereas reaction with AuCl(4)(-) resulted in the precipitation of octahedral (111) gold platelets ( approximately 1-10 microm) in solutions and nanoparticles of gold (SIMS on (111) faces of the octahedral platelets were predominantly Cl and CN, with smaller amounts of C(2)H and CNO.

  15. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    Science.gov (United States)

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  16. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore

    Science.gov (United States)

    Otsuki, A.; Yue, C.

    2017-07-01

    This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.

  17. Nanoporous gold: a new gold catalyst with tunable properties.

    Science.gov (United States)

    Wittstock, Arne; Wichmann, Andre; Biener, Jürgen; Bäumer, Marcus

    2011-01-01

    Nanoporous gold (np-Au) represents a novel nanostructured bulk material with very interesting perspectives in heterogeneous catalysis. Its monolithic porous structure and the absence of a support or other stabilizing agents opens up unprecedented possibilities to tune structure and surface chemistry in order to adapt the material to specific catalytic applications. We investigated three of these tuning options in more detail: change of the porosity by annealing, increase of activity by the deposition of oxides and change of activity and selectivity by bimetallic effects. As an example for the latter case, the effect of Ag impurities will be discussed. The presence and concentration of Ag can be correlated to the availability of active oxygen. While for the oxidation of CO the activity of the catalyst can be significantly enhanced when increasing the content of Ag, we show for the oxidation of methanol that the selectivity is shifted from partial to total oxidation. In a second set of experiments, two different metal-oxides were deposited on np-Au, praseodymia and titania. In both cases, the surface chemistry changed significantly. The activity of the catalyst for oxidation of CO was increased by up to one order of magnitude after modification. Finally, we used adsorbate controlled coarsening to tune the structure of np-Au. In this way, even gradients in the pore- and ligament size could be induced, taking advantage of mass transport phenomena.

  18. Relationship Between Preoperative Sarcopenia Status and Immuno-nutritional Parameters in Patients with Early-stage Non-small Cell Lung Cancer.

    Science.gov (United States)

    Shoji, Fumihiro; Matsubara, Taichi; Kozuma, Yuka; Haratake, Naoki; Akamine, Takaki; Takamori, Shinkichi; Katsura, Masakazu; Toyokawa, Gouji; Okamoto, Tatsuro; Maehara, Yoshihiko

    2017-12-01

    Although the skeletal muscle in the region of the third lumbar vertebra (L3) is generally assessed in order to judge sarcopenia, not every patient with non-small cell lung cancer (NSCLC) undergoes computed tomography including the L3 region. We hypothesized that immuno-nutritional parameters could predict the existence of sarcopenia in patients with NSCLC. The aim of this study was to retrospectively investigate the correlation between preoperative sarcopenia and immuno-nutritional parameters in patients with early-stage NSCLC. We selected 147 of patients with pathological stage I NSCLC who underwent preoperative measurement of immuno-nutritional parameters and CT including the L3 region. Preoperative sarcopenia was significantly associated with female gender (p=0.0003) and poor prognosis (p=0.0322). In Kaplan-Meier analysis of overall survival (OS) by preoperative sarcopenia status, the sarcopenic group had significantly shorter OS than the non-sarcopenic group (5-year OS: 87.27% vs. 77.37%, p=0.0131, log-rank test). In multivariate analysis, the preoperative sarcopenia status (hazard ratio=5.138; 95% confidence interval=2.305-11.676; pnutritional status score (p=0.0071) and Geriatric Nutritional Risk Index (GNRI) (p<0.0001). Spearman's correlation test showed good significant correlation between preoperative sarcopenia status and GNRI (r=0.348, p<0.0001). The preoperative GNRI is a simple and useful predictor for existence of preoperative sarcopenia which was associated with poor outcome in patients with early-stage NSCLC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Dual-immuno-MS technique for improved differentiation power in heterodimeric protein biomarker analysis: determination and differentiation of human chorionic gonadotropin variants in serum.

    Science.gov (United States)

    Egeland, Siri Valen; Reubsaet, Léon; Paus, Elisabeth; Halvorsen, Trine Grønhaug

    2016-10-01

    If the biomarker potential of intact heteromers and their free subunits is different, differentiation between these forms may reveal important clinical information. Such differentiation may however be analytically challenging. One possible way of circumventing this challenge is by performing a dual-immuno-MS approach. In the present paper, a two-step immunoaffinity sample preparation step is succeeded by digestion and subsequent LC-MS analysis to provide high-sensitivity quantification and differentiation between the heterodimer human chorionic gonadotropin (hCG) and its free β-subunit in serum. Intact and free variants are captured in two separate immunoextraction steps in order to increase the differentiation power of the method. Intact heterodimer variants were depleted prior to free subunit variants in order to incorporate a method quality control. The method was optimized for serum samples. A fully validated immuno-MS method was used as foundation, and partial validation according to the European Medicines Agency's (EMA) guidelines on validation of bioanalytical methods was performed for the dual approach. An accelerated digestion step was incorporated making batch processing of samples within 1 day possible (approx. 3.5 h of sample preparation including digestion). Acceptable linearity (R (2) ≥ 0.990 for four variants and R (2) of 0.920 and 0.966 for the remaining two) and specificity were demonstrated, and the method was robust toward varying levels of intact heterodimer versus free subunit. The method was also successfully tested on realistic samples, demonstrating both the differences in total hCG and the distribution between intact hCG and its free β-subunit in real samples. Graphical abstract Schematic overview of the dual immuno-MS process.

  20. 33 CFR 13.01-10 - Gold and silver bars.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and one...

  1. A study on gold detection in Wenyu gold mine with XRF techniques

    International Nuclear Information System (INIS)

    Liu Liuchun

    1988-01-01

    A portable X ray fluorescence analyzer was used for detecting fluorcescent X rays from the elements associated with gold ores. Fe, As and Ni were chosen to be the indicator elements to analyse rock samples in Wenyu gold mine. Optimum indicators were determined, and it had proved to be successful to detect gold indirectly by measuring the yields of characteristic X rays of the elements. The method provided also valuable information on geology mapping and deposits forming environment

  2. Effective PEGylation of gold nanorods

    Science.gov (United States)

    Schulz, F.; Friedrich, W.; Hoppe, K.; Vossmeyer, T.; Weller, H.; Lange, H.

    2016-03-01

    Standard procedures to coat gold nanorods (AuNR) with poly(ethylene glycol) (PEG)-based ligands are not reliable and high PEG-grafting densities are not achieved. In this work, the ligand exchange of AuNR with PEGMUA, a tailored PEG-ligand bearing a C10 alkylene spacer, is studied. PEGMUA provides AuNR with very high stability against oxidative etching with cyanide. This etching reaction is utilized to study the ligand exchange in detail. Ligand exchange is faster, less ligand consuming and more reproducible with assisting chloroform extraction. Compared to PEG ligands commonly used, PEGMUA provides much higher colloidal and chemical stability. Further analyses based on NMR-, IR- and UV/Vis-spectroscopy reveal that significantly higher PEG-grafting densities, up to ~3 nm-2, are obtained with PEGMUA. This demonstrates how the molecular structure of the PEG ligand can be used to dramatically improve the ligand exchange and to synthesize PEGylated AuNR with high chemical and colloidal stability and high PEG grafting densities. Such AuNR are especially interesting for applications in nanomedicine.Standard procedures to coat gold nanorods (AuNR) with poly(ethylene glycol) (PEG)-based ligands are not reliable and high PEG-grafting densities are not achieved. In this work, the ligand exchange of AuNR with PEGMUA, a tailored PEG-ligand bearing a C10 alkylene spacer, is studied. PEGMUA provides AuNR with very high stability against oxidative etching with cyanide. This etching reaction is utilized to study the ligand exchange in detail. Ligand exchange is faster, less ligand consuming and more reproducible with assisting chloroform extraction. Compared to PEG ligands commonly used, PEGMUA provides much higher colloidal and chemical stability. Further analyses based on NMR-, IR- and UV/Vis-spectroscopy reveal that significantly higher PEG-grafting densities, up to ~3 nm-2, are obtained with PEGMUA. This demonstrates how the molecular structure of the PEG ligand can be used to

  3. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  4. Novel Catalysis by Gold: A Modern Alchemy

    Science.gov (United States)

    Haruta, Masatake

    Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.

  5. A new route to gold nanoflowers

    Science.gov (United States)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  6. Alternative Plasmonic Materials: Beyond Gold and Silver

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2013-01-01

    such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent...

  7. Adsorption-induced restructuring of gold nanochains

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Lopez, Nuria; Nørskov, Jens Kehlet

    2002-01-01

    The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the st......The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly...... with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains...

  8. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  9. Gold in the past, today and future

    Directory of Open Access Journals (Sweden)

    R. Rudolf

    2012-04-01

    Full Text Available This paper deals with gold, which is described as a chemical element. Special attention is paid to its physical-chemical properties and, furthermore, where or in what form it can be found in nature. We discuss the role it has played through history and we inform how gold has been developed to the level it has reached today’s value. Still more, when gold is broken into nanoparticles, this form could be highly useful for a wide range of processes, including general nanotechnology, electronics manufacturing and the synthesizing of different functional materials. It is important that we know that gold is also used in industry in many engineering applications (contacts in micro-electronics and medicine (dental alloys, implants.

  10. EOP Gold Coral (Gerardia sp.) Growth Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gold coral (Gerardia sp.) trees that were inspected years earlier on Pisces submersible dives were revisited and their change in size measured. The fishery for...

