WorldWideScience

Sample records for immune responses dcs

  1. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs.

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-09-15

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.

  2. CD8+NKT-like cells regulate the immune response by killing antigen-bearing DCs

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-01-01

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8+NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8+NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8+NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8+NKT-like cell development is normal in CD1d−/− mice, which suggests that CD8+NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8+NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8+NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8+NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens. PMID:26369936

  3. A unique dermal dendritic cell subset that skews the immune response toward Th2.

    Directory of Open Access Journals (Sweden)

    Ryuichi Murakami

    Full Text Available Dendritic cell (DC subsets in the skin and draining lymph nodes (LNs are likely to elicit distinct immune response types. In skin and skin-draining LNs, a dermal DC subset expressing macrophage galactose-type C-type lectin 2 (MGL2/CD301b was found distinct from migratory Langerhans cells (LCs or CD103(+ dermal DCs (dDCs. Lower expression levels of Th1-promoting and/or cross-presentation-related molecules were suggested by the transcriptome analysis and verified by the quantitative real-time PCR analysis in MGL2(+ dDCs than in CD103(+ dDCs. Transfer of MGL2(+ dDCs but not CD103(+ dDCs from FITC-sensitized mice induced a Th2-type immune response in vivo in a model of contact hypersensitivity. Targeting MGL2(+ dDCs with a rat monoclonal antibody against MGL2 efficiently induced a humoral immune response with Th2-type properties, as determined by the antibody subclass. We propose that the properties of MGL2(+ dDCs, are complementary to those of CD103(+ dDCs and skew the immune response toward a Th2-type response.

  4. Neonatal plasmacytoid dendritic cells (pDCs display subset variation but can elicit potent anti-viral innate responses.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    Full Text Available Neonates are highly susceptible to infectious diseases and defective antiviral pDC immune responses have been proposed to contribute to this phenomenon. Isolated cord blood pDCs innately responded to a variety of TLR7 and TLR9 dependent viruses, including influenza A virus (IAV, human immunodeficiency virus (HIV or herpes-simplex virus (HSV by efficiently producing IFN-α, TNF-α as well as chemokines. Interestingly, following activation by CpGA, but not viruses, cord pDCs tend to survive less efficiently. We found that a hallmark of pDCs in neonates is an extended CD2+pDCs compartment compared to adult pDCs without affecting the antiviral IFN-α response. Within CD2+pDCs, we identified a subpopulation expressing CD5 and responsible for IL-12p40 production, however this population is significantly decreased in cord blood compared to adult blood. Therefore, neonatal pDCs clearly display variation in phenotype and subset composition, but without major consequences for their antiviral responses.

  5. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  6. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Botros B. Shenoda

    2016-01-01

    Full Text Available Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.

  7. Effects of High-Definition and Conventional tDCS on Response Inhibition.

    Science.gov (United States)

    Hogeveen, J; Grafman, J; Aboseria, M; David, A; Bikson, M; Hauner, K K

    2016-01-01

    Response inhibition is a critical executive function, enabling the adaptive control of behavior in a changing environment. The inferior frontal cortex (IFC) is considered to be critical for response inhibition, leading researchers to develop transcranial direct current stimulation (tDCS) montages attempting to target the IFC and improve inhibitory performance. However, conventional tDCS montages produce diffuse current through the brain, making it difficult to establish causality between stimulation of any one given brain region and resulting behavioral changes. Recently, high-definition tDCS (HD-tDCS) methods have been developed to target brain regions with increased focality relative to conventional tDCS. Remarkably few studies have utilized HD-tDCS to improve cognitive task performance, however, and no study has directly compared the behavioral effects of HD-tDCS to conventional tDCS. In the present study, participants received either HD-tDCS or conventional tDCS to the IFC during performance of a response inhibition task (stop-signal task, SST) or a control task (choice reaction time task, CRT). A third group of participants completed the same behavioral protocols, but received tDCS to a control site (mid-occipital cortex). Post-stimulation improvement in SST performance was analyzed as a function of tDCS group and the task performed during stimulation using both conventional and Bayesian parameter estimation analyses. Bayesian estimation of the effects of HD- and conventional tDCS to IFC relative to control site stimulation demonstrated enhanced response inhibition for both conditions. No improvements were found after control task (CRT) training in any tDCS condition. Results support the use of both HD- and conventional tDCS to the IFC for improving response inhibition, providing empirical evidence that HD-tDCS can be used to facilitate performance on an executive function task. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Immune responses of mature chicken bone-marrow-derived dendritic cells infected with Newcastle disease virus strains with differing pathogenicity.

    Science.gov (United States)

    Xiang, Bin; Zhu, Wenxian; Li, Yaling; Gao, Pei; Liang, Jianpeng; Liu, Di; Ding, Chan; Liao, Ming; Kang, Yinfeng; Ren, Tao

    2018-06-01

    Infection of chickens with virulent Newcastle disease virus (NDV) is associated with severe pathology and increased morbidity and mortality. The innate immune response contributes to the pathogenicity of NDV. As professional antigen-presenting cells, dendritic cells (DCs) play a unique role in innate immunity. However, the contribution of DCs to NDV infection has not been investigated in chickens. In this study, we selected two representative NDV strains, i.e., the velogenic NDV strain Chicken/Guangdong/GM/2014 (GM) and the lentogenic NDV strain La Sota, to investigate whether NDVs could infect LPS-activated chicken bone-derived marrow DCs (mature chicken BM-DCs). We compared the viral titres and innate immune responses in mature chicken BM-DCs following infection with those strains. Both NDV strains could infect mature chicken BM-DC, but the GM strain showed stronger replication capacity than the La Sota strain in mature chicken BM-DCs. Gene expression profiling showed that MDA5, LGP2, TLR3, TLR7, IFN-α, IFN-β, IFN-γ, IL-1β, IL-6, IL-18, IL-8, CCL5, IL-10, IL-12, MHC-I, and MHC-II levels were altered in mature DCs after infection with NDVs at all evaluated times postinfection. Notably, the GM strain triggered stronger innate immune responses than the La Sota strain in chicken BM-DCs. However, both strains were able to suppress the expression of some cytokines, such as IL-6 and IFN-α, in mature chicken DCs at 24 hpi. These data provide a foundation for further investigation of the role of chicken DCs in NDV infection.

  9. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    Science.gov (United States)

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  10. The role of radiotherapy for the induction of antitumor immune responses

    International Nuclear Information System (INIS)

    Multhoff, G.; Helmholtz-Zentrum Muenchen; Gaipl, U.S.; Niedermann, G.

    2012-01-01

    Effective radiotherapy is aimed to control the growth of the primary carcinoma and to induce a long-term specific antitumor immune response against the primary tumor, recurrence and metastases. The contribution covers the following issues: T cells and tumor specific immune responses, dendritic cells (DCs) start adaptive immune responses, NK (natural killer) cells for HLA independent tumor control, abscopal effects of radiotherapy, combination of radiotherapy and immune therapy, radiotherapy contribution to the induction of immunogenic cell death, combinability of radiotherapy and DC activation, combinability of radiotherapy and NK cell therapy. It turns out that the combination of radio-chemotherapy and immune therapy can change the microenvironment initiating antitumor immune reactions that inhibit the recurrence risk and the development of metastases.

  11. Efficient Maturation and Cytokine Production of Neonatal DCs Requires Combined Proinflammatory Signals

    Directory of Open Access Journals (Sweden)

    Doreen Krumbiegel

    2005-01-01

    Full Text Available Specific functional properties of dendritic cells (DCs have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs. Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNγ, CD40L, TNFα, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86. Combinations of proinflammatory mediators also increased cytokine secretion by neonatal DCs. Especially combined stimulation with LPS and IFNγ proved to be very efficient in inducing maturation and cytokine synthesis of neonatal DCs. In conclusion, neonatal DCs can be stimulated to express maturation as well as costimulatory surface molecules. However, induction of maturation requires combined stimulation with multiple proinflammatory signals.

  12. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    Science.gov (United States)

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs.

    Science.gov (United States)

    Mou, Chunxiao; Zhu, Liqi; Xing, Xianping; Lin, Jian; Yang, Qian

    2016-07-01

    Transmissible gastroenteritis (TGE) causes severe diarrhea in suckling piglets, results in enormous economic loss in swine-producing areas of the world. To develop an effective, safe, and convenient vaccine for the prevention of TGE, we have constructed a recombinant Bacillus subtilis strain (B. subtilis CotGSG) displaying the transmissible gastroenteritis virus (TGEV) spike (S) protein and discussed its immune function to intestinal submucosal dendritic cells (DCs). Our results showed that the recombinant B. subtilis had the ability to recruit more DCs to sample B. subtilis CotGSG, migrate to MLNs, and induce immune responses. Immunized piglets with B. subtilis CotGSG could significantly elevate the specific SIgA titers in feces, IgG titers and neutralizing antibodies in serum. Collectively, our results suggested that recombinant B. subtilis CotGSG expressing the TGEV S protein could effectively induce immune responses via DCs, and provided a perspective on potential novel strategy and approach that may be applicable to the development of the next generation of TGEV vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. SjCRT, a recombinant Schistosoma japonicum calreticulin, induces maturation of dendritic cells and a Th1-polarized immune response in mice

    Directory of Open Access Journals (Sweden)

    Lizhen Ma

    2017-11-01

    Full Text Available Abstract Background It is well known that immunization of radiation-attenuated (RA schistosoma cercariae or schistosomula can induce high levels of protective immunity against schistosoma cercariae reinfection in many animals. Many studies have shown that the Th1 cellular immune response is crucial for the protective effect elicited by RA schistosomula. However, the molecular mechanism of this strong protective immunity remains unclear. Methods The expression profiles of Schistosoma japonicum calreticulin (SjCRT in RA and normal schistosoma-derived cells were investigated by flow cytometry. The effect of recombinant SjCRT (rSjCRT on mouse dendritic cells (DCs was determined by FACS, ELISA and RT-PCR analysis. We also analyzed the effects of SjCRT on the activation of spleen cells from mice immunized with rSjCRT by detecting lymphocyte proliferation and the cytokine profiles of splenocytes. Results We found that the expression level of SjCRT in the cells from RA larvae was significantly higher than that in cells from normal schistosomula at early stages of development (day 4. The results of effect of rSjCRT on mouse DCs showed that rSjCRT could induce phenotypic and functional maturation of DCs, and SjCRT bound to the surface of DCs through the CD91 receptor and could be engulfed by DCs. The results of activation of splenocytes from mice immunized with rSjCRT also demonstrate that rSjCRT can effectively stimulate the proliferative response of splenic lymphocytes, elicit splenocytes from immunized mice to secrete high levels of IFN-γ, TNF-α and IL-4, and activate CD4+ T cells to produce high levels of IFN-γ. Conclusion SjCRT is one of the immunostimulatory molecules released from RA schistosomula cells, might play a crucial role in conferring a Th1-polarized immune response induced by RA cercariae/schistosomula in mice, and is a candidate molecule responsible for the high levels of protective immunity induced by RA schistosomula.

  15. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system.

    Science.gov (United States)

    Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan

    2017-10-27

    TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Antigen Cross-Presentation of Immune Complexes

    Science.gov (United States)

    Platzer, Barbara; Stout, Madeleine; Fiebiger, Edda

    2014-01-01

    The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α+ DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8+ T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8− DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets. PMID:24744762

  17. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Hyang-Mi Lee

    2015-02-01

    Full Text Available IFNγ signaling drives dendritic cells (DCs to promote type I T cell (Th1 immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.

  18. Clinical predictors of acute response to transcranial direct current stimulation (tDCS) in major depression.

    Science.gov (United States)

    D'Urso, Giordano; Dell'Osso, Bernardo; Rossi, Rodolfo; Brunoni, Andre Russowsky; Bortolomasi, Marco; Ferrucci, Roberta; Priori, Alberto; de Bartolomeis, Andrea; Altamura, Alfredo Carlo

    2017-09-01

    Transcranial direct current stimulation (tDCS) is a promising neuromodulation intervention for poor-responding or refractory depressed patients. However, little is known about predictors of response to this therapy. The present study aimed to analyze clinical predictors of response to tDCS in depressed patients. Clinical data from 3 independent tDCS trials on 171 depressed patients (including unipolar and bipolar depression), were pooled and analyzed to assess predictors of response. Depression severity and the underlying clinical dimensions were measured using the Hamilton Depression Rating Scale (HDRS) at baseline and after the tDCS treatment. Age, gender and diagnosis (bipolar/unipolar depression) were also investigated as predictors of response. Linear mixed models were fitted in order to ascertain which HDRS factors were associated with response to tDCS. Age, gender and diagnosis did not show any association with response to treatment. The reduction in HDRS scores after tDCS was strongly associated with the baseline values of "Cognitive Disturbances" and "Retardation" factors, whilst the "Anxiety/Somatization" factor showed a mild association with the response. Open-label design, the lack of control group, and minor differences in stimulation protocols. No differences in response to tDCS were found between unipolar and bipolar patients, suggesting that tDCS is effective for both conditions. "Cognitive disturbance", "Retardation", and "Anxiety/Somatization", were identified as potential clinical predictors of response to tDCS. These findings point to the pre-selection of the potential responders to tDCS, therefore optimizing the clinical use of this technique and the overall cost-effectiveness of the psychiatric intervention for depressed patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. OX62+OX6+OX35+ rat dendritic cells are unable to prime CD4+ T cells for an effective immune response following acute burn injury.

    Science.gov (United States)

    Fazal, Nadeem

    2013-01-01

    Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury.

  20. OX62+OX6+OX35+ rat dendritic cells are unable to prime CD4+ T cells for an effective immune response following acute burn injury☆

    Science.gov (United States)

    Fazal, Nadeem

    2013-01-01

    Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury

  1. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP).

    Science.gov (United States)

    Zou, Yaxuan; Meng, Jingjuan; Chen, Wenna; Liu, Jingling; Li, Xuan; Li, Weiwei; Lu, Changlong; Shan, Fengping

    2011-08-01

    There are a large number of interactions at molecular and cellular levels between the plant polysaccharides and immune system. Plant polysaccharides present an interesting effects as immunomodulators, particularly in the induction of the cells both in innate and adaptive immune systems. Activation of DCs could improve antitumoral responses usually diminished in cancer patients, and natural adjuvants provide a possibility of inducing this activation. ABP is a purified polysaccharide isolated from Achyranthes bidentata, a traditional Chinese medicine (TCM). The aim of this study is to investigate modulation of phenotypic and functional maturation of murine DCs by ABP. Both phenotypic and functional activities were assessed with use of conventional scanning electronic microscopy (SEM) for the morphology of the DC, transmitted electron microscopy (TEM) for intracellular lysosomes inside the DC, cellular immunohistochemistry for phagocytosis by the DCs, flow cytometry (FCM) for the changes in key surface molecules, bio-assay for the activity of acidic phosphatases (ACP), and ELISA for the production of pro-inflammatory cytokine IL-12. In fact, we found that purified ABP induced phenotypic maturation revealed by increased expression of CD86, CD40, and MHC II. Functional experiments showed the down-regulation of ACP inside DCs (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). Finally, ABP increased the production of IL-12. These data reveal that ABP promotes effective activation of murine DCs. This adjuvant-like activity may have therapeutic applications in clinical settings where immune responses need boosting. It is therefore concluded that ABP can exert positive modulation to murine DCs. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells

    Science.gov (United States)

    Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent GH; Peng, Qian; Sioud, Mouldy

    2015-01-01

    Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies. PMID:26185907

  3. Culture supernatants of oral cancer cells induce impaired IFN-α production of pDCs partly through the down-regulation of TLR-9 expression.

    Science.gov (United States)

    Han, Nannan; Zhang, Zun; Jv, Houyu; Hu, Jingzhou; Ruan, Min; Zhang, Chenping

    2018-06-05

    The aim of the present study was to investigate whether tumor-derived supernatants down-regulate the immune function of plasmacytoid dendritic cells (pDCs) in oral cancer and the potential molecular mechanisms of this effect. Immunohistochemistry (IHC) and flow cytometry were used to detect tumor-infiltrating and peripheral blood pDCs. MTS and flow cytometry were employed to evaluate the immune response of CD4 + T cells. Real-time PCR and ELISA assays were used to identify TLR-7 and TLR-9 expression, IFN-α production and tumor-secreted soluble cytokines. The proportion of pDCs (0.121%±0.043%) was significantly higher in Oral squamous cell carcinoma (OSCC) samples than in normal tissue (0.023%±0.016%) (P = 0.021). TLR9 mRNA was significantly lower in tumor-infiltrating pDCs and positively correlated to low IFN-α production (r = 0.956; Poral cancer cells negatively regulated TLR9 mRNA expression and the subsequent IFN-α production of pDCs, which inhibited the immune response of CD4 + T cells. The neutralizing antibodies blocking assay showed that the specific inhibitory effect of pDC functionality was associated with the soluble fraction of the oral cancer environment, which is mainly mediated by IL-10 and TGF-β cooperation. Tumor-derived supernatants may impair the function of tumor-infiltrating pDCs, which subsequently decreases the immune response of CD4 + T cells in human oral cancer through TGF-β- and IL-10- dependent mechanisms. Careful manipulation of these impaired pDCs may help develop an important alternative immunotherapy for the treatment of oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Willem van Eden

    2017-11-01

    Full Text Available Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.

  5. MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens.

    Science.gov (United States)

    Thomas, S Y; Whitehead, G S; Takaku, M; Ward, J M; Xu, X; Nakano, K; Lyons-Cohen, M R; Nakano, H; Gowdy, K M; Wade, P A; Cook, D N

    2018-05-01

    Sensitization to inhaled allergens is dependent on activation of conventional dendritic cells (cDCs) and on the adaptor molecule, MyD88. However, many cell types in the lung express Myd88, and it is unclear how signaling in these different cell types reprograms cDCs and leads to allergic inflammation of the airway. By combining ATAC-seq with RNA profiling, we found that MyD88 signaling in cDCs maintained open chromatin at select loci even at steady state, allowing genes to be rapidly induced during allergic sensitization. A distinct set of genes related to metabolism was indirectly controlled in cDCs through MyD88 signaling in airway epithelial cells (ECs). In mouse models of asthma, Myd88 expression in ECs was critical for eosinophilic inflammation, whereas Myd88 expression in cDCs was required for Th17 cell differentiation and consequent airway neutrophilia. Thus, both cell-intrinsic and cell-extrinsic MyD88 signaling controls gene expression in cDCs and orchestrates immune responses to inhaled allergens.

  6. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells.

    Science.gov (United States)

    Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian

    2017-01-01

    Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  7. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Joanna Bandoła

    2017-08-01

    Full Text Available Plasmacytoid dendritic cells (pDCs regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR by the antigen-presenting pDCs, mediated by toll-like receptor (TLR 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  8. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  9. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities.

    Science.gov (United States)

    Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K

    2015-01-01

    Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  10. Delayed plastic responses to anodal tDCS in older adults

    Directory of Open Access Journals (Sweden)

    Hakuei eFujiyama

    2014-06-01

    Full Text Available Despite the abundance of research reporting the neurophysiological and behavioral effects of transcranial direct current stimulation (tDCS in healthy young adults and clinical populations, the extent of potential neuroplastic changes induced by tDCS in healthy older adults is not well understood. The present study compared the extent and time course of anodal tDCS-induced plastic changes in primary motor cortex (M1 in young and older adults. Furthermore, as it has been suggested that neuroplasiticity and associated learning depends on the brain-derived neurotrophic factor (BDNF gene polymorphisms, we also assessed the impact of BDNF polymorphism on these effects. Corticospinal excitability was examined using transcranial magnetic stimulation before and following (0, 10, 20, 30 min anodal tDCS (30 min, 1 mA or sham in young and older adults. While the overall extent of increases in corticospinal excitability induced by anodal tDCS did not vary reliably between young and older adults, older adults exhibited a delayed response; the largest increase in corticospinal excitability occurred 30 min following stimulation for older adults, but immediately post-stimulation for the young group. BDNF genotype did not result in significant differences in the observed excitability increases for either age group. The present study suggests that tDCS-induced plastic changes are delayed as a result of healthy aging, but that the overall efficacy of the plasticity mechanism remains unaffected.

  11. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  12. The human metapneumovirus matrix protein stimulates the inflammatory immune response in vitro.

    Directory of Open Access Journals (Sweden)

    Audrey Bagnaud-Baule

    Full Text Available Each year, during winter months, human Metapneumovirus (hMPV is associated with epidemics of bronchiolitis resulting in the hospitalization of many infants. Bronchiolitis is an acute illness of the lower respiratory tract with a consequent inflammation of the bronchioles. The rapid onset of inflammation suggests the innate immune response may have a role to play in the pathogenesis of this hMPV infection. Since, the matrix protein is one of the most abundant proteins in the Paramyxoviridae family virion, we hypothesized that the inflammatory modulation observed in hMPV infected patients may be partly associated with the matrix protein (M-hMPV response. By western blot analysis, we detected a soluble form of M-hMPV released from hMPV infected cell as well as from M-hMPV transfected HEK 293T cells suggesting that M-hMPV may be directly in contact with antigen presenting cells (APCs during the course of infection. Moreover, flow cytometry and confocal microscopy allowed determining that M-hMPV was taken up by dendritic cells (moDCs and macrophages inducing their activation. Furthermore, these moDCs enter into a maturation process inducing the secretion of a broad range of inflammatory cytokines when exposed to M-hMPV. Additionally, M-hMPV activated DCs were shown to stimulate IL-2 and IFN-γ production by allogeneic T lymphocytes. This M-hMPV-mediated activation and antigen presentation of APCs may in part explain the marked inflammatory immune response observed in pathology induced by hMPV in patients.

  13. Innate immune response of human plasmacytoid dendritic cells to poxvirus infection is subverted by vaccinia E3 via its Z-DNA/RNA binding domain.

    Directory of Open Access Journals (Sweden)

    Hua Cao

    Full Text Available Plasmacytoid dendritic cells (pDCs play important roles in antiviral innate immunity by producing type I interferon (IFN. In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i vaccinia virus, but not myxoma virus, expresses inhibitor(s of the poxvirus sensing pathway(s in pDCs; and (ii Heat-VAC infection fails to produce inhibitor(s but rather produces novel activator(s, likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029 lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating

  14. Innate Immune Response of Human Plasmacytoid Dendritic Cells to Poxvirus Infection Is Subverted by Vaccinia E3 via Its Z-DNA/RNA Binding Domain

    Science.gov (United States)

    Dai, Peihong; Wang, Weiyi; Li, Hao; Yuan, Jianda; Wang, Fangjin; Fang, Chee-Mun; Pitha, Paula M; Liu, Jia; Condit, Richard C; McFadden, Grant; Merghoub, Taha; Houghton, Alan N; Young, James W; Shuman, Stewart; Deng, Liang

    2012-01-01

    Plasmacytoid dendritic cells (pDCs) play important roles in antiviral innate immunity by producing type I interferon (IFN). In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h) gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i) vaccinia virus, but not myxoma virus, expresses inhibitor(s) of the poxvirus sensing pathway(s) in pDCs; and (ii) Heat-VAC infection fails to produce inhibitor(s) but rather produces novel activator(s), likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029) lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating properties of

  15. No Effects of Bilateral tDCS over Inferior Frontal Gyrus on Response Inhibition and Aggression.

    Directory of Open Access Journals (Sweden)

    Franziska Dambacher

    Full Text Available Response inhibition is defined as the capacity to adequately withdraw pre-planned responses. It has been shown that individuals with deficits in inhibiting pre-planned responses tend to display more aggressive behaviour. The prefrontal cortex is involved in both, response inhibition and aggression. While response inhibition is mostly associated with predominantly right prefrontal activity, the neural components underlying aggression seem to be left-lateralized. These differences in hemispheric dominance are conceptualized in cortical asymmetry theories on motivational direction, which assign avoidance motivation (relevant to inhibit responses to the right and approach motivation (relevant for aggressive actions to the left prefrontal cortex. The current study aimed to directly address the inverse relationship between response inhibition and aggression by assessing them within one experiment. Sixty-nine healthy participants underwent bilateral transcranial Direct Current Stimulation (tDCS to the inferior frontal cortex. In one group we induced right-hemispheric fronto-cortical dominance by means of a combined right prefrontal anodal and left prefrontal cathodal tDCS montage. In a second group we induced left-hemispheric fronto-cortical dominance by means of a combined left prefrontal anodal and right prefrontal cathodal tDCS montage. A control group received sham stimulation. Response inhibition was assessed with a go/no-go task (GNGT and aggression with the Taylor Aggression Paradigm (TAP. We revealed that participants with poorer performance in the GNGT displayed more aggression during the TAP. No effects of bilateral prefrontal tDCS on either response inhibition or aggression were observed. This is at odds with previous brain stimulation studies applying unilateral protocols. Our results failed to provide evidence in support of the prefrontal cortical asymmetry model in the domain of response inhibition and aggression. The absence of tDCS

  16. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    International Nuclear Information System (INIS)

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P.

    2009-01-01

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45 high CD11b + ) and CD8 + T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8 + T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  17. Role and contribution of pulmonary CD103+ dendritic cells in the adaptive immune response to Mycobacterium tuberculosis.

    Science.gov (United States)

    Koh, Vanessa Hui Qi; Ng, See Liang; Ang, Michelle Lay Teng; Lin, Wenwei; Ruedl, Christiane; Alonso, Sylvie

    2017-01-01

    Despite international control programmes, the global burden of tuberculosis remains enormous. Efforts to discover novel drugs have largely focused on targeting the bacterium directly. Alternatively, manipulating the host immune response may represent a valuable approach to enhance immunological clearance of the bacilli, but necessitates a deeper understanding of the immune mechanisms associated with protection against Mycobacterium tuberculosis infection. Here, we examined the various dendritic cells (DC) subsets present in the lung and draining lymph nodes (LN) from mice intra-tracheally infected with M. tuberculosis. We showed that although limited in number, pulmonary CD103 + DCs appeared to be involved in the initial transport of mycobacteria to the draining mediastinal LN and subsequent activation of T cells. Using CLEC9A-DTR transgenic mice enabling the inducible depletion of CD103 + DCs, we established that this DC subset contributes to the control of mycobacterial burden and plays a role in the early activation of T cells, in particular CD8 + T cells. Our findings thus support a previously unidentified role for pulmonary CD103 + DCs in the rapid mobilization of mycobacteria from the lungs to the draining LN soon after exposure to M. tuberculosis, which is a critical step for the development of the host adaptive immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Polymer nanoparticles for cross-presentation of exogenous antigens and enhanced cytotoxic T-lymphocyte immune response

    Directory of Open Access Journals (Sweden)

    Song C

    2016-08-01

    Full Text Available Chanyoung Song,* Young-Woock Noh,* Yong Taik Lim SKKU Advanced Institute of Nanotechnology (SAINT, School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea *These authors contributed equally to this work Abstract: Effective induction of an antigen-specific cytotoxic T lymphocyte (CTL immune response is one of the key goals of cancer immunotherapy. We report the design and fabrication of polyethylenimine (PEI-coated polymer nanoparticles (NPs as efficient antigen-delivery carriers that can induce antigen cross-presentation and a strong CTL response. After synthesis of poly(d,l-lactide-co-glycolide (PLGA NPs containing ovalbumin (OVA by the double-emulsion solvent-evaporation method, cationic-charged PLGA NPs were generated by coating them with PEI. In a methyl tetrazolium salt assay, no discernible cytotoxic effect of PEI-coated PLGA (OVA NPs was observed. The capacity and mechanism of PEI-coated PLGA (OVA NPs for antigen delivery and cross-presentation on dendritic cells (DCs were determined by fluorescence microscopy and flow cytometry. PEI-coated PLGA (OVA NPs were internalized efficiently via phagocytosis or macropinocytosis in DCs and induced efficient cross-presentation of the antigen on MHC class I molecules via both endosome escape and a lysosomal processing mechanism. The DCs treated with PEI-coated PLGA (OVA NPs induced a release of IL-2 cytokine from OVA-specific CD8-OVA1.3 T cells more efficiently than DCs treated with PLGA (OVA NPs. Therefore, the PEI-coated PLGA (OVA NPs can induce antigen cross-presentation and are expected to be used for induction of a strong CTL immune response and for efficient anticancer immunotherapy. Keywords: antigen delivery, dendritic cells, polymer NPs, vaccine, cross-presentation

  19. Immune Recognition of Latency-insitigating Pathogens by Human Dendritic Cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov

    for society. Consequently there is a pressing need to search for new treatment strategies. Nowadays it is known that HIV-1 and Mtb have acquired the ability to escape the removal from the body by exploiting the immune system for their own benefits. Dendritic cells (DCs) determine the way the immune response......Latent infections with the human pathogenic microorganisms Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) are creating some of the most devastating pandemics to date, with great impact on the infected people’s lives, their expected lifetime, as well as general costs...... unfolds by signaling other immune cells how to respond. An early deregulation of the DCs may therefore propagate into detrimental effects in later stages of the immune response, and may permit HIV-1 and Mtb to become latent. Hence, understanding the way HIV-1 and Mtb interacts with DCs could lead to novel...

  20. Trichomonas vaginalis α-Actinin 2 Modulates Host Immune Responses by Inducing Tolerogenic Dendritic Cells via IL-10 Production from Regulatory T Cells.

    Science.gov (United States)

    Lee, Hye-Yeon; Kim, Juri; Ryu, Jae-Sook; Park, Soon-Jung

    2017-08-01

    Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.

  1. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS: challenges for brain-state dependent tDCS

    Directory of Open Access Journals (Sweden)

    Anirban eDutta

    2015-08-01

    Full Text Available Transcranial direct current stimulation (tDCS has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG. Respective neural activity (energy demand has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF that supplies glucose (energy supply via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS, which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU during tDCS. Therefore, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations for brain-state dependent tDCS.

  2. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  3. Functional connectivity substrates for tDCS response in Minimally Conscious State patients

    Directory of Open Access Journals (Sweden)

    Carlo Cavaliere

    2016-11-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI of 16 sub-acute and chronic MCS patients (6 tDCS responders who successively received a single left dorsolateral prefrontal cortex (DLPFC tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network and default-mode network was performed.TDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus.Our findings suggest that a prior high connectivity with regions belonging to extrinsic control network can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS.

  4. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  5. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  6. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task.

    Science.gov (United States)

    Gözenman, Filiz; Berryhill, Marian E

    2016-08-26

    There is growing interest in non-invasive brain stimulation techniques. A drawback is that the relationship between stimulation and cognitive outcomes for various tasks are unknown. Transcranial direct current stimulation (tDCS) provides diffuse current spread, whereas high-definition tDCS (HD-tDCS) provides more targeted current. The direction of behavioral effects after tDCS can be difficult to predict in cognitive realms such as attention and working memory (WM). Previously, we showed that in low and high WM capacity groups tDCS modulates performance in nearly equal and opposite directions on a change detection task, with improvement for the high capacity participants alone. Here, we used the retro-cue paradigm to test attentional shifting among items in WM to investigate whether WM capacity (WMC) predicted different behavioral consequences during anodal tDCS or HD-tDCS to posterior parietal cortex (PPC). In two experiments, with 24 participants each, we used different stimulus categories (colored circles, letters) and stimulation sites (right, left PPC). The results showed a significant (Experiment 1) or trending (Experiment 2) WMC x stimulation interaction. Compared to tDCS, after HD-tDCS the retro-cueing benefit was significantly greater for the low WMC group but numerically worse for the high WMC group. These data highlight the importance of considering group differences when using non-invasive neurostimulation techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo.

    Science.gov (United States)

    Fukaya, Tomohiro; Murakami, Ryuichi; Takagi, Hideaki; Sato, Kaori; Sato, Yumiko; Otsuka, Haruna; Ohno, Michiko; Hijikata, Atsushi; Ohara, Osamu; Hikida, Masaki; Malissen, Bernard; Sato, Katsuaki

    2012-07-10

    Dendritic cells (DCs) are composed of multiple subsets that play a dual role in inducing immunity and tolerance. However, it is unclear how CD205(+) conventional DCs (cDCs) control immune responses in vivo. Here we generated knock-in mice with the selective conditional ablation of CD205(+) cDCs. CD205(+) cDCs contributed to antigen-specific priming of CD4(+) T cells under steady-state conditions, whereas they were dispensable for antigen-specific CD4(+) T-cell responses under inflammatory conditions. In contrast, CD205(+) cDCs were required for antigen-specific priming of CD8(+) T cells to generate cytotoxic T lymphocytes (CTLs) mediated through cross-presentation. Although CD205(+) cDCs were involved in the thymic generation of CD4(+) regulatory T cells (Tregs), they maintained the homeostasis of CD4(+) Tregs and CD4(+) effector T cells in peripheral and mucosal tissues. On the other hand, CD205(+) cDCs were involved in the inflammation triggered by Toll-like receptor ligand as well as bacterial and viral infections. Upon microbial infections, CD205(+) cDCs contributed to the cross-priming of CD8(+) T cells for generating antimicrobial CTLs to efficiently eliminate pathogens, whereas they suppressed antimicrobial CD4(+) T-cell responses. Thus, these findings reveal a critical role for CD205(+) cDCs in the regulation of T-cell immunity and homeostasis in vivo.

  8. Multi-session transcranial direct current stimulation (tDCS elicits inflammatory and regenerative processes in the rat brain.

    Directory of Open Access Journals (Sweden)

    Maria Adele Rueger

    Full Text Available Transcranial direct current stimulation (tDCS is increasingly being used in human studies as an adjuvant tool to promote recovery of function after stroke. However, its neurobiological effects are still largely unknown. Electric fields are known to influence the migration of various cell types in vitro, but effects in vivo remain to be shown. Hypothesizing that tDCS might elicit the recruitment of cells to the cortex, we here studied the effects of tDCS in the rat brain in vivo. Adult Wistar rats (n = 16 were randomized to either anodal or cathodal stimulation for either 5 or 10 consecutive days (500 µA, 15 min. Bromodeoxyuridine (BrdU was given systemically to label dividing cells throughout the experiment. Immunohistochemical analyses ex vivo included stainings for activated microglia and endogenous neural stem cells (NSC. Multi-session tDCS with the chosen parameters did not cause a cortical lesion. An innate immune response with early upregulation of Iba1-positive activated microglia occurred after both cathodal and anodal tDCS. The involvement of adaptive immunity as assessed by ICAM1-immunoreactivity was less pronounced. Most interestingly, only cathodal tDCS increased the number of endogenous NSC in the stimulated cortex. After 10 days of cathodal stimulation, proliferating NSC increased by ∼60%, with a significant effect of both polarity and number of tDCS sessions on the recruitment of NSC. We demonstrate a pro-inflammatory effect of both cathodal and anodal tDCS, and a polarity-specific migratory effect on endogenous NSC in vivo. Our data suggest that tDCS in human stroke patients might also elicit NSC activation and modulate neuroinflammation.

  9. LILRB4 Decrease on uDCs Exacerbate Abnormal Pregnancy Outcomes Following Toxoplasma gondii Infection

    Directory of Open Access Journals (Sweden)

    Shaowei Zhan

    2018-03-01

    Full Text Available Toxoplasma gondii (T. gondii infection in early pregnancy can result in miscarriage, dead fetus, and other abnormalities. The LILRB4 is a central inhibitory receptor in uterine dendritic cells (uDCs that plays essential immune-regulatory roles at the maternal–fetal interface. In this study, T. gondii-infected human primary uDCs and T. gondii-infected LILRB4-/- pregnant mice were utilized. The immune mechanisms underlying the role of LILRB4 on uDCs were explored in the development of abnormal pregnancy outcomes following T. gondii infection in vitro and in vivo. Our results showed that the expression levels of LILRB4 on uDCs from normal pregnant mice were obviously higher than non-pregnant mice, and peaked in mid-gestation. The LILRB4 expression on uDC subsets, especially tolerogenic subsets, from mid-gestation was obviously down-regulated after T. gondii infection and LILRB4 decrease could further regulate the expression of functional molecules (CD80, CD86, and HLA-DR or MHC II on uDCs, contributing to abnormal pregnancy outcomes. Our results will shed light on the molecular immune mechanisms of uDCs in abnormal pregnancy outcomes by T. gondii infection.

  10. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo

    Science.gov (United States)

    Chu, Derek K.; Jimenez-Saiz, Rodrigo; Verschoor, Christopher P.; Walker, Tina D.; Goncharova, Susanna; Llop-Guevara, Alba; Shen, Pamela; Gordon, Melissa E.; Barra, Nicole G.; Bassett, Jennifer D.; Kong, Joshua; Fattouh, Ramzi; McCoy, Kathy D.; Bowdish, Dawn M.; Erjefält, Jonas S.; Pabst, Oliver; Humbles, Alison A.; Kolbeck, Roland; Waserman, Susan

    2014-01-01

    Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4+/+ or il4−/− eosinophils. Eosinophils controlled CD103+ dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity. PMID:25071163

  11. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses

    International Nuclear Information System (INIS)

    Gao Donghong; Mondal, Tapan K.; Lawrence, David A.

    2007-01-01

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) ± PbCl 2 . At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS ± Pb for 2 days. The day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-α levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway

  12. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection.

    Science.gov (United States)

    Méndez-Samperio, Patricia

    2016-10-01

    Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing.

  13. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

    Science.gov (United States)

    Deng, Liufu; Liang, Hua; Xu, Meng; Yang, Xuanming; Burnette, Byron; Arina, Ainhoa; Li, Xiao-Dong; Mauceri, Helena; Beckett, Michael; Darga, Thomas; Huang, Xiaona; Gajewski, Thomas F; Chen, Zhijian J; Fu, Yang-Xin; Weichselbaum, Ralph R

    2014-11-20

    Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma.

    Science.gov (United States)

    Heimberger, Amy B; Archer, Gary E; Crotty, Laura E; McLendon, Roger E; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2002-01-01

    Dendritic cells (DCs) are specialized cells of the immune system that are capable of generating potent immune responses that are active even within the "immunologically privileged" central nervous system. However, immune responses generated by DCs have also been demonstrated to produce clinically significant autoimmunity. Targeting the epidermal growth factor receptor variant III (EGFRvIII), which is a mutation specific to tumor tissue, could eliminate this risk. The purpose of this study was to demonstrate that DC-based immunizations directed solely against this tumor-specific antigen, which is commonly found on tumors that originate within or metastasize to the brain, could be efficacious. C3H mice were vaccinated with DCs mixed with a keyhole limpet hemocyanin conjugate of the tumor-specific peptide, PEP-3, which spans the EGFRvIII mutation, or the random-sequence peptide, PEP-1, and were intracerebrally challenged with a syngeneic melanoma expressing a murine homologue of EGFRvIII. Systemic immunization with DCs mixed with PEP-3-keyhole limpet hemocyanin generated antigen-specific immunity. Among mice challenged with intracerebral tumors, this resulted in an approximately 600% increase in the median survival time (>300 d, P < 0.0016), relative to control values. Sixty-three percent of mice treated with DCs mixed with the tumor-specific peptide survived in the long term and 100% survived rechallenge with tumor, indicating that antitumor immunological memory was also induced. In a murine melanoma model, immunization with DCs mixed with tumor-specific peptide results in an antigen-specific immunological response that recognizes the EGFRvIII mutation, has potent antitumor efficacy against intracerebral tumors that express EGFRvIII, and results in long-lasting antitumor immunity.

  15. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin

    2012-02-01

    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  16. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis.

    Science.gov (United States)

    Gautier, Emmanuel L; Huby, Thierry; Saint-Charles, Flora; Ouzilleau, Betty; Pirault, John; Deswaerte, Virginie; Ginhoux, Florent; Miller, Elizabeth R; Witztum, Joseph L; Chapman, M John; Lesnik, Philippe

    2009-05-05

    Immunoinflammatory mechanisms are implicated in the atherogenic process. The polarization of the immune response and the nature of the immune cells involved, however, are major determinants of the net effect, which may be either proatherogenic or antiatherogenic. Dendritic cells (DCs) are central to the regulation of immunity, the polarization of the immune response, and the induction of tolerance to antigens. The potential role of DCs in atherosclerosis, however, remains to be defined. We created a mouse model in which the lifespan and immunogenicity of conventional DCs are enhanced by specific overexpression of the antiapoptotic gene hBcl-2 under the control of the CD11c promoter. When studied in either low-density lipoprotein receptor-deficient or apolipoprotein E-deficient backgrounds, DC-hBcl2 mice exhibited an expanded DC population associated with enhanced T-cell activation, a T-helper 1 and T-helper 17 cytokine expression profile, and elevated production of T-helper 1-driven IgG2c autoantibodies directed against oxidation-specific epitopes. This proatherogenic signature, however, was not associated with acceleration of atherosclerotic plaque progression, because expansion of the DC population was unexpectedly associated with an atheroprotective decrease in plasma cholesterol levels. Conversely, depletion of DCs in hyperlipidemic CD11c-diphtheria toxin receptor/apolipoprotein E-deficient transgenic mice resulted in enhanced cholesterolemia, thereby arguing for a close relationship between the DC population and plasma cholesterol levels. Considered together, the present data reveal that conventional DCs are central to the atherosclerotic process, because they are directly implicated in both cholesterol homeostasis and the immune response.

  17. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses.

    Science.gov (United States)

    Thwe, Phyu M; Pelgrom, Leonard; Cooper, Rachel; Beauchamp, Saritha; Reisz, Julie A; D'Alessandro, Angelo; Everts, Bart; Amiel, Eyal

    2017-09-05

    Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Different faces of regulatory DCs in homeostasis and immunity

    NARCIS (Netherlands)

    Smits, Hermelijn H.; de Jong, Esther C.; Wierenga, Eddy A.; Kapsenberg, Martien L.

    2005-01-01

    Adaptive immunity protects against infection and cancer but is also a potential threat to the host because of the risk of excessive inflammation or the development of autoimmunity and allergy. Therefore, immune responses are subject to negative regulation. An important aspect of negative regulation

  19. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan); Shiraishi, Hiroshi [Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga (Japan); Shimoda, Kouji [Department of Laboratory Animal Center, Keio University School of Medicine, Tokyo (Japan); Yoshimura, Akihiko, E-mail: yoshimura@a6.keio.jp [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  20. Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Michelle A Favila

    2015-12-01

    Full Text Available Leishmania major infection induces robust interleukin-12 (IL12 production in human dendritic cells (hDC, ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG and other phosphoglycan-containing molecules (PGs, making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS responsible for IL12 induction.Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating L. major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-, or generally deficient for all PGs, (FV1 lpg2-. Infection with metacyclic, infective stage, L. major or purified LPG induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2- infections revealed that FV1 lpg1- mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB and Interferon Regulatory Factor (IRF mediated transcription.These data suggest that L. major LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring Leishmania surface glycoconjugates that result in modulation of host cellular IL12.

  1. Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions.