  11. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Sixiang [University of Wisconsin, Materials Science Program, Madison, WI (United States); Hong, Hao; Orbay, Hakan; Yang, Yunan; Ohman, Jakob D. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Liu, Bai; Wong, Hing C. [Altor BioScience, Miramar, FL (United States); Cai, Weibo [University of Wisconsin, Materials Science Program, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin, Departments of Radiology and Medical Physics, Madison, WI (United States)

    2015-07-15

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and {sup 64}Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of {sup 64}Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of {sup 64}Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. {sup 64}Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management. (orig.)

  12. Cellular and humoral immuno-stimulatory effects of diagnostic doses of X-rays in BALB/c mice

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, S.M.J.; Jafar-Zadeh, A.; Khosravi, M.H.; Mehdipour, L.A.; Behnejad, B.B. [Rafsanjan Univ. of Medical Sciences (Iran, Islamic Republic of)

    2006-07-01

    Objective: The immunosuppressive effects of high doses of ionizing radiation have long been known, while researchers know less about the effects of low dose radiation on the immune system. Recently, in human and experimental animal models it has been reported that low dose radiation may have immuno-stimulatory effects. The aim of this study was to evaluate the effects of low doses of diagnostic doses of X-rays on cell mediated and humoral immune responses in a Balb/c animal model. Materials and Methods: Using a conventional Villa radiography machine, three groups of male Balb/c mice were exposed one, two and three times to 30 mGy of X-rays. The measured surface dose was equal to the dose of a single view lateral lumbar radiography. Two to four hours after irradiation, the delayed type hypersensitivity (DTH) and humoral responses to sheep red blood cell (SRBC) were measured and compared to the responses of sham and control groups. Results: The mean titer of anti-SRBC antibodies in two-times irradiated (74.66{+-} 26.12 ) and three-times irradiated (128 {+-} 70.1) groups were significantly higher than those of non-irradiated (26.66 {+-} 8.26) or sham irradiated (28.8 {+-} 20.86) group (p<0.001). However, no significant differences were observed between the mean titer of anti-SRBC antibodies in one-time irradiated (22.4 {+-} 8.76) and either non-irradiated or sham irradiated groups. Similarly, comparing DTH responses showed that the differences between either two-times irradiated (12.2 {+-} 3.9 ) or three times-irradiated (6.9 {+-} 3.7) and non-irradiated (4 {+-} 0.2) or sham irradiated (4.3 {+-} 3) groups was statistically significant (p<0.001). Conclusion: Theses results show that two-times and three-times irradiated mice demonstrate significant stimulatory effects on both DTH and antibody responses. However, one-time irradiated animals did not exhibit any bio- positive effect on DTH and humoral responses. Moreover, no statistically significant difference was

  13. ImmunoPET for assessing the differential uptake of a CD146-specific monoclonal antibody in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haiyan; Kamkaew, Anyanee; Jiang, Dawei; Yang, Yunan [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); England, Christopher G.; Hernandez, Reinier; Graves, Stephen A.; Barnhart, Todd E. [University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); Majewski, Rebecca L. [University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI (United States); Cai, Weibo [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2016-11-15

    Overexpression of CD146 in solid tumors has been linked to disease progression, invasion, and metastasis. We describe the generation of a {sup 64}Cu-labeled CD146-specific antibody and its use for quantitative immunoPET imaging of CD146 expression in six lung cancer models. The anti-CD146 antibody (YY146) was conjugated to 1,4,7-triazacyclononane-triacetic acid (NOTA) and radiolabeled with {sup 64}Cu. CD146 expression was evaluated in six human lung cancer cell lines (A549, NCI-H358, NCI-H522, HCC4006, H23, and NCI-H460) by flow cytometry and quantitative western blot studies. The biodistribution and tumor uptake of {sup 64}Cu-NOTA-YY146 was assessed by sequential PET imaging in athymic nude mice bearing subcutaneous lung cancer xenografts. The correlation between CD146 expression and tumor uptake of {sup 64}Cu-NOTA-YY146 was evaluated by graphical software while ex vivo biodistribution and immunohistochemistry studies were performed to validate the accuracy of PET data and spatial expression of CD146. Flow cytometry and western blot studies showed similar findings with H460 and H23 cells showing high levels of expression of CD146. Small differences in CD146 expression levels were found among A549, H4006, H522, and H358 cells. Tumor uptake of {sup 64}Cu-NOTA-YY146 was highest in CD146-expressing H460 and H23 tumors, peaking at 20.1 ± 2.86 and 11.6 ± 2.34 %ID/g at 48 h after injection (n = 4). Tumor uptake was lowest in the H522 model (4.1 ± 0.98 %ID/g at 48 h after injection; n = 4), while H4006, A549 and H358 exhibited similar uptake of {sup 64}Cu-NOTA-YY146. A positive correlation was found between tumor uptake of {sup 64}Cu-NOTA-YY146 (%ID/g) and relative CD146 expression (r {sup 2} = 0.98, p < 0.01). Ex vivo biodistribution confirmed the accuracy of the PET data. The strong correlation between tumor uptake of {sup 64}Cu-NOTA-YY146 and CD146 expression demonstrates the potential use of this radiotracer for imaging tumors that elicit varying levels of CD146

  14. Immuno-therapy with anti-CTLA4 antibodies in tolerized and non-tolerized mouse tumor models.

    Directory of Open Access Journals (Sweden)

    Jonas Persson

    Full Text Available Monoclonal antibodies specific for cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA4 are a novel form of cancer immunotherapy. While preclinical studies in mouse tumor models have shown anti-tumor efficacy of anti-CTLA4 injection or expression, anti-CTLA4 treatment in patients with advanced cancers had disappointing therapeutic benefit. These discrepancies have to be addressed in more adequate pre-clinical models. We employed two tumor models. The first model is based on C57Bl/6 mice and syngeneic TC-1 tumors expressing HPV16 E6/E7. In this model, the HPV antigens are neo-antigens, against which no central tolerance exists. The second model involves mice transgenic for the proto-oncogen neu and syngeneic mouse mammary carcinoma (MMC cells. In this model tolerance to Neu involves both central and peripheral mechanisms. Anti-CTLA4 delivery as a protein or expression from gene-modified tumor cells were therapeutically efficacious in the non-tolerized TC-1 tumor model, but had no effect in the MMC-model. We also used the two tumor models to test an immuno-gene therapy approach for anti-CTLA4. Recently, we used an approach based on hematopoietic stem cells (HSC to deliver the relaxin gene to tumors and showed that this approach facilitates pre-existing anti-tumor T-cells to control tumor growth in the MMC tumor model. However, unexpectedly, when used for anti-CTLA4 gene delivery in this study, the HSC-based approach was therapeutically detrimental in both the TC-1 and MMC models. Anti-CTLA4 expression in these models resulted in an increase in the number of intratumoral CD1d+ NKT cells and in the expression of TGF-β1. At the same time, levels of pro-inflammatory cytokines and chemokines, which potentially can support anti-tumor T-cell responses, were lower in tumors of mice that received anti-CTLA4-HSC therapy. The differences in outcomes between the tolerized and non-tolerized models also provide a potential explanation for the low efficacy

  15. Cellular and humoral immuno-stimulatory effects of diagnostic doses of X-rays in BALB/c mice

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.; Jafar-Zadeh, A.; Khosravi, M.H.; Mehdipour, L.A.; Behnejad, B.B.

    2006-01-01

    Objective: The immunosuppressive effects of high doses of ionizing radiation have long been known, while researchers know less about the effects of low dose radiation on the immune system. Recently, in human and experimental animal models it has been reported that low dose radiation may have immuno-stimulatory effects. The aim of this study was to evaluate the effects of low doses of diagnostic doses of X-rays on cell mediated and humoral immune responses in a Balb/c animal model. Materials and Methods: Using a conventional Villa radiography machine, three groups of male Balb/c mice were exposed one, two and three times to 30 mGy of X-rays. The measured surface dose was equal to the dose of a single view lateral lumbar radiography. Two to four hours after irradiation, the delayed type hypersensitivity (DTH) and humoral responses to sheep red blood cell (SRBC) were measured and compared to the responses of sham and control groups. Results: The mean titer of anti-SRBC antibodies in two-times irradiated (74.66± 26.12 ) and three-times irradiated (128 ± 70.1) groups were significantly higher than those of non-irradiated (26.66 ± 8.26) or sham irradiated (28.8 ± 20.86) group (p<0.001). However, no significant differences were observed between the mean titer of anti-SRBC antibodies in one-time irradiated (22.4 ± 8.76) and either non-irradiated or sham irradiated groups. Similarly, comparing DTH responses showed that the differences between either two-times irradiated (12.2 ± 3.9 ) or three times-irradiated (6.9 ± 3.7) and non-irradiated (4 ± 0.2) or sham irradiated (4.3 ± 3) groups was statistically significant (p<0.001). Conclusion: Theses results show that two-times and three-times irradiated mice demonstrate significant stimulatory effects on both DTH and antibody responses. However, one-time irradiated animals did not exhibit any bio- positive effect on DTH and humoral responses. Moreover, no statistically significant difference was observed between the DTH

  16. The gold standard as a rule

    OpenAIRE

    Michael D. Bordo; Finn E. Kydland

    1992-01-01

    In this paper, we show that the monetary rule followed by a number of key countries, especially England and to a lesser extent the U. S., before 1914 represented a commitment technology preventing the monetary authorities from changing planned future policy. The experiences of these major countries suggest that the gold standard was intended as a contingent rule. By that, we mean, that the authorities could temporarily abandon the fixed price of gold during a wartime emergency on the understa...