    Directory of Open Access Journals (Sweden)

    Haitao Shen

    Full Text Available Severe trauma such as burn injury is often associated with a systemic inflammatory syndrome characterized by a hyperactive innate immune response and suppressed adaptive immune function. Dendritic cells (DCs, which sense pathogens via their Toll-like receptors (TLRs, play a pivotal role in protecting the host against infections. The effect of burn injury on TLR-mediated DC function is a debated topic and the mechanism controlling the purported immunosuppressive response remains to be elucidated. Here we examined the effects of burn injury on splenic conventional DC (cDC and plasmacytoid DC (pDC responses to TLR9 activation. We demonstrate that, following burn trauma, splenic cDCs' cytokine production profile in response to TLR9 activation became anti-inflammatory dominant, with high production of IL-10 (>50% increase and low production of IL-6, TNF-α and IL-12p70 (∼25-60% reduction. CD4+ T cells activated by these cDCs were defective in producing Th1 and Th17 cytokines. Furthermore, burn injury had a more accentuated effect on pDCs than on cDCs. Following TLR9 activation, pDCs displayed an immature phenotype with an impaired ability to secrete pro-inflammatory cytokines (IFN-α, IL-6 and TNF-α and to activate T cell proliferation. Moreover, cDCs and pDCs from burn-injured mice had low transcript levels of TLR9 and several key molecules of the TLR signaling pathway. Although hyperactive innate immune response has been associated with severe injury, our data show to the contrary that DCs, as a key player in the innate immune system, had impaired TLR9 reactivity, an anti-inflammatory phenotype, and a dysfunctional T cell-priming ability. We conclude that burn injury induced impairments in DC immunobiology resulting in suppression of adaptive immune response. Targeted DC immunotherapies to promote their ability in triggering T cell immunity may represent a strategy to improve immune defenses against infection following burn injury.

  2. Transcutaneous immunization with a novel imiquimod nanoemulsion induces superior T cell responses and virus protection.

    Science.gov (United States)

    Lopez, Pamela Aranda; Denny, Mark; Hartmann, Ann-Kathrin; Alflen, Astrid; Probst, Hans Christian; von Stebut, Esther; Tenzer, Stefan; Schild, Hansjörg; Stassen, Michael; Langguth, Peter; Radsak, Markus P

    2017-09-01

    Transcutaneous immunization (TCI) is a novel vaccination strategy utilizing the skin associated lymphatic tissue to induce immune responses. TCI using a cytotoxic T lymphocyte (CTL) epitope and the Toll-like receptor 7 (TLR7) agonist imiquimod mounts strong CTL responses by activation and maturation of skin-derived dendritic cells (DCs) and their migration to lymph nodes. However, TCI based on the commercial formulation Aldara only induces transient CTL responses that needs further improvement for the induction of durable therapeutic immune responses. Therefore we aimed to develop a novel imiquimod solid nanoemulsion (IMI-Sol) for TCI with superior vaccination properties suited to induce high quality T cell responses for enhanced protection against infections. TCI was performed by applying a MHC class I or II restricted epitope along with IMI-Sol or Aldara (each containing 5% Imiquimod) on the shaved dorsum of C57BL/6, IL-1R, Myd88, Tlr7 or Ccr7 deficient mice. T cell responses as well as DC migration upon TCI were subsequently analyzed by flow cytometry. To determine in vivo efficacy of TCI induced immune responses, CTL responses and frequency of peptide specific T cells were evaluated on day 8 or 35 post vaccination and protection in a lymphocytic choriomeningitis virus (LCMV) infection model was assessed. TCI with the imiquimod formulation IMI-Sol displayed equal skin penetration of imiquimod compared to Aldara, but elicited superior CD8 + as well as CD4 + T cell responses. The induction of T-cell responses induced by IMI-Sol TCI was dependent on the TLR7/MyD88 pathway and independent of IL-1R. IMI-Sol TCI activated skin-derived DCs in skin-draining lymph nodes more efficiently compared to Aldara leading to enhanced protection in a LCMV infection model. Our data demonstrate that IMI-Sol TCI can overcome current limitations of previous imiquimod based TCI approaches opening new perspectives for transcutaneous vaccination strategies and allowing the use of this

  3. Inhibitory effect of immature dendritic cells (iDCs phagocytizing apoptotic lymphocytes on LPS-mediated activation of iDCs

    Directory of Open Access Journals (Sweden)

    Yu-xiang WEI

    2013-09-01

    Full Text Available Objective To investigate the inhibitory effect of immature dendritic cells(iDCs on LPS-mediated maturation of iDCs phagocytizing allogeneic spleen lymphocytes after being treated bypsoralen plus ultraviolet A(PUVA. Methods Bone marrow-derived DCs were obtained from bone marrow cells of C57BL/6 mice by co-cultivation with recombinant mouse IL-4 and GM-CSF. Spleenlymphocytes(SLP of BALB/c mice were isolated and transformed to PUVA-SLP by treatment with 8-methoxy PUVA irradiation.The bone marrow-derived iDCs of C57BL/6 were co-cultured with PUVA-SLP of BALB/c mice to obtain PUVA¬SLPDCs. After incubation, iDCs and PUVA-SP DCs were induced to maturation by LPS(10ng/ml,24h, and then they were analyzed by flow cytometry.At the same time,the concentrations of the immunoreactive proteins IL-12p70,IL-12p40andIL-10 in cell supernatants were determined by ELISA kits according to the manufacturer's recommendations. Results PUVA-SLP DCs and iDCs were compared in terms of LPS responsiveness.The phenotype of iDCs(CD40,CD80, andCD86 was 50.58%, 66.29%, 71.20%, respectively, showed more rapid changes from immature to mature statein response to LPS stimulation compared with PUVA-SP DCs, the phenotype of which was 21.26%,38.50% and 39.78%, respectively(P0.05.PUVA-SPDCs secreted high levels of IL-10(435.6±13.9, but lowlevels of IL-12(p7018.56±1.3,p4015.22±1.2, as compared with those of iDCs (132.6±2.8, p70192.1±5.9, p40999.8±26.9, P<0.01 after LPS stimulation. Conclusions Although PUVA-SLPDCs do not express as immature phenotype, they can be readily induced to differentiate into mature DCs in the presence of antigen or LPS. It may be suitable to use iDCs clinically in autoimmune diseases and transplantation.

  4. Porcine neonatal blood dendritic cells, but not monocytes, are more responsive to TLRs stimulation than their adult counterparts.

    Directory of Open Access Journals (Sweden)

    Gael Auray

    Full Text Available The neonatal immune system is often considered as immature or impaired compared to the adult immune system. This higher susceptibility to infections is partly due to the skewing of the neonatal immune response towards a Th2 response. Activation and maturation of dendritic cells (DCs play an important role in shaping the immune response, therefore, DCs are a target of choice for the development of efficient and protective vaccine formulations able to redirect the neonatal immune response to a protective Th1 response. As pigs are becoming more important for vaccine development studies due to their similarity to the human immune system, we decided to compare the activation and maturation of a subpopulation of porcine DCs in adult and neonatal pigs following stimulation with different TLR ligands, which are promising candidates for adjuvants in vaccine formulations. Porcine blood derived DCs (BDCs were directly isolated from blood and consisted of a mix of conventional and plasmacytoid DCs. Following CpG ODN (TLR9 ligand and imiquimod (TLR7 ligand stimulation, neonatal BDCs showed higher levels of expression of costimulatory molecules and similar (CpG ODN or higher (imiquimod levels of IL-12 compared to adult BDCs. Another interesting feature was that only neonatal BDCs produced IFN-α after TLR7 or TLR9 ligand stimulation. Stimulation with CpG ODN and imiquimod also induced enhanced expression of several chemokines. Moreover, in a mixed leukocyte reaction assay, neonatal BDCs displayed a greater ability to induce lymphoproliferation. These findings suggest that when stimulated via TLR7 or TLR9 porcine DCs display similar if not better response than adult porcine DCs.

  5. Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Nobuhiro Nakamoto

    2017-10-01

    Full Text Available Summary: Gut-derived microbial antigens trigger the innate immune system during acute liver injury. During recovery, regulatory immunity plays a role in suppressing inflammation; however, the precise mechanism underlying this process remains obscure. Here, we find that recruitment of immune-regulatory classical dendritic cells (cDCs is crucial for liver tolerance in concanavalin A-induced acute liver injury. Acute liver injury resulted in enrichment of commensal Lactobacillus in the gut. Notably, Lactobacillus activated IL-22 production by gut innate lymphoid cells and raised systemic IL-22 levels. Gut-derived IL-22 enhanced mucosal barrier function and promoted the recruitment of regulatory cDCs to the liver. These cDCs produced IL-10 and TGF-β through TLR9 activation, preventing further liver inflammation. Collectively, our results indicate that beneficial gut microbes influence tolerogenic immune responses in the liver. Therefore, modulation of the gut microbiota might be a potential option to regulate liver tolerance. : Nakamoto et.al. find that Lactobacillus accumulates in the gut and activates IL-22 production by innate lymphoid cells during acute liver injury. Gut-derived IL-22 contributes to liver tolerance via induction of regulatory DCs. Keywords: immune tolerance, dendritic cell, innate lymphoid cell, acute liver injury, interleukin-10, interleukin-22, microbiota, dysbiosis

  6. Measurement of CD8+ and CD4+ T Cell Frequencies Specific for EBV LMP1 and LMP2a Using mRNA-Transfected DCs.

    Directory of Open Access Journals (Sweden)

    Dae-Hee Sohn

    Full Text Available An EBV-specific cellular immune response is associated with the control of EBV-associated malignancies and lymphoproliferative diseases, some of which have been successfully treated by adoptive T cell therapy. Therefore, many methods have been used to measure EBV-specific cellular immune responses. Previous studies have mainly used autologous EBV-transformed B-lymphoblastoid cell lines (B-LCLs, recombinant viral vectors transfected or peptide pulsed dendritic cells (DCs as stimulators of CD8(+ and CD4(+ T lymphocytes. In the present study, we used an interferon-γ (IFN-γ enzyme-linked immunospot (ELISPOT assay by using isolated CD8(+ and CD4(+ T cells stimulated with mRNA-transfected DCs. The frequency of latent membrane protein 1 (LMP1-specific IFN-γ producing CD4(+ T cells was significantly higher than that of LMP2a. The frequency of IFN-γ producing CD4(+ T cells was significantly correlated with that of CD8(+ T cells in LMP1-specific immune responses (r = 0.7187, Pc < 0.0001. To determine whether there were changes in LMP1- or LMP2a-specific immune responses, subsequent peripheral blood mononuclear cells (PBMCs samples were analyzed. Significant changes were observed in 5 of the 10 donors examined, and CD4(+ T cell responses showed more significant changes than CD8(+ T cell responses. CD8(+ and CD4(+ T cells from EBV-seropositive donors secreted only the Th1 cytokines IFN-γ, TNF-α, and IL-2, while Th2 (IL-4 and Th17 (IL-17a cytokines were not detected. CD4(+ T cells secreted significantly higher cytokine levels than did CD8(+ T cells. Analysis of EBV-specific T cell responses using autologous DCs transfected with mRNA might provide a comprehensive tool for monitoring EBV infection and new insights into the pathogenesis of EBV-associated diseases.

  7. Alpha-type-1 polarized dendritic cells: A novel immunization tool with optimized CTL-inducing activity

    NARCIS (Netherlands)

    Mailliard, Robbie B.; Wankowicz-Kalinska, Anna; Cai, Quan; Wesa, Amy; Hilkens, Catharien M.; Kapsenberg, Martien L.; Kirkwood, John M.; Storkus, Walter J.; Kalinski, Pawel

    2004-01-01

    Using the principle of functional polarization of dendritic cells (DCs), we have developed a novel protocol to generate human DCs combining the three features critical for the induction of type-1 immunity: (a) fully mature status; (b) responsiveness to secondary lymphoid organ chemokines; and (c)

  8. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  9. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  11. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    Science.gov (United States)

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  12. Immune receptors involved in Streptococcus suis recognition by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marie-Pier Lecours

    Full Text Available Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs. Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR signaling. Supporting this fact, TLR2(-/- DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.

  13. Tolerance through Education: How Tolerogenic Dendritic Cells Shape Immunity

    Directory of Open Access Journals (Sweden)

    Matthias P. Domogalla

    2017-12-01

    Full Text Available Dendritic cells (DCs are central players in the initiation and control of responses, regulating the balance between tolerance and immunity. Tolerogenic DCs are essential in the maintenance of central and peripheral tolerance by induction of clonal T cell deletion and T cell anergy, inhibition of memory and effector T cell responses, and generation and activation of regulatory T cells. Therefore, tolerogenic DCs are promising candidates for specific cellular therapy of allergic and autoimmune diseases and for treatment of transplant rejection. Studies performed in rodents have demonstrated the efficacy and feasibility of tolerogenic DCs for tolerance induction in various inflammatory diseases. In the last years, numerous protocols for the generation of human monocyte-derived tolerogenic DCs have been established and some first phase I trials have been conducted in patients suffering from autoimmune disorders, demonstrating the safety and efficiency of this cell-based immunotherapy. This review gives an overview about methods and protocols for the generation of human tolerogenic DCs and their mechanisms of tolerance induction with the focus on interleukin-10-modulated DCs. In addition, we will discuss the prerequisites for optimal clinical grade tolerogenic DC subsets and results of clinical trials with tolerogenic DCs in autoimmune diseases.

  14. Homeostatic NF-κB Signaling in Steady-State Migratory Dendritic Cells Regulates Immune Homeostasis and Tolerance.

    Science.gov (United States)

    Baratin, Myriam; Foray, Chloe; Demaria, Olivier; Habbeddine, Mohamed; Pollet, Emeline; Maurizio, Julien; Verthuy, Christophe; Davanture, Suzel; Azukizawa, Hiroaki; Flores-Langarica, Adriana; Dalod, Marc; Lawrence, Toby

    2015-04-21

    Migratory non-lymphoid tissue dendritic cells (NLT-DCs) transport antigens to lymph nodes (LNs) and are required for protective immune responses in the context of inflammation and to promote tolerance to self-antigens in steady-state. However, the molecular mechanisms that elicit steady-state NLT-DC maturation and migration are unknown. By comparing the transcriptome of NLT-DCs in the skin with their migratory counterparts in draining LNs, we have identified a novel NF-κB-regulated gene network specific to migratory DCs. We show that targeted deletion of IKKβ in DCs, a major activator of NF-κB, prevents NLT-DC accumulation in LNs and compromises regulatory T cell conversion in vivo. This was associated with impaired tolerance and autoimmunity. NF-κB is generally considered the prototypical pro-inflammatory transcription factor, but this study describes a role for NF-κB signaling in DCs for immune homeostasis and tolerance that could have implications in autoimmune diseases and immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity.

    Science.gov (United States)

    Kumamoto, Yosuke; Linehan, Melissa; Weinstein, Jason S; Laidlaw, Brian J; Craft, Joseph E; Iwasaki, Akiko

    2013-10-17

    Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. MGL Receptor and Immunity: When the Ligand Can Make the Difference

    Directory of Open Access Journals (Sweden)

    Ilaria Grazia Zizzari

    2015-01-01

    Full Text Available C-type lectin receptors (CLRs on antigen-presenting cells (APCs facilitate uptake of carbohydrate antigens for antigen presentation, modulating the immune response in infection, homeostasis, autoimmunity, allergy, and cancer. In this review, we focus on the role of the macrophage galactose type C-type lectin (MGL in the immune response against self-antigens, pathogens, and tumor associated antigens (TAA. MGL is a CLR exclusively expressed by dendritic cells (DCs and activated macrophages (MØs, able to recognize terminal GalNAc residues, including the sialylated and nonsialylated Tn antigens. We discuss the effects on DC function induced throughout the engagement of MGL, highlighting the importance of the antigen structure in the modulation of immune response. Indeed modifying Tn-density, the length, and steric structure of the Tn-antigens can result in generating immunogens that can efficiently bind to MGL, strongly activate DCs, mimic the effects of a danger signal, and achieve an efficient presentation in HLA classes I and II compartments.

  17. The role of CD103+ Dendritic cells in the intestinal mucosal immune system.

    Directory of Open Access Journals (Sweden)

    Darren Thomas Ruane

    2011-07-01

    Full Text Available While dendritic cells (DC are central to the induction and regulation of adaptive immunity, these cells are very heterogenous and specific subsets can be characterized based on the expression of cell surface markers and functional properties. Intestinal CD103+ DCs are the subject of particular interest due to their role in regulating mucosal immunity. Since the epithelial surfaces are constantly exposed to a high antigenic load, tight regulation of innate and adaptive intestinal immune responses is vital as intestinal inflammation can have detrimental consequences for the host. Strategically positioned within the lamina propria, CD103+ DCs play an important role in maintaining intestinal immune homeostasis. These cells are required for the induction of tolerogenic immune responses and imprinting gut homing phenotypic changes on antigen-specific T cells. Recent insights into their development and regulatory properties have revealed additional immunoregulatory roles and further highlighted their importance for intestinal immunity. In this review we discuss the nature of the intestinal CD103+ DC population and the emerging roles of these cells in the regulation of mucosal immunity.

  18. The closely related CD103+ dendritic cells (DCs and lymphoid-resident CD8+ DCs differ in their inflammatory functions.

    Directory of Open Access Journals (Sweden)

    Zhijun Jiao

    Full Text Available Migratory CD103+ and lymphoid-resident CD8+ dendritic cells (DCs share many attributes, such as dependence on the same transcription factors, cross-presenting ability and expression of certain surface molecules, such that it has been proposed they belong to a common sub-lineage. The functional diversity of the two DC types is nevertheless incompletely understood. Here we reveal that upon skin infection with herpes simplex virus, migratory CD103+ DCs from draining lymph nodes were more potent at inducing Th17 cytokine production by CD4+ T cells than CD8+ DCs. This superior capacity to drive Th17 responses was also evident in CD103+ DCs from uninfected mice. Their differential potency to induce Th17 differentiation was reflected by higher production of IL-1β and IL-6 by CD103+ DCs compared with CD8+ DCs upon stimulation. The two types of DCs from isolated lymph nodes also differ in expression of certain pattern recognition receptors. Furthermore, elevated levels of GM-CSF, typical of those found in inflammation, substantially increased the pool size of CD103+ DCs in lymph nodes and skin. We argue that varied levels of GM-CSF may explain the contrasting reports regarding the positive role of GM-CSF in regulating development of CD103+ DCs. Together, we find that these two developmentally closely-related DC subsets display functional differences and that GM-CSF has differential effect on the two types of DCs.

  19. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine.

    Science.gov (United States)

    Guo, Yan-Lin; Carmichael, Gordon G; Wang, Ruoxing; Hong, Xiaoxiao; Acharya, Dhiraj; Huang, Faqing; Bai, Fengwei

    2015-11-01

    Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine. © 2015 AlphaMed Press.

  20. CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection.

    Science.gov (United States)

    Allen, Sariah J; Mott, Kevin R; Chentoufi, Aziz A; BenMohamed, Lbachir; Wechsler, Steven L; Ballantyne, Christie M; Ghiasi, Homayon

    2011-10-01

    CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c(+) DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8(+) T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8(+) T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8(+) T cell responses.

  1. Decreased B and T lymphocyte attenuator in Behcet's disease may trigger abnormal Th17 and Th1 immune responses.

    Science.gov (United States)

    Ye, Zi; Deng, Bolin; Wang, Chaokui; Zhang, Dike; Kijlstra, Aize; Yang, Peizeng

    2016-02-04

    Behcet's disease (BD) is a chronic, systemic and recurrent inflammatory disease associated with hyperactive Th17 and Th1 immune responses. Recent studies have shown that B and T lymphocyte attenuator (BTLA) negatively regulates the immune response. In this study, we investigated whether BTLA activation could be exploited to inhibit the development of abnormal immune responses in BD patients. BTLA expression in PBMCs and CD4(+) T cells was significantly decreased in active BD patients. Decreased BTLA level was associated with increased Th17 and Th1 responses. Activation of BTLA inhibited the abnormal Th17 and Th1 responses and IL-22 expression in both patients and controls. Addition of an agonistic anti-BTLA antibody remarkably inhibited DC-induced Th17 and Th1 cell responses, resulted in decreased production of the Th17 and Th1-related cytokines IL-1beta, IL-6, IL-23 and IL-12p70 and reduced CD40 expression in DCs. In conclusion, decreased BTLA expression in ocular BD may lead to inappropriate control of the Th17 and Th1 immune responses and DC functions. Therefore, BTLA may be involved in the development and recurrence of this disease. Agonistic agents of BTLA may represent a potential therapeutic approach for the treatment of BD and other inflammatory diseases mediated by abnormal Th17 and Th1 immune responses.

  2. Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses

    Directory of Open Access Journals (Sweden)

    Stefan Schülke

    2018-03-01

    Full Text Available Dendritic cells (DCs are gatekeepers of the immune system that control induction and polarization of primary, antigen-specific immune responses. Depending on their maturation/activation status, the molecules expressed on their surface, and the cytokines produced DCs have been shown to either elicit immune responses through activation of effector T cells or induce tolerance through induction of either T cell anergy, regulatory T cells, or production of regulatory cytokines. Among the cytokines produced by tolerogenic DCs, interleukin 10 (IL-10 is a key regulatory cytokine limiting und ultimately terminating excessive T-cell responses to microbial pathogens to prevent chronic inflammation and tissue damage. Because of their important role in preventing autoimmune diseases, transplant rejection, allergic reactions, or in controlling chronic inflammation DCs have become an interesting tool to modulate antigen-specific immune responses. For the treatment of allergic inflammation, the aim is to downregulate allergen-specific T helper 2 (Th2 responses and the associated clinical symptoms [allergen-driven Th2 activation, Th2-driven immunoglobulin E (IgE production, IgE-mediated mast cell and basophil activation, allergic inflammation]. Here, combining the presentation of allergens by DCs with a pro-tolerogenic, IL-10-producing phenotype is of special interest to modulate allergen-specific immune responses in the treatment of allergic diseases. This review discusses the reported strategies to induce DC-derived IL-10 secretion for the suppression of allergen-specific Th2-responses with a focus on IL-10 treatment, IL-10 transduction, and the usage of both whole bacteria and bacteria-derived components. Interestingly, while IL-10-producing DCs induced either by IL-10 treatment or IL-10 transduction are arrested in an immature/semi-mature state, treatment of DCs with live or killed bacteria as well as isolated bacterial components results in the induction of

  3. Intestinal dendritic cells in the regulation of mucosal immunity

    DEFF Research Database (Denmark)

    Bekiaris, Vasileios; Persson, Emma K.; Agace, William Winston

    2014-01-01

    immune cells within the mucosa must suitably respond to maintain intestinal integrity, while also providing the ability to mount effective immune responses to potential pathogens. Dendritic cells (DCs) are sentinel immune cells that play a central role in the initiation and differentiation of adaptive....... The recognition that dietary nutrients and microbial communities in the intestine influence both mucosal and systemic immune cell development and function as well as immune-mediated disease has led to an explosion of literature in mucosal immunology in recent years and a growing interest in the functionality...

  4. Blocking junctional adhesion molecule C enhances dendritic cell migration and boosts the immune responses against Leishmania major.

    Directory of Open Access Journals (Sweden)

    Romain Ballet

    2014-12-01

    Full Text Available The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1 response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2 response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.

  5. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity.

    Science.gov (United States)

    Xiao, Yichuan; Zou, Qiang; Xie, Xiaoping; Liu, Ting; Li, Haiyan S; Jie, Zuliang; Jin, Jin; Hu, Hongbo; Manyam, Ganiraju; Zhang, Li; Cheng, Xuhong; Wang, Hui; Marie, Isabelle; Levy, David E; Watowich, Stephanie S; Sun, Shao-Cong

    2017-05-01

    Dendritic cells (DCs) are crucial for mediating immune responses but, when deregulated, also contribute to immunological disorders, such as autoimmunity. The molecular mechanism underlying the function of DCs is incompletely understood. In this study, we have identified TANK-binding kinase 1 (TBK1), a master innate immune kinase, as an important regulator of DC function. DC-specific deletion of Tbk1 causes T cell activation and autoimmune symptoms and also enhances antitumor immunity in animal models of cancer immunotherapy. The TBK1-deficient DCs have up-regulated expression of co-stimulatory molecules and increased T cell-priming activity. We further demonstrate that TBK1 negatively regulates the induction of a subset of genes by type I interferon receptor (IFNAR). Deletion of IFNAR1 could largely prevent aberrant T cell activation and autoimmunity in DC-conditional Tbk1 knockout mice. These findings identify a DC-specific function of TBK1 in the maintenance of immune homeostasis and tolerance. © 2017 Xiao et al.

  6. Dendritic cells loaded with HeLa-derived exosomes simulate an antitumor immune response.

    Science.gov (United States)

    Ren, Guoping; Wang, Yanhong; Yuan, Shexia; Wang, Baolian

    2018-05-01

    The aim of the present study was to investigate the effect of loading dendritic cells (DCs) with HeLa-derived exosomes on cytotoxic T-lymphocyte (CTL) responses, and the cytotoxic effects of CTL responses on the HeLa cell line. Ultrafiltration centrifugation combined with sucrose density gradient ultracentrifugation was applied to isolate exosomes (HeLa-exo) from the supernatant of HeLa cells. Morphological features of HeLa-exo were identified by transmission electron microscopy (TEM), and the expression of cluster of differentiation (CD)63 was detected by western blotting. Next, monocytes were isolated from peripheral blood and cultured with the removal of adherent cells to induce DC proliferation. DCs were then phenotypically characterized by flow cytometry. Finally, MTT assays were performed to analyze the effects of DCs loaded with HeLa-exo on T cell proliferation and cytotoxicity assays to evaluate the effect of CTL responses on HeLa cells. TEM revealed that HeLa-exo exhibit typical cup-shaped morphology with a diameter range of 30-100 nm. It was also identified that the CD63 surface antigen is expressed on HeLa-exo. Furthermore, monocyte-derived DCs were able to express CD1a, suggesting that DC induction was a success. DCs exhibited hair-like protrusions and other typical dendritic cell morphology. Furthermore, DCs loaded with HeLa-exo could enhance CTL proliferation and the cytotoxic activity of CTLs compared with DCs without HeLa-exo (PHeLa-exo may promote T cell proliferation and induce CTL responses to inhibit the growth of cervical cancer cells in vitro .

  7. Transcranial direct current stimulation (tDCS) facilitates overall visual search response times but does not interact with visual search task factors.

    Science.gov (United States)

    Sung, Kyongje; Gordon, Barry

    2018-01-01

    Whether transcranial direct current stimulation (tDCS) affects mental functions, and how any such effects arise from its neural effects, continue to be debated. We investigated whether tDCS applied over the visual cortex (Oz) with a vertex (Cz) reference might affect response times (RTs) in a visual search task. We also examined whether any significant tDCS effects would interact with task factors (target presence, discrimination difficulty, and stimulus brightness) that are known to selectively influence one or the other of the two information processing stages posited by current models of visual search. Based on additive factor logic, we expected that the pattern of interactions involving a significant tDCS effect could help us colocalize the tDCS effect to one (or both) of the processing stages. In Experiment 1 (n = 12), anodal tDCS improved RTs significantly; cathodal tDCS produced a nonsignificant trend toward improvement. However, there were no interactions between the anodal tDCS effect and target presence or discrimination difficulty. In Experiment 2 (n = 18), we manipulated stimulus brightness along with target presence and discrimination difficulty. Anodal and cathodal tDCS both produced significant improvements in RTs. Again, the tDCS effects did not interact with any of the task factors. In Experiment 3 (n = 16), electrodes were placed at Cz and on the upper arm, to test for a possible effect of incidental stimulation of the motor regions under Cz. No effect of tDCS on RTs was found. These findings strengthen the case for tDCS having real effects on cerebral information processing. However, these effects did not clearly arise from either of the two processing stages of the visual search process. We suggest that this is because tDCS has a DIFFUSE, pervasive action across the task-relevant neuroanatomical region(s), not a discrete effect in terms of information processing stages.

  8. The type I interferon response during viral infections: a "SWOT" analysis.

    Science.gov (United States)

    Gaajetaan, Giel R; Bruggeman, Cathrien A; Stassen, Frank R

    2012-03-01

    The type I interferon (IFN) response is a strong and crucial moderator for the control of viral infections. The strength of this system is illustrated by the fact that, despite some temporary discomfort like a common cold or diarrhea, most viral infections will not cause major harm to the healthy immunocompetent host. To achieve this, the immune system is equipped with a wide array of pattern recognition receptors and the subsequent coordinated type I IFN response orchestrated by plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs). The production of type I IFN subtypes by dendritic cells (DCs), but also other cells is crucial for the execution of many antiviral processes. Despite this coordinated response, morbidity and mortality are still common in viral disease due to the ability of viruses to exploit the weaknesses of the immune system. Viruses successfully evade immunity and infection can result in aberrant immune responses. However, these weaknesses also open opportunities for improvement via clinical interventions as can be seen in current vaccination and antiviral treatment programs. The application of IFNs, Toll-like receptor ligands, DCs, and antiviral proteins is now being investigated to further limit viral infections. Unfortunately, a common threat during stimulation of immunity is the possible initiation or aggravation of autoimmunity. Also the translation from animal models to the human situation remains difficult. With a Strengths-Weaknesses-Opportunities-Threats ("SWOT") analysis, we discuss the interaction between host and virus as well as (future) therapeutic options, related to the type I IFN system. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Leishmania infantum and Leishmania braziliensis: differences and similarities to evade the innate immune system

    Directory of Open Access Journals (Sweden)

    Sarah Athayde Couto Falcão

    2016-08-01

    Full Text Available Visceral Leishmaniasis is a severe form of the disease, caused by Leishmania infantum in the New World. Patients present an anergic immune response that favors parasite establishment and spreading through tissues like bone marrow and liver. On the other hand, Leishmania braziliensis causes localized cutaneous lesions, which can be self healing in some individuals. Interactions between host and parasite are essential to understand disease pathogenesis and progression. In this context, dendritic cells (DCs act as essential bridges that connect innate and adaptive immune responses. In this way, the aim of this study was to compare the effects of these two Leishmania species, in some aspects of human dendritic cells biology to better understanding of the evasion mechanisms of Leishmania from host innate immune response. To do so, DCs were obtained from monocytes from whole peripheral blood’s healthy volunteers donors and infected with L. infantum or L. braziliensis for 24 hours. We observed similar rates of infection (around 40% as well as parasite burden for both Leishmania species. Concerning surface molecules, we observed that both parasites induced CD86 expression when DCs were infected for 24h. On the other hand, we detected a lower surface expression of CD209 in the presence of both L. braziliensis and L. infantum, but only the last one promoted the survival of dendritic cells after 24 hours. Therefore, DCs infected by both Leishmania species showed a higher expression of CD86 and a decrease of CD209 expression, suggesting that both enter DCs through CD209 molecule. However, only L. infantum had the ability to inhibit DC apoptotic death, as an evasion mechanism that enables its spreading to organs like bone marrow and liver. Lastly, L. braziliensis was more silent parasite, once it did not inhibit DC apoptosis in our in vitro model.

  10. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization.

    Directory of Open Access Journals (Sweden)

    Marjolein Meijerink

    Full Text Available BACKGROUND: Probiotics can be used to stimulate or regulate epithelial and immune cells of the intestinal mucosa and generate beneficial mucosal immunomodulatory effects. Beneficial effects of specific strains of probiotics have been established in the treatment and prevention of various intestinal disorders, including allergic diseases and diarrhea. However, the precise molecular mechanisms and the strain-dependent factors involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we aimed to identify gene loci in the model probiotic organism Lactobacillus plantarum WCFS1 that modulate the immune response of host dendritic cells. The amounts of IL-10 and IL-12 secreted by dendritic cells (DCs after stimulation with 42 individual L. plantarum strains were measured and correlated with the strain-specific genomic composition using comparative genome hybridisation and the Random Forest algorithm. This in silico "gene-trait matching" approach led to the identification of eight candidate genes in the L. plantarum genome that might modulate the DC cytokine response to L. plantarum. Six of these genes were involved in bacteriocin production or secretion, one encoded a bile salt hydrolase and one encoded a transcription regulator of which the exact function is unknown. Subsequently, gene deletions mutants were constructed in L. plantarum WCFS1 and compared to the wild-type strain in DC stimulation assays. All three bacteriocin mutants as well as the transcription regulator (lp_2991 had the predicted effect on cytokine production confirming their immunomodulatory effect on the DC response to L. plantarum. Transcriptome analysis and qPCR data showed that transcript level of gtcA3, which is predicted to be involved in glycosylation of cell wall teichoic acids, was substantially increased in the lp_2991 deletion mutant (44 and 29 fold respectively. CONCLUSION: Comparative genome hybridization led to the identification of gene loci in L

  11. Expression of Toll-Like Receptor 2 by Dendritic Cells Is Essential for the DnaJ-ΔA146Ply-Mediated Th1 Immune Response against Streptococcus pneumoniae.

    Science.gov (United States)

    Wang, Xiaofang; Yuan, Taixian; Yuan, Jun; Su, Yufeng; Sun, Xiaoyu; Wu, Jingwen; Zhang, Hong; Min, Xun; Zhang, Xuemei; Yin, Yibing

    2018-03-01

    The fusion protein DnaJ-ΔA146Ply could induce cross-protective immunity against pneumococcal infection via mucosal and subcutaneous immunization in mice in the absence of additional adjuvants. DnaJ and Ply are both Toll-like receptor 4 (TLR4) but not TLR2 ligands. However, we found that TLR2 -/- mice immunized subcutaneously with DnaJ-ΔA146Ply showed significantly lower survival rates and higher bacterial loads in nasal washes than did wild-type (WT) mice after being challenged with pneumococcal strain D39 or 19F. The gamma interferon (IFN-γ) level in splenocytes decreased in TLR2 -/- mice, indicating that Th1 immunity elicited by DnaJ-ΔA146Ply was impaired in these mice. We explored the mechanism of protective immunity conferred by DnaJ-ΔA146Ply and the role of TLR2 in this process. DnaJ-ΔA146Ply effectively promoted dendritic cell (DC) maturation via TLR4 but not the TLR2 signaling pathway. In a DnaJ-ΔA146Ply-treated DC and naive CD4 + T cell coculture system, the deficiency of TLR2 in DCs resulted in a significant decline of IFN-γ production and Th1 subset differentiation. The same effect was observed in adoptive-transfer experiments. In addition, TLR2 -/- DCs showed remarkably lower levels of the Th1-polarizing cytokine IL-12p70 than did WT DCs, suggesting that TLR2 was indispensable for DnaJ-ΔA146Ply-induced IL-12 production and Th1 proliferation. Thus, our findings illustrate that dendritic cell expression of TLR2 is essential for optimal Th1 immune response against pneumococci in mice immunized subcutaneously with DnaJ-ΔA146Ply. Copyright © 2018 American Society for Microbiology.

  12. Hits and Misses: Leveraging tDCS to Advance Cognitive Research

    Directory of Open Access Journals (Sweden)

    Marian E Berryhill

    2014-07-01

    Full Text Available The popularity of non-invasive brain stimulation techniques in basic, commercial, and applied settings grew tremendously over the last decade. Here, we focus on one popular neurostimulation method: transcranial direct current stimulation (tDCS. Many assumptions regarding the outcomes of tDCS are based on the results of stimulating motor cortex. For instance, the primary motor cortex is predictably suppressed by cathodal tDCS or made more excitable by anodal tDCS. However, wide-ranging studies testing cognition provide more complex and sometimes paradoxical results that challenge this heuristic. Here, we first summarize successful efforts in applying tDCS to cognitive questions, with a focus on working memory. These recent findings indicate that tDCS can result in cognitive task improvement or impairment regardless of stimulation site or direction of current flow. We then report working memory and response inhibition studies that failed to replicate and/or extend previously reported effects. From these opposing outcomes, we present a series of factors to consider that are intended to facilitate future use of tDCS when applied to cognitive questions. In short, common pitfalls include testing too few participants, using insufficiently challenging tasks, using heterogeneous participant populations, and including poorly motivated participants. Furthermore, the poorly understood underlying mechanism for long-lasting tDCS effects make it likely that other important factors predict responses. In conclusion, we argue that although tDCS can be used experimentally to understand brain function its greatest potential may be in applied or translational research.

  13. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke.

    Science.gov (United States)

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.

  14. Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG

    Directory of Open Access Journals (Sweden)

    Christina Wefers

    2018-06-01

    Full Text Available Cancer stem cells (CSCs have been identified as the source of tumor growth and disease recurrence. Eradication of CSCs is thus essential to achieve durable responses, but CSCs are resistant to current anti-tumor therapies. Novel therapeutic approaches that specifically target CSCs will, therefore, be crucial to improve patient outcome. Immunotherapies, which boost the body’s own immune system to eliminate cancerous cells, could be an alternative approach to target CSCs. Vaccines of dendritic cells (DCs loaded with tumor antigens can evoke highly specific anti-tumor T cell responses. Importantly, DC vaccination also promotes immunological memory formation, paving the way for long-term cancer control. Here, we propose a DC vaccination that specifically targets CSCs. DCs loaded with NANOG peptides, a protein required for maintaining stem cell properties, could evoke a potent anti-tumor immune response against CSCs. We hypothesize that the resulting immunological memory will also control newly formed CSCs, thereby preventing disease recurrence.

  15. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS.

    Science.gov (United States)

    Maelfait, Jonathan; Seiradake, Elena; Rehwinkel, Jan

    2014-07-01

    HIV-1 infects dendritic cells (DCs) without triggering an effective innate antiviral immune response. As a consequence, the induction of adaptive immune responses controlling virus spread is limited. In a recent issue of Immunity, Lahaye and colleagues show that intricate interactions of HIV capsid with the cellular cofactor cyclophilin A (CypA) control infection and innate immune activation in DCs. Manipulation of HIV-1 capsid to increase its affinity for CypA results in reduced virus infectivity and facilitates access of the cytosolic DNA sensor cGAS to reverse transcribed DNA. This in turn induces a strong host response. Here, we discuss these findings in the context of recent developments in innate immunity and consider the implications for disease control and vaccine design. © 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.

  16. Differential Recruitment of Dendritic Cells Subsets to Lymph Nodes Correlates with a Protective or Permissive T-Cell Response during Leishmania (Viannia) Braziliensis or Leishmania (Leishmania) Amazonensis Infection.

    Science.gov (United States)

    Carvalho, A K; Carvalho, K; Passero, L F D; Sousa, M G T; da Matta, V L R; Gomes, C M C; Corbett, C E P; Kallas, G E; Silveira, F T; Laurenti, M D

    2016-01-01

    Leishmania (L.) amazonensis (La) and L. (V.) braziliensis (Lb) are responsible for a large clinical and immunopathological spectrum in human disease; while La may be responsible for anergic disease, Lb infection leads to cellular hypersensitivity. To better understand the dichotomy in the immune response caused by these Leishmania species, we evaluated subsets of dendritic cells (DCs) and T lymphocyte in draining lymph nodes during the course of La and Lb infection in BALB/c mice. Our results demonstrated a high involvement of DCs in La infection, which was characterized by the greater accumulation of Langerhans cells (LCs); conversely, Lb infection led to an increase in dermal DCs (dDCs) throughout the infection. Considering the T lymphocyte response, an increase of effector, activated, and memory CD4(+) T-cells was observed in Lb infection. Interleukin- (IL-) 4- and IL-10-producing CD4(+)and CD8(+) T-cells were present in both La and Lb infection; however, interferon- (IFN-) γ-producing CD4(+)and CD8(+) T-cells were detected only in Lb infection. The results suggest that during Lb infection, the dDCs were the predominant subset of DCs that in turn was associated with the development of Th1 immune response; in contrast La infection was associated with a preferential accumulation of LCs and total blockage of the development of Th1 immune response.

  17. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions

    International Nuclear Information System (INIS)

    Villiers, Christian L.; Freitas, Heidi; Couderc, Rachel; Villiers, Marie-Bernadette; Marche, Patrice N.

    2010-01-01

    The effect of manufactured gold nanoparticles (NPs) on the immune system was analysed through their ability to perturb the functions of dendritic cells (DCs), a major actor of both innate and acquired immune responses. For this purpose, DCs were produced in culture from mouse bone marrow progenitors. The analysis of the viability of the cells after their incubation in the presence of gold NPs shows that these NPs are not cytotoxics even at high concentration. Furthermore, the phenotype of the DC is unchanged after the addition of NPs, indicating that there is no activation of the DC. However, the analysis of the cells at the intracellular level reveals important amounts of gold NPs amassing in endocytic compartments. Furthermore, the secretion of cytokines is significantly modified after such internalisation indicating a potential perturbation of the immune response.

  18. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer.

    Science.gov (United States)

    Morse, Michael A; Hobeika, Amy C; Osada, Takuya; Berglund, Peter; Hubby, Bolyn; Negri, Sarah; Niedzwiecki, Donna; Devi, Gayathri R; Burnett, Bruce K; Clay, Timothy M; Smith, Jonathan; Lyerly, H Kim

    2010-09-01

    Therapeutic anticancer vaccines are designed to boost patients' immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression.

  19. Anodal tDCS applied during multitasking training leads to transferable performance gains.

    Science.gov (United States)

    Filmer, Hannah L; Lyons, Maxwell; Mattingley, Jason B; Dux, Paul E

    2017-10-11

    Cognitive training can lead to performance improvements that are specific to the tasks trained. Recent research has suggested that transcranial direct current stimulation (tDCS) applied during training of a simple response-selection paradigm can broaden performance benefits to an untrained task. Here we assessed the impact of combined tDCS and training on multitasking, stimulus-response mapping specificity, response-inhibition, and spatial attention performance in a cohort of healthy adults. Participants trained over four days with concurrent tDCS - anodal, cathodal, or sham - applied to the left prefrontal cortex. Immediately prior to, 1 day after, and 2 weeks after training, performance was assessed on the trained multitasking paradigm, an untrained multitasking paradigm, a go/no-go inhibition task, and a visual search task. Training combined with anodal tDCS, compared with training plus cathodal or sham stimulation, enhanced performance for the untrained multitasking paradigm and visual search tasks. By contrast, there were no training benefits for the go/no-go task. Our findings demonstrate that anodal tDCS combined with multitasking training can extend to untrained multitasking paradigms as well as spatial attention, but with no extension to the domain of response inhibition.

  20. [Exosomes and Immune Cells].

    Science.gov (United States)

    Seo, Naohiro

    2017-05-01

    In addition to the cytokines and cytotoxic granules, exosomes have been known as the intercellular communicator and cytotoxic missile of immune cells for the past decade. It has been well known that mature dendritic cell(DC)-derived exosomes participate in the T cell and natural killer(NK)cell activation, while immature DCs secrete tolerogenic exosomes for regulatory T(Treg)cell generation. Treg cell-derived EVs act as a suppressor against pathogenic type-1 T helper(Th1)cell responses. CD8+ T cells produce tumoricidal exosomes for preventing tumor invasion and metastasis transiently after T cell receptor(TCR)-mediated stimulation. Thus, immune cells produce functional exosomes in the activation state- and/or differentiation stage-dependent manner. In this review, the role of immune cell-derived exosomes will be introduced, focusing mainly on immune reaction against tumor.