  17. Neutron microtomography of voids in gold

    Directory of Open Access Journals (Sweden)

    Pavel Trtik

    2017-01-01

    Full Text Available Pilot attempt of the neutron microtomography of voids in gold carried out using the Neutron Microscope instrument is presented in the paper. The paper demonstrates that neutron microtomography provides viable alternative to X-ray imaging for the assessment of porosity in high atomic number materials. The model sample based on gold with artificially induced void system reveals segmented porosity with 5.4 micrometres voxel size and the spatial resolution close to 10 micrometres.

  18. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  19. Numerical simulations of nanostructured gold films

    DEFF Research Database (Denmark)

    Repan, Taavi; Frydendahl, Christian; Novikov, Sergey M.

    2017-01-01

    We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which then was ca...... then was captured using scanning transmission electron microscopy (STEM) and the obtained dark field images are used to set up COMSOL simulations corresponding to actual structures....

  20. The Modern Monetary System and Gold

    Directory of Open Access Journals (Sweden)

    N N Rubtsov

    2013-12-01

    Full Text Available The article considers the nature of modern money, analyzes the mechanism of its creation, showing that it is basically generated by credit and the principle of partial bank reserve. The article draws comparative parallels between trade money based on gold and contemporary, credit money; the author quotes leading bankers and finance experts on the need for partial return to the principles of functioning of the gold standard as the most effective institute of regulating the monetary system in society.

  1. Synthesis of radioactive gold nanoparticle in surfactant medium

    International Nuclear Information System (INIS)

    Swadesh Mandal

    2014-01-01

    The present study describes the synthesis of radioactive gold nanoparticle in surfactant medium. Proton irradiated stable 197 Au and radioactive 198 Au were simultaneously used for production of radioactive gold nanoparticle. Face centered cubic gold nanoparticles with size of 4-50 nm were found in proton irradiated gold foil. However, the size of nanoparticle varies with pH using both stable and radioactive gold. (author)

  2. Metal enhanced fluorescence with gold nanoparticles

    Science.gov (United States)

    Mattingly, Shaina LaRissa Strating

    A novel hybrid nanocomposite of Au nanoparticle-modified silicon nanowire was developed for surface enhanced fluorescence applications. The designed nanocomposite contained a silicon nanowire, gold nanoparticles and a silica layer doped with dye molecules. The hybrid nanomaterial was characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), fluorescence measurements, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results showed that the gold nanoparticles were uniformly adhered on the silicon nanowires and covered by a thin silica layer. The nanostructure exhibited strong capacity for surface enhanced fluorescence. Different enhancement factors were obtained by changing synthetic conditions. The second goal of the project was to determine if the shape of gold nanoparticles affects the extent of its fluorescence enhancement under constant external factors. Two shapes of gold nanoparticles were synthesized and characterized by SEM, STEM, zeta potential and absorbance measurements. Then they were coated with fluorescent dye-doped silica and the fluorescence intensity was measured and compared to the pure fluorescent dye. Gold nanorods enhanced fluorescence more than gold nanostars and that the fluorescent dye Alexafluor 700 showed a greater fluorescence intensity change in the presence of nanoparticles than methylene blue.

  3. Milan's 1879 and 1882 gold coins

    Directory of Open Access Journals (Sweden)

    Pantelić Svetlana

    2014-01-01

    Full Text Available Following the exhausting wars against Turkey, Prince Milan Obrenović decided to mint larger denominations of silver and gold coins. The decision on minting these coins was explained by the fact that for the purpose of foreign payments, the expensive foreign money will no longer have to be purchased, given that the Serbian money will be recognized at its nominal value outside Serbia as well. The Law on the Serbian National Money confirmed by Prince Milan on December 10th 1878 introduced new types of metal coins into the monetary system of Serbia: 10 and 20 dinars in gold, 5 dinars in silver, and 2 paras in copper. All these coins were minted in 1879, except for the 10-dinar gold coin, minted when Prince Milan became the King, bearing the inscription of 1882. There were only 50,000 pieces of the 20-dinar gold coins minted, and it was legal tender in the Principality and Kingdom of Serbia, as well as in the Kingdom of Serbs, Croats and Slovenes, and in the Kingdom of Yugoslavia, for full 52 years. In 1882 there were 500,000 pieces of 10-dinar gold coins and 200,000 pieces of 20-dinar gold coins minted. They were named Milandors, and were used as official legal tender until June 28th 1931.

  4. Photochemical synthesis of polygonal gold nanoparticles

    International Nuclear Information System (INIS)

    Huang, W.-C.; Chen, Y.-C.

    2008-01-01

    In this paper, we propose a method to generate gold nanoparticles capable of absorbing near infrared light (NIR) radiation through a photochemical reaction. This approach does not require the use of either surfactants or polymers, reducing the difficulties that may arise in further chemical modifications for the gold nanoparticles. The gold nanoparticles with either triangular or hexagonal shapes were generated using the photo-reduction method, mixing hydrogen tetrachloroaurate with sodium oxalate, a reducing agent, in aqueous solution under illumination of a mercury lamp (λ max = 306 nm) for more than 10 min. The size of the gold nanoparticles varies from 25 to 200 nm, which mainly depends on the duration of light illumination and the concentration of sodium oxalate. Furthermore, we demonstrate that the presence of the gold nanoparticles in aqueous solutions can effectively elevate the temperature of the solutions under irradiation of NIR light (808 nm) within a few minutes. The gold nanoparticles can be potentially used as suitable photothermal agents for hyperthermia

  5. Study on Sumbawa gold recovery using centrifuge

    Science.gov (United States)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  6. Analysis on the Impact of the Fluctuation of the International Gold Prices on the Chinese Gold Stocks

    Directory of Open Access Journals (Sweden)

    Jiankang Jin

    2014-01-01

    Full Text Available Five gold stocks in Chinese Shanghai and Shenzhen A-share and Comex gold futures are chosen to form the sample, for the purpose of analysing the impact of the fluctuation of the international gold prices on the gold stocks in Chinese Shanghai and Shenzhen A-share. Using the methods of unit root test, Granger causality test, VAR model, and impulse response function, this paper has analysed the relationship between the price change of the international gold futures and the price fluctuation of gold stocks in Chinese Shanghai and Shenzhen comprehensively. The results suggest the fluctuation of the international gold futures has a strong influence on the domestic futures.

  7. Gold grade distribution within an epithermal quartz vein system, Kestanelik, NW Turkey: implications for gold exploration

    Science.gov (United States)

    Gulyuz, Nilay; Shipton, Zoe; Gulyuz, Erhan; Lord, Richard; Kaymakci, Nuretdin; Kuscu, İlkay

    2017-04-01

    Vein-hosted gold deposits contribute a large part to the global gold production. Discovery of these deposits mainly include drilling of hundreds of holes, collecting thousands of soil and rock samples and some geophysical surveys which are expensive and time consuming. Understanding the structures hosting the veins and the variations in gold concentrations within the veins is crucial to constrain a more economic exploration program. The main aim of this study is to investigate the gold grade distribution in the mineralized quartz veins of a well exposed epithermal gold deposit hosted by Paleozoic schist and Eocene quartz-feldspar-hornblende porphyry in Lapseki, NW Turkey. We have constructed 3D architecture of the vein surfaces by mapping their outcrop geometries using a highly sensitive Trimble GPS, collecting detailed field data, well-logs and geochemistry data from 396 drill holes (255 diamond cut and 141 reverse circulation holes). Modelling was performed in MOVE Structural Modelling and Analysis software granted by Midland Valley's Academic Software Initiative, and GIS application softwares Global Mapper and Esri-ArcGIS. We envisaged that while fluid entering the conduit ascents, a sudden thickness increase in the conduit would lead to a drop in the fluid pressure causing boiling (the most dominant gold precipitation mechanism) and associated gold precipitation. Regression analysis was performed between the orthogonal thickness values and gold grades of each vein, and statistical analyses were performed to see if the gold is concentrated at specific structural positions along dip. Gold grades in the alteration zones were compared to those in the adjacent veins to understand the degree of mineralization in alteration zones. A possible correlation was also examined between the host rock type and the gold grades in the veins. These studies indicated that gold grades are elevated in the adjacent alteration zones where high gold grades exist in the veins. Schist

  8. Subchronic inhalation toxicity of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Chung Yong

    2011-05-01

    Full Text Available Abstract Background Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME of gold nanoparticles remain unclear. Results The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males and 145 g (females, were divided into 4 groups (10 rats in each group: fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 μg/m3, middle-dose (2.36 × 105 particle/cm3, 0.38 μg/m3, and high-dose (1.85 × 106 particle/cm3, 20.02 μg/m3. The animals were exposed to gold nanoparticles (average diameter 4-5 nm for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH, and total protein were also monitored in a cellular bronchoalveolar lavage (BAL fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue

  9. DNA single- and double-strand breaks by alkaline- and immuno-comet assay in lymphocytes of workers exposed to styrene.

    Science.gov (United States)

    Fracasso, Maria Enrica; Doria, Denise; Carrieri, Mariella; Bartolucci, Giovanni Battista; Quintavalle, Sonia; De Rosa, Edoardo

    2009-02-25

    Occupational exposure to styrene was studied in 34 workers employed in the production of fiberglass-reinforced plastic sheets and compared to 29 unexposed healthy controls. We evaluated genotoxic effects induced by occupational styrene exposure in lymphocytes by alkaline version of the comet assay to detect single-strand breaks (SSBs), DNA oxidation products (formamido pyrimidine glycosilase (Fpg)- and endonuclease (Endo III)-sensitive sites) and DNA repair kinetics studies, as well as the neutral version of comet assay for DNA double-strand breaks (DSBs). An innovative aspect of this study was the use of immuno-comet assay, a new technique that recognizes DSBs with specific antibody by DAPI/FITC method. The battery of parameters included markers of external and internal exposure. Exposed workers showed significant high levels of SSBs (p<0.0001) and DSBs (p<0.0001) in neutral- and immuno-comet assay. A drastic decrease in DNA repair activity as compared to controls was observed (180 min vs. 35 min). Styrene workplace concentration significantly correlated with alkaline comet parameters (TM, p=0.013; TI, p=0.008), in negative with TL (p=0.022), and with DNA-base oxidation (TM Endo III, p=0.048 and TI Endo III, p=0.028). There was a significant negative correlation between urinary metabolites (MA+PGA) and TM Endo III (p=0.032) and TI Endo III (p=0.017).

  10. The effect of Tea Misletoe (Scurrula oortiana Stem Extract as Immuno-Modulator on Oncogenic Marek’s Disease Virus Infection

    Directory of Open Access Journals (Sweden)

    Mulyoto Samsi

    2007-11-01

    Full Text Available Marek’s disease virus (MDV is one of oncogenic herpesvirus. It causes immunosupresion and cancer in chicken. Several plants produce bioactive compounds which are very useful for treatment of many disease, especially hiperproliveration and virus infection. This study was aimed to find out mechanism of immuno-modulatory capacity in layer commercial chicken administered orally with extract of tea parasite (Scurrula oortiana in dose of 10 mg/kg BW through drinking water, then the chicken were infected by intraperitoneal oncogenic MDV in dose of 1,0 x103 TCID50. The study used 60 layer commercial day old chicks (DOC divided into four group treatments. The treatments were group A (administered S. oortiana extract and without MDV infection, B (neither S. oortiana nor MDV infection, C (administered S. oortiana extract and with MDV infection, and D (without administered S. oortiana extract, but with MDV infection. Results showed that MDV oncogenic caused immunosupresion at a day post infection (p.i and recovery to be normal based on relative weight of bursa Fabricius and thymus at 40 days p.i. The extract of S. oortiana had a capability as an immunomodulator indicated by the increase of relative weight of bursa Fabricius and thymus at day 20 days p.i. (Animal Production 9(2: 172-177 (2007 Key Words: Marek’s disease virus (MDV, Scurrula oortiana, immuno-modulator

  11. Direct intranasal application of the solid phase of ImmunoCAP® increases nasal specific immunoglobulin E detection in local allergic rhinitis patients.

    Science.gov (United States)

    Campo, Paloma; Del Carmen Plaza-Seron, María; Eguiluz-Gracia, Ibon; Verge, Jesús; Galindo, Luisa; Barrionuevo, Esther; Fernandez, Javier; Jurado, Raquel; Mayorga, Cristobalina; Torres, María José; Rondón, Carmen

    2018-01-01

    The measurement of nasal specific IgE (NsIgE) in local allergic rhinitis (LAR) patients is challenging and shows variability. The objective of this work was to evaluate a minimally-invasive method of direct detection of NsIgE in patients with LAR to Dermatophagoides pteronyssinus (DP) using an automated immunoassay. Fifty patients participated (LAR, n = 14; allergic rhinitis (AR), n = 20; healthy controls [HC], n = 16). Detection of NsIgE was performed by direct application of the solid phase of a commercial DP ImmunoCAP® test 24 hours after DP nasal provocation. There was no difference in the median volume of secretion absorbed by the solid phase of the ImmunoCAP test in the 3 studied groups (p = 0.17). According to receiver operating characteristic (ROC) curve analysis, NsIgE ≥0.1450 was the optimal cutoff point, obtaining in LAR patients 42.86% sensitivity with the highest specificity (100%), and 75% sensitivity and 100% specificity for AR. This study demonstrates the detection of NsIgE to DP in LAR by using a simple, commercial device with high specificity. © 2017 ARS-AAOA, LLC.

  12. Amyloid-β-Secondary Structure Distribution in Cerebrospinal Fluid and Blood Measured by an Immuno-Infrared-Sensor: A Biomarker Candidate for Alzheimer's Disease.

    Science.gov (United States)

    Nabers, Andreas; Ollesch, Julian; Schartner, Jonas; Kötting, Carsten; Genius, Just; Hafermann, Henning; Klafki, Hans; Gerwert, Klaus; Wiltfang, Jens

    2016-03-01

    The misfolding of the Amyloid-beta (Aβ) peptide into β-sheet enriched conformations was proposed as an early event in Alzheimer's Disease (AD). Here, the Aβ peptide secondary structure distribution in cerebrospinal fluid (CSF) and blood plasma of 141 patients was measured with an immuno-infrared-sensor. The sensor detected the amide I band, which reflects the overall secondary structure distribution of all Aβ peptides extracted from the body fluid. We observed a significant downshift of the amide I band frequency of Aβ peptides in Dementia Alzheimer type (DAT) patients, which indicated an overall shift to β-sheet. The secondary structure distribution of all Aβ peptides provides a better marker for DAT detection than a single Aβ misfold or the concentration of a specific oligomer. The discrimination between DAT and disease control patients according to the amide I frequency was in excellent agreement with the clinical diagnosis (accuracy 90% for CSF and 84% for blood). The amide I band maximum above or below the decisive marker frequency appears as a novel spectral biomarker candidate of AD. Additionally, a preliminary proof-of-concept study indicated an amide I band shift below the marker band already in patients with mild cognitive impairment due to AD. The presented immuno-IR-sensor method represents a promising, simple, robust, and label-free diagnostic tool for CSF and blood analysis.

  13. Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed A. Madani

    2011-12-01

    Full Text Available This research aims to generate a favorability map for gold exploration at the Bulghah gold mine area using integration of geo-datasets within a GIS environment. Spatial data analyses and integration of different geo-datasets are carried out based on knowledge-driven and weighting technique. The integration process involves the weighting and scoring of different layers affecting the gold mineralization at the study area using the index overlay method within PCI Geomatica environment. Generation of the binary predictor maps for lithology, lineaments, faults and favorable contacts precede the construction of the favorability map. About 100 m buffer zones are generated for favorable contacts, lineaments and major faults layers. Internal weighting is assigned to each layer based on favorability for gold mineralization. The scores for lithology, major faults, lineaments and favorable contacts layers in the constructed favorability map are 50%, 25%, 10% and 15%, respectively. Final favorability map for the Bulghah gold mine area shows the recording of two new sites for gold mineralization located at the northern and southern extensions of tonalite–diorite intrusions. The northern new site is now exploited for gold from the Bulghah North mine. The southern new site is narrow and small; its rocks resemble those of the Bulghah gold mine.

  14. Tectonic setting of Late Cenozoic gold mineralization in the gold belt of Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Deruyter, V.D.

    1985-01-01

    The Gold Belt of Costa Rica is a northwest-elongated zone 15 km wide by 120 km long containing numerous auriferous quartz veins and pyritic silicified patterns upon which abundant small mines are developed. Gold veins are related principally to northeast-southwest and north-south striking, steeply dipping faults. Higher grade ore and thicker veins invariably occur at intersections of these fracture orientations, indicating simultaneous opening at the time of gold introduction. Restriction of gold veins to the northwest-trending arc of Miocene Aguacate Group andesite volcanic rocks, a product of Cocos Plate subduction, suggested approximately coeval formation, but recognition by the writer of the important role played by 2-5 m.y. old altered, gold mineralized rhyolite dikes intruded along north-south gold vein structures and intimately involved with high grade ores at the Esperanza Mine and Rio Chiquito prospect, for example, suggest a much younger period of fracturing and gold introduction. The rhyolite intrusions are more brittle and stockwork mineralized than andesite host rocks and form bulk tonnage gold targets. Initiation of right-lateral movement along the north-south Panama Fracture Zone at 5 m.y.a. within the pattern of northeastward Cocos Plate subduction may have tapped rhyolites from subvolcanic magma chambers into new faults.

  15. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    International Nuclear Information System (INIS)

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  16. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  17. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  18. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  19. Molecular dynamics simulations on the melting of gold nanoparticles

    Science.gov (United States)

    Qiao, Zhiwei; Feng, Haijun; Zhou, Jian

    2014-01-01

    Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615∼1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.

  20. Moessbauer study of the chemical state of gold in gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.H.; Regnard, J.-R.

    1986-01-01

    Information on the chemical state of gold in gold ores has been obtained by 197 Au Moessbauer spectroscopy in cases where the state of this element cannot be determined by such standard methods as optical or electron microscopy. Ore concentrates consisting mainly of pyrite or arsenopyrite and roasted ore and matte samples were studied. The results yielded directly the respective amounts of metallic and chemically bound gold. Unless the gold is metallic, its chemical state in the ores turns out to be different from that in the minerals studied so far as reference materials. The chemical processes taking place during various treatments of the ores, such as roasting or leaching, can also be followed by Moessbauer spectroscopy. It is hoped that Moessbauer spectroscopy will eventually facilitate the development of more efficient methods of gold extraction

  1. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  2. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  3. Evaluation of the CCA Immuno-Chromatographic Test to Diagnose Schistosoma mansoni in Minas Gerais State, Brazil

    Science.gov (United States)

    Silveira, Alda Maria Soares; Costa, Emanuele Gama Dutra; Ray, Debalina; Suzuki, Brian M.; Hsieh, Michael H.; Fraga, Lucia Alves de Oliveira; Caffrey, Conor R.