  1. TileDCS web system

    International Nuclear Information System (INIS)

    Maidantchik, C; Ferreira, F; Grael, F

    2010-01-01

    The web system described here provides features to monitor the ATLAS Detector Control System (DCS) acquired data. The DCS is responsible for overseeing the coherent and safe operation of the ATLAS experiment hardware. In the context of the Hadronic Tile Calorimeter Detector (TileCal), it controls the power supplies of the readout electronics acquiring voltages, currents, temperatures and coolant pressure measurements. The physics data taking requires the stable operation of the power sources. The TileDCS Web System retrieves automatically data and extracts the statistics for given periods of time. The mean and standard deviation outcomes are stored as XML files and are compared to preset thresholds. Further, a graphical representation of the TileCal cylinders indicates the state of the supply system of each detector drawer. Colors are designated for each kind of state. In this way problems are easier to find and the collaboration members can focus on them. The user selects a module and the system presents detailed information. It is possible to verify the statistics and generate charts of the parameters over the time. The TileDCS Web System also presents information about the power supplies latest status. One wedge is colored green whenever the system is on. Otherwise it is colored red. Furthermore, it is possible to perform customized analysis. It provides search interfaces where the user can set the module, parameters, and the time period of interest. The system also produces the output of the retrieved data as charts, XML files, CSV and ROOT files according to the user's choice.

  2. Neuromelanin is an immune stimulator for dendritic cells in vitro

    Directory of Open Access Journals (Sweden)

    Oberländer Uwe

    2011-11-01

    Full Text Available Abstract Background Parkinson's disease (PD is characterized at the cellular level by a destruction of neuromelanin (NM-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that anti-melanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs, the major cell type for inducing T- and B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results Murine DCs were treated with NM of substantia nigra (SN from human subjects or with synthetic dopamine melanin (DAM. DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh. NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-α. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.

  3. β-Glucan Size Controls Dectin-1-Mediated Immune Responses in Human Dendritic Cells by Regulating IL-1β Production

    Directory of Open Access Journals (Sweden)

    Matthew J. Elder

    2017-07-01

    Full Text Available Dectin-1/CLEC7A is a pattern recognition receptor that recognizes β-1,3 glucans, and its stimulation initiates signaling events characterized by the production of inflammatory cytokines from human dendritic cells (DCs required for antifungal immunity. β-glucans differ greatly in size, structure, and ability to activate effector immune responses from DC; as such, small particulate β-glucans are thought to be poor activators of innate immunity. We show that β-glucan particle size is a critical factor contributing to the secretion of cytokines from human DC; large β-glucan-stimulated DC generate significantly more IL-1β, IL-6, and IL-23 compared to those stimulated with the smaller β-glucans. In marked contrast, the secretion of TSLP and CCL22 were found to be insensitive to β-glucan particle size. Furthermore, we show that the capacity to induce phagocytosis, and the relative IL-1β production determined by β-glucan size, regulates the composition of the cytokine milieu generated from DC. This suggests that β-glucan particle size is critically important in orchestrating the nature of the immune response to fungi.

  4. Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells

    Science.gov (United States)

    Caccia, Michele; Gorletta, Tatiana; Sironi, Laura; Zanoni, Ivan; Salvetti, Cristina; Collini, Maddalena; Granucci, Francesca; Chirico, Giuseppe

    2010-02-01

    Recent studies have demonstrated that dendritic cells (DCs) play a crucial role in the activation of Natural Killer cells (NKs) that are responsible for anti-tumor innate immune responses. The focus of this report is on the role of pathogen associated molecular pattern (PAMP) activated-DCs in inducing NK cell-mediated anti-tumor responses. Mice transplanted sub-cute (s.c.) with AK7 cells, a mesothelioma cell line sensitive to NK cell responses, are injected with fluorescent NK cells and DC activation is then induced by s.c. injection of Lipopolysaccharide (LPS). Using 4 dimensional tracking we follow the kinetic behavior of NK cells at the Draining Lymph-Node (DLN). As control, noninflammatory conditions are also evaluated. Our data suggest that NK cells are recruited to the DLN where they can interact with activated-DCs with a peculiar kinetic behavior: short lived interactions interleaved by rarer longer ones. We also found that the changes in the NK dynamic behavior in inflammatory conditions clearly affect relevant motility parameters such as the instantaneous and average velocity and the effective diffusion coefficient. This observation suggests that NK cells and activated-DCs might efficiently interact in the DLN, where cells could be activated. Therefore the interaction between activated-DCs and NK cells in DLN is not only a reality but it may be also crucial for the start of the immune response of the NKs.

  5. Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder.

    Science.gov (United States)

    Oliveira, Janaina F; Zanão, Tamires A; Valiengo, Leandro; Lotufo, Paulo A; Benseñor, Isabela M; Fregni, Felipe; Brunoni, André R

    2013-03-14

    Based on previous studies showing that transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that employs weak, direct currents to induce cortical-excitability changes, might be useful for working memory (WM) enhancement in healthy subjects and also in treating depressive symptoms, our aim was to evaluate whether tDCS could acutely enhance WM in depressed patients. Twenty-eight age- and gender-matched, antidepressant-free depressed subjects received a single-session of active/sham tDCS in a randomized, double-blind, parallel design. The anode was positioned over the left and the cathode over the right dorsolateral prefrontal cortex. The n-back task was used for assessing WM and it was performed immediately before and 15min after tDCS onset. We found that active vs. sham tDCS led to an increase in the rate of correct responses. We also used signal detection theory analyses to show that active tDCS increased both discriminability, i.e., the ability to discriminate signal (correct responses) from noise (false alarms), and response criterion, indicating a lower threshold to yield responses. All effect sizes were large. In other words, one session of tDCS acutely enhanced WM in depressed subjects, suggesting that tDCS can improve "cold" (non affective-loaded) working memory processes in MDD. Based on these findings, we discuss the effects of tDCS on WM enhancement in depression. We also suggest that the n-back task could be used as a biomarker in future tDCS studies investigating prefrontal activity in healthy and depressed samples. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Immune responses of dendritic cells after acquiring antigen from apoptotic hepatocholangioma cells caused by γ-ray

    International Nuclear Information System (INIS)

    Wu Gang; Gu Hongguang; Han Benli; Pei Xuetao

    2002-01-01

    Objective: To investigate the induction of cytotoxic T lymphocytes (CTLs) in antitumor responsiveness and therapeutic effects after dendritic cells (DCs) acquired antigen from apoptotic hepatocholangioma cells. Methods: DCs from blood mononuclear cells that maintain the characteristics of immaturity-anti-gen-capturing and-processing capacity were established in vitro by using granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Then, apoptosis in hepatocholangioma cells was induced with γ-radiation. The experimental groups included (1) co-culture of DCs, and apoptotic cancer cells and T cells; (2) co-culture of DCs necrotic cancer cells and T cells; (3) co-culture of DCs-cultured cancer cell and T cells. These cells were co-cultured for 7 days. DCs and T cell were enriched separately. Finally, antitumor response test was carried out. Results: These cells had typical dendritic morphology, expressed high levels of CD1a, B7 and acquired antigen from apoptotic cells caused by γ-rays and induced an increased T cell-stimulatory capacity in MLR. Conclusions: DCs obtained from blood mononuclear cells using GM-CSF and IL-4 and DCs can efficiently present antigen driven from apoptotic cells caused by γ-rays and induce T cells increasing obviously. It can probably become an effective approach of DC transduction with antigen

  7. Immune modulation by genetic modification of dendritic cells with lentiviral vectors.

    Science.gov (United States)

    Liechtenstein, Therese; Perez-Janices, Noemi; Bricogne, Christopher; Lanna, Alessio; Dufait, Inès; Goyvaerts, Cleo; Laranga, Roberta; Padella, Antonella; Arce, Frederick; Baratchian, Mehdi; Ramirez, Natalia; Lopez, Natalia; Kochan, Grazyna; Blanco-Luquin, Idoia; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    2013-09-01

    Our work over the past eight years has focused on the use of HIV-1 lentiviral vectors (lentivectors) for the genetic modification of dendritic cells (DCs) to control their functions in immune modulation. DCs are key professional antigen presenting cells which regulate the activity of most effector immune cells, including T, B and NK cells. Their genetic modification provides the means for the development of targeted therapies towards cancer and autoimmune disease. We have been modulating with lentivectors the activity of intracellular signalling pathways and co-stimulation during antigen presentation to T cells, to fine-tune the type and strength of the immune response. In the course of our research, we have found unexpected results such as the surprising immunosuppressive role of anti-viral signalling pathways, and the close link between negative co-stimulation in the immunological synapse and T cell receptor trafficking. Here we review our major findings and put them into context with other published work. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Enhancement of Tumor-Specific T Cell–Mediated Immunity in Dendritic Cell–Based Vaccines by Mycobacterium tuberculosis Heat Shock Protein X

    Science.gov (United States)

    Jung, In Duk; Shin, Sung Jae; Lee, Min-Goo; Kang, Tae Heung; Han, Hee Dong; Lee, Seung Jun; Kim, Woo Sik; Kim, Hong Min; Park, Won Sun; Kim, Han Wool; Yun, Cheol-Heui; Lee, Eun Kyung; Wu, T.-C.

    2014-01-01

    Despite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4+ and CD8+ T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)–expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors. PMID:24990079

  9. Spared Primary Motor Cortex and the Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS During Gait Training

    Directory of Open Access Journals (Sweden)

    Luanda Collange Grecco

    2016-07-01

    Full Text Available The current priority of investigations involving transcranial direct current stimulation (tDCS and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether; 1 present motor evoked potential (MEP and, 2 injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP. We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training and tDCS (active or sham. Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (p=0.003 and gait speed (p=0.028, whereas the subcortical injury was a significant predictor of gait kinematics (p=0.013 and gross motor function (p = 0.021. In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.

  10. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    Science.gov (United States)

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  11. Mechanism of ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    2007-02-01

    Full Text Available Recombinant adenoviral (rAd vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5 vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs was independent of the coxsackievirus and adenovirus receptor (CAR, its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.

  12. Impaired immune responses in the lungs of aged mice following influenza infection

    Directory of Open Access Journals (Sweden)

    Toapanta Franklin R

    2009-11-01

    Full Text Available Abstract Background Each year, influenza virus infection causes severe morbidity and mortality, particularly in the most susceptible groups including children, the elderly (>65 years-old and people with chronic respiratory diseases. Among the several factors that contribute to the increased susceptibility in elderly populations are the higher prevalence of chronic diseases (e.g. diabetes and the senescence of the immune system. Methods In this study, aged and adult mice were infected with sublethal doses of influenza virus (A/Puerto Rico/8/1934. Differences in weight loss, morbidity, virus titer and the kinetics of lung infiltration with cells of the innate and adaptive immune responses were analyzed. Additionally, the main cytokines and chemokines produced by these cells were also assayed. Results Compared to adult mice, aged mice had higher morbidity, lost weight more rapidly, and recovered more slowly from infection. There was a delay in the accumulation of granulocytic cells and conventional dendritic cells (cDCs, but not macrophages in the lungs of aged mice compared to adult animals. The delayed infiltration kinetics of APCs in aged animals correlated with alteration in their activation (CD40 expression, which also correlated with a delayed detection of cytokines and chemokines in lung homogenates. This was associated with retarded lung infiltration by natural killer (NK, CD4+ and CD8+ T-cells. Furthermore, the percentage of activated (CD69+ influenza-specific and IL-2 producer CD8+ T-cells was higher in adult mice compared to aged ones. Additionally, activation (CD69+ of adult B-cells was earlier and correlated with a quicker development of neutralizing antibodies in adult animals. Conclusion Overall, alterations in APC priming and activation lead to delayed production of cytokines and chemokines in the lungs that ultimately affected the infiltration of immune cells following influenza infection. This resulted in delayed activation of the

  13. FcεRI γ-Chain Negatively Modulates Dectin-1 Responses in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Yi-Gen Pan

    2017-10-01

    Full Text Available The inhibitory effect of immunoreceptor tyrosine-based activation motif (ITAM-containing adapters DAP12 and FcεRI γ-chain (FcRγ has been found in many immune functions. Herein, we have further explored the role of these adapters in C-type lectin receptors response. We identified that FcRγ, but not DAP12, could negatively regulate the Dectin-1 responses in dendritic cells (DCs. Loss of FcRγ or both DAP12 and FcRγ enhanced the maturation and cytokine production in DCs upon Dectin-1 activation compared to normal cells, whereas DCs lacking only DAP12 showed little changes. In addition, increments of T cell activation and T helper 17 polarization induced by FcRγ-deficient DCs were observed both in vitro and in vivo. Examining the Dectin-1 signaling, we revealed that the activations of several signaling molecules were augmented in FcRγ-deficient DCs stimulated with Dectin-1 ligands. Furthermore, we demonstrated that the association of phosphatases SHP-1 and PTEN with FcRγ may contribute to the negative regulation of FcRγ in Dectin-1 activation in DCs. These results extend the inhibitory effect of ITAM-containing adapters to Dectin-1 response in immune functions, even though Dectin-1 contains an ITAM-like intracellular domain. According to the role of Dectin-1 in responding to microbes and tumor cells, our finding may have applications in the development of vaccine and cancer therapy.

  14. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells.

    Science.gov (United States)

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  15. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    International Nuclear Information System (INIS)

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  16. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin [Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock (Germany); Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Leipzig (Germany); Paape, Daniel; Hildebrandt, Guido, E-mail: guido.hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock (Germany)

    2012-08-24

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  17. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  18. tDCS Over DLPFC Leads to Less Utilitarian Response in Moral-Personal Judgment.

    Science.gov (United States)

    Zheng, Haoli; Lu, Xinbo; Huang, Daqiang

    2018-01-01

    The profound nature of moral judgment has been discussed and debated for centuries. When facing the trade-off between pursuing moral rights and seeking better consequences, most people make different moral choices between two kinds of dilemmas. Such differences were explained by the dual-process theory involving an automatic emotional response and a controlled application of utilitarian decision-rules. In neurocognitive studies, the bilateral dorsolateral prefrontal cortex (DLPFC) has been demonstrated to play an important role in cognitive "rational" control processes in moral dilemmas. However, the profile of results across studies is not entirely consistent. Although one transcranial magnetic stimulation (TMS) study revealed that disrupting the right DLPFC led to less utilitarian responses, other TMS studies indicated that inhibition of the right DLPFC led to more utilitarian choices. Moreover, the right temporoparietal junction (TPJ) is essential for its function of integrating belief and intention in moral judgment, which is related to the emotional process according to the dual-process theory. Relatively few studies have reported the causal relationship between TPJ and participants' moral responses, especially in moral dilemmas. In the present study, we aimed to demonstrate a direct link between the neural and behavioral results by application of transcranial direct current stimulation (tDCS) in the bilateral DLPFC or TPJ of our participants. We observed that activating the right DLPFC as well as inhibiting the left DLPFC led to less utilitarian judgments, especially in moral-personal conditions, indicating that the right DLPFC plays an essential role, not only through its function of moral reasoning but also through its information integrating process in moral judgments. It was also revealed that altering the excitability of the bilateral TPJ using tDCS negligibly altered the moral response in non-moral, moral-impersonal and moral-personal dilemmas

  19. tDCS Over DLPFC Leads to Less Utilitarian Response in Moral-Personal Judgment

    Directory of Open Access Journals (Sweden)

    Haoli Zheng

    2018-03-01

    Full Text Available The profound nature of moral judgment has been discussed and debated for centuries. When facing the trade-off between pursuing moral rights and seeking better consequences, most people make different moral choices between two kinds of dilemmas. Such differences were explained by the dual-process theory involving an automatic emotional response and a controlled application of utilitarian decision-rules. In neurocognitive studies, the bilateral dorsolateral prefrontal cortex (DLPFC has been demonstrated to play an important role in cognitive “rational” control processes in moral dilemmas. However, the profile of results across studies is not entirely consistent. Although one transcranial magnetic stimulation (TMS study revealed that disrupting the right DLPFC led to less utilitarian responses, other TMS studies indicated that inhibition of the right DLPFC led to more utilitarian choices. Moreover, the right temporoparietal junction (TPJ is essential for its function of integrating belief and intention in moral judgment, which is related to the emotional process according to the dual-process theory. Relatively few studies have reported the causal relationship between TPJ and participants' moral responses, especially in moral dilemmas. In the present study, we aimed to demonstrate a direct link between the neural and behavioral results by application of transcranial direct current stimulation (tDCS in the bilateral DLPFC or TPJ of our participants. We observed that activating the right DLPFC as well as inhibiting the left DLPFC led to less utilitarian judgments, especially in moral-personal conditions, indicating that the right DLPFC plays an essential role, not only through its function of moral reasoning but also through its information integrating process in moral judgments. It was also revealed that altering the excitability of the bilateral TPJ using tDCS negligibly altered the moral response in non-moral, moral-impersonal and moral

  20. Anticancer immune reactivity and long-term survival after treatment of metastatic ovarian cancer with dendritic cells

    Science.gov (United States)

    BERNAL, SAMUEL D.; ONA, ENRIQUE T.; RIEGO-JAVIER, AILEEN; DE VILLA, ROMULO; CRISTAL-LUNA, GLORIA R.; LAGUATAN, JOSEPHINE B.; BATAC, EUNICE R.; CANLAS, OSCAR Q.

    2012-01-01

    Hematopoietic stem cells collected by leukapheresis of a patient with metastatic ovarian carcinoma (OVCA) were induced into dendritic cell (DC) differentiation and fused with liposomal constructs of autologous and allogeneic ovarian carcinoma antigens (DC-OVCA). The proliferation of autologous T cells induced by DCs was determined by [3H]-thymidine uptake. Maximal T-cell proliferation was observed in co-cultures of DCs fused with liposomal OVCA constructs compared with intact autologous OVCA cells. The combination of autologous and allogeneic liposomal OVCA constructs induced greater T-cell proliferation than either alone. The cytotoxicity of DC-activated T cells against various target cells were analyzed by a 51Cr-release assay. The combination of autologous and allogeneic liposomal OVCA constructs showed the highest stimulation of T cell-mediated cytotoxicity against OVCA cells, but had minimal cytotoxicity against normal fibroblasts or leukemia cells. The liposomal preparations of DC-OVCA were injected monthly into a patient with metastatic ovarian carcinoma whose tumors progressed following multiple courses of chemotherapy. DCs analyzed from the patient post-immunization showed 2- to 3-fold greater OVCA cytotoxicity compared to pre-immunization DCs. Immunoblots using the patient's serum showed reactivity with a number of proteins from ovarian cancer extracts, but not in normal fibroblasts and breast cancer. Following the DC-OVCA treatment, the metastatic lesions progressively decreased in size to the point of being undetectable by serial CAT scans. Seven years following the initial diagnosis, the patient continues to be free of cancer. This report described the anticancer immune reactivity and anti-tumor response induced by DCs sensitized with liposomal constructs of OVCA antigens. Immune cell therapy may therefore be a useful adjunct to surgery and chemotherapy for the treatment of ovarian cancer. PMID:22740858

  1. Injury to Allografts: innate immune pathways to acute and chronic rejection

    International Nuclear Information System (INIS)

    Land, W. G.

    2005-01-01

    An emerging body of evidence suggests that innate immunity, as the first line of host defense against invading pathogens or their components [pathogen-associated molecular patterns, (PAMPs)], plays also a critical role in acute and chronic allograft rejection. Injury to the donor organ induces an inflammatory milieu in the allograft, which appears to be the initial key event for activation of the innate immune system. Injury-induced generation of putative endogenous molecular ligand, in terms of damaged/danger-associated molecular patterns (DAMPs) such as heat shock proteins, are recognized by Toll-like receptors (TLRs), a family of pattern recognition receptors on cells of innate immunity. Acute allograft injury (e.g. oxidative stress during donor brain-death condition, post-ischemic reperfusion injury in the recipient) includes DAMPs which may interact with, and activate, innate TLR-bearing dendritic cells (DCs) which, in turn, via direct allo-recognition through donor-derived DCs and indirect allo-recogntion through recipient-derived DCs, initiate the recipient's adaptive alloimmune response leading to acute allograft rejection. Chronic injurious events in the allograft (e.g. hypertension, hyperlipidemia, CMV infection, administration of cell-toxic drugs [calcineurin-inhibitors]) induce the generation of D AMPs , which may interact with and activate innate TLR-bearing vascular cells (endothelial cells, smooth muscle cells) which, in turn, contribute to the development of atherosclerosis of donor organ vessels (alloatherosclerosis), thus promoting chronic allograft rejection. (author)

  2. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS sub-detectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. Seventy thousand (70000) parameters are used for control and monitoring purposes of TileCal, requiring an automated system. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCa...

  3. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS subdetectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. Seventy thousand (70000) parameters are used for control and monitoring purposes, requiring an automated system. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCal detector. ...

  4. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  5. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    Science.gov (United States)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  6. Lipid Accumulation in Peripheral Blood Dendritic Cells and Anticancer Immunity in Patients with Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryo Arai

    2018-01-01

    Full Text Available We studied the subsets of peripheral blood dendritic cells (DCs and lipid accumulation in DCs to investigate the involvement of DCs in the decreased anticancer immunity of advanced lung cancer patients. We analyzed the population of DC subsets in peripheral blood using flow cytometry. We then determined lipid accumulation in the DCs using BODIPY 650/665, a fluorophore with an affinity for lipids. Compared with healthy controls, the number of DCs in the peripheral blood of treatment-naive cancer patients was significantly reduced. In patients with stage III + IV disease, the numbers of myeloid DCs (mDCs and plasmacytoid DCs were also significantly reduced. Lipid accumulation in DCs evaluated based on the fluorescence intensity of BODIPY 650/665 was significantly higher in stage III + IV lung cancer patients than in the controls. In the subset analysis, the fluorescence was highest for mDCs. The intracellularly accumulated lipids were identified as triglycerides. A decreased mixed leukocyte reaction was observed in the mDCs from lung cancer patients compared with those from controls. Taken together, the results show that lung cancer patients have a notably decreased number of peripheral blood DCs and their function as antigen-presenting cells is decreased due to their high intracellular lipid accumulation. Thereby, anticancer immunity is suppressed.

  7. Direct regulatory immune activity of lactic acid bacteria on Der p 1-pulsed dendritic cells from allergic patients.

    Science.gov (United States)

    Pochard, Pierre; Hammad, Hamida; Ratajczak, Céline; Charbonnier-Hatzfeld, Anne-Sophie; Just, Nicolas; Tonnel, André-Bernard; Pestel, Joël

    2005-07-01

    Lactic acid bacteria (LAB) are suggested to play a regulatory role in the development of allergic reactions. However, their potential effects on dendritic cells (DCs) directing the immune polarization remain unclear. The immunologic effect of Lactobacillus plantarum NCIMB 8826 (LAB1) on monocyte-derived dendritic cells (MD-DCs) from patients allergic to house dust mite was evaluated. MD-DCs were stimulated for 24 hours with the related allergen Der p 1 in the presence or absence of LAB1. Cell-surface markers were assessed by means of FACS analysis, and the key polarizing cytokines IL-12 and IL-10 were quantified. The subsequent regulatory effect of pulsed MD-DCs on naive or memory T cells was evaluated by determining the T-cell cytokine profile. LAB1 induced the maturation of MD-DCs, even if pulsed with Der p 1. Interestingly, after incubation with LAB1 and Der p 1, MD-DCs produced higher amounts of IL-12 than Der p 1-pulsed DCs. Indeed, the T H 2 cytokine (IL-4 and IL-5) production observed when naive or memory autologous T cells were cocultured with Der p 1-pulsed MD-DCs was highly reduced in the presence of LAB1. Finally, in contrast to naive or memory T cells exposed once to Der p 1-pulsed DCs, T cells stimulated by MD-DCs pulsed with Der p 1 and LAB1 failed to produce T H 2 cytokines in response to a new stimulation with Der p 1-pulsed DCs. Thus in the presence of LAB1, MD-DCs from allergic patients tend to reorientate the T-cell response toward a beneficial T H 1 profile.

  8. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity.

    Science.gov (United States)

    Prado, Carolina; Contreras, Francisco; González, Hugo; Díaz, Pablo; Elgueta, Daniela; Barrientos, Magaly; Herrada, Andrés A; Lladser, Álvaro; Bernales, Sebastián; Pacheco, Rodrigo

    2012-04-01

    Dendritic cells (DCs) are responsible for priming T cells and for promoting their differentiation from naive T cells into appropriate effector cells. Emerging evidence suggests that neurotransmitters can modulate T cell-mediated immunity. However, the involvement of specific neurotransmitters or receptors remains poorly understood. In this study, we analyzed the role of dopamine in the regulation of DC function. We found that DCs express dopamine receptors as well as the machinery necessary to synthesize, store, and degrade dopamine. Notably, the expression of D5R decreased upon LPS-induced DC maturation. Deficiency of D5R on the surface of DCs impaired LPS-induced IL-23 and IL-12 production and consequently attenuated the activation and proliferation of Ag-specific CD4(+) T cells. To determine the relevance of D5R expressed on DCs in vivo, we studied the role of this receptor in the modulation of a CD4(+) T cell-driven autoimmunity model. Importantly, D5R-deficient DCs prophylactically transferred into wild-type recipients were able to reduce the severity of experimental autoimmune encephalomyelitis. Furthermore, mice transferred with D5R-deficient DCs displayed a significant reduction in the percentage of Th17 cells infiltrating the CNS without differences in the percentage of Th1 cells compared with animals transferred with wild-type DCs. Our findings demonstrate that by contributing to CD4(+) T cell activation and differentiation to Th17 phenotype, D5R expressed on DCs is able to modulate the development of an autoimmune response in vivo.

  9. Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β.

    Science.gov (United States)

    Alamino, Vanina A; Mascanfroni, Iván D; Montesinos, María M; Gigena, Nicolás; Donadio, Ana C; Blidner, Ada G; Milotich, Sonia I; Cheng, Sheue-Yann; Masini-Repiso, Ana M; Rabinovich, Gabriel A; Pellizas, Claudia G

    2015-04-01

    Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8(+) T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy. ©2015 American Association for Cancer Research.

  10. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    International Nuclear Information System (INIS)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-01-01

    Highlights: ► Nasal Ad-FL effectively up-regulates APC function by CD11c + DCs in mucosal tissues. ► Nasal Ad-FL induces Notch ligand (L)-expressing CD11c + DCs. ► Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c + dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c + DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c + DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c + DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4 + T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4 + T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch–Notch-L pathway. These results show that Ad-FL induces CD11c + DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  11. Immune oncology, immune responsiveness and the theory of everything.

    Science.gov (United States)

    Turan, Tolga; Kannan, Deepti; Patel, Maulik; Matthew Barnes, J; Tanlimco, Sonia G; Lu, Rongze; Halliwill, Kyle; Kongpachith, Sarah; Kline, Douglas E; Hendrickx, Wouter; Cesano, Alessandra; Butterfield, Lisa H; Kaufman, Howard L; Hudson, Thomas J; Bedognetti, Davide; Marincola, Francesco; Samayoa, Josue

    2018-06-05

    Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

  12. Nanoparticles modify dendritic cell homeostasis and induce non-specific effects on immunity to malaria.

    Science.gov (United States)

    Xiang, Sue D; Kong, Ying Y; Hanley, Jennifer; Fuchsberger, Martina; Crimeen-Irwin, Blessing; Plebanski, Magdalena

    2015-01-01

    Many current vaccines to a specific pathogen influence responses to other pathogens in a process called heterologous immunity. We propose that their particulate nature contributes to non-specific effects. Herein, we demonstrate polystyrene nanoparticles modulate dendritic cell (DC) homeostasis, thereby promoting a persistent enhanced state of immune readiness to a subsequent infectious challenge. Particles (approximately 40 nm and 500 nm carboxylated polystyrene nanoparticles; PSNPs) alone or conjugated to a model antigen were injected in mice, and DCs in draining lymph nodes (dLNs) and bone-marrow (BM) quantified by flow cytometry. BM cells were tested for capacity to generate DCs upon culture with granulocyte and macrophage colony stimulating factor. Mice were challenged with Plasmodium yoelli. Blood parasitaemias were monitored by GIEMSA. Sera was analyzed for antibodies by ELISA. Intradermal administration of 40 nm PSNPs induced anti-inflammatory cytokines, chemokines and growth factors, increased numbers and proportions of DCs in the dLN, and increased the capacity of BM to generate DCs. Consistent with these unexpected changes, 40 nm PSNPs pre-injected mice had enhanced ability to generate immunity to a subsequent malarial infection. Intradermal administration of 40 nm PSNPs modifies DC homeostasis, which may at least in part explain the observed beneficial heterologous effects of current particulate vaccines. Further nanotechnological developments may exploit such strategies to promote beneficial non-specific effects. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. The varieties of immunological experience: of pathogens, stress, and dendritic cells.

    Science.gov (United States)

    Pulendran, Bali

    2015-01-01

    In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.

  14. EEG Driven tDCS Versus Bifrontal tDCS for Tinnitus

    OpenAIRE

    De Ridder, Dirk; Vanneste, Sven

    2012-01-01

    Tinnitus is the perception of a sound in the absence of any objective physical sound source. Transcranial Direct Current Stimulation (tDCS) induces shifts in membrane resting potentials depending on the polarity of the stimulation: under the anode gamma band activity increases, whereas under the cathode the opposite occurs. Both single and multiple sessions of tDCS over the dorsolateral prefrontal cortex (DLPFC; anode over right DLPFC) yield a transient improvement in tinnitus intensity and t...

  15. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition

    Science.gov (United States)

    Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans

    2015-01-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  16. Basic science of tDCS

    Directory of Open Access Journals (Sweden)

    Michael A. Nitsche

    2014-04-01

    Full Text Available Neuroplasticity, and functional connectivity are important physiological derivates of cognition, and behaviour. Recently introduced non-invasive brain stimulation techniques are suited to induce, and modulate respective physiological alterations. One of these techniques is transcranial direct current stimulation (tDCS. Its primary mechanism of action is a polarity-dependent subthreshold shift of resting membrane potentials, the after-effects of stimulation depend on the glutamatergic system. Beyond these regional effects, tDCS has been shown recently to alter cortical, as well as cortico-subcortical functional network connectivity. This talk will give an overview about the physiological effects of tDCS, including animal data, and will cover functional consequences of tDCS. Furthermore, new developments with regard to optimization strategies, and the complex interaction of physiological and cognitive processes, will be presented and it will be discussed how tDCS relates to other non-invasive brain stimulation techniques, like transcranial magnetic stimulation (TMS, transcranial alternating current stimulation (tACS, and paired associative stimulation (PAS.

  17. Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism.

    Science.gov (United States)

    Cruz, Luis J; Tacken, Paul J; Zeelenberg, Ingrid S; Srinivas, Mangala; Bonetto, Fernando; Weigelin, Bettina; Eich, Christina; de Vries, I Jolanda; Figdor, Carl G

    2014-12-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), involved in the induction of immunity and currently exploited for antitumor immunotherapies. An optimized noninvasive imaging modality capable of determining and quantifying DC-targeted nanoparticle (NP) trajectories could provide valuable information regarding therapeutic vaccine outcome. Here, targeted poly(d,l-lactide-co-glycolide) nanoparticles (PLGA NPs) recognizing DC receptors were equipped with superparamagnetic iron oxide particles (SPIO) or gold nanoparticles with fluorescently labeled antigen. The fluorescent label allowed for rapid analysis and quantification of DC-specific uptake of targeted PLGA NPs in comparison to uptake by other cells. Transmission electron microscopy (TEM) showed that a fraction of the encapsulated antigen reached the lysosomal compartment of DCs, where SPIO and gold were already partially released. However, part of the PLGA NPs localized within the cytoplasm, as confirmed by confocal microscopy. DCs targeted with NPs carrying SPIO or fluorescent antigen were detected within lymph nodes as early as 1 h after injection by magnetic resonance imaging (MRI). Despite the fact that targeting did not markedly affect PLGA NP biodistribution on organism and tissue level, it increased delivery of NPs to DCs residing in peripheral lymph nodes and resulted in enhanced T cell proliferation. In conclusion, two imaging agents within a single carrier allows tracking of targeted PLGA NPs at the subcellular, cellular, and organismal levels, thereby facilitating the rational design of in vivo targeted vaccination strategies.

  18. DCS data viewer, an application that accesses ATLAS DCS historical data

    International Nuclear Information System (INIS)

    Tsarouchas, C; Schlenker, S; Dimitrov, G; Jahn, G

    2014-01-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. The Detector Control System (DCS) of ATLAS is responsible for the supervision of the detector equipment, the reading of operational parameters, the propagation of the alarms and the archiving of important operational data in a relational database (DB). DCS Data Viewer (DDV) is an application that provides access to the ATLAS DCS historical data through a web interface. Its design is structured using a client-server architecture. The pythonic server connects to the DB and fetches the data by using optimized SQL requests. It communicates with the outside world, by accepting HTTP requests and it can be used stand alone. The client is an AJAX (Asynchronous JavaScript and XML) interactive web application developed under the Google Web Toolkit (GWT) framework. Its web interface is user friendly, platform and browser independent. The selection of metadata is done via a column-tree view or with a powerful search engine. The final visualization of the data is done using java applets or java script applications as plugins. The default output is a value-over-time chart, but other types of outputs like tables, ascii or ROOT files are supported too. Excessive access or malicious use of the database is prevented by a dedicated protection mechanism, allowing the exposure of the tool to hundreds of inexperienced users. The current configuration of the client and of the outputs can be saved in an XML file. Protection against web security attacks is foreseen and authentication constrains have been taken into account, allowing the exposure of the tool to hundreds of users world wide. Due to its flexible interface and its generic and modular approach, DDV could be easily used for other experiment control systems.

  19. Dcs Data Viewer, an Application that Accesses ATLAS DCS Historical Data

    Science.gov (United States)

    Tsarouchas, C.; Schlenker, S.; Dimitrov, G.; Jahn, G.

    2014-06-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. The Detector Control System (DCS) of ATLAS is responsible for the supervision of the detector equipment, the reading of operational parameters, the propagation of the alarms and the archiving of important operational data in a relational database (DB). DCS Data Viewer (DDV) is an application that provides access to the ATLAS DCS historical data through a web interface. Its design is structured using a client-server architecture. The pythonic server connects to the DB and fetches the data by using optimized SQL requests. It communicates with the outside world, by accepting HTTP requests and it can be used stand alone. The client is an AJAX (Asynchronous JavaScript and XML) interactive web application developed under the Google Web Toolkit (GWT) framework. Its web interface is user friendly, platform and browser independent. The selection of metadata is done via a column-tree view or with a powerful search engine. The final visualization of the data is done using java applets or java script applications as plugins. The default output is a value-over-time chart, but other types of outputs like tables, ascii or ROOT files are supported too. Excessive access or malicious use of the database is prevented by a dedicated protection mechanism, allowing the exposure of the tool to hundreds of inexperienced users. The current configuration of the client and of the outputs can be saved in an XML file. Protection against web security attacks is foreseen and authentication constrains have been taken into account, allowing the exposure of the tool to hundreds of users world wide. Due to its flexible interface and its generic and modular approach, DDV could be easily used for other experiment control systems.

  20. Ionizing radiation affects generation of MART-1-specific cytotoxic T cell responses by dendritic cells

    International Nuclear Information System (INIS)

    Liao, Y.P.; Wang, C.-C.; McBride, W.H.

    2003-01-01

    Full text: The human MART-1/Melan-A (MART-1) melanoma tumor antigen is known to be recognized by cytotoxic T lymphocytes (CTLs) and several groups are using this target for clinical immunotherapy. Most approaches use dendritic cells (DCs) that are potent antigen presentation cells for initiating CTL responses. In order for CTL recognition to occur, DCs must display 9-residue antigenic peptides on MHC class I molecules. These peptides are generated by proteasome degradation and then transported through the endoplasmic reticulum to the cell surface where they stabilize MHC class I expression. Our previous data showed that irradiation inhibits proteasome function and, therefore, we hypothesized that irradiation may inhibit antigen processing and CTL activation, as has been shown for proteasome inhibitors. To study the importance of irradiation effects on DCs, we studied the generation MART-1-specific CTL responses. Preliminary data showed that irradiation of murine bone marrow derived DCs did not affect expression of MHC class I, II, CD80, or CD86, as assessed by flow cytometric analyses 24-hour after irradiation. The effect of irradiation on MART-1 antigen processing by DCs was evaluated using DC transduced with adenovirus MART-1 (AdVMART1). C57BL/6 mice were immunized with AdVMART1 transduced DCs, with and without prior irradiation. IFN-γ production was measured by ELISPOT assays after 10-14 days of immunization. Prior radiation treatment resulted in a significant decrease in MART-1-specific T cell responses. The ability of irradiated and non-irradiated AdVMART1/DC vaccines to protect mice against growth of murine B16 tumors, which endogenously express murine MART-1, was also examined. AdVMART1/DC vaccination protected C57BL/6 mice against challenge with viable B16 melanoma cells while DCs irradiated (10 Gy) prior to AdVMART1 transduction abrogated protection. These results suggest that proteasome inhibition in DCs by irradiation may be a possible pathway in

  1. Communication between Trigger/DAQ and DCS in ATLAS

    International Nuclear Information System (INIS)

    Burckhart, H.; Jones, R.; Hart, R.; Khomoutnikov, V.; Ryabov, Y.

    2001-01-01

    Within the ATLAS experiment Trigger/DAQ and DCS are both logically and physically separated. Nevertheless there is a need to communicate. The initial problem definition and analysis suggested three subsystems the Trigger/DAQ DCS Communication (DDC) project should support the ability to: 1. exchange data between Trigger/DAQ and DCS; 2. send alarm messages from DCS to Trigger/DAQ; 3. issue commands to DCS from Trigger/DAQ. Each subsystem is developed and implemented independently using a common software infrastructure. Among the various subsystems of the ATLAS Trigger/DAQ the Online is responsible for the control and configuration. It is the glue connecting the different systems such as data flow, level 1 and high-level triggers. The DDC uses the various Online components as an interface point on the Trigger/DAQ side with the PVSS II SCADA system on the DCS side and addresses issues such as partitioning, time stamps, event numbers, hierarchy, authorization and security. PVSS II is a commercial product chosen by CERN to be the SCADA system for all LHC experiments. Its API provides full access to its database, which is sufficient to implement the 3 subsystems of the DDC software. The DDC project adopted the Online Software Process, which recommends a basic software life-cycle: problem statement, analysis, design, implementation and testing. Each phase results in a corresponding document or in the case of the implementation and testing, a piece of code. Inspection and review take a major role in the Online software process. The DDC documents have been inspected to detect flaws and resulted in a improved quality. A first prototype of the DDC is ready and foreseen to be used at the test-beam during summer 2001

  2. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Yoshiko; Tokuhara, Daisuke [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Sekine, Shinichi [Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871 (Japan); Kataoka, Kosuke [Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Davydova, Julia; Yamamoto, Masato [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Gilbert, Rebekah S. [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Fujihashi, Kohtaro, E-mail: kohtarof@uab.edu [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  3. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  4. Pyruvate Kinase M2 Is Required for the Expression of the Immune Checkpoint PD-L1 in Immune Cells and Tumors

    Directory of Open Access Journals (Sweden)

    Eva M. Palsson-McDermott

    2017-10-01

    Full Text Available Blocking interaction of the immune checkpoint receptor PD-1 with its ligand PD-L1 is associated with good clinical outcomes in a broad variety of malignancies. High levels of PD-L1 promote tumor growth by restraining CD8+ T-cell responses against tumors. Limiting PD-L1 expression and function is therefore critical for allowing the development of antitumor immune responses and effective tumor clearance. Pyruvate kinase isoform M2 (PKM2 is also a key player in regulating cancer as well as immune responses. PKM2 catalyzes the final rate-limiting step of glycolysis. Furthermore, PKM2 as a dimer translocates to the nucleus, where it stimulates hypoxia-inducible factor 1α (Hif-1α transactivation domain function and recruitment of p300 to the hypoxia response elements (HRE of Hif-1α target genes. Here, we provide the first evidence of a role for PKM2 in regulating the expression of PD-L1 on macrophages, dendritic cells (DCs, T cells, and tumor cells. LPS-induced expression of PD-L1 in primary macrophages was inhibited by the PKM2 targeting compound TEPP-46. Furthermore, RNA silencing of PKM2 inhibited LPS-induced PD-L1 expression. This regulation occurs through direct binding of PKM2 and Hif-1α to HRE sites on the PD-L1 promoter. Moreover, TEPP-46 inhibited expression of PD-L1 on macrophages, DCs, and T cells as well as tumor cells in a mouse CT26 cancer model. These findings broaden our understanding of how PKM2 may contribute to tumor progression and may explain the upregulation of PD-L1 in the tumor microenvironment.

  5. Thioredoxin priming prolongs lung allograft survival by promoting immune tolerance.

    Directory of Open Access Journals (Sweden)

    Hanbo Hu

    Full Text Available Tolerance to allograft antigen is the major challenge and final goal of transplant medicine. Our previous study demonstrated that thioredoxin-1 (Trx priming of donor lung significantly protected allogeneic lung graft. To determine whether Trx priming of donor lung inhibits allograft rejection, extends allograft survival and induces immune tolerance, orthotopic left lung transplantation was performed from Lewis to Sprague-Dawley rats without immunosuppression. Donor lungs were primed with Trx at 4°C for 4 hr prior to transplantation. After up to 37 days post-transplantation, allograft lung morphology, recipient T cell and humoral alloantigen-specific immune responses were examined. We found that Trx-primed lungs exhibited much reduced acute rejection and associated lung injuries resulting in loss of graft functional area at 5-37 days post-transplant in contrast to the control groups. CD4+ T cells from the recipients with Trx-primed grafts responded to the stimulation of dendritic cells (DCs of donor origin, in contrast to DCs from the third party, with significantly reduced proliferation. Consistent with above findings, we observed that CD4+Foxp3+ regulatory T cells in spleen cells from the recipients with Trx-primed grafts were significantly increased compared to controls, and CD4+ T cells from the recipients with Trx-primed grafts produced much higher levels of immunosuppressive cytokine, IL-10 when stimulated with allogeneic donor DCs. In addition, humoral immune tolerance was also induced as there was no significant increase levels of serum antibodies against donor antigens in Trx-lung recipients when re-challenged with allogeneic donor antigens. Our results demonstrate that one-time Trx-priming of donor lung grafts prior to transplantation significantly prolongs the survival of the grafts through inducing or promoting cellular and humoral alloantigen-specific immune tolerance, which might be associated with the induction of

  6. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    2003-01-01

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  7. Cerebellar tDCS does not affect performance in the N-back task.

    Science.gov (United States)

    van Wessel, Brenda W V; Claire Verhage, M; Holland, Peter; Frens, Maarten A; van der Geest, Jos N

    2016-01-01

    The N-back task is widely used in cognitive research. Furthermore, the cerebellum's role in cognitive processes is becoming more widely recognized. Studies using transcranial direct current stimulation (tDCS) have demonstrated effects of cerebellar stimulation on several cognitive tasks. Therefore, the aim of this study was to investigate the effects of cerebellar tDCS on cognitive performance by using the N-back task. The cerebellum of 12 participants was stimulated during the task. Moreover, the cognitive load was manipulated in N = 2, N = 3, and N = 4. Every participant received three tDCS conditions (anodal, cathodal, and sham) divided over three separated days. It was expected that anodal stimulation would improve performance on the task. Each participant performed 6 repetitions of every load in which correct responses, false alarms, and reaction times were recorded. We found significant differences between the three levels of load in the rate of correct responses and false alarms, indicating that subjects followed the expected pattern of performance for the N-back task. However, no significant differences between the three tDCS conditions were found. Therefore, it was concluded that in this study cognitive performance on the N-back task was not readily influenced by cerebellar tDCS, and any true effects are likely to be small. We discuss several limitations in task design and suggest future experiments to address such issues.