    2016-01-01

    Background The Kato-Katz (KK) stool smear is the standard test for the diagnosis of Schistosoma mansoni infection, but suffers from low sensitivity when infections intensities are moderate to low. Thus, misdiagnosed individuals remain untreated and contribute to the disease transmission, thereby forestalling public health efforts to move from a modality of disease control to one of elimination. As an alternative, the urine-based diagnosis of schistosomiasis mansoni via the circulating cathodic antigen immuno-chromatographic test (CCA-ICT) has been extensively evaluated in Africa with the conclusion that it may replace the KK test in areas where prevalences are moderate or high. Methods and Findings The objective was to measure the performance of the CCA-ICT in a sample study population composed of residents from non-endemic and endemic areas for schistosomiasis mansoni in two municipalities of Minas Gerais state, Brazil. Volunteers (130) were classified into three infection status groups based on duplicate Kato-Katz thick smears from one stool sample (2KK test): 41 negative individuals from non-endemic areas, 41 negative individuals from endemic areas and 48 infected individuals from endemic areas. Infection status was also determined by the CCA-ICT and infection exposure by antibody ELISA (enzyme-linked immunosorbent assay) to S. mansoni soluble egg antigen (SEA) and soluble (adult) worm antigen preparation (SWAP). Sensitivity and specificity were influenced by whether the trace score visually adjudicated in the CCA-ICT was characterized as positive or negative for S. mansoni infection. An analysis of a two-graph receiver operating characteristic was performed to change the cutoff point. When the trace score was interpreted as a positive rather than as a negative result, the specificity decreased from 97.6% to 78.0% whereas sensitivity increased from 68.7% to 85.4%. A significantly positive correlation between the CCA-ICT scores and egg counts was identified (r

  4. {sup 89}Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pandit-Taskar, Neeta; Solomon, Stephen B.; Durack, Jeremy C.; Carrasquillo, Jorge A.; Lefkowitz, Robert A.; Osborne, Joseph R. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); O' Donoghue, Joseph A. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Beylergil, Volkan; Ruan, Shutian; Cheal, Sarah M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Lyashchenko, Serge [Memorial Sloan Kettering Cancer Center, Department of Radiochemistry and Molecular Imaging Probes Core, New York, NY (United States); Gonen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Lewis, Jason S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Department of Radiochemistry and Molecular Imaging Probes Core, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Holland, Jason P. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Harvard Medical School, Department of Radiology of Massachusetts General Hospital, Boston, MA (United States); Reuter, Victor E. [Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, NY (United States); Weill Cornell Medical College, Department of Pathology, New York, NY (United States); Loda, Massimo F. [Dana-Farber Cancer Institute, Boston, MA (United States); Broad Institute of Harvard and MIT, Cambridge, MA (United States); Smith-Jones, Peter M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Department of Psychiatry and Behavioral Science of Stony Brook University, Stony Brook, NY (United States); Weber, Wolfgang A.; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Bander, Neil H. [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); Weill Cornell Medical College, Department of Urology, New York, NY (United States); Scher, Howard I.; Morris, Michael J. [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Weill Cornell Medical College, Department of Medicine, New York, NY (United States)

    2014-11-15

    Given the bone tropism of prostate cancer, conventional imaging modalities poorly identify or quantify metastatic disease. {sup 89}Zr-huJ591 positron emission tomography (PET) imaging was performed in patients with metastatic prostate cancer to analyze and validate this as an imaging biomarker for metastatic disease. The purpose of this initial study was to assess safety, biodistribution, normal organ dosimetry, and optimal imaging time post-injection for lesion detection. Ten patients with metastatic prostate cancer received 5 mCi of {sup 89}Zr-huJ591. Four whole-body scans with multiple whole-body count rate measurements and serum activity concentration measurements were obtained in all patients. Biodistribution, clearance, and lesion uptake by {sup 89}Zr-huJ591 immuno-PET imaging was analyzed and dosimetry was estimated using MIRD techniques. Initial assessment of lesion targeting of {sup 89}Zr-huJ591 was done. Optimal time for imaging post-injection was determined. The dose was well tolerated with mild chills and rigors seen in two patients. The clearance of {sup 89}Zr-huJ591 from serum was bi-exponential with biological half-lives of 7 ± 4.5 h (range 1.1-14 h) and 62 ± 13 h (range 51-89 h) for initial rapid and later slow phase. Whole-body biological clearance was 219 ± 48 h (range 153-317 h). The mean whole-body and liver residence time was 78.7 and 25.6 h, respectively. Dosimetric estimates to critical organs included liver 7.7 ± 1.5 cGy/mCi, renal cortex 3.5 ± 0.4 cGy/mCi, and bone marrow 1.2 ± 0.2 cGy/mCi. Optimal time for patient imaging after injection was 7 ± 1 days. Lesion targeting of bone or soft tissue was seen in all patients. Biopsies were performed in 8 patients for a total 12 lesions, all of which were histologically confirmed as metastatic prostate cancer. One biopsy-proven lesion was not positive on {sup 89}Zr-huJ591, while the remaining 11 lesions were {sup 89}Zr-huJ591 positive. Two biopsy-positive nodal lesions were noted only on

  5. Radiofrequency Heating Pathways for Gold Nanoparticles

    Science.gov (United States)

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  6. The fcc structure isomerization in gold nanoclusters.

    Science.gov (United States)

    Zhuang, Shengli; Liao, Lingwen; Li, Man-Bo; Yao, Chuanhao; Zhao, Yan; Dong, Hongwei; Li, Jin; Deng, Haiteng; Li, Lingling; Wu, Zhikun

    2017-10-12

    Structural isomerization is an important concept in organic chemistry and it is recently found to be applicable to thiolated gold nanoparticles. However, to the best of our knowledge, the isomerization with the kernel structure of the cluster changed while maintaining fcc packing was not previously found. Here, we report such a structural isomerization by synthesizing a novel gold nanocluster and solving its atomic structure. The as-obtained novel gold nanocluster Au 52 (PET) 32 (PET = phenylethanethiolate) has completely the same Au/S molar ratio as a well-known gold nanocluster Au 52 (TBBT) 32 (TBBT = 4-tert-butyl-benzenethiolate) but an essentially different fcc structure. As a result of fcc structure isomerization, Au 52 (PET) 32 has remarkably different UV/vis/NIR absorption from Au 52 (TBBT) 32 . Another interesting finding in this work is that the kernel of Au 52 (PET) 32 has high-indexed (311)-like facets, which is not previously reported in the structures of gold nanoclusters to the best of our knowledge.

  7. Engineered Gold Nanoparticles and Plant Adaptation Potential

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  8. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  9. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    Science.gov (United States)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  10. Precipitation of lamellar gold nanocrystals in molten polymers

    Science.gov (United States)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  11. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined......% fall in the gold content over the observed 6 months, the AMG finding of a significant reduction in the stained area of the liver sections and number of macrophages loaded with gold nanoparticles reveals that over time an increasing part of the total amount of gold nanoparticles in the liver...

  12. Geomicrobial Optical Logging Detectors (GOLD)

    Science.gov (United States)

    Bramall, N. E.; Stoker, C. R.; Price, P. B.; Coates, J. D.; Allamandola, L. J.; Mattioda, A. L.

    2008-12-01

    to in situ processes. 4) Temperature and Oxygen Sensors: The ambient temperature will be recorded as well as the presence of oxygen. Oxygen presence can be measured using a fluorescence quenching fiber optic probe to avoid interference from other gases. We forsee that this technology will enable experiments including studies of gene transfer, microbial habitat, in situ stratigraphy and hydrological processes. In addition, though designed to scan borehole walls, GOLD could be used to scan core samples as they are recovered for rapid quantification and analysis in order to discover samples of particular interest that could then be prioritized for more in-depth, traditional analysis.

  13. Bayesian integration of networks without gold standards.

    Science.gov (United States)

    Weile, Jochen; James, Katherine; Hallinan, Jennifer; Cockell, Simon J; Lord, Phillip; Wipat, Anil; Wilkinson, Darren J

    2012-06-01

    Biological experiments give insight into networks of processes inside a cell, but are subject to error and uncertainty. However, due to the overlap between the large number of experiments reported in public databases it is possible to assess the chances of individual observations being correct. In order to do so, existing methods rely on high-quality 'gold standard' reference networks, but such reference networks are not always available. We present a novel algorithm for computing the probability of network interactions that operates without gold standard reference data. We show that our algorithm outperforms existing gold standard-based methods. Finally, we apply the new algorithm to a large collection of genetic interaction and protein-protein interaction experiments. The integrated dataset and a reference implementation of the algorithm as a plug-in for the Ondex data integration framework are available for download at http://bio-nexus.ncl.ac.uk/projects/nogold/

  14. Gold nanocrystals with DNA-directed morphologies.

    Science.gov (United States)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-09-16

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  15. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrup......Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...... results obtained in homogeneous environment is demonstrated. Multipole resonance features in the experimental reflection spectra of particles located on a gold substrate, in the wavelength range of 500-1000 nm, are discussed and theoretically analyzed on the basis of finite-difference time...

  16. Cancer nanotechnology: emerging role of gold nanoconjugates.

    Science.gov (United States)

    Kudgus, Rachel A; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-12-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles.