  8. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  9. Transcutaneous Spinal Direct Current Stimulation (tsDCS

    Directory of Open Access Journals (Sweden)

    Filippo eCogiamanian

    2012-07-01

    Full Text Available In the past ten years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (brain polarization or transcranial direct current stimulation, tDCS. Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation.Aiming at developing a new, non invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS on somatosensory potentials (SEPs evoked in healthy subjects by posterior tibial nerve (PTN stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30 without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials, tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic and segmental motor systems.Here we review currently available experimental evidence that non-invasive spinal cord stimulation influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive spinal cord stimulation in managing various pathologic conditions, including pain.

  10. Association of Neisseria gonorrhoeae Opa(CEA with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response.

    Directory of Open Access Journals (Sweden)

    Qigui Yu

    Full Text Available Infection with Neisseria gonorrhoeae (N. gonorrhoeae can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1 on CD4⁺ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte (CTL responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs are professional antigen presenting cells (APCs that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific Opa(CEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, Opa(CEA binding to CEACAM1 reduced the DCs' capacity to stimulate an allogeneic T cell proliferative response. Moreover, Opa(CEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with Opa(CEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain

  11. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer.

    Science.gov (United States)

    Chrisikos, Taylor T; Zhou, Yifan; Slone, Natalie; Babcock, Rachel; Watowich, Stephanie S; Li, Haiyan S

    2018-03-14

    Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity.

    Science.gov (United States)

    Böttcher, Jan P; Schanz, Oliver; Wohlleber, Dirk; Abdullah, Zeinab; Debey-Pascher, Svenja; Staratschek-Jox, Andrea; Höchst, Bastian; Hegenbarth, Silke; Grell, Jessica; Limmer, Andreas; Atreya, Imke; Neurath, Markus F; Busch, Dirk H; Schmitt, Edgar; van Endert, Peter; Kolanus, Waldemar; Kurts, Christian; Schultze, Joachim L; Diehl, Linda; Knolle, Percy A

    2013-03-28

    Development of CD8(+) T cell (CTL) immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs) matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1(+) memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Liver-Primed Memory T Cells Generated under Noninflammatory Conditions Provide Anti-infectious Immunity

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2013-03-01

    Full Text Available Development of CD8+ T cell (CTL immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1+ memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire.

  14. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulo Czarnewski

    2017-01-01

    Full Text Available Vitamin A (VA is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs and innate lymphoid cells (ILCs. Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs.

  15. Primary Human Blood Dendritic Cells for Cancer Immunotherapy—Tailoring the Immune Response by Dendritic Cell Maturation

    Directory of Open Access Journals (Sweden)

    Simone P. Sittig

    2015-12-01

    Full Text Available Dendritic cell (DC-based cancer vaccines hold the great promise of tipping the balance from tolerance of the tumor to rejection. In the last two decades, we have gained tremendous knowledge about DC-based cancer vaccines. The maturation of DCs has proven indispensable to induce immunogenic T cell responses. We review the insights gained from the development of maturation cocktails in monocyte derived DC-based trials. More recently, we have also gained insights into the functional specialization of primary human blood DC subsets. In peripheral human blood, we can distinguish at least three primary DC subsets, namely CD1c+ and CD141+ myeloid DCs and plasmacytoid DCs. We reflect the current knowledge on maturation and T helper polarization by these blood DC subsets in the context of DC-based cancer vaccines. The maturation stimulus in combination with the DC subset will determine the type of T cell response that is induced. First trials with these natural DCs underline their excellent in vivo functioning and mark them as promising tools for future vaccination strategies.

  16. Dendritic Cell Migration to Skin-Draining Lymph Nodes Is Controlled by Dermatan Sulfate and Determines Adaptive Immunity Magnitude

    Directory of Open Access Journals (Sweden)

    Reza Nadafi

    2018-02-01

    Full Text Available For full activation of naïve adaptive lymphocytes in skin-draining lymph nodes (LNs, presentation of peptide:MHC complexes by LN-resident and skin-derived dendritic cells (DCs that encountered antigens (Ags is an absolute prerequisite. To get to the nearest draining LN upon intradermal immunization, DCs need to migrate from the infection site to the afferent lymphatics, which can only be reached by traversing a collagen-dense network located in the dermis of the skin through the activity of proteolytic enzymes. Here, we show that mice with altered collagen fibrillogenesis resulting in thicker collagen fibers in the skin display a reduced DC migration to the draining LN upon immune challenge. Consequently, the initiation of the cellular and humoral immune response was diminished. Ag-specific CD8+ and CD4+ T cells as well as Ag-specific germinal center B cells and serum immunoglobulin levels were significantly decreased. Hence, we postulate that alterations to the production of extracellular matrix, as seen in various connective tissue disorders, may in the end affect the qualitative outcome of adaptive immunity.

  17. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review

    Science.gov (United States)

    Lefebvre, Stephanie; Liew, Sook-Lei

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain–behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system. PMID:28232816

  18. Beryllium-specific immune response in primary cells from healthy individuals

    International Nuclear Information System (INIS)

    Chaudhary, Anu; Sauer, Nancy N.; Gupta, Goutam

    2004-01-01

    The effect of beryllium (Be) exposure has been extensively studied in patients with chronic beryllium disease (CBD). CBD patients carry mutated MHC class II alleles and show a hyperproliferation of T cells upon Be exposure. The exact mechanism of Be-induced T-cell proliferation in these patients is not clearly understood. It is also not known how the inflammatory and suppressive cytokines maintain a balance in healthy individuals and how this balance is lost in CBD patients. To address these issues, we have initiated cellular and biochemical studies to identify Be-responsive cytokines and other cellular markers that help maintain a balance in healthy individuals. We have established an immune cell model derived from a mixture of peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs). In this article, we demonstrate that pro-inflammatory cytokine IL6 shows decreased release whereas suppressive cytokine IL10 shows enhanced release after 5-10 h of Be treatment. Furthermore, the Be-specific pattern of IL6 and IL10 release is dependent upon induction of threonine phosphorylation of a 45 kDa cytosolic protein (p45), as early as 90 min after Be treatment. Pharmacological inhibition of phosphatidylinositol 3' kinase (PI3'K) by wortmannin and p38 mitogen-activated protein kinase (MAPK) by SB203580 reveal that PI3'K mediates Be-specific p45 phosphorylation and IL6 release, whereas p38 MAPK regulates the release of IL6 and IL10 and the phosphorylation of p45 independent of metal-salt treatment. While the IL10 and IL6 release pathways are uncoupled in these cells, they are linked to phosphorylation of p45. These findings suggest that the balance between IL10 and IL6 release and the correlated p45 phosphorylation are important components of the Be-mediated immune response in healthy individuals

  19. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity.

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2013-02-15

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.

  20. Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity*

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R.; Das, Gobardhan

    2013-01-01

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies. PMID:23233675

  1. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes

    Science.gov (United States)

    Clatworthy, Menna R.; Aronin, Caren E. Petrie; Mathews, Rebeccah J.; Morgan, Nicole; Smith, Kenneth G.C.; Germain, Ronald N.

    2014-01-01

    Antibodies are critical for defence against a variety of microbes but may also be pathogenic in some autoimmune diseases. Many effector functions of antibody are mediated by Fcγ receptors (FcγRs), which are found on most immune cells, including dendritic cells (DCs). DCs are important antigen presenting cells and play a central role in inducing antigen-specific tolerance or immunity1,2. Following antigen acquisition in peripheral tissues, DCs migrate to draining lymph nodes via lymphatics to present antigen to T cells. In this study we demonstrate that FcγR engagement by IgG immune complexes (IC) stimulates DC migration from peripheral tissues to the paracortex of draining lymph nodes. In vitro, IC-stimulated murine and human DCs showed enhanced directional migration in a CCL19 gradient and increased CCR7 expression. Using intravital two-photon microscopy, we observed that local administration of IC resulted in dermal DC mobilisation. We confirmed that dermal DC migration to lymph nodes was CCR7-dependent and increased in the absence of the inhibitory receptor, FcγRIIb. These observations have relevance to autoimmunity, because autoantibody-containing serum from mice and humans with SLE also increased dermal DC migration to lymph nodes in vivo, suggesting that this process may occur in lupus, potentially driving the inappropriate localisation of autoantigen-bearing DCs. PMID:25384086

  2. Induction of Protective Immunity against Eimeria tenella, Eimeria maxima, and Eimeria acervulina Infections Using Dendritic Cell-Derived Exosomes

    Science.gov (United States)

    Gallego, Margarita; Lee, Sung Hyen; Lillehoj, Hyun Soon; Quilez, Joaquin; Lillehoj, Erik P.; Sánchez-Acedo, Caridad

    2012-01-01

    This study describes a novel immunization strategy against avian coccidiosis using exosomes derived from Eimeria parasite antigen (Ag)-loaded dendritic cells (DCs). Chicken intestinal DCs were isolated and pulsed in vitro with a mixture of sporozoite-extracted Ags from Eimeria tenella, E. maxima, and E. acervulina, and the cell-derived exosomes were isolated. Chickens were nonimmunized or immunized intramuscularly with exosomes and subsequently noninfected or coinfected with E. tenella, E. maxima, and E. acervulina oocysts. Immune parameters compared among the nonimmunized/noninfected, nonimmunized/infected, and immunized/infected groups were the numbers of cells secreting Th1 cytokines, Th2 cytokines, interleukin-16 (IL-16), and Ag-reactive antibodies in vitro and in vivo readouts of protective immunity against Eimeria infection. Cecal tonsils, Peyer's patches, and spleens of immunized and infected chickens had increased numbers of cells secreting the IL-16 and the Th1 cytokines IL-2 and gamma interferon, greater Ag-stimulated proliferative responses, and higher numbers of Ag-reactive IgG- and IgA-producing cells following in vitro stimulation with the sporozoite Ags compared with the nonimmunized/noninfected and nonimmunized/infected controls. In contrast, the numbers of cells secreting the Th2 cytokines IL-4 and IL-10 were diminished in immunized and infected chickens compared with the nonimmunized/noninfected and the nonimmunized/infected controls. Chickens immunized with Ag-loaded exosomes and infected in vivo with Eimeria oocysts had increased body weight gains, reduced feed conversion ratios, diminished fecal oocyst shedding, lessened intestinal lesion scores, and reduced mortality compared with the nonimmunized/infected controls. These results suggest that successful field vaccination against avian coccidiosis using exosomes derived from DCs incubated with Ags isolated from Eimeria species may be possible. PMID:22354026

  3. Tumor vaccine composed of C-class CpG oligodeoxynucleotides and irradiated tumor cells induces long-term antitumor immunity

    Directory of Open Access Journals (Sweden)

    Cerkovnik Petra

    2010-09-01

    Full Text Available Abstract Background An ideal tumor vaccine should activate both effector and memory immune response against tumor-specific antigens. Beside the CD8+ T cells that play a central role in the generation of a protective immune response and of long-term memory, dendritic cells (DCs are important for the induction, coordination and regulation of the adaptive immune response. The DCs can conduct all of the elements of the immune orchestra and are therefore a fundamental target and tool for vaccination. The present study was aimed at assessing the ability of tumor vaccine composed of C-class CpG ODNs and irradiated melanoma tumor cells B16F1 followed by two additional injections of CpG ODNs to induce the generation of a functional long-term memory response in experimental tumor model in mice (i.p. B16F1. Results It has been shown that the functional memory response in vaccinated mice persists for at least 60 days after the last vaccination. Repeated vaccination also improves the survival of experimental animals compared to single vaccination, whereas the proportion of animals totally protected from the development of aggressive i.p. B16F1 tumors after vaccination repeated three times varies between 88.9%-100.0%. Additionally, the long-term immune memory and tumor protection is maintained over a prolonged period of time of at least 8 months. Finally, it has been demonstrated that following the vaccination the tumor-specific memory cells predominantly reside in bone marrow and peritoneal tissue and are in a more active state than their splenic counterparts. Conclusions In this study we demonstrated that tumor vaccine composed of C-class CpG ODNs and irradiated tumor cells followed by two additional injections of CpG ODNs induces a long-term immunity against aggressive B16F1 tumors.

  4. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    Zhou Hongsheng; Zhang Donghua; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-01-01

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  5. Is Motor Learning Mediated by tDCS Intensity?

    OpenAIRE

    Cuypers, Koen; Leenus, Daphnie J. F.; van den Berg, Femke E.; Nitsche, Michael A.; Thijs, Herbert; Wenderoth, Nicole; Meesen, Raf L. J.

    2013-01-01

    Although tDCS has been shown to improve motor learning, previous studies reported rather small effects. Since physiological effects of tDCS depend on intensity, the present study evaluated this parameter in order to enhance the effect of tDCS on skill acquisition. The effect of different stimulation intensities of anodal tDCS (atDCS) was investigated in a double blind, sham controlled crossover design. In each condition, thirteen healthy subjects were instructed to perform a unimanual motor (...

  6. Mechanism of immune tolerance induced by donor derived immature dendritic cells in rat high-risk corneal transplantation

    Directory of Open Access Journals (Sweden)

    Xu-Dong Zhao

    2013-06-01

    Full Text Available AIM: To study the role of immature dendritic cells (imDCs on immune tolerance in rat penetrating keratoplasty (PKP in high-risk eyes and to investigate the mechanism of immune hyporesponsiveness induced by donor-derived imDCs. METHODS: Seventy-five SD rats (recipient and 39 Wistar rats (donor were randomly divided into 3 groups: control, imDC and mature dendritic cell (mDC group respectively. Using a model of orthotopic corneal transplantation in which allografts were placed in neovascularized high-risk eyes of recipient rat. Corneal neovascularization was induced by alkaline burn in the central cornea of recipient rat. Recipients in imDC group or mDC group were injected donor bone marrow-derived imDCs or mDCs of 1×106 respectively 1 week before corneal transplantation via tail vein. Control rat received the same volume of PBS. In each group, 16 recipients were kept for determination of survival time and other 9 recipients were executed on day 3, 7 and 14 after transplantation. Cornea was harvested for hematoxylin-eosin staining and acute rejection evaluation, Western blot was used to detect the expression level of Foxp3. RESULTS: The mean survival time of imDC group was significantly longer than that of control and mDC groups (all P<0.05. The expression level of Foxp3 on CD4+CD25+T cells of imDC group (2.24±0.18 was significantly higher than that in the control (1.68±0.09 and mDC groups (1.46±0.13 (all P<0.05. CONCLUSION: Donor-derived imDC is an effective treatment in inducing immune hyporesponsiveness in rat PKP. The mechanism of immune tolerance induced by imDC might be inhibit T lymphocytes responsiveness by regulatory T cells.

  7. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    Science.gov (United States)

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  8. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    Science.gov (United States)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  9. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens.

    Science.gov (United States)

    De Sanctis, Francesco; Sandri, Sara; Martini, Matteo; Mazzocco, Marta; Fiore, Alessandra; Trovato, Rosalinda; Garetto, Stefano; Brusa, Davide; Ugel, Stefano; Sartoris, Silvia

    2018-06-14

    Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner.

    Directory of Open Access Journals (Sweden)

    Samit Chatterjee

    2011-11-01

    Full Text Available Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG has been used as a tuberculosis (TB vaccine since its development in 1921. BCG induces robust T helper 1 (Th1 immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6, expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1 exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1. However, TLR-2 knockout (TLR-2⁻/⁻ animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a in dendritic cells (DCs, whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy.

  11. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    Science.gov (United States)

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  12. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants.

    Science.gov (United States)

    Arjunan, P; El-Awady, A; Dannebaum, R O; Kunde-Ramamoorthy, G; Cutler, C W

    2016-02-01

    The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors.

    Science.gov (United States)

    Bene, Krisztián P; Kavanaugh, Devon W; Leclaire, Charlotte; Gunning, Allan P; MacKenzie, Donald A; Wittmann, Alexandra; Young, Ian D; Kawasaki, Norihito; Rajnavolgyi, Eva; Juge, Nathalie

    2017-01-01

    The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.

  14. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity.

    Science.gov (United States)

    Cubillos-Ruiz, Juan R; Engle, Xavier; Scarlett, Uciane K; Martinez, Diana; Barber, Amorette; Elgueta, Raul; Wang, Li; Nesbeth, Yolanda; Durant, Yvon; Gewirtz, Andrew T; Sentman, Charles L; Kedl, Ross; Conejo-Garcia, Jose R

    2009-08-01

    The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1-ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5-/- littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor-associated DCs. In ovarian carcinoma-bearing mice, this induced T cell-mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.

  15. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  16. ATLAS DAQ/HLT rack DCS

    International Nuclear Information System (INIS)

    Ermoline, Yuri; Burckhart, Helfried; Francis, David; Wickens, Frederick J.

    2007-01-01

    The ATLAS Detector Control System (DCS) group provides a set of standard tools, used by subsystems to implement their local control systems. The ATLAS Data Acquisition and High Level Trigger (DAQ/HLT) rack DCS provides monitoring of the environmental parameters (air temperatures, humidity, etc.). The DAQ/HLT racks are located in the underground counting room (20 racks) and in the surface building (100 racks). The rack DCS is based on standard ATLAS tools and integrated into overall operation of the experiment. The implementation is based on the commercial control package and additional components, developed by CERN Joint Controls Project Framework. The prototype implementation and measurements are presented

  17. Calcitonin gene-related peptide regulates type IV hypersensitivity through dendritic cell functions.

    Directory of Open Access Journals (Sweden)

    Norihisa Mikami

    Full Text Available Dendritic cells (DCs play essential roles in both innate and adaptive immune responses. In addition, mutual regulation of the nervous system and immune system is well studied. One of neuropeptides, calcitonin gene-related peptide (CGRP, is a potent regulator in immune responses; in particular, it has anti-inflammatory effects in innate immunity. For instance, a deficiency of the CGRP receptor component RAMP 1 (receptor activity-modifying protein 1 results in higher cytokine production in response to LPS (lipopolysaccharide. On the other hand, how CGRP affects DCs in adaptive immunity is largely unknown. In this study, we show that CGRP suppressed Th1 cell differentiation via inhibition of IL-12 production in DCs using an in vitro co-culture system and an in vivo ovalbumin-induced delayed-type hypersensitivity (DTH model. CGRP also down-regulated the expressions of chemokine receptor CCR2 and its ligands CCL2 and CCL12 in DCs. Intriguingly, the frequency of migrating CCR2(+ DCs in draining lymph nodes of RAMP1-deficient mice was higher after DTH immunization. Moreover, these CCR2(+ DCs highly expressed IL-12 and CD80, resulting in more effective induction of Th1 differentiation compared with CCR2(- DCs. These results indicate that CGRP regulates Th1 type reactions by regulating expression of cytokines, chemokines, and chemokine receptors in DCs.

  18. No significant effect of prefrontal tDCS on working memory performance in older adults

    Directory of Open Access Journals (Sweden)

    Jonna eNilsson

    2015-12-01

    Full Text Available Transcranial direct current stimulation (tDCS has been put forward as a non-pharmacological alternative for alleviating cognitive decline in old age. Although results have shown some promise, little is known about the optimal stimulation parameters for modulation in the cognitive domain. In this study, the effects of tDCS over the dorsolateral prefrontal cortex (dlPFC on working memory performance were investigated in thirty older adults. An N-back task assessed working memory before, during and after anodal tDCS at a current strength of 1mA and 2mA, in addition to sham stimulation. The study used a single-blind, cross-over design. The results revealed no significant effect of tDCS on accuracy or response times during or after stimulation, for any of the current strengths. These results suggest that a single session of tDCS over the dlPFC is unlikely to improve working memory, as assessed by an N-back task, in old age.

  19. Immune response to H pylori

    Science.gov (United States)

    Suarez, Giovanni; Reyes, Victor E; Beswick, Ellen J

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium. PMID:17007009

  20. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Uriel Trahtemberg

    2017-10-01

    Full Text Available Inefficient and abnormal clearance of apoptotic cells (efferocytosis contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs, and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer. Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1 or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid

  1. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Laursen, Janne Marie; Zucker, Daniel

    2017-01-01

    Tumor immune escape is today recognized as an important cancer hallmark and is therefore a major focus area in cancer therapy. Monocytes and dendritic cells (DCs), which are central to creating a robust anti-tumor immune response and establishing an anti-tumorigenic microenvironment, are directly...... targeted by the tumor escape mechanisms to develop immunosuppressive phenotypes. Providing activated monocytes and DCs to the tumor tissue is therefore an attractive way to break the tumor-derived immune suppression and reinstate cancer immune surveillance. To activate monocytes and DCs with high...... as their immune activating potential in blood-derived monocytes, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). Monocytes and mDCs were targeted with high specificity over lymphocytes, and exhibited potent TLR7-specific secretion of the anti-cancer cytokines IL-12p70, IFN-α 2a, and IFN-γ. This delivery system...

  2. Project managing your simulator DCS upgrade

    International Nuclear Information System (INIS)

    Carr, S.

    2006-01-01

    The intention of this paper is to provide helpful information and tips for the purchaser with regard to the project management of a DCS upgrade for an existing nuclear power station operator-training simulator. This paper was written shortly after STS Powergen completed two nuclear power station simulator DCS projects in the USA. Areas covered by this paper are: - Contractual documents and arrangements; - Licence and Escrow agreements; - Liquidated damages; - Project management; - Project schedules and resources; - Monitoring progress; - Defect reporting; - DCS automation code; - Access to proprietary information; - Tips for project meetings; - Testing; - Cultural issues; - Training

  3. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  4. Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients not Detected in Analysis of Standard Immune Cell Types

    Directory of Open Access Journals (Sweden)

    Lauren M. Lepone

    2016-03-01

    suppressor cells, conventional dendritic cells (DCs, plasmacytoid DCs and B cells. The use of these panels identifying 123 immune cell subsets may aid in the identi‐ fication of patients who may benefit from immunotherapy, either prior to therapy or early in the immunotherapeutic regimen, for the treatment of cancer or other chronic or infectious diseases.

  5. Feasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia.

    Science.gov (United States)

    Richardson, Jessica; Datta, Abhishek; Dmochowski, Jacek; Parra, Lucas C; Fridriksson, Julius

    2015-01-01

    Transcranial direct current stimulation (tDCS) enhances treatment outcomes post-stroke. Feasibility and tolerability of high-definition (HD) tDCS (a technique that increases current focality and intensity) for consecutive weekdays as an adjuvant to behavioral treatment in a clinical population has not been demonstrated. To determine HD-tDCS feasibility outcomes: 1) ability to implement study as designed, 2) acceptability of repeated HD-tDCS administration to patients, and 3) preliminary efficacy. Eight patients with chronic post-stroke aphasia participated in a randomized crossover trial with two arms: conventional sponge-based (CS) tDCS and HD-tDCS. Computerized anomia treatment was administered for five consecutive days during each treatment arm. Individualized modeling/targeting procedures and an 8-channel HD-tDCS device were developed. CS-tDCS and HD-tDCS were comparable in terms of implementation, acceptability, and outcomes. Naming accuracy and response time improved for both stimulation conditions. Change in accuracy of trained items was numerically higher (but not statistically significant) for HD-tDCS compared to CS-tDCS for most patients. Regarding feasibility, HD-tDCS treatment studies can be implemented when designed similarly to documented CS-tDCS studies. HD-tDCS is likely to be acceptable to patients and clinicians. Preliminary efficacy data suggest that HD-tDCS effects, using only 4 electrodes, are at least comparable to CS-tDCS.

  6. Transgene IL-6 Enhances DC-Stimulated CTL Responses by Counteracting CD4+25+Foxp3+ Regulatory T Cell Suppression via IL-6-Induced Foxp3 Downregulation

    Directory of Open Access Journals (Sweden)

    Kalpana Kalyanasundaram Bhanumathy

    2014-03-01

    Full Text Available Dendritic cells (DCs, the most potent antigen-presenting cells have been extensively applied in clinical trials for evaluation of antitumor immunity. However, the efficacy of DC-mediated cancer vaccines is still limited as they are unable to sufficiently break the immune tolerance. In this study, we constructed a recombinant adenoviral vector (AdVIL-6 expressing IL-6, and generated IL-6 transgene-engineered DC vaccine (DCOVA/IL-6 by transfection of murine bone marrow-derived ovalbumin (OVA-pulsed DCs (DCOVA with AdVIL-6. We then assessed DCOVA/IL-6-stimulated cytotoxic T-lymphocyte (CTL responses and antitumor immunity in OVA-specific animal tumor model. We demonstrate that DCOVA/IL-6 vaccine up-regulates expression of DC maturation markers, secretes transgene-encoded IL-6, and more efficiently stimulates OVA-specific CTL responses and therapeutic immunity against OVA-expressing B16 melanoma BL6-10OVA in vivo than the control DCOVA/Null vaccine. Moreover, DCOVA/IL-6-stimulated CTL responses were relatively maintained in mice with transfer of CD4+25+Foxp3+ Tr-cells, but significantly reduced when treated with anti-IL-6 antibody. In addition, we demonstrate that IL-6 down-regulates Foxp3-expression of CD4+25+Foxp3+ Tr-cells in vitro. Taken together, our results demonstrate that AdV-mediated IL-6 transgene-engineered DC vaccine stimulates potent CTL responses and antitumor immunity by counteracting CD4+25+ Tr immunosuppression via IL-6-induced Foxp3 down-regulation. Thus, IL-6 may be a good candidate for engineering DCs for cancer immunotherapy.

  7. Technical Support for the development of DCS

    International Nuclear Information System (INIS)

    Oh, In Seok; Lee, Cheol Kwon; Kim, Dong Hoon; Kim, Jung Taek; Hwang, In Koo; Park, Jae Chang; Lee, Dong Young; Park, Won Man

    2008-05-01

    The objective of this project is to provide a technical support to Woori Tech Co. in its design and manufacture process of the DCS as a part of KNICS development program to promote the technology self-reliance for non-safety equipment for NPPs(Nuclear Power Plants). We support Woori Tech Co. to develop a DCS which satisfies the requirements for Shinkori 3 and 4 NPPs in the aspects of reliability, applicability and technical competitiveness. As the results of this project the following items were developed and/or implemented; · Design basis and requirements for a DCS system · Design requirements for control communication networks · Architecture of control networks · Design requirements of EWS(Engineering Workstation) · Plan of software verification and validation · Operation display design · Soft control functions · Application development tools of DCS · Analysis and V/V activities on DCS control network protocols · Software verification and validation and documentation guidelines · User manual documents

  8. Repulsive guidance molecule a blockade exerts the immunoregulatory function in DCs stimulated with ABP and LPS.

    Science.gov (United States)

    Xu, Xuxu; Gao, Yan; Zhai, Zhiyong; Zhang, Shuo; Shan, Fengping; Feng, Juan

    2016-08-02

    Repulsive guidance molecule a (RGMa) is an axonal guidance molecule that has recently found to exert function in immune system. This study evaluated the function of RGMa in modulation of dendritic cells (DCs) function stimulated with Achyranthes bidentata polysaccharide (ABP) and lipopolysaccharide (LPS) using a RGMa-neutralizing antibody. Compared with the Control-IgG/ABP and Control-IgG/LPS groups, DCs in the Anti-RGMa/ABP and Anti-RGMa/LPS groups 1) showed small, round cells with a few cell processes and organelles, and many pinocytotic vesicles; 2) had decreased MHC II, CD86, CD80, and CD40 expression; 3) displayed the decreased IL-12p70, IL-1β and TNF-α levels and increased IL-10 secretion; 4) had a high percentage of FITC-dextran uptake; and 5) displayed a reduced ability to drive T cell proliferation and reinforced T cell polarization toward a Th2 cytokine pattern. We conclude that DCs treated with RGMa-neutralizing antibodies present with tolerogenic and immunoregulatory characteristics, which provides new insights into further understanding of the function of RGMa.

  9. Fibroblast and T cells conditioned media induce maturation dendritic cell and promote T helper immune response

    Directory of Open Access Journals (Sweden)

    Masoumeh Asadi

    2012-06-01

    Full Text Available Dendritic cells (DCs induce pathogen-specific T cell responses. We comprehensively studied the effects of addition of maturation stimulus, fibroblasts (fibroblast conditioned medium, PHA activated T cells (T cell conditioned medium, and mixture of fibroblast & PHA activated T cells (FCM-TCCM conditioned media on maturation of DCs. Monocytes were cultured with GM-CSF and IL-4 for five days. Maturation factors included MCM and TNF-α as control group. FCM and TCCM, or FCM-TCCM supernatant were considered as the treatment group. Tumor antigens were added at day five. Matured DCs were harvested at day seven. Phenotypic and functional analyses were carried out using anti (CD14, CD80, CD86, CD83 and HLA-DR monoclonal antibodies. Phagocytic activity, mixed lymphocyte reaction (MLR and cytokine production were also evaluated. At the end of culturing period, significantly fully matured DCs with large amount cytoplasm and copious dendritic projections were found in the presence of MCM, TNF-α with or without FCM, TCCM, FCM as well as TCCM. Flow cytometric analysis revealed that expression of CD14 decreased in particular in treated DCs, at the 5th day and expression of CD80, CD86 and HLA-DR was higher when FCM, TCCM, FCM plus TCCM were added to maturation factor. This study demonstrated that DCs matured with these methods had optimum function in comparison with either factor alone.

  10. The Immune Response of Maternally Immune Chicks to Vaccination ...

    African Journals Online (AJOL)

    The Immune Response of Maternally Immune Chicks to Vaccination with Newcastle Disease Virus. ... G A El-Tayeb, M Y El-Ttegani, I E Hajer, M A Mohammed ... This study was conducted to determine the persistence of maternally derived antibodies (MDA) to Newcastle disease virus (NDV) in newly hatched chicks and the ...

  11. Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape.

    Directory of Open Access Journals (Sweden)

    Jens Dinter

    2015-03-01

    Full Text Available Dendritic cells (DCs and macrophages (Møs internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8⁺ T cells (CTL. However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.

  12. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations

    Science.gov (United States)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong

    2015-11-01

    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.

  13. Gastrointestinal immune responses in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    LRR Castello-Branco

    1996-06-01

    Full Text Available The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.

  14. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    Science.gov (United States)

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  15. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    Science.gov (United States)

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  16. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity

    Directory of Open Access Journals (Sweden)

    Michaël Chopin

    2016-04-01

    Full Text Available Plasmacytoid dendritic cells (pDCs represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections.

  17. Is the scavenger receptor MARCO a new immune checkpoint?

    Science.gov (United States)

    Arredouani, Mohamed S

    2014-11-01

    Whereas macrophages use the scavenger receptor MARCO primarily in antimicrobial immunity by interacting with both exogenous and endogenous environments, in dendritic cells (DCs) MARCO is believed to pleiotropically link innate to adaptive immunity. MARCO exerts a significant modulatory effect on TLR-induced DC activation, thus offering novel avenues in cancer immunotherapy.

  18. DCS emulator development for the ACR-1000 simulator

    International Nuclear Information System (INIS)

    Nakashima, Y.; Trueman, R.; Ishii, K.

    2010-01-01

    Nuclear Power Plant (NPP) simulators are the main means for operator training and as such are a crucial part of the NPP operation life-cycle. Hitachi, Ltd., Information and Control Systems Company (henceforth 'Hitachi') is the preferred DCS and DCS emulator developer and supplier for the ACR-1000 NPP control system. Hitachi's concept for the DCS (distributed control system) portion of the ACR-1000 simulator is 'total emulation of the DCS' by software. This paper will review the current status of the technical development and the major project milestones. (author)

  19. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD...5a. CONTRACT NUMBER Enhancement of Immune Memory Responses to Respiratory Infection 5b. GRANT NUMBER W81XWH-16-1-0360 5c. PROGRAM ELEMENT NUMBER...entitled “ENHANCEMENT OF IMMUNE MEMORY RESPONSES TO RESPIRATORY INFECTION: AUTOPHAGY IN MEMORY B-CELLS RESPONSE TO INFLUENZA VACCINE (AMBRIV

  20. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ramona Hurdayal

    2017-11-01

    Full Text Available The interleukin (IL-4 receptor alpha (IL-4Rα, ubiquitously expressed on both innate and adaptive immune cells, controls the signaling of archetypal type 2 immune regulators; IL-4 and IL-13, which elicit their signaling action by the type 1 IL-4Rα/gamma common and/or the type 2 IL-4Rα/IL-13Rα complexes. Global gene-deficient mouse models targeting IL-4, IL-13, or the IL-4Rα chain, followed by the development of conditional mice and generation of important cell-type-specific IL-4Rα-deficient mouse models, were indeed critical to gaining in-depth understanding of detrimental T helper (Th 2 mechanisms in type 1-controlled diseases. A primary example being cutaneous leishmaniasis, which is caused by the protozoan parasite Leishmania major, among others. The disease is characterized by localized self-healing cutaneous lesions and necrosis for which, currently, not a single vaccine has made it to a stage that can be considered effective. The spectrum of human leishmaniasis belongs to the top 10 infectious diseases according to the World Health Organization. As such, 350 million humans are at risk of infection and disease, with an incidence of 1.5–2 million new cases being reported annually. A major aim of our research is to identify correlates of host protection and evasion, which may aid in vaccine design and therapeutic interventions. In this review, we focus on the immune-regulatory role of the IL-4Rα chain from innate immune responses to the development of beneficial type 1 and detrimental type 2 adaptive immune responses during cutaneous Leishmania infection. We discuss the cell-specific requirements of the IL-4Rα chain on crucial innate immune cells during L. major infection, including, IL-4Rα-responsive skin keratinocytes, macrophages, and neutrophils, as well as dendritic cells (DCs. The latter, contributing to one of the paradigm shifts with respect to the role of IL-4 instructing DCs in vivo, to promote Th1 responses against L

  1. Activation of pulmonary and lymph node dendritic cells during chronic Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Damlund, Dina S. M.; Christophersen, Lars; Jensen, Peter Østrup

    2016-01-01

    , the infection is not eradicated and the inflammatory response leads to gradual degradation of the lung tissue. In CF patients, a Th2-dominated adaptive immune response with a pronounced antibody response is correlated with poorer outcome. Dendritic cells (DCs) are crucial in bridging the innate immune system...... with the adaptive immune response. Once activated, the DCs deliver a set of signals to uncommitted T cells that induce development, such as expansion of regulatory T cells and polarization of Th1, Th2 or Th17 subsets. In this study, we characterized DCs in lungs and regional lymph nodes in BALB/c mice infected...... using intratracheal installation of P. aeruginosa embedded in seaweed alginate in the lungs. A significantly elevated concentration of DCs was detected earlier in the lungs than in the regional lymph nodes. To evaluate whether the chronic P. aeruginosa lung infection leads to activation of DCs...

  2. Inhibition effect of B7-H1 gene-modified regulatory dendritic cells on thyroid-associated ophthalmopathy in mice

    Directory of Open Access Journals (Sweden)

    Hua-Xin Chen

    2014-10-01

    Full Text Available AIM:To construct adenovirus vector expressing mice B7-H1 gene, transfect dendritic cells(DCs, and to study the therapeutic effect of modified DC on thyroid-associated ophthalmopathy(TAOin mice.METHODS: We designed and constructed B7-H1 gene adenovirus expression vector, and transfected DCs from mouse bone marrow, tested the phenotype and function of modified DCs, identificated its negative regulation to immune responses. The modified DCs were infected the sicked mice. And then the immunotherapeutic effect of modified DCs to TAO were tested. RESULTS: B7-H1 gene adenovirus vector was constructed and transfected DCs from bone marrow. The titer of the recombinant adenovirus was 1.8×109PFU/mL. B7-H1 gene modified DCs characteristics of regulatory DCs, could inhibit positive immune responses. The inhibition proceeding of TAO into mice infected modified DCs, was obviously prior to the control mice. The gene modified DCs, maybe become the new immunotherapy biological agent to thy TAO.CONCLUSION: We constructed the expression of mouse B7-H1 gene adenovirus expressed vector successfully, transfected DCs,by vector have properties of regulatory DCs, inhibiting positive immune response and the occurrence and development of thyroid eye disease. Gene modified DCs, reveal potent to the treatment of thyroid eye disease.

  3. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Science.gov (United States)

    Vanderhasselt, Marie-Anne; De Raedt, Rudi; Brunoni, Andre R; Campanhã, Camila; Baeken, Chris; Remue, Jonathan; Boggio, Paulo S

    2013-01-01

    Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP) as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation), we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right) prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  4. Technical Support for the development of DCS

    Energy Technology Data Exchange (ETDEWEB)

    Oh, In Seok; Lee, Cheol Kwon; Kim, Dong Hoon; Kim, Jung Taek; Hwang, In Koo; Park, Jae Chang; Lee, Dong Young; Park, Won Man

    2008-05-15

    The objective of this project is to provide a technical support to Woori Tech Co. in its design and manufacture process of the DCS as a part of KNICS development program to promote the technology self-reliance for non-safety equipment for NPPs(Nuclear Power Plants). We support Woori Tech Co. to develop a DCS which satisfies the requirements for Shinkori 3 and 4 NPPs in the aspects of reliability, applicability and technical competitiveness. As the results of this project the following items were developed and/or implemented; {center_dot} Design basis and requirements for a DCS system {center_dot} Design requirements for control communication networks {center_dot} Architecture of control networks {center_dot} Design requirements of EWS(Engineering Workstation) {center_dot} Plan of software verification and validation {center_dot} Operation display design {center_dot} Soft control functions {center_dot} Application development tools of DCS {center_dot} Analysis and V/V activities on DCS control network protocols {center_dot} Software verification and validation and documentation guidelines {center_dot} User manual documents.

  5. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  6. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  7. Immature dendritic cells generated from cryopreserved human monocytes show impaired ability to respond to LPS and to induce allogeneic lymphocyte proliferation.

    Directory of Open Access Journals (Sweden)

    Guilherme Ferreira Silveira

    Full Text Available Dendritic cells play a key role in the immune system, in the sensing of foreign antigens and triggering of an adaptive immune response. Cryopreservation of human monocytes was investigated to understand its effect on differentiation into immature monocyte-derived dendritic cells (imdDCs, the response to inflammatory stimuli and the ability to induce allogeneic lymphocyte proliferation. Cryopreserved (crp-monocytes were able to differentiate into imdDCs, albeit to a lesser extent than freshly (frh-obtained monocytes. Furthermore, crp-imdDCs had lower rates of maturation and cytokine/chemokine secretion in response to LPS than frh-imdDCs. Lower expression of Toll-like receptor 4 (at 24 and 48 h and higher susceptibility to apoptosis in crp-imdDCs than in fresh cells would account for the impaired maturation and cytokine/chemokine secretion observed. A mixed leukocyte reaction showed that lymphocyte proliferation was lower with crp-imdDCs than with frh-imdDCs. These findings suggested that the source of monocytes used to generate human imdDCs could influence the accuracy of results observed in studies of the immune response to pathogens, lymphocyte activation, vaccination and antigen sensing. It is not always possible to work with freshly isolated monocytes but the possible effects of freezing/thawing on the biology and responsiveness of imdDCs should be taken into account.

  8. Exosomes and their roles in immune regulation and cancer.

    Science.gov (United States)

    Greening, David W; Gopal, Shashi K; Xu, Rong; Simpson, Richard J; Chen, Weisan

    2015-04-01

    Exosomes, a subset of extracellular vesicles (EVs), function as a mode of intercellular communication and molecular transfer. Exosomes facilitate the direct extracellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells in vitro and in vivo. The immunological activities of exosomes affect immunoregulation mechanisms including modulating antigen presentation, immune activation, immune suppression, immune surveillance, and intercellular communication. Besides immune cells, cancer cells secrete immunologically active exosomes that influence both physiological and pathological processes. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has enforced the way these membranous vesicles are being considered as potential immunotherapeutic reagents. Indeed, tumour- and immune cell-derived exosomes have been shown to carry tumour antigens and promote immunity, leading to eradication of established tumours by CD8(+) T cells and CD4(+) T cells, as well as directly suppressing tumour growth and resistance to malignant tumour development. Further understanding of these areas of exosome biology, and especially of molecular mechanisms involved in immune cell targeting, interaction and manipulation, is likely to provide significant insights into immunorecognition and therapeutic intervention. Here, we review the emerging roles of exosomes in immune regulation and the therapeutic potential in cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The effects of tDCS upon sustained visual attention are dependent on cognitive load.

    Science.gov (United States)

    Roe, James M; Nesheim, Mathias; Mathiesen, Nina C; Moberget, Torgeir; Alnæs, Dag; Sneve, Markus H

    2016-01-08

    Transcranial Direct Current Stimulation (tDCS) modulates the excitability of neuronal responses and consequently can affect performance on a variety of cognitive tasks. However, the interaction between cognitive load and the effects of tDCS is currently not well-understood. We recorded the performance accuracy of participants on a bilateral multiple object tracking task while undergoing bilateral stimulation assumed to enhance (anodal) and decrease (cathodal) neuronal excitability. Stimulation was applied to the posterior parietal cortex (PPC), a region inferred to be at the centre of an attentional tracking network that shows load-dependent activation. 34 participants underwent three separate stimulation conditions across three days. Each subject received (1) left cathodal / right anodal PPC tDCS, (2) left anodal / right cathodal PPC tDCS, and (3) sham tDCS. The number of targets-to-be-tracked was also manipulated, giving a low (one target per visual field), medium (two targets per visual field) or high (three targets per visual field) tracking load condition. It was found that tracking performance at high attentional loads was significantly reduced in both stimulation conditions relative to sham, and this was apparent in both visual fields, regardless of the direction of polarity upon the brain's hemispheres. We interpret this as an interaction between cognitive load and tDCS, and suggest that tDCS may degrade attentional performance when cognitive networks become overtaxed and unable to compensate as a result. Systematically varying cognitive load may therefore be a fruitful direction to elucidate the effects of tDCS upon cognitive functions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  11. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest.

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.

  12. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields.

    Science.gov (United States)

    Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E; Cohen, Leonardo G; Birbaumer, Niels; Soekadar, Surjo R

    2016-10-15

    Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Transcranial direct current stimulation (tDCS) in the treatment of depression: Systematic review and meta-analysis of efficacy and tolerability.

    Science.gov (United States)

    Meron, Daniel; Hedger, Nicholas; Garner, Matthew; Baldwin, David S

    2015-10-01

    Transcranial direct current stimulation (tDCS) is a potential alternative treatment option for major depressive episodes (MDE). We address the efficacy and safety of tDCS in MDE. The outcome measures were Hedges' g for continuous depression ratings, and categorical response and remission rates. A random effects model indicated that tDCS was superior to sham tDCS (k=11, N=393, g=0.30, 95% CI=[0.04, 0.57], p=0.027). Adjunctive antidepressant medication and cognitive control training negatively impacted on the treatment effect. The pooled log odds ratios (LOR) for response and remission were positive, but statistically non-significant (response: k=9, LOR=0.36, 95% CI[-0.16, 0.88], p=0.176, remission: k=9, LOR=0.25, 95% CI [-0.42, 0.91], p=0.468). We estimated that for a study to detect the pooled continuous effect (g=0.30) at 80% power (alpha=0.05), a total N of at least 346 would be required (with the total N required to detect the upper and lower bound being 49 and 12,693, respectively). tDCS may be efficacious for treatment of MDE. The data do not support the use of tDCS in treatment-resistant depression, or as an add-on augmentation treatment. Larger studies over longer treatment periods are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mechanisms by which Porphyromonas gingivalis evades innate immunity.

    Directory of Open Access Journals (Sweden)

    Kaveh Abdi

    Full Text Available The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis and Fusobacterium nucleatum (F. nucleatum, on Dendritic Cell (DC activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli. Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50 that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1 and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.

  15. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    Science.gov (United States)

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  16. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Directory of Open Access Journals (Sweden)

    Marie-Anne Vanderhasselt

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation, we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  17. NLRP10 Enhances CD4+ T-Cell-Mediated IFNγ Response via Regulation of Dendritic Cell-Derived IL-12 Release

    Directory of Open Access Journals (Sweden)

    Maurizio Vacca

    2017-11-01

    Full Text Available NLRP10 is a nucleotide-binding oligomerization domain-like receptor that functions as an intracellular pattern recognition receptor for microbial products. Here, we generated a Nlrp10−/− mouse to delineate the role of NLRP10 in the host immune response and found that Nlrp10−/− dendritic cells (DCs elicited sub-optimal IFNγ production by antigen-specific CD4+ T cells compared to wild-type (WT DCs. In response to T-cell encounter, CD40 ligation or Toll-like receptor 9 stimulation, Nlrp10−/− DCs produced low levels of IL-12, due to a substantial decrease in NF-κB activation. Defective IL-12 production was also evident in vivo and affected IFNγ production by CD4+ T cells. Upon Mycobacterium tuberculosis (Mtb infection, Nlrp10−/− mice displayed diminished T helper 1-cell responses and increased bacterial growth compared to WT mice. These data indicate that NLRP10-mediated IL-12 production by DCs is critical for IFNγ induction in T cells and contributes to promote the host defense against Mtb.

  18. Comparison of the functional microRNA expression in immune cell subsets of neonates and adults

    Directory of Open Access Journals (Sweden)

    Hong-Ren Yu

    2016-12-01

    Full Text Available Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs are reported involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte sub-populations is important for understanding immune system regulation. In order to explore the unique microRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells (pDCs, and myeloid dendritic cells (mDCs from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced IL-6 and TNF-alpha production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-alpha production. With this functional approach, we provide intact differential microRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies.

  19. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  20. Immunomodulator-based enhancement of anti smallpox immune responses.

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  1. Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading: A meta-analysis of single session tDCS applied to healthy participants.

    Science.gov (United States)

    Westwood, Samuel J; Romani, Cristina

    2017-09-01

    Recent reviews quantifying the effects of single sessions of transcranial direct current stimulation (or tDCS) in healthy volunteers find only minor effects on cognition despite the popularity of this technique. Here, we wanted to quantify the effects of tDCS on language production tasks that measure word reading and picture naming. We reviewed 14 papers measuring tDCS effects across a total of 96 conditions to a) quantify effects of conventional stimulation on language regions (i.e., left hemisphere anodal tDCS administered to temporal/frontal areas) under normal conditions or under conditions of cognitive (semantic) interference; b) identify parameters which may moderate the size of the tDCS effect within conventional stimulation protocols (e.g., online vs offline, high vs. low current densities, and short vs. long durations), as well as within types of stimulation not typically explored by previous reviews (i.e., right hemisphere anodal tDCS or left/right hemisphere cathodal tDCS). In all analyses there was no significant effect of tDCS, but we did find a small but significant effect of time and duration of stimulation with stronger effects for offline stimulation and for shorter durations (tDCS and its poor efficacy in healthy participants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  3. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  4. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    NARCIS (Netherlands)

    Sondergaard, J.N.; Vinner, L.; Brix, S.

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far

  5. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis

    Science.gov (United States)

    Millet, Arnaud; Martin, Katherine R.; Bonnefoy, Francis; Saas, Philippe; Mocek, Julie; Alkan, Manal; Terrier, Benjamin; Kerstein, Anja; Tamassia, Nicola; Satyanarayanan, Senthil Kumaran; Ariel, Amiram; Ribeil, Jean-Antoine; Guillevin, Loïc; Cassatella, Marco A.; Mueller, Antje; Thieblemont, Nathalie; Lamprecht, Peter; Mouthon, Luc; Perruche, Sylvain; Witko-Sarsat, Véronique

    2015-01-01

    Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology. PMID:26436651

  6. Applying anodal tDCS during tango dancing in a patient with Parkinson's disease.

    Science.gov (United States)

    Kaski, D; Allum, J H; Bronstein, A M; Dominguez, R O

    2014-05-07

    Gait disturbance in patients with Parkinson's disease remains a therapeutic challenge, given its poor response to levodopa. Dance therapy is of recognised benefit in these patients, particularly partnered dance forms such as the tango. In parallel, non-invasive brain stimulation has begun to show promise for the rehabilitation of patients with Parkinson's disease, although effects on gait, compared to upper limbs, have been less well defined. We applied transcranial direct current stimulation (tDCS) in a 79 year old male patient with moderate Parkinson's disease during tango dancing to assess its effect on trunk motion and balance. The patient performed a total of four dances over two days, two 'tango+tDCS' and two 'tango+sham' in a randomised double-blind fashion. In a separate experimental session we also assessed the isolated effect of tDCS (and sham) on gait without tango dancing. For the dance session, trunk peak velocity during tango was significantly greater during tDCS compared to sham stimulation. In the gait experiments we observed a modest but significant reduction in the time taken to complete the 3m 'timed up and go' and 6m walk, and an increase in overall gait velocity and peak pitch trunk velocity with tDCS compared to sham. Our findings suggest that tDCS may be a useful adjunct to gait rehabilitation for patients with PD, although studies in a larger group of patients are needed to evaluate the therapeutic use of non-invasive brain stimulation during dance therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Deok Rim [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Shin, Sung Jae; Kim, Woo Sik [Department of Microbiology, College of Medicine, Chungnam National University, Munwha-Dong, Jung-Ku, Daejeon 301-747 (Korea, Republic of); Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Won Sun [Department of Physiology, Kangwon National University, School of Medicine, Chuncheon 200-701 (Korea, Republic of); Lee, Min-Goo [Department of Physiology, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705 (Korea, Republic of); Kim, Daejin [Department of Anatomy, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Shin, Yong Kyoo [Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Jung, In Duk, E-mail: jungid@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Yeong-Min, E-mail: immunpym@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of)

    2011-08-05

    Highlights: {yields} Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. {yields} Rv0462 induces the activation of MAPKs. {yields} Rv0462-treated DCs enhances the proliferation of CD4{sup +} T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4{sup +} and CD8{sup +} T cells to secrete IFN-{gamma} in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  8. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    International Nuclear Information System (INIS)

    Heo, Deok Rim; Shin, Sung Jae; Kim, Woo Sik; Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee; Park, Won Sun; Lee, Min-Goo; Kim, Daejin; Shin, Yong Kyoo; Jung, In Duk; Park, Yeong-Min

    2011-01-01

    Highlights: → Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. → Rv0462 induces the activation of MAPKs. → Rv0462-treated DCs enhances the proliferation of CD4 + T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4 + and CD8 + T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  9. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes......, but it is not known how NK-DC interactions are affected by the predominantly non-pathogenic LAB. We demonstrate that human DCs exposed to different strains of gut-derived LAB consistently induce proliferation, cytotoxicity and activation markers in autologous NK cells. On the contrary, strains of LAB differ greatly...... in their ability to induce DC-dependent IFN-gamma production by NK cells. This suggests that DCs stimulated by gut LAB may expand the pool of NK cells and increase their cytotoxic potential. Specific LAB, inducing high levels of IL-12 in DCs, may promote amplification of a type-1 response via potent stimulation...

  10. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  11. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer.

    Science.gov (United States)

    Morse, Michael A; Niedzwiecki, Donna; Marshall, John L; Garrett, Christopher; Chang, David Z; Aklilu, Mebea; Crocenzi, Todd S; Cole, David J; Dessureault, Sophie; Hobeika, Amy C; Osada, Takuya; Onaitis, Mark; Clary, Bryan M; Hsu, David; Devi, Gayathri R; Bulusu, Anuradha; Annechiarico, Robert P; Chadaram, Vijaya; Clay, Timothy M; Lyerly, H Kim

    2013-12-01

    To determine whether 1 of 2 vaccines based on dendritic cells (DCs) and poxvectors encoding CEA (carcinoembryonic antigen) and MUC1 (PANVAC) would lengthen survival in patients with resected metastases of colorectal cancer (CRC). Recurrences after complete resections of metastatic CRC remain frequent. Immune responses to CRC are associated with fewer recurrences, suggesting a role for cancer vaccines as adjuvant therapy. Both DCs and poxvectors are potent stimulators of immune responses against cancer antigens. Patients, disease-free after CRC metastasectomy and perioperative chemotherapy (n = 74), were randomized to injections of autologous DCs modified with PANVAC (DC/PANVAC) or PANVAC with per injection GM-CSF (granulocyte-macrophage colony-stimulating factor). Endpoints were recurrence-free survival overall survival, and rate of CEA-specific immune responses. Clinical outcome was compared with that of an unvaccinated, contemporary group of patients who had undergone CRC metastasectomy, received similar perioperative therapy, and would have otherwise been eligible for the study. Recurrence-free survival at 2 years was similar (47% and 55% for DC/PANVAC and PANVAC/GM-CSF, respectively) (χ P = 0.48). At a median follow-up of 35.7 months, there were 2 of 37 deaths in the DC/PANVAC arm and 5 of 37 deaths in the PANVAC/GM-CSF arm. The rate and magnitude of T-cell responses against CEA was statistically similar between study arms. As a group, vaccinated patients had superior survival compared with the contemporary unvaccinated group. Both DC and poxvector vaccines have similar activity. Survival was longer for vaccinated patients than for a contemporary unvaccinated group, suggesting that a randomized trial of poxvector vaccinations compared with standard follow-up after metastasectomy is warranted. (NCT00103142).

  12. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Natalie Dittert

    2018-04-01

    Full Text Available Although posttraumatic stress disorder (PTSD; DSM-V 309.82 and anxiety disorders (DSM-V 300.xx are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS and a 95-dB female scream as unconditioned stimulus (UCS. We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC, which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84. The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be

  13. Regulatory dendritic cells in autoimmunity: A comprehensive review.

    Science.gov (United States)

    Liu, Juan; Cao, Xuetao

    2015-09-01

    Dendritic cells (DCs) are professional antigen-presenting cells (APC) with significant phenotypic heterogeneity and functional plasticity. DCs play crucial roles in initiating effective adaptive immune responses for elimination of invading pathogens and also in inducing immune tolerance toward harmless components to maintain immune homeostasis. The regulatory capacity of DCs depends on their immature state and distinct subsets, yet not restricted to the immature state and one specialized subset. The tolerogenicity of DC is controlled by a complex network of environmental signals and cellular intrinsic mechanisms. Regulatory DCs play an important role in the maintenance of immunological tolerance via the induction of T cell unresponsiveness or apoptosis, and generation of regulatory T cells. DCs play essential roles in driving autoimmunity via promoting the activation of effector T cells such as T helper 1 and T helper 17 cells, and/or suppressing the generation of regulatory T cells. Besides, a breakdown of DCs-mediated tolerance due to abnormal environmental signals or breakdown of intrinsic regulatory mechanisms is closely linked with the pathogenesis of autoimmune diseases. Novel immunotherapy taking advantage of the tolerogenic potential of regulatory DCs is being developed for treatment of autoimmune diseases. In this review, we will describe the current understanding on the generation of regulatory DC and the role of regulatory DCs in promoting tolerogenic immune responses and suppressing autoimmune responses. The emerging roles of DCs dysfunction in the pathogenesis of autoimmune diseases and the potential application of regulatory DCs in the treatment of autoimmune diseases will also be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  15. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  16. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy.

    Science.gov (United States)

    van de Laar, Lianne; Coffer, Paul J; Woltman, Andrea M

    2012-04-12

    Dendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as tolerogenic immune responses. Because of their limited lifespan, continuous replenishment of DC is required. Whereas the importance of GM-CSF in regulating DC homeostasis has long been underestimated, this cytokine is currently considered a critical factor for DC development under both steady-state and inflammatory conditions. Regulation of cellular actions by GM-CSF depends on the activation of intracellular signaling modules, including JAK/STAT, MAPK, PI3K, and canonical NF-κB. By directing the activity of transcription factors and other cellular effector proteins, these pathways influence differentiation, survival and/or proliferation of uncommitted hematopoietic progenitors, and DC subset-specific precursors, thereby contributing to specific aspects of DC subset development. The specific intracellular events resulting from GM-CSF-induced signaling provide a molecular explanation for GM-CSF-dependent subset distribution as well as clues to the specific characteristics and functions of GM-CSF-differentiated DCs compared with DCs generated by fms-related tyrosine kinase 3 ligand. This knowledge can be used to identify therapeutic targets to improve GM-CSF-dependent DC-based strategies to regulate immunity.

  17. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  18. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  19. Pleurodeles Waltl Humoral Immune Response under Spaceflight Conditions

    Science.gov (United States)

    Bascove, Matthieu; Touche, Nadege; Frippiat, Jean-Pol

    2008-06-01

    The immune system is an important regulatory mechanism affected by spaceflights. In a previous work, we performed a first study of the humoral immune response induced by the immunization of Pleurodeles waltl during a 5 months stay onboard the Mir space station. This analysis indicated that heavy-chain variable domains of specific IgM are encoded by genes of the VHII and VHVI families. However, the contributions of these two families to IgM heavy-chains are different in flown animals [1]. To better understand this immune response modification, we have now determined how individual VH genes have been used to build specific IgM binding sites in animals immunized on earth or in space. This new study revealed quantitative and qualitative modifications in VH genes expression. These data confirm that a spaceflight might affect the humoral response.

  20. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models.

    Science.gov (United States)

    Palsson, Sirus; Hickling, Timothy P; Bradshaw-Pierce, Erica L; Zager, Michael; Jooss, Karin; O'Brien, Peter J; Spilker, Mary E; Palsson, Bernhard O; Vicini, Paolo

    2013-09-28

    The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The

  1. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Directory of Open Access Journals (Sweden)

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  2. Effects of Mycoplasma hyopneumoniae on porcine nasal cavity dendritic cells.

    Science.gov (United States)

    Shen, Yumeng; Hu, Weiwei; Wei, Yanna; Feng, Zhixin; Yang, Qian

    2017-01-01

    Mycoplasma hyopneumoniae (Mhp) is the primary etiological agent responsible for swine enzootic pneumonia (EP), a disease that cause tremendous economic losses all over the swine industry. Dendritic cells (DCs), the most effective antigen-presenting cells, are widely distributed beneath respiratory epithelium. DCs uptake and present antigens to T cells, to initiate protective immune responses or generate immune-mediated pathology in different infections. In this study, we investigated the changes in the different DCs subpopulations, T cells and SIgA positive cells counts in porcine nasal cavity after long time Mhp infection. We further evaluated the role of porcine DCs in Mhp exposure. Our results showed that the number of SLA-II-DR + SWC3a + DCs, SLA-II-DR + CD11b + DCs, T cells, SIgA positive cells in nasal cavity were decreased after Mhp 28 days infection in vivo experiment. The antigen presenting ability of DCs were inhibited by Mhp exposure. DCs couldn't activate T-cell proliferation by down-regulating the antigen presenting molecule CD1a expression and promoting high level of IL-10 production. Further more, the expression levels of IL-12 and IFN-γ in DCs were decreased, suggesting that DCs favour for Th2 immune response development after Mhp exposure in vitro. Taken together, Mhp infection impairs the immune function which allows the persistence of Mhp and cause predispose pigs to secondary infections. The decline of DCs presentation ability is the reason why dysfunction and persistence in Mhp infection. These findings are benefit for exploring the pathogenic mechanisms of Mhp in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  4. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  5. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  6. DCS Budget Tracking System

    Data.gov (United States)

    Social Security Administration — DCS Budget Tracking System database contains budget information for the Information Technology budget and the 'Other Objects' budget. This data allows for monitoring...

  7. Alpha-defensins 1-3 release by dendritic cells is reduced by estrogen

    Directory of Open Access Journals (Sweden)

    Sperling Rhoda

    2011-08-01

    Full Text Available Abstract Background During pregnancy the immune system of the mother must protect any activation that may negatively affect the fetus. Changes in susceptibility to infection as well as resolution of some autoimmune disorders represent empirical evidence for pregnancy related alterations in immunity. Sex hormones reach extremely high levels during pregnancy and have been shown to have direct effects on many immune functions including the antiviral response of dendritic cells. Among the immunologically active proteins secreted by monocyte derived DCs (MDDC are the alpha-defensins 1-3. This family of cationic antimicrobial peptides has a broad spectrum of microbicidal activity and has also been shown to link innate to adaptive immunity by attracting T cells and immature DCs, which are essential for initiating and polarizing the immune response. Methods We compare culture-generated monocyte derived DCs (MDDCs with directly isolated myeloid dendritic cells (mDCs and plasmacytoid dendritic cells (pDCs and measure their alpha-defensins 1-3 secretion by ELISA both, in basal situations and after hormone (E2 or PG treatments. Moreover, using a cohort of pregnant women we isolated mDCs from blood and also measure the levels of these anti-microbial peptides along pregnancy. Results We show that mDCs and pDCs constitutively produce alpha-defensins 1-3 and at much higher levels than MDDCs. Alpha-defensins 1-3 production from mDCs and MDDCs but not pDCs is inhibited by E2. PG does not affect alpha-defensins 1-3 in any of the populations. Moreover, alpha-defensins 1-3 production by mDCs was reduced in the later stages of pregnancy in 40% of the patients. Conclusions Here, we demonstrate that mDCs and pDCs secrete alpha-defensins 1-3 and present a novel effect of E2 on the secretion of alpha-defensins 1-3 by dendritic cells.

  8. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function.

    Science.gov (United States)

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-02-07

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.

  9. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Immune response and anamnestic immune response in children after a 3-dose primary hepatitis b vaccination

    International Nuclear Information System (INIS)

    Afzal, M.F.; Sultan, M.A.; Saleemi, A.I.

    2017-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response and anamnestic immune response in children, 9 months-10 years of age, after a 3-dose primary Hepatitis B vaccination. Methods: This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, docu mented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum anti-HBsAb by ELIZA was measured. Children with anti-HBs titers =10 mIU/mL were considered to be immune. Those with anti-HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Results: Of the 200 children, protective antibody response was found in 58 percent. Median serological response was 18.60 (range 2.82-65.15). Antibody levels were found to have a statistically significant (p-value 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vaccine was administered to all non-responders, with each registering a statistically significant (p-value 0.00) anamnestic response. Conclusion: The vaccination schedule with short dosage interval was unable to provide

  12. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis.

    Science.gov (United States)

    Imburgio, Michael J; Orr, Joseph M

    2018-05-01

    A meta-analysis of studies using single-session transcranial direct current stimulation (tDCS) to target the dorsolateral prefrontal cortex (DLPFC) was undertaken to examine the effect of stimulation on executive function (EF) in healthy samples. 27 studies were included in analyses, yielding 71 effect sizes. The most relevant measure for each task was determined a priori and used to calculate Hedge's g. Methodological characteristics of each study were examined individually as potential moderators of effect size. Stimulation effects on three domains of EF (inhibition of prepotent responses, mental set shifting, and information updating and monitoring) were analyzed separately. In line with previous work, the current study found no significant effect of anodal unilateral tDCS, cathodal unilateral tDCS, or bilateral tDCS on EF. Further moderator and subgroup analyses were only carried out for anodal unilateral montages due to the small number of studies using other montages. Subgroup analyses revealed a significant effect of anodal unilateral tDCS on updating tasks, but not on inhibition or set-shifting tasks. Cathode location significantly moderated the effect of anodal unilateral tDCS. Extracranial cathodes yielded a significant effect on EF while cranial cathodes yielded no effect. Anode size also significantly moderated effect of anodal unilateral tDCS, with smaller anodes being more effective than larger anodes. In summary, anodal DLPFC stimulation is more effective at improving updating ability than inhibition and set-shifting ability, but anodal stimulation can significantly improve general executive function when extracranial cathodes or small anodes are used. Future meta-analyses may examine how stimulation's effects on specific behavioral tasks, rather than broader domains, might be affected by methodological moderators. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Systems biology of host-mycobiota interactions: dissecting Dectin-1 and Dectin-2 signalling in immune cells with DC-ATLAS.

    Science.gov (United States)

    Rizzetto, Lisa; De Filippo, Carlotta; Rivero, Damariz; Riccadonna, Samantha; Beltrame, Luca; Cavalieri, Duccio

    2013-11-01

    Modelling the networks sustaining the fruitful coexistence between fungi and their mammalian hosts is becoming increasingly important to control emerging fungal pathogens. The C-type lectins Dectin-1 and Dectin-2 are involved in host defense mechanisms against fungal infection driving inflammatory and adaptive immune responses and complement in containing fungal burdens. Recognizing carbohydrate structures in pathogens, their engagement induces maturation of dendritic cells (DCs) into potent immuno-stimulatory cells endowed with the capacity to efficiently prime T cells. Owing to these properties, Dectin-1 and Dectin-2 agonists are currently under investigation as promising adjuvants in vaccination procedures for the treatment of fungal infection. Thus, a detailed understanding of events' cascade specifically triggered in DCs upon engagement is of great interest in translational research. Here, we summarize the current knowledge on Dectin-1 and Dectin-2 signalling in DCs highlighting similarities and differences. Detailed maps are annotated, using the Biological Connection Markup Language (BCML) data model, and stored in DC-ATLAS, a versatile resource for the interpretation of high-throughput data generated perturbing the signalling network of DCs. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Impact of DCS-facilitated cue exposure therapy on brain activation to cocaine cues in cocaine dependence.

    Science.gov (United States)

    Prisciandaro, James J; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L; Santa Ana, Elizabeth J; Saladin, Michael E; Brady, Kathleen T

    2013-09-01

    The development of addiction is marked by a pathological associative learning process that imbues incentive salience to stimuli associated with drug use. Recent efforts to treat addiction have targeted this learning process using cue exposure therapy augmented with d-cycloserine (DCS), a glutamatergic agent hypothesized to enhance extinction learning. To better understand the impact of DCS-facilitated extinction on neural reactivity to drug cues, the present study reports fMRI findings from a randomized, double-blind, placebo-controlled trial of DCS-facilitated cue exposure for cocaine dependence. Twenty-five participants completed two MRI sessions (before and after intervention), with a cocaine-cue reactivity fMRI task. The intervention consisted of 50mg of DCS or placebo, combined with two sessions of cocaine cue exposure and skills training. Participants demonstrated cocaine cue activation in a variety of brain regions at baseline. From the pre- to post-study scan, participants experienced decreased activation to cues in a number of regions (e.g., accumbens, caudate, frontal poles). Unexpectedly, placebo participants experienced decreases in activation to cues in the left angular and middle temporal gyri and the lateral occipital cortex, while DCS participants did not. Three trials of DCS-facilitated cue exposure therapy for cocaine dependence have found that DCS either increases or does not significantly impact response to cocaine cues. The present study adds to this literature by demonstrating that DCS may prevent extinction to cocaine cues in temporal and occipital brain regions. Although consistent with past research, results from the present study should be considered preliminary until replicated in larger samples. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Immune phenotype in children with therapy-naïve remitted and relapsed Crohn’s disease

    Science.gov (United States)

    Cseh, Aron; Vasarhelyi, Barna; Molnar, Kriszta; Szalay, Balazs; Svec, Peter; Treszl, Andras; Dezsofi, Antal; Lakatos, Peter Laszlo; Arato, Andras; Tulassay, Tivadar; Veres, Gabor

    2010-01-01

    AIM: To characterize the prevalence of subpopulations of CD4+ cells along with that of major inhibitor or stimulator cell types in therapy-naïve childhood Crohn’s disease (CD) and to test whether abnormalities of immune phenotype are normalized with the improvement of clinical signs and symptoms of disease. METHODS: We enrolled 26 pediatric patients with CD. 14 therapy-naïve CD children; of those, 10 children remitted on conventional therapy and formed the remission group. We also tested another group of 12 children who relapsed with conventional therapy and were given infliximab; and 15 healthy children who served as controls. The prevalence of Th1 and Th2, naïve and memory, activated and regulatory T cells, along with the members of innate immunity such as natural killer (NK), NK-T, myeloid and plasmocytoid dendritic cells (DCs), monocytes and Toll-like receptor (TLR)-2 and TLR-4 expression were determined in peripheral blood samples. RESULTS: Children with therapy-naïve CD and those in relapse showed a decrease in Th1 cell prevalence. Simultaneously, an increased prevalence of memory and activated lymphocytes along with that of DCs and monocytes was observed. In addition, the ratio of myeloid /plasmocytoid DCs and the prevalence of TLR-2 or TLR-4 positive DCs and monocytes were also higher in therapy-naïve CD than in controls. The majority of alterations diminished in remitted CD irrespective of whether remission was obtained by conventional or biological therapy. CONCLUSION: The finding that immune phenotype is normalized in remission suggests a link between immune phenotype and disease activity in childhood CD. Our observations support the involvement of members of the adaptive and innate immune systems in childhood CD. PMID:21157977

  16. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao, E-mail: whao@bjmu.edu.cn

    2016-09-15

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8{sup +} T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. - Highlights: • Lack of TAK1 in DC caused an abolished TCE-induced CHS response. • TAK1 in DCs was essential to maintain the homeostasis of T cells in TCE-induced CHS. • Intact TAK1 in DCs was critical to promote T-cell priming in TCE-induced CHS. • DC-specific TAK1 deficiency abolished the TCE-mediated phosphorylation of Jnk.

  17. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay

    International Nuclear Information System (INIS)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao

    2016-01-01

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8 + T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. - Highlights: • Lack of TAK1 in DC caused an abolished TCE-induced CHS response. • TAK1 in DCs was essential to maintain the homeostasis of T cells in TCE-induced CHS. • Intact TAK1 in DCs was critical to promote T-cell priming in TCE-induced CHS. • DC-specific TAK1 deficiency abolished the TCE-mediated phosphorylation of Jnk.

  18. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  19. The immunological response and post-treatment survival of DC-vaccinated melanoma patients are associated with increased Th1/Th17 and reduced Th3 cytokine responses.

    Science.gov (United States)

    Durán-Aniotz, Claudia; Segal, Gabriela; Salazar, Lorena; Pereda, Cristián; Falcón, Cristián; Tempio, Fabián; Aguilera, Raquel; González, Rodrigo; Pérez, Claudio; Tittarelli, Andrés; Catalán, Diego; Nervi, Bruno; Larrondo, Milton; Salazar-Onfray, Flavio; López, Mercedes N

    2013-04-01

    Immunization with autologous dendritic cells (DCs) loaded with a heat shock-conditioned allogeneic melanoma cell lysate caused lysate-specific delayed type hypersensitivity (DTH) reactions in a number of patients. These responses correlated with a threefold prolonged long-term survival of DTH(+) with respect to DTH(-) unresponsive patients. Herein, we investigated whether the immunological reactions associated with prolonged survival were related to dissimilar cellular and cytokine responses in blood. Healthy donors and melanoma patient's lymphocytes obtained from blood before and after vaccinations and from DTH biopsies were analyzed for T cell population distribution and cytokine release. Peripheral blood lymphocytes from melanoma patients have an increased proportion of Th3 (CD4(+) TGF-β(+)) regulatory T lymphocytes compared with healthy donors. Notably, DTH(+) patients showed a threefold reduction of Th3 cells compared with DTH(-) patients after DCs vaccine treatment. Furthermore, DCs vaccination resulted in a threefold augment of the proportion of IFN-γ releasing Th1 cells and in a twofold increase of the IL-17-producing Th17 population in DTH(+) with respect to DTH(-) patients. Increased Th1 and Th17 cell populations in both blood and DTH-derived tissues suggest that these profiles may be related to a more effective anti-melanoma response. Our results indicate that increased proinflammatory cytokine profiles are related to detectable immunological responses in vivo (DTH) and to prolonged patient survival. Our study contributes to the understanding of immunological responses produced by DCs vaccines and to the identification of follow-up markers for patient outcome that may allow a closer individual monitoring of patients.

  20. No Effects of Stimulating the Left Ventrolateral Prefrontal Cortex with tDCS on Verbal Working Memory Updating

    Directory of Open Access Journals (Sweden)

    Karolina M. Lukasik

    2018-01-01

    Full Text Available The effects of transcranial direct current stimulation (tDCS on dorsolateral prefrontal cortex functions, such as working memory (WM, have been examined in a number of studies. However, much less is known about the behavioral effects of tDCS over other important WM-related brain regions, such as the ventrolateral prefrontal cortex (VLPFC. In a counterbalanced within-subjects design with 33 young healthy participants, we examined whether online and offline single-session tDCS over VLPFC affects WM updating performance as measured by a digit 3-back task. We compared three conditions: anodal, cathodal and sham. We observed no significant tDCS effects on participants' accuracy or reaction times during or after the stimulation. Neither did we find any differences between anodal and cathodal stimulation. Largely similar results were obtained when comparing subgroups of high- and low-performing participants. Possible reasons for the lack of effects, including individual differences in responsiveness to tDCS, features of montage, task and sample characteristics, and the role of VLPFC in WM, are discussed.

  1. TileCal TDAQ/DCS communication

    CERN Document Server

    Solans, C; Arabidze, G; Carneiro Ferreira, B; Sotto-Maior Peralva, B

    2007-01-01

    This document describes the communication between the TDAQ and DCS systems of the Hadronic Tile Calorimeter detector of the ATLAS experiment, currently under commissioning phase at CERN. It is a further step on the TDAQ and DCS communication for TileCal operation. The aim of the implementation is to increase the robustness and understanding of the detector from the two systems involved. The basic principle observed is that the two systems operate independently in parallel. Hence, the knowledge of the status of the whole detector from each of the two systems is required for further analysis of the archived data.

  2. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  3. Immune Response Generated With the Administration of Autologous Dendritic Cells Pulsed With an Allogenic Tumoral Cell-Lines Lysate in Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma

    Directory of Open Access Journals (Sweden)

    Daniel Benitez-Ribas

    2018-04-01

    Full Text Available Background and objectiveDiffuse intrinsic pontine glioma (DIPG is a lethal brainstem tumor in children. Dendritic cells (DCs have T-cell stimulatory capacity and, therefore, potential antitumor activity for disease control. DCs vaccines have been shown to reactivate tumor-specific T cells in both clinical and preclinical settings. We designed a phase Ib immunotherapy (IT clinical trial with the use of autologous dendritic cells (ADCs pulsed with an allogeneic tumors cell-lines lysate in patients with newly diagnosed DIPG after irradiation (radiation therapy.MethodsNine patients with newly diagnosed DIPG met enrollment criteria. Autologous dendritic cell vaccines (ADCV were prepared from monocytes obtained by leukapheresis. Five ADCV doses were administered intradermally during induction phase. In the absence of tumor progression, patients received three boosts of tumor lysate every 3 months during the maintenance phase.ResultsVaccine fabrication was feasible in all patients included in the study. Non-specific KLH (9/9 patients and specific (8/9 patients antitumor response was identified by immunologic studies in peripheral blood mononuclear cells (PBMC. Immunological responses were also confirmed in the T lymphocytes isolated from the cerebrospinal fluid (CSF of two patients. Vaccine administration resulted safe in all patients treated with this schema.ConclusionThese preliminary results demonstrate that ADCV preparation is feasible, safe, and generate a DIPG-specific immune response detected in PBMC and CSF. This strategy shows a promising backbone for future schemas of combination IT.

  4. Long-chain inulin for stimulating an immune response

    NARCIS (Netherlands)

    de Vos, Paulus; Vogt, Leonie

    2017-01-01

    The invention relates to a long chain inulin for influencing the immune response against a pathogen. The invention also relates to a combination comprising a long chain inulin and a vaccine for influencing the immune response against a pathogen, wherein the long chain inulin is orally administrated.

  5. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  6. Unimpaired dendritic cell functions in MVP/LRP knockout mice.

    Science.gov (United States)

    Mossink, Marieke H; de Groot, Jan; van Zon, Arend; Fränzel-Luiten, Erna; Schoester, Martijn; Scheffer, George L; Sonneveld, Pieter; Scheper, Rik J; Wiemer, Erik A C

    2003-09-01

    Dendritic cells (DCs) act as mobile sentinels of the immune system. By stimulating T lymphocytes, DCs are pivotal for the initiation of both T- and B-cell-mediated immune responses. Recently, ribonucleoprotein particles (vaults) were found to be involved in the development and/or function of human DCs. To further investigate the role of vaults in DCs, we examined the effects of disruption of the major vault protein (MVP/LRP) on the development and antigen-presenting capacity of DCs, using our MVP/LRP knockout mouse model. Mononuclear bone marrow cells were isolated from wild-type and knockout mice and stimulated to differentiate to DCs. Like human DCs, the wild-type murine DC cultures strongly expressed MVP/LRP. Nevertheless, the MVP/LRP-deficient DCs developed normally and showed similar expression levels of several DC surface markers. No differences were observed in in vitro studies on the antigen uptake and presenting capacities of the wild-type and MVP/LRP knockout DCs. Moreover, immunization of the MVP/LRP-deficient mice with several T-cell antigens led to responses similar to those observed in the wild-type mice, indicating that the in vivo DC migration and antigen-presentation capacities are intact. Moreover, no differences were observed in the induction of the T cell-dependent humoral responses and orally induced peripheral T-cell tolerance. In conclusion, vaults are not required for primary DC functions. Their abundance in DCs may, however, still reflect basic roles in myeloid cell proliferation and DC development.

  7. Agouron and immune response to commercialize remune immune-based treatment.

    Science.gov (United States)

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs.

  8. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  9. Immunosuppressive Effect of Litsea cubeba L. Essential Oil on Dendritic Cell and Contact Hypersensitivity Responses

    Directory of Open Access Journals (Sweden)

    Hsin-Chun Chen

    2016-08-01

    Full Text Available Litsea cubeba L., also named as Makauy, is a traditional herb and has been used as cooking condiment or tea brewing to treat diseases for aborigines. The present study was undertaken to explore the chemical compositions of the fruit essential oil of L. cubeba (LCEO and the immunomodulatory effect of LCEO on dendritic cells and mice. The LCEO was analyzed using gas chromatography (GC and gas chromatography/mass spectrometry (GC/MS with direct injection (DI/GC or headspace-solid phase microextraction (HS-SPME/GC. In total, 56 components were identified, of which 48 were detected by DI/GC and 49 were detected by HS-SPME/GC. The principal compounds were citral (neral and geranial. An immunosuppressive activity of LCEO was investigated with bone marrow-derived dendritic cells (DCs which have a critical role to trigger the adaptive immunity. Additionally, the inhibitory effect of LCEO on immune response was elucidated by performing the contact hypersensitivity (CHS responses in mice. Our results clearly showed that LCEO decreases the production of TNF-α and cytokine IL-12 in a dose-dependent manner in lipopolysaccharide (LPS-stimulated DCs. CHS response and the infiltrative T cells were inhibited in the tested ears of the mice co-treated with LCEO. We demonstrate, for the first time, that the LCEO mainly containing citral exhibits an immunosuppressive effect on DCs and mice, indicating that LCEO can potentially be applied in the treatment of CHS, inflammatory diseases, and autoimmune diseases.

  10. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential.

    Science.gov (United States)

    Carrion, Julio; Scisci, Elizabeth; Miles, Brodie; Sabino, Gregory J; Zeituni, Amir E; Gu, Ying; Bear, Adam; Genco, Caroline A; Brown, David L; Cutler, Christopher W

    2012-09-15

    The low-grade oral infection chronic periodontitis (CP) has been implicated in coronary artery disease risk, but the mechanisms are unclear. In this study, a pathophysiological role for blood dendritic cells (DCs) in systemic dissemination of oral mucosal pathogens to atherosclerotic plaques was investigated in humans. The frequency and microbiome of CD19(-)BDCA-1(+)DC-SIGN(+) blood myeloid DCs (mDCs) were analyzed in CP subjects with or without existing acute coronary syndrome and in healthy controls. FACS analysis revealed a significant increase in blood mDCs in the following order: healthy controls < CP < acute coronary syndrome/CP. Analysis of the blood mDC microbiome by 16S rDNA sequencing showed Porphyromonas gingivalis and other species, including (cultivable) Burkholderia cepacia. The mDC carriage rate with P. gingivalis correlated with oral carriage rate and with serologic exposure to P. gingivalis in CP subjects. Intervention (local debridement) to elicit a bacteremia increased the mDC carriage rate and frequency in vivo. In vitro studies established that P. gingivalis enhanced by 28% the differentiation of monocytes into immature mDCs; moreover, mDCs secreted high levels of matrix metalloproteinase-9 and upregulated C1q, heat shock protein 60, heat shock protein 70, CCR2, and CXCL16 transcripts in response to P. gingivalis in a fimbriae-dependent manner. Moreover, the survival of the anaerobe P. gingivalis under aerobic conditions was enhanced when within mDCs. Immunofluorescence analysis of oral mucosa and atherosclerotic plaques demonstrate infiltration with mDCs, colocalized with P. gingivalis. Our results suggest a role for blood mDCs in harboring and disseminating pathogens from oral mucosa to atherosclerosis plaques, which may provide key signals for mDC differentiation and atherogenic conversion.

  11. Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients Not Detected in Analysis of Standard Immune Cell Types

    Directory of Open Access Journals (Sweden)

    Lauren M. Lepone

    2016-03-01

    Full Text Available Recent advances in human immunology have led to the identification of novel immune cell subsets and the biological function of many of these subsets has now been identified. The recent US Food and Drug Administration approval of several immunotherapeutics for the treatment of a variety of cancer types and the results of ongoing immunotherapy clinical studies requires a more thorough interrogation of the immune system. We report here the use of flow cytometry-based analyses to identify 123 immune cell subsets of peripheral blood mononuclear cells. The use of these panels defines multiple differences in younger (< 40 years vs. older (≥ 40 years individuals and between aged-matched apparently healthy individuals and metastatic cancer patients, aspects not seen in the analysis of the following standard immune cell types: CD8, CD4, natural killer, natural killer-T, regulatory T, myeloid derived suppressor cells, conventional dendritic cells (DCs, plasmacytoid DCs and B cells. The use of these panels identifying 123 immune cell subsets may aid in the identification of patients who may benefit from immunotherapy, either prior to therapy or early in the immunotherapeutic regimen, for the treatment of cancer or other chronic or infectious diseases.

  12. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    Science.gov (United States)

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  13. Modulation of immune response by bacterial lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    Gustavo Aldapa-Vega

    2016-08-01

    Full Text Available Lipopolysaccharide (LPS is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4 and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  14. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  15. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  16. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  17. Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites.

    Science.gov (United States)

    Baszler, Timothy V; Shkap, Varda; Mwangi, Waithaka; Davies, Christopher J; Mathison, Bruce A; Mazuz, Monica; Resnikov, Dror; Fish, Lea; Leibovitch, Benjamin; Staska, Lauren M; Savitsky, Igor

    2008-04-01

    Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.

  18. Transcranial direct current stimulation (tDCS) neuromodulatory effects on mechanical hyperalgesia and cortical BDNF levels in ovariectomized rats.

    Science.gov (United States)

    da Silva Moreira, Sônia Fátima; Medeiros, Liciane Fernandes; de Souza, Andressa; de Oliveira, Carla; Scarabelot, Vanessa Leal; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-15

    Epidemiological studies show that painful disorders are more prevalent in women than in men, and the transcranial direct current stimulation (tDCS) technique has been tested in chronic pain states. We explored the effect of tDCS on pain behavior and brain-derived neurotrophic factor (BDNF) levels in ovariectomized rats. Forty-five female Wistar adult rats were distributed into five groups: control (CT), ovariectomy + tDCS (OT), ovariectomy + sham tDCS (OS), sham ovariectomy + tDCS (ST), and sham ovariectomy+shamtDCS (SS). The rats were subjected to cathodal tDCS. The vaginal cytology and the estradiol levels confirmed the hormonal status. In addition, nociceptive behavior was evaluated using the tail-flick, von Frey, and hot-plate tests, as well as the BDNF levels in the serum, hypothalamus, hippocampus, spinal cord, and cerebral cortex. One-way analysis of variance (ANOVA) or two-way ANOVA was used for statistical analysis, followed by the Bonferroni, and P-value b 0.05 was considered significant. The ovariectomized animals presented a hypersensitivity response in the hot-plate (P b 0.01) and von Frey (P b 0.05) tests, as well as increased serum BDNF (P b 0.05) and decreased hypothalamic BDNF (P b 0.01) levels. The OT, OS, ST, and SS groups showed decreased hippocampal BDNF levels as compared with the control group (P b 0.001). The interaction between tDCS and ovariectomy on the cortical BDNF levels (P b 0.01) was observed. The ovariectomy induced nociceptive hypersensitivity and altered serum and hypothalamic BDNF levels. The cathodal tDCS partially reversed nociceptive hypersensitivity.

  19. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  20. Two-sided effect of Cordyceps sinensis on dendritic cells in different physiological stages.

    Science.gov (United States)

    Li, Chia-Yang; Chiang, Chi-Shiun; Tsai, Min-Lung; Hseu, Ruey-Shyang; Shu, Wun-Yi; Chuang, Chun-Yu; Sun, Yuh-Chang; Chang, Yuan-Shiun; Lin, Jaung-Geng; Chen, Chih-Sheng; Huang, Ching-Lung; Hsu, Ian C

    2009-06-01

    Cordyceps sinensis (CS), a Chinese tonifying herb, has been widely used for centuries in Asian countries as a medicine and a health supplement. Although ample evidence indicates that CS can modulate immune responses, the functional effect of CS on dendritic cells (DCs) is still unclear. This study examines how CS affects human monocyte-derived DCs in two physiological states: naïve and LPS-induced inflammatory. Our experimental results demonstrate that CS acts as an activator and maturation inducer of immature DCs by stimulating the expression of costimulatory molecules and proinflammatory cytokines by DCs, enhancing the DC-induced, allogeneic T cell proliferation, and reducing the endocytic ability of DCs. In contrast, CS suppresses the LPS-induced, inflammatory response by decreasing the LPS-induced expression of costimulatory molecules and proinflammatory cytokines by DCs. CS also suppresses the LPS-induced, DC-elicited, allogeneic T cell proliferation and shifts the LPS-activated, DC-driven Th1 response toward a Th2 response. These results demonstrate that CS differentially regulates the DC activities according to the presence or absence of the inflammatory signs. Restated, with the lack of an ongoing inflammatory environment, CS primes DCs toward a Th1-type immunity, whereas in a potential inflammatory reaction, CS balances the over-reactivity of elicited Th1 immunity. This investigation illustrates the Yin-Yang balancing effects of CS as a medicine and a health supplement.