  17. Reversible multi polyelectrolyte layers on gold nanoparticles

    Science.gov (United States)

    Djoumessi Lekeufack, Diane; Brioude, Arnaud; Lalatonne, Yoann; Motte, Laurence; Coleman, Anthony W.; Miele, Philippe

    2012-06-01

    Gold nanoparticles surface can be easily modified by different molecules such as polyelectrolytes. In a typical multilayer system made of polyethyleneimine and poly(styrene sulfonate)sodium alternated layers around gold nanoparticles, we have evaluated the interactions between the different layers and the relative strength of interfacial properties. By means of UV-Visible and FTIR spectroscopies, we have shown that due to its amine functionalities, the bonding of polyethyleneimine to gold particles is stronger than the one implied with the sulfonate anion in the PSS inducing a clean removal of this latter after the last polyethyleneimine deposition. Considering that polyethyleneimine is cytotoxic and that only weak covalent bonds are concerned in polyelectrolyte multilayer, this last point is of main importance since external degradation thus exposing polyethyleneimine sub-layer of multilayer films to in vivo tissue cells can occur by many ways.

  18. Gold Veins near Great Falls, Maryland

    Science.gov (United States)

    Reed, John Calvin; Reed, John C.

    1969-01-01

    Small deposits of native gold are present along an anastomosing system of quartz veins and shear zones just east of Great Falls, Montgomery County, Md. The deposits were discovered in 1861 and were worked sporadically until 1951, yielding more than 5,000 ounces of gold. The vein system and the principal veins within it strike a few degrees west of north, at an appreciable angle to foliation and fold axial planes in enclosing rocks of the Wissahickon Formation of late Precambrian (?) age. The veins cut granitic rocks of Devonian or pre-Devonian age and may be as young as Triassic. Further development of the deposits is unlikely under present economic conditions because of their generally low gold content and because much of the vein system lies on park property, but study of the Great Falls vein system may be useful in the search for similar deposits elsewhere in the Appalachian Piedmont.

  19. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  20. Free gold recovery by coal-oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, W.; Petersen, F.W. [Cape Technikon Cape Town (South Africa). Dept. of Chemical Engineering

    2000-02-01

    The gold mining industry has mainly relied upon the use of highly polluting chemicals, such as mercury and cyanide to recover gold from its ores. The Coal Gold Agglomeration (CGA) process was developed some years ago and has the advantage in that gold is recovered by a procedure which has little or no negative impact on the environment. A gold ore containing liberated gold particles is contacted with coal-oil agglomerates, whereby the gold is recovered into the coal/oil phase. Laboratory scale batch tests were performed on an artificial mixture gold slurry and gold recoveries of up to 85% were found under optimized conditions. By recycling the coal/oil phase, it was found that the gold loading onto the agglomerates was increased. Tests performed on an industrial ore yielded slightly lower gold recoveries, and X-ray Diffraction (XRD) analysis on the coal/oil phase showed that minerals other than gold were recovered into this phase. A comparative study was conducted whereby the CGA process was compared to mercury amalgamation. Gold recoveries obtained through amalgamation were 15% lower than by the agglomeration process, which indicates that this process can be considered favourably as an alternative to amalgamation. 16 refs., 2 figs., 6 tabs.

  1. Contact allergy to gold in patients with gold-plated intracoronary stents.

    Science.gov (United States)

    Svedman, C; Tillman, C; Gustavsson, C G; Möller, H; Frennby, B; Bruze, M

    2005-04-01

    An increasingly common and effective method for the treatment of atherosclerotic disease in the coronary arteries is percutaneous transluminal coronary angioplasty (PTCA) and stenting. The stents are made of different metals. An increased rate of restenosis when using gold-plated stents has been shown. Contact allergy to gold is common in many countries. Recently, a study has shown an increased rate of contact allergy to nickel among patients with restenosis and a nickel-containing stent. The aims of our study were to investigate whether there was an increased rate of contact allergy to gold among patients with gold-plated stents and if this increased the risk of restenosis. 22 patients who had received a gold-plated stent were patch tested. An age- and sex-matched population of 88 patients, previously patch tested because of a suspected contact dermatitis, served as controls. In the stent group, 10/22 (45.5%) had a contact allergy to gold, in the control group 18/88 (20.5%); the difference is statistically significant (P = 0.04). There was no significant difference regarding frequency of restenosis. Our study indicates that there is a risk of sensitizing the patient when implanting a gold-plated stent. Further studies are needed to confirm these results and to evaluate whether there is an increased risk of restenosis.

  2. Size fraction assaying of gold bearing rocks (for gold extraction) by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D.K.; Adomako, D.

    2005-01-01

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite sample was determined as a function of particle size by using Instrumental Neutron Activation Analysis. The concentrations of gold for the corresponding particle sizes were 16.4 ± 0.17mg/kg for sizes <63μm; 161± 0.75 mg/kg for 63 - 125 μm, 0.53 + 0.03 mg/kg for 125 - 250 μm, 4.66± 0.07 mg/kg for 250 - 355 μm, 1.55 ± 0.06 for 355 - 425 μm, 0.80 ± 0.008 mg/kg for 425 -1000 μm, and 1.27 + 0.05 mg/kg for 1000-2000 μm. The average gold content in a 7.127 kg composite sample based on particle size found to be 3.08 mg/kg. (au)

  3. 90Nb: potential radionuclide for application in immuno-PET. Development of appropriate production strategy and first in vivo evaluation of 90Nb-labeled monoclonal antibody

    International Nuclear Information System (INIS)

    Radchenko, Valery

    2013-01-01

    Nuclear medicine is a modern and highly effective tool for the detection and treatment of oncological disease. Molecular imaging based on radiotracers includes single photon emission tomography (SPECT) and positron emission tomography (PET), which provide non-invasive tumor visualization on nano- and picomolar level, respectively. Currently, many novel tracers for more precise discovery of small tumors and metastases have been introduced and are under investigation. Many of them are protein-based biomolecules which nature herself produces as antigens for the eradication of tumor cells. Antibodies and antibody fragments play an important role in tumor diagnostics and treatment. PET imaging with antibodies and antibody fragments is called immuno-PET. The main issue that needs to be addressed is that appropriate radiotracers with half-lives related to the half-lives of biomolecules are needed. The development of novel radiotracers is a multistep, complicated task. This task includes the evaluation of production, separation and labeling strategy for chosen radionuclide. Finally, the biomolecule-radionuclide complex should be stable in time. An equally important factor is the economic suitability of the production strategy, which will lead to a key decision for future application of the developed radionuclide. In recent work, 90 Nb has been proposed as a potential candidate for application in immuno-PET. Its half-life of 14.6 hours is suitable for application with antibody fragments and some intact antibodies. 90 Nb has a relatively high positron branching of 53% and an optimal energy of β + emission of 0.35 MeV that can provide high quality of imaging with low dose of used radionuclide. First proof-of-principle studies have shown that 90 Nb: (i) can be produced in sufficient amount and purity by proton bombardment of natural zirconium target (ii) can be isolated from target material with appropriate radiochemical purity (iii) may be used for labeling of monoclonal

  4. Expression of the C- KIT Molecule in Acute Myeloid Leukemias: Implications of the Immuno phenotypes CD117 and CD15 in the Detection of Minimal Residual Disease

    International Nuclear Information System (INIS)

    Omar, S.

    2001-01-01

    Study of the c-kit proto-oncogene (CD117) may be of help for the identification of phenotypic profiles that are absent or present at very low frequencies on normal human blast cells and therefore might be of great value for the detection of leukemic cells displaying such immuno phenotypes in patients in complete remission. Design and methods: Ninety patients with acute myeloid leukemias, diagnosed according to FAB criteria and immunological marker studies, were studied for the dual expression on blast cells of the CD117/CD15 immuno phenotype co expression by direct immunofluorescence assay using dual staining combination flow cytometry. Results: In 69/90 acute myeloid leukemia patients analyzed (77%), blast cells expressed the CD117 antigen. Moreover, in 38 of them (42% of acute myeloid leukemia cases), leukemic blasts co expressed the CD117 and CD15 antigens. There was no significant correlation between the FAB classification and the CD117 and CD15 expression in acute myeloid leukemia cases. Conclusions: These results suggest that immunological methods for the detection of MRD based on the existence of aberrant phenotypes could be used in the majority of AML patients. This phenotype CD117/CD15, present in acute myeloid leukemia cases at a relatively high frequency (42%), represents an aberrant phenotype, because it was not detected on normal human blast cells, suggesting that the use of these combinations of monoclonal antibodies could be of help in detecting residual leukemic blasts among normal blast cells. The use of the CD117 antigen in different monoclonal antibodies combinations may be of great help for the detection of minimal residual disease in a high proportion of acute myeloid leukemia cases, especially in those patients displaying the CD117+/CD15+ immuno phenotype, because cells co expressing both antigens in normal blasts, if present, are at very low frequencies. The simultaneous assessment of two or more markers in single cells has facilitated the

  5. Nuclear shape transition in light gold isotopes

    International Nuclear Information System (INIS)

    Wallmeroth, K.; Bollen, G.; Dohn, A.; Egelhof, P.; Kroenert, U.; Heyde, K.; Coster, C. de; Wood, J.L.; Kluge, H.J.; European Organization for Nuclear Research, Geneva; European Organization for Nuclear Research, Geneva

    1989-01-01

    The hyperfine structure and isotope shifts of short-lived gold isotopes with 185≤A≤190 and the 11/2 - isomer of 189 Au have been investigated by application of on-line resonance ionization mass spectroscopy. A detection efficiency of ε=10 -8 for gold atoms was observed at a background of about one event per 1000 laser shots. The deduced charge radii show a drastic change between A=187 and A=186 which is interpreted as an onset of strong deformation (β 2 ≅ 0.25) in 186 Au and 185 Au due to the influence of the π1h 9/2 intruder orbital. (orig.)