  1. Therapeutic Potential of Tolerogenic Dendritic Cells in IBD: From Animal Models to Clinical Application

    Directory of Open Access Journals (Sweden)

    Raquel Cabezón

    2013-01-01

    Full Text Available The gut mucosa undergoes continuous antigenic exposure from food antigens, commensal flora derived ligands, and pathogens. This constant stimulation results in controlled inflammatory responses that are effectively suppressed by multiple factors. This tight regulation, necessary to maintain intestinal homeostasis, is affected during inflammatory bowel diseases (IBD resulting in altered immune responses to harmless microorganisms. Dendritic cells (DCs are sentinels of immunity, located in peripheral and lymphoid tissues, which are essential for homeostasis of T cell-dependent immune responses. The expression of a particular set of pathogen recognition receptors allows DCs to initiate immune responses. However, in the absence of danger signals, different DC subsets can induce active tolerance by inducing regulatory T cells (Treg, inhibiting inflammatory T helper cell responses, or both. Interestingly, several protocols to generate clinical grade tolerogenic DC (tol-DCs in vitro have been described, opening the possibility to restore the intestinal homeostasis to bacterial flora by cellular therapy. In this review, we discuss different DC subsets and their role in IBD. Additionally, we will review preclinical studies performed in animal models while describing recent characterization of tol-DCs from Crohn’s disease patients for clinical application.

  2. Human dendritic cells sequentially matured with CD4(+) T cells as a secondary signal favor CTL and long-term T memory cell responses.

    Science.gov (United States)

    Simon, Thomas; Tanguy-Royer, Séverine; Royer, Pierre-Joseph; Boisgerault, Nicolas; Frikeche, Jihane; Fonteneau, Jean-François; Grégoire, Marc

    2012-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL) responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.

  3. Models for Immune Response and Immune Evasion in MSI Cancer and Lynch Syndrome

    OpenAIRE

    Özcan, Mine

    2017-01-01

    Microsatellite-unstable (MSI) cancers occurring in the context of the hereditary Lynch syndrome or as sporadic cancers elicit pronounced tumor-specific immune responses. The pronounced immune response was shown to be closely associated with frameshift peptides (FSP) that are generated as a result of deficiency in DNA mismatch repair system leading to insertion/deletion mutations in coding microsatellites (cMS). FSP neoantigens are long antigenic amino acid stretches that bear m...

  4. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cytokine-Mediated Loss of Blood Dendritic Cells During Epstein-Barr Virus-Associated Acute Infectious Mononucleosis: Implication for Immune Dysregulation.

    Science.gov (United States)

    Panikkar, Archana; Smith, Corey; Hislop, Andrew; Tellam, Nick; Dasari, Vijayendra; Hogquist, Kristin A; Wykes, Michelle; Moss, Denis J; Rickinson, Alan; Balfour, Henry H; Khanna, Rajiv

    2015-12-15

    Acute infectious mononucleosis (IM) is associated with altered expression of inflammatory cytokines and disturbed T-cell homeostasis, however, the precise mechanism of this immune dysregulation remains unresolved. In the current study we demonstrated a significant loss of circulating myeloid and plasmacytoid dendritic cells (DCs) during acute IM, a loss correlated with the severity of clinical symptoms. In vitro exposure of blood DCs to acute IM plasma resulted in loss of plasmacytoid DCs, and further studies with individual cytokines showed that exposure to interleukin 10 could replicate this effect. Our data provide important mechanistic insight into dysregulated immune homeostasis during acute IM. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Science.gov (United States)

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Inhibition of human dendritic cell activation by hydroethanolic but not lipophilic extracts of turmeric (Curcuma longa).

    Science.gov (United States)

    Krasovsky, Joseph; Chang, David H; Deng, Gary; Yeung, Simon; Lee, Mavis; Leung, Ping Chung; Cunningham-Rundles, Susanna; Cassileth, Barrie; Dhodapkar, Madhav V

    2009-03-01

    Turmeric has been extensively utilized in Indian and Chinese medicine for its immune-modulatory properties. Dendritic cells (DCs) are antigen-presenting cells specialized to initiate and regulate immunity. The ability of DCs to initiate immunity is linked to their activation status. The effects of turmeric on human DCs have not been studied. Here we show that hydroethanolic (HEE) but not lipophilic "supercritical" extraction (SCE) of turmeric inhibits the activation of human DCs in response to inflammatory cytokines. Treatment of DCs with HEE also inhibits the ability of DCs to stimulate the mixed lymphocyte reaction (MLR). Importantly, the lipophilic fraction does not synergize with the hydroethanolic fraction for the ability of inhibiting DC maturation. Rather, culturing of DCs with the combination of HEE and SCE leads to partial abrogation of the effects of HEE on the MLR initiated by DCs. These data provide a mechanism for the anti-inflammatory properties of turmeric. However, they suggest that these extracts are not synergistic and may contain components with mutually antagonistic effects on human DCs. Harnessing the immune effects of turmeric may benefit from specifically targeting the active fractions.

  8. Probiotics, antibiotics and the immune responses to vaccines.

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100-Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    NARCIS (Netherlands)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery

  10. Characterization of host immune responses in Ebola virus infections.

    Science.gov (United States)

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  11. Longitudinal tDCS: Consistency across Working Memory Training Studies

    Directory of Open Access Journals (Sweden)

    Marian E. Berryhill

    2017-04-01

    Full Text Available There is great interest in enhancing and maintaining cognitive function. In recent years, advances in noninvasive brain stimulation devices, such as transcranial direct current stimulation (tDCS, have targeted working memory in particular. Despite controversy surrounding outcomes of single-session studies, a growing field of working memory training studies incorporate multiple sessions of tDCS. It is useful to take stock of these findings because there is a diversity of paradigms employed and the outcomes observed between research groups. This will be important in assessing cognitive training programs paired with stimulation techniques and identifying the more useful and less effective approaches. Here, we treat the tDCS+ working memory training field as a case example, but also survey training benefits in other neuromodulatory techniques (e.g., tRNS, tACS. There are challenges associated with the broad parameter space including: individual differences, stimulation intensity, duration, montage, session number, session spacing, training task selection, timing of follow up testing, near and far transfer tasks. In summary, although the field of assisted cognitive training is young, some design choices are more favorable than others. By way of heuristic, the current evidence supports including more training/tDCS sessions (5+, applying anodal tDCS targeting prefrontal regions, including follow up testing on trained and transfer tasks after a period of no contact. What remains unclear, but important for future translational value is continuing work to pinpoint optimal values for the tDCS parameters on a per cognitive task basis. Importantly the emerging literature shows notable consistency in the application of tDCS for WM across various participant populations compared to single session experimental designs.

  12. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  13. The modular nature of dendritic cell responses to commensal and pathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Lisa Rizzetto

    Full Text Available The type of adaptive immune response following host-fungi interaction is largely determined at the level of the antigen-presenting cells, and in particular by dendritic cells (DCs. The extent to which transcriptional regulatory events determine the decision making process in DCs is still an open question. By applying the highly structured DC-ATLAS pathways to analyze DC responses, we classified the various stimuli by revealing the modular nature of the different transcriptional programs governing the recognition of either pathogenic or commensal fungi. Through comparison of the network parts affected by DC stimulation with fungal cells and purified single agonists, we could determine the contribution of each receptor during the recognition process. We observed that initial recognition of a fungus creates a temporal window during which the simultaneous recruitment of cell surface receptors can intensify, complement and sustain the DC activation process. The breakdown of the response to whole live cells, through the purified components, showed how the response to invading fungi uses a set of specific modules. We find that at the start of fungal recognition, DCs rapidly initiate the activation process. Ligand recognition is further enhanced by over-expression of the receptor genes, with a significant correspondence between gene expression and protein levels and function. Then a marked decrease in the receptor levels follows, suggesting that at this moment the DC commits to a specific fate. Overall our pathway based studies show that the temporal window of the fungal recognition process depends on the availability of ligands and is different for pathogens and commensals. Modular analysis of receptor and signalling-adaptor expression changes, in the early phase of pathogen recognition, is a valuable tool for rapid and efficient dissection of the pathogen derived components that determine the phenotype of the DC and thereby the type of immune response

  14. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  15. Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions.

    Science.gov (United States)

    Horvath, Jared Cooney; Vogrin, Simon J; Carter, Olivia; Cook, Mark J; Forte, Jason D

    2016-09-01

    Transcranial direct current stimulation (tDCS) uses a weak electric current to modulate neuronal activity. A neurophysiologic outcome measure to demonstrate reliable tDCS modulation at the group level is transcranial magnetic stimulation engendered motor evoked potentials (MEPs). Here, we conduct a study testing the reliability of individual MEP response patterns following a common tDCS protocol. Fourteen participants (7m/7f) each underwent nine randomized sessions of 1 mA, 10 min tDCS (3 anode; 3 cathode; 3 sham) delivered using an M1/orbito-frontal electrode montage (sessions separated by an average of ~5.5 days). Fifteen MEPs were obtained prior to, immediately following and in 5 min intervals for 30 min following tDCS. TMS was delivered at 130 % resting motor threshold using neuronavigation to ensure consistent coil localization. A number of non-experimental variables were collected during each session. At the individual level, considerable variability was seen among different testing sessions. No participant demonstrated an excitatory response ≥20 % to all three anodal sessions, and no participant demonstrated an inhibitory response ≥20 % to all three cathodal sessions. Intra-class correlation revealed poor anodal and cathodal test-retest reliability [anode: ICC(2,1) = 0.062; cathode: ICC(2,1) = 0.055] and moderate sham test-retest reliability [ICC(2,1) = 0.433]. Results also revealed no significant effect of tDCS at the group level. Using this common protocol, we found the effects of tDCS on MEP amplitudes to be highly variable at the individual level. In addition, no significant effects of tDCS on MEP amplitude were found at the group level. Future studies should consider utilizing a more strict experimental protocol to potentially account for intra-individual response variations.

  16. Regulation of immune responses and tolerance: the microRNA perspective

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-01-01

    Summary Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/ or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. PMID:23550642

  17. Regulation of immune responses and tolerance: the microRNA perspective.

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-05-01

    Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  18. Chemokine-mediated immune responses in the female genital tract mucosa.

    Science.gov (United States)

    Deruaz, Maud; Luster, Andrew D

    2015-04-01

    The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.

  19. Immune cells in term and preterm labor

    Science.gov (United States)

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-01-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  20. The involvement of plasmacytoid cells in HIV infection and pathogenesis.

    Science.gov (United States)

    Aiello, Alessandra; Giannessi, Flavia; Percario, Zulema A; Affabris, Elisabetta

    2018-04-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Self-Administered Domiciliary tDCS Treatment for Tinnitus: A Double-Blind Sham-Controlled Study.

    Directory of Open Access Journals (Sweden)

    Petteri Hyvärinen

    Full Text Available Transcranial direct current stimulation (tDCS has shown potential for providing tinnitus relief, although positive effects have usually been observed only during a short time period after treatment. In recent studies the focus has turned from one-session experiments towards multi-session treatment studies investigating long-term outcomes with double-blinded and sham-controlled study designs. Traditionally, tDCS has been administered in a clinical setting by a healthcare professional but in studies involving multiple treatment sessions, often a trade-off has to be made between sample size and the amount of labor needed to run the trial. Also, as the number of required visits to the clinic increases, the dropout rate is likely to rise proportionally.The aim of the current study was to find out if tDCS treatment for tinnitus could be patient-administered in a domiciliary setting and whether the results would be comparable to those from in-hospital treatment studies. Forty-three patients with chronic (> 6 months tinnitus were involved in the study, and data on 35 out of these patients were included in final analysis. Patients received 20 minutes of left temporal area anodal (LTA or bifrontal tDCS stimulation (2 mA or sham stimulation (0.3 mA for ten consecutive days. An overall reduction in the main outcome measure, Tinnitus Handicap Inventory (THI, was found (mean change -5.0 points, p < 0.05, but there was no significant difference between active and sham treatment outcomes. Patients found the tDCS treatment easy to administer and they all tolerated it well. In conclusion, self-administered domiciliary tDCS treatment for tinnitus was found safe and feasible and gave outcome results similar to recent randomized controlled long-term treatment trials. The results suggest better overall treatment response-as measured by THI-with domiciliary treatment than with in-hospital treatment, but this advantage is not related to the tDCS variant. The study

  2. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    Science.gov (United States)

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  3. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    Risk factors for discordant immune response among HIV-infected patients initiating antiretroviral therapy: A retrospective cohort study. ... Multivariate logistic regression models were used to estimate adjusted odds ratios (AORs) to determine associations between discordant immune response and clinical and demographic ...

  4. Unimpaired dendritic cell functions in MVP/LRP knockout mice.

    NARCIS (Netherlands)

    Mossink, MH; Groot, de J.; Zon, van A; Franzel-Luiten, E; Schoester, M.; Scheffer, G.L.; Sonneveld, P.; Scheper, R.J.; Wiemer, EA

    2003-01-01

    Dendritic cells (DCs) act as mobile sentinels of the immune system. By stimulating T lymphocytes, DCs are pivotal for the initiation of both T- and B-cell-mediated immune responses. Recently, ribonucleoprotein particles (vaults) were found to be involved in the development and/or function of human

  5. Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems.

    Science.gov (United States)

    Russano, A M; Agea, E; Casciari, C; de Benedictis, F M; Spinozzi, F

    2008-11-01

    Recent advances in allergy research mostly focussed on two major headings: improving protein allergen purification, which is aimed towards a better characterization of IgE- and T-cell reactive epitopes, and the potential new role for unconventional innate and regulatory T cells in controlling airway inflammation. These advancements could appear to be in conflict each other, as innate T cells have a poorly-defined antigen specificity that is often directed toward nonprotein substances, such as lipids. To reconcile these contrasting findings, the model of cypress pollinosis as paradigmatic for studying allergic diseases in adults is suggested. The biochemical characterization of major native protein allergens from undenatured pollen grain demonstrated that the most relevant substance with IgE-binding activity is a glycohydrolase enzyme, which easily denaturizes in stored grains. Moreover, lipids from the pollen membrane are implicated in early pollen grain capture and recognition by CD1(+) dendritic cells (DC) and CD1-restricted T lymphocytes. These T cells display Th0/Th2 functional activity and are also able to produce regulatory cytokines, such as IL-10 and TGF-beta. CD1(+) immature DCs expand in the respiratory mucosa of allergic subjects and are able to process both proteins and lipids. A final scenario may suggest that expansion and functional activation of CD1(+) DCs is a key step for mounting a Th0/Th2-deviated immune response, and that such innate response does not confer long-lasting protective immunity.

  6. Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy.

    Science.gov (United States)

    Park, Jungsun; Li, Haiyan; Zhang, Mingjun; Lu, Yong; Hong, Bangxing; Zheng, Yuhuan; He, Jin; Yang, Jing; Qian, Jianfei; Yi, Qing

    2014-08-01

    Dendritic cells (DCs) are professional antigen-presenting cells to initiate immune responses, and DC survival time is important for affecting the strength of T-cell responses. Interleukin (IL)-9-producing T-helper (Th)-9 cells play an important role in anti-tumor immunity. However, it is unclear how Th9 cells communicate with DCs. In this study, we investigated whether murine Th9 cells affected the survival of myeloid DCs. DCs derived from bone marrow of C57BL/6 mice were cocultured with Th9 cells from OT-II mice using transwell, and the survival of DCs was examined. DCs cocultured with Th9 cells had longer survival and fewer apoptotic cells than DCs cultured alone in vitro. In melanoma B16-OVA tumor-bearing mice, DCs conditioned by Th9 cells lived longer and induced stronger anti-tumor response than control DCs did in vivo. Mechanistic studies revealed that IL-3 but not IL-9 secreted by Th9 cells was responsible for the prolonged survival of DCs. IL-3 upregulated the expression of anti-apoptotic protein Bcl-xL and activated p38, ERK and STAT5 signaling pathways in DCs. Taken together, our data provide the first evidence that Th9 cells can promote the survival of DCs through IL-3, and will be helpful for designing Th9 cell immunotherapy and more effective DC vaccine for human cancers.

  7. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    Science.gov (United States)

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Harnessing dendritic cells in inflammatory skin diseases.

    Science.gov (United States)

    Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O

    2011-02-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  10. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  11. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  12. Costs of mounting an immune response during pregnancy in a lizard.

    Science.gov (United States)

    Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald

    2013-01-01

    Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.

  13. Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans

    Science.gov (United States)

    Czakai, Kristin; Leonhardt, Ines; Dix, Andreas; Bonin, Michael; Linde, Joerg; Einsele, Hermann; Kurzai, Oliver; Loeffler, Jürgen

    2016-01-01

    Invasive fungal infections are associated with high mortality rates and are mostly caused by the opportunistic fungi Aspergillus fumigatus and Candida albicans. Immune responses against these fungi are still not fully understood. Dendritic cells (DCs) are crucial players in initiating innate and adaptive immune responses against fungal infections. The immunomodulatory effects of fungi were compared to the bacterial stimulus LPS to determine key players in the immune response to fungal infections. A genome wide study of the gene regulation of human monocyte-derived dendritic cells (DCs) confronted with A. fumigatus, C. albicans or LPS was performed and Krüppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS. Downstream analysis demonstrated the influence of KLF4 on the interleukine-6 expression in human DCs. Furthermore, KLF4 regulation was shown to be dependent on pattern recognition receptor ligation. Therefore KLF4 was identified as a controlling element in the IL-6 immune response with a unique expression pattern comparing fungal and LPS stimulation. PMID:27346433

  14. Wallerian degeneration: the innate-immune response to traumatic nerve injury

    Directory of Open Access Journals (Sweden)

    Rotshenker Shlomo

    2011-08-01

    Full Text Available Abstract Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.

  15. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  16. Multiscale modeling of mucosal immune responses.

    Science.gov (United States)

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T

  17. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging

    DEFF Research Database (Denmark)

    Jindal, Utkarsh; Sood, Mehak; Chowdhury, Shubhajit Roy

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate corticospinal excitability. We used near-infrared spectroscopy (NIRS) - electroencephalography (EEG) joint-imaging during and after anodal tDCS to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along...... with changes in the log-transformed mean-power of EEG within 0.5 Hz - 11.25 Hz. In two separate studies, we investigated local post-tDCS alterations from baseline at the site of anodal tDCS using NIRS-EEG/tDCS joint-imaging as well as local post-tDCS alterations in motor evoked potentials (MEP...... that the innovative technologies for portable NIRS-EEG neuroimaging may be leveraged to objectively quantify the progress (e.g., corticospinal excitability alterations) and dose tDCS intervention as an adjuvant treatment during neurorehabilitation....

  18. Suppressive influences in the immune response to cancer.

    Science.gov (United States)

    Bronte, Vincenzo; Mocellin, Simone

    2009-01-01

    Although much evidence has been gathered demonstrating that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells do evade immune surveillance in most cases. Considering that anticancer active specific immunotherapy seems to have reached a plateau of results and that currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted.

  19. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis.

    Science.gov (United States)

    Lemieux, Maxime W; Sonzogni-Desautels, Karine; Ndao, Momar

    2017-12-24

    In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between T H 1/T H 2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  20. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats

    Science.gov (United States)

    Wen, Hui-Zhong; Gao, Shi-Hao; Zhao, Yan-Dong; He, Wen-Juan; Tian, Xue-Long; Ruan, Huai-Zhen

    2017-01-01

    Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications. PMID

  1. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  2. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  3. ATLAS Muon DCS Upgrades and Optimizations

    CERN Document Server

    Bakalis, Christos; The ATLAS collaboration

    2017-01-01

    The Muon subsystem is comprised of four detector types: Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) for trigger purposes, and Cathode Strip Chambers (CSC) and Muon Drift Tubes (MDT) for muon track reconstruction. The MDTs cover a large area at the outer part of the detector. In total, there are over a 1’000 MDT chambers, which are made of about 350’000 tubes. The luminosity upgrade of the HL-LHC is expected to pose a serious challenge to the MDTs. The expected increase of particle flux will set new, higher standards regarding the operation and control of the chambers. A step towards optimizing the ATLAS Muon Detector Control System (DCS) was to develop several DCS tools, namely a High Luminosity vs Trip Limit panel with its accompanying scripts and managers. The ultimate goal of this tool is to protect the MDT chambers from the rising particle flux and its associated increase in chamber current. In addition to optimizing the ATLAS Muon DCS, several tasks to accommodate the newly installed B...

  4. Early-life inflammation, immune response and ageing.

    Science.gov (United States)

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  5. Cryopreservation of adenovirus-transfected dendritic cells (DCs) for clinical use.

    Science.gov (United States)

    Gülen, D; Maas, S; Julius, H; Warkentin, P; Britton, H; Younos, I; Senesac, J; Pirruccello, Samuel M; Talmadge, J E

    2012-05-01

    In this study, we examined the effects of cryoprotectant, freezing and thawing, and adenovirus (Adv) transduction on the viability, transgene expression, phenotype, and function of human dendritic cells (DCs). DCs were differentiated from cultured peripheral blood (PB) monocytes following Elutra isolation using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 6 days and then transduced using an Adv vector with an IL-12 transgene. Fresh, cryopreserved, and thawed transduced immature DCs were examined for their: 1) cellular concentration and viability; 2) antigenicity using an allogeneic mixed lymphocyte reaction (MLR); 3) phenotype (HLA-DR and CD11c) and activation (CD83); and 4) transgene expression based on IL-12 secretion. Stability studies revealed that transduced DCs could be held in cryoprotectant for as long as 75 min at 2-8°C prior to freezing with little effect on their viability and cellularity. Further, cryopreservation, storage, and thawing reduced the viability of the transduced DCs by an average of 7.7%; and had no significant impact on DC phenotype and activation. In summary, cryopreservation, storage, and thawing had no significant effect on DC viability, function, and transgene expression by Adv-transduced DCs. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients

    NARCIS (Netherlands)

    Wieten, R. W.; Goorhuis, A.; Jonker, E. F. F.; de Bree, G. J.; de Visser, A. W.; van Genderen, P. J. J.; Remmerswaal, E. B. M.; ten Berge, I. J. M.; Visser, L. G.; Grobusch, M. P.; van Leeuwen, E. M. M.

    2016-01-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen

  7. Ovine model for studying pulmonary immune responses

    International Nuclear Information System (INIS)

    Joel, D.D.; Chanana, A.D.

    1984-01-01

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125 I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  8. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  9. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    OpenAIRE

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The...

  10. Role for Dendritic Cells in Immunoregulation during Experimental Vaginal Candidiasis

    Science.gov (United States)

    LeBlanc, Dana M.; Barousse, Melissa M.; Fidel, Paul L.

    2006-01-01

    Vulvovaginal candidiasis (VVC) caused by the commensal organism Candida albicans remains a significant problem among women of childbearing age, with protection against and susceptibility to infection still poorly understood. While cell-mediated immunity by CD4+ Th1-type cells is protective against most forms of mucosal candidiasis, no protective role for adaptive immunity has been identified against VVC. This is postulated to be due to immunoregulation that prohibits a more profound Candida-specific CD4+ T-cell response against infection. The purpose of this study was to examine the role of dendritic cells (DCs) in the induction phase of the immune response as a means to understand the initiation of the immunoregulatory events. Immunostaining of DCs in sectioned murine lymph nodes draining the vagina revealed a profound cellular reorganization with DCs becoming concentrated in the T-cell zone throughout the course of experimental vaginal Candida infection consistent with cell-mediated immune responsiveness. However, analysis of draining lymph node DC subsets revealed a predominance of immunoregulation-associated CD11c+ B220+ plasmacytoid DCs (pDCs) under both uninfected and infected conditions. Staining of vaginal DCs showed the presence of both DEC-205+ and pDCs, with extension of dendrites into the vaginal lumen of infected mice in close contact with Candida. Flow cytometric analysis of draining lymph node DC costimulatory molecules and activation markers from infected mice indicated a lack of upregulation of major histocompatibility complex class II, CD80, CD86, and CD40 during infection, consistent with a tolerizing condition. Together, the results suggest that DCs are involved in the immunoregulatory events manifested during a vaginal Candida infection and potentially through the action of pDCs. PMID:16714548

  11. Innate Immune Responses in Leprosy

    Science.gov (United States)

    Pinheiro, Roberta Olmo; Schmitz, Veronica; Silva, Bruno Jorge de Andrade; Dias, André Alves; de Souza, Beatriz Junqueira; de Mattos Barbosa, Mayara Garcia; de Almeida Esquenazi, Danuza; Pessolani, Maria Cristina Vidal; Sarno, Euzenir Nunes

    2018-01-01

    Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management. PMID:29643852

  12. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin.

    Science.gov (United States)

    Hajam, Irshad Ahmed; Lee, John Hwa

    2017-06-01

    Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (pSalmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (pSalmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  14. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  15. Quantitating cellular immune responses to cancer vaccines.

    Science.gov (United States)

    Lyerly, H Kim

    2003-06-01

    While the future of immunotherapy in the treatment of cancer is promising, it is difficult to compare the various approaches because monitoring assays have not been standardized in approach or technique. Common assays for measuring the immune response need to be established so that these assays can one day serve as surrogate markers for clinical response. Assays that accurately detect and quantitate T-cell-mediated, antigen-specific immune responses are particularly desired. However, to date, increases in the number of cytotoxic T cells through immunization have not been correlated with clinical tumor regression. Ideally, then, a T-cell assay not only needs to be sensitive, specific, reliable, reproducible, simple, and quick to perform, it must also demonstrate close correlation with clinical outcome. Assays currently used to measure T-cell response are delayed-type hypersensitivity testing, flow cytometry using peptide major histocompatibility complex tetramers, lymphoproliferation assay, enzyme-linked immunosorbant assay, enzyme-linked immunospot assay, cytokine flow cytometry, direct cytotoxicity assay, measurement of cytokine mRNA by quantitative reverse transcriptase polymerase chain reaction, and limiting dilution analysis. The purpose of this review is to describe the attributes of each test and compare their advantages and disadvantages.

  16. Immune responses in cattle vaccinated with gamma-irradiated Anaplasma marginale

    International Nuclear Information System (INIS)

    Sharma, S.P.; Bansal, G.C.

    1986-01-01

    The infectivity and immunogenecity of gamma-irradiated Anaplasma marginale organisms were studied in bovine calves. The severity of Anaplasma infection based on per cent infected red blood cells, haematological values and mortality was more in animals immunized with blood exposed to 60 kR in comparison to those inoculated with blood irradiated at 70, 80 and 90 kR. The immunizing controls demonstrated a significantly high parasitaemia, marked anaemia and more deaths. Marked and prolonged cell-mediated and humoral immune responses detectable in the first 3 weeks of post-immunization may be responsible for conferring of protective immunity. (author)

  17. Exploratory study of once-daily transcranial direct current stimulation (tDCS) as a treatment for auditory hallucinations in schizophrenia.

    Science.gov (United States)

    Fröhlich, F; Burrello, T N; Mellin, J M; Cordle, A L; Lustenberger, C M; Gilmore, J H; Jarskog, L F

    2016-03-01

    Auditory hallucinations are resistant to pharmacotherapy in about 25% of adults with schizophrenia. Treatment with noninvasive brain stimulation would provide a welcomed additional tool for the clinical management of auditory hallucinations. A recent study found a significant reduction in auditory hallucinations in people with schizophrenia after five days of twice-daily transcranial direct current stimulation (tDCS) that simultaneously targeted left dorsolateral prefrontal cortex and left temporo-parietal cortex. We hypothesized that once-daily tDCS with stimulation electrodes over left frontal and temporo-parietal areas reduces auditory hallucinations in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled study that evaluated five days of daily tDCS of the same cortical targets in 26 outpatients with schizophrenia and schizoaffective disorder with auditory hallucinations. We found a significant reduction in auditory hallucinations measured by the Auditory Hallucination Rating Scale (F2,50=12.22, PtDCS for treatment of auditory hallucinations and the pronounced response in the sham-treated group in this study contrasts with the previous finding and demonstrates the need for further optimization and evaluation of noninvasive brain stimulation strategies. In particular, higher cumulative doses and higher treatment frequencies of tDCS together with strategies to reduce placebo responses should be investigated. Additionally, consideration of more targeted stimulation to engage specific deficits in temporal organization of brain activity in patients with auditory hallucinations may be warranted. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Evaluation for nuclear safety-critical software reliability of DCS

    International Nuclear Information System (INIS)

    Liu Ying

    2015-01-01

    With the development of control and information technology at NPPs, software reliability is important because software failure is usually considered as one form of common cause failures in Digital I and C Systems (DCS). The reliability analysis of DCS, particularly qualitative and quantitative evaluation on the nuclear safety-critical software reliability belongs to a great challenge. To solve this problem, not only comprehensive evaluation model and stage evaluation models are built in this paper, but also prediction and sensibility analysis are given to the models. It can make besement for evaluating the reliability and safety of DCS. (author)

  19. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis

    Directory of Open Access Journals (Sweden)

    Maxime W. Lemieux

    2017-12-01

    Full Text Available In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  20. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    Science.gov (United States)

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  1. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Hui-Zhong Wen

    2017-06-01

    Full Text Available Background: Transcranial direct current stimulation (tDCS is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters.Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1 on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia.Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI, we measured pain thresholds before and after anodal-tDCS (A-tDCS using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models.Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS and contralateral-tDCS (con-tDCS produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats.Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical

  2. Human dendritic cells sequentially matured with CD4+ T cells as a secondary signal favor CTL and long-term T memory cell responses

    Directory of Open Access Journals (Sweden)

    Thomas Simon

    2012-01-01

    Full Text Available Dendritic cells (DCs are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.

  3. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  4. A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters.

    Science.gov (United States)

    Dedoncker, Josefien; Brunoni, Andre R; Baeken, Chris; Vanderhasselt, Marie-Anne

    2016-01-01

    Research into the effects of transcranial direct current stimulation of the dorsolateral prefrontal cortex on cognitive functioning is increasing rapidly. However, methodological heterogeneity in prefrontal tDCS research is also increasing, particularly in technical stimulation parameters that might influence tDCS effects. To systematically examine the influence of technical stimulation parameters on DLPFC-tDCS effects. We performed a systematic review and meta-analysis of tDCS studies targeting the DLPFC published from the first data available to February 2016. Only single-session, sham-controlled, within-subject studies reporting the effects of tDCS on cognition in healthy controls and neuropsychiatric patients were included. Evaluation of 61 studies showed that after single-session a-tDCS, but not c-tDCS, participants responded faster and more accurately on cognitive tasks. Sub-analyses specified that following a-tDCS, healthy subjects responded faster, while neuropsychiatric patients responded more accurately. Importantly, different stimulation parameters affected a-tDCS effects, but not c-tDCS effects, on accuracy in healthy samples vs. increased current density and density charge resulted in improved accuracy in healthy samples, most prominently in females; for neuropsychiatric patients, task performance during a-tDCS resulted in stronger increases in accuracy rates compared to task performance following a-tDCS. Healthy participants respond faster, but not more accurate on cognitive tasks after a-tDCS. However, increasing the current density and/or charge might be able to enhance response accuracy, particularly in females. In contrast, online task performance leads to greater increases in response accuracy than offline task performance in neuropsychiatric patients. Possible implications and practical recommendations are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Efficacy of DHMEQ, a NF-κB inhibitor, in islet transplantation: II. Induction DHMEQ treatment ameliorates subsequent alloimmune responses and permits long-term islet allograft acceptance.

    Science.gov (United States)

    Watanabe, Masaaki; Yamashita, Kenichiro; Kamachi, Hirofumi; Kuraya, Daisuke; Koshizuka, Yasuyuki; Shibasaki, Susumu; Asahi, Yoh; Ono, Hitoshi; Emoto, Shin; Ogura, Masaomi; Yoshida, Tadashi; Ozaki, Michitaka; Umezawa, Kazuo; Matsushita, Michiaki; Todo, Satoru

    2013-09-15

    Long-term graft deterioration remains a major obstacle in the success of pancreatic islet transplantation (PITx). Antigen-independent inflammatory and innate immune responses strengthen subsequent antigen-dependent immunity; further, activation of nuclear factor (NF)-κB plays a key role during these responses. In this study, we tested our hypothesis that, by the inhibition of NF-κB activation, the suppression of these early responses after PITx could facilitate graft acceptance. Full major histocompatibility complex (MHC)-mismatched BALB/c (H-2) mice islets were transplanted into streptozotocin-induced diabetic C57BL/6 (B6: H-2) mice. The NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) was administered for either 3 or 14 days after PITx. To some PITx recipients, tacrolimus was also administered. Islet allograft survival, alloimmune responses, and in vitro effects of DHMEQ on dendritic cells (DCs) were assessed. With a vehicle treatment, 600 islet allografts were promptly rejected after PITx. In contrast, 3-day treatment with DHMEQ, followed by 2-week treatment with tacrolimus, allowed permanent acceptance of islet allografts. The endogenous danger-signaling molecule high mobility group complex 1 (HMGB1) was elevated in sera shortly after PITx, whereas DHMEQ administration abolished this elevation. DHMEQ suppressed HMGB1-driven cellular activation and proinflammatory cytokine secretion in mouse bone marrow-derived DCs and significantly reduced the capacity of DCs to prime allogeneic T-cell proliferation in vitro. Finally, the DHMEQ plus tacrolimus regimen reverted the diabetic state with only 300 islet allografts. Inhibition of NF-κB activation by DHMEQ shortly after PITx suppresses HMGB1, which activates DCs and strengthens the magnitude of alloimmune responses; this permits long-term islet allograft acceptance, even in case of fewer islet allografts.

  6. Immune responses to hair dyes containing toluene-2,5-diamine

    DEFF Research Database (Denmark)

    Schmidt, J D; Johansen, J D; Nielsen, M M

    2014-01-01

    BACKGROUND: Toluene-2,5-diamine (PTD) is the most frequently used dye in oxidative hair dyes on the Scandinavian market. However, little is known about immune responses to PTD-containing oxidative hair dyes. OBJECTIVES: To study immune responses induced by PTD-containing hair dyes in mice. METHODS......: Immune responses against two different permanent hair dye products containing 1·60% (w/w) and 0·48% (w/w) PTD within the colour gel, and various concentrations of pure PTD were studied. The local inflammatory response was measured by ear swelling and cell infiltration, and T- and B-cell infiltration...... and proliferation was determined in the draining lymph nodes. RESULTS: Concentration-dependent immune responses were seen to PTD both in the skin and draining lymph nodes. The hair dye containing 1·60% PTD induced strong local inflammation and caused T- and B-cell infiltration and proliferation as well...

  7. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov; Vinner, Lasse; Pedersen, Susanne Brix

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far...... or viable HIV-1 particles with various degrees of mannosylation were cultured with pDCs. Activation of pDCs was determined by assaying secretion of IFN-alpha, viability, and upregulation of several pDC-activation markers: CD40, CD86, HLA-DR, CCR7, and PD-L1. The level of activation negatively correlated...

  8. Effects of transcranial direct current stimulation (tDCS) on binge eating disorder.

    Science.gov (United States)

    Burgess, Emilee E; Sylvester, Maria D; Morse, Kathryn E; Amthor, Frank R; Mrug, Sylvie; Lokken, Kristine L; Osborn, Mary K; Soleymani, Taraneh; Boggiano, Mary M

    2016-10-01

    To investigate the effect of transcranial direct current stimulation (tDCS) on food craving, intake, binge eating desire, and binge eating frequency in individuals with binge eating disorder (BED). N = 30 adults with BED or subthreshold BED received a 20-min 2 milliampere (mA) session of tDCS targeting the dorsolateral prefrontal cortex (DLPFC; anode right/cathode left) and a sham session. Food image ratings assessed food craving, a laboratory eating test assessed food intake, and an electronic diary recorded binge variables. tDCS versus sham decreased craving for sweets, savory proteins, and an all-foods category, with strongest reductions in men (p tDCS also decreased total and preferred food intake by 11 and 17.5%, regardless of sex (p tDCS administration (p tDCS in BED. Stimulation of the right DLPFC suggests that enhanced cognitive control and/or decreased need for reward may be possible functional mechanisms. The results support investigation of repeated tDCS as a safe and noninvasive treatment adjunct for BED. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:930-936). © 2016 Wiley Periodicals, Inc.

  9. Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Victor H Hu

    Full Text Available Trachoma, caused by Chlamydia trachomatis (Ct, is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development.

  10. Bovine anaplasmosis with emphasis on immune responses and protection

    International Nuclear Information System (INIS)

    Ristic, M.

    1980-01-01

    Anaplasmosis is an infectious and transmissible disease manifested by progressive anaemia and the appearance of other characteristic disease symptoms. It is a world-wide tick-borne disease of cattle and some wild ruminants caused by the rickettsia Anaplasma marginale. By drawing on information obtained from studies of plasmodial cell cultures, a method has recently been developed for short-term in vitro cultivation of A. marginale. An attenuated Anaplasma organism capable of growth in both ovine and bovine erythrocytes was used to demonstrate that the in vitro system provided the necessary requirements for active transfer of the organism from cell to cell. Organismal antigens are found in the erythrocytes of infected animals, whereas soluble antigens are derived from their erythrocytes and serum. Serums from convalescing animals interact with these antigens in agglutination, complement fixation, fluorescent antibody and precipitation tests. Passive transfer of sera from immune to susceptible cattle, however, does not seem to confer protection against the infection and development of the disease. Studies that employed various tests for measuring cell-mediated immune (CMI) responses (leukocyte migration inhibition, blast transformation and cytotoxicity), in association with information collected simultaneously on antibody activity, have shown that both humoral and cellular immune responses are needed for the development of protective immunity in anaplasmosis. It was further shown that an active replication of Anaplasma is essential for induction of these two types of immune responses. Consequently, live virulent and attenuated immunogens fulfil requirements for induction of protective immunity. With the virulent agent, however, development of protective immunity is preceded by induction of auto-immune responses apparently associated with pathogenesis of anaemia in anaplasmosis. Inactivated immunogens derived from blood of infected cattle and used in combination with

  11. Anopheles gambiae antiviral immune response to systemic O'nyong-nyong infection.

    Directory of Open Access Journals (Sweden)

    Joanna Waldock

    Full Text Available Mosquito-borne viral diseases cause significant burden in much of the developing world. Although host-virus interactions have been studied extensively in the vertebrate host, little is known about mosquito responses to viral infection. In contrast to mosquitoes of the Aedes and Culex genera, Anopheles gambiae, the principal vector of human malaria, naturally transmits very few arboviruses, the most important of which is O'nyong-nyong virus (ONNV. Here we have investigated the A. gambiae immune response to systemic ONNV infection using forward and reverse genetic approaches.We have used DNA microarrays to profile the transcriptional response of A. gambiae inoculated with ONNV and investigate the antiviral function of candidate genes through RNAi gene silencing assays. Our results demonstrate that A. gambiae responses to systemic viral infection involve genes covering all aspects of innate immunity including pathogen recognition, modulation of immune signalling, complement-mediated lysis/opsonisation and other immune effector mechanisms. Patterns of transcriptional regulation and co-infections of A. gambiae with ONNV and the rodent malaria parasite Plasmodium berghei suggest that hemolymph immune responses to viral infection are diverted away from melanisation. We show that four viral responsive genes encoding two putative recognition receptors, a galectin and an MD2-like receptor, and two effector lysozymes, function in limiting viral load.This study is the first step in elucidating the antiviral mechanisms of A. gambiae mosquitoes, and has revealed interesting differences between A. gambiae and other invertebrates. Our data suggest that mechanisms employed by A. gambiae are distinct from described invertebrate antiviral immunity to date, and involve the complement-like branch of the humoral immune response, supressing the melanisation response that is prominent in anti-parasitic immunity. The antiviral immune response in A. gambiae is thus

  12. Dendritic cells as Achilles' heel and Trojan horse during varicella zoster virus infection

    Directory of Open Access Journals (Sweden)

    Günther eSchönrich

    2015-05-01

    Full Text Available Varicella zoster virus (VZV, a human alphaherpesvirus, causes varicella and subsequently estab-lishes latency within sensory nerve ganglia. Later in life VZV can reactivate to cause herpes zoster. A reduced frequency of VZV-specific T cells is strongly associated with herpes zoster illustrating that these immune cells are central to control latency. Dendritic cells (DCs are required for the generation of VZV-specific T cells. However, DCs can also be infected in vitro and in vivo allowing VZV to evade the antiviral immune response. Thus, DCs represent the immune systems’ Achilles heel. Uniquely among the human herpesviruses, VZV infects both DCs and T cells, and exploits both as Trojan horses. During primary infection VZV-infected DCs traffic to the draining lymph nodes and tonsils, where the virus is transferred to T cells. VZV-infected T cells subsequently spread infection throughout the body to give the typical varicella skin rash. The delicate interplay between VZV and DCs and its consequences for viral immune evasion and viral dissemination will be discussed in this article.

  13. Understanding public (misunderstanding of tDCS for enhancement

    Directory of Open Access Journals (Sweden)

    Laura Yenisa Cabrera

    2015-04-01

    Full Text Available In order to gain insight into the public’s perspective on using the minimally invasive technique transcranial direct current stimulation (tDCS as an enhancement tool, we analyzed and compared online comments in key popular press articles from two different periods (pre-commercialization and post-commercialization. The main conclusion drawn from this exploratory investigation is that public perception regarding tDCS has shifted from misunderstanding to cautionary realism. This change in attitude can be explained as moving from a focus on an emergent technology to a focus on its applications, benefits, and risks as the technology becomes more grounded within the public domain. Future governance of tDCS should include the concerns and enthusiasms of the public.Keywords: cognitive enhancement, neuroethics, public understanding, transcranial direct current stimulation, brain stimulation, public policy.

  14. Mechanisms Underlying the Immune Response Generated by an Oral Vibrio cholerae Vaccine

    Directory of Open Access Journals (Sweden)

    Danylo Sirskyj

    2016-07-01

    Full Text Available Mechanistic details underlying the resulting protective immune response generated by mucosal vaccines remain largely unknown. We investigated the involvement of Toll-like receptor signaling in the induction of humoral immune responses following oral immunization with Dukoral, comparing wild type mice with TLR-2-, TLR-4-, MyD88- and Trif-deficient mice. Although all groups generated similar levels of IgG antibodies, the proliferation of CD4+ T-cells in response to V. cholerae was shown to be mediated via MyD88/TLR signaling, and independently of Trif signaling. The results demonstrate differential requirements for generation of immune responses. These results also suggest that TLR pathways may be modulators of the quality of immune response elicited by the Dukoral vaccine. Determining the critical signaling pathways involved in the induction of immune response to this vaccine would be beneficial, and could contribute to more precisely-designed versions of other oral vaccines in the future.

  15. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  16. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  17. Reprogramming Antitumor Immune Responses with microRNAs

    Science.gov (United States)

    2013-10-01

    disease, including cancer etiology (4) and the generation and inhibition of antitumor immune responses (5–9). Biologically active miRNAs bind to MREs...breast, colorectal, lung, pancreatic , and thyroid carcinomas and in liquid tumors including lymphomas and some acute myeloid leukemias (9, 35). The...immunity [9], underscoring the potential of targeting this major microenvironmental compartment. Accumulating evidence suggests that chronic

  18. Dendritic cells: biology of the skin

    NARCIS (Netherlands)

    Toebak, M.J.; Gibbs, S.; Bruynzeel, D.P.; Scheper, R.J.; Rustemeyer, T.

    2009-01-01

    Allergic contact dermatitis results from a T-cell-mediated, delayed-type hypersensitivity immune response induced by allergens. Skin dendritic cells (DCs) play a central role in the initiation of allergic skin responses. Following encounter with an allergen, DCs become activated and undergo

  19. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Sorvari, Jouni; Rantala, Liisa M.; Rantala, Markus J.; Hakkarainen, Harri; Eeva, Tapio

    2007-01-01

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  20. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    Science.gov (United States)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  1. The Multiple Faces of Prostaglandin E2 G-Protein Coupled Receptor Signaling during the Dendritic Cell Life Cycle

    Directory of Open Access Journals (Sweden)

    Alessandra Cambi

    2013-03-01

    Full Text Available Many processes regulating immune responses are initiated by G-protein coupled receptors (GPCRs and report biochemical changes in the microenvironment. Dendritic cells (DCs are the most potent antigen-presenting cells and crucial for the regulation of innate and adaptive immune responses. The lipid mediator Prostaglandin E2 (PGE2 via four GPCR subtypes (EP1-4 critically regulates DC generation, maturation and migration. The role of PGE2 signaling in DC biology was unraveled by the characterization of EP receptor subtype expression in DC progenitor cells and DCs, the identification of the signaling pathways initiated by these GPCR subtypes and the classification of DC responses to PGE2 at different stages of differentiation. Here, we review the advances in PGE2 signaling in DCs and describe the efforts still to be made to understand the spatio-temporal fine-tuning of PGE2 responses by DCs.

  2. Commensal Microbiota Are Required for Systemic Inflammation Triggered by Necrotic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Jennifer A. Young

    2013-06-01

    Full Text Available The relationship between dendritic cells (DCs and commensal microflora in shaping systemic immune responses is not well understood. Here, we report that mice deficient for the Fas-associated death domain in DCs developed systemic inflammation associated with elevated proinflammatory cytokines and increased myeloid and B cells. These mice exhibited reduced DCs in gut-associated lymphoid tissues due to RIP3-dependent necroptosis, whereas DC functions remained intact. Induction of systemic inflammation required DC necroptosis and commensal microbiota signals that activated MyD88-dependent pathways in other cell types. Systemic inflammation was abrogated with the administration of broad-spectrum antibiotics or complete, but not DC-specific, deletion of MyD88. Thus, we have identified a previously unappreciated role for commensal microbiota in priming immune cells for inflammatory responses against necrotic cells. These studies demonstrate the impact intestinal microflora have on the immune system and their role in eliciting proper immune responses to harmful stimuli.

  3. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Ngono, Annie Elong; Shresta, Sujan

    2018-04-26

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.

  4. High Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: a Simultaneous tDCS-EEG Study

    Science.gov (United States)

    Roy, Abhrajeet; Baxter, Bryan

    2014-01-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high definition transcranial direct current stimulation (tDCS) using high resolution electroencephalography (EEG). Previous studies have pointed to the after effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event related synchronization (ERS) were observed during and after the application of high definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of 8 subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event related desynchronization (ERD) and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high resolution EEG during high definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration. PMID:24956615

  5. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  6. Eosinophils in mucosal immune responses

    Science.gov (United States)

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  7. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cel....... Consequently, induction of Foxp3-specific cytotoxic T-cell responses appears as an attractive tool to boost spontaneous or therapeutically provoked immune responses, for example, for the therapy of cancer....

  8. A multiherbal formulation influencing immune response in vitro.

    Science.gov (United States)

    Menghini, L; Leporini, L; Scanu, N; Pintore, G; Ferrante, C; Recinella, L; Orlando, G; Vacca, M; Brunetti, L

    2012-02-01

    Aim of this study was to evaluate the effects of phytocomplexes of Uncaria, Shiitake and Ribes in terms of viability and inflammatory response on immune cell-derived cultures. Standardized extracts of Uncaria, Shitake and Ribes and their commercial formulation were tested on cell lines PBMC, U937 and macrophage. The activity was evaluated in terms of cell viability (MTT test), variations of oxidative marker release (ROS and PGE2) and modulatory effects on immune response (gene expression of IL-6, IL-8 and TNFα, RT-PCR). Cell viability was not affected by extracts, except subtle variations observed only at higher doses (>250 µg/mL). The extract mixture was well tolerated, with no effects on cell viability up to doses of 500 µg/mL. Pre-treatment of macrophages with subtoxic doses of the extracts reduced the basal release of oxidative markers and enhanced the cell response to exogenous oxidant stimulation, as revealed by ROS and PGE2 release reduction. The same treatment on macrophage resulted in a selective modulation of the immune response, as shown by an increase of IL-6 mRNA and, partially, IL-8 mRNA, while a reduction was observed for TNFα mRNA. Data confirm that extracts and their formulations can act as regulator of the immune system with mechanisms involving the oxidative stress and the release of selected proinflammatory cytokines.

  9. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  10. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  11. Review: Natural killer cells enhance the immune surveillance of ...

    African Journals Online (AJOL)

    All the cells of the immune system cooperatively work against infectious agents and cancerous cells but Natural killer (NK) cells are playing an important role to respond to tumor by enhancing the expression of complementary domain (CD86) on dendritic cells (DCs) and production of IL-12. NK cells demolished tumor ...

  12. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  13. The sterile immune response during hepatic ischemia/reperfusion

    NARCIS (Netherlands)

    van Golen, Rowan F.; van Gulik, Thomas M.; Heger, Michal

    2012-01-01

    Hepatic ischemia and reperfusion elicits an immune response that lacks a microbial constituent yet poses a potentially lethal threat to the host. In this sterile setting, the immune system is alarmed by endogenous danger signals that are release by stressed and dying liver cells. The detection of

  14. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    Science.gov (United States)

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  15. Influence of bedding type on mucosal immune responses.

    Science.gov (United States)

    Sanford, Amy N; Clark, Stephanie E; Talham, Gwen; Sidelsky, Michael G; Coffin, Susan E

    2002-10-01

    The mucosal immune system interacts with the external environment. In the study reported here, we found that bedding materials can influence the intestinal immune responses of mice. We observed that mice housed on wood, compared with cotton bedding, had increased numbers of Peyer's patches (PP) visible under a dissecting microscope. In addition, culture of lymphoid organs revealed increased production of total and virus-specific IgA by PP and mesenteric lymph node (MLN) lymphocytes from mice housed on wood, compared with cotton bedding. However, bedding type did not influence serum virus-specific antibody responses. These observations indicate that bedding type influences the intestinal immune system and suggest that this issue should be considered by mucosal immunologists and personnel at animal care facilities.

  16. Herbal preparation (HemoHIM) enhanced functional maturation of bone marrow-derived dendritic cells mediated toll-like receptor 4

    OpenAIRE

    Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Hwang, Yun-Ho; Jeong, Gil-Yeon; Jo, Sung-kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2016-01-01

    Background HemoHIM, which is an herbal preparation of three edible herbs (Angelicam gigas Nakai, Cnidium offinale Makino, and Peaonia japonica Miyabe), is known to have various biological and immunological activities, but the modulatory effects of this preparation on dendritic cells (DCs)-mediated immune responses have not been examined previously. DCs are a unique group of white blood cells that initiate primary immune responses by capturing, processing, and presenting antigens to T cells. R...

  17. Configuration-defined control algorithms with the ASDEX Upgrade DCS

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Gräter, Alexander [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Lüddecke, Klaus [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Neu, Gregor; Rapson, Christopher; Raupp, Gerhard; Zehetbauer, Thomas [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-11-15

    Highlights: • Control algorithm built from combination of pre-fabricated standard function blocks. • Seamless integration in multi-threaded computation context. • Block composition defined by configuration data, only. - Abstract: The ASDEX Upgrade Discharge Control System (DCS) is a distributed real-time control system executing complex control and monitoring tasks. Up to now, DCS control algorithms have been implemented by coding dedicated application processes with the C++ programming language. Algorithm changes required code modification, compilation and commissioning which only experienced programmers could perform. This was a significant constraint of flexibility for both control system operation and design. The new approach extends DCS with the capability of configuration-defined control algorithms. These are composed of chains of small, configurable standard function blocks providing general purpose functions like algebraic operations, filters, feedback controllers, output limiters and decision logic. In a later phase a graphical editor could help to compose and modify such configuration in a Simulink-like fashion. Building algorithms from standard functions can result in a high number of elements. In order to achieve a similar performance as with C++ coding, it is essential to avoid administrative bottlenecks by design. As a consequence, DCS executes a function block chain in the context of a single real-time thread of an application process. No concurrency issues as in a multi-threaded context need to be considered resulting in strongly simplified signal handling and zero performance overhead for inter-block communication. Instead of signal-driven synchronization, a block scheduler derives the execution sequence automatically from the block dependencies as defined in the configuration. All blocks and connecting signals are instantiated dynamically, based on definitions in a configuration file. Algorithms thus are not defined in the code but only in

  18. Adrenaline influence on the immune response. I

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    The intervention of adrenaline in the immunoregulation was investigated through the modification of the anti-SRBC PFC response of mice after its i.p. administration (4 μg) at various intervals before SRBC antigen. When the interval was less than 24 h, adrenaline accelerated the immune kinetics. This modification was apparent on both direct and indirect PFC, as well as on naive and immune mice. However, mice treated from 2 days showed a suppression of the response. The adrenaline affect subsisted on the adoptive response of spleen cells drug-treated either in vivo or in vitro. The mitogenic response after in vitro PHA or LPS stimulation of spleen cells from adrenaline-treated mice indicated that the T-cells were the drug target. The physiological role of the adrenaline and immunological influences of acute stress are discussed in the paper. The stress was provided by gamma irradiation. (Auth.)

  19. Influence of Concurrent Finger Movements on Transcranial Direct Current Stimulation (tDCS)-Induced Aftereffects.

    Science.gov (United States)

    Shirota, Yuichiro; Terney, Daniella; Antal, Andrea; Paulus, Walter

    2017-01-01

    Transcranial direct current stimulation (tDCS) has been reported to have bidirectional influence on the amplitude of motor-evoked potentials (MEPs) in resting participants in a polarity-specific manner: anodal tDCS increased and cathodal tDCS decreased them. More recently, the effects of tDCS have been shown to depend on a number of additional factors. We investigated whether a small variety of movements involving target and non-target muscles could differentially modify the efficacy of tDCS. MEPs were elicited from the right first dorsal interosseous muscle, defined as the target muscle, by single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). During M1 tDCS, which lasted for 10 min applying anodal, cathodal, or sham condition, the participants were instructed to squeeze a ball with their right hand (Task 1), to move their right index finger only in the medial (Task 2), in the lateral direction (Task 3), or in medial and lateral direction alternatively (Task 4). Anodal tDCS reduced MEP amplitudes measured in Task 1 and Task 2, but to a lesser extent in the latter. In Task 3, anodal tDCS led to greater MEP amplitudes than cathodal stimulation. Alternating movements resulted in no effect of tDCS on MEP amplitude (Task 4). The results are congruent with the current notion that the aftereffects of tDCS are highly variable relying on a number of factors including the type of movements executed during stimulation.

  20. Deficiency of autoimmune regulator impairs the immune tolerance effect of bone marrow-derived dendritic cells in mice.

    Science.gov (United States)

    Huo, Feifei; Li, Dongbei; Zhao, Bo; Luo, Yadong; Zhao, Bingjie; Zou, Xueyang; Li, Yi; Yang, Wei

    2018-02-01

    As a transcription factor, autoimmune regulator (Aire) participates in thymic negative selection and maintains immune tolerance mainly by regulating the ectopic expression of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). Aire is also expressed in dendritic cells (DCs). DCs are professional antigen-presenting cells (APCs) that affect the differentiation of T cells toward distinct subpopulations and participate in the immune response and tolerance, thereby playing an important role in maintaining homeostasis. To determine the role of Aire in maintaining immune tolerance by bone marrow-derived dendritic cells (BMDCs), in the present study we utilized Aire-knockout mice to examine the changes of maturation status and TRAs expression on BMDCs, additionally investigate the differentiation of CD4 + T cells. The results showed that expression of costimulatory molecule and major histocompatibility complex class II (MHC-II) molecule was increased and expression of various TRAs was decreased in BMDCs from Aire-knockout mice. Aire deficiency reduced the differentiation of naïve CD4 + T cells into type 2T helper (Th2) cells and regulatory T cells (Tregs) but enhanced the differentiation of naïve CD4 + T cells into Th1 cells, Th17 cells, and follicular helper T (Tfh) cells. The results demonstrate that Aire expressed by BMDCs plays an important role in the maintenance of homeostasis by regulating TRA expression and the differentiation of T cell subsets.

  1. Transcranial Direct Current Stimulation (tDCS): A Promising Treatment for Major Depressive Disorder?

    Science.gov (United States)

    Bennabi, Djamila; Haffen, Emmanuel

    2018-01-01

    Background: Transcranial direct current stimulation (tDCS) opens new perspectives in the treatment of major depressive disorder (MDD), because of its ability to modulate cortical excitability and induce long-lasting effects. The aim of this review is to summarize the current status of knowledge regarding tDCS application in MDD. Methods: In this review, we searched for articles published in PubMed/MEDLINE from the earliest available date to February 2018 that explored clinical and cognitive effects of tDCS in MDD. Results: Despite differences in design and stimulation parameters, the examined studies indicated beneficial effects of tDCS for MDD. These preliminary results, the non-invasiveness of tDCS, and its good tolerability support the need for further research on this technique. Conclusions: tDCS constitutes a promising therapeutic alternative for patients with MDD, but its place in the therapeutic armamentarium remains to be determined. PMID:29734768

  2. Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor.

    Directory of Open Access Journals (Sweden)

    Mathilda Eriksson

    Full Text Available Virus-like particles (VLPs consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV VLPs carrying the entire human Prostate Specific Antigen (PSA (PSA-MPyVLPs for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs. Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4(+ and CD8(+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4(+ and CD8(+ cells with a low induction of anti-VLP antibodies.

  3. Murine Polyomavirus Virus-Like Particles Carrying Full-Length Human PSA Protect BALB/c Mice from Outgrowth of a PSA Expressing Tumor

    Science.gov (United States)

    Eriksson, Mathilda; Andreasson, Kalle; Weidmann, Joachim; Lundberg, Kajsa; Tegerstedt, Karin

    2011-01-01

    Virus-like particles (VLPs) consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV) VLPs carrying the entire human Prostate Specific Antigen (PSA) (PSA-MPyVLPs) for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs). Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4+ and CD8+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4+ and CD8+ cells with a low induction of anti-VLP antibodies. PMID:21858228

  4. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis)

    OpenAIRE

    Widodo, Trijoedani

    2005-01-01

    Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed th...

  5. The host immune response to Clostridium difficile infection

    Science.gov (United States)

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  6. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  7. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer.

    Science.gov (United States)

    Song, Dan; Li, Hong; Li, Haibo; Dai, Jianrong

    2015-08-01

    Human papillomavirus (HPV) is widely known as a cause of cervical intraepithelial neoplasia (CIN) and cervical cancer. The mechanisms involved have been studied by numerous studies. The integration of the virus genome into the host cells results in the abnormal regulation of cell cycle control. HPV can also induce immune evasion of the infected cells, which enable the virus to be undetectable for long periods of time. The induction of immunotolerance of the host's immune system by the persistent infection of HPV is one of the most important mechanisms for cervical lesions. The present review elaborates on the roles of several types of immune cells, such as macrophages and natural killer cells, which are classified as innate immune cells, and dendritic cells (DCs), cluster of differentiation (CD)4 + /CD8 + T cells and regulatory T cells, which are classified as adaptive immune cells. HPV infection could effect the differentiation of these immune cells in a unique way, resulting in the host's immune tolerance to the infection. The immune system modifications induced by HPV infection include tumor-associated macrophage differentiation, a compromised cellular immune response, an abnormal imbalance between type 1 T-helper cells (Th1) and Th2 cells, regulatory T cell infiltration, and downregulated DC activation and maturation. To date, numerous types of preventative vaccines have been created to slow down carcinogenesis. Immune response activation-based therapeutic vaccine is becoming more and more attractive for the treatment of HPV-associated diseases.

  8. Activated leucocyte cell adhesion molecule (ALCAM/CD166) regulates T cell responses in a murine model of food allergy.

    Science.gov (United States)

    Kim, Y S; Kim, M N; Lee, K E; Hong, J Y; Oh, M S; Kim, S Y; Kim, K W; Sohn, M H

    2018-05-01

    Food allergy is a major public health problem. Studies have shown that long-term interactions between activated leucocyte cell adhesion molecule (ALCAM/CD166) on the surface of antigen-presenting cells, and CD6, a co-stimulatory molecule, influence immune responses. However, there are currently no studies on the functions of ALCAM in food allergy. Therefore, we aimed to identify the functions of ALCAM in ovalbumin (OVA)-induced food allergy using ALCAM-deficient mice. Wild-type (WT) and ALCAM-deficient (ALCAM -/- ) mice were sensitized intraperitoneally and with orally fed OVA. The mice were killed, and parameters related to food allergy and T helper type 2 (Th2) immune responses were analysed. ALCAM serum levels increased and mRNA expression decreased in OVA-challenged WT mice. Serum immunoglobulin (Ig)E levels, Th2 cytokine mRNA and histological injuries were higher in OVA-challenged WT mice than in control mice, and these were attenuated in ALCAM -/- mice. T cell proliferation of total cells, CD3 + CD4 + T cells and activated T cells in immune tissues were diminished in OVA-challenged ALCAM -/- mice. Proliferation of co-cultured T cells and dendritic cells (DCs) was decreased by the anti-CD6 antibody. In addition, WT mice sensitized by adoptive transfer of OVA-pulsed ALCAM -/- BM-derived DCs showed reduced immune responses. Lastly, serum ALCAM levels were higher in children with food allergy than in control subjects. In this study, serum levels of ALCAM were elevated in food allergy-induced WT mice and children with food allergy. Moreover, immune responses and T cell activation were attenuated in OVA-challenged ALCAM -/- mice. These results indicate that ALCAM regulates food allergy by affecting T cell activation. © 2018 British Society for Immunology.

  9. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  10. Tumor PDT-associated immune response: relevance of sphingolipids

    Science.gov (United States)

    Korbelik, Mladen; Merchant, Soroush; Separovic, Duska M.

    2010-02-01

    Sphingolipids have become recognized as essential effector molecules in signal transduction with involvement in various aspects of cell function and death, immune response and cancer treatment response. Major representatives of sphingolipids family, ceramide, sphingosine and sphingosine-1-phosphate (S1P), have attracted interest in their relevance to tumor response to photodynamic therapy (PDT) because of their roles as enhancers of apoptosis, mediators of cell growth and vasculogenesis, and regulators of immune response. Our recent in vivo studies with mouse tumor models have confirmed that PDT treatment has a pronounced impact on sphingolipid profile in the targeted tumor and that significant advances in therapeutic gain with PDT can be attained by combining this modality with adjuvant treatment with ceramide analog LCL29.

  11. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Science.gov (United States)

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2013-01-01

    The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  12. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    Full Text Available The therapeutic efficacy of fusion cell (FC-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT on the cell surface and released immunostimulatory factors such as heat shock protein (HSP90α and high-mobility group box 1 (HMGB1. A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  13. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.

    Science.gov (United States)

    Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.

  14. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  15. A specific primed immune response in Drosophila is dependent on phagocytes.

    Directory of Open Access Journals (Sweden)

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  16. Identification and molecular profiling of DC-SIGN-like from big belly seahorse (Hippocampus abdominalis) inferring its potential relevancy in host immunity.

    Science.gov (United States)

    Jo, Eunyoung; Elvitigala, Don Anushka Sandaruwan; Wan, Qiang; Oh, Minyoung; Oh, Chulhong; Lee, Jehee

    2017-12-01

    Dendritic-cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is a C-type lectin that functions as a pattern recognition receptor by recognizing pathogen-associated molecular patterns (PAMPs). It is also involved in various events of the dendritic cell (DC) life cycle, such as DC migration, antigen capture and presentation, and T cell priming. In this study, a DC-SIGN-like gene from the big belly seahorse Hippocampus abdominalis (designated as ShDCS-like) was identified and molecularly characterized. The putative, complete ORF was found to be 1368 bp in length, encoding a protein of 462 amino acids with a molecular mass of 52.6 kDa and a theoretical isoelectric point of 8.26. The deduced amino acid sequence contains a single carbohydrate recognition domain (CRD), in which six conserved cysteine residues and two Ca 2+ -binding site motifs (QPN, WND) were identified. Based on pairwise sequence analysis, ShDCS-like exhibits the highest amino acid identity (94.6%) and similarity (97.4%) with DC-SIGN-like counterpart from tiger tail seahorse Hippocampus comes. Quantitative real-time PCR revealed that ShDCS-like mRNA is transcribed universally in all tissues examined, but with abundance in kidney and gill tissues. The basal mRNA expression of ShDCS-like was modulated in blood cell, kidney, gill and liver tissues in response to the stimulation of healthy fish with lipopolysaccharides (LPS), Edwardsiella tarda, or Streptococcus iniae. Moreover, recombinant ShDCS-like-CRD domain exhibited detectable agglutination activity against different bacteria. Collectively, these results suggest that ShDCS-like may potentially involve in immune function in big belly seahorses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Coupling DCS and MARTe: two real-time control frameworks in collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, Christopher J., E-mail: chris.rapson@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Carvalho, Pedro [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Lüddecke, Klaus; Neto, André C. [Unlimited Computer Systems GmbH, Seeshaupterstr. 15, 82393 Iffeldorf (Germany); Santos, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Treutterer, Wolfgang [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Winter, Axel [ITER Organization, Route de Vinon-sur-Verdon, 13115 St.-Paul-Lès-Durance (France); Zehetbauer, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany)

    2014-12-15

    Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework.

  18. Coupling DCS and MARTe: two real-time control frameworks in collaboration

    International Nuclear Information System (INIS)

    Rapson, Christopher J.; Carvalho, Pedro; Lüddecke, Klaus; Neto, André C.; Santos, Bruno; Treutterer, Wolfgang; Winter, Axel; Zehetbauer, Thomas

    2014-01-01

    Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework

  19. Vaccination with apoptosis colorectal cancer cell pulsed autologous ...

    African Journals Online (AJOL)

    user

    2011-02-18

    Feb 18, 2011 ... with DCs vaccine to assess toxicity, tolerability, immune and clinical responses to the vaccine. No ... Key words: Dendritic cells, immunotherapy, colorectal cancer. .... color analyses of DCs, cells were labeled simultaneously with ..... promote CD8+ Tc1 cell survival, memory response, tumor localization and ...

  20. Enhanced Dendritic Cell-Mediated Antigen-Specific CD4+ T Cell Responses: IFN-Gamma Aids TLR Stimulation

    Directory of Open Access Journals (Sweden)

    Kuo-Ching Sheng

    2013-01-01

    Full Text Available Phenotypic maturation and T cell stimulation are two functional attributes of DCs critical for immune induction. The combination of antigens, including those from cancer, with Toll-like receptor (TLR ligands induces far superior cellular immune responses compared to antigen alone. In this study, IFN-gamma treatment of bone marrow-derived DC, followed by incubation with the TLR2, TLR4, or TLR9 agonists, enhanced DC activation compared to TLR ligation alone. Most notably, the upregulation of CD40 with LPS stimulation and CD86 with CpG stimulation was observed in in vitro cultures. Similarly, IFN-gamma coinjected with TLR ligands was able to promote DC activation in vivo, with DCs migrating from the site of immunization to the popliteal lymph nodes demonstrating increased expression of CD80 and CD86. The heightened DC activation translated to a drastic increase in T cell stimulatory capacity in both antigen independent and antigen dependent fashions. This is the first time that IFN-gamma has been shown to have a combined effect with TLR ligation to enhance DC activation and function. The results demonstrate the novel use of IFN-gamma together with TLR agonists to enhance antigen-specific T cell responses, for applications in the development of enhanced vaccines and drug targets against diseases including cancer.

  1. Modulation of selective attention by polarity-specific tDCS effects.

    Science.gov (United States)

    Pecchinenda, Anna; Ferlazzo, Fabio; Lavidor, Michal

    2015-02-01

    Selective attention relies on working memory to maintain an attention set of task priorities. Consequently, selective attention is more efficient when working memory resources are not depleted. However, there is some evidence that distractors are processed even when working memory load is low. We used tDCS to assess whether boosting the activity of the Dorsolateral Prefrontal Cortex (DLPFC), involved in selective attention and working memory, would reduce interference from emotional distractors. Findings showed that anodal tDCS over the DLPFC was not sufficient to reduce interference from angry distractors. In contrast, cathodal tDCS over the DLPFC reduced interference from happy distractors. These findings show that altering the DLPFC activity is not sufficient to establish top-down control and increase selective attention efficiency. Although, when the neural signal in the DLPFC is altered by cathodal tDCS, interference from emotional distractors is reduced, leading to an improved performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  3. Using Transcranial Direct Current Stimulation (tDCS to study and treat aphasia

    Directory of Open Access Journals (Sweden)

    Nazbanou Nozari

    2014-04-01

    - What are the challenges of using tDCS for hypothesis testing and how can I reduce the risk of misinterpreting my results? In summary, the symposium is designed to (a promote the theoretical understanding of the basic science of tDCS, and (b to tackle several pragmatic issues when designing tDCS studies, with the ultimate goal of cultivating higher standards for using a potentially invaluable technique for both clinical and research purposes. Given the growing interest in the aphasia community for using tDCS and the sophistication of the audience, we believe that the Academy’s annual meeting is the ideal venue for this symposium.

  4. Study on operation I and C DCS test method of EPR project

    International Nuclear Information System (INIS)

    Meng Ying; Lv Zhihong; Huang Xinnian; Fan Haiying; Li Zhuojia; Xiao Shushu

    2014-01-01

    Through summarization and optimization of the method for operation I and C DCS test of the European pressurized reactor project, the conclusions play a guiding role on the operation I and C DCS test of the domestic advanced nuclear power plant. The study of the method focuses on the test platform, the test process and the optimization of method of operation I and C DCS test with the practical experience. The reasonable and reliable test method for operation I and C DCS test of the European pressurized reactor project is worthy of the reference and the development in the project of the domestic advanced nuclear power plant. (authors)

  5. Semantic Feature Training in Combination with Transcranial Direct Current Stimulation (tDCS for Progressive Anomia

    Directory of Open Access Journals (Sweden)

    Jinyi Hung

    2017-05-01

    Full Text Available We examined the effectiveness of a 2-week regimen of a semantic feature training in combination with transcranial direct current stimulation (tDCS for progressive naming impairment associated with primary progressive aphasia (N = 4 or early onset Alzheimer’s Disease (N = 1. Patients received a 2-week regimen (10 sessions of anodal tDCS delivered over the left temporoparietal cortex while completing a language therapy that consisted of repeated naming and semantic feature generation. Therapy targets consisted of familiar people, household items, clothes, foods, places, hygiene implements, and activities. Untrained items from each semantic category provided item level controls. We analyzed naming accuracies at multiple timepoints (i.e., pre-, post-, 6-month follow-up via a mixed effects logistic regression and individual differences in treatment responsiveness using a series of non-parametric McNemar tests. Patients showed advantages for naming trained over untrained items. These gains were evident immediately post tDCS. Trained items also showed a shallower rate of decline over 6-months relative to untrained items that showed continued progressive decline. Patients tolerated stimulation well, and sustained improvements in naming accuracy suggest that the current intervention approach is viable. Future implementation of a sham control condition will be crucial toward ascertaining whether neurostimulation and behavioral treatment act synergistically or alternatively whether treatment gains are exclusively attributable to either tDCS or the behavioral intervention.

  6. Immune responses of ducks infected with duck Tembusu virus

    Directory of Open Access Journals (Sweden)

    Ning eLi

    2015-05-01

    Full Text Available Duck Tembusu virus (DTMUV can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, -2, -6, Cxcl8 and antiviral proteins (Mx, Oas, etc. are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors.

  7. SEMI–MATURE DENDRITIC CELLS AS A POTENTIAL BASIS FOR THE INDUCTION OF ANTI–TUMOR RESPONSE IN PATIENTS WITH MALIGNANT GLIOMAS

    Directory of Open Access Journals (Sweden)

    O. Yu. Leplina

    2005-01-01

    Full Text Available Abstract. The comparative analysis of phenotypical and functional features of dendritic cells (DCs, generated in presence of GM–CSF and IFNα from blood monocytes of patients with malignant gliomas (MG and healthy donors, was carried out in this research. The potential value of the DC–based immunotherapy in the induction of anti–tumor response in patients with MG was also examined. Our results show that within generated DCs of healthy donors 90 and 52% cells expressed correspondingly HLA–DR and CD86, only 17–18% cells were CD14+monocytes, whereas 38% cells exhibited the phenotype of mature CD83+ dendritic cells. The both monocyte conditioned medium (MCM, 30% v/v and Leukinferon® (250 IU of IFNα were comparably efficient as maturation–induced stimuli. Despite monocyte’s disturbances in malignant gliomas, the analogous population of DCs was efficiently generated in all examined patients with MG. However, the percentage of mature CD83+DCs was significantly decreased compared to that in healthy donors (24 vs 38%, and these data strongly suggest the delay maturation of DCs in MG. Nevertheless the patient’s DCs showed the allostimulatory activity, comparable with healthy donor’s DCs, and 52–62% cells maintained the ability for the receptor–dependent en–docytosis. Moreover, the patient’s DCs effectively presented bacterial and tumor–associated antigens (TAA. Immunotherapy with autologous DCs allowed to induce the TAA–specific immune reactions, both in skin test in vivo and in vitro, in 50% patients with MG. (Med. Immunol., 2005, vol.7, № 4, pp. 365–374

  8. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    Science.gov (United States)

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-12-01

    Conclusions: Immunization with CL097-conjugated HBV-Ag reversed immune tolerance in HBV-Tg mice and induced antigen-specific immune responses. TLR7/8 agonists appear to be potent adjuvants for the induction of antigen-specific Th1 responses in an immune tolerant state.

  10. CD28 Aptamers as Powerful Immune Response Modulators

    Directory of Open Access Journals (Sweden)

    Fernando Pastor

    2013-01-01

    Full Text Available CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7, precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.

  11. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    Directory of Open Access Journals (Sweden)

    Edgar Rascón-Castelo

    2015-11-01

    Full Text Available The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV. We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC. Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein than against nsp (nsp2. In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed.

  12. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  13. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation

    Science.gov (United States)

    Granelli-Piperno, Angela; Golebiowska, Angelika; Trumpfheller, Christine; Siegal, Frederick P.; Steinman, Ralph M.

    2004-05-01

    Dendritic cells (DCs) undergo maturation during virus infection and thereby become potent stimulators of cell-mediated immunity. HIV-1 replicates in immature DCs, but we now find that infection is not accompanied by many components of maturation in either infected cells or uninfected bystanders. The infected cultures do not develop potent stimulating activity for the mixed leukocyte reaction (MLR), and the DCs producing HIV-1 gag p24 do not express CD83 and DC-lysosome-associated membrane protein maturation markers. If different maturation stimuli are applied to DCs infected with HIV-1, the infected cells selectively fail to mature. When DCs from HIV-1-infected patients are infected and cultured with autologous T cells, IL-10 was produced in 6 of 10 patients. These DC-T cell cocultures could suppress another immune response, the MLR. The regulation was partially IL-10-dependent and correlated in extent with the level of IL-10 produced. Suppressor cells only developed from infected patients, rather than healthy controls, and the DCs had to be exposed to live virus rather than HIV-1 gag peptides or protein. These results indicate that HIV-1-infected DCs have two previously unrecognized means to evade immune responses: maturation can be blocked reducing the efficacy of antigen presentation from infected cells, and T cell-dependent suppression can be induced.

  14. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  15. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi

    Directory of Open Access Journals (Sweden)

    Paul T. King

    2015-01-01

    Full Text Available Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management.

  16. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai

    2010-01-01

    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  17. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection.

    LENUS (Irish Health Repository)

    O'Shea, D

    2013-02-26

    Dendritic cells (DCs) are key immune sentinels linking the innate and adaptive immune systems. DCs recognise danger signals and initiate T-cell tolerance, memory and polarisation. They are critical cells in responding to a viral illness. Obese individuals have been shown to have an impaired response to vaccinations against virally mediated conditions and to have an increased susceptibility to multi-organ failure in response to viral illness. We investigated if DCs are altered in an obese cohort (mean body mass index 51.7±7.3 kg m(-2)), ultimately resulting in differential T-cell responses. Circulating DCs were found to be significantly decreased in the obese compared with the lean cohort (0.82% vs 2.53%). Following Toll-like receptor stimulation, compared with lean controls, DCs generated from the obese cohort upregulated significantly less CD83 (40% vs 17% mean fluorescence intensity), a molecule implicated in the elicitation of T-cell responses, particularly viral responses. Obese DCs produced twofold more of the immunosuppressive cytokine interleukin (IL)-10 than lean controls, and in turn stimulated fourfold more IL-4-production from allogenic naive T cells. We conclude that obesity negatively impacts the ability of DCs to mature and elicit appropriate T-cell responses to a general stimulus. This may contribute to the increased susceptibility to viral infection observed in severe obesity.International Journal of Obesity advance online publication, 26 February 2013; doi:10.1038\\/ijo.2013.16.

  18. Transcranial Direct Current Stimulation (tDCS) Enhances the Excitability of Trigemino-Facial Reflex Circuits.

    Science.gov (United States)

    Cabib, Christopher; Cipullo, Federica; Morales, Merche; Valls-Solé, Josep

    2016-01-01

    Transcranial direct current stimulation (tDCS) causes a tiny burning sensation through activation of local cutaneous trigeminal afferents. Trigeminal sensory inputs from tDCS may generate excitability changes in the trigemino-facial reflex circuits. Sixteen healthy volunteers were submitted to 20 minutes tDCS sessions with two types of electrode-montage conditions: 1. Real vs Sham 'bi-hemispheric' tDCS (cathode/anode: C4/C3), for blinded assessment of effects, and 2. 'uni-hemispheric' tDCS (cathode/anode: Fp3/C3), for assessment of laterality of the effects. Supraorbital nerve stimuli were used to obtain blink reflexes before, during (10 minutes from onset) and after (30 minutes from onset) the tDCS session. Outcome measures were R2 habituation (R2H) to repeated stimuli, the blink reflex excitability recovery (BRER) to paired stimuli and the blink reflex inhibition by a prepulse (BRIP). Real but not sham bi-hemispheric tDCS caused a significant decrease of R2H and leftward shift of BRER curve (p tDCS on BRER and BRIP were larger on ipsilateral than on contralateral blink reflexes (p tDCS enhances the excitability of trigemino-facial reflex circuits. The finding of larger ipsilateral than contralateral effects suggests that sensitization through cutaneous trigeminal afferents adds on other possible mechanisms such as activation of cortico-nuclear or cortico-reticular connections. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of different language and tDCS interventions in PPA and their neural correlates

    Directory of Open Access Journals (Sweden)

    Kyrana Tsapkini

    2015-05-01

    Results: First, we replicated our previous results obtained with fewer participants: all improved in both tDCS and sham conditions on trained items. Generalization of treatment on untrained items was significant only in tDCS condition. Therapy gains lasted longer in tDCS condition as well. Second, preliminary analyses of rs-fMRI show changes of functional connectivity between written language areas in the tDCS and sham conditions. Conclusions: tDCS represents an increasingly valuable treatment option in language rehabilitation even in neurodegeneration. Late intervention is as beneficial as early intervention but improvement seems more dramatic in early cases. Different possibilities are discussed: tDCS may indeed change the course of the disease, i.e., it may slow down the rate of decline or, language improvement due to tDCS (or delay in language deterioration due to the course of the disease may hold the spread of decline in other cognitive functions, thus, early interventions appear more beneficial. The correlation between functional connectivity and language production outcomes is expected to shed light on how tDCS works in the brains of people with a neurodegenerative disease. Implications of functional connectivity changes between language areas involved in the targeted language function will inform further interventions.

  20. Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity.

    Science.gov (United States)

    Arciniega, Hector; Gözenman, Filiz; Jones, Kevin T; Stephens, Jaclyn A; Berryhill, Marian E

    2018-01-01

    Working memory (WM) permits maintenance of information over brief delays and is an essential executive function. Unfortunately, WM is subject to age-related decline. Some evidence supports the use of transcranial direct current stimulation (tDCS) to improve visual WM. A gap in knowledge is an understanding of the mechanism characterizing these tDCS linked effects. To address this gap, we compared the effects of two tDCS montages designed on visual working memory (VWM) performance. The bifrontal montage was designed to stimulate the heightened bilateral frontal activity observed in aging adults. The unilateral frontoparietal montage was designed to stimulate activation patterns observed in young adults. Participants completed three sessions (bilateral frontal, right frontoparietal, sham) of anodal tDCS (20 min, 2 mA). During stimulation, participants performed a visual long-term memory (LTM) control task and a visual WM task. There was no effect of tDCS on the LTM task. Participants receiving right unilateral tDCS showed a WM benefit. This pattern was most robust in older adults with low WM capacity. To address the concern that the key difference between the two tDCS montages could be tDCS over the posterior parietal cortex (PPC), we included new analyses from a previous study applying tDCS targeting the PPC paired with a recognition VWM task. No significant main effects were found. A subsequent experiment in young adults found no significant effect of either tDCS montage on either task. These data indicate that tDCS montage, age and WM capacity should be considered when designing tDCS protocols. We interpret these findings as suggestive that protocols designed to restore more youthful patterns of brain activity are superior to those that compensate for age-related changes.

  1. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay.

    Science.gov (United States)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao

    2016-09-15

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8(+) T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available va Correia J. Vaccine. 2004 Dec 6;22 Suppl 1:S25-30. (.png) (.svg) (.html) (.csml) Show Innate immune responses during infection. Pub...medID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ,

  3. Effects of tDCS on Bimanual Motor Skills: A Brief Review.

    Science.gov (United States)

    Pixa, Nils H; Pollok, Bettina

    2018-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.

  4. Uptake of donor lymphocytes treated with 8-methoxypsoralen and ultraviolet A light by recipient dendritic cells induces CD4+CD25+Foxp3+ regulatory T cells and down-regulates cardiac allograft rejection

    International Nuclear Information System (INIS)

    Zheng, De-Hua; Dou, Li-Ping; Wei, Yu-Xiang; Du, Guo-Sheng; Zou, Yi-Ping; Song, Ji-Yong; Zhu, Zhi-Dong; Cai, Ming; Qian, Ye-Yong; Shi, Bing-Yi

    2010-01-01

    Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy and has been demonstrated to be beneficial for graft-vs-host disease and solid-organ allograft rejection. ECP involves reinfusion of a patient's autologous peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen and UVA light radiation (PUVA). Previous studies focused only on ECP treatment of recipient immune cells. Our study is the first to extend the target of ECP treatment to donor immune cells. The results of in vitro co-culture experiments demonstrate uptake of donor PUVA-treated splenic lymphocytes (PUVA-SPs) by recipient immature dendritic cells (DCs). Phagocytosis of donor PUVA-SPs does not stimulate phenotype maturation of recipient DCs. In the same co-culture system, donor PUVA-SPs enhanced production of interleukin-10 and interferon-γ by recipient DCs and impaired the subsequent capability of recipient DCs to stimulate recipient naive T cells. Phagocytosis of donor PUVA-SP (PUVA-SP DCs) by recipient DCs shifted T-cell responses in favor of T helper 2 cells. Infusion of PUVA-SP DCs inhibited cardiac allograft rejection in an antigen-specific manner and induced CD4 + CD25 high Foxp3 + regulatory T cells. In conclusion, PUVA-SP DCs simultaneously deliver the donor antigen and the regulatory signal to the transplant recipient, and thus can be used to develop a novel DC vaccine for negative immune regulation and immune tolerance induction.

  5. Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles

    International Nuclear Information System (INIS)

    Guo Lizheng; Lu Xiaoyan; Kang, S.-M.; Chen Changyi; Compans, Richard W.; Yao Qizhi

    2003-01-01

    To enhance mucosal immune responses using simian/human immunodeficiency virus-like particles (SHIV VLPs), we have produced novel phenotypically mixed chimeric influenza HA/SHIV VLPs and used them to immunize C57BL/6J mice intranasally. Antibody and cytotoxic T-cell (CTL) responses as well as cytokine production in both systemic and mucosal sites were compared after immunization with SHIV VLPs or chimeric HA/SHIV VLPs. By using enzyme-linked immunosorbent assay (ELISA), the levels of serum IgG and mucosal IgA to the HIV envelope protein (Env) were found to be highest in the group immunized with chimeric HA/SHIV VLPs. Furthermore, the highest titer of serum neutralizing antibody against HIV Env was found with the group immunized with chimeric HA/SHIV VLPs. Analysis of the IgG1/IgG2a ratio indicated that a T H 1-oriented immune response resulted from these VLP immunizations. HA/SHIV VLP-immunized mice also showed significantly higher CTL responses than those observed in SHIV VLP-immunized mice. Moreover, a MHC class I restricted T-cell activation ELISPOT assay showed a mixed type of T H 1/T H 2 cytokines in the HA/SHIV VLP-immunized mice, indicating that the chimeric VLPs can enhance both humoral and cellular immune responses to the HIV Env protein at multiple mucosal and systemic sites. The results indicate that incorporation of influenza HA into heterotypic VLPs may be highly effective for targeting vaccines to mucosal surfaces

  6. Canine Distemper Virus Infection Leads to an Inhibitory Phenotype of Monocyte-Derived Dendritic Cells In Vitro with Reduced Expression of Co-Stimulatory Molecules and Increased Interleukin-10 Transcription

    Science.gov (United States)

    Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532

  7. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    Directory of Open Access Journals (Sweden)

    Visar Qeska

    Full Text Available Canine distemper virus (CDV exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs, responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  8. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    Science.gov (United States)

    Qeska, Visar; Barthel, Yvonne; Herder, Vanessa; Stein, Veronika M; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  9. FOXP3-specific immunity

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2013-01-01

    Forkhead box P3 (FOXP3)-specific cytotoxic CD8(+) T cells are present among human peripheral blood mononuclear cells (PBMCs), especially in cancer patients. Such T lymphocytes are able not only to specifically recognize dendritic cells (DCs) that have been exposed to recombinant FOXP3 and regulat...... and regulatory T cells, but also to kill FOXP3(+) malignant T cells. The natural occurrence of FOXP3-specific cytotoxic T lymphocytes among human PBMCs suggests a general role for these cells in the complex network of immune regulation....