  6. 'Methane oxidation on supported gold catalysts'

    DEFF Research Database (Denmark)

    Walther, Guido

    2008-01-01

    the energy stored in the molecule available, is a major research challenge. In this PhD thesis, CH4 oxidation on nanoparticular gold is studied both experimentally and theoretically. In the course of this PhD project, CH4 oxidation was experimentally found more likely to form CO2 and H2O than other low index...... steady-state activity measurements were performed to obtain the reaction rates for CO and H2 oxidation. These reactions were studied on three different gold particle sizes using either O2 or N2O as oxidation agents. Using particle size distributions obtained from TEM analysis, it was found that the CO...

  7. Wet chemical synthesis of soluble gold nanogaps

    DEFF Research Database (Denmark)

    Jain, Titoo; Tang, Qingxin; Bjørnholm, Thomas

    2014-01-01

    on top-down approaches and often rely on subsequent deposition of molecules into the nanogap. In such an approach, the molecule may bridge the gap differently with each experiment due to variations at the metal-molecule interface. Conversely, chemists can readily synthesize gold nanorods (Au...... of dimeric AuNR structures from an insulating molecule linked to AuNR precursors (gold seeds). Conjugated, electronically active molecules are typically not soluble under the conditions required for the bottom-up growth of AuNRs. Therefore, we present a strategy that utilizes host-guest chemistry in order...

  8. Nanoporous Gold: Fabrication, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Michael L. Reed

    2009-12-01

    Full Text Available Nanoporous gold (np-Au has intriguing material properties that offer potential benefits for many applications due to its high specific surface area, well-characterized thiol-gold surface chemistry, high electrical conductivity, and reduced stiffness. The research on np-Au has taken place on various fronts, including advanced microfabrication and characterization techniques to probe unusual nanoscale properties and applications spanning from fuel cells to electrochemical sensors. Here, we provide a review of the recent advances in np-Au research, with special emphasis on microfabrication and characterization techniques. We conclude the paper with a brief outline of challenges to overcome in the study of nanoporous metals.

  9. Micro-nano Structurized Gold Chip for SPR Imaging Sensor

    International Nuclear Information System (INIS)

    Zhang, Bing; Pang, Kai; Shi, Chunfei; Sun, Yi; Wang, Xiaoping; Dong, Wei

    2016-01-01

    A micro-nano structurized gold chip was developed and applied to a surface plasmon resonance imaging (SPRi) sensor with polarization contrast method. Compared with the planar gold film, a total sensitivity enhancement (SEF=287%) was obtained. (paper)

  10. Gold nanoparticle assemblies through Hydrogen-bonded supramolecular mediators

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2007-01-01

    The synthesis of spherical gold nanoparticle assemblies with multicomponent double rosette molecular boxes as mediators is presented. These nine-component hydrogen-bonded supramolecular structures held together by 36 hydrogen bonds induce gold nanoparticle assembly. The morphologies of the

  11. Albumin-gold-glutathione is a probable auranofin metabolite

    International Nuclear Information System (INIS)

    Shaw, C.F. III; Coffer, M.; Isab, A.A.

    1989-01-01

    The newly licensed gold drug, auranofin ((2,3,4,6-tetra-O-acetyl-β-1-D-gluco-pyranosato-S-)triethylphoshine-gold(I)) crosses cell membranes and enters cells which are inaccessible to parenteral gold drugs. In vivo, the triethylphosphine ligand and gold of auranofin, but not the thio-sugar moiety, accumulate in and subsequently efflux from red blood cells (RBCs). Extracellular albumin increases in the extent of gold efflux and acts as a gold binding site. The rate of efflux is first-order in RBC gold concentration. Studies using RBCs in which labelled [ 14 C]-glutathione is generated in situ incorporation of [ 14 C]- glycine demonstrate that glutathione also effluxes from the RBCs and forms a gold-glutathione-albumin complex. This may be the immunopharmacologically active complex

  12. Determination of gold coating thickness measurement by using EDXRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaian; Masliana Muslimin; Fadlullah Jili Fursani

    2005-01-01

    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au L? peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thickness. The calibration graph shows a straight line for thin coating measurement until 0.9 μm. Beyond this the relationship was not linear and this may be resulted from the self-absorption effect. Quantitative analysis was also performed on two different samples of gold coated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated. (Author)

  13. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis.

    Science.gov (United States)

    Diouani, Mohamed Fethi; Ouerghi, Oussama; Refai, Amira; Belgacem, Kamel; Tlili, Chaker; Laouini, Dhafer; Essafi, Makram

    2017-05-01

    Tuberculosis is a worldwide disease considered as a major health problem with high morbidity and mortality rates. Poor detection of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis remains a major obstacle to the global control of this disease. Here we report the development of a new test based on the detection of the major virulent factor of Mtb, namely the early secreted antigenic target 6-kDa protein or ESAT-6. A label free electrochemical immunosensor using an anti-ESAT-6 monoclonal antibody as a bio-receptor is described herein. Anti-ESAT-6 antibodies were first covalently immobilized on the surface of a gold screen-printed electrode functionalized via a self-assembled thiol monolayer. Interaction between the bio-receptor and ESAT-6 antigen was evaluated by square wave voltammetry method using [F e (CN) 6 ] 3-/4- as redox probe. The detection limit of ESAT-6 antigen was 7ng/ml. The immunosensor has also been able to detect native ESAT-6 antigen secreted in cell culture filtrates of three pathogenic strains of Mtb (CDC1551, H37RV and H8N8). Overall, this work describes an immune-electrochemical biosensor, based on ESAT-6 antigen detection, as a useful diagnostic tool for tuberculosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  15. Formation of gold nanoparticles by glycolipids of Lactobacillus casei

    OpenAIRE

    Kikuchi, Fumiya; Kato, Yugo; Furihata, Kazuo; Kogure, Toshihiro; Imura, Yuki; Yoshimura, Etsuro; Suzuki, Michio

    2016-01-01

    Gold nanoparticles have particular properties distinct from those of bulk gold crystals, and such nanoparticles are used in various applications in optics, catalysis, and drug delivery. Many reports on microbial synthesis of gold nanoparticles have appeared. However, the molecular details (reduction and dispersion) of such synthesis remain unclear. In the present study, we studied gold nanoparticle synthesis by Lactobacillus casei. A comparison of L. casei components before and after addition...

  16. The Gold Standard as a `Good Housekeeping Seal of Approval'

    OpenAIRE

    Michael D. Bordo

    1995-01-01

    In this paper we argue that adherence to the gold standard rule of convertibility of national currencies into a fixed weight of gold served as a `good housekeeping seal of approval' which facilitated access by peripheral countries to foreign capital from the core countries of western Europe. We survey the historical background of gold standard adherence in the period 1870-1914 by nine important peripheral countries. The sample includes the full range of commitment to the gold standard from co...

  17. The Gold Standard as a "Good Housekeeping Seal of Approval"

    OpenAIRE

    Hugh Rockoff; Michael D. Bordo

    1996-01-01

    In this paper we argue that adherence to the gold standard rule of convertibility of national currencies into a fixed weight of gold served as `a good housekeeping seal of approval' which facilitated access by peripheral countries to foreign capital from the core countries of western Europe. We survey the historical background of gold standard adherence in the period 1870-1914 by nine important peripheral countries. The sample includes the full range of commitment to the gold standard from co...

  18. Natural gold composition studied by proton activation analysis (PAA)

    International Nuclear Information System (INIS)

    Cojocaru, V.; Badica, T.; Popescu, I.V.

    2003-01-01

    The minor and trace element concentration of natural gold is essential for provenance studies of gold archaeological artifacts. In this work proton activation analysis is used in order to find what elements can be put into evidence in natural gold. For that purpose some gold nuggets from Romania were used. It was found that PAA is a good supplemental method to neutron activation analysis. (authors)

  19. Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; De Souza, Patricia Coutinho; Henry, Leah; Lupu, Florea; Silasi-Mansat, Robert; Ehrenshaft, Marilyn; Mason, Ronald P; Gomez-Mejiba, Sandra E; Ramirez, Dario C

    2013-12-01

    Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (pfree radicals from a glioma model. © 2013.

  20. ImmunoPEGliposome-mediated reduction of blood and brain amyloid levels in a mouse model of Alzheimer's disease is restricted to aged animals

    DEFF Research Database (Denmark)

    Ordóñez-Gutiérrez, Lara; Posado-Fernández, Adrián; Ahmadvand, Davoud

    2017-01-01

    ) and THP-1 phagocytes (stimulating uptake) was confirmed in vitro. The multivalent immunoliposomes dramatically reduced circulating and brain levels of Aβ1-40, and particularly Aβ1-42, in "aged" (16 month-old), but not "adult" (10 month-old) APP/PS1 transgenic mice on repeated intraperitoneal......The accumulation of extracellular amyloid-beta (Aβ) and intracellular neurofibrillary tangles (hyper-phosphorylated Tau) in the brain are two major neuropathological hallmarks of Alzheimer's disease (AD). Active and passive immunotherapy may limit cerebral Aβ deposition and/or accelerate its...... clearance. With the aid of a newly characterized monoclonal anti-Aβ antibody we constructed immunoPEGliposomes with high avidity for capturing Aβ in the periphery. The functionality of these vesicles in modulating Aβ uptake by both human brain capillary endothelial hCMEC/D3 cells (suppressing uptake...

  1. Gamma-ray induced DNA breaks and repair studied by immuno-labelling of poly(ADP-ribose) polymerase (PARP) in chinese hamster ovary cells (CHO)

    International Nuclear Information System (INIS)

    Bidon, N.; Noel, G.; Averbeck, D.; Varlet, P.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly(ADP-ribose)polymerase is a nuclear ubiquitous enzyme capable of binding to DNA breaks. Chinese hamster ovary cells were (CHO-K1) cultured on slides and γ-irradiated ( 137 Cs) at a high (12.8 Gy/min) or medium dose rate (5 Gy/min), and immuno-labelling against (ADP-ribose) polymers immediately or three hours after irradiation. Quantification and localisation of γ-ray induced breaks was performed by confocal microscopy. The results show a dose effect relationship, a dose-rate effect and the signal disappearance after 3 hours at 37 deg.C. The presence of PARP activity appears to reflect γ-rays induced DNA fragmentation. (authors)

  2. Radiation-induced DNA breaks detected by immuno labelling of poly(ADP-ribose) in CHO cells. Standardization by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Varlet, P.; Bidon, N.; Noel, G.; Averbeck, D.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos)ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immuno-labelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation. (authors)

  3. The study of antiviral activity of the dietary supplement «Immuno-viral with vitamin C» against influenza A/Victoria virus strains

    Directory of Open Access Journals (Sweden)

    Ганна Сергіївна Шумова

    2016-01-01

    Full Text Available The implementation of combined remedies, having in their composition herbal material, that shows anti-inflammatory, antibacterial, antiviral, restorative, and immunotropic action, is one of promising directions in the search of effective agents for acute respiratory infections prevention and treatment.Aim. The purpose of our research was to determine antiviral activity of the dietary supplement «Immuno-viral with Vitamin C» in the form of hard capsules against influenza A/Victoria virus strains.Methods. Classic virological method of chick embryos contamination in the chorioallantoic membrane, immunofluorescence method for the obtained virus identification, and neutralization reaction in chick embryos has been used.Results. It has been determined that the dietary supplement components were non-toxic for chick embryos in dilution of 1:10 to 1:80; had antiviral activity against influenza A/Victoria prototype virus strain in dilution of 1:10 to 1:20; lethal toxic dose in dilution of 1:40. After administration of influenza A/Victoria prototype virus strain in chick embryos without incubation with the test remedy (passaging, the medicinal agent retained its initial properties, confirmed by infected embryo cells fluorescence and the further study of the subcultered strain in the inhibition hemagglutination test with chick erythrocytes.Conclusion. As a result of the carried out in experiment neutralization reaction in 9–11 days chick embryos by the method of contamination in the chorioallantoic membrane with further visualization and identification of material, containing the virus, by the immunofluorescence method of the infected cells specific fluorescence, antiviral properties of the dietary supplement «Immuno-viral with Vitamin C» components have been determined

  4. Modelling spatial anisotropy of gold concentration data using GIS ...

    Indian Academy of Sciences (India)

    Linear trends of anomalously high gold values in the Florida Canyon gold deposit, Nevada have been identified using a combination of contour maps of gold (Au) concentration developed with a geographic information system (GIS) and variogram maps created using a geostatistical analysis package. These linear trends ...

  5. Benchmarking Density Functionals for Chemical Bonds of Gold

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    data set probes all types of bonding to gold from very electronegative halides that force Au+ electronic structure, via covalently bonded systems, hard and soft Lewis acids and bases that either work against or complement the softness of gold, the Au2 molecule probing gold's bond with itself, and weak...

  6. Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry

    International Nuclear Information System (INIS)

    Dykman, Lev A; Bogatyrev, Vladimir A

    2007-01-01

    The review summarises data on the synthesis and functionalisation of gold nanoparticles and their applications in biological investigations. Particular attention is given to applications of colloidal gold in solid-phase assays, immunoassay and studies of biologically active compounds by vibrational spectroscopy. A special section deals with the use of gold nanoparticles as antigen carriers in immunisation.

  7. Controlled synthesis and optical properties of pure gold nanoparticles

    NARCIS (Netherlands)

    Singh, A.K.; Rai, A.K.; Bicanic, D.D.

    2009-01-01

    Gold nanoparticles were synthesized by laser ablation of a gold metallic disc at wavelengths of 532 nm and 355 nm with 7 ns pulse duration in the pure water. The colloidal gold nanoparticles were characterized by ultraviolet-visible absorption spectroscopy, transmission electron microscopy, and

  8. Crystal growth, structure and phase studies on gold halides

    NARCIS (Netherlands)

    Janssen, Eugenius Maria Wilhelmus Janssen

    1977-01-01

    Only very corrosive substances attack gold, the most noble metal. In this study the reactivity and the phase diagrams of gold with the halogens chlorine, bromine and iodine have been investigated. owing to the noble behaviour of gold, its halides are sensitive to heat; on heating they decompose into

  9. Preg-robbing of Gold by Carbonaceous Materials Encountered in ...

    African Journals Online (AJOL)

    Processing of gold from refractory ores containing carbonaceous materials (CM) poses challenges due to the ability of the CM to preg-rob dissolved gold. Depending on the type and maturity of CM encountered, preg-robbing of aurocyanide ion can lead to reduction in gold recovery ranging from a few percentages to more ...

  10. 76 FR 60355 - Gold Star Mother's and Family's Day, 2011

    Science.gov (United States)

    2011-09-28

    ... Gold Star Mother's and Family's Day, 2011 By the President of the United States of America A... grief their families carry we can never fully know. Gold Star mothers and families know the immeasurable... inspired by their strength and determination. Through heartbreaking loss, our Gold Star families continue...

  11. 75 FR 60283 - Gold Star Mother's and Families' Day, 2010

    Science.gov (United States)

    2010-09-29

    ... Gold Star Mother's and Families' Day, 2010 By the President of the United States of America A... recognize the deep loss and great strength of those who share in that ultimate sacrifice: America's Gold... on in the people they loved. Their exceptional spirit of service dwells in the pride of Gold Star...

  12. Effects of Quebracho Tannin on Recovery of Colloidal Gold from ...

    African Journals Online (AJOL)

    Gold occurs in some concessions as submicron particles in pyrite and arsenopyrite, which is processed in a flotation concentration to obtain gold enriched sulphide concentrate. The concentrate is then treated in a biological oxidation step to oxidize the sulphides, liberate the occluded gold and make them amenable for ...

  13. Effects of Quebracho Tannin on Recovery of Colloidal Gold from ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... Gold occurs in some concessions as submicron particles in pyrite and arsenopyrite, which is processed in a flotation concentration to obtain gold enriched sulphide concentrate. The concentrate is then treated in a biological oxidation step to oxidize the sulphides, liberate the occluded gold and make them ...

  14. An experimental study on gold precipitation from leach solutions of ...

    African Journals Online (AJOL)

    This paper presents the results of the study dedicated to the determination of the optimum parameters for the electrolytic gold precipitation from thiourea leach solutions. The leaching was carried out using technogenic gold-bearing raw materials (gold-bearing sands) of the Far East of the Russian Federation. The study ...

  15. Gold-coated nanoparticles for use in biotechnology applications

    Science.gov (United States)

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  16. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    Science.gov (United States)

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 16 CFR 23.4 - Misrepresentation as to gold content.

    Science.gov (United States)

    2010-01-01

    ... unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or the... abbreviation to describe all or part of an industry product composed throughout of an alloy of gold, unless a... designation of the karat fineness of the alloy that is of at least equal conspicuousness as the term used. (6...

  18. Plasmonic and Magnetically Responsive Gold ShellMagnetic Nanorod Hybrids

    Science.gov (United States)

    2017-10-10

    ARL-TR-8182 ● OCT 2017 US Army Research Laboratory Plasmonic and Magnetically Responsive Gold Shell– Magnetic Nanorod Hybrids...Army Research Laboratory Plasmonic and Magnetically Responsive Gold Shell– Magnetic Nanorod Hybrids by Mackenzie G Williams, Devon A Boyne, and...TITLE AND SUBTITLE Plasmonic and Magnetically Responsive Gold Shell– Magnetic Nanorod Hybrids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  19. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys containing 75 percent or greater gold and metals of the platinum group or stainless steel intended to provide...

  20. Invisible gold and arsenic in pyrite from the high-grade Hishikari gold deposit, Japan

    International Nuclear Information System (INIS)

    Morishita, Y.; Shimada, N.; Shimada, K.

    2008-01-01

    Gold occurs as both electrum (a natural alloy of gold and silver) and invisible gold in arsenian pyrite in the Hishikari epithermal gold deposit in Japan. Microanalyses of arsenian pyrite from the deposit using secondary ion mass spectrometry (SIMS) and electron probe microanalysis (EPMA) revealed that Au concentrations (0.1-2600 ppm) are positively correlated with As concentrations (0.0-6.1%). A small (3 μm) area of pyrite was analyzed because the sample textures were fine and complicated. The Au/As ratio is high in the Sanjin ore zone, which has very high-grade veins, while the ratio is low in the Yamada ore zone, which has average-grade veins