  10. Sex-specific consequences of an induced immune response on reproduction in a moth.

    Science.gov (United States)

    Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T

    2015-12-16

    Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.

  11. Distinct Functions of Specialized Dendritic Cell Subsets in Atherosclerosis and the Road Ahead

    Directory of Open Access Journals (Sweden)

    Alma Zernecke

    2014-01-01

    Full Text Available Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.

  12. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-01

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4 + T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4 + T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects

  13. The role and mechanics of dendritic cells in tumor antigen acquisition and presentation following laser immunotherapy

    Science.gov (United States)

    Laverty, Sean M.; Dawkins, Bryan A.; Chen, Wei R.

    2018-02-01

    We extend our model of the antitumor immune response initiated by laser-immunotherapy treatment to more closely examine key steps in the immune response 1) tumor antigen acquisition by antigen-presenting dendritic cells (DCs) and 2) cytotoxic T cell (CTL) priming by lymphatic DCs. Specifically we explore the formation of DC-CTL complexes that lead to CTL priming. We find that the bias in the dissociation rate of the complex influences the outcome of treatment. In particular, a bias towards priming favors a rapid activated CTL response and the clearance of tumors.

  14. Inter-donor variation in cell subset specific immune signaling responses in healthy individuals.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Hawtin, Rachael E; Cesano, Alessandra

    2012-01-01

    Single cell network profiling (SCNP) is a multi-parameter flow cytometry based approach that allows for the simultaneous interrogation of intracellular signaling pathways in multiple cell subpopulations within heterogeneous tissues, without the need for individual cell subset isolation. Thus, the technology is extremely well-suited for characterizing the multitude of interconnected signaling pathways and immune cell subpopulations that regulate the function of the immune system. Recently, SCNP was applied to generate a functional map of the healthy human immune cell signaling network by profiling immune signaling pathways downstream of 12 immunomodulators in 7 distinct immune cell subsets within peripheral blood mononuclear cells (PBMCs) from 60 healthy donors. In the study reported here, the degree of inter-donor variation in the magnitude of the immune signaling responses was analyzed. The highest inter-donor differences in immune signaling pathway activity occurred following perturbation of the immune signaling network, rather than in basal signaling. When examining the full panel of immune signaling responses, as one may expect, the overall degree of inter-donor variation was positively correlated (r = 0.727) with the magnitude of node response (i.e. a larger median signaling response was associated with greater inter-donor variation). However, when examining the degree of heterogeneity across cell subpopulations for individual signaling nodes, cell subset specificity in the degree of inter-donor variation was observed for several nodes. For such nodes, relatively weak correlations between inter-donor variation and the magnitude of the response were observed. Further, within the phenotypically distinct subpopulations, a fraction of the immune signaling responses had bimodal response profiles in which (a) only a portion of the cells had elevated phospho-protein levels following modulation and (b) the proportion of responsive cells varied by donor. These data

  15. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    Science.gov (United States)

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  16. Behavioral Fever Drives Epigenetic Modulation of the Immune Response in Fish.

    Science.gov (United States)

    Boltana, Sebastian; Aguilar, Andrea; Sanhueza, Nataly; Donoso, Andrea; Mercado, Luis; Imarai, Monica; Mackenzie, Simon

    2018-01-01

    Ectotherms choose the best thermal conditions to mount a successful immune response, a phenomenon known as behavioral fever. The cumulative evidence suggests that behavioral fever impacts positively upon lymphocyte proliferation, inflammatory cytokine expression, and other immune functions. In this study, we have explored how thermal choice during infection impacts upon underpinning molecular processes and how temperature increase is coupled to the immune response. Our results show that behavioral fever results in a widespread, plastic imprint on gene regulation, and lymphocyte proliferation. We further explored the possible contribution of histone modification and identified global associations between temperature and histone changes that suggest epigenetic remodeling as a result of behavioral fever. Together, these results highlight the critical importance of thermal choice in mobile ectotherms, particularly in response to an infection, and demonstrate the key role of epigenetic modification to orchestrate the thermocoupling of the immune response during behavioral fever.

  17. Impact of aging on antigen presentation cell function of dendritic cells.

    Science.gov (United States)

    Wong, Christine; Goldstein, Daniel R

    2013-08-01

    Older people exhibit increased mortality to infections and cancer as compared to younger people, indicating that aging impairs immunity. Dendritic cells (DCs) are key for bridging the innate and adaptive arms of the immune system by priming antigen specific T cells. Discerning how aging impacts DC function to initiate adaptive immune responses is of great biomedical importance as this could lead to the development of novel therapeutics to enhance immunity with aging. This review details reports indicating that aging impairs the antigen presenting function of DCs but highlights other studies indicating preserved DC function with aging. How aging impacts antigen presentation by DCs is complex and without a clear unifying biological underpinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Immune responses to influenza virus and its correlation to age and inherited factors

    Directory of Open Access Journals (Sweden)

    Azadeh Bahadoran

    2016-11-01

    Full Text Available Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.

  19. The Integration of DCS I/O to an Existing PLC

    Science.gov (United States)

    Sadhukhan, Debashis; Mihevic, John

    2013-01-01

    At the NASA Glenn Research Center (GRC), Existing Programmable Logic Controller (PLC) I/O was replaced with Distributed Control System (DCS) I/O, while keeping the existing PLC sequence Logic. The reason for integration of the PLC logic and DCS I/O, along with the evaluation of the resulting system is the subject of this paper. The pros and cons of the old system and new upgrade are described, including operator workstation screen update times. Detail of the physical layout and the communication between the PLC, the DCS I/O and the operator workstations are illustrated. The complex characteristics of a central process control system and the plan to remove the PLC processors in future upgrades is also discussed.

  20. Host control of malaria infections: constraints on immune and erythropoeitic response kinetics.

    Directory of Open Access Journals (Sweden)

    Philip G McQueen

    2008-08-01

    Full Text Available The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection to those with compensatory erythropoiesis (boosted RBC production or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating clinically, this suggests that P

  1. Translating tDCS into the field of obesity: mechanism-driven approaches

    Directory of Open Access Journals (Sweden)

    Miguel eAlonso-Alonso

    2013-08-01

    Full Text Available Transcranial direct current stimulation (tDCS is emerging as a promising technique for neuromodulation in a variety of clinical conditions. Recent neuroimaging studies suggest that modifying the activity of brain circuits involved in eating behavior could provide therapeutic benefits in obesity. One session of tDCS over the dorsolateral prefrontal cortex can induce an acute decrease in food craving, according to three small clinical trials, but the extension of these findings into the field of obesity remains unexplored. Importantly, there has been little/no interaction of our current understanding of tDCS and its mechanisms with obesity-related research. How can we start closing this gap and rationally guide the translation of tDCS into the field of obesity? In this mini-review I summarize some of the challenges and questions ahead, related to basic science and technical aspects, and suggest future directions.

  2. Delicate regulation of the cGAS-MITA-mediated innate immune response.

    Science.gov (United States)

    Luo, Wei-Wei; Shu, Hong-Bing

    2018-02-19

    Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.Cellular & Molecular Immunology advance online publication, 19 February 2018; doi:10.1038/cmi.2016.51.

  3. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load,

  4. Immune response at birth, long-term immune memory and 2 years follow-up after in-utero anti-HBV DNA immunization.

    Science.gov (United States)

    Fazio, V M; Ria, F; Franco, E; Rosati, P; Cannelli, G; Signori, E; Parrella, P; Zaratti, L; Iannace, E; Monego, G; Blogna, S; Fioretti, D; Iurescia, S; Filippetti, R; Rinaldi, M

    2004-03-01

    Infections occurring at the end of pregnancy, during birth or by breastfeeding are responsible for the high toll of death among first-week infants. In-utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. A major contribution to infant immunization would be achieved if a vaccine proved able to be protective as early as at the birth, preventing the typical 'first-week infections'. To establish its potential for use in humans, in-utero DNA vaccination efficiency has to be evaluated for short- and long-term safety, protection at delivery, efficacy of boosts in adults and effective window/s for modulation of immune response during pregnancy, in an animal model suitable with human development. Here we show that a single intramuscular in-utero anti-HBV DNA immunization at two-thirds of pig gestation produces, at birth, antibody titers considered protective in humans. The boost of antibody titers in every animal following recall at 4 and 10 months demonstrates the establishment of immune memory. The safety of in-utero fetus manipulation is guaranteed by short-term (no fetus loss, lack of local alterations, at-term spontaneous delivery, breastfeeding) and long-term (2 years) monitoring. Treatment of fetuses closer to delivery results in immune ignorance without induction of tolerance. This result highlights the repercussion of selecting the appropriate time point when this approach is used to deliver therapeutic genes. All these findings illustrate the relevance of naked DNA-based vaccination technology in therapeutic efforts aimed to prevent the high toll of death among first-week infants.

  5. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases?

    Science.gov (United States)

    Jansen, Manon A A; Spiering, Rachel; Broere, Femke; van Laar, Jacob M; Isaacs, John D; van Eden, Willem; Hilkens, Catharien M U

    2018-01-01

    Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens. © 2017 John Wiley & Sons Ltd.

  6. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  7. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  8. Study of the integrated immune response induced by an inactivated EV71 vaccine.

    Directory of Open Access Journals (Sweden)

    Longding Liu

    Full Text Available Enterovirus 71 (EV71, a major causative agent of hand-foot-and-mouth disease (HFMD, causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs of 30 infants (6 to 11 months immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response.NCT01391494 and NCT01512706.

  9. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Science.gov (United States)

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  10. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M.C.M.; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  11. Natural killer cells promote early CD8 T cell responses against cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Scott H Robbins

    2007-08-01

    Full Text Available Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs for cytokine production, preserves the conventional dendritic cell (cDC compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate

  12. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  13. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing.

    Science.gov (United States)

    Reinhart, Robert M G; Cosman, Josh D; Fukuda, Keisuke; Woodman, Geoffrey F

    2017-01-01

    Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability.

  14. Anodal tDCS to V1 blocks visual perceptual learning consolidation.

    Science.gov (United States)

    Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan

    2013-06-01

    This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Role of IL-12 and IFN-γ in immune response to toxoplasma gondii infection

    International Nuclear Information System (INIS)

    Moawad, M.A.F.; ElGawish, M.A.M.

    2004-01-01

    Interlenkin 12 (IL-12) is a potent immunoregulatory molecule that is critically involved in a wide range of diseases. In several murine models of intracellular infection, endogenous IL-12 has been shown to be crucial for the generation of a protective Th1 response in a primary infection for a intracellular pathogens. Interferon-gamma (IFN-γ) is also an important mediator of cellular immunity against microbial pathogens and tumor cells due to its potent capacity to activate macrophages for enhanced cytotoxicity. The aim of the present study is to evaluate the immune response to toxoplasma gondii after primary inflection (infected groups and secondary infection (re-infected groups for over 19 weeks (the time of the experiment). the evaluation was assessed by measurements of levels of IL-12 and IFN-γ using ELISA technique in the sera of these infected rats. The results demonstrated that the primary immune response induced a fluctuation in the levels of IL-12 in the sera of infected rats, which reached maximum value of 122.6 ±1.4 pg/ml after 15 weeks of primary infection. While, in the challenged groups (secondary immune response, re-infected groups) the levels of IL-12 were generally lower than that of the primary immune response. On the other hand, IFN-γ levels increased significantly in the secondary immune response (re-infected groups) as compared to primary immune response 9 infected groups) In conclusion, the results suggest that IL-12 might have a role in the defense mechanism against intracellular infection with T-gondii especially in primary immune response than in the secondary immune response. This is in contrast to IFN-γ that takes the up-hand in secondary immune response to T-gondii infection

  16. Immune responses accelerate ageing: proof-of-principle in an insect model.

    Directory of Open Access Journals (Sweden)

    E Rhiannon Pursall

    Full Text Available The pathology of many of the world's most important infectious diseases is caused by the immune response. Additionally age-related disease is often attributed to inflammatory responses. Consequently a reduction in infections and hence inflammation early in life has been hypothesized to explain the rise in lifespan in industrialized societies. Here we demonstrate experimentally for the first time that eliciting an immune response early in life accelerates ageing. We use the beetle Tenebrio molitor as an inflammation model. We provide a proof of principle for the effects of early infection on morbidity late in life and demonstrate a long-lasting cost of immunopathology. Along with presenting a proof-of-principle study, we discuss a mechanism for the apparently counter-adaptive persistence of immunopathology in natural populations. If immunopathology from early immune response only becomes costly later in life, natural selection on reducing self-harm would be relaxed, which could explain the presence of immune self-harm in nature.

  17. Neonatal and Infantile Immune Responses to Encapsulated Bacteria and Conjugate Vaccines

    Directory of Open Access Journals (Sweden)

    Peter Klein Klouwenberg

    2008-01-01

    Full Text Available Encapsulated bacteria are responsible for the majority of mortality among neonates and infants. The major components on the surface of these bacteria are polysaccharides which are important virulence factors. Immunity against these components protects against disease. However, most of the polysaccharides are thymus-independent (TI-2 antigens which induce an inadequate immune response in neonates and infants. The mechanisms that are thought to play a role in the unresponsiveness of this age group to TI-2 stimuli will be discussed. The lack of immune response may be overcome by conjugating the polysaccharides to a carrier protein. This transforms bacterial polysaccharides from a TI-2 antigen into a thymus-dependent (TD antigen, thereby inducing an immune response and immunological memory in neonates and infants. Such conjugated vaccines have been shown to be effective against the most common causes of invasive disease caused by encapsulated bacteria in neonates and children. These and several other approaches in current vaccine development will be discussed.

  18. Nanopulse Stimulation (NPS Induces Tumor Ablation and Immunity in Orthotopic 4T1 Mouse Breast Cancer: A Review

    Directory of Open Access Journals (Sweden)

    Stephen J. Beebe

    2018-03-01

    Full Text Available Nanopulse Stimulation (NPS eliminates mouse and rat tumor types in several different animal models. NPS induces protective, vaccine-like effects after ablation of orthotopic rat N1-S1 hepatocellular carcinoma. Here we review some general concepts of NPS in the context of studies with mouse metastatic 4T1 mammary cancer showing that the postablation, vaccine-like effect is initiated by dynamic, multilayered immune mechanisms. NPS eliminates primary 4T1 tumors by inducing immunogenic, caspase-independent programmed cell death (PCD. With lower electric fields, like those peripheral to the primary treatment zone, NPS can activate dendritic cells (DCs. The activation of DCs by dead/dying cells leads to increases in memory effector and central memory T-lymphocytes in the blood and spleen. NPS also eliminates immunosuppressive cells in the tumor microenvironment and blood. Finally, NPS treatment of 4T1 breast cancer exhibits an abscopal effect and largely prevents spontaneous metastases to distant organs. NPS with fast rise–fall times and pulse durations near the plasma membrane charging time constant, which exhibits transient, high-frequency components (1/time = Hz, induce responses from mitochondria, endoplasmic reticulum, and nucleus. Such effects may be responsible for release of danger-associated molecular patterns, including ATP, calreticulin, and high mobility group box 1 (HMBG1 from 4T1-Luc cells to induce immunogenic cell death (ICD. This likely leads to immunity and the vaccine-like response. In this way, NPS acts as a unique onco-immunotherapy providing distinct therapeutic advantages showing possible clinical utility for breast cancers as well as for other malignancies.

  19. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    Purpose: To evaluate the immunogenicity and types of immune response of a quality-controlled modified recombinant hepatitis B surface antigen (HBsAg) plasmid encoding HBsAg in mice. Methods: The characterized plasmid DNA was used in the immunization of Balb/c mice. Three groups of mice were intramuscularly ...

  20. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Lefaucheur, Jean-Pascal; Antal, Andrea; Ayache, Samar S; Benninger, David H; Brunelin, Jérôme; Cogiamanian, Filippo; Cotelli, Maria; De Ridder, Dirk; Ferrucci, Roberta; Langguth, Berthold; Marangolo, Paola; Mylius, Veit; Nitsche, Michael A; Padberg, Frank; Palm, Ulrich; Poulet, Emmanuel; Priori, Alberto; Rossi, Simone; Schecklmann, Martin; Vanneste, Sven; Ziemann, Ulf; Garcia-Larrea, Luis; Paulus, Walter

    2017-01-01

    A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS

  1. Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: Implication for the polarity correspondence account.

    Science.gov (United States)

    Di Rosa, Elisa; Bardi, Lara; Umiltà, Carlo; Masina, Fabio; Forgione, Margherita; Mapelli, Daniela

    2017-08-01

    The concept of stimulus response compatibility (SRC) refers to the existence of a privileged association between a specific stimulus feature and a specific response feature. Two examples of SRC are the Spatial Numerical Association of Response Codes (SNARC) and the Markedness Association of Response Codes (MARC) effects. According to the polarity correspondence principle, these two SRC effects occur because of a match between the most salient dimensions of stimulus and response. Specifically, the SNARC effect would be caused by a match between right-sided responses and large numbers, while a match between right-sided responses and even numbers would give rise to the MARC effect. The aim of the present study was to test the validity of the polarity correspondence principle in explaining these two SRC effects. To this end, we applied transcranial direct current stimulation (tDCS) over left and right posterior parietal cortex (PPC), which is thought to be the neural basis of salience processing, during a parity judgement task. Results showed that cathodal tDCS over the PPC significantly reduced the MARC effect but did not affect the SNARC effect, suggesting a dissociation between the two effects. That is, the MARC would rely on a salience processing mechanism, whereas the SNARC would not. Despite this interpretation is in need of further experimental confirmations (i.e., testing different tasks or using different tDCS montages), our results suggest that the polarity correspondence principle can be a plausible explanation only for the MARC effect but not for the SNARC effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  3. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  4. A modified live canine parvovirus vaccine. II. Immune response.

    Science.gov (United States)

    Carmichael, L E; Joubert, J C; Pollock, R V

    1983-01-01

    The safety and efficacy of an attenuated canine parvovirus (A-CPV) vaccine was evaluated in both experimental and in field dogs. After parenteral vaccination, seronegative dogs developed hemagglutination-inhibition (HI) antibody titers as early as postvaccination (PV) day 2. Maximal titers occurred within 1 week. Immunity was associated with the persistence of HI antibody titers (titers greater than 80) that endured at least 2 years. Immune dogs challenged with virulent CPV did not shed virus in their feces. The A-CPV vaccine did not cause illness alone or in combination with living canine distemper (CD) and canine adenovirus type-2 (CAV-2) vaccines, nor did it interfere with the immune response to the other viruses. A high rate (greater than 98%) of immunity was engendered in seronegative pups. In contrast, maternal antibody interfered with the active immune response to the A-CPV. More than 95% of the dogs with HI titers less than 10 responded to the vaccine, but only 50% responded when titers were approximately 20. No animal with a titer greater than 80 at the time of vaccination became actively immunized. Susceptibility to virulent CPV during that period when maternal antibody no longer protects against infection, but still prevents active immunization, is the principal cause of vaccinal failure in breeding kennels where CPV is present. Reduction, but not complete elimination, of CPV disease in large breeding kennels occurred within 1-2 months of instituting an A-CPV vaccination program.

  5. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: Long-lasting effect.

    Science.gov (United States)

    Filho, Paulo Ricardo Marques; Vercelino, Rafael; Cioato, Stefania Giotti; Medeiros, Liciane Fernandes; de Oliveira, Carla; Scarabelot, Vanessa Leal; Souza, Andressa; Rozisky, Joanna Ripoll; Quevedo, Alexandre da Silva; Adachi, Lauren Naomi Spezia; Sanches, Paulo Roberto S; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-04

    Neuropathic pain (NP) is a chronic pain modality that usually results of damage in the somatosensory system. NP often shows insufficient response to classic analgesics and remains a challenge to medical treatment. The transcranial direct current stimulation (tDCS) is a non-invasive technique, which induces neuroplastic changes in central nervous system of animals and humans. The brain derived neurotrophic factor plays an important role in synaptic plasticity process. Behavior changes such as decreased locomotor and exploratory activities and anxiety disorders are common comorbidities associated with NP. Evaluate the effect of tDCS treatment on locomotor and exploratory activities, and anxiety-like behavior, and peripheral and central BDNF levels in rats submitted to neuropathic pain model. Rats were randomly divided: Ss, SsS, SsT, NP, NpS, and NpT. The neuropathic pain model was induced by partial sciatic nerve compression at 14 days after surgery; the tDCS treatment was initiated. The animals of treated groups were subjected to a 20 minute session of tDCS, for eight days. The Open Field and Elevated Pluz Maze tests were applied 24 h (phase I) and 7 days (phase II) after the end of tDCS treatment. The serum, spinal cord, brainstem and cerebral cortex BDNF levels were determined 48 h (phase I) and 8 days (phase II) after tDCS treatment by ELISA. The chronic constriction injury (CCI) induces decrease in locomotor and exploratory activities, increases in the behavior-like anxiety, and increases in the brainstem BDNF levels, the last, in phase II (one-way ANOVA/SNK, PtDCS treatment already reverted all these effects induced by CCI (one-way ANOVA/SNK, PtDCS treatment decreased serum and cerebral cortex BDNF levels and it increased these levels in the spinal cord in phase II (one-way ANOVA/SNK, PtDCS reverts behavioral alterations associated to neuropathic pain, indicating possible analgesic and anxiolytic tDCS effects. tDCS treatment induces changes in the BDNF levels

  6. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Science.gov (United States)

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  7. Clinical Research with Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions

    Science.gov (United States)

    Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126

  8. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  9. High-dimensional analysis of the aging immune system: verification of age-associated differences in immune signaling responses in healthy donors.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Ptacek, Jason; Friedland, Greg; Evensen, Erik; Putta, Santosh; Atallah, Michelle; Spellmeyer, David; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Schaeffer, Andrea; Lukac, Suzanne; Railkar, Radha; Beals, Chan R; Cesano, Alessandra; Carayannopoulos, Leonidas N; Hawtin, Rachael E

    2014-06-21

    Single-cell network profiling (SCNP) is a multiparametric flow cytometry-based approach that simultaneously measures evoked signaling in multiple cell subsets. Previously, using the SCNP approach, age-associated immune signaling responses were identified in a cohort of 60 healthy donors. In the current study, a high-dimensional analysis of intracellular signaling was performed by measuring 24 signaling nodes in 7 distinct immune cell subsets within PBMCs in an independent cohort of 174 healthy donors [144 elderly (>65 yrs); 30 young (25-40 yrs)]. Associations between age and 9 immune signaling responses identified in the previously published 60 donor cohort were confirmed in the current study. Furthermore, within the current study cohort, 48 additional immune signaling responses differed significantly between young and elderly donors. These associations spanned all profiled modulators and immune cell subsets. These results demonstrate that SCNP, a systems-based approach, can capture the complexity of the cellular mechanisms underlying immunological aging. Further, the confirmation of age associations in an independent donor cohort supports the use of SCNP as a tool for identifying reproducible predictive biomarkers in areas such as vaccine response and response to cancer immunotherapies.

  10. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Bart eEverts

    2014-05-01

    Full Text Available Dendritic cells (DCs are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.

  11. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  12. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  13. Targeting nanoparticles to dendritic cells for immunotherapy.

    NARCIS (Netherlands)

    Cruz, L.J.; Tacken, P.J.; Rueda, F.; Domingo, J.C.; Albericio, F.; Figdor, C.G.

    2012-01-01

    Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy for treatment of cancer and infectious diseases. Development of targeted nanodelivery systems carrying vaccine components, including antigens and adjuvants, to DCs in

  14. [Comparison of immune response after oral and intranasal immunization with recombinant Lactobacillus casei expressing ETEC F41].

    Science.gov (United States)

    Liu, Jiankui; Wei, Chunhua; Hou, Xilin; Wang, Guihua; Yu, Liyun

    2009-04-01

    In order to represent a promising strategy for mucosal vaccination, oral or intranasal immunization of Specific Pathogen Free (SPF) BALB/c mice were performed. The mucosal immunity, systemic immune and protective immune responses were compared after immunization with the recombinant Lactobacillus casei (L. casei) harboring enterotoxigenic Escherichia coli (ETEC) F41. The recombinant fusion proteins were detected by Western blot. Surface localization of the fusion protein was verified by immunofluorescence microscopy and flow cytometry. Six-week-old female SPF BALB/c mice (160 heads) were divided into 4 groups for immunization and control. Oral and intranasal immunization of mice was performed with the recombinant strain L. casei harboring pLA-F41 or pLA. For oral immunization, the mice were inoculated daily on days 0 to 4, 7 to 11, 21 to 25, and 49 to 53. A lighter schedule was used for nasal immunization (days 0 to 2, 7 to 9, 21 and 49). Specific anti-F41 IgG antibody in the serum and specific anti-F41 secret immunoglobulin A (sIgA) antibody in the lung, intestines, vagina fluid and feces of mice were detected by indirect ELISA. The mice orally or intranasally immunized with pLA-F41/L. casei and pLA/IL. casei were challenged with standard-type ETEC F41 (C83919) (2 x 10(3) LD50). Mice immunized with pLA-F41/L. casei could produce remarkable anti-F41 antibody level. More than 90% survived in oral immunization group whereas more than 85% survived in intranasal immunization group after challenged with C83919, all dead in the control group. Ninety percent of the pups survived in oral immunization group whereas 80% survived in intranasal immunization group after challenged with C83919, but only a 5% survival rate for pups that were either immunized with a control pLA vector or unimmunized. Oral or intranasal immunization with recombinant L. casei displaying ETEC F41 antigens on the surface induced effective and similar systemic and mucosal immune responses against the

  15. Induction of the immune response suppression in mice inoculated with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, D E; Sirena, A; de Petrino, S F; Eugenia, M; de Jorrat, B B; de Valdex, M G

    1986-03-01

    There is a controversy in respect to the immunological response (humoral or cellular) concerning the defense against Candida albicans. Candidosis would induce sub-populations of suppressor cells in the host cell-immune response. This report tries to show the effect of different doses of C. albicans (alive or heat-killed) on the expression of cell-mediated and humoral immunity. The effect upon cell immunity was determined by inoculating different lots of singeneic mice, doses of varied concentration of C. albicans and checking for delayed-type hipersensitivity (D.T.H.). D.T.H. was also controlled in syngeneic normal mice which had previously been injected with inoculated mice spleen cells. Humoral immunity was assayed by measuring the induced blastogenesis by Pokeweed Mitogen on spleen mononuclear cells with different doses of C. albicans. Results obtained show that the different doses gave origin to: Suppression of humoral and cell response (10(8) alive); Suppression of only humoral response (10(6) alive); Suppression of cell response and increase of humoral response (10(9) dead); Increase of both responses (10(8) dead).

  16. Immune system development during early childhood in tropical Latin America: evidence for the age-dependent down regulation of the innate immune response.

    Science.gov (United States)

    Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J

    2011-03-01

    The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. The Effects of Transcranial Direct Current Stimulation (tDCS on Multitasking Throughput Capacity

    Directory of Open Access Journals (Sweden)

    Justin Nelson

    2016-11-01

    Full Text Available Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators’ capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female with an average age of 31.1 (SD = 4.5. Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants’ information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  18. The Effects of Transcranial Direct Current Stimulation (tDCS) on Multitasking Throughput Capacity.

    Science.gov (United States)

    Nelson, Justin; McKinley, Richard A; Phillips, Chandler; McIntire, Lindsey; Goodyear, Chuck; Kreiner, Aerial; Monforton, Lanie

    2016-01-01

    Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators' capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS) applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC) to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female) with an average age of 31.1 (SD = 4.5). Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2 mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants' information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s) whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  19. Vaxfectin enhances antigen specific antibody titers and maintains Th1 type immune responses to plasmid DNA immunization.

    Science.gov (United States)

    Reyes, L; Hartikka, J; Bozoukova, V; Sukhu, L; Nishioka, W; Singh, G; Ferrari, M; Enas, J; Wheeler, C J; Manthorpe, M; Wloch, M K

    2001-06-14

    Antigen specific immune responses were characterized after intramuscular immunization of BALB/c mice with 5 antigen encoding plasmid DNAs (pDNAs) complexed with Vaxfectin, a cationic lipid formulation. Vaxfectin increased IgG titers for all of the antigens with no effect on the CTL responses to the 2 antigens for which CTL assays were performed. Both antigen specific IgG1 and IgG2a were increased, although IgG2a remained greater than IgG1. Furthermore, Vaxfectin had no effect on IFN-gamma or IL-4 production by splenocytes re-stimulated with antigen, suggesting that the Th1 type responses typical of intramuscular pDNA immunization were not altered. Studies with IL-6 -/- mice suggest that the antibody enhancement is IL-6 dependent and results in a correlative increase in antigen specific antibody secreting cells.

  20. Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC

    Science.gov (United States)

    Tai, Lee-Hwa; Goulet, Marie-Line; Belanger, Simon; Toyama-Sorimachi, Noriko; Fodil-Cornu, Nassima; Vidal, Silvia M.; Troke, Angela D.; McVicar, Daniel W.; Makrigiannis, Andrew P.

    2008-01-01

    Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2Kb. Conversely, CpG-ODN–dependent IFN-α production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2Kb ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo. PMID:19075287

  1. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions

    Directory of Open Access Journals (Sweden)

    Jamart Jacques

    2010-03-01

    Full Text Available Abstract Background Transcranial direct current stimulation (tDCS is used in human physiological studies and for therapeutic trials in patients with abnormalities of cortical excitability. Its safety profile places tDCS in the pole-position for translating in real-world therapeutic application. However, an episode of transient respiratory depression in a subject receiving tDCS with an extracephalic electrode led to the suggestion that such an electrode montage could modulate the brainstem autonomic centres. We investigated whether tDCS applied over the midline frontal cortex in 30 healthy volunteers (sham n = 10, cathodal n = 10, anodal n = 10 with an extracephalic reference electrode would modulate brainstem activity as reflected by the monitoring and stringent analysis of vital parameters: heart rate (variability, respiratory rate, blood pressure and sympatho-vagal balance. We reasoned that this study could lead to two opposite but equally interesting outcomes: 1 If tDCS with an extracephalic electrode modulated vital parameters, it could be used as a new tool to explore the autonomic nervous system and, even, to modulate its activity for therapeutic purposes. 2 On the opposite, if applying tDCS with an extracephalic electrode had no effect, it could thus be used safely in healthy human subjects. This outcome would significantly impact the field of non-invasive brain stimulation with tDCS. Indeed, on the one hand, using an extracephalic electrode as a genuine neutral reference (as opposed to the classical "bi-cephalic" tDCS montages which deliver bi-polar stimulation of the brain would help to comfort the conclusions of several modern studies regarding the spatial location and polarity of tDCS. On the other hand, using an extracephalic reference electrode may impact differently on a given cortical target due to the change of direct current flow direction; this may enlarge the potential interventions with tDCS. Results Whereas the respiratory

  2. DCS cabinet power loss analysis for CPR1000 nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Liang; Zhao Yanfeng; Sun Yongbin

    2014-01-01

    The DCS overall structure of CRP1000 nuclear power plant was introduced. Based on the RPC, the signal interface character and signal processing mechanism on the key root were analyzed. By the power loss analyzing of RPC, the RPC loss power may lead reactor trip signal from anticipated transient without scram (ATWS) system. The results indicate that it is necessary to search DCS cabinet power loss analysis. Optimizing and assigning the main water flow signals can avoid trigger reactor trip signal by mistake. The DCS cabinet power loss analysis can optimize the I and C (instrumentation and control) design and increase the nuclear plant's reliability. (authors)

  3. Uptake of donor lymphocytes treated with 8-methoxypsoralen and ultraviolet A light by recipient dendritic cells induces CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells and down-regulates cardiac allograft rejection

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, De-Hua [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China); Dou, Li-Ping [Department of Hematology, Chinese PLA General Hospital, No. 28 Fu-Xing Road, Beijing 100853 (China); Wei, Yu-Xiang; Du, Guo-Sheng; Zou, Yi-Ping; Song, Ji-Yong; Zhu, Zhi-Dong; Cai, Ming; Qian, Ye-Yong [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China); Shi, Bing-Yi, E-mail: shibingyi@medmail.com.cn [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China)

    2010-05-14

    Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy and has been demonstrated to be beneficial for graft-vs-host disease and solid-organ allograft rejection. ECP involves reinfusion of a patient's autologous peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen and UVA light radiation (PUVA). Previous studies focused only on ECP treatment of recipient immune cells. Our study is the first to extend the target of ECP treatment to donor immune cells. The results of in vitro co-culture experiments demonstrate uptake of donor PUVA-treated splenic lymphocytes (PUVA-SPs) by recipient immature dendritic cells (DCs). Phagocytosis of donor PUVA-SPs does not stimulate phenotype maturation of recipient DCs. In the same co-culture system, donor PUVA-SPs enhanced production of interleukin-10 and interferon-{gamma} by recipient DCs and impaired the subsequent capability of recipient DCs to stimulate recipient naive T cells. Phagocytosis of donor PUVA-SP (PUVA-SP DCs) by recipient DCs shifted T-cell responses in favor of T helper 2 cells. Infusion of PUVA-SP DCs inhibited cardiac allograft rejection in an antigen-specific manner and induced CD4{sup +}CD25{sup high}Foxp3{sup +} regulatory T cells. In conclusion, PUVA-SP DCs simultaneously deliver the donor antigen and the regulatory signal to the transplant recipient, and thus can be used to develop a novel DC vaccine for negative immune regulation and immune tolerance induction.

  4. Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Kathryn Milligan-Myhre

    2016-02-01

    Full Text Available Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD. The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish

  5. Inhibition of the immune response to experimental fresh osteoarticular allografts

    International Nuclear Information System (INIS)

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. III; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M.

    1989-01-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed

  6. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    Science.gov (United States)

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty

    Science.gov (United States)

    Chua, Elizabeth F.; Ahmed, Rifat; Garcia, Sandry

    2016-01-01

    Background The ability to monitor one’s own memory is an important feature of normal memory and is an aspect of ‘metamemory’. Lesion studies have shown dissociations between memory and metamemory, but only single dissociations have been shown using transcranial direct current stimulation (tDCS). One potential reason that only single dissociations have been shown is that tDCS effects may be moderated by task difficulty. Objective/Hypothesis We used high definition (HD) tDCS to test for dissociable roles of the dorsolateral prefrontal cortex (DLPFC) and anterior temporal lobe (ATL) in semantic long-term memory and metamemory tasks. We also tested whether general knowledge question difficulty moderated the effects of HD-tDCS. Methods Across 3 sessions, participants received active HD-tDCS over the left DLPFC or left ATL, or sham HD-tDCS during general knowledge recall and recognition tests, and a ‘feeling-of-knowing’ metamemory task. General knowledge questions were blocked by difficulty. Repeated measures ANOVAs were used to examine the effects of HD-tDCS on memory and metamemory tasks by memory question difficulty. Results HD-tDCS over the ATL led to improved recall compared to DLPFC and sham HD-tDCS, and this occurred only for medium difficulty questions. In contrast, for non-recalled questions, HD-tDCS over the DLPFC led to improved recognition accuracy and improved feeling-of-knowing accuracy compared to ATL and sham HD-tDCS, and this was not moderated by memory question difficulty. Conclusion(s) HD-tDCS can be used to dissociate the roles of the ATL and DLPFC in different memory and ‘metamemory’ tasks. The effects of HD-tDCS on task may be moderated by task difficulty, depending on the nature of the task and site of stimulation. PMID:27876306

  8. Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stefania Parlato

    Full Text Available Individuals exposed to Mycobacterium tuberculosis (Mtb may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI or develop active tuberculosis (TB. Among the multiple factors governing the outcome of the infection, dendritic cells (DCs play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs from patients with active TB, subjects with LTBI and healthy donors (HD. The proportion of circulating myeloid BDCA3+ DCs (mDC2 and plasmacytoid CD123+ DCs (pDCs declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.

  9. Transcranial direct-current stimulation (tDCS) for bipolar depression: A systematic review and meta-analysis.

    Science.gov (United States)

    Dondé, Clément; Amad, Ali; Nieto, Isabel; Brunoni, André Russowsky; Neufeld, Nicholas H; Bellivier, Frank; Poulet, Emmanuel; Geoffroy, Pierre-Alexis

    2017-08-01

    Bipolar disorder (BD) is a severe and recurrent brain disorder that can manifest in manic or depressive episodes. Transcranial Direct Current Stimulation (tDCS) has been proposed as a novel therapeutic modality for patients experiencing bipolar depression, for which standard treatments are often inefficient. While several studies have been conducted in this patient group, there has been no systematic review or meta-analysis that specifically examines bipolar depression. We aimed to address this gap in the literature and evaluated the efficacy and tolerability of tDCS in patients fulfilling DSM-IV-TR criteria for BD I, II, or BD not otherwise specified (NOS). We systematically searched the literature from April 2002 to November 2016 to identify relevant publications for inclusion in our systematic review and meta-analysis. Effect sizes for depression rating-scale scores were expressed as the standardized mean difference (SMD) before and after tDCS. Thirteen of 382 identified studies met eligibility criteria for our systematic review. The meta-analysis included 46 patients from 7 studies with depression rating-scale scores pre- and post-tDCS. Parameters of tDCS procedures were heterogeneous. Depression scores decreased significantly with a medium effect size after acute-phase of treatment (SMD 0.71 [0.25-1.18], z=3.00, p=0.003) and at the furthest endpoint (SMD 1.27 [0.57-1.97], z=3.57, p=0.0004). Six cases of affective switching under tDCS treatment protocols were observed. Depressive symptoms respond to tDCS in patients with BD. Additional studies, and particularly randomized controlled trials, are needed to clarify the effectiveness of tDCS in bipolar depression, the frequency of tDCS-emergent hypomania/mania, and which tDCS modalities are most efficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Study of the immune response to thyroglobulin through a model of experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Santos Castro, M. dos.

    1981-01-01

    The cellular and humoral immune response to thyroglobulin of different species was studied in guinea pigs. The experiments described suggested that the immune system can be activated against self-determinants. Human and pork thyroglobulin were able to induce the experimental thyroiditis as well as some immune responses, such as in vitro proliferative response, delayed hypersensitivity and antibodies. Although guinea pig thyroglobulin was unable to induce specific T-lymphocyte proliferation in vitro, delayed hypersensitivity response and antibodies, it was very efficient in inducing the autoimmune thyroiditis. On the contrary, bovine thyroglobulin did not induce experimental autoimmune thyroiditis despite producing good responses as determined by similar in vitro proliferative response, delayed hypersensitivity and on the humoral level. These results suggest that the assays utilised were not able to evaluate the relevant immune response to genesis of the thyroiditis. The determinant selection mechanisms operating in these immune responses are probably selecting determinants not responsible for self-recognition in vivo. It was suggested that the macrophage could be the cell responsible for the presentation of these determinants to the lymphocyte in an immunogenic form. (Author) [pt

  11. Augmentation of antigen-specific immune responses using DNA-fusogenic liposome vaccine

    International Nuclear Information System (INIS)

    Yoshikawa, Tomoaki; Imazu, Susumu; Gao Jianqing; Hayashi, Kazuyuki; Tsuda, Yasuhiro; Shimokawa, Mariko; Sugita, Toshiki; Niwa, Takako; Oda, Atushi; Akashi, Mitsuru; Tsutsumi, Yasuo; Mayumi, Tadanori; Nakagawa, Shinsaku

    2004-01-01

    In an attempt to enhance the immunological efficacy of genetic immunization, we investigated a new biological means for delivering antigen gene directly to the cytoplasm via membrane fusion. In this context, we investigated fusogenic liposome (FL) encapsulating DNA as a possible genetic immunization vehicle. RT-PCR analysis indicated that a FL could introduce and express encapsulating OVA gene efficiently and rapidly in vitro. Consistent with this observation, an in vitro assay showed that FL-mediated antigen-gene delivery can induce potent presentation of antigen via the MHC class I-dependent pathway. Accordingly, immunization with FL containing the OVA-gene induced potent OVA-specific Th1 and Th2 cytokine production. Additionally, OVA-specific CTL responses and antibody production were also observed in systemic compartments including the spleen, upon immunization with the OVA-gene encapsulating FL. These findings suggest that FL is an effective genetic immunization carrier system for the stimulation of antigen-specific immune responses against its encoding antigen

  12. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients.

    Science.gov (United States)

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-09-17

    Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8(+) memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH(+) patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8(+) Tm were detected. Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial.

  13. Immune response capacity after human splenic autotransplantation - Restoration of response to individual pneumococcal vaccine subtypes

    NARCIS (Netherlands)

    Leemans, R; Manson, W; Snijder, JAM; Smit, JW; Klasen, HJ; The, TH; Timens, W

    Objective To evaluate features of general immune function, in particular the restoration of the humoral immune response to pneumococcal capsular polysaccharides, in humans undergoing a spleen autotransplantation after splenectomy because of trauma. Summary Background Data After splenectomy, patients

  14. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter

    2009-01-01

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper...

  15. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  16. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    Science.gov (United States)

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  17. Ageing and the humoral immune response in mice

    International Nuclear Information System (INIS)

    Blankwater, M.J.

    1978-01-01

    The study presented in this thesis is concerned with changes in the humoral immune system as a function of age in different inbred mouse strains. Their capacity to develop humoral immune responses to experimentally given thymus-dependent and thymus-independent antigens under various conditions is compared. Furthermore, experiments employing thymus transplantation and thymic humoral factors which are directed at the restoration of the diminished T cell functions in old age are reported. (Auth.)

  18. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  19. Immune response and biochemistry of calves immunized with rMSP1a ( Anaplasma marginale using carbon nanotubes as carrier molecules

    Directory of Open Access Journals (Sweden)

    Bruna Torres Silvestre

    2018-05-01

    Full Text Available Abstract Vaccination against Anaplasma marginale has been considered an important control strategy for bovine anaplasmosis. Recently, mice immunized with rMSP1 a linked to carbon nanotubes (MWNT showed significant immune responses, generating a new possibility for use of an inactivated vaccine. The objective of this study was to investigate the cellular and humoral responses in calves immunized with MWNT+rMSP1a , associated with inactivated vaccine of A. marginale produced in vitro, and evaluate the toxic effects of the MWNT on renal and hepatic function. rMSP1a was covalently linked to MWNT. Inactivated vaccine (AmUFMG2 was produced by cultivating A. marginale in IDE8 cells. Twenty-four Holstein calves were divided (four groups and immunized subcutaneously with PBS and non-carboxylated MWNT (control, G1, AmUFMG2 (G2, MWNT+rMSP1a (G3, and AmUFMG2 with MWNT+rMSP1a (G4. Blood samples were collected for total leukocyte counts, biochemical profiling and evaluation of the cellular and humoral response. Immunization with MWNT+rMSP1a induced increase in the total number of leukocytes, NK cells, in the lymphocyte populations and higher levels of antibodies compared to calves immunized only with AmUFMG2. Furthermore, MWNT did not induce changes in the biochemical profile. These data indicate that MWNT+rMSP1a were able to induce the immune responses more efficiently than AmUFMG2 alone, without generating toxicity.

  20. Work stress and innate immune response.

    Science.gov (United States)

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.